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Abstract. In order to promote the practice of sports, several approaches using 

technology have been employed to gamify and augment the user experience. Fol-

lowing this trend, the research group proposed an approach to encourage the prac-

tice of Boccia, while promoting social inclusion and reducing the amount of time 

it takes for newcomers to the sport to become proficient by gaining knowledge 

of game tactics. The present work focus on the detection, in real-time, of Boccia 

gestures for the framework proposed in a previous work by using a wearable de-

vice to detect the gestures. To evaluate the correct functioning of the system, 

several types of tests were carried out. First, the developed machine learning 

model was evaluated in terms of accuracy, recall, among others. Then, the gesture 

detection system was tested with 15 participants that executed the different Boc-

cia gestures while using the wearable placed on the wrist. Finally, tests were car-

ried out to integrate the gesture detection module into the framework proposed in 

a previous work. The tests yielded positive results that allowed the validation of 

the use of the system in the Boccia game. 

Keywords: Activity monitoring; Boccia; Gesture Recognition; Machine Learn-
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1 Introduction 

The practice of sports, being fundamental, has been neglected. A large part of the na-

tional adult population is not physically active, which translates into a higher risk of 

non-communicable diseases and mortality [1]. The benefits of practicing sports are not 

only physical, but they are also a catalyst for personal development, which is even more 

expressive in people with disabilities [2]. The significance of social development in the 

life of individuals with disabilities becomes apparent considering the previous remarks. 

As a result, it is crucial to formulate and execute strategies aimed at mitigating the 

effects of disability-induced social exclusion and fostering inclusivity, which can be 

achieved through engagement in sports. 

Boccia is a precision ball sport that has gained attention for its ability to promote 

inclusivity. The sport requires a combination of physical and mental skills, including 
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hand-eye coordination, strategic planning, and decision-making. It can be played indi-

vidually or in teams, and the goal is to throw or roll a set of colored balls as close as 

possible to a target ball, known as the jack. A system using augmented reality to en-

hance the Boccia game experience, aiding novice players in comprehending key tactical 

and physical aspects of the sport, ultimately resulting in a more enjoyable learning ex-

perience was proposed by the research team in [3]. One of the features of the proposed 

framework concerns the detection of the key gestures that can be executed by the play-

ers during a Boccia game using the data from a wearable device. 

Several authors have proposed different approaches for the recognition of gestures 

using data from wearable devices [4]–[8]. Traditional approaches combine the use of 

hand crafted features with machine learning algorithms in order to detect the gestures 

[6], [7]. In recent times, deep learning methods have gained popularity and shown ex-

ceptional performance in several image recognition tasks. In fact, some studies have 

employed these techniques, specifically Convolution Neural Networks (CNNs), to ad-

dress the gesture recognition problem, [9]–[11]. Several studies demonstrate that CNNs 

outperform traditional hand-crafted approaches as they can learn intricate motion fea-

tures, [12]–[14]. Nonetheless, conventional approaches of gesture recognition using 

deep learning methods typically employ the use of full RGB images, which could result 

in an increase in the complexity of the model due to the large dimension of the input 

features. This results in more complex and slower models, less practical for solving 

real-time large-scale problems. In order to tackle the dimensionality problem and com-

putation complexity, some authors proposed the use of skeleton based representation 

data obtained from a 2D camera in order to recognise gestures, [9], [10], [13]. This 

process consists in obtaining the 2D position of the skeleton joints from RGB images 

and then convert it into an image representation. This data is then fed as input to the 

deep learning model. 

Following this trend, the present work focus on the developments concerning the 

gestures recognition module of the framework developed by the research team and pre-

sented in [3]. In order to fulfill this goal, a dataset was created and a deep learning 

model based on a Convolution Neural Network (CNN) was trained. The data from the 

wearable sensor is converted into an image representation. The final model runs in real-

time on a CPU. 

The following paper is organized in 5 sections. The proposed system and the devel-

oped approach to the gesture recognition process are described in Section 2. The results 

are presented in Section 3 and discussed in section 4. Final remarks and future work are 

addressed in Section 5.  

 

2 Proposed System 

The proposed system consists of a wearable device M5StickC [15], a computer, and a 

camera placed directly above the Boccia court (Fig. 1). The view from the camera is 

used as input of a deep learning model in order to detect, in real-time, the Boccia balls 

within the camera Field-of-View (FOV) and sort them according to color (red, blue, or 



3 

white), which was the focus of previous work [3], [16]. To compute the distance of 

each red and blue ball and the jack (white ball), the corresponding centroid coordinates 

of each ball within the camera FOV are used, allowing to map all balls and to compute 

the score for the current game situation.  

For each move there is an associated throwing movement that may facilitate the task 

of placing the ball in the desired position. There are two main gestures that are usually 

executed by the players, the upper throwing and the under throwing gestures (Fig. 2). 

The present work focus on the development of a deep learning model to detect these 

two gestures in real-time. 

Fig. 1. Proposed system framework. 

 

 

Fig. 2. Main gestures usually executed by Boccia players: on the left the upper throwing gesture 

and on the right the under throwing gesture. 
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2.1 Dataset  

To detect movements, a set of data is collected from the M5StickC development board. 

These data are all coming from a 6-axis Inertial Measurement Unit (IMU) in the 

MPU6886. Three values are collected for each of the accelerometer and gyroscope 

axes, as well as the corresponding roll, pitch and yaw values. 

In order to obtain data for training the deep learning model, the development board 

was attached to a bracelet. This bracelet was placed on the right wrist of the participants. 

Ten samples of data referring to each type of movement (Fig. 3) that is intended to be 

detected were captured. Therefore, each participant performed 10 throws over, 10 

throws under and remained at rest for 10 times as well.  

 

Fig. 3. Types of movements considered in the construction of the dataset. 

Data capture was performed by twelve adult participants, which resulted in a total of 

360 data files (12 participants, 3 types of recorded movements, 10 times each). The age 

group of the participants was between 18 and 80 years old and individuals of both sexes 

were invited. In each of those 360 files, the accelerometer and gyroscope values are 

arranged on the x, y and z axes, as well as the roll, pitch and yaw values during a time 

interval of two seconds of movement. 

2.2 Data Processing 

The first step is the normalization of the data values between 0 and 255 to integrate into 

color pixel values. Once normalized and in order to augment the amount of data to be 

provided to the neural network, extra handcrafted features are computed on the incom-

ing data from the wearable device. The extra features computed are the cumulative 

moving average and the RMS values, both made for all the x, y and z components of 

the accelerometer and gyro, as well as the roll, pitch and yaw. 

The wearable placed on the player's wrist provides the data frame, as seen in (1). 

 gyroX/gyroY/gyroZ/accX/accY/accZ/roll/pitch/yaw (1) 

The data obtained over several frames are used as input for the action recognition model 

to classify the action. All generated images have a 64 x 12 x 3 size, where 64 is the 

number of data samples per movement, 12 parameters from the wearable representing 

the height of the image, and 3 is the number of channels, Fig. 4. 

The first three lines of the image are the gyroscope data, accelerometer data and RPY 

(roll-pitch-yaw) data. Each pixel has the data variable X as the red color component, 

the data variable Y as the green color component, and the data variable Z as the blue 

color component. 
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For the following three lines, the cumulative moving average values were used. The 

pixel assignment is very similar to the previous lines, but now the color components 

are matched to the MMA (cumulative moving average) for all the color components (x, 

y and z) of the received data. 

For line number seven, eight and nine the reasoning is similar again. In this case, the 

assignment is made according to the RMS values of each data component.  

In the last three lines, the pixel values are assigned according to the data components. 

Line ten was associated with all data components in X, line eleven with all data com-

ponents in Y and finally, line twelve with all data components in Z. The detailed con-

stitution of each pixel can be analyzed in Fig. 4. Fig. 5 shows some samples of the 

generated images per class. 

 

 

Fig. 4. Generated image-based representation from the incoming data from the wearable device. 

 

Fig. 5. Samples of the generated images per-class. 
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2.3 Developed model 

The model follows a CNN architecture and consists of a total of six convolutional layers 

each with a 3x3 kernel, a stride value of 1, see Fig. 6. It was decided to use groups of 

two 3x3 filters in a stack since these are less demanding from a computational point of 

view when compared to the use of only one filter of larger dimensions [9]. Thus, three 

groups of two stacked convolutional layers are left, where a batch normalization layer 

is added to each group. The ReLu function is used as an activation function.  

A max polling layer with a size of 2x2 is added after the second and fourth convolu-

tional layers. This layer's main function is to subsample the feature maps, maps gener-

ated by convolutions. As in this work the layer has a size of 2x2 the spatial resolution 

of the data will be halved. After the last convolutional layer, a global averaging pooling 

layer is used to replace the fully connected layers, since these layers can constitute an 

overfitting problem, [17]. To finalize the model, a fully connected layer was added to 

handle the classification part. The entire model was trained in TensorFlow and the pro-

cessing capabilities of the google COLAB tool were used, since it allows the use of a 

dedicated GPU, in order to train the model more rapidly. 

 

Fig. 6. The proposed deep learning model architecture. 

The trained model was then imported to the developed Graphical User Interface 

(GUI). 

 

2.4 GUI 

In order to extract the data from the wearable device and to validate the trained deep 

learning model, a GUI was developed as seen in Fig.  

The GUI consists of five main areas. The data view area on the left side is where the 

user can watch the data flow coming from the wearable wristband. Then the generated 

image area, on the right side, where is possible to analyze the image that feeds the CNN 

model. In the centre, the activity area is used to store session data, and the communica-

tion area is responsible for establishing the connection between the wearable and the 

PC. Finally, the detection area located at the bottom of the centre area of the interface 

is where the predicted class of movement is displayed to the user via image. 
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Fig. 7. Developed GUI used to collect the data and to validate the trained deep learning model. 

As previously mentioned, this project follows the work done by the research team in 

[3], and so the GUI Fig. 8 was developed in the scope of the same project.   

The GUI allows to monitor in real-time the Boccia game, by detecting the balls within 

the FOV of the camera. With the collected information it was possible to develop a 

system that calculates the score of the game and that tells the player the best tactical 

play for that moment. 

 

Fig. 8. The GUI developed by the research team in [3]. 

 

Figure 9 shows the update version of the GUI, where it was added an area that shows 

to the user the prediction of the deep neural network model regarding the type of gesture 

recognized. 
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Fig. 9. The updated GUI with the prediction of the deep neural network model regarding the type 

of gesture recognized (2). 

3 Results 

This section presents the results obtained throughout the development of the proposed 

system. First, the performance of the deep learning model is evaluated through metrics. 

Afterwards, a pilot test was conducted in order to assess, the recognition accuracy of 

the deep leaning model in a real-world environment. Finally, the results of the integra-

tion of the gesture recognition subsystem in the system previously developed by the 

research group are addressed. 

 

3.1 Model Results train and testing 

The deep learning model was tested to evaluate its performance. The results of the full 

analysis – model accuracy, precision, recall, F1-Score, and confusion matrix are pre-

sented below. 

Table 1 shows the overall performance of the gesture recognition model with an 

accuracy of 97.0%. 

Table 2 presents the values of precision, recall and an F1-Score for each class of 

movements. For the under throw, the model achieved a precision of 100.0%, a recall 

and F1-Score of 95.0% and 98.0% respectively. Secondly, for the idle class the model 

achieved a precision, recall and, an F1-Score of 93.0%. Finally, for the upper throw the 

model achieved a precision of 96.0%, a recall value of 100.0% and an F1-Score of 

98.0%.  

The confusion matrix for the three classes of gestures can be observed in Fig. 10. 

More specifically, the under throw with a classification rate of 100%. The classification 

rate for the idle class and for the upper throw was 93.0% and 96.0%, respectively. 
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Table 1. Overall performance of the gesture recognition model. 

Metric Value 

Accuracy 97% 

 

Table 2. Performance of the model per-class. 

 Precision Recall F1-Score 

Bottom 1.00 0.95 0.98 

Idle 0.93 0.93 0.93 

Top 0.96 1.00 0.98 

 

 

 

Fig. 10. Trained model confusion matrix. 

3.2 Pilot test results 

A pilot test was carried out to test the gesture detection system in real-time. The partic-

ipants considered for the test were 15 adults aged 18 to 81 years old, with 26.7% of the 

participants being female and 73.3% being male. The experimental unit consisted of a 

processing unit (PC) and a wearable wristband equipped with the M5StickC. With the 

bracelet placed on the wrist of the subject, the researcher asked for the execution of the 

following sequence of gestures. (IDLE - TOP - IDLE - BOTTOM - IDLE - BOTTOM 

- IDLE - TOP – IDLE). The sequence was chosen so that both the upper throw and the 
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under throw gestures were performed the same number of times (twice each). The se-

quence also ensured that there would always be a gap between each throw where the 

individuals would be idle between gestures. During the execution of the tests, all the 

results were noted down by a supervisor. 

Of the data collected, the Fig. 11 was created. The cells represented in green are the set 

of gestures correctly predicted in real-time by the artificial intelligence model and the 

cells in red represent the gestures where the system failed to predict. 

Table 3 shows the overall performance of the real-time test results with an accuracy 

of 98.0%. 

Table 4 presents the values of precision, recall and an F1-Score for each class of 

movements. For the under throw, the model achieved a precision of 100.0%, a recall 

and F1-Score of 93.0% and 97.0% respectively. Secondly, for the idle class the model 

achieved a precision of 97.0%, recall of 99.0% and, an F1-Score of 98.0%. Finally, for 

the upper throw the model achieved a precision of 97.0%, a recall value of 100.0% and 

an F1-Score of 99.0%.  

The confusion matrix for the three classes of gestures can be observed in Fig. 12. 

More specifically, the under throw with a classification rate of 100%. The classification 

rate for the idle class and for the upper throw was 97.4% and 96.8% respectively. 

 

Fig. 11. Results of the experiment conducted 

 

Table 3. Model test performance obtained from the tests conducted. 

Metric Value 

Accuracy 98.0% 

 

Table 4. Model test performance per-class obtained from the experiment conducted. 

 Precision Recall F1-Score 

Bottom 1.00 0.93 0.97 

Idle 0.97 0.99 0.98 

Top 0.97 1.00 0.99 
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Fig. 12. Model test confusion matrix. 

4 Discussion 

Starting by analyzing the confusion matrix of the artificial intelligence model (Fig. 10), 

it is possible to conclude that all three classes had a precision over 90.0% (diagonal 

values). However, the model predicted 6.7% of cases as being idle when they were, in 

fact, an under throw movement. The model also predicted 4.3% of cases as being part 

of the upper throw class despite being, in fact, part of the idle class. In general, the 

results of the model performance-wise are positive since gesture recognition is per-

formed correctly in most of the times. 

Regarding the performance of the real-time results and analyzing the confusion matrix 

(Fig. 12), the under-throw class presents a 100.0% precision value. Concerning the up-

per throw class, there is a precision of 97.4% and finally, in the idle class a precision of 

96.8%. However, the model also predicted 3.2% of cases as being upper throw despite 

being part of the idle class and 2.6% of the cases as being part of the idle class when 

they were, in fact, an under throw. The developed system had an accuracy value of 

98.0% 

By comparing the confusion matrix of the model (Fig. 10) and the confusion matrix 

obtained experimentally in the real-time tests carried out (Fig. 12) is possible to get 

some conclusions. It's possible to observe that in the under-throw class, the results in 

terms of precision are the same in both situations, that the real-time tests and the idle 

class presented results slightly better than model results. Finally, in the upper throw 

class, the real-time tests also had a smaller error than the model prediction.  

 The computational time was computed considering the average execution time of 

the model. The tests ran on a notebook equipped with an Intel(R) Core (TM) i7-8650 
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quad-core CPU with 16 GB of RAM. The inference is done by using OpenCV inte-

grated Deep Neural Network module that allows to import saved TensorFlow models 

[18]. Based on the performed tests, the average execution time of the model is 9 milli-

seconds, which ensures the real-time capability of the developed approach. 

5 Final Remarks and Future Work 

Sports play a vital role in promoting physical and mental health, social inclusion, and 

overall well-being. Boccia has gained a significant attention, as it allows to promote the 

practice of sports and to foster inclusivity. In recent years, Boccia has been further en-

hanced by technological advancements with the goal to gamify and augment the user 

experience while promoting the practice of sports. 

Following this trend, the research team proposed in [3] an augmented reality frame-

work to facilitate learning and improve the player's experience while playing Boccia. 

One of the modules of the framework consists in detecting the user throwing gestures. 

The present work focus on the development of this module. In order to detect gestures, 

a deep learning model based on a CNN architecture was developed and trained. In order 

to train the model, data was collected from various throws executed by several partici-

pants. The data was collected through a wearable placed on the participants' wrist, in-

tegrated into a bracelet. 

Regarding the results of the developed model, a precision value of 93% was obtained 

for the still class, 100% for the underhand launch class, and 96% for the overhand throw 

class. Concerning the real-time test, the following results were achieved: a precision 

value of 97.4% for the still class, 100% for the underhand throw class, and 96.8% for 

the overhand throw class. The developed approach was integrated in the final GUI. The 

model execution time is, on average, 9 milliseconds.  

Future work includes a continuous improvement of the presented approach by, for 

example, augmenting the dataset and implementing other deep learning architectures 

in order to improve the model performance. Additionally, experiments will be con-

ducted in order to test the system proposed in [3] with the model developed in the pre-

sent work. 
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