
Machine-checked ZKP for NP relations: Formally Verified
Security Proofs and Implementations of MPC-in-the-Head
José Bacelar Almeida

University of Minho and INESC TEC

Braga, Portugal

Manuel Barbosa

Manuel L Correia

University of Porto (FCUP) and

INESC TEC

Porto, Portugal

Karim Eldefrawy

Stéphane Graham-Lengrand

SRI International

Menlo Park, California, United States

Hugo Pacheco

University of Porto (FCUP) and

INESC TEC

Porto, Portugal

Vitor Pereira

SRI International

Menlo Park, California, United States

ABSTRACT
MPC-in-the-Head (MitH) is a general framework that enables con-

structing efficient zero-knowledge (ZK) protocols for NP relations

from secure multiparty computation (MPC) protocols. In this paper

we present the first machine-checked implementations of MitH. We

begin with an EasyCrypt formalization that preserves the modu-

lar structure of the original construction and can be instantiated

with arbitrary MPC protocols, and secret sharing and commitment

schemes satisfying standard notions of security. We then formalize

various suitable components, which we use to obtain full-fledged

ZK protocols for general relations. We compare two approaches

for obtaining verified executable implementations. The first uses

a fully automated extraction from EasyCrypt to OCaml. The sec-

ond reduces the trusted computing base (TCB) and provides better

performance by combining code extraction with formally verified

manual low-level components implemented in the Jasmin language.

We conclude with a discussion of the trade-off between the for-

mal verification effort and the performance of resulting executables,

and how our approach opens the way for fully verified implemen-

tations of state-of the-art optimized protocols based on MitH.

CCS CONCEPTS
• Security and privacy→ Cryptography; • Theory of compu-
tation→ Logic and verification.

KEYWORDS
Zero-Knowledge; Secure Multiparty Computation; Formal Verifica-

tion; Implementation

ACM Reference Format:
José Bacelar Almeida, Manuel Barbosa, Manuel L Correia, Karim Elde-

frawy, Stéphane Graham-Lengrand, Hugo Pacheco, and Vitor Pereira. 2021.

Machine-checked ZKP for NP relations: Formally Verified Security Proofs

and Implementations of MPC-in-the-Head. In Proceedings of the 2021 ACM

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484771

SIGSAC Conference on Computer and Communications Security (CCS ’21),
November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3460120.3484771

1 INTRODUCTION
The MPC-in-the-Head (MitH) paradigm was introduced by Ishai,

Kushilevitz, Ostrovsky and Sahai [25] (IKOS) as a new foundational

bridge between secure multi-party computation (MPC) and zero-

knowledge proof (ZK) protocols. A ZK protocol for an NP relation
1

𝑅(𝑥,𝑤) can be seen as a two party computation where a prover P
with input (𝑥,𝑤) and a verifierV with input 𝑥 jointly compute the

boolean function 𝑓 (𝑥,𝑤) that accepts the proof if and only if𝑅(𝑥,𝑤)
holds. The MitH paradigm shows that there exists an efficiency
advantage in considering MPC protocols for 𝑛 > 2 and using a

commit-challenge-response transformation to obtain a ZK protocol.

This efficiency gain stems from two important observations: 1) that

𝜋 only needs to satisfy a weak notion of security that allows for

extremely efficient instantiations and, 2) that the round complexity

of 𝜋 has no impact in the final protocol, since 𝜋 is evaluated “in-

the-head”. A series of follow-up works [5, 9, 10, 13, 16, 18, 20, 22,

26] demonstrated the efficiency and flexibility of the MitH core

ideas, by exploring adaptations of this principle to specific MPC

protocols (e.g., with preprocessing and different trust models) and

different ZK protocols (e.g., with additional rounds). One notable

takeaway of these works is that MitH allows for instantiations that

can efficiently handle relations expressed as either arithmetic or

boolean circuits. Moreover, the MitH paradigm has been used to

create a new generation of post-quantum secure signatures such as

Picnic, a notable candidate to the NIST post-quantum competition.
2

In this work we explore the elegant simplicity and modularity

of the MitH paradigm to obtain an end-to-end machine-checked

development, including security proofs and formally-verified im-

plementations, for ZK protocols supporting general relations. We

focus on the MitH variant that can be instantiated with passively se-

cure secret-sharing-based MPC protocols that tolerate two corrupt

(i.e., semi-honest) parties. This allowed us to build on an existing

development that already provides a suitable instantiation for the

underlying MPC protocol, secret sharing and commitment schemes.

1
Intuitively: 𝑅 is efficiently computable and s.t. solutions, if they exist, are short.

2
https://microsoft.github.io/Picnic/

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2587

https://doi.org/10.1145/3460120.3484771
https://doi.org/10.1145/3460120.3484771
https://microsoft.github.io/Picnic/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460120.3484771&domain=pdf&date_stamp=2021-11-13

Our work paves the way for formally verified implementations

of more recent and optimized applications of the MitH paradigm.

To illustrate this, we show that our development is flexible enough

to allow for another instantiation based on (the passively secure

variant of) the secret sharing based protocol given by Maurer [27],

for which we also develop an optimized and formally verified im-

plementation. Our optimizations cover both simplifications of the

MitH construction and integration of verified high-speed assembly

code. We further discuss the implications of our work at the end of

this section. In more detail, our contributions are as follows:

• We formally specify and verify the IKOS foundational MitH re-

sult [25] and potential instantiations in EasyCrypt. The formaliza-

tion is modular and relies on standard components, such as MPC

protocols, secret sharing schemes and commitment schemes.

• We present two verified implementations for two different MPC

protocols. The first is an extension of the formalization of the

BGW protocol given in [19], fully automatically extracted to an

OCaml implementation. The second is a new machine-checked

EasyCrypt formalization of Maurer’s protocol [27], from which

we obtain a verified implementation by combining extracted

OCaml code with verified high-speed assembly developed us-

ing the Jasmin framework [2]. This simultaneously reduces the

trusted computing base (TCB) and improves performance.

• As themain innovations, we highlight that our work: 1) is the first

end-to-endmachine-checked implementation of a ZK protocol for

general relations; 2) gives the first formalization of foundational

ZK results such as reduction of soundness error by sequential

composition and simulation by rejection sampling; and 3) is the

first to integrate verified assembly generated using the Jasmin

framework with extracted verified code.

This version of the paper omits some details and discussions; the

full version is available at https://eprint.iacr.org/2021/1149.

Limitations. The formal proofs of security and correctness for

the various constructions are complete, but the functional correct-

ness proof for the Jasmin implementation covers only the addition

and multiplication gates; it is being extended to the other gates. The

TCB for the implementation based on BGW includes EasyCrypt and

the extraction mechanism, as well as unverified OCaml libraries

for multi-precision integers and cryptographic operations. For the

implementation based on Maurer’s protocol, the TCB includes Easy-

Crypt (we rely less on the extraction mechanism), unverified OCaml

libraries for basic data structures, and a thin layer of unverified

hand-written C code connecting the extracted OCaml code to the

Jasmin code. This layer handles memory allocation and randomness

generation (not existing in Jasmin), as well as C wrappers for the

assembly generated by the Jasmin compiler. In contrast to the first

implementation, all the low-level cryptographic code is verified.

Implications. The MitH paradigm has received a lot of attention

since the seminal IKOS paper [25], which we formalize in this paper.

A natural question to ask is therefore: why not consider more recent
and more efficient protocols? Our choice was motivated by 1) the

goal of formally replicating the modular structure of the original

IKOS construction; 2) a pragmatic approach to build on an exist-

ing development of the BGW protocol, which fits the foundational

view of [25]; and 3) the fact that the proofs of the soundness and

(malicious verifier) zero-knowledge properties formalized in [25]

posed an interesting challenge for machine-checking in EasyCrypt.

Nevertheless, we believe that the complexity of the protocols, im-

plementations and proofs we give here are representative of the

challenges posed by more recent applications of MitH.

This is immediate for the part of our work that focuses on verified

implementations: code extraction and connection to verified Jasmin

implementations can be performed in essentially the sameway, with

the caveat that additional (non-cryptographic) verification effort is

required to deal with implementation-specific optimizations such

as compact view representations, parallel processing, etc.

Security proofs would require specific execution models that

go beyond our syntax for MPC and ZK protocols (e.g., to capture

preprocessing, probabilistic-checkable proofs, etc.), but we do not

anticipate difficulties in formalizing proofs that can be expressed as

standard game hopping arguments—this includes special soundness

and honest-verifier ZK, which are also tackled in [30], andmalicious

security for MPC, which are tackled in [19, 23]. Two exceptions are

the general Fiat-Shamir transformation and post-quantum security

proofs (e.g., those relying on the QROM), which we believe are very

interesting directions for future work.

As pointed out in [30], when it comes to EasyCrypt formalization,

many recent protocols [9, 16, 17, 26, 29] (and indeed our own) fall

into the same general category as ZKBoo [20] as given there. For

example, to handle the ZKBoo security proof similarly to the proof

in [30], we would need to redefine views as intermediate states

instead of messages exchanged — our intermediate passive security

notions for MPC would remain the same — and adapt the notion of

consistency in the same way. Additional standard game hops would

be needed to deal with the use of a PRF to compress randomness.

When moving to witness-independent preprocessing as in [26], we

would need to modify the syntax of our ZK protocols to deal with

5-rounds and formalize a simple cut-and-choose argument.

Access to the development. Our EasyCrypt formalizations,

proofs, and extracted executable software are available in the follow-

ing repository: https://github.com/SRI-CSL/high-assurance-crypto.

2 PRELIMINARIES
This section provides the formal cryptographic definitions used in

our formalization, which are all standard, and an overview of the

MitH framework. We follow closely the original MitH work [25],

and defer definitions for commitment and secret sharing schemes

to the full version. The section concludes with a short overview of

the EasyCrypt and Jasmin features most relevant for our work.

2.1 Zero-Knowledge
A NP relation 𝑅(𝑥,𝑤) is an efficiently decidable and polynomially

bounded binary relation, which we see as a boolean function. A ZK

protocol for a NP relation 𝑅(𝑥,𝑤) is defined by two probabilistic

polynomial time (ppt) interactive algorithms, a prover P and a

verifierV: P takes a NP statement 𝑥 and a witness 𝑤 ;V is only

given the statement 𝑥 . The prover and the verifier interact—in

this paper we consider only three-pass commit-challenge-response

protocols—until eventually the verifier outputs 1 or 0 indicating

success or failure, respectively. The view ofV is defined as its input

𝑥 , its coin tosses and all the messages that it receives.

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2588

https://eprint.iacr.org/2021/1149
https://github.com/SRI-CSL/high-assurance-crypto

Definition 2.1 (Zero-knowledge proof). A protocol (P,V) is a ZK
protocol for the relation 𝑅 if it satisfies the following requirements:

• Completeness: In an honest execution, if 𝑅(𝑥,𝑤) = 1, then the

verifier accepts with probability 1.

• Soundness: For everymalicious and computationally unbounded

proverP∗, there is a negligible function 𝜖 (·) such that, if𝑅(𝑥,𝑤) =
0 for all𝑤 ∈ {0, 1}𝑝 (|𝑥 |) , then P∗ can makeV accept with prob-

ability at most 𝜖 (|𝑥 |).
• Zero-Knowledge: For anymalicious ppt verifierV∗, there exists
a ppt simulator S∗, such that the view ofV∗ when interacting

withP on inputs (𝑥,𝑤) for which𝑅(𝑥,𝑤) = 1, is computationally

indistinguishable from the output of S∗ on input 𝑥 .3

We do not consider the proof-of-knowledge (PoK) property, which

imposes that a witness can be extracted from any successful prover.

The PoK property is not proved in [25], so we leave it for future

work. We will also consider ZK protocols that have a constant (non-

negligible) soundness error 𝜖 , in which cases the soundness error

will be specified. In this case, the soundness error can be reduced

to match the definition above by repeating the protocol multiple

times, as discussed in Section 3.4.

2.2 Secure Multiparty Computation
The MitH paradigm builds on MPC protocols that assume synchro-

nous communication over secure point-to-point channels. Let 𝑛

be the number of parties, which will be denoted by 𝑃1, . . . , 𝑃𝑛 . All

players share a public input 𝑥 , and each player 𝑃𝑖 holds a local

private input𝑤𝑖 . We consider protocols that can securely compute

a 𝑛-input function 𝑓 that maps the inputs ((𝑥,𝑤1), . . . , (𝑥,𝑤𝑛)) to
a 𝑛-tuple of boolean outputs. We will consider 𝑓 to be a boolean

function, so the output values given to all parties by 𝑓 are the same.

A protocol Π is specified via its next-message function. That

is, Π(𝑖, 𝑥,𝑤𝑖 , 𝑟𝑖 , (𝑚1, . . . ,𝑚 𝑗)) returns the set of 𝑛 messages sent by

𝑃𝑖 in round 𝑗 + 1, given the public input 𝑥 , its local input 𝑤𝑖 , its

random coins 𝑟𝑖 , and the messages𝑚1, . . . ,𝑚 𝑗 received in the first 𝑗

rounds. The output of Π may also indicate that the protocol should

terminate, in which case Π returns the local output of 𝑃𝑖 . The view

of 𝑃𝑖 , denoted by 𝑉𝑖 , includes 𝑥 , 𝑤𝑖 , 𝑟𝑖 and the messages received

by 𝑃𝑖 during the execution of Π. Note that Π and 𝑉𝑖 fully define

the set of messages sent by 𝑃𝑖 and also its output. The following

notions of consistency are important for the MitH transformation.

Definition 2.2 (Consistent Views). A pair of views 𝑉𝑖 ,𝑉𝑗 are con-

sistent (wrt protocol Π and some public input 𝑥) if the outgoing

messages implicit in 𝑉𝑖 sent from party 𝑖 to party 𝑗 are identical to

the incoming messages to 𝑗 from 𝑖 reported in 𝑉𝑗 , and vice versa.

Lemma 2.3 (Local vs. global consistency [25]). Let Π be a 𝑛-
party protocol and 𝑥 be a public input. Let (𝑉1, . . . ,𝑉𝑛) be a 𝑛-tuple of
(possibly incorrect) views. Then all pairs of views 𝑉𝑖 ,𝑉𝑗 are consistent
with respect to Π and 𝑥 if and only if there exists an honest execution
of Π with public input 𝑥 (and some choice of private inputs 𝑤𝑖 and
random inputs 𝑟𝑖) in which 𝑉𝑖 is the view of 𝑃𝑖 for every 1 ≤ 𝑖 ≤ 𝑛.

3
Two distributions are indistinguishable if, for all distinguishers returning a bit, the

probability that the distinguisher returns 1 when fed with a value sampled from either

of the distributions changes by a small quantity 𝜖 . Our indistinguishability proofs are

given as reductions, so they imply computational/statistical/perfect security when the

underlying components are themselves computationally/statistically/perfectly secure.

We consider security in the semi-honest model. Correctness entails

that parties obtain the correct result in an honest execution, and

𝑡-privacy requires the existence of a simulator that can replicate

the views of 𝑡 corrupt parties without knowing anything about the

honest parties’ inputs (see the full version).

2.3 MPC-in-the-Head
We give here a view of MitH that closely follows our formalization.

We rely on MPC protocols where party inputs are encoded as a

fixed number of elements in a finite field F𝑞 , for 𝑞 ≥ 2 prime: 𝑥

encodes public information about the statement to be proved; each

𝑤𝑖 is a secret share of 𝑤 , the witness known only to the prover.

Here,𝑤 is itself a fixed, say 𝑘 , number of elements in F𝑞 .
We write (𝑤1, . . . ,𝑤𝑛) ←← share(𝑤) to denote the secret sharing

operation and𝑤 ← unshare(𝑤1, . . . ,𝑤𝑛) for unsharing, where the
former is probabilistic. We set this secret sharing operation to the

trivial splitting into 𝑛 shares, where each 𝑤𝑖 is a 𝑘-tuple in F𝑞 ,
the first 𝑛 − 1 shares are chosen uniformly at random, and 𝑤𝑛 is

computed as𝑤 −∑𝑛−1

1
𝑤𝑖 with addition performed pointwise over

F𝑘𝑞 . The crucial properties are perfect correctness (i.e., unsharing

always recovers the witness) and 2-privacy (any two shares look

perfectly random and reveal nothing about𝑤).

MPC computations are specified by algebraic circuits over F𝑞 ,
i.e., sequences of additions and multiplications over values in F𝑞 .
Note that this computational model is functionally complete (see

the full version). We start by fixing an arbitrary circuit 𝐶 that com-

putes a boolean function 𝑓 (𝑥,𝑤1, . . . ,𝑤𝑛), and an MPC protocol

that guarantees 𝐶 is computed correctly and securely as above.

We will impose that 𝑓 is such that its output depends only on the

value that results from unsharing (𝑤1, . . . ,𝑤𝑛), i.e, it must hold

that 𝑓 (𝑥,𝑤1, . . . ,𝑤𝑛) = 𝑓 (𝑥,𝑤 ′
1
, . . . ,𝑤 ′𝑛) if unshare(𝑤1, . . . ,𝑤𝑛) =

unshare(𝑤 ′
1
, . . . ,𝑤 ′𝑛). The MitH construction then yields a ZK pro-

tocol that permits proving statements of the form

𝑅(𝑥,𝑤) := ∃(𝑤1, . . . ,𝑤𝑛),
{
(𝑤1, . . . ,𝑤𝑛) ∈ share(𝑤)
𝑓 (𝑥,𝑤1, . . . ,𝑤𝑛) = 1

. (1)

This is essentially the same as defining function 𝑓 on all points ac-

cording to 𝑓 (𝑥,𝑤1, . . . ,𝑤𝑛) := 𝑅(𝑥, SS.unshare(𝑤1, . . . ,𝑤𝑛)) , and
then building a circuit 𝐶 for it. In our work we do not handle the

constructive step of building a circuit 𝐶 , and we formalize instead

the relation induced by a well-formed circuit.
4

In short, the MitH ZK protocol runs in three steps as follows:

Commit The prover on input (𝑥,𝑤) first takes the witness𝑤 and

secret shares it into (𝑤1, . . . ,𝑤𝑛). It then executes the full MPC pro-

tocol (emulating all parties in the head) on inputs (𝑥,𝑤1, . . . ,𝑤𝑛).
The prover creates 𝑛 commitments that bind it to the views of the

𝑛 parties (i.e., their inputs, the randomness that they used, and the

messages they received); the commitments are sent to the verifier.

Challenge The verifier chooses a pair of parties (𝑖, 𝑗) uniformly

at random and sends this challenge to the verifier.

Response The prover sends the views of parties (𝑖, 𝑗) to the verifier
by opening the corresponding commitments.

4
Note that the relation induced by 𝑓 in Equation 1 is well-defined even when share
is not surjective over the space of shares; this is not relevant for the trivial splitting

we described above, but it is relevant for the optimized instantiation of MitH using

Maurer’s protocol that we describe in Section 4.

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2589

Verification The verifier checks that the party views it received

satisfy the following properties: (i) they are consistent with the

originally received commitments (ii) they are mutually consistent

wrt the messages sent and received (sent messages can be recom-

puted using the randomness and incoming messages so far by each

party), and (iii) both parties conclude outputting 𝑡𝑟𝑢𝑒 . The verifier

accepts if and only if all checks are completed successfully.

We discuss the proofs of the completeness, zero knowledge and

soundness properties of this construction in the next section, when

we explain our formalization.

2.4 Background on EasyCrypt and Jasmin
EasyCrypt is an interactive proof assistant tailored for cryptography.

It adopts the code-based approach, in which primitives, security

goals and hardness assumptions are expressed as probabilistic pro-

grams. Its theory system promotes modular reasoning, where a

theory is a collection of types and operators, and its cloning mech-

anism allows theories to further refine the types and operators of

more abstract theories, or to combine the elements of existing ones.

The EasyCrypt executable code extraction tool used in this paper

has been recently presented in [19]. This tool allows to extract

OCaml executable code from an EasyCrypt proof script where code

is defined via functional operators. We note that code extraction

to OCaml is a common way to obtain high-assurance code that is

correct by construction and it is used in the Jasmin compiler itself

and other formally verified tools such as CompCert.

Jasmin [2] is a pre-assembly language that was developed for

high-speed and high-assurance cryptography. Jasmin implementa-

tions are predictably transformed into assembly programs by the

Jasmin compiler, which is formally verified in Coq. Predictability

empowers Jasmin programmers to develop optimized implementa-

tions with essentially the same level of control as if they were using

assembly. Jasmin source-code can also be extracted into an Easy-

Crypt representation, supported by an axiomatic semantics. Taken

together, Jasmin and EasyCrypt provide a convenient framework

to develop efficient verified implementations.

3 MACHINE-CHECKED MPC-IN-THE-HEAD
Our EasyCrypt development defines an abstract and modular in-

frastructure that follows the general MitH, and can be instantiated

with different concrete components. Figure 1 depicts the relation

between all these components in our formalization. In what follows,

we will provide a more detailed view, resorting directly to snippets

of EasyCrypt code simplified for readability. Subsequent sections

will discuss concrete instantiations and implementations.

3.1 ZK Protocols and MitH Building Blocks
The following definitions fix the commit-challenge-response three

pass protocol structure of ZK protocols in EasyCrypt, since this

is all that is required for the MitH transformation. These are the

types and operators that must be defined by concrete ZK protocols.

op relation : witness_t → statement_t → bool.
op language(x : statement_t) = ∃ w, relation w x = true.

type prover_input_t = witness_t * statement_t.
type verifier_input_t = statement_t.
type prover_output_t = unit.
type verifier_output_t = bool.

op commit : prover_rand_t → prover_input_t →
prover_state_t * commitment_t.

op challenge : verifier_rand_t → verifier_input_t → commitment_t →
verifier_state_t * challenge_t.

op response : prover_state_t → challenge_t → response_t.
op check : verifier_state_t → response_t → bool.

type trace_t = commitment_t * challenge_t * response_t.

op protocol (r : prover_rand_t * verifier_rand_t)
(x : prover_input_t * verifier_input_t)
: trace_t * (prover_output_t * verifier_output_t) =

let (r_p, r_v) = r in let (x_p, x_v) = x in
let (st_p,c) = commit r_p x_p in
let (st_v,ch) = challenge r_v x_v c in
let r = response st_p ch in
let b = check st_v r in ((c, ch, r), ((),b)).

Types that are undefined at this level must be specified by each

protocol. This is the case, for example, for the types of witnesses

and statements, but not for the outputs of the prover and verifier,

which are hardwired in the syntax to be the singleton type and a

boolean value, respectively. Each protocol is associated with a rela-

tion, which at this level is modeled as an abstract boolean function.

Finally, the theory also defines what it means to honestly execute

the protocol via the protocol operator. Note that all algorithms are

derandomized, in the sense that they take randomness sampled

from elsewhere. This is because in our implementations we also

must follow this structure, and our results assume that randomness

used by honest parties is sampled uniformly at random both at the

specification and implementation levels.

All the security properties are defined as EasyCrypt games. These

games are parametrized by adversarial entities, over which the def-

initions of security are quantified (e.g., malicious provers/verifiers)

and also by modules that capture the ideal sampling of random-

ness for the honest parties. As a simple example, the completeness

property is defined by the following game:

module Completeness(R : Rand_t) = {
proc main(w : witness_t, x : statement_t) : bool = {
(r_p, r_v) <@ R.gen();
(tr,y) ← protocol (r_p, r_v) ((w,x), x);
return (snd y); } }.

The game is defined within a module, which is parameterized by

another module R that samples randomness. This is because ran-

domness sampling procedures must be specified for each protocol.

The experiment calls the procedure R.gen (special syntax <@ is used

for procedure calls) to obtain randomness for both prover and veri-

fier, runs the full protocol, and outputs the result produced by the

verifier. A completeness claim in EasyCrypt can be written as:

∀ w x, relation w x ⇒ Pr [Completeness(R).main(w,x) : res] = 1.

Here res is a reserved word in EasyCrypt that refers to the event

that a procedure returning a boolean value outputs true.

Soundness. For the soundness definition, we need to quantify

over potentially malicious provers. In EasyCrypt this is done by

defining a module type, i.e., the interface that the adversary exposes.

Module type MProver_t specifies this interface.

module type MProver_t = {
proc commitment (x: statement_t) : commitment_t
proc response(x : statement_t, c : commitment_t, ch : challenge_t) :

response_t}.

Observe that a malicious prover keeps arbitrary internal state

and can sample arbitrary randomness which is out of control of the

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2590

Figure 1: Overview of the relation between different parts of our formalization, annotated with overall lines of proof code
(eclocs = EasyCrypt lines of code). The horizontal dotted line separates abstract MitH components (above) from concrete
instantiations (below). Black and green shapes represent abstract cryptographic constructions and their respective instantiations.
Blue rectangles depict security definitions applied to the connected constructions. Double arrows and bold arrows indicate
component instantiation and sub-components, respectively. Yellow rectangles denote executable code for the implementations.

security experiment. The soundness property can now be expressed

as a game parameterized by an attacker of this type, in addition to

the module that samples randomness for the honest verifier. This

allows us to quantify universally over malicious provers.

module Soundness(RV : RandV_t, MP : MProver_t) = {
proc main(x : statement_t) : bool = {
r_v <@ RV.gen();
c <@ MP.commitment(x);
(st_r, ch) ← challenge r_v x c;
resp <@ MP.response(x, c, ch);
return (check st_r resp); } }.

A soundness claim, for some fixed RV, can be written as:

∀ x MP, !language x ⇒ Pr [Soundness(RV,MP).main(x) : res] ≤ epsilon.

Zero-Knowledge. We formalize two versions of the ZK property.

We present here the one we use to obtain a first (intermediate)

result for the concrete protocol produced by the MitH construction

(we call this the single-run ZK property). We defer to Section 3.4 an

explanation of how to derive a proof for the standard ZK property

using a repetition argument, as in [25].

The single-run ZK property is formalized by defining two exper-

iments, typically known as the real and ideal worlds. We capture

both worlds with a single module ZKGame, which can be parameter-

ized by a real-world evaluator or an ideal-world evaluator.

module type MVerifier_t = {
proc challenge(x : statement_t, c : commitment_t) :

challenge_t * verifier_state_t }.

module type Evaluator_t (MV : MVerifier_t) = {
proc eval(w : witness_t, x : statement_t, rp : prover_rand_t) :

(verifier_state_t * trace_t) option }.

module type Distinguisher_t = {
proc guess(tr : witness_t * statement_t *

(verifier_state_t * trace_t) option) : bool }.

module type Simulator_t = {
proc commitment(x : statement_t) : commitment_t option
proc response(x : statement_t, ch : challenge_t) : response_t option }.

module ZKGame (D : Distinguisher_t) (RP : RandP_t)
(E : Evaluator_t) (MV : MVerifier_t) = {

proc main(w : witness_t, x : statement_t) : bool = {
rp <@ RP.gen(); ctr <@ E(MV).eval(w,x,rp); b <@ D.guess(w,x,ctr);
return b; } }.

Such an evaluator either outputs a protocol execution trace or

a failure symbol (represented by option). This trace is given to a

distinguisher, which produces a bit. Intuitively, if the two worlds

are indistinguishable, then the distinguisher will output 1 with

essentially the same probability in either one. The Real evaluator

module animates the interaction of a malicious verifier MV (with

type shown above) with the prover.

module (Real : Evaluator_t) (MV : MVerifier_t) = {
proc eval(w : witness_t, x : statement_t, rp : prover_rand_t) :

(verifier_state_t * trace_t) option = {
cp <$ chald; r ← None;
(stp,c) ← commit rp (w,x);
(ch,vst) <@ MV.challenge(x, c);
if (ch = cp) { resp ← response stp ch; r ← Some (vst,(c,ch,resp)); }
return r; } }.

In the standard ZK property this module would simply output

the execution trace. However, in the single-run ZK property, the

real-world experiment further samples a challenge uniformly at

random from the set of challenges (denoted cp <$ chald) and, be-

fore returning the execution trace, it checks whether the challenge

occurring in the protocol (chosen by the malicious prover) matches

the independently sampled one; it outputs a failure symbol other-

wise. Intuitively, in our single-run ZK property, the simulator in

the ideal world will only need to match the real-world execution

trace when it guesses the challenge produced by the verifier.

The Ideal evaluator module (omitted due to space constraints)

animates a unique interaction between a simulator and the mali-

cious prover. The goal of the simulator is to present to the verifier a

view that is indistinguishable from a real execution, without know-

ing the witness. Note that the simulator in this definition is very

limited, since in the general ZK property the simulator is given a

description of the malicious verifier, which it may run an arbitrary

number of times. For this reason, unlike an honest prover, we al-

low the simulator to signal an abort, in which case the ideal world

evaluator will also return a failure symbol. This may happen if the

simulator’s strategy does not always work, for example because it

guesses ahead of time what the malicious verifier will be doing.

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2591

A single-run ZK claim, for a concrete simulator S and randomness

generation model RP, can be written as:

∀ w x D MV, relation w x ⇒
| Pr [ZKGame(D,RP,Real(MV)).main(w,x) : res] -
Pr [ZKGame(D,RP,Ideal(S,MV)).main(w,x) : res] | ≤ epsilon.

3.2 MPC Protocols
Our formalization of MPC protocols shares many similarities with

the formalization of ZK protocols given above; it is the same as

that used in [19]. The main difference, in addition to considering an

arbitrary number of parties, is that we need to consider protocols

that are parametric on an abstract type for circuits (i.e., a way

to represent 𝑛-input to 𝑛-output computations) and an abstract

operator that defines what it means to evaluate an arbitrary circuit.

type circuit_t.

type input_t = pinput_t * sinput_t.
op f : circuit_t → (pid_t * input_t) list → (pid_t * output_t) list

type view_t = input_t * rand_t * in_messages_t.
type views_t = (pid_t * view_t) list.

op protocol : circuit_t → (pid_t * rand_t) list → (pid_t * input_t) list
→ (pid_t * in_messages_t) list * (pid_t * output_t) list.

Party inputs input_t can be defined as having a public and a

secret part, which may model multiple input wires to the circuit.

Indeed, it is the circuit evaluation operator f that will define the se-

mantics of evaluating a circuit on given inputs. Finally, the protocol

operator is used to define the global protocol evaluation, and it al-

lows flexibility in defining the message scheduling, e.g., following

the next-message function approach introduced in Section 2

Given these definitions we can capture the notion of pairwise

view consistency as the following axiom corresponding to Lemma 2.3.

op consistent_trace c xp vs =
(∀ (i j : pid_t), consistent_views c xp (assoc vs i) (assoc vs j) i j).

axiom local_global_consistency (c : circuit_t) xp (vs : views_t) :
valid_circuit c ⇒ consistent_trace c xp vs ⇔ (∃ rs sx, valid_rands c rs ∧
let xs = mk_inputs xp sx in let (tr,y) = protocol c rs xs in
unzip1 sx = pid_set ∧ valid_inputs c xs ∧ (∀ pid, pid ∈ pid_set ⇒
assoc vs pid = (assoc xs pid, assoc rs pid, assoc tr pid))).

Here, mk_inputs is a simple operator that constructs full inputs

from public and secret inputs, and assoc is the operator that re-

trieves an element from an association list (in this case indexed

by the party identifier). This axiom implies the existence of a

consistent_views operator that can be used by the verifier in the

MitH construction (under a few validity restrictions). This is the

only required consistency property at this level of abstraction. For

concrete instantiations the operator must be made concrete and

proved to satisfy the assumption stated here as an axiom. We have

formalized and proved this property for any protocol that follows

the next-message syntax, and refined it to to a proof for our in-

stantiation based on Maurer’s protocol (cf. Section 4). Our BGW

instantiation currently leaves this property as an axiom, but could

be adapted in the same way to match the next-message syntax.

The correctness and 𝑡-privacy of MPC protocols are respectively

formalized analogously to completeness and zero-knowledge for

ZK protocols. For 𝑡-privacy, the main difference is that the simulator

must now construct 𝑡 views to be fed to a distinguisher. We omit

the games due to space constraints but give the simulator type here.

Note that the simulator receives the party identities and full inputs

for the corrupted parties, as well as their outputs, and must produce

full views that reflect the interaction with honest parties without

knowing their secret inputs. If such a simulator exists, then the

secrets of honest parties are protected by the MPC protocol.

module type Simulator_t = {
proc simulate(c : circuit_t, xs : (pid_t * (pinput_t * sinput_t)) list,

ys : (pid_t * output_t) list) : (pid_t * view_t) list }.

3.3 Formalizing the MitH Transformation
We follow the modular structure of [25] in our formalization, so

we rely on the EasyCrypt theory cloning mechanism to obtain

a formalization that is parametric on sub-theories for the MitH

building blocks. We fix the number of parties to 𝑛 = 5, as this

allows us to explicitly unfold some of the hybrid arguments that

appear in the proof and reduce proof complexity.

type witness_t.
type statement_t.

clone import SecretSharingScheme as SS with
type secret_t = witness_t, op n = 5, op t = 2.

clone import Protocol as MPC with
op n = SS.n, op t = SS.t,
type pinput_t = statement_t, type sinput_t = share_t, type output_t = bool.

op relc : circuit_t.

clone import CommitmentScheme as CS with type msg_t = view_t.

axiom good_circuit (x : statement_t) w : valid_circuit relc ∧
(∀ (ss ss' : (pid_t * sinput_t) list), unshare ss = w ⇒ unshare ss' = w ⇒
let fss = f relc (mk_inputs x ss) in let fss' = f relc (mk_inputs x ss') in
fss = fss' ∧ (∃ b, all (fun x ⇒ snd x = b) fss)).

op relation (w : witness_t) (x : statement_t) =
∃ (ss : (pid_t * share_t) list), w = unshare ss ∧ valid_share ss ∧
let outs = f relc (mk_inputs x ss) in all (fun x ⇒ snd x) outs.

We start with abstract types for witnesses and statements. We

then import the definitions for a secret sharing scheme, where

secrets to be shared are of our witness type, we fix the number of

parties to 5, and require (𝑡 = 2)-privacy. The secret sharing scheme

fixes the type of secret shares. We can then import the definitions

for an MPC protocol, fixing the type of public inputs for all parties

to that of statements, and the type of secret inputs to a secret share.

The outputs of all parties will be a boolean value. The MPC protocol

fixes the type of circuits and the semantics for evaluating circuits

via function f. It also fixes the types of party views, which we then

use to refine a general theory for commitments.

The ZK protocol for MitH will be relative to an arbitrary circuit

relc that will be known to both prover and verifier. We restrict

our attention to a special class of circuits characterized by axiom

good_circuit: for any two secret sharings that represent the same

value, the output shall be the same for all parties. Finally, the relation

holds for any pair (𝑥,𝑤) such that the circuit relc outputs true,
when evaluated on a set of secret shares that are a valid sharing of w

(valid_sharemeans that ss is in the range of the sharing operation).

Intuitively, for the relation to hold it suffices that the prover is

able to find a sharing of w for which the MPC circuit accepts. Note

that, apart from the refinements shown in the Figure, all other type

definitions remain abstract and can be instantiated arbitrarily.

At this point it is possible to define the types of messages ex-

changed by the ZK protocol for MitH: the prover’s commitment

message is a list of commitments corresponding to the views of the

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2592

five MPC protocol parties; the challenge returned by the verifier is

a pair of party identifiers, and the response returned by the prover

is a pair of opening strings for the selected views.

type commitment_t = (pid_t * CS.commitment_t) list.
type challenge_t = pid_t * pid_t.
type response_t = (view_t * CS.opening_t) * (view_t * CS.opening_t).

We omit the details of the types of the randomness taken by

prover and verifier. For the prover, this includes all the randomness

required for secret sharing, emulating the MPC protocol and gener-

ating the commitments. The verifier’s randomness is simpler, as it

includes only the choice of party identifiers for the challenge.

We give here the commitment generation operator, i.e., the first

stage of the prover in MitH, where the prover emulates the MPC

protocol execution and commits to the view of all parties.

op gen_commitment (rp : prover_rand_t) (xp : prover_input_t) :
prover_state_t * commitment_t =

let (w,x) = xp in
let (r_ss, r_mpc, r_cs) = rp in

let ws = SS.share r_ss w in

let x_mpc = mk_inputs x ws in
let (tr,y) = MPC.protocol relc r_mpc x_mpc in

let vs = construct_views x_mpc r_mpc tr SS.pid_set in
let cvs = map (fun pid ⇒

let r_c = oget (assoc r_cs pid) in
let v = oget (assoc vs pid) in
(pid, (v, commit r_c v))) SS.pid_set in

let cs = get_commitments cvs SS.pid_set in (cvs, cs).

The challenge and response steps are simpler to formalize. The

challenge is a random sampling of a pair of party identifiers, which

translates to copying random values from the randomness input.

The response selects the views and opening strings for the selected

parties, which are kept as internal state by the prover.

Finally, the verifier checks the response as follows.

op check (xv : verifier_input_t) (cs : commitment_t)
(rv : verifier_rand_t) (r : response_t) : bool =

let (i,j) = rv in

let (vosi, vosj) = r in let (vi, osi) = vosi in let (vj, osj) = vosj in

let (xi,ri,tri) = vi in let (xj,rj,trj) = vj in

let ci = get_party_commitment i cs in
let cj = get_party_commitment j cs in

CS.verify vi (ci,osi) ∧ CS.verify vj (cj,osj) ∧
MPC.consistent_views relc xv vi vj i j ∧ MPC.valid_inputs xv vi vj i j ∧
MPC.local_output relc i (xi,ri,tri) ∧ MPC.local_output relc j (xj,rj,trj).

The check operator verifies four conditions: 1) that the commit-

ment openings are valid wrt to the provided views; 2) that the

provided views are consistent with each other (using operator

consistent_views); 3) that the inputs to the MPC protocol are well-

formed; and 4) that the local output of the selected parties is true,
which implies that the MPC protocol execution for these parties

reported that the relation between statement and witness holds.
5

Completeness. Our completeness theorem states that the MitH

construction has perfect completeness assuming perfect correct-

ness for the underlying components. Formally, in EasyCrypt we

prove that, for all valid randomness samplers R, all statements x

and all witnesses w, the completeness experiment returns true with

5
The check for well-formed MPC inputs in step (3) is trivially true when all possible

share values of the input are in the range of the secret sharing scheme used by the

prover, which is the case for the trivial additive splitting we described in Section 2.

probability 1. The proof intuition is as follows. The good_circuit

restriction imposes that the circuit that defines the relation is well

behaved, in the sense that, for all sharings �̄�, �̄� ′ ∈ [Share(𝑤)],
the circuit outputs the same consistent values for all parties. Then,

if the MPC protocol is correct, it will correctly compute the rela-

tion of the ZK proof system and every two views will be pairwise

consistent (by Lemma 2.3). Since this is an honest execution, the

commitments are well constructed and the openings will be valid,

as per the correctness property of the commitment scheme.

Soundness. The soundness theorem bounds the soundness error

of MitH by 1− 1/
(𝑛
2

)
+ 𝜖 in a single execution. Here 𝑛 is the number

of parties in the MPC protocol and 𝜖 is bounded by the binding prop-

erty of the commitment scheme. The proof is done in a sequence of

two game hops. In the first hop, we specify a bad event that checks

if the dishonest prover opened a commitment for the first opened

view that is not the originally committed one; we then upper bound

the probability of this event by writing an explicit reduction to

the binding property of the commitment scheme. The second hop

repeats this reduction for the second opened view. Finally, we prove

that the verifier catches a cheating prover with probability at least

1/
(𝑛
2

)
. From Lemma 2.3, either some party outputs false, in which

case the verifier rejects, or there exists a pair of inconsistent views

in the set of views committed by the malicious prover. The bound

follows from the honest verifier choosing a pair of views uniformly

at random after the commitment step.

Zero-knowledge. For the ZKproperty, we must construct a simu-

lator that deals with the fact that the malicious verifier may choose

the challenge arbitrarily after seeing the first pass of the protocol.

As mentioned above, we first prove that we can construct a good

simulator for the single-run ZK definition, where the simulator only

needs to work if it correctly guesses in advance the challenge that

the malicious verifier will output. The reduction to the standard

ZK property is proven in Section 3.4.

Our simulator therefore generates a challenge uniformly at ran-

dom and runs the MPC simulator to generate the two views that

will be opened to the malicious verifier. It fixes the remaining views

to an arbitrary value. Note that we can fix the outputs of corrupt

parties given to the MPC simulator to true, since this is the output of
the computation when the MPC protocol is executed by an honest

prover (indeed, for this proof, the MPC simulator only needs to

work for executions where the outputs of the computation accept

the pair (𝑥,𝑤)). Our single-run ZK simulator completes these views

by sampling two random shares that will pose as the secret inputs

for the corrupt MPC parties. Finally, it commits to all views to get

a simulated first round message for the MitH construction. When

computing the response, this strategy fails if the challenge guess

was wrong. Otherwise it returns the simulated views.

The proof that this is a good single-run simulator uses a sequence

of hops. In the first three hops, we replace the view of every party

different from 𝑖 and 𝑗 , where (𝑖, 𝑗) is the initially sampled (guessed)

challenge, by an arbitrary value (we use the constant witness that

is defined for all types in EasyCrypt). For each such hop, we can

construct adversaries B11, B12, B13 that break the hiding property of

the commitment scheme whenever the distinguisher can detect the

modification to the game. These adversaries choose to be challenged

on either the real view or witness; they interpolate between the

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2593

game in which a correct commitment is given to the verifier and the

modified game by running the rest of the experiment themselves,

providing the resulting view to the distinguisher, and outputting

the distinguisher’s guess. These three hops lead to a term in the

final statement that is bounded by the added advantages of B11, B12,

and B13, against the commitment scheme.

In the next step of the proof we replace the execution of the

MPC protocol by an execution of the MPC simulator. Since, by

assumption, the MPC protocol achieves 2-privacy, it is possible to

bound the difference between the two games as the advantage of

a distinguisher B2 against the privacy of the MPC protocol: any

change in the output distribution of the ZK experiment can be used

to construct a distinguisher against the MPC simulator.

Finally, in the last hop, we replace the secret inputs given to the

malicious MPC parties at the MPC simulator input with random

shares (rather than shares generated from the true witness𝑤). This

hop follows from the 𝑡-privacy of the secret-sharing scheme, which

we again prove by providing an explicit reduction B3. The proof is

completed by showing that this final game is identical to the ideal

single-run ZK game when instantiated with our simulator.

The result proved in EasyCrypt is therefore of the form

lemma zero_knowledge w x D MV :
| Pr [ZKGame(D,RP,Real(MV)).game(w,x) : res] -
Pr [ZKGame(D,RP,Ideal(MV,S(SMPC))).game(w,x) : res] | ≤ e1 + e2 + e3

where e1 sums the advantages of attackers B11, B12, B13, against the

hiding property of the commitment scheme; e2 is the advantage of

distinguisher B2 against the MPC simulator, and e3 is the advantage

of attacker B3 against the privacy of the secret sharing scheme.

3.4 Meta Theorems
We have created a library of general results that are relevant, not

only for the MitH transformation, but also for MPC protocols and

ZK protocols in general. The first part of the library deals with

repetition arguments in ZK proofs. The second part of the library

formalizes general properties of MPC protocols that follow the next

message syntax. The lemmas we prove can be instantiated with the

concrete protocols we have developed, but we have not done so

for the ones focusing on ZK; there is no technical impossibility in

doing this, but it will imply a significant formalization and proof

effort of boiler-plate equivalence proofs that express the behavior

of concrete imperative algorithms in terms of functional operators.

Repetition in Zero-Knowledge. In this library we prove two gen-

eral results, which imply that our proof of the MitH transformation

as presented in the previous section actually implies the standard

level of security for a ZK protocol. For the ZK property, we show

that the single-run ZK proof implies the existence of a simulator

that works for any malicious verifier with overwhelming proba-

bility. Intuitively, the full simulator repeats the full single-run ZK

ideal evaluation until the single-run simulator succeeds. Since these

are independent executions of a probabilistic experiment, this is

essentially a rejection sampling of the simulated trace, which no

distinguisher will be able to tell apart from a real execution (ex-

cept if the single-run simulator always fails, which happens with

negligible probability in the number of attempts). For the sound-

ness property, we show that sequential composition of the protocol

can be used to reduce the soundness error to an arbitrarily small

value. In the future, the theory that contains these results will be

extended to include a proof that the zero-knowledge property is

also preserved by sequential composition. These are foundational

results in cryptography which, to the best of our knowledge have

not been formally specified and verified.

Our theory declares the types of provers and verifiers as follows.

type Prover_t = {
commit: pauxdata_t → witness_t → statement_t → (commitment_t*pstate_t) distr;
response: pstate_t → challenge_t → response_t * pauxdata_t }.

type Verifier_t = {
challenge: vauxdata_t → statement_t → commitment_t → (challenge_t*vstate_t)

distr;
check: vstate_t → response_t → bool * vauxdata_t }.

module IPS = {
(* prover/verifier auxiliary inputs *)
var paux: pauxdata_t
var vaux: vauxdata_t
var fullview: fullview_t
var view: view_t

(* a single execution of the protocol *)
proc exec(_P: Prover_t, _V: Verifier_t, _w: witness_t, _x: statement_t):bool={
(com, pst) <$ _P.commit paux _w _x;
(chlv, vst) <$ _V.challenge vaux _x com;
(resp, paux) ← _P.response pst chlv;
(b, vaux) ← _V.check vst resp;
view ← (com,chlv,vst,resp);
return b; }
(* N-sequential repetitions of the protocol *)
proc execN(_N:int,_P:Prover_t,_V:Verifier_t,_w:witness_t,_x:statement_t):bool={
fullview ← []; b ← true; i ← 0;
while (b && i < _N) { b <@ exec(_P,_V,_w,_x);

fullview ← view::fullview; i ← i + 1; }
return b; } }.

(* a concrete Interactive Proof-System (P,V) *)
op P: Prover_t.
op V: Verifier_t.

The IPS module defines the execution environments for single

execution (exec) and sequential composition (execN); both execu-

tion environments can be parameterized by honest or malicious

provers/verifiers, depending on the property we are capturing. All

algorithms are abstract operators in our proofs, but we fix an arbi-

trary zero-knowledge protocol by declaring global operators P and

V. (Note the inclusion of auxiliary data in the syntax of provers and

verifiers; this is not relevant when considering a single execution

of the protocol, but it is critical for proving security under compo-

sition.) Completeness and soundness of sequential composition are

then proved as the following EasyCrypt lemmas, where the stated

axioms capture the hypotheses that completeness and soundness

hold for a single execution of the protocol.

axiom completeness1 w x:
R w x ⇒ Pr [IPS.exec(P,V,w,x) : res] = 1.

lemma completenessN N w x:
0 < N ⇒ R w x ⇒ Pr [IPS.execN(N,P,V,w,x) : res] = 1.

op sound1_err : real.
axiom soundness1 w x P':
(∀ w, R w x = false) ⇒ Pr [IPS.exec(P',V,w,x) : res] ≤ sound1_err.

lemma soundnessN N w x P': 0 < N ⇒
(∀ w, R w x = false) ⇒ Pr [IPS.execN(N,P',V,w,x) : res] ≤ sound1_err^N.

The proofs of these lemmas are very similar to each other, as

they use the while rule of EasyCrypt to derive the conclusion by

induction; note that the argument accumulates a probabilistic event,
so this is a very good illustrative example of the power of the

probabilistic Hoare logic offered by EasyCrypt.

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2594

We now explain how we extend the single-run result we ob-

tained for the MitH simulator to a full proof of the ZK property of

the construction. This was one of the most challenging parts in our

development, as the original proof is non-trivial and we needed to

re-express it in terms that could be formalized in EasyCrypt. Recall

what we have proved: we have a partial simulator that guesses the

malicious verifier’s challenge and, if the guess is correct, can pro-

duce an indistinguishable view of the protocol execution. What we

set out to prove is that, given a concrete malicious verifier, we can

construct a full simulator by attempting the partial simulation until

eventually it succeeds, i.e., we perform up to 𝑁 independent simu-

lation attempts, and abort if none of them succeed. This simulator

will be good enough if we make 𝑁 sufficiently large.

We express our proof goal using the following module, which

can be parameterized with the number of simulation attempts.

module ZK (D: DRoI_t) = {
proc simulator(_V: Verifier_t, _vaux: vauxdata_t, _x: statement_t)

: view_t*vauxdata_t = {
i ← 0; bad ← true;
while (bad && i < Nsim) {
chl <$ rnd_challenge;
(com, sst) <$ scommit _x chl; (chlv, vst) <$ _V.challenge _vaux _x com;
bad ← !good_challenge chl chlv;
if (!bad) {
resp ← sresponse sst chlv;
(b, vaux') ← _V.check vst resp;
t ← (com,chlv,vst,resp); }
i ← i + 1; }
return (t,vaux'); } }.

We state as an assumption the single-run zero-knowledge result

we proved in the previous section, by assuming that no distin-

guisher in the single-run experiment can change its behavior by a

probability greater than some bound eps_sim. We also assume some

concrete probability guess_pr for guessing the verifier’s challenge

in the real-world by sampling it uniformly at random beforehand.

axiom single_run_zk (D<:Distinguisher_t{ComChg}) V' vaux paux w x i:
0 ≤ i < Nsim ⇒
| Pr [Distinguish(D).game(i,V',vaux,paux,w,x,false) : res]
- Pr [Distinguish(D).game(i,V',vaux,paux,w,x,true) : res] | ≤ eps_sim.

Here, Distinguish is a re-statement of the single-run ZK game to

match the operator-based syntax we use for these meta-arguments,

and 𝑖 is (fixed) auxiliary information that is provided to D in order

to allow generically using it in a hybrid argument (this will encode

the hybrid step at which we are using the assumption). The full

result we obtain for the ZK property is the following.

lemma zk D V' w x: R w x ⇒
| Pr [ZK(D).game(V',w,x,true) : res] - Pr [ZK(D).game(V',w,x,false) : res] |

≤ (1-guess_pr)^Nsim + Nsim*(2*eps_sim).

Intuitively, our proof strategy is composing two hybrid argu-

ments: for a single run of the simulator we use a hybrid argument

over the party views, and for the meta-theoremwe conduct a hybrid

argument over the multiple executions of the simulator. However,

the fact that each step in the outer hybrid can fail or succeed (and

the inner hybrid is only useful in the case of success) complicates

the proof significantly. We proceed in a sequence of hops, that first

modifies the real world by introducing a bad event that is hidden

from the adversary’s view and therefore easy to bound: at each

execution of the protocol we try to guess the verifier’s challenge

at random. Once the bad event is in the real game, we conduct a

hybrid that gradually changes the real executions to simulated ones.

Each step reduces to our single-run assumption, but the analysis

of the reduction is complex, as it must address the various cases

where the simulation was successful or failed. We believe that our

modular proof may be of independent interest.

MPC Protocols in Next-message Syntax. We formalize an abstract

theory that captures a next-message syntax for MPC protocols,

where all parties proceed by synchronous rounds as follows.

op local_protocol_round : party → round → public_input →
local_input → local_rand → in_msgs → pmsgs.

op protocol_round (round:round) (x:public_input) (ws:local_input pmap) (rs:
local_rand pmap) (ins:in_msgs pmap) : pmsgs pmap =

let xs = zip3 ws rs ins in imap (fun i (wi_ri_insi:_*_*_) ⇒
local_protocol_round i round x wi_ri_insi.`1 wi_ri_insi.`2 wi_ri_insi.`3) xs.

op protocol (x:public_input) (ws:local_input pmap) (rs:local_rand pmap) : trace
* local_output pmap = (...)

This level of detail is sufficient to capture the notion of pair-

wise consistent views between a pair of parties and to state/prove

Lemma 2.3 given in Section 2.

op consistent_views (x:public_input) (i j:party) (vi vj:view) : bool =
valid_view x vi ∧ valid_view x vj ∧
valid_rand x (get_view_rand i vi) ∧ valid_rand x (get_view_rand j vj)
∧ consistent_inputs x i j (get_view_inputs i vi) (get_view_inputs j vj)
∧ get_view_in_msgs j vi = get_view_out_msgs j i x vj
∧ get_view_in_msgs i vj = get_view_out_msgs i j x vi.

op valid_inputs x ws =
∀ i j, i ∈ partyset ∧ j ∈ partyset ⇒ consistent_inputs x i j ws[i] ws[j]

op consistent_trace x tr : bool =
∀ i j, i ∈ partyset ∧ j ∈ partyset ⇒
consistent_views x i j (get_view i tr) (get_view j tr).

lemma local_global_consistency x tr :
consistent_trace x tr = (∃ ws rs,
valid_rands x rs ∧ valid_inputs x ws (protocol x ws rs).`1 = tr).

This abstract theory can be applied to any protocol that can be

expressed in this syntax. As mentioned in the previous section, we

instantiate this result to derive the lemma for our new formalization

of Maurer’s protocol, as they were developed at the same time. We

have not integrated it with the pre-existing BGW formalization,

which continues to rely on an axiom for this property. Our library

also includes general MPC correctness and security results for

abstract circuits, where each gate corresponds to a round in the

next-message syntax. Our definitions and proofs for next-message

protocols instantiate the abstract theory presented in Section 3.2.

4 VERIFIED IMPLEMENTATIONS
We divide this section into three parts. First, we briefly describe how

we reused the results in [19] to obtain an implementation based

on the BGW protocol [11]. We then present a second instantiation

where we use Jasmin to obtain an optimized formally verified imple-

mentation of Maurer’s MPC protocol [27]. We conclude the section

with a discussion of the advantages and disadvantages of both

approaches wrt to assurance, development time and performance.

The two implementations are obtained using an extended ver-

sion of the EasyCrypt extraction tool developed in [19], following

two approaches to code extraction. The first approach is a complete

extraction of the fully instantiated top-level MitH functional opera-

tors (modules, imperative procedures and proofs are ignored during

extraction). The second approach is an independent extraction of

each component (MitH formalization, MPC protocol, commitment

scheme, etc.) with pruning to allow plugging-in optimized and

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2595

verified Jasmin implementations of certain operators. The main

difference between the two is that the first approach completely

flattens the development, making the resulting code hard to manage.

The second, more modular approach allows us to rely on different

extraction options for each component, and to easily replace one

component with another. The caveat is that the integration of the

various components is done by hand. In each instantiation below

we explain how the code extraction was conducted.

4.1 Instantiation based on the BGW Protocol
We refine the notion of MPC protocol to the concrete case of se-

cure arithmetic circuit evaluation where parties evaluate addition,

multiplication and scalar multiplication gates sequentially.

type wire_t = t. type topology_t = int * int * int * int.

type gates_t = [
| PInput of int | SInput of int | Constant of int & t
| Addition of int & gates_t & gates_t
| Multiplication of int & gates_t & gates_t
| SMultiplication of int & gates_t & gates_t].

type circuit_t = topology_t * gates_t.

The circuit is defined over wires, which are elements of a finite

field t. The topology (type topology_t) is a tuple of integers that

fixes the number of public input wires, the number of secret input

wires, the number of gates in the circuit, and the number of output

wires. Intuitively, when 𝑛 parties securely evaluate such a circuit,

all of them will receive the values of the public input wires in the

clear, which is consistent with our assumption in Section 3.2 that

all parties receive the same public input. The gates_t type permits

specifying the different gates that may occur in the circuit (above

all gates also carry a gate identifier of type int); note that in this

formalization of the BGW protocol a circuit for a boolean function

is specified as a value in an inductive type, which is essentially a

tree: the output gate is the root, nodes correspond to arithmetic

gates, and the input gates form the leaves.

We define the secure evaluation of a circuit by fixing a secret

sharing scheme and a set of protocols to compute arithmetic gates

over secret shares.
6
The sinput_t type for secret inputs is defined

as a list of finite field values, and the secret input gate performs a

fresh secret sharing. The BGW protocol is obtained by instantiating

the secret sharing scheme with Shamir’s secret sharing and the

low-level arithmetic gate protocols (including the refresh output

gate) with the BGW gates proved secure in [19].

The output gate performs a share-rerandomization followed by

an explicit unsharing where all parties publish the final shares of

the output wires. This allows for a compositional proof, where

simulators for low-level gates can be combined modularly to obtain

a simulator for the entire protocol. This compositional property is

studied in [3, 14] and its formalization was adapted from [19].

We briefly describe how correctness and security of the full pro-

tocol are proved in EasyCrypt. Correctness is proved by induction

on the structure of the circuit and relying on the correctness of the

low-level gates at each inductive step. The 2-privacy of the protocol

is obtained by instantiating the secure composition theorem, as-

suming that the low-level arithmetic gates guarantee a weak notion

6
Recall that in the MitH construction these secret input values will be an additive

splitting of a witness, but this should not be confused with the secret sharing performed

inside the MPC protocol that we consider in this section.

of security we call 𝑡-pre-output-privacy and that the refresh gate

satisfies 𝑡-privacy. We note that the tree/inductive-type representa-

tion of circuits we use in the BGW instantiation allowed for simpler

proofs, as it allows directly applying the EasyCrypt logic to perform

inductive reasoning over the structure of the circuit. However, we

concluded that this introduces an unnecessary abstraction gap to

more efficient implementations that see circuits as a list of gates

(under some topological sorting). Our second instantiation, which

we describe in the next subsection, uses the latter approach but still

retains the modularity on arithmetic gates.

For this instantiation based on BGW we initially performed a

fully automatic extraction using Pedersen commitments, which

exactly matches the implementation in [19]. Field operations and

basic data structures were mapped to unverified OCaml libraries. As

a first optimization, we formalized a PRF-based commitment scheme

following [21], which upon extraction we map to an unverified

HMAC implementation. This is the implementation for which we

collect performance data at the end of this section.

4.2 Instantiation based on Maurer’s Protocol
We developed a new Jasmin implementation of the arithmetic gates

used by the passively secure variant of Maurer’s protocol [27].

Again, we consider the specific case of 5 computing parties, which

can be plugged into the abstract MitH construction we discussed

earlier as an alternative to the BGW instantiation.

Simultaneously, we specified the full MPC protocol in EasyCrypt

following the next-message syntax introduced in Section 3.4 and

a list-based representation of the arithmetic circuit. The proofs of

correctness and security of the protocol in EasyCrypt follow the

overall strategy described in the previous section (with induction

performed over the list structure of the circuit, which requires

slightly more involved invariants that make explicit the state kept

by parties). However, we introduced two simplifications in the

resulting ZK protocol to illustrate how optimizations at the crypto-

graphic design level can be carried out with reasonable effort. The

remaining differences in the proofs are due to syntactic definitional

choices made to allow for an easy and efficient integration of the

Jasmin gates. We first give a short overview of the improvements at

the cryptographic design level, and then we explain in more detail

how we connect the formally verified Jasmin results for the Jasmin

implementation with the EasyCrypt code extraction mechanism.

Simplification of the MitH transformation. We first modify the se-

cret sharing step performed by the prover to be the same used by

the MPC protocol. This removes the need to use input gates and

perform an oblivious unsharing of the additive splitting within

the MPC protocol; however, it requires a slight modification to the

proof of soundness of the MitH construction to obtain the same

result: one needs to take advantage of the fact that the verifier

checks for well-formedness of inputs to the MPC protocol to guar-

antee that one catches the prover when providing an invalid secret

sharing. The second simplification removes the final output reshar-

ing step and directly proves that this is not necessary in the MitH

setting. This is because the simulator has enough information in

the specific case of 2-out-of-5 corrupted parties to complete the

simulated views without the need to introduce extra randomness

(ZKBoo [20] performs a similar optimization). These simplifications

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2596

rely on well-known properties of Maurer’s protocol and do not

have a huge impact in performance, but we believe that they fur-

ther support our claim that our approach extends to other protocols

of comparable design and proof complexity.

A stateful arithmetic gate API. Our EasyCrypt specification of Mau-

rer’s protocol relies on the following gate-level operators:

op mul_start(wi wj : wid, wst : wire_st, r : rand) : msgs =
let (w,wires) = wst in let swi = oget wires[wi] in let swj = oget wires[wj]
in share (cross swi swj) r.

op mul_end(ms : msgs, wst : wire_st) : wire_st =
let (w,wires) = wst in
let ss = add_shr ms[0] ms[1] in let ss = add_shr ss ms[2] in
let ss = add_shr ss ms[3] in let ss = add_shr ss ms[4] in

(w + 1, wires[w ← ss]).

op add(wi wj : wid, wst : wire_st) : wire_st =
let (w,wires) = wst in
let ash = add_shr (oget wires[wi]) (oget wires[wj]) in (w+1,wires[w ← ash]).

These operators permit an orchestrator, e.g., the prover in the

MitH construction, to execute the whole protocol in rounds. For

an addition gate, only a call per party is needed, since the add gate

does not involve communications (this is the same for the scalar

multiplication gate which we omit for brevity). Multiplication gates

execute in three steps: the mul_start operatormust first be called for

all parties, at which point they all define the messages to be sent in

that round; this is then followed by a call to a dispatch routine that

rearranges the transmitted messages so that they are accessible to

the intended parties; finally, the mul_end operator must be called for

all parties to conclude the operation and consolidate the local states.

Indeed, these operators model stateful parties evaluating a circuit

gate-by-gate (i.e., wire-by-wire): on each step they take a current

state which includes secret shares for all previously computed wires

and possibly some randomness. When the round is completed they

add a new secret share for the wire that was just computed.

The sharing of inputs, which is carried out by the prover is

modelled using an input gate, whereas the reconstruction of the

output by all parties is modelled using an output gate.

op input_start(v : val, r : rand) : msgs = share v r.
op input_end(m : msg, wst : wire_st) : wire_st =

let (w,wires) = wst in (w + 1, wires[w ← m]).

op output_start(wo : wid, wst : wire_st) : msgs =
let (w,wires) = wst in Array5.create (oget wires[wo]).

op output_end(ms : msgs) : val = unshare ms.

Here, the share operator takes a finite field element (the secret)

and randomness corresponding to 9 more finite field elements. It

performs an additive secret sharing that splits the secret into 10

parts and then constructs secret shares for all parties by providing

them with a subset of 6 of those parts. This assignment guarantees

that any set of 3 or more parties can reconstruct the secret, but

2 shares reveal nothing about the secret. Moreover we carefully

tailored the way in which shares are stored by each party, so that

a single implementation of the code for gates could work for all

parties, independently of the party number. This greatly simplified

the implementation effort and the verification effort as we describe

next. In the output gate, parties simply send their shares to each

other and perform the unsharing by recovering the 10 parts of the

secret and summing them. The gate specification and proofs are

fully generic wrt to the prime that defines the finite field.

A verified Jasmin implementation. The Jasmin implementation

offers an interface which matches the gate operators shown above.

We give here the Jasmin entry points

fn add5(reg u64 status w1 w2 curwire)→ reg u64
fn mult_start5(reg u64 status w1 w2 outI randomnessI)

fn mult_end5(reg u64 all_messages status curwire)→ reg u64

and the corresponding C declarations

u i n t 6 4 _ t add5 (u i n t 6 4 _ t ∗ , u i n t 6 4 _ t , u i n t 6 4 _ t , u i n t 6 4 _ t) ;

void mu l t _ s t a r t 5 (u i n t 6 4 _ t ∗ , u i n t 6 4 _ t , u i n t 6 4 _ t , u i n t 6 4 _ t ∗ , u i n t 6 4 _ t ∗) ;

u i n t 6 4 _ t mult_end5 (u i n t 6 4 _ t ∗ , u i n t 6 4 _ t ∗ , u i n t 6 4 _ t) ;

which allow high-level code to call the Jasmin-generated assembly.

The state is passed in as a pointer, whereas the input wire num-

bers are simply integers stored in registers. We have a proof of

functional correctness that gates implemented in Jasmin are correct

with respect to the EasyCrypt operator that is used in the high-

level formalization. These proofs are created in EasyCrypt over

a representation of the Jasmin program semantics. We give here

an example correctness lemma, where the hypotheses establish

well-formedness conditions on the calling arguments and the initial

state of the memory mem, as per the inlined comments.

lemma add5_correct_pr mem st (cwire wr1 wr2 : int) (wst : wire_st) :
wst.1 = cwire ⇒ (* cwire = correct number of wires *)
elems (fdom wst.2) = iota_ 0 cwire ⇒ (* the state is well formed *)
0 ≤ wr1 < cwire ⇒ 0 ≤ wr2 < cwire ⇒ (* valid input wires *)
good_wire st cwire ⇒ (* valid memory region to write to *)
good_wire_shares mem st cwire ⇒ (* valid memory region to read from *)
wst = lift_state_mem mem st cwire ⇒ (* region stores state *)

hoare [
M.add5 : Glob.mem = mem ∧ to_uint status = st ∧ to_uint curwire = cwire ∧
to_uint w1 = wr1 ∧ to_uint w2 = wr2 ⇛
good_wire_shares Glob.mem st (cwire + 1) ∧
lift_state_mem Glob.mem st (cwire+1) = add wr1 wr2 wst ∧
touches mem Glob.mem (st+cwire*6*8*L) 6].

The hoare claim establishes a Hoare triple that relates the Jasmin

implementation M.add5 to the functional specification add. This

triple states that if the program starts from an initial memory that

encodes some initial party internal state wst and input wires wr1

and wr2, then the final memory will encode add wr1 wr2 wst, i.e.,

the output state will be computed according to the specification of

the addition gate. Furthermore, the statement guarantees that the

memory remains unchanged, except for the updating of the party’s

state (this is the touches predicate, where L denotes to the size of a

finite field element inmemory, st is a pointer to the state of the party

in memory, and cwire is the number of wire shares already stored

in the state). Our Jasmin implementations are also modular with

respect to the underlying field operations. We have reused a verified

implementation implementation of the field F
2

255−19
and created

verified implementations of field operations for small moduli (fitting

into a 64-bit word), including a specialized variant for boolean

circuits (this uses bitwise operations for computations over F2).

Extraction and integration. We followed a semi-automatic extrac-

tion approach and pruned the resulting OCaml code at the operators

and data types that match the interface of the Jasmin code. This

means that the unverified part of the code is reduced to basic OCaml

data types, and to C wrappers between OCaml code and Jasmin

code that we have written by hand. This code takes care of memory

allocation, randomness generation and conversion between OCaml

representations and the input/output memory regions used by the

Jasmin routines. Concretely, memory regions used by Jasmin are

seen by the OCaml code as a single address (when their size is fixed,

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2597

e.g., for a message) or as an address/size pair (for variable length

structures such as the states of parties). For efficiency purposes,

we allocate memory upfront, by instrumenting the C routines that

sample the randomness for the protocol.

Finally, we instantiated the commitment scheme with a veri-

fied implementation of SHA-3 taken from [4], overall removing

all cryptography-specific code from the TCB. Computing the com-

mitment over a view can be done simply by passing the memory

region that contains the view to this verified routine. C routines

for comparing memory regions are provided to allow the verifier

checks for commitment correctness and message consistency.

4.3 Discussion
To better estimate the size of our development, Figure 1 provides

numbers of lines of EasyCrypt code for our complete proofs. Among

the two instantiations, roughly 60% of the proof effort is shared

via abstract components (these numbers do not take into account

common concrete components such as hash-based commitment

schemes). The two instantiations have comparable proof effort: the

BGW proof restates some compositional MPC results for arithmetic

circuits, while about 50% of the proof effort for the Maurer instanti-

ation concerns the functional correctness of the Jasmin gates.

The two implementations we describe in this section explore

two different approaches for obtaining verified implementations

from complex EasyCrypt specifications. The first approach uses an

automatic extraction of the whole development to OCaml, which

means that the target code is a simple syntactic translation of the

functional EasyCrypt operators. The main advantage of this ap-

proach is the reduced development time; the main disadvantages

are code management and performance. We also rely on unverified

OCaml libraries for finite-field and low-level cryptography, which

increases the TCB. In our second approach, we have a meet in the

middle strategy: we implement the low-level components in Jasmin,

which reduces the TCB but significantly increases the development

time (this can of course be amortized, as we did, by reusing existing

verified code for the finite-field F
2

255−19
and hash function). We use

a semi-automated extraction strategy that preserves the modular

structure of the EasyCrypt proofs, but makes the extracted code

roughly 3x larger than the BGW one due to structural redundan-

cies. The code resulting from extraction is now conceptually much

simpler, as we only generate the code that orchestrates calls to the

MPC protocol gates, commitment scheme, etc. However, we need

to write custom binding code in C to connect the Jasmin code to the

OCaml code (about 15% of the executable code). Roughly another

15% of the executable Maurer code concerns Ocaml bindings for

the Jasmin code and for unverified Ocaml libraries for basic data

structures. In the future, this code could be automatically generated

from meta-information that exists in the EasyCrypt formalization,

and this is an interesting direction for future work.

Table 1 gives a comparison of the performance of the two imple-

mentations for a growing number of gates; the input circuits are

generated at random with essentially the same number of multi-

plication and addition gates. We note that in MitH, the difference

between multiplication and addition gates is not as dramatic as

in standard MPC, since there is no latency associated with com-

munications. For example, the difference between addition and

multiplication in our implementations is 5%, since the computation

time seems to be dominated by memory access and the overhead

of interfacing extracted code with low-level implementations.

The performance benefits of introducing the optimized Jasmin

implementations are clear: as the number of gates increases, the

performance improvement increases as well, leading to an 18%

improvement in prover time and a 5x improvement in verifier time

for the larger circuits The heavier computations take place on

the verifier side, when verifying consistency between views. The

fact that we keep the orchestration of the consistency checks in

extracted code means that we do not get the opportunity to hand-

optimize this step in either protocol. However, the implementation

choices in the BGWversion (intensively using list-based operations)

clearly lead to an extracted code that performs quite poorly.

The proof size for our implementations includes the initial com-

mitments (160 = 5 ∗ 32 bytes), plus the two opened views. Our

implementation adopts no compression techniques, so it is naive in

this respect. In theMaurer implementation, a sharing takes 𝐿∗8∗5∗6
bytes, where 𝐿 is the size of the representation of the prime 𝑞 and 8

is the size of the processor word. This means that the view includes

𝐿 ∗ 8 ∗ (9+ 5 ∗ 6) bytes per multiplication gate (here 9 is the number

of random field elements required to perform a secret sharing and

5 is the number of parties), plus 𝐿 ∗ 8 ∗ 6 bytes per secret input.

The timings we report seem poor in comparison to those obtain-

able with a highly optimized implementation such as ZKBoo [20]

where, besides improvements in the protocol design (e.g., adopt-

ing a 2-out-of-3 trust model rather than a 2-out-of-5) there is a lot

of work in fine-tuning the implementation and use of parallelism.

There, e.g., carrying out a proof for a circuit with roughly 30K gates

(e.g., SHA-1) is reported as taking 13ms in prover time and 5ms in

verifier time (and this including repetition for reducing the sound-

ness error, which can be parallelized for non-interactive proofs), i.e.

roughly three orders of magnitude faster than the times we report.

However, we do not think that this is indicative that our approach

intrinsically leads to prohibitive execution times. For example, in

the same paper, the Pinocchio [28] prototype is used as baseline; it

is reported that the improvement in prover time that ZKBoo offers

is precisely 3 orders of magnitude, which would place Pinocchio

much closer to the performance of our implementations. Pinoc-

chio implements a different family of ZK protocols, but it shares

many similarities with our prototype; in particular, its goal is to

demonstrate the potential of a new technology, rather than explor-

ing its performance limits. Moreover, its implementation is fully

generic and can compute any circuit, rather than being specifically

fine-tuned for a particular family of algorithms or data structure.

We also briefly mention the results presented in [16], which

extends MitH to use MPC protocols with preprocessing. There,

a prover time of 851ms is reported for computing a ZK proof in-

volving 10K gates (also already accounting for soundness error

reduction). Again, this is significantly better than the values we

report, but it does show that variability in performance results for

such frameworks is quite large, depending on many factors.

We believe that many optimizations can be applied to improve

the execution time of our formally verified implementations ofMitH

very significantly, even though the use of a functional language

as the target for extraction will always introduce some overhead.

Indeed, an important direction for future work is to see how close

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2598

Small Modulus

Maurer BGW

#gates 100 1000 10000 #gates 100 1000 10000

P MPC 1,14 88,78 8728,81 P MPC 4,15 123,32 10540,82

P Com 0,87 4,28 39,47 P Com 0,57 6,30 132,50

P Total 2,15 93,87 8776,08 P Total 5,35 135,90 10759,47

V CVeriv 0,20 1,53 13,83 V CVerif 0,23 2,46 49,92

V Check 0,46 35,81 3491,19 V Check 3,25 196,14 25794,72

V Total 0,66 37,34 3505,02 V Total 3,48 198,60 25844,64

Large Modulus

Maurer BGW

#gates 100 1000 10000 #gates 100 1000 10000

P MPC 1,35 92,96 9031,57 P MPC 7,05 150,67 11053,62

P Com 2,16 15,04 141,75 P Com 1,34 18,22 363,61

P Total 3,83 111,09 9195,54 P Total 9,09 176,03 11498,90

V CVeriv 0,69 5,88 55,06 V CVerif 0,51 7,12 134,33

V Check 0,65 49,56 4819,85 V Check 5,60 232,10 25757,51

V Total 1,33 55,44 4874,91 V Total 6,11 239,22 25891,84

Table 1: Benchmarking results for random circuits of indicated size. Small modulus variants relied on a prime 𝑞 = 2
61 − 1 that

fits in to a 64-bit word, whereas the large modulus results uses 𝑞 = 2
255 − 19. All times are given in milliseconds. For the prover

we report times for computing the MPC protocol in the head and committing to the views. For the verifier we report times for
verifying the commitments and checking consistency between views. Data was collected using a modest 2.3 GHz Quad-Core
Intel Core i7 with 32 GB RAM, 512 KB L2 CACHE PER CORE, 8 MB L3 CACHE.

to the performance of aggressively optimized unverified implemen-

tations one can get.

ACKNOWLEDGMENTS
The authors would also like to thank the anonymous referees

for their valuable comments and helpful suggestions. This ma-

terial is based upon work supported by DARPA under Contract

No. HR001120C0086. Any opinions, findings and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the United States Govern-

ment or DARPA. José Bacelar Almeida has been partially supported

by the Portuguese Foundation for Science and Technology (FCT)

project REASSURE (PTDC/EEI-COM/28550/2017), co-financed by

the European Regional Development Fund (FEDER), through the

North Regional Operational Program (NORTE 2020).

5 RELATEDWORK
ZK protocols are a fast-moving area within cryptography, and many

protocols exist both for specific proof goals and for settings that

require a flexible solution that can be used for any relation. Only

a very small part of this field has been studied from the perspec-

tive of computer-aided cryptography [7]. The work in [8] was the

first to formalize a special class of 𝛴𝜙
-protocols in CertiCrypt, a

predecessor of EasyCrypt implemented as a Coq library, and to

prove the security of general and and or composability theorems

for 𝛴𝜙
-protocols. The more recent work from [15] restates many

of these results for 𝛴-protocols in CryptHOL. It additionally for-

malizes abstract and concrete commitment scheme primitives and

proves a construction of commitment schemes from 𝛴-protocols.

The most significant machine-checked endeavor for ZK is the

work in [6], that developed a full-stack verified framework for ZK

proofs. It encompasses a non-verified optimizing ZK compiler that

translates high-level ZK proof goals to C or Java implementations,

and a verified compiler that generates a reference implementation.

The machine-checked effort lies in proving that, for any goal, the

reference implementation satisfies the ZK properties and that the

optimized implementation has the same observable behavior as

the reference implementation. The core of the verified compiler

builds on top of the results from [8], extended with and composi-

tions of 𝛴GSP
-protocols, and generates CertiCrypt proof scripts for

automatically proving the equivalence of the two implementations.

There is now a vast body of MPC protocols and frameworks,

some of which have been formally verified using machine-checked

tools. CircGen [1] is a verified compiler that translates C programs

into boolean circuits; it extending the CompCert C compiler with

an additional backend translation to Boolean circuits. This back-

end can then be used to feed circuits to an EasyCrypt machine-

checked implementation of Yao’s 2-party secure function evaluation

protocol. Thework in [24] formalizes in EasyCrypt the𝑛-partyMPC

protocol due toMaurer [27] for the actively secure case. In this paper

we formalize in EasyCrypt the passive case, and provide a formally

verified Jasmin implementation thereof. The work in [19] develops

verified implementations of proactively secure MPC, including an

EasyCrypt formalization of BGW [12] for passive and static active

adversaries that we adapt and build on in this paper.

Independent work on verifying MPC-in-the-HEAD. Recently,

independent work [30] presented a machine-checked security proof

for a class of Σ-protocols that follows the approach to MitH intro-

duced by the ZKBoo protocol [20], which is an important optimized

derivative of the MitH paradigm. The authors give a formaliza-

tion of decomposition protocols and show how they can be used

to construct Σ-protocols, which are secure in the sense of special-

soundness and special honest verifier zero-knowledge. We note that

these properties are specific to Σ protocols; indeed, additional trans-

formations and security proofs are needed to obtain the standard

non-interactive PoK guarantees that these protocols provide.

The contributions in this paper compared to those in [30] as

follows. We also consider 3-pass ZK protocols, but we give both a

machine-checked proof of security for MitH and a formally ver-

ified implementation; our implementation of MitH includes veri-

fied implementations for the underlying MPC, secret sharing, and

commitment sub-protocols and can be used in practice to prove

arbitrary goals in ZK. Second, our formalization follows the original

IKOS construction given in [25] and uses the standard syntax and

security notions for ZK proofs, MPC protocols, and commitment

schemes. This enables us to build on, and to deploy, standard com-

ponents, but introduces the challenge of formalizing more complex

security proofs. For example, the proof of the (malicious verifier)

ZK property is quite challenging when compared to the honest

verifier variant because the distribution of the verifier’s challenge is

not known a priori and a form of rejection sampling must be used

in the simulation. The techniques we use to establish this result

allowed us also to formalize the reduction of the soundness error

by repetition and we are currently working to extend this result for

the ZK property of the sequential composition construction.

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2599

REFERENCES
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, Ben-

jamin Grégoire, Vincent Laporte, and Vitor Pereira. 2017. A fast and verified

software stack for secure function evaluation. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 1989–2006.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien

Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. 2020. The Last

Mile: High-Assurance and High-Speed Cryptographic Implementations. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 965–982. https://doi.org/10.1109/SP40000.2020.00028

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Hugo Pacheco, Vitor Pereira,

and Bernardo Portela. 2018. Enforcing ideal-world leakage bounds in real-world

secret sharing MPC frameworks. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF). IEEE, 132–146.

[4] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François

Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton,

and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic Stan-

dards: Indifferentiability of Sponge and Secure High-Assurance Implementations

of SHA-3. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM,

1607–1622. https://doi.org/10.1145/3319535.3363211

[5] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted

Setup. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM, 2087–2104. https://doi.org/10.1145/3133956.3134104

[6] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe, Stephan

Krenn, and Santiago Zanella Béguelin. 2012. Full proof cryptography: verifiable

compilation of efficient zero-knowledge protocols. In Proceedings of the 2012 ACM
conference on Computer and communications security. 488–500.

[7] Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno Blanchet, Cas

Cremers, Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptography.

IEEE Security and Privacy (2021).

[8] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire, and

Sylvain Heraud. 2010. A machine-checked formalization of Sigma-protocols. In

2010 23rd IEEE Computer Security Foundations Symposium. IEEE, 246–260.

[9] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela

Orsini, Peter Scholl, and Greg Zaverucha. 2021. Banquet: Short and Fast Signa-

tures from AES. In Public-Key Cryptography - PKC 2021 - 24th IACR International
Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May
10-13, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12710),
Juan A. Garay (Ed.). Springer, 266–297. https://doi.org/10.1007/978-3-030-75245-

3_11

[10] Carsten Baum and Ariel Nof. 2020. Concretely-efficient zero-knowledge argu-

ments for arithmetic circuits and their application to lattice-based cryptography.

In IACR International Conference on Public-Key Cryptography. Springer, 495–526.
[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. In Proceedings
of the 20th Annual Symposium on Theory of Computing. ACM, 1–10.

[12] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 2019. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. 351–371.

[13] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venki-

tasubramaniam, Tiancheng Xie, and Yupeng Zhang. 2020. Ligero++: A New

Optimized Sublinear IOP. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery,

2025–2038.

[14] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework

for Fast Privacy-Preserving Computations. In Proceedings of the 13th European
Symposium on Research in Computer Security. Springer, 192–206.

[15] David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón. 2020. For-

malising 𝛴-Protocols and Commitment Schemes Using CryptHOL. Journal of
Automated Reasoning (2020), 1–47.

[16] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-

Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1825–

1842. https://doi.org/10.1145/3133956.3133997

[17] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and

Nigel P. Smart. 2019. BBQ: Using AES in Picnic Signatures. In Selected Areas in
Cryptography - SAC 2019 - 26th International Conference, Waterloo, ON, Canada,
August 12-16, 2019, Revised Selected Papers (Lecture Notes in Computer Science,

Vol. 11959), Kenneth G. Paterson and Douglas Stebila (Eds.). Springer, 669–692.

https://doi.org/10.1007/978-3-030-38471-5_27

[18] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.

2021. Limbo: Efficient Zero-knowledge MPCitH-based Arguments. Cryptology

ePrint Archive, Report 2021/215. https://eprint.iacr.org/2021/215.

[19] Karim Eldefrawy and Vitor Pereira. 2019. A High-Assurance Evaluator for

Machine-Checked Secure Multiparty Computation. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz (Eds.). ACM, 851–868. https://doi.org/10.1145/3319535.

3354205

[20] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster Zero-

Knowledge for Boolean Circuits. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016, Thorsten Holz and Stefan Savage

(Eds.). USENIX Association, 1069–1083. https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/giacomelli

[21] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via

Committing Authenticated Encryption. In Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 10403),
Jonathan Katz and Hovav Shacham (Eds.). Springer, 66–97. https://doi.org/10.

1007/978-3-319-63697-9_3

[22] Yaron Gvili, Julie Ha, Sarah Scheffler, Mayank Varia, Ziling Yang, and Xinyuan

Zhang. 2021. TurboIKOS: Improved Non-interactive Zero Knowledge and Post-

quantum Signatures. In Applied Cryptography and Network Security - 19th Interna-
tional Conference, ACNS 2021, Kamakura, Japan, June 21-24, 2021, Proceedings, Part
II (Lecture Notes in Computer Science, Vol. 12727), Kazue Sako and Nils Ole Tippen-
hauer (Eds.). Springer, 365–395. https://doi.org/10.1007/978-3-030-78375-4_15

[23] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-

Yves Strub. [n. d.]. Computer-aided proofs for multiparty computation with active

security. In Proceedings of the 31st Computer Security Foundations Symposium.

IEEE, In print.

[24] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-

Yves Strub. 2018. Computer-aided proofs for multiparty computation with active

security. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE,
119–131.

[25] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

knowledge from secure multiparty computation. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, David S. Johnson and Uriel Feige (Eds.). ACM, 21–30. https://doi.org/10.

1145/1250790.1250794

[26] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. 2018. Improved Non-

Interactive Zero Knowledge with Applications to Post-Quantum Signatures. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, David Lie,

Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 525–537.

https://doi.org/10.1145/3243734.3243805

[27] Ueli Maurer. 2006. Secure multi-party computation made simple. Discrete Applied
Mathematics 154, 2 (2006), 370–381.

[28] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In IEEE Symposium on Security and
Privacy. 238–252.

[29] Okan Seker, Sebastian Berndt, Luca Wilke, and Thomas Eisenbarth. 2020. SNI-in-

the-head: Protecting MPC-in-the-head Protocols against Side-channel Analysis.

In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Secu-
rity, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM, 1033–1049. https://doi.org/10.1145/

3372297.3417889

[30] Nikolaj Sidorenco, Sabine Oechsner, and Bas Spitters. 2021. Formal security anal-

ysis of MPC-in-the-head zero-knowledge protocols. Cryptology ePrint Archive,

Report 2021/437. https://eprint.iacr.org/2021/437.

Session 10B: Crypto and Protocol Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2600

https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-030-38471-5_27
https://eprint.iacr.org/2021/215
https://doi.org/10.1145/3319535.3354205
https://doi.org/10.1145/3319535.3354205
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-030-78375-4_15
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3372297.3417889
https://doi.org/10.1145/3372297.3417889
https://eprint.iacr.org/2021/437

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Zero-Knowledge
	2.2 Secure Multiparty Computation
	2.3 MPC-in-the-Head
	2.4 Background on EasyCrypt and Jasmin

	3 Machine-checked MPC-in-the-Head
	3.1 ZK Protocols and MitH Building Blocks
	3.2 MPC Protocols
	3.3 Formalizing the MitH Transformation
	3.4 Meta Theorems

	4 Verified Implementations
	4.1 Instantiation based on the BGW Protocol
	4.2 Instantiation based on Maurer's Protocol
	4.3 Discussion

	Acknowledgments
	5 Related Work
	References

