
GPT-3-Powered Type Error Debugging: Investigating
the Use of Large Language Models for Code Repair

Francisco Ribeiro
francisco.j.ribeiro@inesctec.pt

HASLab/INESC TEC
University of Minho
Braga, Portugal

José Nuno Castro de Macedo
jose.n.macedo@inesctec.pt

HASLab/INESC TEC
University of Minho
Braga, Portugal

Kanae Tsushima
k_tsushima@nii.ac.jp

National Institute of Informatics
Sokendai University

Tokyo, Japan

Rui Abreu
rui@computer.org

INESC-ID
University of Porto
Porto, Portugal

João Saraiva
saraiva@di.uminho.pt

HASLab/INESC TEC
University of Minho
Braga, Portugal

Abstract

Type systems are responsible for assigning types to terms
in programs. That way, they enforce the actions that can be
taken and can, consequently, detect type errors during com-
pilation. However, while they are able to �ag the existence
of an error, they often fail to pinpoint its cause or provide a
helpful error message. Thus, without adequate support, de-
bugging this kind of errors can take a considerable amount
of e�ort. Recently, neural network models have been devel-
oped that are able to understand programming languages
and perform several downstream tasks. We argue that type
error debugging can be enhanced by taking advantage of
this deeper understanding of the language’s structure. In this
paper, we present a technique that leverages GPT-3’s capa-
bilities to automatically �x type errors in OCaml programs.
We perform multiple source code analysis tasks to produce
useful prompts that are then provided to GPT-3 to gener-
ate potential patches. Our publicly available tool,Mentat,
supports multiple modes and was validated on an existing
public dataset with thousands of OCaml programs. We au-
tomatically validate successful repairs by using Quickcheck
to verify which generated patches produce the same output
as the user-intended �xed version, achieving a 39% repair
rate. In a comparative study, Mentat outperformed two
other techniques in automatically �xing ill-typed OCaml

programs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’23, October 23–24, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0396-6/23/10. . . $15.00

h�ps://doi.org/10.1145/3623476.3623522

CCS Concepts: • Software and its engineering→ Soft-

ware evolution; Software creation and management; Soft-
ware post-development issues.

Keywords: Automated Program Repair, GPT-3, Fault Local-
ization, Code Generation

ACM Reference Format:

Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima,

Rui Abreu, and João Saraiva. 2023. GPT-3-Powered Type Error

Debugging: Investigating the Use of Large Language Models for

Code Repair. In Proceedings of the 16th ACM SIGPLAN International

Conference on Software Language Engineering (SLE ’23), October

23–24, 2023, Cascais, Portugal. ACM, New York, NY, USA, 14 pages.

h�ps://doi.org/10.1145/3623476.3623522

1 Introduction

Programming languages usually have an associated type sys-
tem responsible for determining whether some operation
can be applied to some program term. This system ensures
a program’s correctness in terms of type safety. That is, if
a program does not typecheck, it signals a logical error re-
lated to the inherent type constraints. However, even after
knowing there is some type inconsistency, we still need to
understand where and why that error occurred. In other
words, a type system may be unable to provide the location
of the error and the explanation as to why the error arose.
Undeniably, programmers are not completely left in the

dark in this regard. Several programming languages provide
type inference systems, which compute the expected type of
expressions in the code. Despite considerable e�ort [9, 21,
24, 43, 47, 49] to provide helpful information for type error
detection, compilers often fail to pinpoint the true cause of
an error. Consider the following ill-typed OCaml program:

let rec add_list lst = match lst with

| [] -> []

| fst :: rest -> fst + (add_list rest)

Program 1. Ill-typed function: patterns di�er on returned
types

111

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/
https://orcid.org/0000-0002-0282-5060
https://orcid.org/
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0002-5686-7151
https://doi.org/10.1145/3623476.3623522
https://doi.org/10.1145/3623476.3623522
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623476.3623522&domain=pdf&date_stamp=2023-10-23

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

Program 1 consists of a recursive function add_list that
takes a list of integers and should calculate the sum of all
numbers. ocamlc would yield the following message1:

3 | | fst :: rest -> fst + (add_list rest)

^^^^^^^^^^^^^^^

Error: This expression has type 'a list

but an expression was expected of type int

The type system successfully detects a type error in the pro-
gram and the compiler provides a message reporting the
problem. If we replace the use of the plus operator (+) in line
3 by the cons operator (::), the whole program is well-typed.
However, the expression highlighted as being problematic
by the compiler is not the true origin of the error. As a conse-
quence, the information about the mismatch of the expected
type (int) and the inferred type (’a list) does not pro-
vide meaningful advice into how to approach the problem.
Another way to �x this program, which corresponds to the
programmer’s intended �x, is to have it return zero (0) in-
stead of the empty list ([]) in line 2. Hence, it often happens
that the user’s intended modi�cation di�ers from what the
compiler points out. That is because reporting type inconsis-
tencies is in�uenced by the order in which expressions in a
program show up. As long as no inconsistencies are detected,
the inferred type for an expression is considered to be cor-
rect. As a result, the type system will have a left-to-right bias
and errors tend to show up towards the end of a program
[20]. Now consider that we swap the two patterns:

let rec add_list lst = match lst with

| fst :: rest -> fst + (add_list rest)

| [] -> []

This time, we get a di�erent error message:

3 | | [] -> []

^^

Error: This expression has type 'a list

but an expression was expected of type int

This means that the type error we are dealing with can have
multiple causes. Depending on the order of the patterns, the
cause that is reported changes.

However, even after recognizing the inherent limitations
of type systems in accurately locating and explaining type
inconsistencies, we are still left with �xing them. Automated
program repair (APR) aims to generate patches for incorrect
programs (either syntactically or semantically) with minimal
human intervention [18]. Many approaches have emerged
based on the competent programmer hypothesis or, put in
other words, programmers "create programs that are close
to being correct!" [13]. We argue that automatically �nding
repairs that eliminate type inconsistencies is one e�ective
way of locating and understanding the root of a type error.

In this paper, we present an approach that leverages the
code understanding and generation capabilities of models
based onGPT-3 to automatically �x type errors inOCaml pro-
grams. Our focus is on analyzing the source code of ill-typed

1In OCaml, polymorphic type names are pre�xed with a backquote.

programs and generating prompts that are then provided to
the model. By doing this, we aim to produce programs that
are free from type errors and, thus, can be used to �nd and
understand what was causing them. Our contributions are:
1. a source code analysis and manipulation technique that

produces di�erent kinds of prompts intended for GPT-3-
based models (Section 3);

2. a publicly available tool, namedMentat, implementing
this technique (Section 4);

3. an initial validation on a small set of programs, followed
by a large-scale evaluation on an independent repository,
with an analysis of the results obtained (Section 5);

4. a comparative study between our tool, Mentat, and two
other techniques, namely Rite [41] and Seminal [25] on
a common dataset, alongside the obtained insights.

Even though this work is concerned with type error debug-
ging, it di�ers from previous approaches, which aim to im-
prove the quality of type error messages [12, 24, 51], provide
interactive type debugging [6, 7, 9, 48], and narrow down
the area for type error debugging [19, 37, 42–44]. Instead,
our work focuses on the automatic repair of type errors. We
achieve this by analyzing and transforming source code and
outputting it in a form that can be understood and processed
by GPT-3, a large language model trained by OpenAI.
For the initial validation, we �nd that our tool presents

at least one valid solution for each test program, with the
Fill operation mode obtaining success rates varying from
53% to 60% for simple programs and from 83% to 100% for
Dijkstra algorithm implementations. Regarding the large
scale evaluation, we analyzed 1,318 buggy programs and
were able to �x 516 of them, reaching a 39% repair rate. To
automate this process we used two key features of property-
based testing [10]: �rstly, we automatically generate a very
large number of random inputs, and secondly we de�ne
a property that tests whether the user-�xed program out-
puts the same result as the automatically repaired one. The
program-speci�c property is also automatically generated,
thus having a fully automated large scale validation process
without relying on human intervention to inspect the gener-
ated patches. Also, we showed the potential for partial �xes
by considering the results for programs that do not pass
100% of test cases. While the other operation modes perform
worse overall when compared to Fill, they are still capable
of generating successful results and, in some cases, succeed
where Fill fails. Moreover, we performed a comparative study
of our technique with two type repairing approaches, namely
Rite [41] and Seminal [25]. Our �rst results show thatMen-

tat gives the best program repair results with a 37.5% repair
rate versus 33.4% from Rite and 7.8% from Seminal.

2 Background

A type system is a set of rules governing how data is repre-
sented and used in a program [34]. It is lightweight and does

112

GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair SLE ’23, October 23–24, 2023, Cascais, Portugal

not require special knowledge from the user. Type inference
is a static algorithm to �nd the type of each part of a pro-
gram without the programmer’s annotation. The advantages
of type systems include not only type-safety of programs
but also e�cient computation by enabling the generation of
optimized code. For this reason, Ruby, a dynamically typed
language, has recently introduced type inference, and Python
has also introduced type-related features.

Originally, research in natural language processing (NLP)
focused on ways of processing, analyzing, and manipulating
natural language through statistical and rule-based mod-
eling. More recently, the use of arti�cial intelligence has
allowed the development of techniques that make NLP one
of the most prominent �elds in computer science. Simply
put, NLP is responsible for encoding text into more appro-
priate machine level representations and also for processing
and transforming these lower level descriptions into other
forms of text. More speci�cally, neural networks have been
very impactful in the development of NLP models. Some
of the most important ones are BERT [14] and GPT [36]
which have seen their utility displayed in an overwhelming
amount of more speci�c downstream tasks. Encouraged by
the achievements conducted in this area, the software engi-
neering community has successfully applied some of NLP’s
fundamentals to build tools that improve software develop-
ment work�ow. Code completion is one of the most popular
features and many code editors implement it one way or
another. With the intent of going beyond basic level comple-
tions like more pertinent suggestions for API calls for a given
context, the research community has also directed its e�orts
into developing versions of the BERT and GPT models that
are speci�cally tailored towards programming languages.
New models, such as CodeBERT [17] and CodeGPT [27],
were created based on the original architectures. GPT-based
code models are able to generate long and relatively complex
code sequences by analyzing and inferring the context of
the source code provided as input. One of the most recent
iterations of such models is GPT-3 [4], which presents a high
degree of success when employed in di�erent scenarios such
as cloze and completion tasks.

3 Technique

With our contribution, we intend to, for a given faultyOCaml

program, extract as much information from it as possible,
and then format it in a way that GPT-3 can understand and
process it. For this, we �rst check for type inconsistencies.
If they are present, we employ three di�erent tasks: type
error location, inlining, and type uni�cation, with each be-
ing described in detail in the following sections. Figure 1
illustrates how the tasks generally interconnect and high-
lights them with the corresponding label. Nodes with dashed
borders represent steps in which we make use of existing
components and are not directly part of our contribution.

Grey nodes and white nodes represent elements and actions,
respectively. Depending on the way we wish to interact with
GPT-3, the tasks may be combined in slightly di�erent ways.

Program Parser AST Typechecker Ill-typed Program typecast
Typecasted

Programs

Type Error Location (3.1.1)

Inline
Inlined

Programs

Inlining (3.1.2)

Insert Hole

Programs

With Holes

Generate

Completions
Completions Unify

Uni�ed

Completions

Find Typecasted

Expressions

Typecasted

Expressions
Unify

Minimal

Substitution

Type Uni�cation (3.1.3)

Figure 1. Interconnection of source code manipulation tasks

3.1 Source Code Analysis

3.1.1 Type Error Location. The compilers of strongly
typed programming languages tend to check for source code
errors in two separate steps when building an executable
�le: parsing and type checking. The parser checks whether
the input is syntactically correct and if so it produces an AST

(Abstract Syntax Tree). The type checker traverses such a tree
to check whether the underlying program obeys the type
rules. If it does parse but it does not typecheck, then there is
a type error, which is the focus of this work. If it does both
parse and typecheck then, for our purposes, the program is
considered correct.
Some programming languages o�er us type conversion

and manipulation tools; we focus on type conversion tools
from strongly typed languages. Let us consider a function
from now on referred to as typecast, which forcefully con-
verts a value of any type into a value of any type. Of course,
such function will not be able to actually do these conver-
sions during a program’s runtime, but it will be able to trick
the compiler into interpreting an expression of one type as
if it had a di�erent type. As such, the typecast function will
only be used when typechecking a program. In OCaml, this
operation can be performed by using Obj.magic2, which we
will use in our tool. Any program referred to as typecasted
from here onwards is a program in which part of it was
transformed with the typecast function.
Recall the introductory example in Program 1. Because

any type can be converted into any type with this function,
we can, for example, apply typecast to the empty list ([]) to
transform it into a di�erent type ’b, which the typechecker
will deduce to be int. We could also apply typecast to the plus
operator (+) thus transforming it into a function of type ’b
which the typechecker will deduce to be ’a→ ’a list→ ’a list.
Finally, we can also typecast the expression on the right-hand
side and have the typechecker infer the type ’a list. After
parsing the OCaml program, we create multiple program

2Obj.magic has the type ’a→ ’b

113

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

variants, each with the typecast function applied to a single
expression, and then type check each application. Every
variation of the original program that typechecks correctly
is stored; if changing the type of one value / expression with
typecast �xes the program type-wise, then we consider that
the replaced value can be the error that needs to be �xed.
Finally, we replace the usage of this function with a mask,
signaling a hole in the program that needs to be �lled. The
following tasks will focus on analysing and transforming the
program variations (which we call the typecasted programs)
produced in this task.
In this work, the focus is on type errors with a single

location. Nonetheless, our approach is still �exible to some
instances of errors with multiple locations if all of them are
contained within a single function call expression.

3.1.2 Inlining. We make use of inlining not for the usual
purposes of compiler optimisations, but to be able to make
information available from some parts of the program in
other places. That is, the inlining step we describe here is
done on the actual source code to improve its analysis further
ahead, and not to produce more e�cient machine code. This
step is particularly useful as it allows us to extract better
results from later type uni�cation and type inference tasks.
Consider the following typecasted program:

let f x = (Obj.magic (&&)) x (x + x)

Program 2. Obj.magic hides the error from the type system

If we ask for the type of the Obj.magic (&&) expression,
the type system will infer it to be int→ int→ ’a. However,
let us now extend the program with a test case:

let f x = (Obj.magic (&&)) x (x + x)

let t = (f 1) = 3

The second line speci�es the usage of function f. By inlining
function f, we associate it to a context in which the type
system can take advantage of the extra information provided
by the int parameter. As a result, the inferred type of the
typecasted expression would be int → int→ int.

To accomplish this inlining step, an environment is main-
tained throughout the underlyingAST traversal.When a new
de�nition is found, its identi�er is stored and associated to
the corresponding expression. As such, when the usage of an
element stored in the environment is detected, the usage of
the identi�er is replaced by the expression’s body, e�ectively
inlining that piece of code. Special care needs to be taken
for two scenarios: recursion and function arguments. For
the �rst one, we need to avoid repeatedly inlining the same
element as that could potentially lead to a non-terminating
procedure. Nonetheless, there is still interest in performing
this step once for recursive de�nitions. Thus, we allow in-

lining to happen exactly once in such cases. For the second
scenario, most programming languages allow re-de�nition
of variables in di�erent scope levels and OCaml is no ex-
ception. It is possible to have a variable x already de�ned,

and still de�ne a new x in an inner scope. When inlining,
in this case, we take care to inline the correct de�nition for
the correct x variable. The inlined source code is only stored
in memory and the original program is not modi�ed, with
GPT-3 never seeing the inlined version.

3.1.3 Type Uni�cation. We make use of type uni�cation
to �lter elements from a list of completion suggestions. Al-
most every code editor provides the ability to have comple-
tion suggestions on request from the user by specifying a
place in the source code. Prior to requesting a list of com-
pletion suggestions, we replace typecasted expressions (ob-
tained as described in Section 3.1.1) with typed holes. Then,
we make use of an OCaml language server (LSP)3 to automat-
ically locate the introduced typed hole and to obtain a list
of suggestions containing code elements that may �t. Let us
consider Program 2 and its equivalent version with a typed
hole represented by the underscore:

let f = fun x -> _ x (x + x)

Having introduced the typed hole, we can request a list of
suggestions for the typed hole’s location from theOCaml LSP

and obtain 318 candidates. This list is not curated according
to the type context and, as such, the suggested completions
may present a type mismatch. In order to �lter the list accord-
ingly, type uni�cation is performed between each element
and the expression that was �agged as problematic accord-
ing to the application of typecast. If uni�cation succeeds, the
suggestion will take part in the resulting list which, in this
situation, will consist of 23 candidates.

3.2 Strategies

We make use of the available GPT-3 operation modes to
implement three of the four repair strategies supported by
our tool. Depending on which strategy we intend to use, we
have to prepare and format the data accordingly.

3.2.1 Fill. GPT-3 provides an operation mode named In-

sert, in which, given some input text from the user which
contains a hole denoted by the [insert] tag, a generation
is produced by the model and placed where the tag was lo-
cated. Thus, this operation mode is perfect for our use case,
by �lling programs in which a part is missing. There are sev-
eral models available for this operation mode, notably text-
davinci-003 and code-davinci-002, the former being a
general model and the latter being optimized for handling
code. Next, we show an example of an input prompt for this
operation mode:

let rec add_list lst = match lst with

| [] -> [insert]

| fst :: rest -> fst + (add_list rest)

For this prompt, using the web interface and with the de-
fault model parameters, both text-davinci-003 and code-
davinci-002 models will output the following:

3https://github.com/ocaml/ocaml-lsp

114

GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair SLE ’23, October 23–24, 2023, Cascais, Portugal

let rec add_list lst = match lst with

| [] -> 0

| fst :: rest -> fst + (add_list rest)

For this program, we obtain the correct patch. Of course, to
do so we need to �rst locate the error and replace it with the
[insert] tag. We do this through the technique described in
Subsection 3.1.1, by replacing the code that did not typecheck
without the usage of the typecast function with said tag. This
is the strategy in which we provide the least information to
the GPT-3 model.

3.2.2 Choose. GPT-3 provides an operation mode named
Complete, in which, after being fed input text from the user,
it will attempt to generate more text based on it, that is,
complete it. It can be used for non-code tasks such as writ-
ing stories or classifying tweets, as well as code tasks like
translating plain text to an SQL query. We experimented
with several approaches for usage of the Complete mode,
because, unlike with the other operation modes, there is no
intuitive way to use this mode to correct programs. Failed
approaches include asking the model to rewrite the entire
program replacing the missing hole (similar to the [insert]
tag mentioned in Subsection 3.2.1) with the correct solution,
or asking the model to just give us the code expected in that
hole. Variations of this approach, by providing more clues,
such as the expected type of the result, or by providing possi-
ble solutions to consider, were also unsuccessful. Ultimately,
we were able to obtain favourable results by formatting the
input as an exercise, similar to what would be found in a
student exam. To do this, we present the source code with
a missing hole denoted by the <mask> identi�er, and a list
of possible solutions. This list is produced as described in
Subsection 3.1.3 and presented as numbered options, and the
model is asked to select the most appropriate. We guide the
model into selecting one option through prompt engineer-

ing. Speci�cally, every produced prompt is preceded with
two example exercises that share this template but have the
correct option selected (omitted in listings for brevity). The
following program is an example of a prompt formatted for
the Complete operation mode, as described.

Consider the following OCaml program:

let rec add_list lst = match lst with

| [] -> <mask>

| fst :: rest -> fst + (add_list rest)

Which of the following options should replace <mask >?

1) (__LINE__)

2) (max_int)

3) (min_int)

Correct option:

Notice that all presented options are incorrect - this is a limi-
tation from using this kind of prompt. Because we are using
the OCaml LSP to generate suggestions to be then presented
here, we are limited in which suggestions can be included.
In fact, the OCaml LSP will not generate common constant

values such as 0, which is the correct response here. All the
listed suggestions are integer constants suggested by the
OCaml LSP, where __LINE__ is a compiler macro represent-
ing the code line number where it is written, and max_int

and min_int are constants representing the maximum and
minimum values possible to represent as integers in OCaml.
The following is another prompt (re-formatted for brevity)
we produce for the same program, but assuming an error in
a di�erent place.

Consider the following OCaml program:

let rec add_list lst = match lst with

| [] -> []

| fst::rest -> <mask> fst (add_list rest)

Which of the following options should replace <mask >?

1) (fst) 8) (raise_notrace)

2) (!) 9) (snd)

3) (exit) 10) (@@)

4) (failwith) 11) (max)

5) (input_value) 12) (min)

6) (invalid_arg) 13) (List.cons)

7) (raise) 14) (@)

Correct option:

Notice that the list of suggestions grew — some of them,
such as exit and raise, will match a lot of types, due to the
polymorphic nature of these suggestions. However, some
interesting suggestions are now listed, and in this case, the
model suggests option 14 - the @ operator. This operator
concatenates two lists, and placing it into the hole in the
source code will transform this function into a correct imple-
mentation of the List.concat function for joining a list of
lists of values into a single list of values. It is, however, not
what we tend to expect out of a function named add_list.

Communication with GPT-3 for this operation mode is
fairly similar to other modes, but we have to limit the number
of generated tokens, as the model tends to try to generate
an explanation for its answer. It is also possible to specify
a stop sequence, which is a sequence of tokens that, when
generated by GPT-3, stops the whole generation process.

3.2.3 Instruct. Another way of interacting with GPT-3 is
through its Edit mode which expects two inputs: a prompt
and instructions describing how to edit the prompt. Similarly
to the other modes, there is a more general textual model
and a code speci�c variant. However, for this mode, there
are specialized versions to handle text editing, namely text-
davinci-edit-001 and code-davinci-edit-001. Our ap-
proach uses a simpli�ed form of the Instruct mode, which
is applied when the step in Section 3.1.1 fails to produce a
program that typechecks. In that case, the prompt consists
of the original program, and the instruction will hold the
message "Fix the bug". Alternatively, in case the previous
step is able to produce a well-typed program4, our approach

4Recall that whenever bypassing the type system by using the typecast

function eliminates the type error, we explore that program variant.

115

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

performs inlining and type uni�cation on the typecasted pro-

gram in order to compute the minimal substitution holding
the expected type with as much information as possible from
the whole program. If we consider Program 1, the inputs
sent to GPT-3 would be:

Prompt:

let rec add_list lst = match lst with

| [] -> _

| fst::rest -> fst + (add_list rest)

Instruction:

Replace the underscore with something of type int

The hole represented by the underscore is the place we
wish to see �lled in. Although the underscore character can
appear in an OCaml program, we did not notice any interfer-
ence in the ability of GPT-3 to apply the transformation in
the intended place. The template we use for the edit instruc-
tions is "Replace the underscore with something of type <in-

ferred>". For this program, GPT-3 responds with 0, which
is the desired �x. Indeed, it may look like GPT-3 simply
understands the program in question is missing the most
adequate stop criteria and just answers with a corrected ver-
sion, perhaps disregarding our instructions. However, the
uni�cation and inference step we perform in order to com-
plete the message template with the expected type plays
a crucial role. For the same example, fabricating messages
referring illogical types such as string or (’a→ ’b)→ ’a list

→ ’b list would see GPT-3 answer with the empty string and
List.map respectively.

Because our approach explores every application of type-
cast that typechecks a program, we also produce another
alternative:

Prompt:

let rec add_list lst = match lst with

| [] -> []

| fst::rest -> _ fst (add_list rest)

Instruction:

Replace the underscore with something of type 'a -> 'b

list -> 'b list

Even though this alternative prompt will not generate
the intended �xed program, it shows that the creation of
adequate prompts is essential for GPT-3 to perform well. In
this case, GPT-3 will respond with (fun x y → x::y).
Surely, integrating that piece of code into the original pro-
gram produces a correct one from a typechecking perspec-
tive, although it does not ful�ll the programmer’s intention.

3.2.4 Without GPT-3. One interesting outcome from the
implementation of the Choose strategy described in Section
3.2.2 is that we can make use of the work done to construct
the prompt and skip the interaction with GPT-3. Thus, we
provide a way to work completely o�ine. After coming up
with an alternative program that typechecks and a list of sug-
gestions (according to sections 3.1.1 and 3.1.3, respectively),
we integrate each one into the original program. If no test
cases have been provided, the tool simply displays which

options �t the expected type. If there are test cases, the tool
tests each suggestion and displays the resulting programs
according to whether they satisfy the tests or not. Consider
the following ill-typed program and the associated test case:

let f = fun x -> x && (x + x)

Test case: f 3 = 9

According to the test case, the intended �x consists of re-
placing the logical-and (&&) with the plus operator (+). For
this case, our tool is able to �lter 15 suggestions out of the
318 provided by the OCaml LSP, with one of them being the
desired one. Each of the 15 suggestions is checked against the
test case and the tool outputs the only program that satis�es
the criteria:

let f = fun x -> (+) x (x + x)

Note that the type uni�cation step requires the use of func-
tions. In that sense, we convert the usage of operators such
as ’&&’ to their equivalent pre�x notation functions ’(&&)’,
resulting in the generated patches also being written in this
form, demonstrated by the use of the function ’(+)’.
Indeed, the focus of our work is to evaluate GPT-3’s per-

formance regarding the automatic repair of type errors, and
presenting a method in which the usage of the model is non-
existing may seem counter-intuitive. However, we �nd this
to be a validation of our approach, showing that the e�ort to
assemble the prompt can guide the whole process towards
the intended result as the correct patch may be found by
further checking each plausible option.

3.3 Model Bias

We now experiment with providingmore information, trying
to guide the models into more relevant results. We do this by
using the bias parameter which lets us guide the model’s out-
put by specifying the importance of certain tokens5 through
weights. A token represents a unit of text, like a character
or a word. We use a tokenizer tool for this purpose.
We create a database of the most common tokens in the

top 10 OCaml repositories on GitHub programmatically. To
achieve this, we utilize GPT-3’s tokenizer, which converts
text into numerical sequences that the model processes. We
analyze the tokens in source code �les from these reposito-
ries and collect frequency data to construct a database of
commonly used tokens in real-world programs.

We create a list of suggestions as per Section 3.1.3, convert
them into token sequences, and assign positive weightings
to these tokens. Then, we use the bias parameter in GPT-3 to
guide the model toward these suggestions. The weightings
are determined based on a database of token frequencies
from real-world programs. We heuristically set minimum
and maximum bias values at 1 and 3, respectively, to en-
sure e�ective guidance without extreme behavior. Figure 2
provides an overview of this process with sample values.

5Tokenizer available at h�ps://beta.openai.com/tokenizer

116

https://beta.openai.com/tokenizer

GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair SLE ’23, October 23–24, 2023, Cascais, Portugal

(List.cons)

[7, 7343, 13,

5693, 1267]

7 → 24966

7343 → 10538

7 → 3.000

7343 → 1.904
Token Frequency Database

tokenize

compute

frequency

normalize

& scale

Figure 2. Bias computation for one OCaml LSP suggestion.

We experiment with bias values by comparing the Choose
strategy with and without bias. In the Choose strategy with
bias, we exclude suggestions from the textual prompt since
their in�uence is already provided through bias values, as
we show in the following example:

Consider the following OCaml program:

let rec add_list lst = match lst with

| [] -> <mask>

| fst :: rest -> fst + (add_list rest)

What should replace <mask >?

Answer:

3.4 Test Cases

Mentat allows including test cases when repairing a pro-
gram. This additional information enhances the system’s
performance by narrowing the error search space and tight-
ening the type constraints for the function under exami-
nation. To illustrate, recall Program 1, which contains two
potential errors. Now, let’s add a test case into this program.

let rec add_list lst = match lst with

| [] -> []

| fst :: rest -> fst + (add_list rest)

Test case: add_list [1;2;3] = 6

The newly added test case locks function add_list to
speci�cally receive a list of integers and output a single inte-
ger. Because of this, the function now only has one possible
source of error, which is the empty list ([]) in line 2. Pre-
viously, it was also considered that the plus operator (+)
could be a source of error, but with the additional restrictions
imposed by the test case, this is no longer possible.

Adding at least one test case to the framework also helps
classify GPT-3’s generations. After repairing a program, we
can use the test case to check for type consistency and verify
if it now passes the tests. For instance, in the case of this
program, the correct �x would be to replace the empty list
(‘[]‘) with the number 0, but substituting it with any other
integer would still pass the type-check, although it might
produce incorrect results during testing.

4 Tool

To validate our approach, we implemented it as a publicly
available tool called Mentat

6. This tool, written in OCaml,
can analyze OCaml programs and is accessible via the com-
mand line. Users can specify:
• the �le containing the OCaml program to analyze;
• the repair strategy by issuing the corresponding �ag;
• optionally, one or more test cases that should be satis�ed.
Depending on the repair strategy selected by the user,

Mentat interacts with GPT-3 by calling the relevant func-
tion and setting appropriate parameters. Interaction with
OpenAI’s GPT-3 like models requires an internet connection
to use the API.Mentat handles these requests and processes
the responses to generate potential �xes for type errors. The
resulting programs are saved for further o�ine analysis,
including whether they compile successfully and pass pro-
vided test cases if available. Detailed installation and usage
instructions are provided in the tool’s repository.

5 Experiments

We benchmark the e�ectiveness of our tool by running it
against several OCaml programs containing type errors. For
this, we run each strategy 3 times for each program, and
record the results. All the examples and necessary resources
to replicate the experiments are publicly available6.

5.1 Simple Programs

This set includes 15 ill-typed programs sourced from an
introductory OCaml class at a Japanese University and the
type-error slicer Skalpel [37], and previously used in a type-
error debugger [50]. These programs are simple, with issues
like returning empty lists instead of sums, confusion between
Float and Int, and using values when singleton lists were
expected. They range from 29 to 117 tokens and consist of 2
to 8 lines of code. One could argue that simple programs are
easier to �x because they are simple, or harder to �x due to
the limited contextual information available.

For the text and code models used in the experiments, we
use the default parameters (temperature of 0.7 for text and 0

for code, and top_p value of 1 for both). These settings were
found to be the most suitable through extensive testing.
We present the experiment results in Table 1. Each test

program was processed 3 times to measure successful patch
generation, ensuring it passed at least one test case. We em-
ployed di�erent repair strategies with models optimized for
text (T columns) and code (C columns). The C + Bias col-
umn includes additional experiments detailed in Section 3.3.
The rightmost column represents results without language
models, measuring how many suggestions enabled program
compilation and passed a test case. For example, program (2

was exclusively repaired by the code variant of the Fill strat-
egy, with 10 successful repair suggestions that passed the test

6h�ps://gitlab.com/FranciscoRibeiro/mentat

117

https://gitlab.com/FranciscoRibeiro/mentat

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

Table 1.Automatic repair results for 15 simple test programs.

Fill Choose Instruct
Test
Prog. T C T C

C +
Bias

T C
No

GPT-3

S1 3 3 3 3 3 3 3 3
S2 0 3 0 0 0 0 0 10
S3 3 3 0 0 3 3 3 3
S4 3 3 0 0 0 2 3 0
S5 3 3 0 0 3 3 3 2
S6 3 3 3 3 0 3 3 3
S7 3 3 0 3 3 0 0 0
S8 3 0 3 3 3 3 3 1
S9 3 3 3 3 0 0 0 1
S10 3 0 3 3 0 0 0 1
S11 3 3 0 0 3 3 3 0
S12 0 3 3 0 3 2 3 0
S13 3 3 3 3 3 0 0 1
S14 3 3 3 3 3 0 0 2
S15 3 3 3 3 3 3 3 1

%Repair 87% 87% 60% 60% 66% 56% 60% –
%Test 53% 60% 47% 47% 40% 49% 53% –

case. Further re�nement may be possible by using di�erent
or additional test cases. In each column, we calculate two
success rates: %Repair, indicating partial success (yellow or
green), and %Test, indicating total success (treating yellow
results as failures).

Each cell of the table is coloured red, yellow, or green. Red
cells denote a total failure of patch generation, green cells
denote the generation of the correct patch, and yellow cells
denote partial success. Examples of patches that are cate-
gorized yellow include generating the incorrect arithmetic
operator (such as generating a minus sign when a plus sign
is expected, or not generating the correct constant value
when one is expected) - in some cases, for example when a
constant value is expected, it might be completely impossi-
ble to reasonably deduce which value the developer expects.
Such results can be adjusted by using di�erent test cases
which favourably guide the GPT-3 model - for example, if,
for a given test case, using a plus sign yields the same result
as using a minus sign, perhaps changing the test case will
make the usage of a di�erent operator yield a di�erent result.
Nevertheless, we decided to not �ne-tune the test cases to
maximize result quality, as that is not always realistic.
The results showcased in Table 1 point towards the Fill

strategy being the most e�cient for automatic generation of
patches. Most notably, all modes have a %Repair success rate
above 50% and a %Test success rate above 40%, and all test
programs were successfully repaired by at least one of the
repair strategies. This fact points towards the combination of
strategies being a robust approach to leverage the strengths
of each other. We also denote that most cells contain the val-
ues 3 or 0, with rare occurrences of 2, which implies that the
model tends towards the same results in di�erent iterations.
For this, we have experimented with di�erent values of the
parameters we supply to the model, focusing mainly on the
temperature as it should change its randomness. Neverthe-
less, the results were not noticeably better, generally leading
to lower overall success rate.

Table 2. Automatic repair results for 10 Dijkstra programs.

Fill Choose Instruct
Test
Prog. T C T C

C +
Bias

T C
No

GPT-3

D1 3 3 0 3 3 0 0 0
D2 1 3 0 0 0 0 0 0
D3 1 3 0 0 2 2 3 0
D4 3 3 3 3 0 1 3 1
D5 2 3 0 3 3 2 3 1
D6 3 3 0 0 0 0 0 0
D7 3 3 3 1 3 3 3 1
D8 3 3 0 0 3 3 3 0
D9 3 3 3 3 0 3 3 0
D10 3 3 0 0 3 0 0 0

%Repair 83% 100% 30% 43% 57% 47% 60% –
%Test 83% 100% 20% 23% 20% 47% 60% –

We observe that the usage of bias with the Choose opera-
tion mode yields relatively similar results in terms of success
rates for these problems. The main di�erence when using
bias lies in the fact that some programs that were not repaired
with the previous approach are now able to be repaired and
vice-versa. For this set of programs, we conclude that the
usage of bias does not improve the results signi�cantly, but
it is capable of generating solutions complementary to the
ones generated by the original Choose repair strategy.

5.2 Dijkstra Algorithm

In this set, we have longer and more complex programs for
the Dijkstra algorithm, each with around 2,300 tokens and
170 lines of code. Deliberate errors were added to make the
repairs more challenging. We followed the same methodol-
ogy as in Section 5.1 for the results.

Table 2 summarizes the results for this program set. Like in
the previous set (5.1), Fill remains the most e�ective strategy
with an 83% repair rate for the text model and 100% for the
code model. Despite the increased program complexity, Fill
performed better, with a higher rate of programs passing the
provided test cases. Conversely, the other strategies, Choose,
Instruct, and No GPT-3, were less e�ective with this program
set. Indeed, depending on the considered repair strategy, the
discrepancies across the di�erent sets of programs move
in opposite ways. Increased program complexity may have
improved Fill’s performance by providing more context for
the model, while negatively a�ecting the other strategies,
which seem more suited for shorter and simpler repairs.

Compared to the simpler programs in the previous section,
the type errors in this set usually needmore elaborate repairs.
As an example, consider the ill-typed excerpt from a program
contained in these experiments and its intended repair:

let rec search tree k = match tree with

Empty -> raise Not_found

| Node (left , key , value , right) ->

if k = key then value

else if k < key then left (* intended: search left k *)

else search right k

118

GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair SLE ’23, October 23–24, 2023, Cascais, Portugal

Instead of left, the intended expression is search left k.
These repairs need an aggregation of several terms, which
is impossible to obtain with suggestions from the language
server. Essentially, this severely hinders the Choose and No

GPT-3modes, as they heavily rely on that list of code comple-
tions. The Instruct mode correctly infers the corresponding
hole’s type to be (string * �oat) list7 but is unable to gen-
erate the call search left k and produces the empty list
instead, which, nonetheless, produces a correctly typed pro-
gram. From these experiments, we take that Fill works best
for longer programs, as the pure context of the code seems to
be enough and better allows GPT-3 to understand and reason
about the program at hand. Extra analysis of the source code
prior to providing the programs to GPT-3 is more helpful
for smaller programs, in which naturally occurring context
lacks. This is evidenced by programs (4, (5, (8, (9, (10 and
(13, for which Fill presented incorrect or only partially cor-
rect results, while Choose, Instruct or No GPT-3 were able
to generate intended outcomes. This did not occur for the
Dijkstra programs, as Fill showed that it could match the
e�ectiveness of the other strategies for each case.

5.3 Large Scale Evaluation

We also conducted a large-scale evaluation of our approach.
We analyzed a repository of 4,500 OCaml programs, which
had already been created as part of Rite [41]. We provide
detailed analysis of the results obtained from this evaluation,
such as the total repair rate, the number of partially �xed
programs and the distribution of e�ectiveness of the three
repair strategies. Through this evaluation, we aim to demon-
strate our tool’s applicability in real-world scenarios and
potential to improve the quality and reliability of large-scale
software systems.

5.3.1 Pre-Processing the Data. To ensure a comprehen-
sive and accurate evaluation of our tool, we applied a �lter-
ing process to the original dataset obtained from the Rite
project. Speci�cally, we �ltered out bugs that required mod-
i�cations in multiple and disjointed places in the code, as
the current version of our tool considers single expression
bugs, only. Furthermore, we only considered bugs for which
the original �xed version could properly execute for all test
cases generated by the OCaml property-based testing tool
Quickcheck [10]. Proper execution was de�ned as the ab-
sence of errors or timeouts for any given input. This was
necessary to ensure that the bugs were genuine and that any
improvements observed in our evaluation were a result of
our tool’s impact, rather than external factors such as faulty
test cases or unreliable program behavior. After applying
these �lters, we evaluated a set of 1,318 bugs.

7Actually, the function is polymorphic, but the test case requires a more

specialized type, which is what we get thanks to inlining.

5.3.2 Validating the Generated Patches. To validate
the e�ectiveness of our tool in repairing bugs, we used
Quickcheck to generate a random, large number of test cases.
Moreover, we de�ne properties to assert that the human-
�xed program is "equivalent" to the repaired one. Thus, for
each bug, we generated a set of patches and automatically
instantiated a corresponding Quickcheck property. This is
expressed according to the following template:

1 let%test_unit "testName" =

2 Quickcheck.test

3 [% quickcheck.generator: <input_signature>]

4 ~f:(fun args ->

5 [% test_eq: <output_signature>]

6 (Fix.functionToTest args) (Gen.functionToTest args))

To generate a property for the faulty program being repaired,
we consider the faulty function’s signature. The input part
of the signature (line 3) is used to implement a generator
for the input values that will be tested. The output part (line
5) is used to tell Quickcheck the type of the output values
to compare. Line 6 represents the property that should be
veri�ed and means that the result of the original �xed pro-
gram should be equal to the result of the patch being tested.
The number of arguments needs to be adjusted according to
the function being tested and, as such, args is modi�ed to
re�ect that. By default, the generator produces 10,000 inputs.
If the property holds, the patch is considered equivalent to
the �xed version.
A bug is considered to be repaired if at least one of the

generated patches produced the same output as the origi-
nal �xed version for all input combinations generated by
Quickcheck. By automating the instantiation of this prop-
erty for every considered bug, we were able to accurately
validate the e�ectiveness of our tool in repairing bugs. This
approach also allowed us to provide quantitative metrics on
the performance of our tool, such as the percentage of bugs
repaired and the degree to which some bugs are partially
�xed — Figures 3 and 4. This automated validation process is
crucial given the amount of data at this stage. Furthermore, it
also provides some insight into how it could be incorporated
in real-world use cases. To the best of our knowledge, it is
uncommon to provide a fully automatic validation process to
verify whether generated patches successfully �x buggy pro-
grams. Our approach has the �exibility of allowing patches
equivalent to the intended �x, without relying on human
intervention to manually inspect the generated patches.

5.3.3 Results and Discussion. Our approach successfully
repaired a substantial portion of the dataset. Among the 1,318
bugs evaluated, our tool repaired 516 of them, achieving a
repair rate of 39.2%. We found that 441 of the programs were
partially �xed, indicating that the generated patches were
able to address some but not all of the identi�ed issues in
the program, representing a 33.5% partial repair rate. The
consideration of partial �xes provides a more nuanced un-
derstanding of the capabilities of our technique. Rather than

119

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

Figure 3. #Programs that pass at least a given percentage of
tests. For example, 629 programs pass at least 50% of tests.

Figure 4. Distribution of test passing rate of programs. For
example, 208 programs pass between 25% and 50% of tests.

Figure 5. How many programs each mode successfully re-
pairs. Intersections mean that a program is repaired correctly
by both modes. There are 34 programs that can be repaired
by both the Choose mode or the Fill mode.

simply categorizing a program as either �xed or not �xed,
partial �xes enable us to explore the ground that separates
a completely �xed program from a program that remains
broken. Thus, we can form an idea of how the partial �xes
are distributed along that spectrum. Out of the 361 programs
that remained un�xed, we found that 247 of them produced
some error during testing and the testing process did not
�nish. Additionally, 73 of the un�xed programs were due
to our technique being unable to generate any patch for
the identi�ed bugs. Interestingly, we also found that 41 of
the un�xed programs actually failed every test produced by
Quickcheck, indicating that the bugs in these programs were
particularly challenging to address.
Di�erent tool modes exhibit varying degrees of repair

e�ectiveness, as shown in Figure 5. The Fill strategy is the
most e�ective, being responsible for �xing 394 out of the
total 516 programs (76.4%). The Instruct strategy was also
found to be e�ective, repairing 224 programs (43.4%). On the
other hand, the Choose strategy is the least e�ective, with

108 �xed programs (20.9%). It is worth noting that some
programs were repaired by multiple strategies, and in some
cases, the same program was repaired by all three strategies.
Speci�cally, there were 108 (20.9%) programs that were �xed
by both Fill and Instruct, while 34 (6.6%) programs were �xed
by both Fill and Choose, and 20 (3.9%) programs were �xed by
both Choose and Instruct. Additionally, there were 24 (4.7%)
programs that were repaired by all three strategies.

5.3.4 Limitations. Our automated validation strategy ex-
cludes functions relying on user-de�ned data types, as it
needs manually de�ned speci�c generators. This limitation
reduces the number of programs we analyze, as discussed in
Section 5.3.1. Moreover, we assume total functions, meaning
that we consider every possible input for a given type, result-
ing in a more pessimistic repair validation. For instance, if a
function has an integer as argument and is designed to work
only with positive numbers, our fully automated approach
will still test it with negative numbers (as produced by the
prede�ned generator of integer numbers) reporting it as a
non repaired function.8

Let us consider the OCaml implementation for factorial:

(* int -> int *)

let rec factorial n =

if n = 0 then 1

else n * factorial (n - 1)

The provided implementation is the usual recursive de�ni-
tion for factorial. Note this is a partial function as it is only
de�ned for positive values of the input n. If n is a negative
number, factorial will inde�nitely call itself causing a stack
over�ow error. Now, let us consider that this implementation
of factorial results from a repair process, either generated by
Mentat or another tool. When we validate such repair with
our automated validation approach, we use Quickcheck to
automatically generate inputs for this function. In this case,
the prede�ned generator for int will produce both positive
and negative values. Although the repaired factorial function
is correct, our validation will fail due to timeout as soon as
it is called with a negative number.

5.4 Comparative Study

We performed a comparative study of our technique for au-
tomated program repair of ill-typed OCaml programs. We
utilized the results provided in Rite’s [41] repository for
both their tool and Seminal to validate the e�cacy of our
fully automated validation strategy. In section 5.3.4, we ac-
knowledge the demanding and pessimistic nature of our
testing strategy by highlighting its consideration of total
functions, encompassing every possible input for any given
type. This ignores any restriction on the set of valid inputs.
A manual validation process, similar to that employed by
Rite, has the potential to increase the success rate for both

8Generators for positive integers and user-de�ned types can be imple-

mented. However, this would break our goal of a fully automated process.

120

GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair SLE ’23, October 23–24, 2023, Cascais, Portugal

Figure 6. #Programs used in each repair technique and in-
tersections.

our approach and the others. This kind of manual valida-
tion allows for a more sensitive consideration of program
characteristics that may be overlooked by a more automated
validation method. That is, some expected usage patterns
may be better captured by a human evaluator with a more
subjective evaluation criteria. An example is judging a func-
tion’s implementation and considering it has been designed
to only work with positive numbers, even though the type
system may only re�ect the function operates on type int.
However, such manual validation would imply extensive
manual e�ort and is infeasible for the size of this dataset.
We compare our approach with two other tools, namely

Rite and Seminal, in terms of their repair capabilities on a
common dataset. Although the three tools used a common
dataset as an underlying basis, each work applied its own pre-
processing criteria to prepare the dataset. As a consequence,
in this comparative study, our original dataset of 1,318 bugs
was �ltered down to 591 bugs, which were common to all
three approaches. Figure 6 shows the distribution of the bugs
and how they intersect amongMentat, Rite and Seminal.

Our technique achieved a repair rate of 37.6% (222 out of
591 programs). It employs a fully automated analysis that
considers a program �xed only if it becomes well-typed
and passes all test cases. Our repair process leverages GPT-
3, a powerful large language model, to generate patches
for identi�ed type errors. This eliminates the need for a
comprehensive system and language-speci�c components
due to GPT-3’s extensive training on multiple languages.

Originally, Rite conducted a manual validation through a
user study with 29 programmers in which a set of 21 buggy
programs was selected and each participant was shown 10

randomly selected buggy programs alongside two candidate
repairs, one generated by Rite and one by Seminal. A full
validation of the entire dataset was not reported. To achieve
this, we used our automated validation framework to verify
which Rite and Seminal generated patches were able to
pass all test cases produced by Quickcheck.
This way, we were able to evaluate the performance of

Rite and Seminal on the same dataset. Rite repaired 198 pro-
grams out of 591 (33.5% repair rate), while Seminal repaired
only 46 programs (7.8% repair rate). These results highlight
the superior e�ectiveness of our technique over the existing

Figure 7. Number of programs that pass at least a given
percentage of tests - comparative study.

state-of-the-art tools for automated program repair in the
context of type errors in OCaml programs. Figure 7 shows
the repair e�ectiveness of the three tools.

One noteworthy advantage of our approach is its language-
agnostic nature. Our technique can be easily adapted to re-
pair programs in other languages, as long as it is possible to
statically determine the types of terms either through infer-
ence or annotations, and the ability to bypass the type system
exists (e.g., Obj.magic for OCaml or undefined for Haskell).
Furthermore, the reliance on LLM’s, such as GPT-3, for gen-
erating patches liberates us from building language-speci�c
generation systems for each case. By leveraging these prereq-
uisites, our approach can be successfully applied to a wide
range of programming languages.
We conclude that Mentat outperforms both Rite and

Seminal in repairing type errors on a common dataset of
OCaml programs. Our fully automated approach eliminates
the need for user studies to validate patch relevance and
ensures that the resulting programs are not only well-typed
but also pass all the provided test cases.

Our results provide the following four insights: First,Men-

tat surpasses both Rite and Seminal in terms of e�ective
program repair, i.e. patches are well-typed and are equivalent
to the intended �xed version; Second, we thoroughly vali-
dated Rite’s repairs, whereas their paper only validates 21
repairs with user involvement; Third, although Rite reports
over 80% success in type repair, we show that the percentage
of repairs passing the tests is 33.5%, which is signi�cantly
lower and highlights the potential for misleading results9;
Fourth, our fully automated validation approach enabled
us to validate other works that previously relied on manual
analysis of a very limited subset of programs.

6 Related Work

Type error debugging research has a rich history spanning
over 30 years, evolving from enhancing error messages [12,
24, 51] to interactive debugging tools [6, 7, 9, 48], and auto-
mated approaches that narrow down error causes [19, 37, 42–
44]. These methods aim to pinpoint errors and require user
intervention for correction. On the other hand, automatic
correction of type errors is a nascent �eld; Seminal [25] is,

9This also contradicts the (informal) usual saying in functional program-

ming: if it type checks, then it is correct.

121

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

to our knowledge, the �rst system for automatic correction
of type errors in functional programming languages. It re-
moves parts of the ill-typed program and attempts to make
syntactic changes. This corresponds to Fill in our study: they
used a syntactic modi�cation to �ll, and we used GPT-3. Rite
[41] aims for program repair of ill-typed programs too. From
a corpus of 4,500 ill-typed OCaml programs, it uses approx-
imately half of the dataset to build a neural network that
learns what modi�cations have been made to, ultimately,
synthesize solutions for given ill-typed programs. Our tool,
Mentat performs source code analysis to produce useful
prompts that leverage GPT-3’s language understanding and
generation capabilities to generate potential patches. While
Mentat, Rite and Seminal share a common objective of
�xing ill-typed OCaml programs, they diverge in their vali-
dation methodologies. Rite relies on a manual analysis of 21
randomly selected programs from the repository by a limited
number of programmers, whereas our technique employs
a fully automated process to validate the generated repairs.
This distinction allows our technique to perform validation
on a larger scale, e�ectively addressing the challenges asso-
ciated with manual validation processes. The de�nition of a
�xed program in Rite is based on the ability of the generated
program to typecheck correctly. In contrast, our work vali-
dates both typechecking and semantical equivalence of the
generated repairs. To achieve this, our technique employs a
methodology that generates and executes test cases for both
the correct program and the generated repairs. It considers
a program to be fully repaired only if the correct program
and the repaired version produce identical outputs for all
test cases. This crucial di�erence allowed us to verify that
a pure type repair can fall short of being an e�ective repair.
We demonstrated that Rite’s reported +80% type repair rate
is comparatively lower in terms of actual program repair, i.e.
the generated repair satis�es the test cases 33.5% of times. As
we mentioned in Section 5.3.4, this is based on a pessimistic
view that a patch must pass all test cases. Indeed, a manual
analysis may reveal that more of the generated patches are
semantically equivalent to the intended program, potentially
improving our results as well as those of Rite and Seminal.
DeepTyper [22] enhances type information for compi-

lation using deep learning in Python and JavaScript. How-
ever, it lacks program repair capabilities. Our work utilizes
OCaml’s type inference for source code analysis and prompt
preparation. DeepTyper could be bene�cial when extending
our approach to other programming languages.
Fault localization [2, 32] is an initial debugging step [31].

Various methods, including execution trace analysis [5], mu-
tation testing [29], qualitative reasoning [33], and seman-
tic fault identi�cation [38], help narrow down suspicious
code elements. Models like code2vec [1] have been trained
to speci�cally detect security vulnerabilities [11]. Our work
concentrates on type errors and uses OCaml’s type inference

to identify potentially responsible expressions by transform-
ing them into di�erent types.
APR is a prominent research �eld. Early approaches use

genetic programming [3, 23], while others employ constraint-
basedmethods [16, 30, 52]. Recent advancements incorporate
machine learning and neural machine translation techniques
[8, 26, 28]. However, translating buggy code to �xed code has
limitations [15] and general-purposemodels supporting code
understanding and generation tasks [1, 17, 27, 45] started
being considered. GPT-2’s code completion e�ectively �xes
Java bugs [39], and Codex has repaired Python and Java

programs [35]. Our work stands out for targeting type errors
in OCaml, which prevent program compilation, unlike other
research focused on functional bugs.

7 Conclusion

This paper introduced a method to automatically �x type
errors in OCaml programs using GPT-3. We achieve this by
analyzing and modifying the faulty source code to create
prompts for GPT-3-based models.

We developed theMentat tool, initially validating it with
simple programs and variations of the Dijkstra algorithm. In
large-scale experiments involving 1,318 buggy programs, we
achieved a 39% repair rate using a novel automated patch
validation approach. In comparison with two other OCaml

program repair tools,Mentat outperformed them, achieving
a 37.6% repair rate on a shared dataset of 591 programs, while
the other tools achieved rates of 33.5% and 7.8%, respectively.

This work used GPT-3, but future versions or other LLMs
[46, 53] could be integrated. Moreover, �ne-tuning a model
for OCaml may enhance program correction.
Starting with single-location faulty programs enables us

to assess the approach’s e�ectiveness before addressing mul-
tiple locations. In future work, we plan to explore this possi-
bility by strategically placing typecast operators to address
program sections and incorporating multiple typecasts in
suitable locations. This would facilitate the identi�cation
and repair of multiple bugs within a single program.

Replication Package

All the necessary resources to replicate this study are public:

• Tool: h�ps://gitlab.com/FranciscoRibeiro/mentat

• Artifact [40]: 10.6084/m9.figshare.23646903.v2

Acknowledgments

This work is �nanced by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência
e a Tecnologia, within project UIDP/50014/2020. Francisco
Ribeiro and José NunoMacedo acknowledge FCT PhD grants
SFRH/BD/144938/2019 and 2021.08184.BD, respectively. Ad-
ditional funding: JSPS KAKENHI-JP19K20248.

122

https://gitlab.com/FranciscoRibeiro/mentat
10.6084/m9.figshare.23646903.v2

GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair SLE ’23, October 23–24, 2023, Cascais, Portugal

References
[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019.

code2vec: Learning distributed representations of code. Proceedings of

the ACM on Programming Languages 3, POPL (2019), 1–29.

[2] Aaron Ang, Alexandre Perez, Arie Van Deursen, and Rui Abreu. 2017.

Revisiting the practical use of automated software fault localization

techniques. In 2017 IEEE International Symposium on Software Reliabil-

ity Engineering Workshops (ISSREW). IEEE, 175–182.

[3] Andrea Arcuri. 2011. Evolutionary repair of faulty software. Applied

soft computing 11, 4 (2011), 3494–3514.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Je�rey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot

Learners. CoRR abs/2005.14165 (2020). arXiv:2005.14165 h�ps:

//arxiv.org/abs/2005.14165

[5] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012.

Gzoltar: an eclipse plug-in for testing and debugging. In Proceedings

of the 27th IEEE/ACM international conference on automated software

engineering. 378–381.

[6] Sheng Chen and Martin Erwig. 2014. Counter-factual typing for de-

bugging type errors. In Symposium on Principles of Programming Lan-

guages. Proceedings (POPL ’14). ACM, 583–594. h�ps://doi.org/10.

1145/2535838.2535863

[7] Sheng Chen and Martin Erwig. 2014. Guided type debugging. In

Functional and Logic Programming. Proceedings (LNCS 8475), Michael

Codish and Eijiro Sumii (Eds.). Springer, 35–51. h�ps://doi.org/10.

1007/978-3-319-07151-0_3

[8] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet,

Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer:

Sequence-to-sequence learning for end-to-end program repair. IEEE

Transactions on Software Engineering 47, 9 (2019), 1943–1959.

[9] Olaf Chitil. 2001. Compositional explanation of types and algorithmic

debugging of type errors. In International Conference on Functional

Programming. Proceedings (ICFP ’01). ACM, 193–204. h�ps://doi.org/

10.1145/507635.507659

[10] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs. SIGPLAN Not. 35, 9

(sep 2000), 268–279. h�ps://doi.org/10.1145/357766.351266

[11] David Coimbra, So�a Reis, Rui Abreu, Corina Păsăreanu, and Hakan

Erdogmus. 2021. On using distributed representations of source

code for the detection of C security vulnerabilities. arXiv preprint

arXiv:2106.01367 (2021).

[12] Luis Damas and Robin Milner. 1982. Principal type-schemes for func-

tional programs. In Symposium on Principles of Programming Lan-

guages. Proceedings (POPL ’82). ACM, 207–212. h�ps://doi.org/10.

1145/582153.582176

[13] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978.

Hints on test data selection: Help for the practicing programmer. Com-

puter 11, 4 (1978), 34–41.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805 (2018).

[15] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J

Hellendoorn. 2020. Patching as translation: the data and the metaphor.

In 2020 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 275–286.

[16] Thomas Durieux and Martin Monperrus. 2016. Dynamoth: dynamic

code synthesis for automatic program repair. In Proceedings of the 11th

International Workshop on Automation of Software Test. 85–91.

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,

Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020.

Codebert: A pre-trainedmodel for programming and natural languages.

arXiv preprint arXiv:2002.08155 (2020).

[18] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Au-

tomated Program Repair. Commun. ACM 62, 12 (nov 2019), 56–65.

h�ps://doi.org/10.1145/3318162

[19] Christian Haack and Joe B. Wells. 2004. Type error slicing in implicitly

typed higher-order languages. Science of Computer Programming 50,

1-3 (2004), 189–224. h�ps://doi.org/10.1016/j.scico.2004.01.004

[20] BJ Heeren, JT Jeuring, Doaitse Swierstra, and Pablo Azero Alcocer.

2002. Improving type-error messages in functional languages. (2002).

[21] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium,

for learning Haskell. In Proceedings of the 2003 ACM SIGPLANworkshop

on Haskell. 62–71.

[22] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Alla-

manis. 2018. Deep Learning Type Inference. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Lake Buena

Vista, FL, USA) (ESEC/FSE 2018). Association for ComputingMachinery,

New York, NY, USA, 152–162. h�ps://doi.org/10.1145/3236024.3236051

[23] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley

Weimer. 2011. Genprog: A generic method for automatic software

repair. Ieee transactions on software engineering 38, 1 (2011), 54–72.

[24] Oukseh Lee and Kwangkeun Yi. 1998. Proofs about a folklore let-

polymorphic type inference algorithm. ACM Transactions on Pro-

gramming Languages and Systems 20, 4 (1998), 707–723. h�ps:

//doi.org/10.1145/291891.291892

[25] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Cham-

bers. 2007. Searching for Type-Error Messages. SIGPLAN Not. 42, 6

(jun 2007), 425–434. h�ps://doi.org/10.1145/1273442.1250783

[26] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. Dl�x: Context-based

code transformation learning for automated program repair. In Pro-

ceedings of the ACM/IEEE 42nd International Conference on Software

Engineering. 602–614.

[27] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,

Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu

Tang, et al. 2021. Codexglue: A machine learning benchmark dataset

for code understanding and generation. arXiv preprint arXiv:2102.04664

(2021).

[28] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi

Wei, and Lin Tan. 2020. Coconut: combining context-aware neural

translation models using ensemble for program repair. In Proceedings

of the 29th ACM SIGSOFT international symposium on software testing

and analysis. 101–114.

[29] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask

the mutants: Mutating faulty programs for fault localization. In 2014

IEEE Seventh International Conference on Software Testing, Veri�cation

and Validation. IEEE, 153–162.

[30] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and

Satish Chandra. 2013. Sem�x: Program repair via semantic analysis.

In 2013 35th International Conference on Software Engineering (ICSE).

IEEE, 772–781.

[31] Chris Parnin and Alessandro Orso. 2011. Are automated debugging

techniques actually helping programmers?. In Proceedings of the 2011

international symposium on software testing and analysis. 199–209.

[32] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,

Michael D Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating

and improving fault localization. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 609–620.

[33] Alexandre Perez, Rui Abreu, and IT HASLab. 2018. Leveraging Quali-

tative Reasoning to Improve SFL.. In IJCAI. 1935–1941.

[34] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.).

The MIT Press.

123

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1007/978-3-319-07151-0_3
https://doi.org/10.1007/978-3-319-07151-0_3
https://doi.org/10.1145/507635.507659
https://doi.org/10.1145/507635.507659
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/3318162
https://doi.org/10.1016/j.scico.2004.01.004
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/291891.291892
https://doi.org/10.1145/291891.291892
https://doi.org/10.1145/1273442.1250783

SLE ’23, October 23–24, 2023, Cascais, Portugal Francisco Ribeiro, José Nuno Castro de Macedo, Kanae Tsushima, Rui Abreu, and João Saraiva

[35] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can Ope-

nAI’s codex �x bugs? an evaluation on QuixBugs. In Proceedings of the

Third International Workshop on Automated Program Repair. 69–75.

[36] Alec Radford, Je�rey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. 2019. Languagemodels are unsupervisedmultitask

learners. OpenAI blog 1, 8 (2019), 9.

[37] Vincent Rahli, Joe B. Wells, John Pirie, and Fairouz Kamareddine. 2017.

Skalpel: a constraint-based type error slicer for Standard ML. Journal

of Symbolic Computation 80, 1 (2017), 164–208. h�ps://doi.org/10.1016/

j.jsc.2016.07.013

[38] Francisco Ribeiro, Rui Abreu, and João Saraiva. 2021. On Understand-

ing Contextual Changes of Failures. In 2021 IEEE 21st International

Conference on Software Quality, Reliability and Security (QRS). IEEE,

1036–1047.

[39] Francisco Ribeiro, Rui Abreu, and João Saraiva. 2022. Framing Program

Repair as Code Completion. In Proceedings of the Third International

Workshop on Automated Program Repair (Pittsburgh, Pennsylvania)

(APR ’22). Association for Computing Machinery, New York, NY, USA,

38–45. h�ps://doi.org/10.1145/3524459.3527347

[40] Francisco Ribeiro, José Macedo, Kanae Tsushima, Rui Abreu, and João

Saraiva. 2023. GPT-3-Powered Type Error Debugging: Investigating

the Use of Large Language Models for Code Repair (SLE 2023). (10

2023). h�ps://doi.org/10.6084/m9.figshare.23646903.v2

[41] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley

Weimer, and Ranjit Jhala. 2020. Type Error Feedback via Analytic

Program Repair. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation (London, UK)

(PLDI 2020). Association for Computing Machinery, New York, NY,

USA, 16–30. h�ps://doi.org/10.1145/3385412.3386005

[42] Thomas Schilling. 2012. Constraint-free type error slicing. In Trends in

Functional Programming. Proceedings (LNCS 7193), Ricardo Peña and

Rex Page (Eds.). Springer, 1–16. h�ps://doi.org/10.1007/978-3-642-

32037-8_1

[43] Peter J. Stuckey,Martin Sulzmann, and JeremyWazny. 2003. Interactive

type debugging inHaskell. InWorkshop on Haskell. Proceedings (Haskell

’03). ACM, 72–83. h�ps://doi.org/10.1145/871895.871903

[44] Peter J. Stuckey, Martin Sulzmann, and JeremyWazny. 2004. Improving

type error diagnosis. In Workshop on Haskell. Proceedings (Haskell ’04).

ACM, 80–91. h�ps://doi.org/10.1145/1017472.1017486

[45] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundare-

san. 2020. Intellicode compose: Code generation using transformer.

In Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering. 1433–1443.

[46] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-

Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric

Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard

Grave, and Guillaume Lample. 2023. LLaMA: Open and E�cient

Foundation Language Models. arXiv:2302.13971 [cs.CL]

[47] Kanae Tsushima and Kenichi Asai. 2012. An embedded type debug-

ger. In Symposium on Implementation and Application of Functional

Languages. Springer, 190–206.

[48] Kanae Tsushima and Kenichi Asai. 2013. An embedded type debugger.

In Implementation and Application of Functional Languages. Proceedings

(LNCS 8241), Ralf Hinze (Ed.). Springer, 190–206. h�ps://doi.org/10.

1007/978-3-642-41582-1_12

[49] Kanae Tsushima and Kenichi Asai. 2014. A weighted type-error slicer.

Journal of Computer Software 31, 4 (2014), 131–148.

[50] Kanae Tsushima, Olaf Chitil, and Joanna Sharrad. 2019. Type de-

bugging with counter-factual type error messages using an existing

type checker. In Symposium on Implementation and Application of

Functional Languages. Proceedings (IFL ’19). ACM, Article 7, 12 pages.

h�ps://doi.org/10.1145/3412932.3412939
[51] Mitchell Wand. 1986. Finding the source of type errors. In Symposium

on Principles of Programming Languages. Proceedings (POPL ’86). ACM,

38–43. h�ps://doi.org/10.1145/512644.512648

[52] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebas-

tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin

Monperrus. 2016. Nopol: Automatic repair of conditional statement

bugs in java programs. IEEE Transactions on Software Engineering 43,

1 (2016), 34–55.

[53] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria

Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel

Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke

Zettlemoyer. 2022. OPT: Open Pre-trained Transformer Language

Models. arXiv:2205.01068 [cs.CL]

Received 2023-07-07; accepted 2023-09-01

124

https://doi.org/10.1016/j.jsc.2016.07.013
https://doi.org/10.1016/j.jsc.2016.07.013
https://doi.org/10.1145/3524459.3527347
https://doi.org/10.6084/m9.figshare.23646903.v2
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/1017472.1017486
https://arxiv.org/abs/2302.13971
https://doi.org/10.1007/978-3-642-41582-1_12
https://doi.org/10.1007/978-3-642-41582-1_12
https://doi.org/10.1145/3412932.3412939
https://doi.org/10.1145/512644.512648
https://arxiv.org/abs/2205.01068

	Abstract
	1 Introduction
	2 Background
	3 Technique
	3.1 Source Code Analysis
	3.2 Strategies
	3.3 Model Bias
	3.4 Test Cases

	4 Tool
	5 Experiments
	5.1 Simple Programs
	5.2 Dijkstra Algorithm
	5.3 Large Scale Evaluation
	5.4 Comparative Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

