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Abstract The dimensional reduction algorithms are applied to a hybrid intelligent
model that distinguishes the switching operating mode of a boost converter. Thus,
the boost converter has been analyzed and both operating mode are explained,
distinguishing between Hard-switching and Soft-switching modes. Then, the dataset
is created out of the data obtained from simulation of the real circuit and the hybrid
intelligent classification model is implemented. Finally, the dimensional reduction
of the input variables is carried out and the results are compared. As result, the
proposed model with the applied dimensional reduced dataset is able to distinguish
between the HS and SS operating modes with high accuracy.
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1 Introduction

Nowadays, multiple research approaches are applied in the power electronics field,
where the focus is kept on increasing the efficiency of the power converter; thus,
reducing the size and weight of the circuits. The recent studies centre the attention
on the use of the wide band-gap (WBG) materials such as Silicon Carbide (SiC)
and Gallium Nitride (GaN) and the use of soft-switching techniques [1, 4]. The
introduction of SiC and GaN materials in the power converters initiated replacement
of the silicon as manufacturing material of the power transistors [23, 8]. They are
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more competitive, provide better performance and characteristics in comparison
with silicon transistors, such as higher switching speeds, higher breakdown voltages,
lower on-state resistance, etc. Additionally, in the last years the production prices
have reduced, making them more interesting for the industry [8, 17, 15].
In order to improve the efficiency of the existing converters, the soft- switching

techniques are widely introduced. These techniques allow a reduction of the switch-
ing losses during the converter operation.Moreover, the newmaterials, SiC andGaN,
make more interesting these techniques in addition to their intrinsic characteristics
[23, 9].
Along with the introduction of the Artificial Intelligence (AI) in other fields, the

AI starts gaining also importance in the power electronics. These techniques are
used for supporting the development and design processes, as described in [26, 2]
where the AI are used to design magnetic components. Or, another application,
to improve the performance of the power converters with the development of new
control schemes, as done in [25, 14, 12].
With the aim of controlling and maintaining the converter operating in soft-

switching and, therefore, delivering the maximum efficiency, the classification of the
operating mode needs to be realized. When the converter operates in SS mode in
comparison with HS mode, the switching losses are reduced. Thus, assuring that the
converter operates in the desired mode becomes of importance.
In this work, the proposed method to detect the operating mode is based on AI.

By measuring different signals of the converter, the AI is able to detect the operating
mode, helping the designer to optimize the converter by reducing the switching
losses and increasing the transfer of energy.
A dimensional reduction of the dataset used by the model is presented. This

reduction of data helps to increase the speed and reduce computational cost of
classifier, and further improve the performance of the model to detect the operating
mode of the power converter.
The paper is structured as follows: first, an analysis of a synchronous rectified

boost converter is explained in section 2. The applied dimensional reduction to the
proposed model is described in the next section, 3, along with the generated dataset
and classification techniques. Then, the performance and efficiency of the proposed
model with the different dimensional reduction methods is presented in section 4
and finally, conclusions are drawn in section 5.

2 Case Study

The analysis of a synchronous rectified boost converter is done in this section. The
converter topology is shown in the figure 1. The components used in this converter are
two transistors, high-side and low-side transistors, which operate in a complementary
manner. The transistors generate a pulsed voltage that varies from input voltage and
ground, at the switching node (Vsw), which is then filtered. An input capacitor is
used to filter the peak currents drawn by the converter. The output filter is made up
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of an inductor and a capacitor, which filters the pulse voltage of the switching node
obtaining a constant output voltage.

Fig. 1 Synchronous rectified boost converter.

Traditionally, the described converter operates in Hard-Switching (HS) mode:
meaning that losses occur during the switching transitions due to the current and
voltage at the transistor during commutation. When the transistor is turned-off,
the voltage is blocked and no current is flowing. When a signal is applied to the
transistor’s gate and the commutation starts, the resistance of the channel starts to
drop as the current starts flowing through the transistor. During this time, the voltage
drops while the current rises, occurring switching losses as 𝑃 = 𝑉 · 𝐼. In HS mode,
this process happens during turn-on and turn-off commutation. Moreover, when the
transistor is switched on, the losses are caused by the on-state resistance times the
flowing current: 𝑃𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐼2 · 𝑅𝑜𝑛−𝑠𝑡𝑎𝑡𝑒.
In addition to the losses caused by the concurrent of current and voltage, the

parasitic capacitance of the transistor (Coss) is reloaded and discharged through the
transistor channel, causing further switching losses. These losses can be calculated
as 𝑃 = 1

2 · 𝐶𝑜𝑠𝑠 · 𝑉2.
In the figure 2, the converter losses in HS mode are represented, where the

switching losses can be seen.
Intending to improve the efficiency of the synchronous rectified boost converter,

the other operating mode is introduced: soft-switching (SS) mode. In this case, either
the current or the voltage through the transistor channels is brought to zero. If the
current is zero at the switching instant, it is called Zero-Current-Switching (ZCS);
on the other hand, if the voltage across the transistor at the switching instant is zero,
the SS mode is due to Zero-Voltage-Switching (ZVS).
When the converter operates in SS, the losses during the commutation are nearly

zero, as either the voltage or current are zero: 𝑃 = 𝑉 · 𝐼 = 0 · 𝐼 or 𝑃 = 𝑉 · 0. The
figure 2, shows the transitions in the SS operating mode.
The conditions of SS are achieved thanks to the resonance between the com-

ponents of the circuit, such as a resonance LC tank. Moreover, in the proposed
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Fig. 2 Hard- and Soft-switching transitions with different current ripple.

converter, the resonance happens between the filter inductor and the parasitic out-
put capacitance of the transistor (Coss), using this capacitance as a non-dissipative
snubber [22, 3].
In the synchronous rectified boost converter, the used method for the SS operation

is the ZVS and it is achieved during turn-on of the high-side switch.
In the ZVS method, the switches turn-on or -off when the voltage across the

transistor is zero. Thus, when the high-side transistor switches off, the current moves
to the low-side switch. During the interlock delay, time where both switches are off,
the current flows through the antiparallel diode of the low-side transistor, equalizing
the voltage across this transistor, causing a ZVS switching of the low-side transistor.
During the time that the low-side transistor is on, the current starts decreasing in

the inductor until the current reaches a negative value, flowing from the load to the
switches. At this instant, when the current is negative, the low-side switch turns-off.
The current at the inductor does not have a path to flow, so it will charge the output
capacitance of the transistors, rising the voltage at the switching node.
Once the voltage at the switching node reaches the input voltage, the antiparallel

of the high-side switch starts conducting, instant when this switch can turn-on with
ZVS.
At this point, the high-side transistor can switch lossless, as the voltage across is

just a few volts from the forward diode voltage [22, 19].
When using this topology in SSmode, the design of the inductor is very important,

as it needs to allow high ripple current..
Traditionally, the designer and developers keep the inductor ripple low, between

10% and 30% of the output current. The definition of the inductance value is done
according to the equation 1, where the inductor value depends on the switching
frequency, output voltage and the allowed current ripple.
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𝐿 =
𝑉𝑖𝑛 · (𝑉𝑜𝑢𝑡 −𝑉𝑖𝑛)
𝑓 · 𝐼𝑟𝑖 𝑝𝑝𝑙𝑒 · 𝑉𝑜𝑢𝑡

(1)

where 𝐿 is the inductance value of the inductor, 𝑉𝑖𝑛 is the input voltage to the
circuit, 𝑉𝑜𝑢𝑡 is the output voltage from the converter, 𝑓 is the switching frequency
and 𝐼𝑟𝑖 𝑝𝑝𝑙𝑒 is the current ripple in the inductor.
With the introduction of this converter operating in SS mode, the design of the

inductor needs to be reconsidered. In this mode, the ripple of the current allows the
current to drop to zero and beyond, defining the Triangular Current Mode (TCM)
[5, 13, 7].
As mentioned above, when the current ripple is kept low, as shown in the figure

3, the converter operates in HS mode, as the ZVS condition is never reached. In
opposition, when the current ripple allows the current to drop below zero, the
switching losses in the converter can be reduced due to the ZVS mode.

Fig. 3 Current ripple with different filter inductors.

The SS operating mode allows a reduction of the switching losses but with the
drawback of increasing the conduction losses, as theRootMeans Square (RMS) of the
current increases. In order to take advantage of this operating mode, the switching
frequency of the converter is increased, reducing in this manner the conduction
losses and the filter components; therefore further increasing the power densities of
the converter.

3 Model Approach

In this research, a dimensional reduction of the data used by the classification model
has been done. The classification model aims to detect and distinguish the operating
mode of the converter, between HS and SS mode. Three different dimensional
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reduction techniques are applied with the aim of reducing the computational cost of
the classifier and improving the performance and efficiency.
In the figure 4, the steps followed to build the classification model are shown.

First, the simulation data is obtained and pre-processed to obtain more significant
parameters which provide detail information about the converter operating mode.
Then, the reduction of the data is applied and finally the classification algorithms
are used to determine if the converter is in either HS or SS mode.

Fig. 4 Model approach.

3.1 Dataset

The dataset used in this work is obtained from simulation results of the synchronous
rectified boost converter by using the LTSpice simulation software. With the aim of
obtaining closer results to the real circuit, the transistors models from the manufac-
turer have been used.
Up to 80 simulations have been done with the proposed circuit of the figure 1.

The converter is operated in both HS and SS modes. To allow reproducibility of the
experiments and results, the converter keeps unchanged and just the applied load is
varied. The complete dataset is compound of 50% of HS data and the other 50% of
SS data.
The dataset is made up from the following signals measured in the circuit:

• Input voltage: a constant input voltage of 200 V is applied to the circuit.
• Output voltage: the output voltage of the converter is kept at 400 V, allowing a
ripple from 390 V up to 410 V.

• Switching node voltage (Vsw node figure 1): at this node, the voltage varies from
0 V when the low-side switch is on up to 400 V when the high-side switch is
on. The generated signal is square with a frequency varying from 80 kHz up to 2
MHz.

• Inductor current: is a triangular waveform. The average current depends on the
output load and the current ripple depends on the switching frequency. For a
constant inductance value, when the switching frequency is higher, the current
ripple is lower, while it increases as the switching frequency decreases. In HS
mode, the ripple is between 10 % to 30 % while in SS mode, the ripple increases
above 200 %.

• Output current: is constant, filtered by the inductor and capacitor, and its value
depends on the connected load to the converter.
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Then, from this initial dataset, a pre-processing is done for the purpose of ob-
taining more significant measurements: the base for this pre-processing is the raw
data of the switching node voltage (Vsw); then, the first and second derivative are
calculated, removing the on- and off-states while keeping the information of the
commutations.
Furthermore, the rising and falling edges of the Vsw are isolated, as shown in the

figure 5. This allows to focus the model on the transitions, which provides details
of the operating mode, either HS or SS mode. The rising and falling times are also
obtained (tr and tf ).
Moreover, the first and second derivatives are also applied to the rising and falling

edge signal explained above. Additionally, the integral of the edges is calculated.

Fig. 5 Rising and falling edge of the switching node voltage, in dashed blue, and the original signal
in continuous red.

As described, 8 signals are obtained from the Vsw: the raw data (red signal in
figure 5), the first and the second derivatives of the raw data, the rising/falling edge
data (dotted blue signal in figure 5), the first and second derivatives of rising/falling
edge data, the rising edge integral (area at the rising edge, ar, in figure 5) and the
falling edge integral (area at the falling edge, af, in figure 5).
Moreover, the following statistics and indicators are calculated from the 8 obtained

signals: average, standard deviation, variance, co-variance, Root Mean Square and
Total Harmonic Distortion (THD). Resulting in a matrix of 8x6 for each of the 80
simulations.
Moreover, previous application of the dimensional reduction algorithms, the data

has been parameterized.

3.2 Methods

The dimensional reduction algorithms used in this research are the self-organizing
map (SOM), the correlation matrix and the principal component analysis (PCA).
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3.2.1 Self-organizing map (SOM)

Self-organizing maps learn to cluster data based on similarity, topology, with a
preference of assigning the same number of instances to each class. Self-organizing
maps are used both to cluster data and to reduce the dimensionality of data [24].
In SOM method, the dimensional reduction is completed by visualization tech-

niques. The procedure is executing the SOM algorithm and with the obtained map
results for each variable and taking into account the similarity, the reduction is
accomplished by discarding the less convenient variable.

3.2.2 Correlation matrix

A correlation matrix is a table showing correlation coefficients between variables.
Each cell in the table shows the correlation between two variables. A correlation
matrix is used to summarize data, as an input into a more advanced analysis, and as
a diagnostic for advanced analyses [18].

3.2.3 Principal component analysis (PCA)

Principal component analysis (PCA) is one of the classical dimensionality reduction
algorithms, which guarantees the minimum mean square error and gains linearly
independent vectors as the basis of subspace [18].

3.3 Classification model

3.3.1 Multilayer Perceptron

A multilayer perceptron is an artificial neural network with multiple hidden layers
of neurons. The structure is the following: one input layer, with the input features to
the algorithm, then the multiple hidden layer which have neurons with an activation
function, and one output layer, which number of neurons depends on the desired
outputs. All these layers are connected in between by weighted connections that are
tuned with the aim of decreasing the error of the output [25, 11, 7].

3.3.2 Linear Discrimination Analysis

This method projects the data from a high dimensional space into a low-dimensional
space. This method uses a weight vector W, which projects the given set of data
vector E in such a way that maximizes the class separation of the data but minimizes
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the intra-class data [27, 10]. The separation is good when the projections of the class
involve exposing long distance along the direction of vector W [21, 6].

3.3.3 Support vector machine

The algorithm tries to find two parallel hyper-planes that maximize the minimum
distance between two class of samples [20]. Therefore, the vectors are defined as
training instances presented near the hyperplane and the projection of the dataset is
done in a high dimensional feature space using a kernel operator [20].

3.3.4 Ensemble

The term ensemble is used to definemultiple classificationmethodswhich are used in
combination with the aim of improving the performance over single classifiers [16].
They are commonly used for classification tasks. The ensemble does a regularization,
process of choosing fewer weak learners in order to increase predictive performance
[28].

3.4 Experiments description

The experiments carried out aims to show the performance of the classification
algorithms and to validate the improvement achieved by the dimensional reduction.
First, the dataset is divided into two different groups. The first group, that contains

75% of the generated data, is used to train the proposed models; while the rest, 25 %
of the dataset, is used to validate the proposed algorithms. It is important to remark
that the separation is done randomly.
The following algorithms are trained and then validated with the previously

mentioned datasets:

• Multilayer perceptron (MLP): uses the Levenberg-Marquardt backpropagation
algorithm with an hidden layer with 1 up to 10 neurons.

• Linear discrimination analysis (LDA): the used type is the regularized LDA,
where all the classes have identical co-variance matrix.

• Support vector machine (SVM): The linear kernel function has been used. The
classifier has been trained using the standardized predictors, which centers and
scales each predictor variable by the corresponding mean and standard deviation.

• Ensemble: the adaptive logistic regression has been used. This type is commonly
applied to binary classification. The number of cycles has been varied in steps of
10 from 10 up to 100. The weak-learners used function is the decision tree.

Finally, once the different models are trained, the models are validated using the
previously separated 25 % of the data. This is done to verify the correct functionality
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and performance of the proposed models. The classification results obtained from
the models are then compared with the validation data and by using a confusion
matrix, the different statistics are calculated.
In a following step, the proposed dimensional reduction methods are applied

to the dataset. The different models are used again with this reduced data and the
performance is measured. The dimensional reduction methods used are:

• SOM: Train with size of 20 two-dimensional map.
• Correlation matrix: the values close to 1 or -1 indicate that there is a linear
relationship between the data columns and they can be removed, leaving the
values that are equal or close to 0, that suggest that these data are not related. The
chosen limit to differentiate the variables is 0.33.

• PCA: a new matrix is created with different weights of the data. The data in this
matrix has no relation with the input data.

4 Results

The table 1 shows the classification performance of the model approach by apply-
ing different dimensional reduction methods. When no reduction is used, the best
achieved performance was by the MLP7 with 97.06 % of accuracy while when us-
ing the dimensional reduction methods, the accuracy increases up to 100% of right
classification.
The obtained data reduction by the different applied techniques is the following:

• SOM: a reduction of 33 variables has been achieved, meaning that 70% of the
data is removed.

• Correlation matrix: in this case, 37 variables are discarded, reducing the size of
the data matrix by 78%.

• PCA: a new matrix of data has been created with different weights of the param-
eters.

As summary, the performance and accuracy in percentage that each classification
technique achieves with the dimensional reduction of the input data is shown in the
table 1.

5 Conclusions and future works

In this research different dimensional reductionmethods are applied to a classification
model used to detect the operating mode of a synchronous rectified boost converter
with the aim of increasing the classification accuracy and reducing the computational
cost.
The used dataset is obtained from the simulation of the synchronous rectified boost

converter and the most significant variables are selected to perform the classification.
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Table 1 Summary of the results.
Classification Dimensional reduction methods
method

Without reduction SOM Corr. Matrix PCA
MLP1 81.54 89.47 91.89 28.57
MLP2 73.53 94.74 94.59 36.36
MLP3 62.26 94.74 94.59 27.78
MLP4 55.88 100 100 42.10
MLP5 79.41 86.11 94.60 35.00
MLP6 60.29 92.11 92.15 52.94
MLP7 97.06 100 97.30 23.53
MLP8 73.53 92.11 94.59 42.10
MLP9 86.77 97.37 100 38.89
MLP10 52.94 100 97.30 21.74
SVM 77.94 94.74 91.89 39.29
LDA 60.29 86.84 94.59 46.43
Ensemble10 51.47 97.37 89.20 96.43
Ensemble20-100 51.47 94.74 86.48 96.43

In order to compare the performance of the dimensional reduction, three different
algorithms have been applied: SOM, correlation matrix and PCA. The achieved
dimensional reduction of the data is 70% when using SOM and 78% when using the
correlation matrix. In case of using PCA, a new matrix has been built.
The results achieved by the classification models are compared, when no dimen-

sional reduction model is used and when the proposed methods are applied. When
SOM algorithm is used, the performance is increase up to 100% with the MLP4,
MLP5 and MLP10 classifiers. Moreover, the correlation matrix increases the accu-
racy of the MLP4 and MLP9 classifiers up to 100%. Although the accuracy with the
PCA method applied to the models does not achieve the 100%, the performance of
the Ensemble classifiers is increased from 51% up to 96%.
In addition to the increase of the accuracy, the dimensional reduction reduces the

input dataset by 70% in case of using SOM and by 78% while using the correlation
matrix.
The research in this field will follow by the development of a hybrid intelligent

model that aims to further improve the accuracy of the classifiers. Moreover, the real
circuit will be implemented and the models will be applied to real measured data
from the power converter.
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