
Expert Systems With Applications 228 (2023) 120191

Available online 4 May 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Expert SystemsWith Applications

journal homepage: www.elsevier.com/locate/eswa

Solving the integrated planning and scheduling problem using variable
neighborhood search based algorithms
Mário Manuel Silva Leite a, Telmo Miguel Pires Pinto b,a,<, Cláudio Manuel Martins Alves a
a ALGORITMI Research Centre/LASI, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b University of Coimbra, CEMMPRE, Paço das Escolas, 3004-531 Coimbra, Portugal

A R T I C L E I N F O

Keywords:
Production planning and scheduling
Variable neighborhood search
Identical parallel machines scheduling

A B S T R A C T

In this paper, we address the Integrated Planning and Scheduling Problem (IPSP) on parallel and identical
machines. Planning and scheduling are essential for the efficient management of supply chains. Although both
pursue the same general objective, they are usually performed independently mostly because they relate to
different timescales. As a consequence, the generated plans and schedules are typically sub-optimal from a
global standpoint.

The approaches followed in this paper explicitly consider the interdependence between the planning and
scheduling activities by solving them simultaneously in an integrated way. We explore different heuristics
based on variable neighborhood search procedures with new and specifically designed neighborhood structures
relying on the properties of the IPSP. The quality of these approaches is evaluated through extensive
computational experiments performed on a large set of benchmark instances. The results show that the
proposed methods achieve high-quality solutions, with a substantially low computation time, outperforming
other state-of-the-art results reported in the literature.

1. Introduction

In the last years, several approaches have been developed to address
the integrated optimization of two or more processes related to the
management of supply chains. Common examples include the com-
bination of production activities with distribution (Armstrong et al.,
2008; Geismar et al., 2008), material procurement with the develop-
ment of new products (Cheaitou & Khan, 2015), and planning with
scheduling (Chen, 2016; Grossmann, 2009). In this paper, we address
specifically this latter case. The production flows in a wide range of
industrial settings depend heavily on the quality of the production plans
and schedules. In most of the cases, these plans and schedules are
built independently. Naturally, this approach leads to solutions which
are sub-optimal most of the time (Shen et al., 2006). Since the plans
developed in the planning phase are used as an input to build the
production schedules subsequently, the only way to achieve solutions
which are globally optimal is to explicitly consider this interdependence
by solving the two related optimization problems simultaneously.

Planning and scheduling optimization problems arise in many real-
world scenarios, such as in the make-and-pack dairy production of
perishable food products. These products must be packed as soon as
they are produced to avoid contamination. In Sel et al. (2017), the
planning determines the amount of yogurt that should be produced

< Corresponding author at: University of Coimbra, CEMMPRE, Paço das Escolas, 3004-531 Coimbra, Portugal.
E-mail addresses: mario.leite@dps.uminho.pt (M.M.S. Leite), telmo.pinto@uc.pt (T.M.P. Pinto), claudio@dps.uminho.pt (C.M.M. Alves).

during the mixing phase, while scheduling deals with the packaging
part of the process by assigning the blend to the packaging parallel
lines. The time spent between these phases must be reduced since the
intermediate product has a short lifetime. For this purpose, planning
and scheduling must be performed in tight connection to balance
adequately the quantity of intermediate product (the product resulting
from the mixture) with the availability of the packaging lines. Similarly,
in a Batch-Processing Machines (BPM) problem, the interdependence of
scheduling decisions is also verified. In the first phase, the batches are
composed (i.e., the jobs that will be part of each batch are identified)
while ensuring the capacity of the machines. Then, the best job order
is sought in the second phase to reduce the makespan (Zhou et al.,
2021). Thus, it is clear that the possibilities for reducing the makespan
(sorting decisions) are strongly conditioned by the previous decisions
concerning the formation of batches.

In Dogan and Grossmann (2006) and in Erdirik-Dogan and Gross-
mann (2008), the authors address the simultaneous planning and
scheduling of single-stage continuous multi-product plants in the chem-
ical industry. The primary objective is to meet the due dates and to
maximize the profit by considering different factors such as the constant
production rates, the production costs, the selling prices, the inventory
costs and the sequence-dependent transition times between products.

https://doi.org/10.1016/j.eswa.2023.120191
Received 13 July 2022; Received in revised form 25 March 2023; Accepted 15 April 2023

Expert Systems With Applications 228 (2023) 120191

2

M.M.S. Leite et al.

In this case, planning consists in determining the products and the
quantities that should be produced to satisfy both the demand and
the inventory level in each week, while the objective of the scheduling
problem is to determine the production sequence and the length of the
production periods taking into account the transition costs.

A case from the glass industry was explored in Almada-Lobo et al.
(2008). In the planning phase, colors and product lots are assigned
to the furnaces, while scheduling deals with the programming of the
color campaigns within each furnace. Planning is done for a full year
time horizon. The integration of lot-sizing with scheduling is justified
by the high sequence-dependent setup times in color changeovers. The
iron and steel industry is also a no-wait scheduling process where the
production has to deal with several operation modes and different
power modes (temperature levels). In Zhao, He, and Wang (2021),
the authors developed a two-stage cooperative evolutionary algorithm
to tackle to the energy-efficient scheduling of the no-wait flow-shop
problem. Concerns about energy saving are increasing, so the authors
seek to minimize not only the makespan but also the total energy
consumption.

Applications of planning and scheduling problems are not limited to
the production field. They arise in different other contexts (Shen et al.,
2006), as in hospitals, for example, to manage the execution of surgical
interventions (Cardoen et al., 2010; Eun et al., 2019), or to allocate
the nursing staff (Maenhout & Vanhoucke, 2013). We can also see it in
applications of electric mobility, with the inherent concerns in charging
battery vehicles. Liu et al. (2020) presents Electric Vehicle Charging
Scheduling (EVCS) problem that considers the dependence among the
station selection, charging options at each station, and the charging
amount settings. In other cases, the production process is considered
together with delivery. In Persson and Göthe-Lundgren (2005), the
authors address the case of an oil refinery company through the joint
analysis of production scheduling and shipment planning. The ships
are used to bring the products from the oil refineries to the storage
depots. Another example of combining production with distribution
is described in Kopanos et al. (2012). In this case, a company that
produces different types of dairy products has to schedule its produc-
tion by taking into account the impact of the generated flows on the
distribution operations downward. A critical aspect in this setting is
the requirements of the quality of the product packaging.

In this paper, we address the Integrated Planning and Scheduling
Problem (IPSP) on parallel and identical machines exactly as it was
proposed first in Kis and Kovács (2012). The problem considers simul-
taneously the medium-term tactical planning of production operations
with the short-term scheduling of production jobs, such that the output
of the first is the input of the second (Maravelias & Sung, 2009). Due
to the nature of planning and scheduling problems, they tend to be
analyzed separately in the literature. The complexity of both problems
can also explain this separation since they are NP-hard, which turns
IPSP computationally intractable for large-size instances. However, this
separation can fail when trying to find globally optimal solutions.
Additionally, neglecting their integration can lead to negative effects:
if a disruption conducts to changes in the allocation of resources, all
planning must be revised. On the other hand, production planning dis-
connected from the schedule can lead to delays that could be avoided
if there was a real integration (Kis & Kovács, 2012).

In the IPSP on parallel and identical machines, the jobs are pro-
cessed on machines with limited capacity and identical. The time
period in which a job is to be processed is determined in the planning
phase. The scheduling part of the problem aims to assign the jobs to
the available machines, and to sequence them. A job is characterized
through its release date, due date, processing time and the penalties
that apply whenever a job is processed before or after its due date. The
jobs must be assigned to a machine and to a time period within the
planning horizon such that the sum of all the penalties is minimized.

The solution approaches described in the literature for the IPSP
are still rare (Kis & Kovács, 2012; Rietz et al., 2016). Kis and Kovács

(2012) proposed an exact solution approach based on branch-and-
cut, a monolithic integer program and two hierarchical decomposition
approaches. The authors tested their approaches on an extensive set of
random instances. The average computing time for their best approach
remains higher than 540 seconds, with some executions reaching the
imposed time limit of 20 minutes without achieving optimality.

An alternative exact solution approach for the IPSP was proposed
in Rietz et al. (2016). The problem was formulated through a pseudo-
polynomial network flow model, which is considered in its entirety in
contrast with the model presented in Kis and Kovács (2012). Different
strategies were explored to reduce the number of constraints and
simplify the model. In a large number of cases, their approach was
able to reach the optimal solution with an average execution time of
approximately 6 minutes.

From the analysis of the state of the art, it becomes clear that
despite the worthy contributions in the literature, solving the IPSP
problem using exact methods proved to be challenging. Indeed, an
exact method is able to solve small-size instances, but it is more time-
consuming (or even computationally intractable) in larger instances.
This reason strongly motivated our approach, aiming to achieve good-
quality solutions in a reasonable time. This feature is suitable for
problems requiring several re-optimizations or real-time optimization.

In this paper, we explore different Variable Neighborhood Search
(VNS) based algorithms to solve the IPSP. In Section 2, the defining
characteristics of the IPSP are presented and discussed. In Section 3, the
different elements of our solution approach are presented, including the
method used to obtain the initial solution, the neighborhood structures,
and the variant of the VNS algorithm that we considered. In Section 4,
preliminary tests were performed to adjust the problem parameters,
and then we report on an extensive set of computational experiments
conducted on benchmark instances. The results were discussed and as-
sessed through statistical tools in the same Section. Finally, conclusions
are drawn in Section 5.

2. Parallel machine integrated planning and scheduling problem

The Integrated Planning and Scheduling Problem (IPSP) described
in Kis and Kovács (2012) consists in determining when and where a
set of jobs should be processed so that the associated due dates are met
as best as possible. Let T denote the time horizon within which the
jobs must be processed. We divide the time horizon T into ⌧ identical
periods (T = 1,… , ⌧), each one with length P À N. The jobs are
processed on machines which are assumed to be all identical. Let M
be the set of machines. Each machine can only process one job at a
time, and each job can only be processed once in a single machine and
in a single time period. The machines operate in parallel mode. A job
processing cannot be interrupted. The set of jobs will be denoted by
N . A machine takes pj units of time to process a given job j À N .
Clearly, a subset of jobs can be processed in a given period of time
t À T if the total processing times of these jobs is not larger than
P . Hence, the feasibility of a given instance of the IPSP requires that
P g max{pj : j À N}. For each job j À N , there is a release and a
due date, which will be denoted respectively by rj À T and dj À T . A
release date rj represents the earliest time period from which the job
j À N becomes available for processing. Therefore, a job j À N can
only be processed in a time period t À T if t g rj . A due date dj À T is
the time period when the job j À N is expected to be completed. From
this point forward, we will assume that dj g rj , ≈j À N . Exceeding
a due date or completing a job before its due date are both penalized
through a given cost. The penalty that will apply whenever a job j À N
is completed before its due date (earliness) will be denoted by ej À N,
while the penalty for lateness will be denoted by lj À N. The final value
of the penalty applied to a job j ÀN which is processed in a time period
t À T will be given by:

wj
t = ej ù max{0, dj * t} + lj ù max{0, t * dj}. (1)

Expert Systems With Applications 228 (2023) 120191

3

M.M.S. Leite et al.

Fig. 1. Variation of the penalty for a job j À N along the planning horizon.

Table 1
Attributes for each job j À N .
j rj dj pj ej lj
1 1 1 3 0 10
2 1 1 2 0 5
3 1 1 2 0 12
4 1 1 4 0 10
5 1 1 4 0 9
6 1 2 2 10 10
7 2 2 5 0 5
8 1 3 2 4 8
9 2 3 1 7 12
10 3 3 4 0 10
11 1 1 2 0 3
12 1 3 3 5 8

The objective of the IPSP is to determine the time period when each job
will be processed, and the machine where each one will be completed,
such that the sum of all the penalties (Eq. (2)) is minimized. The pi À T
refers to the time period in which job i is processed.

z(S) =
N…
i=1

wi
pi . (2)

For the sake of clarity, in Fig. 1, we represent the variations of
the penalties along the time horizon in four different scenarios. If the
release and due dates are the same, a penalty is applied only if the job is
processed after that date (a). For some jobs, the earliness and tardiness
penalty factors are the same, as in (b), while for other jobs the earliness
and the tardiness may have a different impact on the penalty to be paid,
as depicted in (c) and (d).

Example 2.1. Consider the case in which 12 jobs (N = {1, 2,… , 12})
must be processed in one of two parallel and identical machines (M =
{1, 2}). The time horizon is set to one day (24 hours), and it is further
divided into three 8-hours shifts. In this case, a shift corresponds to a
time period and, hence, the time horizon of the problem is defined by
T = {1, 2, 3}, with P = 8 and ⌧ = 3.

Table 1 lists all the parameters associated to the jobs j À N . The
processing times are given in hours, while both the due and release
dates are expressed in time periods (shifts). The penalties for both
earliness and lateness are also provided. In Fig. 2, a possible solution
for this instance of the IPSP is depicted.

There is a penalty associated to the late processing of job 5, since
it is performed one time period after its due date (t = 2), resulting in a
penalty

w5
2 = 0 ù max{0, 1 * 2} + 9 ù max{0, 2 * 1} = 9.

In contrast, job 8 is processed in a time period prior to its due date
(w8

2 = 4). The delay of two time periods for processing job 11 results in
a penalty of 6 units. All the other jobs are processed in their due dates,
and thus no additional penalties are applied. The sum of all penalties
is equal to 19.

2.1. Integer programming model

This subsection presents the integer programming model proposed
by Kis and Kovács (2012) to tackle the IPSP. The decision variables are
xjkt, for j À N , k À M and t À T , taking value 1 if job j is assigned
to machine k in period t, taking value 0 otherwise. Therefore, the IPSP
can be formulated as follows:

min
N…
j=1

M…
k=1

⌧…
t=1

wj
t x

j
kt (3)

subject to:
M…
k=1

⌧…
t=1

xjkt = 1,≈j À N , (4)

N…
j=1

pktx
j
kt f P ,≈k À M , t À T , (5)

xjkt = 0,≈j À N , k À M , t < rj , (6)

xjkt À {0, 1},≈j À N , k À M , t À T . (7)

The weights in the objective function are penalties incurred by each
job according to Eq. (1) defined above. In a feasible solution, for each
job j, the binary decision variable xjkt takes the value 1 for the one
and only one combination of machine and time period, and it takes the
value 0 for all other variables for the same job (constraints (4)). The
capacity constraints for each machine and time period are ensured in
inequalities (5). Constraints (6) ensure that all decision variables xjkt
take value 0 in all periods t prior of the release date of the job j.

3. Variable neighborhood search approaches

As referred to in Section 1, the computing time required by the exact
solution algorithms devised for the IPSP tends to increase significantly
with the size of the instances. Even in the case of medium-size instances
as those reported in Rietz et al. (2016), these approaches fail in many
cases to find a proven optimal solution within reasonable time bounds.
This observation motivates the exploration of heuristic procedures that
might be able to efficiently solve larger instances by incorporating
sophisticated search strategies.

Here, we explore in particular different local search procedures that
we embed in alternative variants of the VNS algorithm. VNS starts
its search with a given initial solution, and seeks for improvements
iteratively through systematic moves within the spaces defined from
the neighborhood structures. Local search is of paramount importance
in this process as it may determine the capacity of the algorithm to
escape from local optima. The VNS metaheuristic was first described
in Mladenovi¢ and Hansen (1997) as an approach that favors the diver-
sification of the search to avoid being stuck in a poor local optimum.
Instead of stopping at local optima, VNS algorithms execute successive
neighborhood exchanges that drive the search into a broader solution
space, and thus increase their chances of finding better solutions. Cycles
in the search process may be avoided through the combination of

Expert Systems With Applications 228 (2023) 120191

4

M.M.S. Leite et al.

Fig. 2. Feasible solution of an instance of the IPSP (Example 2.1).

deterministic and stochastic neighborhood exchanges both in the local
search and the shaking phase. Over the last years, several variants of
the VNS metaheuristic have been proposed and applied to the most
diverse set of problems (Almada-Lobo et al., 2008; Bilyk & Mönch,
2012; Brimberg et al., 2017; Hansen et al., 2017; Macedo et al., 2015;
Zhao, Zhang, et al., 2021).

In the sequel, we present and describe all the elements that charac-
terize the methods we devised to solve the IPSP. First, we introduce
the approaches followed to represent the solutions by detailing the
construction of the initial solutions and the neighborhood structures.
Next, we discuss the variants of the VNS algorithm that we imple-
mented to solve the problem under study. We explored several VNS
approaches (Hansen et al., 2017) including both Basic and General
Variable Neighborhood Search (BVNS and GVNS, respectively). Addi-
tionally, we developed and tested a skewed version of GVNS (Brimberg
et al., 2017) which is also described below.

3.1. Representation of a solution and evaluation function

A feasible solution S of the IPSP can be represented by a set of N
elements such that

S = {J 1,… , J N}.

For each job i À N , let

J i = (mi, pi,mpi),

where mi À M is the machine that processes job i, pi À T is the time
period in which job i is processed, and mpi is the instant in period pi
when job i starts to be processed (0 f mpi < P). Therefore, a solution
of the IPSP can be represented as follows:

S = {(m1, p1,mp1), (m2, p2,mp2),… , (mN, pN,mpN)}.

As we will show later, we keep the time instant when the job starts to
be processed, because this attribute is used to define one of our neigh-
borhoods. Nevertheless, we must stress that the penalty (1) depends
only on the time period in which the job is processed. The time instant
when the processing starts has no impact on the objective function. The
same happens with the processing order of jobs within the same time
period: changing such a sequence has no impact on the penalties which
are due.

The value of the objective function is the sum of all the penalties.
Clearly, if a job is processed at its due date, no penalty applies. The
expression of objective function is the same as defined in Eq. (2).

For instance, the solution of Example 2.1 depicted in Fig. 2 can be
represented as follows:

S = {(1, 1, 0),

(1, 1, 3),
(2, 1, 0),
(2, 1, 2),
(1, 2, 0),
(1, 2, 4),
(2, 2, 0),
(2, 2, 5),
(1, 3, 0),
(1, 2, 1),
(1, 3, 5),
(2, 3, 0)}

The value of the objective function in this case is given by:

z(S) = w5
2 +w8

2 +w11
3 = 19.

3.2. Computing an initial solution

To build an initial feasible solution for the IPSP, we resort to a
greedy constructive heuristic which is summarized in Algorithm 1.
First, the set N of jobs is sorted following a given criterion c previously
defined (Line 2 – SortList(N , c)). Our criterion c is the decreasing order
of the corresponding weighted penalty (ej + lj)_pj , breaking ties by
choosing first the job j with the largest processing time pj . Following
this order, each job j is assigned to a machine m in a period t that
is equal to its due date (Line 9 – AddJobT oSolution(S,m, t, j)), only
if there is available capacity in that period without modifying any
previous allocation. If a job cannot be assigned to the time period
corresponding to its due date, it is discarded to be analyzed later in
a second stage. Once all the jobs in Nsorted have been analyzed, those
which failed to be allocated in the first stage are re-evaluated in the
same order as defined initially (Line 15). If the due date of a selected
job j is equal to its release date, the job is assigned to the earliest time
period following its release (and due) date which has enough capacity.
If the due date of the selected job j is different from its release date,
then two penalties are computed: the penalty of assigning the job to
the first available period prior to its due date, and another by assigning
that job to the first available period after its due date. The job is finally
allocated to the time period that yields the lowest penalty. The rationale
behind this rule is simple, and consists in choosing the most favorable
case between earliness and lateness, since they cannot be both avoided
(Line 16-18).

Expert Systems With Applications 228 (2023) 120191

5

M.M.S. Leite et al.

Algorithm 1: Constructive Heuristic Algorithm
Input:

Instance for IPSP with a set of machines M , a set of periods T , and a set of jobs N ;
The sort criteria c;

Output:
A feasible solution S;

Auxiliary:
jobPlaced À N; m À M ; t À T and j À N ;

Function ConstructiveHeuristic(M , T , N , c)
1 S:=Ø; /* first stage */
2 Nsorted := SortList(N , c) ;
3 Nplaced := Ø;
4 while j in Nsorted do
5 jobP laced := 0;
6 while m in M and jobP laced = 0 do
7 t := GetJobDueDate(j);
8 if machine has available capacity in period t to process job j then
9 S := AddJobT oSolution(S,m, t, j);
10 Nplaced := AddJobT oSet(Nplaced , j);
11 jobP laced := 1;
12 end
13 end
14 end

/* second stage */
15 while j in Nsorted \Nplaced do
16 m := GetLowestP enaltyMachine(S, j);
17 t := GetLowestP enaltyP eriod(S, j);
18 S := AddJobT oSolution(S,m, t, j);
19 end
20 return S

Fig. 3. A feasible solution S.

3.3. Neighborhood structures

In our implementation, we considered six different neighborhood
structures, which are described next. Some of them are used both at
the shaking and local search phase of the VNS algorithms, while others
are used exclusively at one of these phases. Only feasible solutions
are explored. Note that the value of a neighbor solution can be only
different from the value of a given current solution if at least one job
is moved from its current period to another. For instance, moving one
job to a different machine within the same period has no impact on the
value of the solution. However, it is, in fact, a different solution, and
thus it can be an output of the shaking phase.

To illustrate the presentation of the neighborhood structures, we
will use the small instance of Example 2.1, and in particular its feasible
solution S depicted in Fig. 3. Therefore, a neighbor solution (S®) of the
original solution (S) is presented for each neighborhood structure.

- N1: Moving one job to a different time period

Fig. 4. Example of a neighbor S® À N1(S) of the solution S (as presented in Fig. 3).

The neighbors of a solution S are obtained by moving one job
from its current time period to a different one, provided that at
least one machine in the new time period has enough available
capacity to handle this new job. Fig. 4 illustrates the move for the
small example depicted in Fig. 3, which consists in moving job 8
from period 2 to period 3.

- N2: Swapping two jobs from different time periods
The neighbors of a solution S are obtained by swapping two jobs
which are assigned to different time periods, regardless of the
machines on which these jobs have been assigned. Fig. 5 shows
a possible neighbor of the solution illustrated in Fig. 3, which is
obtained by swapping jobs 1 and 12 from different time periods.

- N3: Swapping two sequences of jobs from different time periods
The neighbors of a solution S are obtained by swapping two
sequences of jobs which are assigned to different time periods, re-
gardless of the machines on which these jobs have been assigned.
Since only feasible solutions are explored, it is only possible to
swap the two sequences if all the jobs are not processed before

Expert Systems With Applications 228 (2023) 120191

6

M.M.S. Leite et al.

Fig. 5. Example of a neighbor S® À N2(S) of the solution S (as presented in Fig. 3).

their release dates. For instance, in Example 2.1, it is not possible
to swap all the jobs assigned to machine M1 at time period t = 2
with all jobs from t = 3 of the same machine, since the release
date of job 10 is 3. An example of a possible neighbor solution
is presented in Fig. 6. It is obtained by swapping all the jobs
assigned to machine M1 at time periods t = 1 and t = 2.

- N4: Swapping two jobs in different machines at the same time period,
and inserting a third job
The neighbors of a solution S are obtained by swapping two jobs
with different processing times and assigned to different machines
at the same time period, and by inserting a third job (from a
different time period) in the time period of the swapped jobs.
For instance, a neighbor of the solution depicted in Fig. 3 may
be obtained by swapping jobs 2 and 4 at time period 1, and by
inserting job 5 at the same time period (Fig. 7). Note that only the
insertion has an impact on the value of the solution. The objective
is to explore the possibility of an increase of available capacity at
a given time period and machine.

- N5: Swapping two jobs at adjacent time periods
The neighbors of a solution S are obtained by swapping two jobs
which have been assigned to consecutive time periods. In this
sense, it consists in a restricted version of N2, which limits the
swaps to the jobs at a maximum distance of one time period.
In our implementation, this neighborhood will be used only at
the shaking phase, whereas N2 will be applied during the local
search, since it covers naturally a wider solution space (N5 œ N2).
A neighbor of S (Fig. 3) in N5 may be reached by swapping job
2 at time period 1 with job 5 at time period 2 (Fig. 8).

- N6: Swapping two jobs assigned to different machines in the same
time period
A neighbor solution S® of the solution S is obtained by swapping
two jobs with different processing times, but assigned to different
machines at the same time period. Therefore, at this given time
period, a neighbor solution inevitably has a different job order,
which may eventually yield a larger available capacity, as shown
in Fig. 9. In this case, the neighbor solution is obtained by
swapping jobs 2 and 4. Note that the available capacity increases:
in S, at time period 1, we can process at least one more job with
processing time up to 3 units, whereas in S®, this value increases
up to 4 units.
Since there is no variation on the value of the solution, N6 is
only applied at the shaking phase. Even though, and as in N4,
the increase of available capacity may be profitable in further
iterations of the VNS algorithms.

3.4. Variable neighborhood search algorithms

In this section, we describe the three variants of the VNS algorithm
that we considered in our implementation. In all the algorithms, we re-
sorted to the constructive heuristic described in Section 3.2 to generate

Fig. 6. Example of a neighbor S® À N3(S) of the solution S (as presented in Fig. 3).

Fig. 7. Example of a neighbor S® À N4(S) of the solution S (as presented in Fig. 3).

Fig. 8. Example of a neighbor S® À N5(S) of the solution S (as presented in Fig. 3).

Fig. 9. Example of a neighbor S® À N6(S) of the solution S (as presented in Fig. 3).

the first feasible solution. From this solution, we explore the neighbor-
hood spaces through different approaches, both at the shaking and local
search phases. The shaking phase relies on the same procedures for all
the three algorithms. In contrast, according to the variant of the VNS,
the local search procedures may vary. A first improvement strategy is
used in all variants, i.e.whenever a better solution is found, it becomes
the new incumbent solution, and it is used at least in the next iteration
of the corresponding VNS algorithm. The three VNS algorithms have
a stopping criterion given by the maximum execution time (tmax), or

Expert Systems With Applications 228 (2023) 120191

7

M.M.S. Leite et al.

Algorithm 2: Basic VNS Algorithm
Input:

Instance for IPSP and a feasible solution S;
Set of neighborhood structures N = {N1,N2,N3,N4,N5,N6} and probabilities PNiÀ{1,2,3,5,6} ;
Set limit tmax À Q to total computing time and kmax À N the maximum of consecutive moves from neighborhood;

Output:
A feasible and possibly improved solution S;

Auxiliary:
k À N and t, tstart À Q;

Function BasicVNS(S, kmax, tmax, N , P)
1 tstart := CPUTime(); t := 0;
2 while t f tmax and z(S) > 0 do
3 k := 1;
4 while k f kmax and z(S) > 0 do
5 S® := Shake(S, NiÀ{1,2,3,5,6}, PNiÀ{1,2,3,5,6} , k); /* shaking phase */
6 i® := SetI(i); /* setting the neighborhood structure */
7 S®® := F irstImprovement(S®, Ni®); /* local search phase */
8 if z(S®®) < z(S) then
9 S := S®®;
10 k := 1;
11 end
12 else
13 k := k + 1;
14 end
15 end
16 t := CPUTime() – tstart;
17 end
18 return S

by the fact that an incumbent was found with a value 0. In this case,
clearly, the incumbent is an optimal solution, since no penalty applies.
However, the opposite may not be true, since the optimal solution of a
given instance may have penalties. The entire description of the three
algorithms, including the details of the shaking and local search phases,
is provided below.

3.4.1. Basic variable neighborhood search
Our first approach is based on the Basic Variable Neighborhood

Search (BVNS) algorithm introduced in Mladenovi¢ and Hansen (1997)
which is summarized in Algorithm 2. In the first phase, a given solution
S is perturbed through an intensified shaking (Line 5). A neighborhood
structure Ni is selected according to a given probability PNiÀ{1,2,3,5,6},
and thus a random jump is performed in the kth neighborhood (k
consecutive movements). The maximum number of consecutive move-
ments is limited to kmax. The objective is to reach a solution S® that
is significantly different from the current to avoid being trapped in a
local optimum.

The local search procedure is applied right after to this solution S®

using the same neighborhood structure, unless if i À {5, 6} since these
neighborhoods are only explored in the shaking phase (as referred to
in Section 3.3). For this reason, if i = 5 or i = 6, then the local search
resorts to the neighborhoods N2 or N4, respectively. This procedure is
defined as SetI(i) (Line 6). If the obtained solution S®® is better than
S, k is set to 1, and S is updated. Otherwise, k is set to k + 1. In both
cases, the process is repeated until a stopping condition is met.

3.4.2. General variable neighborhood search
In this section, we propose a General VNS based algorithm (Hansen

et al., 2017) (hereafter denoted by GVNS) to tackle the IPSP. The main
difference between BVNS (Section 3.4.1) and GVNS is that the local
search in the latter is conducted through the Variable Neighborhood
Descent (VND) method (Hansen et al., 2017), which iteratively and
sequentially explores the defined neighborhood structures until there

is any better solution considering all neighborhood structures. GVNS is
summarized in Algorithm 3.

In the VND phase, four neighborhood structures are considered
(NiÀ{1,2,3,4}), through lexicographical order, and a first improvement
policy is adopted. A sequential neighborhood change is used, and thus
if there is an improvement in the solution, l takes the value 1 (Line 11),
and it is incremented otherwise (Line 14) resulting in the selection of
a different neighborhood structure. As referred to above, the shaking
phase of GVNS is similar to BVNS.

3.4.3. Skewed general variable neighborhood search
Our third approach is a skewed version of the GVNS (Hansen et al.,

2017), hereafter denoted by SGVNS and summarized in Algorithm 4.
This variant has proved to be effective in different problems (Macedo
et al., 2015; Pinto et al., 2020). The shaking and local search phases
rely on the same principles as in GVNS. The main difference is that
worse solutions can be accepted in the local search phase based on the
assumption that the solution is quite different from the current one,
while the best solution obtained so far is kept. The difference between
two solutions S and S®® can be measured through a distance function
⇢(S,S®®) with codomain [0,1], which computes the ratio between the
number of jobs that are not assigned to the same period in both solu-
tions and the total number of jobs. Let Spi and S®®

pi be the time periods
to which job i is assigned in S and S®®, respectively. Additionally, �(Spi ,
S®®
pi) take the value 1 if a given job i is assigned to different time periods
in the two solutions, and 0 otherwise:

�(Spi ,S®®
pi) =

T
1, ifSpi ë S®®

pi
0, ifSpi = S®®

pi
. (8)

Therefore, the distance function can be defined as follows:

⇢(S,S®®) =

≥N
i=1 �(Spi ,S®®

pi)

N . (9)

Expert Systems With Applications 228 (2023) 120191

8

M.M.S. Leite et al.

Algorithm 3: General VNS Algorithm
Input:

Instance for IPSP and a feasible solution S;
Set of neighborhood structures N = {N1,N2,N3,N4,N5,N6} and probabilities PNiÀ{1,2,3,5,6} ;
Set limit tmax À Q to total computing time, kmax À N the maximum of consecutive moves from neighborhood and lmax À N the number
of the neighborhood structures consider to local search phase;

Output:
A feasible and possibly improved solution S;

Auxiliary:
k, l À N and t, tstart À Q;

Function GeneralVNS(S, kmax, tmax, N , P)
1 tstart := CPUTime(); t := 0;
2 while t f tmax and z(S) > 0 do
3 k := 1;
4 while k f kmax and z(S) > 0 do
5 S® := Shake(S, NiÀ{1,2,3,5,6}, PNiÀ{1,2,3,5,6} , k); /* shaking phase */
6 l := 1 ; /* local search phase using V ND(S®, 4, NiÀ{1,2,3,4}) */
7 while l f 4 and z(S®) > 0 do
8 S®®® := F irstImprovement(S®®, Nl});
9 if z(S®®®) < z(S®) then
10 S® := S®®®;
11 l := 1;
12 end
13 else
14 l := l + 1;
15 end
16 end
17 if z(S®) < z(S) then
18 S := S®;
19 k := 1;
20 end
21 else
22 k := k + 1;
23 end
24 end
25 t := CPUTime() – tstart;
26 end
27 return S

As in Macedo et al. (2015) and in Pinto et al. (2020), a given
solution S®® is accepted if

z(S®®) < (1 + ↵⇢(S,S®®))z(S), (10)

with ↵ À [0, 1] (Line 15).
The value of ↵ may not be the same during all the execution of the

algorithm. In fact, in very particular cases, two given solutions may be
significantly different while their value in the objective function is very
close. Generally, these situations happen for particular instances with
a large number of jobs sharing the same attributes as the due dates
or penalty factors. In these situations, a cycle may occur, preventing
the algorithm from exploring all the neighborhood structures, and thus
not achieving the stopping condition. In order to avoid these situations,
a parameter of tolerance time (tolerance) is defined. If the maximum
computing time plus the tolerance time is reached, then the value of ↵
is set to 0 (as can be seen in Lines 12–13). Thus, a worse solution will
be rejected, and it is possible to establish a limit for the execution of
the algorithm, returning the best solution obtained so far (Line 24).

4. Computational experiments

4.1. Benchmark instances

To assess the quality of the approaches described above, we per-
formed extensive computational experiments using benchmark inst-

ances proposed for the IPSP in Kis and Kovács (2012). In all instances,
the time horizon is divided into identical periods, each one with the
same length (P = 100). The instances are divided into three sets (A, B,
and C), according to the processing time of the jobs. Thus, the set A is
composed of instances whose jobs have a short processing time.

1 f pj f 33,≈j À N , N À {100, 150, 200, 250, 300},

The set C is only composed by instances whose jobs have a large
processing time:

34 f pj f 100,≈j À N , N À {40, 60, 80, 100}.

In set B, half of the jobs have a short processing time, and the other half
has a large processing time, with N À {50, 100, 150, 200, 250, 300}. Each
instance has up to 10 machines M À {2, 6, 10}. The release and due
dates correspond to time periods within the time window [0, ⌧0], with
⌧0 À {2, 6, 10} (⌧0 is the so-called nominal length of the time horizon).

To ensure a feasible solution for each instance, the authors consid-
ered a larger time horizon ⌧ computed as follows:

⌧ = ⌧0 +
R
2 ù

N…
j=1

pj
(P ùM)

S
. (11)

For each combination of N, M, and ⌧0, five different instances were
generated. As a result, the total number of instances is 675 (225, 270,
and 180 for sets A, B, and C, respectively).

Expert Systems With Applications 228 (2023) 120191

9

M.M.S. Leite et al.

Algorithm 4: Skewed General VNS Algorithm
Input:

Instance for IPSP and a feasible solution S;
Set of neighborhood structures N = {N1,N2,N3,N4,N5,N6} and probabilities PNiÀ{1,2,3,5,6} ;
Set limit tmax À Q to total computing time, set kmax À N the maximum of consecutive moves from neighborhood, define the parameter
↵ À Q for skewed moves, a distance function ⇢ between two solutions and tolerance À Q time possible to beyond tmax;

Output:
A feasible and possibly improved solution S;

Auxiliary:
k À N; t, tstart À Q and solution Sbest;

Function SkewedGeneralVNS(S, kmax, tmax, N , P , ↵, tolerance)
1 tstart := CPUTime(); t := 0;
2 while t f tmax and z(S) > 0 do
3 k := 1;
4 Sbest := S;
5 while k f kmax and z(S) > 0 do
6 S® := Shake(S, NiÀ{1,2,3,5,6}, PNiÀ{1,2,3,5,6} , k); /* shaking phase */
7 S®® := V ND(S®, 4, NiÀ{1,2,3,4}); /* local search phase */
8 if z(S®®) < z(Sbest) then
9 Sbest := S®®;
10 end
11 t := CPUTime() – tstart;
12 if t > tmax + tolerance then
13 ↵ := 0;
14 end
15 if z(S®®) < (1 + ↵⇢(S,S®®))z(S) then
16 S := S®®;
17 k := 1;
18 end
19 else
20 k := k + 1;
21 end
22 end
23 t := CPUTime() – tstart;
24 S := Sbest;
25 end
26 return S

4.2. Preliminary computational tests

Preliminary statistical tests based on the multiple comparison pro-
cedure were conducted to set the values of parameters using the BVNS
algorithm in the set of instances A. However, the parameters were
kept in the other VNS variants and in the other sets for the sake
of consistency in the comparisons. The impact of variations in the
following parameters was evaluated:

• the number of used neighborhood structures (ns À {2, 4, 6});
• the maximum execution time (tmax À {1, 5, 9} in seconds);
• the maximum value of consecutive moves (kmax À {10, 15, 20,
25, 30, 40}).

Firstly, for each combination of parameters between ns À {2, 4,
6} and tmax À {1, 5, 9}, five replications were performed for each
instance of set A (225 instances) with kmax=20. We evaluated the results
obtained using Tukey’s HSD test with the gap as the dependent variable,
which corresponds to the average optimality gap, given by (best upper
bound - best lower bound)/(best upper bound). In other words, the gap
can be understood as the difference between our results and the lower
bound, divided by the same lower bound (to observe the proportion of
this difference).

Concerning the maximum execution time of the algorithm (tmax),
as tmax is increased, the average gap decreases (i.e., longer execution
times reach solutions closer to the optimal ones). Considering tmax=1,

statistically significant differences are obtained when compared to
tmax=5 and tmax=9. However, as the differences between these two last
values are not statically significant (Fig. 10), the time limit was set
to 5 seconds to reduce the overall computational execution time for
all instances and all replications while keeping the efficiency of the
proposed algorithm.

Regarding the number of neighborhood structures (ns), it is possible
to verify that the inclusion of more (and new) neighborhood structures
led to a decrease in the gap (Fig. 11). The statistical differences between
having or not having the 6 proposed neighborhood structures are
significant (when compared to ns=2 or ns=4). Thus, based on these
observations, we consider ns=6 and tmax=5 (seconds).

Subsequently, the impact of the maximum value of consecutive
movements was assessed in the shaking phase (kmax), considering ns=6
and tmax=5 (seconds). Similarly, we performed 5 runs (5 ù 225 in-
stances) for each combination of kmax À {10, 15, 20, 25, 30, 40}.
Again, using the gap as the dependent variable, the results showed
no statistically significant differences between different combinations
with a significance level of 5% (Fig. 12). However, it is possible to
identify that kmax=20 will be the minimum value of the mean gap. On
the contrary, kmax=10 and kmax=40 reach worst values. Therefore, kmax
was set to 20 since the closest solutions to the globally optimal ones
were obtained.

Concerning the different probabilities for selecting a given neigh-
borhood structure, and after several computational experiments, it

Expert Systems With Applications 228 (2023) 120191

10

M.M.S. Leite et al.

Fig. 10. Multiple comparisons between different maximum execution times (tmax).

Fig. 11. Multiple comparisons between different number of neighborhood structures (ns).

Fig. 12. Homogeneous subset between different values of consecutive movements
(kmax).

became clear that some structures spend more time than others. Thus,
in general, the algorithm tends to favor the least time-consuming ones
(by giving them a higher probability) while keeping the possibility of
exploring a broader solution space.

For the SGVNS variant, the values of ↵ and tolerance time (tolerance)
parameters were obtained experimentally through several computa-
tional tests. Values of ↵ less than 0.05 did not allow much diversifi-
cation of solutions. On the other hand, values greater than 0.05 lead
to a large scatter in the solution space that could not converge to
better solutions. Therefore, ↵ was set to 0.05, and tolerance was set to
2 seconds.

To assess the sequence of the performing order of the neighborhood
structures, a set of computational tests with different orders and com-
binations were performed. In the proposed approaches, the order of
the neighborhood structures is only relevant in the local search phase
using the VND method since, in the remaining cases, the neighborhood
structure selection relies on different probabilities.

The VND method (applied both in GVNS and SGVNS) has the
neighborhood structures N1 to N4 by increasing numerical order.

The structure (N1) assumes an important role in attempting to fill
gaps in the time periods of machines with available time to process
jobs. After filling these spaces, it might be useful to perform exchanges
between assigned jobs (using N2) to seek better solutions.

The neighborhood structure N3 is specially adequate for situations
in which jobs have a significant processing time when compared to the

Expert Systems With Applications 228 (2023) 120191

11

M.M.S. Leite et al.

Fig. 13. Feasible solution S with a total penalty value equal to 200.

Table 2
Attributes for each job j À N .
j rj dj pj ej lj
1 1 1 4 0 10
2 1 1 3 0 15
3 1 2 3 30 30
4 1 2 3 20 30
5 1 2 2 25 20
6 1 1 2 0 10
7 1 1 6 0 90

capacity of the period time (as it happens, for example, in instances of
set B and C).

These situations can arise when there are no machines with avail-
able capacity to insert a given job with a large processing time or if it
is impossible to exchange it with another job due to the capacity limit.
For the sake of clarity, Example 4.1) depicts this situation.

Example 4.1. Considering a instance with 7 jobs (N = {1, 2,… , 7})
which must be processed in one machine (M = {1}) in the time horizon
of the problem defined as T = {1, 2, 3}, with P = 8 and ⌧ = 3. For the
sake of conciseness, without losing generality, a single machine will be
used to be more concise, but it remains applicable when increasing the
number of machines.

Similar to Table 1, Table 2 lists all the parameters associated with
all jobs. Processing times are given in hours for each job, and the due
and release dates are expressed in time periods (shifts). Fig. 13 depicts
a feasible solution S for this instance of the IPSP with a total penalty
equal to 200 (due to the penalty of 2 delayed periods for job 6 and
job 7, 2 ù 10 and 2 ù 90, respectively).

In the solution S, job 7, which has a high penalty compared to the
other jobs, cannot be inserted in a previous period of time (throughN1), nor is it possible to exchange it with another job (through N2),
because the machine has no available time. In other words, job 7
would be prevented from changing its assigned period and, therefore,
prevented from reducing its penalty even though it presents a higher
penalty value (t7=90).

However, through N3 the solution S will be able to be improved.
In Fig. 14, swapping the sequence of jobs from one period with the
sequence from other results in a lower penalty: exchange between the
sequences of jobs from period 1 with period 3 will reduce the penalty
from 200 to 50.

Thus, with N3 we can unblock jobs that are stuck in some periods,
from where it would be impossible to move them to other periods
(through insertion) or exchange with other jobs (one by one).

Fig. 14. Solution S® obtained through N3 applied in original solution S.

Neighborhood structure N4 was specially designed for the context
of the IPSP. It appears in the last position since it proved to be the
most computationally challenging neighborhood structure, and hence
it would be profitable if it is less requested. Indeed, the search is
restarted in the first neighborhood structure if the incumbent solution
is improved in any neighborhood structure. On the other hand, if the
solution is not improved does not improve, the search continues to the
following neighborhood structure (according to the defined order).

As referred to above, structures N3 andN4 are helpful in particular
contexts, and they can become very time-consuming, which may not
necessarily be reflected in solution improvements. Thus, they present a
lower probability of being chosen in BVNS Algorithm (Algorithm 2).

4.3. Computational results and discussion

In this section, we report on the computational results obtained
for the benchmark instances described above by all the proposed ap-
proaches. Computational experiments were performed on a PC with an
Intel 8th Gen Core i7-8565 processor and 16 GB of RAM.

According to the insights of the preliminary tests reported in Sec-
tion 4.2, the computational time limit (tmax) was set to 5 seconds for
all approaches, and the maximum number of consecutive movements
(kmax) was set to 20. The number of used neighborhood structures was
6, and the probability of selecting each one in the shaking phase in all
algorithms was set as follows: PN1 = 0.25, PN2 = 0.25, PN3 = 0.15, PN4
= 0.00, PN5 = 0.25 and PN6 = 0.10. Finally, ↵=0.05 and tolerance=2
seconds.

Due to the random nature of these procedures, five runs were
performed for each instance and each proposed algorithm. The best
results obtained over the 5 runs for each algorithm were compared with
the best results achieved with the different exact approaches proposed
in Rietz et al. (2016). Note that, although lower and upper bounds were
provided in Rietz et al. (2016) with a time limit of 1200 seconds for
each run, in Rietz et al. (2016), these authors report only the results
for instances with small values of N as in Kis and Kovács (2012). The
authors provided us the unpublished results for the large-size instances.
Therefore, our comparison will include the whole set of benchmark
instances. For the sake of clarity, we divided the instances into a set
of so-called small-size instances whose results were reported in Kis
and Kovács (2012) and Rietz et al. (2016), and into a set of large-size
instances that includes all the other instances. As in Kis and Kovács
(2012) and Rietz et al. (2016), the results are presented for groups of 15
instances according to the set and the values of N and M (Tables 3
and 4). Tables 5 and 6 propose a different perspective of the results for
groups from the same set and with the same values of N and ⌧0.

Expert Systems With Applications 228 (2023) 120191

12

M.M.S. Leite et al.

Table 3
Computational results by number of jobs and machines for the small-size instances.
set dim N M BVNS GVNS SGVNS

opt gap t opt gap t opt gap t
A SI 100 2 0 0.061 2.110 0 0.048 2.450 0 0.049 2.824

100 6 12 0.004 0.444 14 0.003 0.573 14 0.003 0.372
100 10 14 0.001 0.196 14 0.001 0.170 14 0.001 0.024

A SI 150 2 0 0.042 2.981 0 0.030 3.015 0 0.028 4.012
150 6 5 0.021 1.352 8 0.009 1.311 8 0.009 1.007
150 10 11 0.007 0.291 12 0.003 0.309 11 0.003 0.221

A SI 200 2 0 0.039 3.674 0 0.027 4.086 0 0.032 4.350
200 6 3 0.079 1.808 5 0.029 1.721 5 0.028 2.243
200 10 10 0.009 0.865 10 0.005 1.003 10 0.004 1.111

total/avg. set A - SI 55 0.029 1.525 63 0.017 1.626 62 0.017 1.796

B SI 50 2 4 0.046 1.247 12 0.041 1.069 15 0.040 0.895
50 6 11 0.023 0.246 15 0.019 0.119 15 0.019 0.479
50 10 14 0.009 0.275 15 0.007 0.034 14 0.009 0.040

B SI 100 2 0 0.045 1.747 0 0.024 3.068 0 0.023 3.808
100 6 1 0.095 1.502 4 0.047 1.892 6 0.039 2.307
100 10 6 0.057 1.356 7 0.038 0.707 8 0.035 1.528

B SI 150 2 0 0.035 3.271 0 0.019 3.897 0 0.028 4.533
150 6 0 0.080 3.267 0 0.048 2.440 0 0.044 4.061
150 10 1 0.113 2.025 3 0.059 1.816 5 0.047 2.509

total/avg. set B - SI 37 0.056 1.660 56 0.034 1.671 63 0.032 2.240

C SI 40 2 12 0.000 0.329 15 0.000 0.012 15 0.000 0.047
40 6 15 0.000 0.244 15 0.000 0.006 15 0.000 0.014
40 10 15 0.000 0.040 15 0.000 0.002 15 0.000 0.003

C SI 60 2 11 0.002 0.785 15 0.000 0.211 15 0.000 0.652
60 6 14 0.001 0.408 15 0.000 0.079 15 0.000 0.132
60 10 14 0.000 0.490 15 0.000 0.084 15 0.000 0.057

C SI 80 2 9 0.001 0.683 15 0.000 0.908 15 0.000 2.149
80 6 10 0.002 1.020 15 0.000 0.512 15 0.000 1.329
80 10 11 0.005 1.186 15 0.000 0.637 15 0.000 0.202

total/avg. set C - SI 111 0.001 0.576 135 0.000 0.272 135 0.000 0.510

The results for the small and large size instances are presented in
Tables 3 and 5, and Tables 4 and 6, respectively. A summary of the
results is provided in Table 7 including the best results through exact
methods provided by Rietz et al. (2016). The meaning of each column
is as follows:

÷ set: set of instances;
÷ dim: small-size instances (SI) or large-size instances (LI) according
to N;

÷ N: number of jobs;
÷ M: number of machines;
÷ ⌧0: nominal length of the time horizon;
÷ opt: number of instances solved up to optimality;
÷ gap: average optimality gap, given by (best upper bound - best
lower bound)/(best upper bound);

÷ t: average computing time to find the solution (in seconds).

From the results obtained, and considering the whole set of in-
stances (small- and large-size), the GVNS and SGVNS algorithm appear
to perform better than BVNS. In both cases, the number of optimal so-
lutions found is larger, and the average optimality gap remains smaller
than with BVNS. Among the three approaches, SGVNS is the algorithm
that requires the highest average computational time to reach the final
solution. Nevertheless, the computational times remain very low for all
the tested algorithms. Comparing GVNS with SGVNS, we observe that
the former performs slightly better for sets A and C not only in the
number of optimal solutions (75 against 74 for set A, and 180 against
179 for set C), but also in the value of the average optimality gap.
For set B, despite the identical value of the optimality gap, SGVNS
outperforms GVNS in terms of optimal solutions found (63 against 57).

Figs. 15, 16 and 17 provide, respectively, a comparison of the
average optimality gap, computational times and instances solved up

Fig. 15. Average optimality gap (gap) for each set and each approach.

to optimality by BVNS, GVNS, SGVNS and the exact methods described
in Rietz et al. (2016) (denoted as UB). Additionally, in Table 7, the total
and average results of Tables 3–6 are summarized for all the instances
grouped by set and size and compared with the results of the exact
methods described in Rietz et al. (2016).

In set A, 75 optimal solutions are obtained through GVNS, whereas
the exact methods (UB) reached 83. However, the average optimal-
ity gaps achieved by all our VNS algorithms are significantly lower.
Additionally, for the small-size instances, the solutions obtained by
GVNS are on average 21% closer to the lower bound than the solutions
obtained through exact approaches. For larger instances, this difference
is even more significant: GVNS achieves an average optimality gap of
2.5% against the 60% of the exact methods. Another major benefit of all

Expert Systems With Applications 228 (2023) 120191

13

M.M.S. Leite et al.

Table 4
Computational results by number of jobs and machines for the large-size instances.
set dim N M BVNS GVNS SGVNS

opt gap t opt gap t opt gap t
A LI 250 2 0 0.032 3.210 0 0.025 3.980 0 0.030 4.301

250 6 0 0.046 2.881 0 0.028 3.299 0 0.027 4.165
250 10 7 0.022 1.641 7 0.022 1.620 7 0.018 1.890

A LI 300 2 0 0.025 4.189 0 0.021 5.033 0 0.027 5.509
300 6 0 0.052 3.717 0 0.034 3.430 0 0.035 4.210
300 10 5 0.029 2.636 5 0.016 2.539 5 0.017 2.568

total/avg. set A - LI 12 0.034 3.046 12 0.025 3.317 12 0.026 3.774

B LI 200 2 0 0.031 3.682 0 0.019 3.821 0 0.028 5.983
200 6 0 0.060 3.917 0 0.037 3.793 0 0.036 4.910
200 10 0 0.110 2.437 0 0.072 3.057 0 0.074 3.505

B LI 250 2 0 0.029 3.995 0 0.019 5.046 0 0.025 8.968
250 6 0 0.056 3.219 0 0.037 4.801 0 0.037 6.846
250 10 0 0.087 2.847 0 0.056 4.442 0 0.052 5.830

B LI 300 2 0 0.030 4.306 0 0.019 7.947 0 0.022 11.442
300 6 0 0.056 4.220 0 0.034 5.153 0 0.035 8.651
300 10 0 0.085 4.276 0 0.050 4.768 0 0.046 6.552

total/avg. set B - LI 0 0.060 3.655 0 0.038 4.759 0 0.039 6.965

C LI 100 2 12 0.000 1.350 15 0.000 0.551 14 0.000 2.064
100 6 6 0.004 1.143 15 0.000 1.220 15 0.000 1.445
100 10 10 0.003 0.651 15 0.000 0.334 15 0.000 0.807

total/avg. set C - LI 28 0.002 1.048 45 0.000 0.702 44 0.000 1.439

Table 5
Computational results by number of jobs and ⌧0 for the small-size instances.

set dim N ⌧0 BVNS GVNS SGVNS

opt gap t opt gap t opt gap t
A SI 100 2 6 0.011 1.521 8 0.008 1.988 8 0.009 1.802

100 6 10 0.018 0.553 10 0.014 0.968 10 0.014 0.846
100 10 10 0.037 0.676 10 0.031 0.237 10 0.031 0.573

A SI 150 2 1 0.018 2.447 2 0.010 2.191 1 0.012 2.256
150 6 5 0.030 1.505 8 0.016 1.642 8 0.015 1.739
150 10 10 0.022 0.672 10 0.016 0.802 10 0.012 1.245

A SI 200 2 0 0.020 2.865 0 0.012 3.713 0 0.013 3.351
200 6 5 0.030 2.080 5 0.018 1.760 5 0.020 2.548
200 10 8 0.078 1.402 10 0.030 1.336 10 0.032 1.806

total/avg. set A - SI 55 0.029 1.525 63 0.017 1.626 62 0.017 1.796

B SI 50 2 5 0.028 1.188 13 0.020 0.469 14 0.022 0.906
50 6 11 0.026 0.321 15 0.024 0.620 15 0.024 0.281
50 10 13 0.024 0.260 14 0.023 0.133 15 0.022 0.226

B SI 100 2 0 0.026 1.982 1 0.014 2.048 2 0.013 3.293
100 6 1 0.099 2.023 2 0.057 2.326 3 0.053 2.445
100 10 6 0.072 0.601 8 0.037 1.293 9 0.031 1.905

B SI 150 2 0 0.024 3.280 0 0.010 3.027 0 0.013 3.719
150 6 0 0.073 2.871 0 0.044 2.740 0 0.042 3.969
150 10 1 0.131 2.413 3 0.072 2.386 5 0.065 3.415

total/avg. set B - SI 37 0.056 1.660 56 0.034 1.671 63 0.032 2.240

C SI 40 2 15 0.000 0.281 15 0.000 0.005 15 0.000 0.016
40 6 13 0.000 0.205 15 0.000 0.007 15 0.000 0.018
40 10 14 0.000 0.128 15 0.000 0.008 15 0.000 0.030

C SI 60 2 13 0.000 0.535 15 0.000 0.049 15 0.000 0.276
60 6 15 0.000 1.043 15 0.000 0.258 15 0.000 0.408
60 10 11 0.003 0.107 15 0.000 0.068 15 0.000 0.157

C SI 80 2 11 0.000 0.651 15 0.000 0.142 15 0.000 0.408
80 6 8 0.003 1.485 15 0.000 1.236 15 0.000 1.766
80 10 11 0.004 0.752 15 0.000 0.679 15 0.000 1.506

total/avg. set C - SI 111 0.001 0.576 135 0.000 0.272 135 0.000 0.510

the VNS approaches described in this paper can be seen in the execution
time since, on average, these methods need only 2.3 seconds to find
the solution against the 778.4 seconds needed by the exact methods.
In set B, SGVNS appears to be the most effective among the proposed
algorithms. For the small-size instances, the average optimality gap

achieved with SGVNS is almost the same as with the exact methods.
However, SGVNS is able to obtain those results in 2.2 seconds on
average against the 460 seconds spent by the exact methods. For the
large-size instances, the average optimality gap achieved by GVNS is
significantly better than the gaps obtained with the exact methods,

Expert Systems With Applications 228 (2023) 120191

14

M.M.S. Leite et al.

Table 6
Computational results by number of jobs and ⌧0 for the large-size instances.

set dim N ⌧0 BVNS GVNS SGVNS

opt gap t opt gap t opt gap t
A LI 250 2 0 0.015 3.534 0 0.012 3.691 0 0.013 4.822

250 6 2 0.042 2.555 2 0.036 3.196 2 0.036 2.858
250 10 5 0.043 1.643 5 0.028 2.012 5 0.027 2.676

A LI 300 2 0 0.018 4.022 0 0.011 4.250 0 0.014 3.467
300 6 0 0.046 3.673 0 0.030 4.003 0 0.034 4.724
300 10 5 0.042 2.846 5 0.031 2.750 5 0.031 4.096

total/avg. set A - LI 12 0.034 3.046 12 0.025 3.317 12 0.026 3.774

B LI 200 2 0 0.022 2.828 0 0.011 3.777 0 0.018 4.040
200 6 0 0.066 3.958 0 0.041 3.525 0 0.039 5.790
200 10 0 0.113 3.250 0 0.076 3.369 0 0.081 4.567

B LI 250 2 0 0.023 3.294 0 0.011 4.802 0 0.018 8.029
250 6 0 0.057 3.151 0 0.036 4.918 0 0.037 7.307
250 10 0 0.091 3.616 0 0.064 4.569 0 0.060 6.310

B LI 300 2 0 0.026 4.182 0 0.013 6.363 0 0.017 9.544
300 6 0 0.054 4.602 0 0.033 5.758 0 0.032 8.983
300 10 0 0.091 4.017 0 0.058 5.747 0 0.054 8.118

total/avg. set B - LI 0 0.060 3.655 0 0.038 4.759 0 0.039 6.965

C LI 100 2 10 0.001 0.295 15 0.000 0.543 15 0.000 0.654
100 6 10 0.002 1.106 15 0.000 0.973 14 0.000 2.152
100 10 8 0.004 1.743 15 0.000 0.589 15 0.000 1.509

total/avg. set C - LI 28 0.002 1.048 45 0.000 0.702 44 0.000 1.439

Fig. 16. Average computational time to obtain a final solution (t) for each set and
each approach.

while the computing time is shorter by almost 800 seconds. In set C,
the GVNS approach was able to obtain an optimal solution for all the
instances in a short computational time (0.4 seconds on average), which
is clearly competitive with the results obtained in Rietz et al. (2016).

For a detailed analysis, we provide a comparison of the total/average
results achieved by all proposed approaches with the ones obtained
by Rietz et al. (2016) considering the groups of 15 instances for equal
values of N and M and for equal values of N and ⌧0.

For set A the groups of instances with an equal value of N and
⌧0, the average results achieved with the VNS approaches outperform
always the best results of Rietz et al. (2016). For set B, the average
optimality gap remains barely the same whatever the grouping crite-
rion that is used. The exact methods from the literature give better
results for the shortest instances, while our VNS algorithms perform
better with the large-size instances. For sets A and B, the difference in
computational time among the approaches presented in this paper and
the exact methods described in Rietz et al. (2016) is very significant.
Regarding the set C, with a maximum number of jobs per instance lower

Fig. 17. Number of instances solved up to optimality (opt) for each set and each
approach.

than the one of the other sets (N=100), and given the attributes of
the jobs that allow fewer combinations, the exact methods can also be
extremely fast as our VNS approaches.

In general, all the approaches proposed in this paper are able to
obtain solutions relatively close to the optimum in much less computa-
tional time than in Rietz et al. (2016).

4.4. Statistical analyses of the computational experiments

The VNS method iteratively runs through different solutions, com-
bining stochastic methods with local search. Since the implementation
embeds stochastic procedures with a random component, it is necessary
to ensure that the results obtained are not biased by chance. There-
fore, the solutions must achieve very similar values in each execution.
Accordingly, each of the 675 instances was solved 5 times for each
approach (BVNS, GVNS, and SGVNS), providing an overall of 10125
solutions (3 ù 5 ù 675 instances). The samples present very similar
results for the 5 runs/replications in each of the proposed approaches,

Expert Systems With Applications 228 (2023) 120191

15

M.M.S. Leite et al.

Table 7
Global results for all the sets of instances (A, B and C).
set dim BVNS GVNS SGVNS Exact methods (UB)

opt gap t opt gap t opt gap t opt gap t
A SI 55 0.029 1.5 63 0.017 1.6 62 0.017 1.8 68 0.230 637.0
A LI 12 0.034 3.0 12 0.025 3.3 12 0.026 3.8 15 0.596 990.5

Global - Set A 67 0.031 2.1 75 0.020 2.3 74 0.021 2.6 83 0.377 778.4

B SI 37 0.056 1.7 56 0.034 1.7 63 0.032 2.2 89 0.041 460.0
B LI 0 0.060 3.7 0 0.038 4.8 0 0.039 7.0 4 0.282 805.9

Global - Set B 37 0.058 2.7 56 0.036 3.2 63 0.036 4.6 93 0.161 633.0

C SI 111 0.001 0.6 135 0.000 0.3 135 0.000 0.5 135 0.000 0.3
C LI 28 0.002 1.0 45 0.000 0.7 44 0.000 1.4 45 0.000 1.2

Global - Set C 139 0.002 0.7 180 0.000 0.4 179 0.000 0.7 180 0.000 0.5

Fig. 18. Mean gap for each approach and each run.

as can be verified through the analysis of the mean gap in Fig. 18 (there
are no considerable differences between each run for a given approach).
Moreover, a Tukey’s HSD test was conducted to compare the runs using
the optimality gap as the dependent variable. This test proved that
there are no statistically significant differences between each run of
the experiments (regardless of approach) with a significance level of
5% (Fig. 19). Thus, samples of each run showed to be homogeneous.

Since the results obtained do not follow a normal distribution
(considering the optimality gap as the variable), we resort to non-
parametric statistical tests in independent samples, more precisely in
the Kruskal–Wallis test. By comparing the suggested VNS approaches
(Fig. 20), it can be concluded that there are statistically significant
differences between the BVNS and the other two approaches (GVNS

Fig. 19. Homogeneous subsets between experiments/runs.

and SGVNS). When comparing GVNS and SGVNS, the null hypothe-
sis cannot be rejected: the samples are statistically identical with a
significance level of 5%.

To also establish a comparison between our best solutions using
the optimality gap (gapbest) for each of the three VNS approaches and
the best results proposed by Rietz et al. (2016) (gapUB), we define
gap® as the difference between gapbest and gapUB as follows: gap® =
gapbest * gapUB . Therefore, gap®=0 means that both approaches have
the same objective function value. A negative value of gap® means
that our approaches lead to results that outperform those presented
by Rietz et al. (2016). In contrast, positive values of gap® indicate that
our methods were not as effective.

For the sake of clarity, in Fig. 21 a set of box plots graphically
demonstrates the spread of the gap®. Each box graph represents a
different combination of method (BVNS, GVNS and SGVNS) and set (A,
B, and C).

As can be seen, most of the box plots are in the negative zone. More
precisely, in set A for all approaches, 75% of the solutions obtained
are better than or equal to those presented in the literature: the third
quartile (Q3) is approximately below the line where the gap® is null. The
trend in set B also shows that most solutions are closer to the optimal
ones. In set C, we were also able to obtain all optimal solutions using
the GVNS approach with a slightly shorter computational time than
in Rietz et al. (2016).

Expert Systems With Applications 228 (2023) 120191

16

M.M.S. Leite et al.

Fig. 20. Independent-Samples Kruskal–Wallis test results.

Fig. 21. Box plots of the gap® for each approach and set.

5. Conclusions

In this paper, we described and analyzed different metaheuristic
algorithms for the integrated planning and scheduling problem. We
proposed several variants of the variable neighborhood search algo-
rithms, including a basic, a general and a skewed general version.
New neighborhood structures were introduced and described. All the
approaches were tested through extensive computational experiments
using benchmark instances, and compared with the state-of-the-art
methods described in the literature. Large-size benchmark instances
were also solved which is still scarce in the literature.

The results obtained show that the proposed algorithms are able to
obtain solutions that are very close to the optimal ones (with very small
optimality gaps). One of the major advantages is the very short com-
puting time required to reach these high-quality solutions. In general,
the proposed approaches clearly outperform current state-of-the-art
approaches presented so far.

CRediT authorship contribution statement

Mário Manuel Silva Leite: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Writing – original
draft, Visualization. Telmo Miguel Pires Pinto: Conceptualization,
Methodology, Validation, Investigation, Writing – original draft, Super-
vision. Cláudio Manuel Martins Alves: Conceptualization, Validation,
Investigation, Resources, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We are indebted to Lino Costa, who helped with the statistical
analyses. We are also indebted to the anonymous referees for their
thorough reviews. Their suggestions helped us to improve the overall
quality of the paper.

Funding

The first author has been supported by FCT – Fundação para a
Ciência e Tecnologia, through national funds from MCTES – Ministério
da Ciência, Tecnologia e Ensino Superior, and by European Social
Fund through NORTE2020 – Programa Operacional Regional Norte,
within the research grant SFRH/BD/146217/2019. The second and
third authors have been supported by FCT – Fundação para a Ciência e
a Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.
The second author has been supported by national funds through
FCT – Fundação para a Ciência e a Tecnologia, under the project
UIDB/00285/2020.

References

Almada-Lobo, B., Oliveira, J. F., & Carravilla, M. A. (2008). Production planning and
scheduling in the glass container industry: a VNS approach. International Journal of
Production Economics, 114(1), 363–375.

Armstrong, R., Gao, S., & Lei, L. (2008). A zero-inventory production and distribution
problem with a fixed customer sequence. Annals of Operations Research, 159(1),
395–414.

Bilyk, A., & Mönch, L. (2012). A variable neighborhood search approach for planning
and scheduling of jobs on unrelated parallel machines. Journal of Intelligent
Manufacturing, 23(5), 1621–1635.

Brimberg, J., Mladenovi¢, N., Todosijevi¢, R., & Uro≤evi¢, D. (2017). A general
framework for nested variable neighborhood search. Electronic Notes in Discrete
Mathematics, 58, 159–166.

Expert Systems With Applications 228 (2023) 120191

17

M.M.S. Leite et al.

Cardoen, B., Demeulemeester, E., & Beliën, J. (2010). Operating room planning and
scheduling: A literature review. European Journal of Operational Research, 201(3),
921–932.

Cheaitou, A., & Khan, S. A. (2015). An integrated supplier selection and procurement
planning model using product predesign and operational criteria. International
Journal on Interactive Design and Manufacturing, 9(3), 213–224.

Chen, Y. (2016). Integrated optimization model for production planning and scheduling
with logistics constraints. International Journal of Simulation Modelling, 15(4),
711–720.

Dogan, M. E., & Grossmann, I. (2006). A decomposition method for the simultaneous
planning and scheduling of single-stage continuous multiproduct plants. Industrial
and Engineering Chemistry Research, 45(1), 299–315.

Erdirik-Dogan, M., & Grossmann, I. (2008). Simultaneous planning and scheduling
of single-stage multi-product continuous plants with parallel lines. Computers &
Chemical Engineering, 32(11), 2664–2683.

Eun, J., Kim, S.-P., Yih, Y., & Tiwari, V. (2019). Scheduling elective surgery patients
considering time-dependent health urgency: Modeling and solution approaches.
Omega, 86, 137–153.

Geismar, H. N., Laporte, G., Lei, L., & Sriskandarajah, C. (2008). The integrated
production and transportation scheduling problem for a product with a short
lifespan. INFORMS Journal on Computing, 20(1), 21–33.

Grossmann, I. (2009). Research challenges in planning and scheduling for enterprise-
wide optimization of process industries. Computer Aided Chemical Engineering, 27,
15–21.

Hansen, P., Mladenovi¢, N., Todosijevi¢, R., & Hanafi, S. (2017). Variable neighborhood
search: basics and variants. EURO Journal on Computational Optimization, 5(3),
423–454.

Kis, T., & Kovács, A. (2012). A cutting plane approach for integrated planning and
scheduling. Computers & Operations Research, 39(2), 320–327.

Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2012). Simultaneous production
and logistics operations planning in semicontinuous food industries. Omega, 40(5),
634–650.

Liu, W.-L., Gong, Y.-J., Chen, W.-N., Liu, Z., Wang, H., & Zhang, J. (2020). Coordinated
charging scheduling of electric vehicles: A mixed-variable differential evolution
approach. IEEE Transactions on Intelligent Transportation Systems, 21(12), 5094–5109.

Macedo, R., Alves, C., Hanafi, S., Jarboui, B., Mladenovi¢, N., Ramos, B., & de
Carvalho, J. V. (2015). Skewed general variable neighborhood search for the
location routing scheduling problem. Computers & Operations Research, 61, 143–152.

Maenhout, B., & Vanhoucke, M. (2013). An integrated nurse staffing and scheduling
analysis for longer-term nursing staff allocation problems. Omega, 41(2), 485–499.

Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling:
Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12),
1919–1930.

Mladenovi¢, N., & Hansen, P. (1997). Variable neighborhood search. Computers &
Operations Research, 24(11), 1097–1100.

Persson, J. A., & Göthe-Lundgren, M. (2005). Shipment planning at oil refineries using
column generation and valid inequalities. European Journal of Operational Research,
163(3), 631–652.

Pinto, T., Alves, C., & Valério de Carvalho, J. (2020). Variable neighborhood search
algorithms for the vehicle routing problem with two-dimensional loading con-
straints and mixed linehauls and backhauls. International Transactions in Operational
Research, 27(1), 549–572.

Rietz, J., Alves, C., Braga, N., & Valério de Carvalho, J. (2016). An exact approach
based on a new pseudo-polynomial network flow model for integrated planning
and scheduling. Computers & Operations Research, 76, 183–194.

Sel, Ç., Bilgen, B., & Bloemhof-Ruwaard, J. (2017). Planning and scheduling of the
make-and-pack dairy production under lifetime uncertainty. Applied Mathematical
Modelling, 51, 129–144.

Shen, W., Wang, L., & Hao, Q. (2006). Agent-based distributed manufacturing process
planning and scheduling: a state-of-the-art survey. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 36(4), 563–577.

Zhao, F., He, X., & Wang, L. (2021). A two-stage cooperative evolutionary algo-
rithm with problem-specific knowledge for energy-efficient scheduling of no-wait
flow-shop problem. IEEE Transactions on Cybernetics, 51(11), 5291–5303.

Zhao, F., Zhang, L., Cao, J., & Tang, J. (2021). A cooperative water wave optimization
algorithm with reinforcement learning for the distributed assembly no-idle flowshop
scheduling problem. Computers & Industrial Engineering, 153, Article 107082.

Zhou, S., Xing, L., Zheng, X., Du, N., Wang, L., & Zhang, Q. (2021). A self-adaptive
differential evolution algorithm for scheduling a single batch-processing machine
with arbitrary job sizes and release times. IEEE Transactions on Cybernetics, 51(3),
1430–1442.

