
AGE: Automatic Performance Evaluation of API
Gateways

Pedro Moreira†
INESC TEC &

University of Minho
pedro.m.moreira@inesctec.pt

António Ribeiro
Department of Informatics

University of Minho
anr@di.uminho.pt

João Marco Silva?
University of Minho &

INESC TEC
joaomarco@di.uminho.pt

Abstract—The increasing use of microservices architectures

has been accompanied by the profusion of tools for their design

and operation. One relevant tool is API Gateways, which work as

a proxy for microservices, hiding their internal APIs, providing

load balancing, and multiple encoding support. Particularly in

cloud environments, where the inherent flexibility allows on-

demand resource deployment, API Gateways play a key role

in seeking quality of service. Although multiple solutions are

currently available, a comparative performance assessment under

real workloads to support selecting the more suitable one for

a specific service is time-consuming. In this way, the present

work introduces AGE, a service capable of automatically de-

ploying multiple API Gateways scenarios and providing a simple

comparative performance indicator for a defined workload and

infrastructure. The designed proof of concept shows that AGE

can speed up API Gateway deployment and testing in multiple

environments.

Index Terms—API Gateways, Automatic testing, Load testing,

Performance assessment

I. INTRODUCTION

For decades, the standard way to develop an application
in software engineering was through monolithic architectures.
Despite the numerous monolithic approaches, the most com-
mon pattern of this architecture is a system with all of the
code deployed as a single process [1], [2]. This highly coupled
architecture limits not only the application’s scalability but
also its maintenance and may lead to inefficient resources use.

More recently, microservices architecture rose as a popular
and robust strategy to enhance systems scalability and code
maintainability. It consists of a Service-Oriented Architecture
(SOA) type in which applications are composed of indepen-
dent components (i.e., services) running as isolated processes
that typically communicate through the network. Therefore,
scaling up (or down) a system involves only the required
component, not the whole monolithic application. Moreover,
each service is technology agnostic, allowing the adoption
of the most suitable solution independently [1]. However, it
introduces complexity in managing multiple APIs, extends
attack surfaces and affects overall performance, as the network
latency is higher than function calls within a monolithic
architecture.

Dealing with these challenges involves resorting to API
Gateways, a reverse proxy to microservices that acts as a
single-entry point into the system, decoupling consumers from

the backend services, their internal structure and location [3]–
[7]. By aggregating requests and responses, they can also
provide load-balancing mechanisms, service throttling, circuit
breaker, multiple encoding and protocol support, authentica-
tion and authorisation mechanisms, and fine-grained metric
collection [6], [8]–[10].

Besides its effectiveness, choosing the most suitable API
Gateway for a specific scenario is a challenging and time-
consuming task. Also, an inadequate solution can affect the
perceived quality of connected services regardless of net-
work performance. To this extent, no automatic tools allow
comparative performance assessment in either on-premises or
cloud-hosted deployments. Furthermore, allied to the challenge
of configuring heterogeneous testbeds, the lack of real-world
benchmarks hinders drawing meaningful conclusions.

Aiming to address these challenges, this work introduces
a service able to (i) parse a generic API documentation file
into different API Gateways’ configuration files; (ii) deploy
selected API Gateways on user’s cloud providers; (iii) load
tests to all deployed API Gateways based on workloads
described by the user; (iv) monitor the performance achieved
by different hardware specification; and (v) provide a simple
comparative metric to assist user’s decision. The applicability
of this proposal is assessed by resorting to an auction system as
a case study, as it has the desired requirements for scalability
and intensive message exchange.

This paper is organised as follows: Section II outlines
the related work on comparative analyses of the main API
Gateways; the design goals for an automatic system aiming
for a simplified way to analyse different solutions in real
scenarios are listed in Section III; the architecture and main
developed components of the proposed system are described in
Section IV; the proof of concept designed to demonstrate the
solution and the obtained results are presented in Section V;
and the conclusions are summarised in Section VI along with
the planned further developments.

II. RELATED WORK

Although current API Gateways also provide tools to sup-
port microservice-based systems’ development, deployment,
and management, deciding the most suitable solution typically
relies on their performance related to the number of requests
per second (i.e., throughput) they sustain and the average

response time. Nevertheless, publicly available benchmarks are
released mainly by the API Gateway’s developers and do not
consider real-world workloads.

One common approach is used by KrakenD’s team [11]. It
consists of generating a uniform synthetic workload towards
the same API deployment running in different hardware con-
figurations. For this benchmark, the workload is generated
using the tool hey

1 and a web server is created with LWAN
2.

The results show that throughput increases and response time
decreases with the computational power hosting the API
Gateway.

Tyk benchmark is provided by the developers of the open
source Tyk API Gateway [12]. Differently to the approach
adopted by KrakenD, Tyk benchmark ensures the requests
produced by Locust

3 fall into a predefined request quota
and rate limit. Therefore, there is no request dropping or
throughput variation, which does not resemble a real scenario.
Moreover, the assessment relies only on the proxy’s analytics
data, and no comparative evaluation with different solutions is
provided.

The KrakenD team also provides a comparative assessment
considering two other open source solutions, i.e., Tyk and
Kong [13]. To do so, the authors use the Varnish

4 benchmark
system with a small group of simple tests. Although presenting
better global performance, the limited features considered and
yielded indicators hamper real-world conclusions to be taken
from these tests.

Since different services pose heterogeneous performance
requirements, providing developers with flexible and realistic
benchmarking systems is paramount. Therefore, this work
proposes AGE5, an Automatic Performance Evaluator for
multiple API Gateways that support real-world workloads and
maps their performance into a single comparative indicator.

III. DESIGN GOALS

AGE consists of a service capable of automatically deploy-
ing different API gateway solutions in users’ cloud providers
and submitting them to comparative performance assessments
based on realistic system usage. Seeking flexibility and cover-
age, its development is driven by the following design goals:

• AGE should parse multilanguage documentation files
(e.g., OpenAPI, RAML) into multiple API gateway con-
figuration inputs. It aims at allowing the reuse of con-
figuration files, which reduces the effort of configuring
multiple gateways individually;

• The same documentation input should provide the hard-
ware configuration to be tested, the underlying workload
profile and cloud credentials;

• AGE should automatically deploy all the indicated API
gateways instances in the client’s cloud provider accord-
ingly to the specified hardware;

1https://github.com/rakyll/hey
2https://lwan.ws/
3https://github.com/locustio/locust
4https://github.com/varnish/api-gateway-benchmarks
5https://github.com/Bishop19/AGE

• It also should automatically deploy load test instances
and apply them to all defined API gateways;

• As a result, the system should provide a scalar score to
each API gateway based on a comprehensive performance
analysis;

• Detailed performance results should also be provided for
each analysed parameter;

• Operating AGE should be user-friendly, i.e., hiding the
complexity of configuring different API gateways, work-
loads and performance analysis.

IV. AGE ARCHITECTURE

Figure 1 presents the architectural view of AGE, including
the operational flow from the documentation file to the load
testing. In this figure, the input file is represented by its two
main components, i.e., the API documentation and the testing
workload description. The first component defines the API
gateways’ configurations by mapping the domain endpoints

and the underlying path, HTTP method, and parameters. It
also includes the infrastructure in which the API gateways
will be tested, e.g., hardware specification and operating
system configurations. The workload description includes test
scheduling, load distribution, and the request composition to
each API endpoint.

Once submitted, AGE’s backend parses the input file to the
configurator modules. The first one is responsible for deploy-
ing and configuring all the selected API gateways. At this
point, AGE supports three mainstream solutions, i.e., Kong,
KrakenD, and Tyk. However, new options can be included
by extending the parser and configuration components. The
second configurator deploys and runs the described workload,
collecting and processing performance metrics.

Notice the API gateways and the load generator are de-
ployed in the user’s cloud infrastructure, while the AGE’s
backend might be deployed elsewhere. This provides flexibility
and prevents the proposed system from affecting performance
analyses.

Since the load generator requires the public IP addresses
of all tested systems, AGE first deploys the API gateways,
retrieves their addresses and adds them to the workload
configuration file. To ensure consistency among the distributed
components, the processing steps are regulated by a state
machine running within AGE’s backend.

Sections IV-A to IV-C provide implementation details for
the main developed functions.

A. Configuration parser and instances deployment

The first module parses the generic description input into
each API Gateway configuration file format. The challenge in
this process is determining the right granularity in which the
information within input files should be divided to adapt it to
all tested systems. For instance:

• Kong uses a different syntax for variables that represent
an endpoint path, e.g., /bid/(?<id>[ˆ/]+) instead
of /bid/{id} as in KrakenD;

Fig. 1: AGE’s architectural scheme

• KrakenD needs to define which headers are allowed to
be forwarded explicitly, e.g., a protected API endpoint is
required to allow the Authorization header by adding it
to the headers to pass property within KrakenD config-
uration.

To address this heterogeneity challenge, AGE first generates
an intermediate internal representation to be further parsed to
the target API Gateway format. The internal representation
is created by dividing each request URL description into
representative components. For example, the request URL
https://biwi.com/bid/{auctionID} can be divided in two: the
base path (or domain), https://biwi.com; and the endpoint path,
/bid/{auctionID}. Each endpoint request also has an HTTP
method linked to it, e.g., GET or POST.

The transformations from Listing 1, which uses OpenAPI
format6, to Listing 2 (i.e., the internal representation) demon-
strate the underlying process. Based on this intermediate data
structure, multiple dialects used as input descriptions can be
parsed to any target API Gateway configuration format.

AGE deploys the API Gateways and the load generators us-
ing the output files from the parsing phase, the described work-
load to be submitted during the tests, and the provided cloud
credentials. Each instance is individually deployed following
hardware specifications, and operating system configurations
also provided through the input files.

B. Load Testing

To reduce the resources required to test multiple API
Gateways, AGE deploys only one load generator per testing
session, using the tool JMeter

7. Nevertheless, flexibility is
ensured since AGE adopts the Strategy design pattern. This
is accomplished by the workload configurator module, which
is responsible for installing the load generator and selecting
the specific methods for each API Gateway under analysis in
runtime.

6It could be in any other supported format.
7https://jmeter.apache.org/

The monitoring component is responsible for starting a test
session, collecting all data required for comparative analysis,
finishing the session, retrieving overall results, and running the
Scoring system (see Section IV-C).

The comparative analysis is based on request throughput
(i.e., the number of attended requests per second) and the
response time, including the minimum, maximum, deviation,
and average time, as well as the 50th, 90th, 95th, and 99th
percentiles.

C. Scoring system

The comparative performance analysis is provided by a
module that collects all the metrics described in Section IV-B
for the endpoints being tested and calculates a global relative
score (i.e., between 0 and 1) for each API Gateway system.
The scoring system considers each value of the API Gateway
for that endpoint metric, giving the score value of 1 to the API
Gateway with the best metric value. This value could be the
minimum value of the API Gateways for that specific endpoint
metric:

minme = min(valuemeg), 8g 2 gateways (1)

Or the maximum:

maxme = max(valuemeg), 8g 2 gateways (2)

For example, consider the minimum response times are
412 ms, 334 ms, and 587 ms for Kong, KrakenD and Tyk,
respectively, meaning that KrakenD would have a score of 1
for the minimum response time metric. To calculate the other
relative scores, Equations (3) and (4) are used:

scoremeg =

(
1, valuemeg = minme

1� |minme�valuemeg|
valuemeg

, otherwise
(3)

scoremeg =

(
1, valuemeg = maxme

1� |maxme�valuemeg|
maxme

, otherwise
(4)

Listing 1: OpenAPI input
1 {

2 "/bid/{auctionID}": {

3 "post": {

4 "servers": [{

5 "url": "https://biwi.com/"

6 }],

7 "parameters": [{

8 "name": "auctionID",

9 "in": "path",

10 "schema": {"type": "integer"}

11 }],

12 "requestBody": {

13 "bid": { "type": "number" }

14 },

15 "security": "bearerAuth"

16 }

17 }

18 }

Listing 2: Internal structure representation
1 {

2 "base_path": "https://biwi.com/",

3 "endpoint_path": "/bid/{auctionID}",

4 "method": "POST",

5 "query_params": {},

6 "path_params": {

7 "auctionID": "integer"

8 },

9 "body_params": {

10 "bid": "number"

11 },

12 "security": "bearer"

13 }

After all API Gateways have received a score for each
metric, they are summed and scaled up, giving a value between
0 and 100 for the endpoint performance. The total score is the
average from all endpoint scores, as detailed in Equations (5)
and (6).

scoreeg =

Pmetrics
m scoremeg ⇤ 100

dim(metrics)
(5)

scoreg = scoreeg, 8e 2 endpoints (6)

V. PROOF OF CONCEPT

This section presents the proof of concept designed to
demonstrate the usefulness of AGE in providing a simple way
to compare different API Gateways under realistic workloads.
To do so, it is used an open-source auction platform (i.e.,
BIWI8) which implements heterogeneous microservices con-
nected through REST API.

A. Test scenario

As demonstrated in Figure 2, the proof of concept scenario
comprises three virtual machines deployed in the Google
Cloud provider to run BIWI, the API Gateways, and the Load
tester, while the AGE backend is deployed locally. Although
it is possible to deploy each API Gateway independently, in
these tests, all the supported systems (i.e., Kong, KrakenD and
Tyk) are deployed in a single machine and evaluated one at a
time. As presented in Table I, all the used machines have the
same basic specification and zone location.

After deploying all the required entities through AGE9, three
realistic workloads are applied to different BIWI’s endpoints
through the tested API Gateways. They include bid auction,
create auction, and retrieve auction tasks, as follows:

8https://github.com/ambystomatidae/biwi-backend
9The input files are available in https://github.com/Bishop19/AGE/blob/

main/doc-parser/tests/biwi-short.json

Fig. 2: Test scenario

1) Create auction: It consists of publishing new auction
items, which requires POST HTTP methods containing the
item description and images. This scenario aims at evaluating
how the system works under heavy payload requests. Thus,
the workload comprises the creation of 50 auctions with one
image of size 8.6MB.

2) Bid auction: This scenario’s objective is to assess system
performance under time-critical tasks. The workload repre-
sents multiple users bidding on an auction concurrently. More
specifically, AGE generates and submits 50 concurrent auction
bids to the tested API Gateways.

3) Retrieve auction: This test scenario evaluates the API
Gateways under high-demand request periods by randomly
retrieving 400 auction items sequentially using the GET HTTP
method. Each request returns the URLs to the item description
and images.

TABLE I: Basic hardware specifications

Machine CPUs RAM Type (Google) Zone

BIWI 2 8GB n2-standard-2 europe-central2-a
API Gateways 2 8GB n2-standard-2 europe-central2-a
Load tester 2 8GB n2-standard-2 europe-central2-a

All test scenarios are also compared with a baseline, which
consists of the same workloads applied directly to the BIWI

backend without using an API Gateway as a proxy. The
obtained results correspond to the average of 10 executions for
each workload. As discussed in Section IV, the comparison
metrics include the request throughput, the response time
distribution, and the unified AGE scoring.

B. Results

The results for the auction creation workload presented in
Figure 3a do not show a significant difference in the average
throughput achieved by the tested API Gateways. Since this
task tends to pressure the backend more than its API, even the
baseline scenario does not perform significantly better for the
throughput analysis. However, considering the average time
required to run the entire workload (i.e., creating 50 auctions),
Table II shows a higher variation in results from Tyk that, in
the worst case, took almost four times the time required by
Kong. Such higher variation explains the lower grade assigned
by the AGE scoring system (see Figure 4), in which, for
this workload, the best-evaluated system was KrakenD, with
a score of 96.

Another important result presented in Table II is the absence
of errors during the tests. It means that all the auctions were
successfully created in the BIWI system. This information
might be used to validate whether the hardware specification
provides the expected quality of service.

TABLE II: Summary of results - Workload: Create auction

Response Times (ms)

Gateway Min Avg Max Std. Dev. P95% %Error

Kong 139 202 307 43 282 0
KrakenD 136 186 343 36 232 0
Tyk 129 187 1186 146 257 0
Baseline 120 145 195 17 174 0

For the bidding auction workload, Figure 3b shows that
KrakenD achieved a higher mean throughput with no errors. In
this case, an error means that a received bid has a lower value
than a previously processed one. Considering that all systems
are tested with the same workload distribution, the errors
identified for Tyk and the baseline scenario might be caused
by network jitter. The average response time in Table III
seems to confirm this for the baseline scenario, which has
the worst result even without an active load balancer in the
API Gateways. Comparing all the analysed metrics, the AGE
scoring system points to no significant overall variation among
the tested API systems. In this case, even with a few errors,
Tyk received a slightly higher score (see Figure 4). In this
case, despite the better flow rate, KrakenD is penalised by the
higher percentile in response time, i.e., P95% in Table III.

TABLE III: Summary of results - Workload: Bid auction

Response Times (ms)

Gateway Min Avg Max Std. Dev. P95% %Error

Kong 37 74 192 43 161 0
KrakenD 34 68 202 50 198 0
Tyk 32 73 181 49 175 2
Baseline 37 114 323 65 257 2

Kong KrakenD Tyk BaselineTh
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

0
2

4
6

8
10

(a) Create auction

Kong KrakenD Tyk BaselineTh
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

0
5

10
15

20
(b) Bid auction

Kong KrakenD Tyk BaselineTh
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

0
20

40
60

80
10

0

(c) Retrieve auction

Fig. 3: Throughput per endpoint

The workload related to auction retrieval provides interest-
ing comparative results. Firstly, KrakenD and Tyk outperform
the throughput achieved by Kong and the baseline scenario
by a significant margin, i.e., up to 45% (see Figure 3c). In
both cases, such a difference is explained by the caching
system provided by the two best performers. Similar results
are observed when analysing the distribution in the response
times along the tests. Notice, in Table IV, that even with lower
overall throughput and higher response time, the API Gateway
Kong still manages to finish the retrieval process without
errors. Moreover, without a caching system, the baseline
scenario faced a significantly higher variation in response time,
demonstrated by the standard deviation of its results across the
performed tests.

TABLE IV: Summary of results - Workload: Retrieve auction

Response Times (ms)

Gateway Min Avg Max Std. Dev. P95% %Error

Kong 7548 9670 11592 1408 11429 0
KrakenD 826 3360 4812 1140 4583 0
Tyk 728 3416 4618 975 4440 0
Baseline 264 5874 8436 2026 8125 0

Figure 4 shows that such performance difference is reflected
by the AGE scoring system, which, for this workload, assigned
the grade 58 to Kong, while KrakenD and Tyk received 96 and
99, respectively.

Create auction Bid auction Retrieve auction

Kong
KrakenD
Tyk

AG
E

Sc
or

e
0

20
40

60
80

10
0

Fig. 4: AGE scoring system

Although all the comparative metrics are available through
AGE’s user interface, the unified scoring system can provide
a simple and comprehensive indicator to support deciding
on an API Gateway solution. For example, considering the
workloads defined to test BIWI’s services and for the specified
hardware and service location, the KrakenD system achieved a
better overall performance. Table V presents the consolidated
results for all defined tests. Due to the AGE’s flexibility,
different workloads or hardware can be quickly evaluated by
adapting the input file and repeating the test sessions.

TABLE V: Overall AGE score

API Gateway Kong KrakenD Tyk

Global score 80 94 90

VI. CONCLUSION

With the widespread use of microservice-based services,
selecting adequate API Gateways became a relevant part
of system design and development, as they act as a single
entry point capable of hiding internal API and load-balancing
external requests. Nevertheless, the complexity and time re-
quired to deploy, configure and test multiple available solutions
frequently lead to the adoption of inadequate solutions for a
specific service and constraints.

This work introduces AGE, a service capable of automati-
cally deploying different API gateway solutions in users’ cloud

providers and submitting them to comparative performance
assessments based on realistic system usage. The service uses
as input high-level description formats, such as OpenAPI
documents, based on which all the infrastructure is deployed
and tested under described workloads. After running the tests,
AGE provides metrics related to throughput and response
time distribution achieved by each analysed API Gateway.
Moreover, a unifying scoring system provides a single scalar
indicator to easily compare their overall performance.

The proof of concept has demonstrated the relevance of
AGE by showing that, for some workloads, a subset of tested
API Gateways can even outperform an implementation without
using such type of proxy. It also validated the proposed scoring
system, as the provided results reflect the overall performance
achieved by each evaluated solution.

Further developments of AGE will include (i) support
for distributed backends, which allows for assessing load-
balancing functions; (ii) extended support for more API Gate-
ways solutions; and (iii) support for API-level authentication.

Acknowledgements:
†This work is financed by National Funds

through the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia, within project LA/P/0063/2020. ?It is also
financed by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia, I.P. within the project FLEXCOMM, with
reference EXPL/CCI-INF/1543/2021.

REFERENCES

[1] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-

form Your Monolith. O’Reilly Media, 2020.
[2] N. Ford, R. Parsons, and P. Kua, Building Evolutionary Architectures.

O’Reilly Media, 2017.
[3] D. Geethika, M. Jayasinghe, Y. Gunarathne, T. A. Gamage, S. Jay-

athilaka, S. Ranathunga, and S. Perera, “Anomaly Detection in High-
Performance API Gateways,” 2019 International Conference on High

Performance Computing and Simulation, HPCS 2019, pp. 995–1001,
2019.

[4] J. T. Zhao, S. Y. Jing, and L. Z. Jiang, “Management of
API Gateway Based on Micro-service Architecture,” Journal of

Physics: Conference Series, vol. 1087, 2018. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1742-6596/1087/3/032032

[5] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, “Smells and refactorings
for microservices security: A multivocal literature review,” Journal of

Systems and Software, vol. 192, p. 111393, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412122200111X

[6] M. Mathijssen, M. Overeem, and S. Jansen, “Identification of Practices
and Capabilities in API Management: A Systematic Literature Review,”
2020. [Online]. Available: https://arxiv.org/abs/2006.10481

[7] M. G. de Almeida and E. D. Canedo, “Authentication and
Authorization in Microservices Architecture: A Systematic Literature
Review,” Applied Sciences, vol. 12, no. 6, 2022. [Online]. Available:
https://www.mdpi.com/2076-3417/12/6/3023

[8] S. Preibisch, API Development: A Practical Guide for Business Imple-

mentation Success. Apress Berkeley, CA, 2018.
[9] D. Lopez. (2022, Feb.) An API Gateway is not the new unicorn. [On-

line]. Available: https://www.krakend.io/blog/what-is-an-api-gateway/
[10] (2022, Feb.) Open source and managed API gateway for modern

applications. [Online]. Available: https://geekflare.com/api-gateway/
[11] (2022, Feb.) Benchmarks overview. [Online]. Available: https://www.

krakend.io/docs/benchmarks/overview/
[12] (2022, Mar.) Benchmark - Tyk API Gateway and API Management.

[Online]. Available: https://tyk.io/why-tyk/benchmark/
[13] (2022, Mar.) Comparison of KrakenD Vs other products in the

market (benchmark). [Online]. Available: https://www.krakend.io/docs/
benchmarks/api-gateway-benchmark/

