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Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança - 5300-253,

Portugal. {beatrizflamia, apereira}@ipb.pt, arocha@dps.uminho.pt

Abstract. Clustering algorithm has the task of classifying a set of el-
ements so that the elements within the same group are as similar as
possible and, in the same way, that the elements of different groups (clus-
ters) are as different as possible. This paper presents the Multi-objective
Clustering Algorithm (MCA) combined with the NSGA-II, based on two
intra- and three inter-clustering measures, combined 2-to-2, to define
the optimal number of clusters and classify the elements among these
clusters. As the NSGA-II is a multi-objective algorithm, the results are
presented as a Pareto front in terms of the two measures considered in
the objective functions. Moreover, a procedure named Cluster Collab-
orative Indices Procedure (CCIP) is proposed, which aims to analyze
and compare the Pareto front solutions generated by different criteria
(Elbow, Davies-Bouldin, Calinski-Harabasz, CS, and Dumn indices) in
a collaborative way. The most appropriate solution is suggested for the
decision-maker to support their final choice, considering all solutions pro-
vided by the measured combination. The methodology was tested in a
benchmark dataset and also in a real dataset, and in both cases, the
results were satisfactory to define the optimal number of clusters and to
classify the elements of the dataset.
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1 Introduction

Clustering is one of the most widely used methods for unsupervised learning. Its
main purpose is to divide the elements of a dataset into groups (clusters) based on
the similarities and dissimilarities of the elements. A good clustering algorithm
should maintain high similarity within the cluster and higher dissimilarities in
distinct clusters. Most current clustering methods have also been proposed for
integrating different distance measures to achieve the optimum clustering di-
vision. However, the weights for various distance measures are challenging to
set [15]. So, a multi-objective optimization algorithm is a suitable strategy for
this problem. Besides, in many cases, the estimation of the number of clusters
is difficult to predict due to a lack of domain knowledge of the problem, clusters
differentiation in terms of shape, size, and density, and when clusters are over-
lapping in nature [9]. Thus, providing a set of optimal solutions (multi-objective
approach) instead of a single one (single-objective approach) is more effective,
mainly in problems where human knowledge (decision-maker) is essential.

The advantage of using multi-objective strategies in the clustering task is to
combine multiple objectives in parallel. In this way, it is possible to consider dif-
ferent distance measures and cluster quality parameters to provide a more robust
and flexible algorithm. Thus, some research deeply explored these advantages in
recent years. Kaur et al. [14] explore compactness and connectedness cluster-
ing properties through a multi-objective clustering algorithm based on vibrating
particle system; Nayak et al. [17] present a multi-objective clustering combined
with the Differential Evolution algorithm, based on three objectives related to
closeness and separation between the cluster elements and also minimization of
the number of the clusters; Liu et al. [15] present two multi-objective cluster-
ing approaches based on the combination of multiple distance measures; Dutta
et al. [9] proposes a Multi-Objective Genetic Algorithm for automatic cluster-
ing, considering numeric and categorical features, that take advantage of the
local search ability of k-means with the global search ability of MOGA to find
the optimum k, intending to minimize the intra-cluster distance and maximize
the inter-cluster distance. All of these presented approaches promise results for
classifying elements of different datasets.

The approach proposed in this work explores different clustering measures
(two intra- and three inter-clustering measures), combined 2-to-2, to develop a
flexible and robust multi-objective clustering algorithm, not dependent on the
initial definition of the number of centroids. For this, a Multi-objective Cluster-
ing Algorithm (MCA) was developed combined with the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [6], with two intra- and three inter-clustering
measures in parallel, minimizing the intra-clustering measure and maximizing
the inter-clustering measure. For the six possible combinations, a Pareto front
was generated, and the solutions were evaluated by five clustering validity in-
dices (CVIs): Elbow (EI), Davies-Bouldin (BD), Calinski-Haranasz (CH), CS,
and Dumn (DI) indices, through the Cluster Collaborative Indices Procedure
(CCIP). This evaluation aims to refine the Pareto front solutions and support
the decision-makers final choice based on different metrics proposed by each
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CVIs, collaboratively. The collaborative algorithm is very helpful in case the
decision-maker does not know enough to select one solution from the Pareto
front set since the method can suggest the most appropriate solution among the
ones that belong to the Pareto front sets.

This paper is organized as follows. After the introduction, Sect. 2 describes
the clustering measures, which are divided into intra- and inter-clustering mea-
sures. After that, Sect. 3 presents the clustering validity indices (CVIs). Sec-
tion 4 presents the algorithm developed, the Clustering Multi-objective Algo-
rithm (MCA), and the Cluster Collaborative Index Procedure (CCIP). The
results and discussions are presented in Sect. 5. Finally, Sect. 6 presents the
conclusion and future steps.

2 Clustering Measures

To classify the elements of the dataset into different groups, it is necessary to
establish some measures for computing the distances between elements. The
choice of distance measures is fundamental to the algorithm’s performance since
it strongly influences the clustering results. In this work, different clustering
measures are considered to automatically define the optimal number of clusters,
minimizing the intra-cluster distance and simultaneously maximizing the inter-
cluster distance in a multi-objective approach.

Consider a dataset X = {x1, x2, ..., xm}, where each observation is a |d|
- dimensional real vector. The clustering algorithm consists of partitioned the
elements of X into k subsets, it is clusters, in which each cluster set is defined as
Cj = {xj

1, x
j
2, ..., x

j
i} with j = {1, ..., k}, in other words, xj

i represents an element
i that belongs to cluster j and, on the other hand, xt

l represents another element
l that belongs to cluster t. Following, Sect. 2.1 and Sect. 2.2 present the intra-
and inter-clustering measures considered, respectively.

2.1 Intra-clustering Measures

Intra-clustering measures refer to the distance among elements of a given clus-
ter. There are many forms to compute the intra-clustering measure. Based on
previous studies [3], two of them are explored in this paper, as presented bellow:

– SMxc: mean distances between the elements belonging to cluster Cj until
its centroids, cj .

– FNc: sum of the furthest neighbor distance of each cluster cj , where x
j
i and

xj
l belong to the same cluster cj .

2.2 Inter-clustering Measure

In turn, inter-clustering measures define the distance between elements that
belong to different clusters or about the distance between different centroids cj .
In this case, three inter-clustering measures were considered [3]:
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– Mcc: mean of the distance of all centroids .
– MFNcc: mean of the distances of the furthest neighbors among the different

clusters, in terms of the number of clusters.
– MNNcc: mean of the nearest neighbor distance between elements of the

different clusters.

3 Cluster Validity Indices

Cluster Validity Indices (CVIs) define a relation between intra-cluster cohesion
and inter-cluster separation to assess the clustering separation quality. A CVI
is expected to be able to distinguish between superior and inferior potential
solutions, to guarantee the efficiency of the clustering algorithm [13]. The CVI
outcome depends only on the partition provided by the clustering algorithm
given a specific number of groups [10]. An optimal solution for one specific CVI
could not be the optimal solution for another CVI, since each of them has short-
comings and biases [12]. In this way, there are several CVIs available in the
literature, as well as several comparative studies between them, as can be seen
in [1,10]. For this reason, in this work, it was chosen to use multiple CVIs,
through a collaborative strategy, to reduce their shortcomings and biases. Thus,
five of them were chosen, the classical ones according to the literature, and they
are described below.

3.1 Elbow Index

To use the Elbow index (EI) it is necessary to evaluate the Within-Cluster Sum
of Square (WCSS), which means the sum of the Euclidean distance between
the elements to their centroids j, for each cluster, given by the Equation (1).
Therefore, the WCSS is the sum of all individual WCSSj . When the number
of clusters k is less than the optimal number of clusters, WCSS should be high,
and when it increases, WCSS will follow an exponential decay. At some point,
the decay will become almost linear and WCSS will continue to fall smoothly.
The first point that deviates from the exponential curve is considered the elbow,
and the associated number of clusters is selected as the optimum. A simplified
graphic approximation to find the elbow is to draw a straight line between the
WCSS values of the first (with k = kmin) and last (k = kmax) cluster solutions
and calculate the distance between all the points on the curve and the straight
line. Thence, the elbow is the point with the highest distance to the line [7].

WCSSj =

#Cj∑
i=1

D(xj
i , cj) (1)

3.2 Davies-Bouldin Index

The Davies-Bouldin index (DB) [1], estimates the cohesion based on the distance
from the elements xj

i in a cluster to its centroid cj and the separation based on



A Collaborative Multi-objective Approach for Clustering 5

the distance between centroids D(cj , ct). First, it is necessary to evaluate an
intra-cluster measure represented by the mean distance between each element
within the cluster xj

i and its centroid cj , which is a dispersion parameter S(ck),
as Equation (2),

S(cj) =

#Cj∑
i=1

D(xj
i , cj)

#Cj
(2)

in which D(xj
i , cj) is the Euclidean distance between an element xj

i , that belong
to the cluster j, and its centroid cj . Thus, the DB index is given by Equation (3),
where D(cj , ct) is the Euclidean distance between the centroid cj , and the cen-
troid ct, and the k is the number of clusters. The smallest DB indicates the
optimal partition.

DB =
1

k

k∑
j=1

max
t=1,...k,j ̸=t

{
S(cj) + S(ct)

D(cj , ct)

}
(3)

3.3 Calinski-Harabasz Index

The Calinski-Harabasz (CH) [4] is a ratio-type index where the cohesion is esti-
mated based on the distance from the elements in a cluster to its centroid [1,4].
First, it is necessary to calculate the inter-cluster dispersion (BGSS), which mea-
sures the weighted sum of squared distance between the centroids of a cluster,
cj , and the centroid of the whole dataset, denoted as X, which represents the
barycenter of the X dataset. The BGSS is defined as Equation (4)

BGSS =

k∑
j=1

#Cj ×D(cj , X) (4)

The second step is to calculate the intra-cluster dispersion for each cluster j,
also given by the sum all individual within group sums of squares, WCSS, as
defined in Equation (1). Thus, the CH index is defined as Equation (5):

CH =
#X − k

k − 1
× BGSS

WCSS
(5)

3.4 CS Index

The CS index [5] is a ratio-type index that estimates the cohesion by the cluster
diameters and the separation by the nearest neighbor distance. This measure is
a function of the ratio of the sum of within-cluster scatter to between-cluster
separation. The smallest CS, defined by Equation (6) indicates a valid optimal
partition [5].
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CS =

k∑
j=1

{ 1

#Cj

∑
xj
i∈#Cj

max
xj
l∈Cj

{D(xj
i , x

j
l )}}

k∑
j=1

{ min
t∈1:k,t ̸=j

{D(cj , ct)}}

(6)

3.5 Dumn Index

The Dumn index (DI) [8] is a ratio-type index where the cohesion is estimated
by the nearest neighbor distance and the separation by the maximum cluster
diameter. Thus, a higher DI will indicate compact, well-separated clusters, while
a lower index will indicate less compact or less well-separated clusters [8]. So,
DI is defined as the rate between the minimum distance between elements of
different clusters, it is xj

i and xt
l , and the largest distance between elements of

the same cluster, it is xj
i and xj

l (sometimes called cluster diameter), as defined
in Equation (7).

DI =

min
j,t∈1:k

{D(xj
i , x

t
l)}

max
j=1:k

{D(xj
i , x

j
l )}

(7)

4 Proposed Algorithms

This section presents the Multi-objective Clustering Algorithm (MCA) that, to-
gether with the NSGA-II, consists of evaluating intra- and inter-clustering mea-
sures to define the optimal number of cluster partitions (centroids) and their
optimal position, minimizing the intra-cluster distance and maximizing the inter-
cluster distance. As we are considering six pairs of measures, the results of the
approach are six Pareto fronts, one from each pair of solutions. Furthermore,
a procedure denoted as Cluster Collaborative Indices Procedure (CCIP) is pro-
posed, which aims to combine and refine the Pareto front solutions using differ-
ent CVI criteria, in a collaborative way. Thence, the most appropriate solution,
according to all CVIs, is selected to support the decision-maker’s final choice.

4.1 Multi-objective Clustering Algorithm

To explain the MCA, consider the dataset X = {x1, x2, ..., xm} composed of
m elements which are intended to partition X into k groups (clusters). As the
MCA can automatically define the optimal number of cluster partitions, it is
necessary to define the range of possible partitions; it is the minimum and max-
imum number of centroids k. So, it was defined kmin as the minimum number of
centroids, and kmax = [

√
m] the maximum number of clusters that the dataset
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can be partitioned, where kmax corresponds to the integer value of the square
root of the number of elements in the dataset X.

Next, the MCA randomly generates kmax ordered vector belonging to the
domain of X, which are the possible candidates for the centroids. For each can-
didate, a random value ω belonging to [0, 1] is associated, which will be used to
select the centroids based on a threshold value γ. The centroids candidates that
satisfy the constraint ω > γ advance to the next selection phase.

Following, the Euclidean distance between all elements from X to all cen-
troid candidates k is evaluated. The elements closest to each centroid k define a
cluster set C. To avoid small clusters sets, the centroids k that have less than α
associated elements, in which α = [

√
m], are removed from the set of centroids

and the elements become part of one remaining centroid, which is the closest
one in terms of Euclidean distance of the elements. The remaining centroids are
denoted as the centroid of each subset ck, in which X is partitioned.

After all elements are associated with a centroid cj , a position must be set at
each coordinate to improve the performance of the algorithm. Thus, the coordi-
nates of each centroid assume the coordinates of its cluster barycenter, composed
of its elements, xj

i .
Next, the objective functions values fh of the problem are calculated, for

h = 2, where f1 represents an intra-clustering measure, chosen among the ones
presented at Sect. 2.1 and f2 represents an inter-clustering measure, chosen
among the ones presented at Sect. 2.2. Therefore, The NSGA-II algorithm [6]
was used to define the set of optimal solutions to the problem, that is, to define
finding the Pareto front. By default, the NSGA-II is a minimization algorithm,
so the f2 values are considering negative, respecting the principle of min f2 =
−max f2 [6].

4.2 Cluster Collaborative Indices Procedure

To evaluate the quality of the solutions of the Pareto fronts generated, the Clus-
ter Collaborative Indices Procedure (CCIP) was developed. In this procedure,
each solution of each Pareto front was evaluated by each CVIs criterion. As
previously said, an optimal solution for one specific CVI could not be opti-
mal for another CVI [12]. So, after evaluating each solution according to each
CVI, the CCIP selects the β best solutions according to each CVIs criterion.
Next, the intersection solutions between each Pareto front are evaluated, that is
FS = PF1∩PF2∩PF3...PFb, where b is the maximum number of Pareto fronts
to be evaluated, and FS defines the set of final optimal solutions composed of
the solution provided by the different Pareto fronts. In this way, the solutions
defined in FS are among the best β of each pair of clustering measures combina-
tion, according to all five CVIs. After that, each CVI indicates its best solution
from the remaining set FS to assist the decision-maker in the solution selection.
The solution with the most indications is considered the most appropriate to be
selected. In case of a tie, the set of solutions indicated is considered the most
appropriate for the problem, and it is up to the decision maker to take the final
decision.
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5 Results and Discussion

To evaluated the approaches proposed, two datasets are considered. For both
dataset, the MCA parameters used were kmin = 2, kmax = [

√
m], γ = 0.4. Since

MCA is a stochastic algorithm, 10 runs was considered for each measure com-
bination. Regarding NSGA-II parameters, a population equal to 100, maximum
generation equal to 200 × nf were used, where nf is the number of features,
as default [16]. For NSGA-II, the algorithm stops when the geometric mean of
the relative change in spread value over 100 generations is less than 10−4, and
the final spread is less than the mean spread over the past 100 generations, as
defined in gamultiobj function [16] documentation.

5.1 Results from Dataset 1

The dataset 1 is a benchmark dataset composed of 300 elements and 2 attributes,
available at [11], which indicates 3 clusters as the optimal solution by a sin-
gle objective approach. Thus, the two intra-clustering measures (SMxc and
FNc) are combined with the three inter-clustering measures (Mcc, MFNcc,
and MNNcc), 2-to-2, with the first objective function being an intra-clustering
measure, and the second objective function being an inter-clustering measure.
This combination results in six Pareto fronts, but with different ranges since they
involve measures of sums and means. Thus, to have a fair comparison between
the Pareto fronts, they have been normalized. The results of this manipulation
are presented in Figure 1a and Figure 1b illustrating the same six Pareto fronts,
but also showing the number of clusters k on the z-axis.

Note that, according to the algorithm parameter, the maximum number of
k allowed is 17. However, in the model solution, 14 was the maximum number
of clusters in a Pareto front, provided by the combination SMxc and MNNcc,
while for the other combinations, the maximum k is 13. As for the number of
solutions, 456 solutions were found, being 91, 78, 97, 69, 61, and 60 solutions,
respectively for the combinations SMxc − Mcc, SMxc − MFNcc, SMxc −
MNNxx, FNc −Mcc, FNc −MFNcc, and FNc −MNNcc. It is important
to highlight that all solutions presented in Figure 1 are optimal for the problem
since they all belong to a non-dominated solution set of solutions of their pair
of measures.

After that, these solutions were evaluated by the five CVIs indices (EI, DB,
CH, CS, and DI). Since the solution is intended to be refined according to the
criteria of each CVI, β = 0.75 was defined, which means that the 75% best
solutions according to each CVI are kept, and the intersection set of these re-
maining solutions is calculated. Figure 2 illustrates the results of the Pareto
fronts. Thus, Figure 2a illustrates the Pareto fronts result, and Figure 2b illus-
trates the Pareto fronts with the number of cluster k indication on the z-axis. In
this case, it is possible to note that the maximum k is 9. So, all solutions with
k larger than 9 were removed, as well as the other solutions that do not belong
to the 75% best solutions for each CVI. Thus, the FS set is composed by 118
solutions, it is, 16 for the combinations SMxc−Mcc, 16 for SMxc−MFNcc,
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(a) Pareto fronts (b) Figure 1a with k indication

Fig. 1: Pareto fronts of dataset 1

37 for SMxc−MNNxx, 20 for FNc−Mcc, 14 for FNc−MFNcc, and 15 for
FNc−MNNcc, which represent a 74% reduction relatively to the initial set of
optimal solutions.

(a) Pareto fronts with β = 0.75 (b) Figure 2a with k indication

Fig. 2: Pareto fronts of dataset 1, considering β = 0.75

After that, each CVI identifies its best solution from the remaining set. Thus,
the solution with the most indications is considered the most appropriate to be
selected. Furthermore, in case of a tie, the set of solutions indicated is also consid-
ered the most appropriate for the problem. Considering the remaining solutions,
in dataset 1, there was a tie between four solutions provided by indication of the
indices: DB, CH, CS. Figure 3 illustrates these four solutions. Although they all
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divide the dataset into 3 sets, the centroids’ position and the distribution of the
elements are different.

Solution 1 and 2 are provided by the objective function 1 being the SMxc
and the objective function 2 being the Mcc; while solution 3 and 4 are pro-
vided by SMxc and MNNcc, objective functions 1 and 2, respectively. Thereby,
solution 1 centroids are denoted as c1 = (0.019,−0.032), c2 = (5.978, 1.004),
and c3 = (2.713, 4.104), that can be analyzed in Figure 3a. Solution 2 cen-
troids are c1 = (−0.008,−0.065), c2 = (6.011, 0.977), and c3 = (2.719, 4.020)
- Figure 3b. Solution 3 centroids are c1 = (0.019,−0.032), c2 = (5.978, 1.003),
c3 = (2.713, 4.105) - Figure 3c. And, solution 4 centroids are defined as c1 =
(0.019,−0.032), c2 = (5.978, 1.004), and c3 = (2.713, 4.105) - Figure 3d. Thus,
according to the results, there is no doubt that the most appropriate number of
k is 3, which goes to the solution of [11]. Thence, it is only up to the decision-
maker to choose (if necessary) the distribution of the elements for the problem
or just select one of the four solutions, that are approximately equal solutions.

(a) Solution 1 (k = 3) (b) Solution 2 (k = 3)

(c) Solution 3 (k = 3) (d) Solution 4 (k = 3)

Fig. 3: Final Pareto front solutions (dataset 1)
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5.2 Results from Dataset 2

To test the approach on a real case study, the methodology previously presented
for dataset 1, was also applied for the dataset 2. Dataset 2 is a real case study
composed of 291 elements and 2 instances, and it is provided by the MathE
project [2]. The MathE project aims to provide any student all over the world
with an online platform to help them to learn college mathematics and also sup-
port students who want to deepen their knowledge of a multitude of mathemati-
cal topics at their own pace. More details about the MathE project are described
in [2], and can also be found on the platform Website (mathe.pixel-online.org).
One of the particularities of the MathE platform is the Student’s Assessment
section, which is composed of multiple-choice questions for the students to train
and practice their skills. The answers provided by each student over the 3 years
that the platform has been online define the dataset 2. Therefore, each dataset
element refers to one student who used the Student Assessment section. And
the first instance represents the rate of the correct answer (x-axis) provided by
the student’s history, and the second instance represents the number of ques-
tions answered by this student (y-axis) while MathE user. To support the result
analysis, the y-axis, which initially varies from 1 to 42 (number of questions
answered), has been normalized by range; it is between 0 to 1.

Preliminary studies involving cluster classification and MathE students’ data,
but using a single objective approach, did not show satisfactory results [2]; that
is, the patterns extracted did not provide the necessary information to be used
by the project. This is because the single objective algorithm only provides a
single solution, which, although optimal, is not relevant to the decision-maker’s
request. For this reason, the dataset 2 is an excellent example to be analyzed
with the proposed approach since the choice of the optimal solution is strongly
dependent on the sensitivity of the decision-maker.

The methodology described for dataset 1 is applied to dataset 2, i.e., six
Pareto fronts were generated and normalized, the 75% best solutions for each
CVIs were considered, and the intersection set of these solutions was evaluated.
In this case, the initial set of all Pareto fronts is composed of 312 solutions
(50 of SMxc − Mcc, 46 of SMxc − MFNcc, 54 of SMxc − MNNxx, 60 of
FNc −Mcc, 48 of FNc −MFNcc, and 54 of FNc −MNNcc), and after the
refinement, the final set FS is composed by 64 solutions (21 of SMxc − Mcc,
18 of SMxc−MFNcc, 7 of SMxc−MNNxx, and 18 of FNc−MNNcc). An
80% reduction in the number of optimal solutions is verified and the result of
this approach is presented in Figure 4a. After that, each CVI indicates its most
appropriated solution. For dataset 2 each CVI indicated one different solution,
as presented in Figures 4b- 4f, in which solution 1 was indicated by EI, solution 2
by DB, solution 3 by CH, solution 4 by CS, and solution 5 by DI. Thus, solutions
1, 2, and 3 were provided by objective function 1 equal to SMxc and objective
function 2 equal to Mcc. Whereas, solutions 4 were given by objective function
1 equal to SMxc and objective function 2 equal to MNNcc. And, solutions 5
were resulted by objective function 1 equal to FNc and objective function 2
equal to MFNcc. Thereby, the centroids of solution 1 are c1 = (0.958, 0.058)

https://mathe.pixel-online.org
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and c2 = (0.391, 0.335), in Figure 4b. The centroids of solution 2 are c1 =
(0.152, 0.153), c2 = (0.636, 0.245), c3 = (1, 0.004), and c4 = (0.365, 0.705), as
depicted in Figure 4c. The centroids of solution 3 are c1 = (0.000, 0.033), c2 =
(1, 0.023), c3 = (0.215, 0.321), c4 = (0.621, 0.239), and c5 = (0.546, 0.866), as
can be seen in Figure 4d. The 4 solution centroids are c1 = (0.390, 0.333), and
c2 = (0.964, 0.071) - Figure 4e. The centroids of solution 5 are c1 = (0.060, 0.120),
c2 = (0.284, 0.117), c3 = (0.445, 0.111), c4 = (0.635, 0.137), c5 = (0.965, 0.057),
c6 = (0.194, 0.435), c7 = (0.469, 0.366), c8 = (0.720, 0.396), c9 = (0.298, 0.777),
and c10 = (0.629, 0.831), in Figure 4f.

Knowing the profile of students enrolled in the MathE platform, it is known
that there is a diversity of students with different backgrounds (country, age,
course and university year attending, and level of difficulty in Mathematics,
among others). Therefore, a division into a few groups is not a significant result
for the project, given the diversity of the public, especially in terms of perfor-
mance in mathematical disciplines, as already explored in previous works. Thus,
considering the previous information and interest of the MathE Project, solution
5, in Figure 4f, is chosen as the most appropriate real one.

In solution 5, the dataset was divided into 10 clusters. In terms of the number
of questions answered, clusters 1 to 5 are composed of students who answer a few
questions. In contrast, clusters 6, 7, and 8 comprise students who answer a larger
number of questions than the previously mentioned groups. Finally, clusters 9
and 10 are made up of students who answered the most quantity of questions
on the platform. In terms of performance (correct answers rate), considering
clusters 1 to 5, the students’ performance increases gradually for cluster 1 to
cluster 5, so in cluster 1 almost all students have a success rate equal to 0, while
in cluster 5 almost all students had 1. Here it is important to point out that
dataset 2 is composed of multiple equal entries (student with an equal number
of questions answered and equal performance), which overlap on the graph; for
this reason, cluster 5, although it seems to be composed by few students, actually
includes 22 students, with 17 having 1 question answered and 1 correct answer.
In clusters 6, 7, and 8 the students used the platform more than in the previous
groups. In this case, the students of cluster 6 performed less than 0.35, whereas
the students of cluster 7 performed between 0.35 and 0.6, and the students who
performed higher than 0.6, are in cluster 8. In clusters 9 and 10, the students
answered more questions. Regarding their performance, in cluster 9 they have a
performance lower than 0.45, while in cluster 10 the student rate performance
is higher than 0.45. In this way, the division provided by solution 5 can be used
to extract valuable characteristics about the student’s performance according to
the group to which they belong.
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(a) Pareto front (dataset 2) (b) Solution 1 (k=2)

(c) Solution 2 (k=4) (d) Solution 3 (k=5)

(e) Solution 4 (k=2) (f) Solution 5 (k=10)

Fig. 4: Pareto front and solutions (dataset 2), considering β = 0.75

6 Conclusion and Future Works

The advantage of using multi-objective strategies in the clustering task is to
combine multiple objectives in parallel, such as different distance measures. This
paper explored clustering measures to develop the Multi-objective Clustering
Algorithm. The results of MCA consist of a set of Pareto front solutions, provided
by the pair of measures, that were considered as the objective functions of a
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bi-objective optimization problem. The problem aimed to minimize the intra-
clustering measure and maximize the inter-clustering measure using the NGSA-
II. In this case, the objective function 1 refers to the intra-clustering measures,
which could be the measures SMxc or FNc; and the objective function 2 refers
to the inter-clustering measures, which could be any one of the measures Mcc,
MFNcc, or MNNcc. Besides, a procedure denoted as Cluster Collaborative
Indices Procedure was proposed, aiming to compare and refine the Pareto front
solutions generated by the MCA and NSGA-II, using different criteria provided
by five CVIs: Elbow (EI), Davies-Bouldin (BD), Calinski-Haranasz (CH), CS,
and Dumn (DI) indices. Thus, the optimal β solutions were selected according
to each CVI, and the worst (1 − β) solutions of each CVI are removed. The
intersection set between each CVI β solution is calculated; finally, each CVI
indicates its most appropriate solution of the intersection set. The solution with
more indications is suggested to the decision-maker as the most appropriate one.

By the range and variability of each Pareto front generated, it is possible to
perceive the impact of combining different measures to solve a problem. Analyz-
ing the results of dataset 1, by Figure 1b, it is evident that only the combination
SMxc − MFNcc provided solutions with k = 14, whereas the combination
FNc−MFNcc does not have solutions with k less than 4. In this way, if only
one pair of measures were considered, the final solution was restricted to the op-
timum provided by the pair of measures combination. So, considering the results
of the six Pareto fronts, the final solution is enriched by the solution provided
by different measures. As already mentioned by [12], an optimal solution for one
specific CVI could not be the optimal solution for another CVI due to their
metrics. Considering this, choosing the most appropriate CVI for the problem
is not a simple task. The intersection strategy serves to refine the solutions and
ensure that all the remaining are the most appropriate β for each of the CVI, as
it is very hard to achieve a solution that is the best for all CVI.

The indication of the best CVI solution is useful to help the decision-maker
since even after selecting the most appropriate optimal solutions, there are still
many options left, and in certain cases, the decision-maker does not have enough
information about the data to quickly determine, among the set of optimal so-
lutions, the one that most represent the problem. According to [11], considering
a single objective strategy, the optimal solution for dataset 1 is 3 clusters, it is
k = 3. As shown in Figure 3, all the solutions indicated from dataset 1 have
k = 3, demonstrating the effectiveness of the proposed method in a benchmark
problem.

In the case of dataset 2, the data distribution is more complex than in dataset
1 [9], since the multiple points and clusters overlap, are not rounded shape, and
the elements are not as well separated as the dataset 1. Thus, for dataset 2, which
describes a real problem, the multi-objective strategy is much more effective than
the single one since in the multi-objective, it is possible to compare and choose
among a set of optimal solutions, the one that goes from meeting the patterns
that the decision-maker wants to extract from the dataset. For the dataset 2, the
decision maker’s knowledge is of great value in defining the solution to be used.
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Then, the proposed method is an asset in situations where the single objective
approach is insufficient.

In the future, it is expected to explore more deeply the intra- and inter-
clustering measures in multiple objective functions, as well as cluster splitting
and merging strategies to improve the quality of cluster partitioning.
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