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Abstract: Advanced Driver Assistance Systems (ADAS) relates to various in-vehicle systems intended to improve road 

traffic safety by assisting drivers with improved road awareness, inherent dangers and other drivers nearby. 

Traffic sign detection and recognition is an integral part of ADAS since these provide information about 

traffic rules, road conditions, route directions and assistance for safe driving.  In addition, traffic sign detection 

and recognition are essential research topics for safe and efficient driving when considering intelligent 

transportation systems. An approach to traffic sign/light detection and recognition using YOLOv3 and 

YOLOv3_tiny is presented in this paper in two different environments. The first is on a simulated and real 

autonomous driving robot for RoboCup Portuguese Open Autonomous Driving Competition. The robot must 

detect both traffic signs and lights in real-time and behave accordingly. The second environment is on public 

roads. A computer vision system inside the car points to the road, detecting and classifying traffic signs/lights 

(T S/L) in different weather and lighting conditions. YOLOv3 and YOLOv3_tiny were tested on both 

environments with an extensive hyperparameters search. The final result showcases videos of the two 

algorithms on the two environments.

1. INTRODUCTION 

With the continuous advances in the automobile 
industry, automotive vehicles are the leading 
transportation method in daily life (Fu & Huang, 
2010). Consequently, road traffic safety (Swathi & 
Suresh, 2017) is increasingly becoming a more 
significant problem around the world. Intelligent 
Transportation System is an integrated system that 
uses high-level technology for transportation, service 
control and vehicle manufacturing. It has the potential 
to spare time, money, lives, preserve the environment 
and save resources. It consists of diverse subsystems 
related to emerging technologies such as smart 
sensors, mobile data services, geographic 
information, location technology, and artificial 
intelligence. Its applications are blind-spot detection, 
speed limit recognition, emergency brake assistance, 
traffic sign recognition and lane departure warning  
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(Yu et al., 2019) . Supervised Learning solutions to 
traffic sign recognition problems are based on 
datasets and a functional classification algorithm to 
recognise detected traffic signs and lights and 
feedback them to smart cars in real-time. One of the 
solutions that yields the best results are Convolutional 
Neural Networks (CNNs) (Cao et al., 2019). These 
neural networks extract features directly from the 
sensory input image and output the results through the 
trained classifier based on image features, 
demonstrating an improved graphical recognition 
performance. Continuously training the network with 
input images via forward learning and feedback 
mechanisms gradually improves the capability to 
detect and classify the previously trained traffic signs 
and lights (Rawat & Wang, 2017), This project 
consists of a real-time object detection algorithm, 
named YOLOv3 which identifies traffic signs and 
lights. 



2. RELATED WORK 

A Traffic Sign Recognition software using pre-
processing traditional computer vision methods and a 
simplistic neural network for an autonomous 
navigation robot is presented in (Moura et al., 2014). 
This project aimed to participate in the Portuguese 
RoboCup Open Autonomous Driving Competition . 
It relied on computer vision software with pictogram 
extraction for detection and a feed-forward neural 
network for traffic sign classification. In most signs, 
100% precision was obtained in both algorithms. The 
traffic lights had an accuracy of over 96%, whereas 
the traffic signs were between 52% and 88.2%. A 
different approach using end-to-end machine learning 
solutions for traffic sign recognition systems is 
presented in (Qian et al., 2016), where CNNs are used 
without pre-processing. Instead of using a CNN as a 
feature extractor and a multilayer perception (MLP) 
as a classifier, max-pooling positions (MPPs) is 
proposed as a practical discriminative feature to 
predict category labels. 

3. PROBLEM DEFINITION 

The first proposed task is part of the autonomous 
driving competition held at the RoboCup Portuguese 
Open (Sociedade Portuguesa de Robótica, 2019). 
This competition simulates some problems that arise 
when working on autonomous driving in a controlled 
and scaled way. It consists of a track with two lanes 
and two curves set so that the cars can continuously 
drive around the track. It has vertical traffic signs, 
traffic lights, two different parking spaces, and traffic 
cones for temporary lanes and obstacles (Figure 2). 
For this work, the challenge considered is the 
"Vertical traffic signs detection challenge". 

 

Figure 2: Environment of the Autonomous Driving 

Competition from the RoboCup Portuguese Open 

The second proposed task is similar to the first 
one, considering traffic sign and lights detection and 
recognition and only differs in the environment. It is 
implemented on a real car driving on public roads. 
This system must detect a broader range of traffic 
signs, further away from the car with different 
weather and light conditions. 

4. METHODOLOGIES 

To test YOLOv3 and YOLOv3_tiny in both 
environments (Autonomous Driving Competition and 
Public Roads) it is essential to parameterise the 
detection goals. In this chapter, all the information 
regarding the two environments is described. 

In the RoboCup Portuguese Open autonomous 
driving competition, apart from detecting which sign 
was identified and its relative location to the robot, 
another feature implemented is to have the car adjust 
its actions and movement in real-time according to 
the traffic signs and lights. The results are shown in 
simulation and real-world. The autonomous driving 
competition consists of correctly identifying six 
traffic lights and twelve traffic signs. In addition, a set 
of twelve traffic signs were selected to upgrade the 
variety of signs and demonstrate YOLOv3 capability 
on more extensive sets of signs. The new signs were 
selected given their direct interference with the 
robot's movement, whether to stop, turn in a direction 
and increase or decrease speed. Figure 3 shows all the 
traffic signs created where the top twelve are the ones 
on the competition rulebook, and the bottom twelve 
are the ones added. 

 

Figure 3: Selected traffic signs for the RoboCup Portuguese 

Open Autonomous Driving Competition environment.  

The traffic lights on the competition are different 
from public roads since these are not the traditional 
red, yellow and green lights that inform the user to 
move or not. These traffic lights provide additional 
information on different actions the robot must take. 
They display information forcing the robot to turn 
left, right or go forward, park, stop or finish the round. 
Figure 4, on the left, shows how the traffic light is 
placed on the competition track, and on the right side 
it shows the six different traffic lights. 

 

Figure 4: Traffic Lights in the RoboCup Portuguese Open 

Autonomous Driving Competition Environment. 



To compete in the autonomous driving challenge 
a robotic agent must go through the track and 
overcome some challenges. The robot agent YOLOv3 
was implemented in a car-like four-wheel drive robot 
with an RGB camera. The input from the camera is 
used to detect and locate every object on the track, 
such as traffic signs and lights, traffic cones and 
parking spots. Figure 5 shows the real and simulated 
autonomous driving robot. 

 

Figure 5: Real-world and simulation autonomous driving 

robot, with its respective sensors and actuators. 

The first objective is the development of a 
detection and classification algorithm for the real-
world competition. To accomplish the objective, 
three phases were used: Acquisition, training and 
testing. The same traffic signs and lights are used. The 
acquisition phase of the first objective has the goal of 
creating a dataset with images from all the traffic 
signs and lights in order to train the networks. A 
smartphone camera was used to record the videos 
with 1080 resolution and 30 fps. The smartphone was 
used due to its camera stabilisation and user-friendly 
interface and because it would emulate the conditions 
in which the network would be tested Only one of 
each six frames is selected to avoid using very similar 
images. The final video has 9 minutes and 2 seconds 
and using this script 5949 images were created. 
Regarding the associated text file to the images, 
YOLO format is used. For this, most of the labels 
were deployed using image processing with a Python 
script developed with the OpenCV library. To process 
the image the Template Matching function was used. 
For each traffic sign and light, a template was 
generated. To improve detection, this template must 
have a dark background. The background change was 
performed using the Windows Paint 3D tool where 
the sign was selected, and the remaining background 
painted black. The template matching function can be 
applied to the generated images and the output is an 
array with the finding locations and corresponding 
confidences, where only the one with the highest 
confidence is considered. In Figure 6, an example is 
presented in which the template used was the Public 
Transport sign one. The left figure corresponds to all 
the detections with confidence scores over 40%. The 
image on the right is the detection with the highest 
confidence score. 

  

Figure 6: All detections with confidence scores over 40% 

(Left). Detection with the highest confidence score (Right) 

The figure on the right also contains two added 
points used as corners for the Bounding Box with the 
corresponding width and height. This data is then 
used to create the corresponding file where the labels 
are stored for each detection. However, this method 
proved to be inefficient in cases where the signs were 
distant. In this case, all traffic signs and light were 
manually inserted using LabelImg.  

After the acquisition phase, the data is ready to be 
input to the network for training. For the training 
phase, two networks were used, YOLOV3 and 
YOLOV3_tiny. The networks were chosen due to 
high fps and accuracy. These were deployed using the 
Darknet repository, an open-source neural network 
framework. Darknet provides a config file for the 
hyperparameters of each YOLO. The main purpose of 
this objective is to participate in the RoboCup 
Portuguese Open Autonomous Driving Competition 
which would be the ultimate test for the developed 
networks. Unfortunately, due to the COVID-19 
pandemic, the competition did not take place. So, the 
performance was tested on the laboratory track. 

4.1 Public road 

The second objective of this project was to develop a 
detection and classification algorithm for public road 
traffic sign and lights. As in previous objectives, a 
dataset was created with 36 signs and lights. The main 
goal of the acquisition phase was to obtain several 
images from all signs and lights in different scenarios. 
To make the network more robust, it was necessary to 
have images from different sites, backgrounds, 
angles, distances, weathers, and lighting. Videos of 
various trips were recorded from the front passenger 
seat in the car and on multiple days at different hours. 
The videos were also recorded during night-time to 
ensure the network performs correctly all day. The 
videos were merged and a final video was created, 27 
minutes and 53 seconds long, and using the script 
used in the previous objectives, 8372 images were 
created. With the final dataset ready, the public road 
training was performed for YOLOV3 and 
YOLOV3_tiny. 



5. TESTS 

For each objective, two networks, YOLOV3 and 
YOLOV3_tiny were used. The hyperparameters in 
each training phase were optimised to obtain the best 
performance. The YOLO architecture already 
provides some values. In the following figures, the 
mAp and loss that outcomes of different 
hyperparameter configurations are compared and 
analysed. To ease the comparison between the tested 
values, a graph is generated for the mAP and another 
for the loss. The prototypes were implemented on 
Ubuntu 20.04 operating system on an ASUS 
Vivobook Pro N580VD with an Intel Core i7 7th Gen 
7700HQ CPU and an Nvidia GeForce GTX 1050. 

5.1 YOLOV3 

In this section, the hyperparameters values are tested 
in the YOLOV3 network and the results are 
presented. Only the values that provide significant 
differences in the graphs are presented in Figure 7. 

 

Figure 7: Tests to determine the most optimized values for 

some hyperparameters for YOLOV3 

For some hyperparameters the time the training 
lasted can influence the choice of the most optimised 
parameter. In Table 1 these values are presented. The 
tests were performed in Google Colab Pro using the 
provided GPUs. The computational power available 
can fluctuate throughout the tests and this can lead to 
a slight different training time for two equal trainings. 
By analysing the graphs, it can be concluded that the 
most optimised hyperparameters for YOLOV3 are as 
shown in Table 2. 

Table 1 Time the train lasted per parameter 

Hyperparameter Value Time the training lasted 

max_batches 

9500 8 hours 47 minutes 

1900 18 hours 6 minutes 

28500 28 hours 19 minutes 

burin 

500 17 hours 33 minutes 

1000 16 hours 9 minutes 

1500 16 hours 3 minutes 

Width x height 

320x320 8 hours 56 minutes 

416x416 18 hours 6 minutes 

544x544 28 hours 13 minutes 

Table 2 Optimised values for YOLOV3 

Hyperparameter Optimised value 

max_batches 19000 

learning_rate 0.001 

momentum 0.9 

burn_in 1000 

decay 0.0005 

width x heigh 416x416 

5.2 YOLOV3_tiny 

In this section, the hyperparameters values are tested 
in the YOLOV3_tiny network and the results will be 
presented. Only the values that provide significant 
differences are presented, in Figure 8. In Table 3, the 
time each train lasted per parameter is presented. The 
most optimised hyperparameters for the 
YOLOV3_tiny network are as shown in Table 4: 

 

Figure 8: Tests to determine the most optimized values for 

some hyperparameters for YOLOV3_tiny. 



Table 3 Time the train lasted per parameter 

Hyperparameter Value Time the train lasted 

max_batches 

19000 4 hours 24 minutes 

50000 14 hours 7 minutes 

72000 17 hours 51 minutes 

burn_in 

500 13 hours 33 minutes 

1000 12 hours 27 minutes 

1500 11 hours 22 minutes 

widthxheight 

320x320 11 hours 42 minutes 

416x416 14 hours 7 minutes 

544x544 20 hours 4 minutes 

Table 4 Optimised values for YOLOV3_tiny 

Hyperparameter Optimised value 

max_batches 50000 

learning_rate 0.001 

momentum 0.9 

burn_in 1000 

decay 0.0005 

width x height 544x544 

5.3 Conclusion 

By interpreting the results obtained in sections 5.1 
and 5.2, the optimised values for the hyperparameters 
for YOLOV3 network are the similar to the ones 
provided in the paper. For YOLOV3_tiny network, 
the only changed hyperparameter is the image size 
(width and height). By increasing the number of 
pixels per sign, it allows the network to have more 
features to process, thus increasing accuracy. 

6. RESULTS 

After defining the most optimised hyperparameters, 
the final neural networks were trained. In this section 
the two networks developed for both objectives are 
compared to determine the best for each scenario. 

6.1 Final networks 

The networks were trained using the optimal 
hyperparameters. Figure 9 shows the results of the 
RoboCup Portuguese Open Autonomous Driving 
Competition using the YOLOV3 network, whereas 
Figure 10 shows the results for YOLOV3_tiny 
network. Figure 11 shows the results of the Public 
Road using the YOLOV3 network, whereas Figure 12 
shows the results using the YOLOV3_tiny network. 

 
Figure 9: RoboCup Portuguese Open Autonomous Driving 

Competition (YOLOV3). Best mAP: 99.08%. 

 
Figure 10: RoboCup Portuguese Open Autonomous 

Driving Competition (YOLOV3_tiny). Best mAP: 98.47%. 

 
Figure 11: Public Road (YOLOV3). Best mAP: 98.914%. 

 
Figure 12: Public Road (YOLOV3_tiny). Best mAP: 

95.584%. 

6.2 Network comparison 

In this section, the outcome of the videos in the 
Appendix is discussed to thoroughly understand the 
differences between the networks. In the RoboCup 
Portuguese Open Autonomous Driving Competition, 
to test the networks for the simulation two tests are 
deployed. On the first test, the signs are placed in line 
to validate the correct classification and detection. 
The lowest confidence for which signals were 
detected was 80%. Comparing the two videos in 
Appendix A) it is possible to verify that the 
computational power required for the YOLOV3 
network is superior to what the computer offers. This 
means that only a fraction of the frames is processed. 
Regarding classification, the fraction of processed 
frames shows that the signs are all classified and 
detected with confidence over 95%. On the left side 
of Figure 13, an example of this high confidence in 
detection is demonstrated. On the other hand, the 
YOLOV3 tiny network manages to process the 



frames in such a way that the robot is constantly 
identifying and classifying the signs. Compared to the 
other network YOLOV3_tiny does not have such 
high detection confidence or stable Bounding Boxes 
but its ability to process frames overcomes such 
limitations. On the right side of Figure 13, this 
detection is presented. 

 

Figure 13: Frame with high confidence detection from 

YOLOV3 (top) and YOLOV3_tiny (bottom) networks. 

For the second test, the signs were placed so the 
robot can detect these sequentially while performing 
the respective movements. The robot reacted to the 
signs when confidence was over 98%. Comparing the 
two videos in Appendix A) from the second test, the 
differences are like the previous test. The output for 
the YOLOV3 network cannot process all the frames 
so that the robot reacts to the traffic signs promptly to 
perform the corresponding movements. This lack of 
performance implied that the car only reacted to the 
Left Obligation sign when it was already very close 
to it. Regarding classification, the network can 
correctly classify with confidence above 99% the 
signs obtained. The moment the robot reacted to the 
Turn Left Ahead sign is presented in Figure 14. In this 
test, the YOLOV3_tiny network enabled the robot to 
go all the way until it stopped at the STOP sign, 
displayed in Figure 15. Along the way, it was able to 
correctly identify and react to all the signs. 

 

Figure 14: The robot reacting to Turn Left sign (YOLOV3). 

 

Figure 15: Frame where the Stop sign was detected 

(YOLOV3_tiny) 

To test on RoboCup Portuguese Open 
Autonomous Driving Competition real-world 
environment, two videos were recorded. These 
demonstrate the robot driving along the track and 
observing the signs/lights randomly placed. The 
difference between the two is that the first video was 
recorded with high stability and the second on the 
robot prototype trying to complete the track as quickly 
as possible. In Appendix B) these videos are presented 
for each of the networks. The signs are only detected 
when confidence is over 80%. The YOLOV3 network 
managed to process an average of 2 fps while the 
YOLOV3_tiny 17 fps. If applied in real-time, the 
YOLOV3 network would have problems reacting to 
signs in a timely manner whereas the YOLOV3_tiny 
would do so with a greater margin. Since YOLOV3 
could only process on a slow frame rate, so the video 
showcases a post processing outcome of the 
algorithm. By comparing both videos it is possible to 
verify the correct functioning of both networks. The 
result from both networks is very similar and for 
YOLOV3 the detection percentages are slightly 
higher, as can be seen in Figure 16. 

  

Figure 16: Detection from the YOLOV3 (left) and 

YOLOV3_tiny (right) 

Regarding the detection distance, the results are 
higher on the YOLOV3, detecting at 4 meters, half 
the length of the track. Bounding Boxes have superior 
accuracy and are more stable on the YOLOV3 
network. The comparison between the Bounding 
Boxes is shown in Figure 17. 



 
 

 

Figure 17: Bounding Boxes from the YOLOV3 (top) and 

YOLOV3_tiny (bottom) 

In the videos with less stability, both networks can 
detect the signs on the track, with YOLOV3 having 
slight better precision and stability. The performances 
are demonstrated in Figure 18. 

 
 

 

Figure 18: Detection with less stability from the YOLOV3 

(top) and YOLOV3_tiny (bottom) 

The Public Road is the more complex objective. 
The competition is more constrained and does not 
have so many background variations that can lead to 
difficulties in detection and classification. To test the 
two networks, various videos were recorded showing 
traffic signs and lights, and the algorithm output in 
Appendix C). These videos were recorded in different 
cities in northern Portugal. Different characteristics, 
such as, luminosity, weather conditions, time of day 
and luminosity incidence are shown in the videos. In 
the videos, the signs are detected when confidence is 
over 80%. In the first moments of the video, the 
frames have conditions that can be considered ideal 
as it is sunny and the road has good lighting. In Figure 
19, multiple signs appear at different distances and 
the differences between the networks are quite 
visible. While the YOLOV3 network can detect all 
the signals presented with stable Bounding Boxes, the 
YOLOV3_tiny network can only detect about half of 
the signals and the Bounding Boxes fluctuate a lot in 
position and some signs are cut. 

 
 

 

Figure 19: Detection with ideal conditions from the 

YOLOV3 (top) and YOLOV3_tiny (bottom) 

In Figure 20 a different scenario is shown, where 
it is raining, and the frame is blurrier. The YOLOV3 
network can correctly classify every Traffic Sign with 
confidence over 95%. The YOLOV3_tiny does not 
achieve the same results. It can only detect the 
Roundabout sign with 93.56%. 

 
 

 

Figure 20: Detection with rain from the YOLOV3 (top) and 

YOLOV3_tiny (bottom) 

In ideal conditions, the frame presented in Figure 
21 presents the detection of three traffic signs, 
provided that the Prohibited Direction Sign is not 
facing the camera. Both networks correctly classify 
the two signs but the YOLOV3 one has significantly 
higher confidence. The Bounding Boxes are less 
precise in the tiny version. With rain, the detection of 
traffic lights is tested. In Figure 22 the comparison of 
the two networks is shown. The YOLOV3 correctly 
identifies the traffic light and the colour from the two 
top lights but incorrectly merges two lights into one 
at the bottom. The tiny version only detects one traffic 
sign at the top of the frame and also incorrectly 
merges two lights into one at the bottom. In this 
version, the colour on the top light is correctly 
detected. 



 
 

 

Figure 21: Detection of a sign not facing the camera from 

the YOLOV3 (top) and YOLOV3_tiny (bottom) 

  

Figure 22: Traffic Light detection from the YOLOV3 (left) 

and YOLOV3_tiny (right) 

7. CONCLUSIONS 

Regarding the first objective, the most suitable 
network is YOLOV3_tiny since, throughout the two 
tests, it demonstrated that the traffic sign and lights 
were correctly detected and classified. The processing 
time of the YOLOV3 network meant that the robot 
could not react on time to traffic signals, which in a 
competition is a fatal error. In real-world competition, 
the same problem regarding processing time was 
encountered. In this competition, robots use small 
devices to perform all computer processing and 
therefore the most suitable network is YOLOV3_tiny 
since the computational power is limited. The 
accuracy of the YOLOV3 network is superior but this 
does not overcome the processing time problem. For 
the second objective, the high accuracy of the 
YOLOV3 network proves this network as the 
preferable option. Despite the problem of processing 
time associated with this network, cars that contain 
Traffic Sign Detection software have a higher 
computational power which allows a lower 
processing time and leads to a better accuracy in the 
detection and classification. The tiny version does not 
have an accuracy that allows the car to trust the signs 
it classifies. 
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APPENDIX 

A) RoboCup Portuguese Open Autonomous Driving 

Competition in simulation: https://youtu.be/oaBd6Ub-o7E  

B) RoboCup Portuguese Open Autonomous Driving 

Competition real-world: https://youtu.be/T2USKNakM9w 

C) Public road: https://youtu.be/zzIkw8suny4 
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