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”One day, in retrospect, the years of struggle will strike you as the most beautiful.”

— Sigmund Freud
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A B S T R A C T

Artificial Intelligence (AI) is transforming the clinical practice of orthopedic surgeons by combining technology

with their technical skills. AI can play a primary role in standardizing pre-surgical planning, assisting

orthopedic surgeons in the decision-making process to minimize medical errors, guiding appropriate surgical

management, and reducing the cost and duration of surgery through intelligent solutions in the field of

orthopedics.

The complexity and variability of the glenoid cavity anatomy have been a challenge for the medical

community, especially in reconstructive surgical interventions such as shoulder arthroplasty. This surgery is

recommended for the treatment of osteoarthritis (OA), a pathology defined by the progressive degeneration of

the articular cartilage of the humeral head and glenoid, causing pain, stiffness, and limitation of movement.

In preoperative planning, a 3D reconstruction of glenoid bone defects can play a fundamental role in the

comprehension of the patient’s native anatomy and, consequently, assist the orthopedic surgeon in the

decision-making process, to restore the morphological parameters of the scapula, which is crucial for

functional outcomes and the longevity of the implant.

The main objective of this dissertation is the reconstruction of the healthy anatomy of the glenoid from

three-dimensional computed tomography (3D CT) images through Generative Deep learning (GDL). In

quantitative terms, the goal of this project is to virtually reconstruct glenoid bone defects so that the

estimated version is within the range [-5º, 10º] since the purpose of shoulder arthroplasty is to accurately

restore a healthy patient’s anatomy.

This project explores two approaches for training a 3D image-to-image translation model: Pix2Pix and

CycleGAN. In Pix2Pix, a reference image in the original domain 𝑋 is available for each image in the target

domain 𝑌, allowing one-to-one mapping. In contrast, CycleGAN performs training with unpaired data, the

images in domain 𝑋 are semantically related to the images in domain 𝑌, and there is not necessarily a
reference image in domain 𝑌 for each image in domain 𝑋. The distinguishing feature of CycleGAN is the

incorporation of cycle consistency loss, which facilitates training without paired data. In other words, this

model translates from the original domain to the target domain without a one-to-one mapping. This study

aims to investigate and compare the performance of these two architectures in the context of healthy bone

reconstruction. Concisely, the generative model (CycleGAN or Pix2Pix) seeks to learn the mapping function

between two domains, 𝐺 ∶ 𝑋 → 𝑌, i.e., the conversion of an image 𝑥 from the domain 𝑋 to an image

𝐺(𝑥) from the domain 𝑌, where 𝑥 is an image of a scapula with the glenoid removed and 𝐺(𝑥) the sample
produced by the generator, which wants to conceive images similar to those of the real dataset of the healthy
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domain. The study demonstrates the potential of the CycleGAN and Pix2Pix models to reconstruct a healthy

bone from a defective bone.

Taking into consideration a significantly larger dataset, both models are expected to outperform in

reconstructing a defective glenoid. That opens up a possibility for the development of an automated and

intelligent virtual reconstruction tool that can be used in clinical applications, to ensure that the preoperative

planning process of shoulder arthroplasty is efficient and quick, guide an appropriate surgical management,

facilitate communication between surgeons, minimize medical errors, provide prognostic information, and

optimize the performance of shoulder arthroplasty.

KEYWORDS: Artificial Intelligence, Orthopedic surgery, Preoperative Planning, Shoulder Arthroplasty, Os-

teoarthritis, Glenoid, Generative Deep Learning, 3D Image-to-image translation, Virtual Bone Recon-

struction, Pix2Pix, CycleGAN.
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I N T R ODUC T I O N

The present work was realized in the scope of the master’s thesis in Medical Electronics of the Integrated

Master’s Degree in Biomedical Engineering of the University of Minho. This chapter presents a contextualiza-

tion and a framework of the theme, as well as the main motivations for its elaboration and the objectives that

are intended to be achieved throughout the development of the project. The dissertation will be conducted

in a corporate context, in this way, section 1.3 introduces the company PeekMed®. Finally, the last section

explains the structure of the document.

1.1 Contextual izat ion and Motivat ions

With scientific and technological advances, the implementation of Artificial Intelligence (AI) in the healthcare

sector is inevitable, especially, due to the rising costs of healthcare [1]. Over the past few years, the

application of AI in healthcare has grown considerably, primarily, due to its ability to automate services

and, consequently, reduce costs, save time, and increase quality. For example, changing the daily decision-

making process in order to minimize human errors and the implementation of systems that provide resource

management in an efficient way. In this sense, AI has the potential to ensure the optimization of the

performance of healthcare institutions, promoting the success of the health system.

AI is a modern technical approach that develops algorithms that enable machines with problem-solving

and decision-making skills, making devices intelligent and efficient to perform specific tasks, which can

correspond or exceed human performance [2]. In this domain, AI consists of a set of technologies that

allow computers to help understanding, acting and learning in medical situations in order to improve health

care at various levels, including diagnosis, management of hospital services, research, preventive medicine,

clinical decision-making, among others. One of the future perspectives is the integration of algorithms as

indispensable medical devices for patients and healthcare providers [1, 3, 4, 5].

Improvements in computational power, data storage and availability of high-quality data has driven the

expansion of AI in the medical field [2]. The increment of digital medical images, information collected from

databases and medical records, gives the ideal dataset for designing AI algorithms, especially, in the field of

orthopedics [4].
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18 Introduction

AI is transforming the clinical practice of orthopedic surgeons by combining technology with their technical

skills, thus, besides improving clinical outcomes for patients it allows to make the healthcare system more

sustainable [3]. However, it remains a relatively new field for most orthopedic surgeons, more research

is needed to identify more concrete areas of study and applications that can translate into a significant

change in everyday clinical practice [4]. Currently, AI has been employed in orthopedic surgery to assess the

surgical prognosis, create patient-specific solutions and reduce safety issues, in seconds and automatically.

This emerging technology has also had a huge impact on preoperative planning [6].

Preoperative planning is considered one of the most important parts of surgery, being defined as the

process of preparing for surgery with the purpose of optimizing patient, resources, and time management.

Preoperative planning facilitates the characterization of customized solutions for each patient and, conse-

quently, decreases risk factors, increases the efficiency and precision of the surgical procedure. Additionally,

it helps to improve both short- and long-term clinical outcomes. AI can play a primary role in standardizing

pre-surgical planning, assisting orthopedic surgeons in the decision-making process to minimize medical

errors, guide appropriate surgical management, and as mentioned previously, reduce the cost and duration

of surgery through industrial solutions in the field of orthopedics. The physician should analyze the results

granted by AI, considering his experience and knowledge [7, 8].

The main motivation of this project is to optimize the preoperative planning of shoulder arthroplasty

through the implementation of an innovative model, in the context of Generative Deep learning (GDL), for the

3D reconstruction of glenoid cavity bone defects, taking advantage of the evolution of medical imaging. In

this way, the intention is to respond to the existing scientific gap regarding progressive technical approaches

to solve this problem. The reconstruction of the native glenoid anatomy permits orthopedic surgeons to

accurately understand the patient’s situation and identify the desired outcome. Therefore, there is a reduction

in human error, costs, and duration of the surgical intervention, that is, the quality and efficiency of the

service delivered is improved. The opportunity to improve the quality of people’s lives through technological

solutions was one of the main reasons why I opted for the master’s in Medical Electronics and the subject

under study.

1.2 Object ives

The main objective of this dissertation is the reconstruction of the healthy anatomy of the glenoid cavity from

three-dimensional computed tomography (3D CT) scans through GDL. In other words, it is expected to obtain

the native shape of the glenoid, which is indispensable in the preoperative planning of surgical interventions

that aim to restore the bone defect. After the implementation of this project, it is intended to ensure that the

preoperative planning process of shoulder arthroplasty is efficient and quick, guide an appropriate surgical

management, facilitate communication between surgeons, minimize medical errors, provide prognostic

information, and optimize the performance of shoulder arthroplasty. In quantitative terms, the goal of this



1.3. PeekMed ® 19

project is to virtually reconstruct glenoid bone defects so that the estimated version is within the range [-5º,

10º] since the purpose of shoulder arthroplasty is to accurately restore a healthy patient’s anatomy.

1.3 Peekmed ®

The present project will be carried out in a company environment at PeekMed®, in order to explore a

possible solution for the reconstruction of glenoid fossa bone defects, contributing to the preoperative

planning of shoulder arthroplasty. Peekmed is an AI-based 3D preoperative planning system that aims to

assist surgeon decision-making, reducing healthcare costs. In addition, it improves the efficiency and quality

of the service provided through its innovative technology, which offers automatic and accurate planning

of multiple clinical procedures. The system enables access to several planning tools for measurement

and templating. In this way, it can reduce the duration of the process by up to 20% and obtain a more

precise surgical prognosis, based on its many functionalities. For example, automatic placement of the most

appropriate model, according to the measurements made previously. Such as adding and manipulating,

simultaneously, the same object in 2D and 3D environments. Furthermore, 3D technology allows exporting

the 3D model of the planning, being compatible with 3D printers, accessing and sharing the final report

that helps in the comprehension of the procedure, step by step, and the resources needed for the medical

intervention, among other benefits.

1.4 Dissertat ion Structure

The dissertation is organized into seven chapters, namely, the Introduction, the State of the Art, Research

and Development Methodologies, the Case Study, the Results, the Analysis and Discussion, and lastly, the

Conclusion.

The Introduction encompasses the contextualization and framing of the topic. The basic motivations that

led to the investigation of the subject, its main objectives and presents the enterprise PeekMed®.

The State of Art defines the fundamental theoretical and scientific concepts for a better comprehension

of the project. The current state of knowledge regarding the topic under investigation, in other terms, the

virtual reconstruction of glenoid bone defects, is compiled in this chapter.

The Research and Development Methodologies chapter describes the technologies that are essential for

the technical implementation of the proposed solutions. In particular, the characterization of the proposed

solution, in particular, the characterization of the model implemented within the framework of GDL.

The Case Study, describes, in detail, the implemented algorithms, which aim to reconstruct the healthy

bone anatomy of the glenoid cavity. It presents the organization, preparation and analysis of the dataset,

in advance. The architecture and particularities of the elaborated models are specified in this chapter. In

addition, it depicts the qualitative test designed and carried out to assess the feasibility of the developed
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solutions. The results of the application are shown in Chapter 5, then these are analyzed and discussed,

rigorously, in Chapter 6.

The last chapter presents the conclusions and the preponderant contributions of the case study, as well

as intends to answer all the objectives stipulated at the beginning of the dissertation. In addition, it proposes

future measures to be adopted to improve the solution under consideration.
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S T A T E O F A R T

The state of the art of theoretical and scientific concepts contributes to the understanding of this dissertation

in all its scope. In this chapter, firstly, the anatomy of the glenohumeral joint will be discussed (section

2.1), followed by the etiology and classification of its bone defects, emphasizing degenerative osteoarticular

pathology (section 2.2). In section 2.3, the available treatments for osteoarthritis will be presented, inherently

related to the preoperative planning explained in section 2.4. Ultimately, a literature review of the virtual

reconstruction of bone defects will be elaborated, both of the glenoid and overall.

2.1 Glenohumeral Joint

The glenohumeral joint is formed by the head of the humerus and the glenoid cavity of the scapula (Figure

1). This joint is of the synovial type, so both areas are lined by the hyaline cartilage. The head of the

humerus has a hemispherical configuration and interacts with the glenoid fossa, constituting the shoulder

joint. In turn, the glenoid consists of a pear-shaped depression located at the lateral angle of the scapula [9].

The glenoid ”labrum” consists of a fibrocartilaginous structure incorporated in the extremity of the glenoid

increasing its depth and stability [10].

Figure 1: Glenohumeral joint (left) and the glenoid cavity (right). Adapted from [11].
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The contact area between the two structures is restricted. Therefore, the joint has six degrees of freedom

allowing a wide range of upper limb movements such as abduction, flexion, extension, internal and external

rotation, making the shoulder joint inherently unstable and one of the most injured joints in the human body.

Its stability depends on the balanced relationship between the static stabilizers, that is, its ligaments and

articular capsule, as well as the dynamic stabilizers, i.e., the muscles and tendons of the rotator cuff, among

other muscles. The synovial fluid, which fills the subscapular and subacromial bursae, produced in the

synovial membrane acts as a lubricant reducing the friction caused by tendons and muscles, as they move

over bony areas. A synovial membrane can be found on the inner surface of the joint capsule that internally

coats the glenoid cavity. Several muscles act on the glenohumeral joint in order to enable shoulder kinesia,

in particular, the scapuloumeral and thoracoumeral muscles. The muscles of the rotator cuff, that is, the

supraspinatus, infraspinatus, teres major, and teres minor muscles, act to balance the joint, keeping the

humeral head stable and centered in the glenoid fossa and support its movements [12, 11].

The complexity and variability of the glenoid cavity anatomy have been a challenge for the medical

community, especially, in reconstructive surgical interventions, in particular, shoulder arthroplasty. There

are studies that prove that the incorrect positioning of the glenoid due to, for example, bone loss often

observed in patients with osteoarthritis, causes instability in the humeral head and may lead to loosening of

the joint [13]. The inclination, the size, and especially, the version are the key parameters for evaluating

the state of the glenoid, being essential for the preoperative planning of surgical interventions that aim to

restore the bone defect to resemble the native glenoid fossa. Cadaveric studies have shown that these

characteristics may vary according to age, race, and gender of the individual [13, 14, 15].

The dimensions of the glenoid, the width, and height, do not vary, substantially, between black and

white patients. Contrarily, the difference between males and females is, statistically, significant. By means

of a cadaveric study, Churchill et al. has shown in ([15]) that the width and height of the male glenoid

were approximately 27.8 ± 1.6 mm and 37.5 ± 2.2 mm (mean ± standard deviation), respectively. The

female glenoid width and height were approximately 23.6 ± 1.5 mm and 32.6 ± 1.8 mm (mean ± standard

deviation), in that order. The average age of the study group was 25.6 years and was representative in

terms of race and sex.

The inclination of the glenoid face is a morphological feature of the scapula with high individual variability,

its standard value lies between 0º and 10º [16]. There is no considerable discrepancy in the glenoid cavity

inclination between sexes or races [15].

The normal version of the glenoid is 0º ± 4º (mean ± standard deviation) [17]. There is no relevant

inequality between men and women of the same race, although black patients exhibit a lower version

compared to Caucasian patients [15].
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2.2 Etiology and Classi f icat ion of Bone Defects

The bones represent a fundamental element of the musculoskeletal system, associated dysfunctions often

affect quality of life, particularly, at the professional and social levels. Bone defects in the glenoid occur

mostly due to chronic dislocations, congenital anomalies, degenerative bone diseases of the glenohumeral

joint, such as osteoarthritis, repercussions of autoimmune diseases, for example, rheumatoid arthritis,

fixation devices used in the treatment of a proximal humeral fracture that damage the humeral surface or

unsuccessful shoulder arthroplasty. The main goal of orthopedic surgeons is to reconstruct the bone defect

to safeguard the function of the affected limb and the regression of pain in the patient [18].

Bone defects in the glenoid fossa can be classified according to Seebauer et al. [19], although there are

multiple classifications present in the literature. After excision of the labrum or glenoid component, bone

defects in the glenoid cavity are classified, regardless of their primary etiology, as centric, notably, superficial

(C1), deep (C2), cavitary (C3), or destructive (C4); or in eccentric, these being divided based on size and

location, into small (E1), medium (E2), large (E3) or massive (E4) and anterior (A), posterior (P), superior (S)

or inferior (I), respectively [15, 19]. The classification of Antuna et al. divides them into central, peripheral,

and combined, with each group subcategorized into mild, moderate, and severe [20].

2.2.1 Degenerative Osteoarticular Pathology and Walch Classification

Osteoarthritis is considered the most common cause of disability in the United States, it has been demon-

strated that OA of the shoulder joint affects about 32.8% of patients over the age of 60. Glenohumeral OA is

defined by progressive degeneration of the articular cartilage of the humeral head and glenoid component

leading to pain, stiffness, and limitation of range of motion. Its diagnosis is based on medical history,

physical examination, and imaging. Subsequently, can be divided into primary or secondary. Primary OA

does not have a specific cause, its prevalence increases with age, women are more susceptible than men

and genes are a preponderant factor in this condition. On the other hand, secondary OA can result from

infection, trauma, surgery, avascular necrosis or a rotator cuff tear [17, 21].

Walch’s classification describes the morphological alterations of the arthritic glenoid on 2D axial CT scans,

being the most widely used system concerning shoulder replacement. Its main purpose was to prove that

the glenoid version and the relationship between the humeral head and the glenoid are vital for preoperative

planning and surgery. The existence of categorization allows guiding an appropriate surgical management,

facilitates communication between surgeons, and provides prognostic information [22]. However, the

original classification system had some limitations due to the use of two-dimensional computed tomography

(2D CT), so it was slightly modified by Bercik et al. [23] to be applicable to 3D reconstructions, improving its

reliability.
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The modified Walch classification (Figure 2) consists of adding defects B3 and D, and defines more

precisely the defect A2 [23]. The glenoid morphology of type A is described by a symmetrical arthritis without

posterior subluxation of the humeral head, subtype A1 comprises a slight central erosion, and subtype

A2 is a deep central erosion. Type B is defined by asymmetrical arthritis with posterior subluxation of the

humeral head. The subtype B1 has no bone erosion but has posterior joint space narrowing and osteophyte,

while the subtype B2 is characterized by a biconcave glenoid as a result of posterior glenoid erosion. The

subtype B3 is depicted as a concave glenoid cavity with posterior bone wear and pathologic retroversion

(>15º) or posterior subluxation or both. The type C defect manifests a retroversion greater than 25º due to

a dysplastic glenoid. Finally, the type D morphology presents a significant anteversion (>5º) [17, 22].

Figure 2: Modified Walch Classification [17].

2.3 Treatments for Glenohumeral Osteoarthr i t is

The optimal treatment for OA of the glenohumeral joint is frequently controversial and is chosen according

to the patient’s age, symptoms severity, activity level, imaging results, and medical comorbidity [17, 21].

2.3.1 Nonsurgical Strategies

Conventional procedures, that is, those that do not require medical surgical intervention, should be considered

first, especially, in patients with mild to moderate osteoarthritis, when pain and functional limitation are

reasonable, although there may be alarming radiographic alterations. This method can be effective in

improving mobility and reducing pain, however, it does not modify the progression of the disease. The

treatment options involve lifestyle and occupational changes, and physiotherapy compatible with the patient’s

needs, usually, including isometric exercises for rotator cuff and scapulothoracic muscle strengthening. Oral

medication such as salicylates, paracetamol, also called acetaminophen, non-steroidal anti-inflammatory

drugs, can help relieve pain and inflammation. At last, intra-articular corticosteroid injections provide pain

relief, however, given the lack of evidence to prove their effectiveness and adverse effects, no more than

three injections per year in any joint are recommended [17, 21, 24]. If nonsurgical measures are ineffective,

especially, in the case of pain, surgical options are considered.
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2.3.2 Surgical Techniques

Arthroscopy

Arthroscopy has been employed in the management of mild to moderate OA, particularly, in young people

and athletes. This procedure permits the diagnosis, i.e., the characterization of the lesions related to joint

dysfunction, and is used as a therapeutic tool for debridement and soft tissue repair. Arthroscopic treatment

improves limb function, decreases pain, and consequently, improves the patient’s quality of life. This is

achieved by stabilizing the cartilage abnormalities, eliminating mechanical symptoms, and relieving capsular

contractures. This intervention has few complications, low morbidity, and can postpone more complex

surgeries. Unfortunately, it does not prevent arthritic progression [21].

Shoulder Resurfacing

Shoulder resurfacing is considered an alternative to conventional arthroplasty for the treatment of OA. This

method involves reaming the proximal portion of the humeral head and resurfacing the arthritic articular

surface by applying a metal alloy over the residual humeral head. The main advantages are the reduction in

operative time, the extent of bone excision, and periprosthetic fractures (bone fracture around the implant

after arthroplasty). The angle between the head and neck of the humerus remains intact and an osteotomy

is not performed, so it is simpler to restore the version and inclination of the glenohumeral joint [21, 25].

The bone stock is mostly preserved, therefore, this intervention is, essentially, indicated for young people

who may need, in the future, a total shoulder replacement [21]. It is important to mention, that bone loss in

the humeral head should not be significant and the glenoid should not be injured, otherwise, the surgical

treatment will be compromised [25].

Hemiarthroplasty

Hemiarthroplasty is the replacement of the humeral head by a metallic prosthesis, which is indicated when

the humeral head is deteriorated or fractured and the glenoid face is intact [17, 26]. In addition, is also

recommended when humeral arthritis and rotator cuff deficiencies coexist. The condition of the glenoid is

critical for a successful treatment, a glenoid with severe bone loss and a non-functional rotator cuff cannot

stabilize a glenoid component and can lead to its loosening [26]. Patients with primary OA and concentric

bone defects have better surgical outcomes than those with secondary OA and eccentric wear [21]. The

intervention exhibits a high rate of dissatisfaction, particularly, in young individuals, since the need for total

shoulder arthroplasty arises in the long term [17, 21].
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Reverse Shoulder Arthroplasty

Reverse shoulder arthroplasty is, predominantly, advised for the treatment of glenohumeral arthritis in

patients with arthropathy of the rotator cuff, the group of muscles that provides active stabilization of the

shoulder joint [21, 27]. If a rotator cuff tear occurs, the joint’s center of rotation migrates upward, so the

joint stresses become off-center, which may be the reason for glenoid loosening in total shoulder arthroplasty.

Furthermore, the progressive dislocation of the humeral head causes degradation of the coracoacromial

arch, leading to possible long-term post-surgical complications [21]. The inverted implant design of reverse

shoulder arthroplasty, in other words, the use of a glenosphere and a humeral socket, enables stabilization

of the glenohumeral joint, enhances deltoid function and range of motion. In detail, the glenosphere provides

the mediation of the center of rotation, as well as, the torque reduction of the glenoid component. The

humeral socket moves the joint’s center of rotation distally, maximizing the length and tension of the deltoid

muscle, increasing limb function and stability. This medical intervention is also indicated as a revision

surgery of an unsuccessful anatomical total shoulder replacement [21, 27, 28].

Total Shoulder Arthroplasty

Total shoulder arthroplasty involves the replacement of the humeral head and glenoid with a prosthesis,

usually, of cobalt chromium and polyethylene, respectively [26]. This surgery involves the excision of the

humeral head and, subsequently, the placement of a titanium intramedullary stem in the proximal portion of

the humerus and the humeral implant [25]. Considered the gold standard treatment for the management of

advanced OA, total shoulder arthroplasty provides pain relief and the improvement of shoulder motion [21].

The most common complications are the loosening of the prosthesis, glenohumeral instability, periprosthetic

fracture, and rotator cuff tear. There is a potential for infection, nerve damage, and dysfunction of the deltoid

muscle [29]. The longevity and effectiveness depend on the selection of the patients who will be submitted

to this intervention, given the risk of loosening of the glenoid [21].

2.4 Preoperat ive Planning

Preoperative planning is an essential prerequisite for the success of orthopedic procedures. Radiology

plays a crucial role in pre-surgical planning, particularly, imaging studies. Medical imaging evaluates

morphological aspects of the glenohumeral joint, such as bone stock, glenoid version, Glenohumeral

Subluxation Index (GHSI), and Humeral Head Medialization (HHM), which often suffer alterations due to

degenerative osteoarticular pathology [17, 30]. The comprehension of the relationship between soft and

bone tissues is also indispensable for preoperative planning.
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2.4.1 Imaging Protocols

Conventional radiographs, i.e., using the anteroposterior (AP) and axial views, are fundamental for the

confirmation of the diagnosis and initial evaluation of shoulder OA [24]. Frontal radiography enables the

localization of osteophytes and the observation of humeral head collapse. In turn, the views, mentioned

above, are useful in determining joint space narrowing [17]. This medical imaging exam permits the

identification of bone loss, but it is not as precise and reliable as computed tomography (CT) and magnetic

resonance imaging (MRI) for bone loss and version calculation, as it has some limitations regarding patient

positioning, overlapping structures and lack of three-dimensional perception [17, 31, 32].

The 2D CT may under- or overestimate glenoid cavity bone loss if the patient is not correctly oriented in

the gantry, consequently, three-dimensional computed tomography (3D CT) is considered the gold standard

for preoperative planning [32]. This imaging modality allows automatic image segmentation, in volume, of

the glenoid and humerus and image reconstructions with high spatial resolution. Its digitalization is fast,

having an acquisition time, of approximately, 5 seconds, which offers a better evaluation of the cortex and

the bone contour. Its advantages come from its main disadvantage, the high dose of ionizing radiation [17].

Three-dimensional MRI has been suggested as an alternative to 3D CT for estimation of glenoid bone loss,

it has been proven that there is no statistically significant discrepancy between bone loss measurements

in patients with glenohumeral instability, comparing both examinations [32]. Nevertheless, MRI has a

high time of acquisition (7-8 min) and postprocessing. In addition, image reconstructions may exhibit

lower spatial resolution and the examination might be contraindicated for some patients due to factors,

such as claustrophobia, the presence of cochlear implants, and pacemakers [17]. Its benefits include

multiplanar 3D reconstructions along the scapula without the appearance of artifacts seen in two-dimensional

images (stair-step artifact), the need for only one scan, subtle detection of bone contours, and more precise

calculations. It does not involve ionizing radiation and, thoroughly, evaluates soft tissue structures, such as

muscles, ligaments, and tendons [17, 32].

It should be noted that the monetary cost of standard radiography is significantly lower in comparison to

CT and, especially, MRI.
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2.4.2 Evaluation of Morphological Abnormalities of the Glenohumeral Joint

The analysis of the glenoid version is fundamental for the understanding of the pathological state of the

shoulder, since an abnormal variation of the glenoid cavity version can have an impact on the biomechanics

and stability of the glenohumeral joint. In shoulder arthroplasty, orthopedic surgeons should normalize the

version, as it has been shown to increase stress and wear on the glenoid component in the upper limb

prosthetic [17].

Despite the existence of multiple methods to measure the glenoid version, Friedman’s line evidence

greater interobserver reliability [33]. The Friedman line technique (Figure 3) determines the glenoid version

on 2D CT, but it can be applied on 3D CT, in that case, the results were more precise in detecting retroversion

and bone erosion of the posterior glenoid. A vertical line is drawn on the 3D surface of the glenoid face in

the AP direction, then a 2D transverse plane is produced, perpendicular to the midpoint of the vertical line,

which passes through the scapular axis. The neutral glenoid version line is defined by the line perpendicular

to this plane. This process provides an image for measuring the relevant angle [30]. If the anterior margin

is medial to the neutral version line, the glenoid cavity exhibits anteversion, otherwise, if it is the posterior

margin, the glenoid fossa is retroverted [17, 33].

Figure 3: Friedman’s line method for the calculation of the glenoid fossa version, in this case, the glenoid exhibits

anteversion [17].

A deficiency in the glenoid bone stock causes a perturbation in the normal kinematics of the shoulder

joint [17]. Glenoid bone loss should be analyzed when planning shoulder arthroplasty, its quantification is

essential to determine the bone reconstruction surgical technique to be employed, with the goal of restoring

the neutral glenoid version due the implant. If bone erosion is significant (>17.3%) a bone graft should be

applied, otherwise Bankart’s repair, a minimally invasive surgery that provides stabilization and restoration

of shoulder joint function, will be sufficient [32].

The Pico method (Figure 4) involves defining a circumference in the contralateral joint, that is, asymp-

tomatic, encompassing the 3-9h margin of the inferior glenoid, in the sagittal plane. Subsequently, the circle

is transferred to the pathological shoulder, the bone defect is manually traced and its superficial area is
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calculated through a software [31]. The contralateral joint could have suffered previous injuries or surgeries,

moreover, the extra dose of radiation induced on the patient should be avoided. In this way, an approach

has emerged, which applies the circumference that best fits the anteroinferior or posteroinferior curvature of

the glenoid cavity, just to the glenohumeral joint under study. Afterwards, the measurement of bone erosion

is done in the same way as in the Pico method [17].

Figure 4: Pico method for measuring bone erosion [31]

.

The paleoglenoid line (Figure 5) consists of a line perpendicular to Friedman’s line positioned at the

lateral extremity of the glenoid. Thereby, an approximation of its native surface is obtained. In the presence

of osteophytes, the axial sections inferior and superior to the junction between the coracoid process and the

scapular spine should be analyzed to precisely limit the original face. In the following example, the bone

loss was measured at the central point and 5 mm from the anterior and posterior margins of the glenoid

fossa, in order to avoid osteophytes, that may generate incorrect measurements [34].

Figure 5: Practical example of the application of the paleoglenoid line technique [17].

GHSI evaluates the centrality of the humeral head within the glenoid cavity, being critical to direct OA

treatment. It allows the assessment of viable surgical options, the need for corrective measures during

arthroplasty, and its prognosis. Posterior glenohumeral subluxation correlates with the increase of the rate

of loosening of the glenoid component, raising concerns about the longevity of substitution surgery [17, 35].

The GHSI measurement technique was originally defined by Walch et al. [36], however, in order to

improve interobserver reliability it was slightly modified (Figure 6). On a 3D CT axial image, a line tangent to
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the anterior and posterior margins of the glenoid face is traced, followed by the dissection of the glenoid

through a line perpendicular to the preceding one [17, 36]. The circumference that best fits the humeral

head articular surface is defined and its diameter is calculated. To determine the GHSI, the posterior portion

of the line that dissects the glenoid is divided by the diameter determined, previously [17, 34]. An index

higher than 0.55 indicates a posterior subluxation [17, 35, 36].

Figure 6: Practical example of the calculation of the GHSI using the modified Walch technique (GHSI=30.7

mm/53.6mm=0.57) [17].

A high HHM is compatible with central and anterior glenoid bone erosion, as well as fat infiltration in all

muscles that constitute the rotator cuff [17, 34, 37]. HHM is measured at the apex of the humeral head

medial to the paleoglenoid line (Figure 7) [37].

Figure 7: Practical example of HHM determination [17].

Fat infiltration and rotator cuff atrophy are the soft tissue factors that should be examined in pre-surgical

planning, as they have been found to be related to poor clinical results, such as humeral head subluxation

and postoperative loosening of the glenoid component. Fat infiltration and rotator cuff atrophy are associated

with the increased of HHM, pathologic version, glenoid bone loss and, a more severe Walch classification

(Type B3) [37].
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2.5 Virtual Reconstruct ion of Glenoid Bone Defects

In preoperative surgical planning, the 3D reconstruction of a bone defect can perform a fundamental role in

the comprehension of the patient’s native anatomy and, consequently, support the orthopedic surgeon’s

decision to restore the morphological parameters of the scapula, crucial in the functional outcome and

longevity of the implant. The morphological properties emphasize the individual anatomical variability of the

glenoid, so it is challenging to find a technique to determine accurately its original shape.

The most commonly adopted method is to use the patient’s healthy scapula as a template to guide glenoid

bone reconstruction in unilateral arthropathy [14]. Mirroring the contralateral joint estimated the glenoid

version, and inclination in 94% and 96% of the scapular pairs, respectively, with a difference under 5° and

with a mean error of 4° for both parameters [38]. Despite the excellent results achieved, the contralateral

joint may have suffered previous injuries or surgeries and the extra dose of radiation induced on the patient

must be avoided, since the scan is, usually, unilateral [14, 39].

To overcome these limitations, it has been proven that the glenoid version can be predicted using linear

regression models of the Resch angle (angle between the plane of the anterior glenoid wall and the plane

of the glenoid fossa) and of Anterior Glenoid Wall Angle (AGWA), with 52.6% and 78.9% of the predictions,

respectively, comprised in a range inferior to 5° [40]. The results show less reliability relatively to those of

the mirroring of the contralateral joint, since they revealed a mean error of 4.70º for the linear regression

equation of the Resch angle and 3.23º for the AGWA [38, 40].

Estimation of the glenoid version using a standard template of the healthy glenoid has been demonstrated

to be less effective than using the patient’s healthy scapula, since the standard template does not take into

account the variability of the glenoid anatomy [14]. This technique measured, with a discrepancy of under

5º, the version in 57.9% of the pathological scapulae and exhibited a mean error of 3.68º [40].

2.5.1 Statistical Shape Model [14]

A Statistical Shape Model (SSM) can be applied to reconstruct glenoid fossa bone defects and to predict its

morphological parameters, such as the version, the inclination, and its center point. This method was firstly

proposed and evaluated by Vanden Berghe et al. [41] for the bone reconstruction of the acetabulum and

prediction of anatomical properties of the hip joint.

A database consisting of 66 scans of healthy scapulae, i.e., without signs of glenohumeral arthropathy, was

manipulated for the development of the SSM. Initially, the images were segmented using image processing

software and converted to a 3D model with a triangular border of 1.5 mm. The design of the model integrates

three phases (Figure 8). The first phase consists of registering a model of the dataset in the other models to

acquire the corresponding surfaces. Afterwards, keeping the size reference, the models were aligned to
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suppress rotational and translational variations. Finally, through a Principal Component Analysis (PCA) the

variations and the average shape of the models were extracted.

Figure 8: Steps for SSM development [14].

The SSM assumes that the native shape of the scapula can be obtained by extrapolating its healthy parts.

The reconstruction procedure involves two steps, firstly, the bone defects are removed manually with the aid

of a software. Secondly, the model is fitted to the residual healthy anatomy, using MATLAB (Figure 9). The

proposed fitting algorithm optimizes the model coefficients individually, minimizing the discrepancy between

the SSM and the healthy structures of the scapula.

Figure 9: Application of SSM for virtual bone reconstruction [14].

The SSM has proven to be efficient in the reconstruction of glenoid bone defects and in the prognosis

of its morphological parameters, being considered a successful mechanism to assist surgeons in the

preoperative planning of shoulder arthroplasty. The degree of severity of bone defects leads to an increase

in reconstruction errors, consequently, it is essential to carefully select the bone defect area. The weighting

of the border had a positive effect on the results, indicating that the healthy regions adjacent to the bone

defect contain important information.

One of its main advantages is that it allows the estimation of several anatomical features of the glenoid,

including the version, unlike most of the methods previously discussed. The results presented a mean error of

2.9º and 2.4º in the version and inclination calculation, in that order, outperforming the alternative techniques

formerly described (Table 1). The SSM-based reconstruction method discussed in [39], which allows the

automatic analysis of glenoid bone defects using 3D measurements, exhibits a statistically equivalent

performance, in comparison, to the contralateral joint mirroring technique in measuring subluxation distance,
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defect depth, total and local vault loss percentages, except for the defect area percentage. Therefore, this

methodology can help orthopedic surgeons in the selection of the best treatment option in the preoperative

stage and compare the postoperative results of similar bone defects, not requiring the healthy scapula of

the patient as a reference.

The reconstruction technique has several drawbacks, such as the dependence on the process of registering

the shape of the bone. In addition, it was exclusively evaluated in bone defects created artificially. This

model assumes that osteoarthritis is restricted to the glenoid cavity and the other structures are only slightly

affected by the pathology, so it may lead to inaccuracies in the fit of the SSM over the healthy regions.

Table 1: Comparison of the different methods in glenoid version prediction, based on the mean error and the results

that presented a difference under 5º

Method Mean Error Difference <5º

Mirroring of the contralateral joint 4º 94%

Linear regression model of Resch angle 4.70º 52.6%

Linear regression model of AGWA 3.23º 78.9%

Standard model 3.68º 57.9%

SSM 2.9º n.d.

2.6 Virtual Reconstruct ion of Bone Defects [42]

With the purpose of finding the appropriate solution to meet the objectives defined in section 1.2, it is

necessary to perform a meticulous analysis of the various techniques suitable for the virtual reconstruction

of bone defects. In this sense, there was a technology that aroused interest.

Xiong et al. [42] proposed to assess the accuracy of Generative Adversarial Networks (GANs) for the virtual

reconstruction of midface bone defects, a complex bone structure essential for facial function and aesthetics.

Methodologies for facial bone reconstruction include the mirroring of the healthy skull on the affected side

and the use of a standard model or a deformable model, however, these have numerous disadvantages.

For example, the mirroring technique can only be applied to unilateral bone defects. Therefore, there is a

need to design an intelligent reconstruction of the healthy bone anatomy of the midface in clinical practice.

The authors explore a model named GAN, in the context of Deep Learning, which demonstrates an excellent

performance in image generation and is widely applied in medical image processing.

According to the anatomy, the midfacial bone was divided into five structural subunits, then the bone

defects were manually created on CT images of patients with a healthy midface. The real images and the

corresponding images with artificial bone defects were used to train the GAN. In the data preprocessing

phase, there is a horizontal inversion in random axial slices, random resizing, and rotation of the images.

Moreover, the addition of Gaussian noise improves the training process and avoids overfitting.



34 State of Art

The architecture of the GAN consists of a generator and a discriminator (Figure 10). The generator is

composed by a Resnet 101, previously trained. The input data of the generator consist of an image with

the defective facial bone 𝑥 and random noise 𝑧. The generator aims to obtain the native shape of the

bone, that is, the reconstructed image 𝐺(𝑧), from the corresponding image. The discriminator has 𝑥 and

𝐺(𝑧) as inputs and is composed of three 3x3 Convolution-BatchNorm-LeakyReLU layers, being trained to

discriminate between real and synthetic data. The model is implemented using the Adam optimizer, with a

learning rate of 0.002.

Figure 10: Basic architecture of the GAN. (A) Image with healthy bone anatomy. (B) Image with a manually created

artificial bone defect. (C) The generator produces the image with the reconstructed medial facial bone. The

discriminator ascertains the similarity between the normal image (A) and the reconstructed image (C) [42].

The evaluation content involves anatomical similarity, the continuity of the border, and whether the global

shape meets physiological and aesthetic requirements. Firstly, the reconstructed images are compared with

the real images through the cosine similarity calculation. This indicator evaluates the similarity between two

objects, the closer to 1 the higher the accuracy. Afterwards, the 3D models of the images are imported

into a software that enables the registration and calculation of the mean error. The study revealed a cosine

similarity of 0.97 ± 0.01 mm and a mean error of 0.59 ± 0.31 mm in the virtual reconstruction of the artificial

bone defects. Furthermore, it demonstrated that the discrepancy between the results of reconstructions

with artificial defects and those with clinical bone defects is not statistically relevant. A cosine similarity of

0.96 ± 0.01 mm and a mean error of 0.48 ± 0.08 mm were obtained for the clinical data. This technology

has greater accuracy, stability, and feasibility than SSM-based methods.

The article claims that this method can be employed in other bones and digital imaging techniques, as

well as, the GAN-based technologies exhibit a higher accuracy compared to existing ones and have the

potential to become the gold standard in bone defect reconstruction.
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R E S E A R CH AND D E V E L O PMEN T ME THODO LOG I E S

This chapter provides a comprehensive overview of the technologies implemented, that aim to achieve the

objectives defined in Chapter 1. In the context of GDL, it focuses on the specifications of GANs and identifies

the models that satisfy the project requirements. Additionally, section 3.3 discusses the technical challenges

of GANs.

3.1 Generat ive Deep Learning

In recent years, with the constant scientific and technological innovations, exponential growth has been

observed in the application of Deep Learning for the analysis of medical images. First of all, it is important

to distinguish discriminative models from generative models. Discriminative models learn a conditional

distribution, 𝑝(𝑦|𝑥), with 𝑥 as the input variable and 𝑦 as the target variable. As an example, given a medical

image, in order to segment anatomical structures, a convolutional neural network tries to discriminate

images or voxels that correspond to distinct classes. In contrast, generative models learn a joint distribution,

𝑝(𝑦, 𝑥) or 𝑝(𝑥). These models aim to learn the underlying distribution of the data and its generative

process, through the factors that regulate the process and the natural properties of the dataset. If the model

training is successful, it allows the generation of new data by sampling. The most popular approach in this

domain is Generative Adversarial Networks (GANs), the subject of our analysis [43, 44].

3.2 Generat ive Adversarial Networks

The essence of GANs consists in optimizing two neural networks with different goals, i.e., in Adversarial

Training (Figure 11) [44].

The first network corresponds to a generative model 𝐺 that learns the probability distribution of the input

data (𝑝𝑑𝑎𝑡𝑎) and, by transforming noise vectors 𝑧 with probability distribution 𝑝𝑧, attempts to generate

samples, perceptually, similar (𝑥𝑓 𝑎𝑘𝑒 = 𝐺(𝑧)). The 𝑝𝑧 consists of a latent space with low dimensionality,

such as the Gaussian distribution. The second neural network represents a discriminative model𝐷 that seeks

35
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Figure 11: The diagram represents the basic architecture of a GAN. The green arrows indicate the flow of gradients.

The training process of the discriminator considers the classification loss and the generator training process

takes into account the adversarial loss, which also depends directly on the discriminator’s performance

[43].

to differentiate between samples from the real dataset and the artificial samples produced by the generator,

with a probability distribution 𝑝𝑔, from the calculation of 𝐷(𝑥𝑟𝑒𝑎𝑙), which represents the probability of

the sample being a resultant of the input data. In general, the discriminator construction is based on

binary classification. The last layer of the discriminator includes a sigmoid activation function, such that

𝐷(𝑥𝑟𝑒𝑎𝑙), 𝐷(𝐺(𝑧)) ∈ [0, 1], where 𝐷(𝐺(𝑧)) is the probability that the image is derived from the

generator [43, 44, 45, 46].

The training process for the generator is to maximize the probability of the discriminator making an error,

if it can easily distinguish samples, the generator weights need to be adjusted, accordingly [44, 45]. On the

other hand, the discriminator is trained in order to maximize the probability of accurately determining the

origin of the image [45]. The competition between the two models allows them to improve their methods

until the convergence between real and synthetic samples (𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎) [43, 45]. The system can be

trained by backpropagation if the neural networks consist of at least three layers [45].

Mathematically, the GANs are trained to solve the following optimization problem, which the discriminator

tries to maximize and the generator to minimize:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log 𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧) [log(1 − 𝐷(𝐺(𝑧)))] , (1)

where 𝑉(𝐷, 𝐺) represents the objective function, under study. The generator aims to minimize the

possibility of the discriminator correctly identifying the generated images as false. In opposition, the

discriminator minimizes the error that is associated with the classification of the samples, maximizing the

objective function [44]. Denote that in the elementary formulation ℒ𝑎𝑑𝑣 and ℒ𝑐𝑙𝑎𝑠𝑠 are practically the same

function, however, optimized in different directions[43].
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In practice, the optimization problem turns out to be very unstable for the generator, as a result the

saturation of log(1 − 𝐷(𝑧))) occurs and the convergence between 𝑝𝑔 and 𝑝𝑑𝑎𝑡𝑎 is extremely slow. At

the beginning of training, the discriminator is able to easily specify the provenance of the image, in this

scenario, the gradient for log(1 − 𝐷(𝑧))) is approximately zero. Therefore, the generator does not optimize
its parameters and minimize its loss [43, 44, 45]. Therefore, an alternative loss function for the generator

has emerged:

min
𝐺

𝑉(𝐷, 𝐺) = − 𝔼𝑧∼𝑝𝑧(𝑧) [log(𝐷(𝐺(𝑧)))] . (2)

As mentioned earlier, equation (1) intends to minimize the probability of the discriminator identifying

the generated samples as false. In contrast, the goal of equation 2 is to maximize the probability that the

discriminator recognizes the generated samples as real [44]. This objective function allows the intensification

of the gradients at the beginning of the training [45].

However, model training may remain unstable, mainly due to the way the discriminator calculates the

discrepancy between 𝑝𝑔 and 𝑝𝑑𝑎𝑡𝑎. In the original definition (Equation 1), the difference is estimated as

the Jensen-Shannon divergence. Unfortunately, in the presence of two disjoint distributions, this type of

symmetric divergence is not effective. As a result, several alternative objective functions have been proposed

to optimize the model, such as an objective function based on the Wasserstein distance (WGAN/WGAN-GP)

[44].

The most widely employed models with the highest success rate in generating volumetric data are, in the

following order, CycleGAN, cGAN (conditional GAN), DCGAN (Deep Convolutional GAN), and WGAN/WGAN-

GP based architectures. Additionally, in the medical domain, the main applications of GANs are image

translation and volumetric reconstruction, with the Cycle Generative Adversarial Network (CycleGAN) based

architecture being the preferred choice for these purposes [47].

3.2.1 Cycle Generative Adversarial Network

The CycleGAN, given the training samples 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, with probability distribution 𝑝𝑑𝑎𝑡𝑎(𝑥) and
𝑝𝑑𝑎𝑡𝑎(𝑦), respectively, aims to learn two mapping functions between two domains, 𝐺 ∶ 𝑋 → 𝑌 and

𝐹 ∶ 𝑌 → 𝑋 (Figure 12) [48].

The CycleGAN comprises a generator 𝐺 that transforms images from the source domain 𝑋 to the target

domain 𝑌, being the most relevant function of the model, and a generator 𝐹 that converts the images

from the target domain 𝑌 to the original domain 𝑋 [43, 48]. The generator network seeks to minimize the

difference between the input samples, from the respective domain, and the generated samples, as well as,

to maximize the loss of the discriminators [44].
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Figure 12: (a) The model is set out to train two mapping functions 𝐺 ∶ 𝑋 → 𝑌 and 𝐹 ∶ 𝑌 → 𝑋, consisting of

two generators and two discriminators. In order to regularize the mappings, CycleGAN integrates two

cycles. (b) Forward Cycle Consistency: 𝑥 → 𝐺(𝑥) → 𝐹(𝐺(𝑥)) ≈ 𝑥 e (c) Backward Cycle Consistency:

𝑦 → 𝐹(𝑦) → 𝐺(𝐹(𝑦)) ≈ 𝑦 [48].

In addition, the model has a discriminator 𝐷𝑋 that intends to differentiate between real images 𝑥 and

synthetic images 𝐹(𝑦) and a discriminator 𝐷𝑌 which acts, reciprocally, in domain 𝑌, that is, it intends to
discriminate between 𝑦 and 𝐺(𝑥) [43, 48].
To ensure that the generated samples are equivalent to the actual samples in the considered domain,

the objective function applies adversarial losses to both mapping functions. For example, for the mapping

function 𝐺 ∶ 𝑋 → 𝑌 and for its discriminator 𝐷𝑌:

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) = 𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [log 𝐷𝑌(𝑦)] + 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log(1 − 𝐷𝑌(𝐺(𝑥)))] . (3)

The generator 𝐺, in equation (3), aspires to reproduce images similar to the images in domain 𝑌. The 𝐷𝑌
differentiates between the artificial samples 𝐺(𝑥) and the input samples 𝑦. It is important to note that a
loss function is also employed for the mapping function 𝐹 ∶ 𝑌 → 𝑋 and its discriminator 𝐷𝑋:

ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log 𝐷𝑋(𝑥)] + 𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [log(1 − 𝐷𝑋(𝐹(𝑦)))] , (4)

where the generator 𝐹 seeks to conceive samples identical to the samples in domain 𝑋. The discriminator

𝐷𝑋 determines the source of the images, i.e., whether the samples come from generator 𝐹(𝑦) or from the

set of real data 𝑥 [43, 44, 48].

To prevent mapping functions 𝐺 and 𝐹 from contradicting each other, the objective function contains

loss functions that evaluate the consistency of the cycle since the adversarial losses cannot guarantee,

independently, the translation of the image domain:

ℒ𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [∥𝐹(𝐺(𝑥)) − 𝑥∥1] + 𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [∥𝐺(𝐹(𝑦)) − 𝑦∥1] . (5)
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The model infers that an image 𝑥 from the domain 𝑋 that is converted to an image 𝐺(𝑥) in the domain
𝑌 can be reconstructed, 𝑥 → 𝐺(𝑥) → 𝐹(𝐺(𝑥)) ≈ 𝑥, this step is called Forward Cycle Consistency.

Similarly, for each image 𝑦 of the domain 𝑌, the generator network performs Backward Cycle Consistency:
𝑦 → 𝐹(𝑦) → 𝐺(𝐹(𝑦)) ≈ 𝑦 [48]. One of the goals of the generator is to minimize the discrepancy

between the original image and its reconstruction in the original domain [44].

Despite not being considered an essential loss function in the official objective function, the generator

can be regularized by an identity mapping loss, when real images of the target domain are given as input to

the generator:

ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) = 𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [∥𝐺(𝑦) − 𝑦∥1] + 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹(𝑥) − 𝑥‖1] . (6)

The generator network, without ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, can inappropriately alter the tonality of the samples [48].

In this way, the complete objective function is obtained, taking into account the loss of identity:

min
𝐺,𝐹

max
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) = ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌)+

ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋)+

𝜆ℒ𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹)+

0.5𝜆ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹),

(7)

the term 𝜆 represents the relative importance of the losses that evaluate cycle consistency, as well as, the

identity mapping loss, comparatively, to the Adversarial loss functions. According to the literature, 𝜆 = 10
[48].

3.2.2 Conditional Generative Network

Generally, regular GAN does not enable control over the features of the generated samples. In practice, it

can be advantageous to have more control over what is represented in the generated images [44]. GANs

can be extended to a conditional model, both the generator and discriminator are conditioned with extra

information that is fed as an additional input layer [49]. In a conditional GAN (Figure 13), the generator uses

the information in 𝑦 in addition to the noise vector 𝑧 to generate plausible samples. On the other hand, the

discriminator evaluates whether the synthetic samples resemble the real images with probability distribution

𝑝𝑑𝑎𝑡𝑎, given the information provided in 𝑦 [44]. A cGAN can use the same loss functions as a standard

GAN [43].

The objective function can be represented by the following equation:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log 𝐷(𝑥|𝑦)] + 𝔼𝑧∼𝑝𝑧(𝑧) [log(1 − 𝐷(𝐺(𝑧|𝑦)|𝑦))] . (8)
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Figure 13: In a conditional GAN, the generator and discriminator receive an additional conditioning vector 𝑦 as input.

Adapted from [44].

3.2.3 Pix2Pix Generative Adversarial Network

Pix2pix (Figure 14) was proposed by Isola et al. ([50]) in 2017, this model refers to a conditional GAN

(cGAN). It is the most straightforward approach for translating images from one domain to another, as for

each image 𝑥 in the domain 𝑋 there is a reference image 𝑦′ in the domain 𝑌, i.e., it requires a paired
dataset [43, 44, 50].

Figure 14: The generator 𝐺 minimizes the voxelwise loss between its output 𝑦 and a reference image 𝑦′. The

discriminator 𝐷 provides an adversarial loss that represents how 𝑦 matches the real images in the domain

𝑌. Adapted from [44].

There are two possibilities for training an image translation model. In the first case, a reference image in

domain 𝑋 is available for each image in domain 𝑌 (Pix2Pix). In the second situation, the images in domain

𝑋 are semantically related to the images in domain 𝑌, however, there is not necessarily a reference image
in domain 𝑌 for each image in domain 𝑋. In other words, training can be performed with unpaired data

(CycleGAN) [44]. The main difference between the CycleGAN architecture and the Pix2Pix architecture is
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the addition of the cycle consistency loss to enable training without the need for paired data. Therefore,

a CycleGAN translates from the source domain to the target domain without a one-to-one mapping, as

opposed to Pix2Pix [51].

As the CycleGAN, this model uses an adversarial network to assess if the predictions are, perceptually,

similar to the real images. The generator network is trained to minimize the voxelwise discrepancy between

its output and the corresponding reference image [44]. The discriminator receives two images, the real

image or the synthetic image and the condition (reference image), and seeks to differentiate between the

real images of the target domain and the generated images conceived by the generator [43].

The objective function can be represented by:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝜆1𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎
[log 𝐷(𝑦, 𝑥)] +

𝔼𝑥∼𝑝𝑥
[log(1 − 𝐷(𝐺(𝑥), 𝑥))] +

𝜆2𝔼𝑦′∼𝑝𝑑𝑎𝑡𝑎,𝑥∼𝑝𝑥
[∥𝑦′ − 𝐺(𝑥)∥1] ,

(9)

where the images 𝑥 and 𝑦′ are spatially aligned. When 𝜆1 > 0 and 𝜆2 > 0, the output image 𝐺(𝑥) is
connected to the reference image 𝑦′ and the target domain through L1-norm and the adversarial loss [44].

CycleGAN’s ability to learn from unpaired datasets makes it attractive in scenarios where acquiring paired

images for training is difficult, such as in the medical domain. On the other hand, Pix2Pix is a conditional

model that requires paired datasets for supervised learning. It learns a direct mapping from input images to

output images based on the paired examples provided during training. Pix2Pix is suitable when paired data

is available and can provide more precise control over the translation process. Accordingly, the performance

of these two architectures will be investigated.

3.3 Technical Disadvantages [47]

Technically, GANs can exhibit some disadvantages:

• Mode collapse: if perchance, the discriminator is fixed at a local minimum, the generator learns that

it is plausible to conceive the same set of results to fool the discriminative network.

• Imperception: given the heterogeneous applications of GANs, it is challenging to compare the models

without human intervention, since there are no loss functions and evaluation metrics capable of

mimicking human judgment.

• Non-convergence: the convergence point may be defined as the point where the discriminator

is no longer effective in differentiating between real data and synthetic data, since the generator,

progressively, produces realistic samples. Given this, the discriminator’s feedback is not consistent,

causing the results to deteriorate.
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• Diminished gradient: On the other hand, if the discriminator outperforms the generator, in other

words, if the generator does not follow the evolution of the discriminator, its feedback becomes

useless.
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C A S E S T UD Y

This chapter describes in detail the organization, analysis, and preparation of the dataset to satisfy the

implementation requirements. The generator and discriminator architectures, which are crucial to achieving

the intended results, are described in this chapter. Likewise, the training details of both models to obtain

high-quality 3D images are also addressed. Section 4.4 presents the metrics applied to evaluate the

performance of the proposed methods. Finally, section 4.5 describes the qualitative test that was designed

and carried out in order to evaluate the condition of the glenoid cavity. That is, to validate if the estimated

glenoid version presents a healthy value since the aim of shoulder arthroplasty is to accurately restore the

patient’s healthy anatomy.

4.1 Dataset

The dataset consists of 204 3D CT scans of the glenohumeral joint, with a shape of 512x512xnº of slices,

with the nº of slices being variable. Its categorization was based on the modified Walch classification, which

describes morphological alterations of the arthritic glenoid on 3D CT, as previously mentioned in subsection

2.2.1. If the glenoid cavity presented a pathological retroversion or anteversion, >10º and >5º, respectively,

it would be considered defective. In other words, if it exhibited bone defects of type B, C, and D, the most

likely to be submitted to reconstructive surgery. For this purpose, an algorithm was developed, which applies

Friedman’s line method to calculate the glenoid version from the landmarks associated with each medical

image in the dataset. The results of the classification revealed that the dataset was not balanced, as only 93

of the medical images corresponded to unhealthy scapulae and 111 to healthy scapulae. The images of

scapulae with signs of glenohumeral arthropathy will only be used to test the models.

Besides the images, the dataset contains the labels associated with each bone and the relevant anatomical

landmarks, annotated and reviewed by independent professionals.

43
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4.1.1 Data Preprocessing

Data preprocessing is a crucial step in developing a successful deep learning model, as the quality and

relevance of the data directly impact the training process. To achieve the objectives of this study, the 3D

CT segmentations were manipulated, with a specific focus on the patient’s scapulae, by keeping only the

labels 5 (right scapula) and 6 (left scapula). The left scapulae were submitted to a vertical flip, so that the

images presented the same orientation. The images were cropped around the area of interest and resized

to a standard configuration of 64x64x64 for the CycleGAN and 128x128x128 for the Pix2Pix. The difference

in image resolution is due to the fact that CycleGAN has a higher computational cost. Finally, the glenoid

cavity was removed in each healthy domain image by applying a spherical mask with a radius of 50, so that

the networks learn to reconstruct healthy scapulae from the images of interest (Figure 15).

Figure 15: Example of a scapula with the glenoid fossa removed.

Concisely, two distinct domains are obtained, the unhealthy domain (𝑋) and the healthy domain (𝑌). The
generative model (CycleGAN or Pix2Pix) seeks to learn the mapping function between these two domains,

𝐺 ∶ 𝑋 → 𝑌, i.e., the conversion of an image 𝑥 from the domain 𝑋 to an image 𝐺(𝑥) from the domain 𝑌,
where 𝑥 is an image of a scapula with the glenoid removed and 𝐺(𝑥) the sample produced by the generator,
which wants to generate images similar to those of the real dataset of the healthy domain.

4.2 Networks Architecture

The architecture of the generator and the discriminator network is identical for both models, except that

Pix2Pix’s discriminator takes the reference image into account. For each discriminator network (Figure

16), a PatchGAN was adopted for the classification of overlapping image patches (subvolumes) into real or

fake, instead of classifying the whole volume. In a PatchGAN, the input image is passed through a series of

convolutional layers, each of which downsamples the image and increases the number of filters. The final

convolutional layer produces a single output value for each local image patch [48, 52, 53]. In this case,
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the last layer of the discriminator includes a sigmoid activation function, such that 𝐷(𝑥𝑟𝑒𝑎𝑙), 𝐷(𝐺(𝑥))
∈ [0, 1], where a value close to 1 indicates that the subvolume is real, and a value close to 0 indicates that
the subvolume is fake. The PatchGAN discriminator approach limits the ability of the discriminator to use

arbitrary information from unexpected locations within the image to make its decisions [53]. Gaussian noise

was added in the input of the discriminator in order to prevent overfitting of the training data and force the

discriminator to learn more robust features. This can lead to a more stable and effective training process of

the GAN [54, 55].

Figure 16: Diagram of the discriminator architecture.

The architecture of the discriminator (Table 2) of the first three layers is composed by three downsample

blocks, that reduce the spatial dimensions of the feature maps while increasing the number of filters. Each

downsample block consists of a 3D convolutional layer with a stride of 2, a kernel size of 4, an instance

normalization, except for the first layer, and a LeakyReLU activation function with a slope of 0.2. The fourth

layer is similar to the previous ones but with a stride of 1. The last layer is a 3D convolution with a stride of

1, a kernel size of 4, and as abovementioned, includes a sigmoid activation function.

Table 2: Architecture used for the discriminators

Layer Layer Type Filters Filter Size Stride Activation Function Normalization

1 Downsampling (Conv3D) 64 4 2 LeakyReLU(0.2) None

2 Downsampling (Conv3D) 128 4 2 LeakyReLU(0.2) Instance Normalization

3 Downsampling (Conv3D) 256 4 2 LeakyReLU(0.2) Instance Normalization

4 Conv3D 512 4 1 LeakyReLU(0.2) Instance Normalization

5 Conv3D 1 4 1 Sigmoid None



46 Case Study

In a CycleGAN, the generator architecture (Figure 17) plays a crucial role in the quality and realism of

the generated output. In this case, the generator is responsible for mapping the unhealthy domain to the

healthy domain and creating realistic samples of healthy scapulae.

Figure 17: Diagram of the generator architecture.

The generator networks are expected to be stable and capable of converging to a good solution. Table 3

presents the generator architecture of the proposed solution.

Table 3: Architecture used for the generators

Layer Layer Type Filters Filter Size Stride Activation Function Normalization

1 Conv3D 64 7 1 ReLU Instance Normalization

2 Downsampling (Conv3D) 128 3 2 ReLU Instance Normalization

3 Downsampling (Conv3D) 256 3 2 ReLU Instance Normalization

4-9 Residual (Conv3D) 256 3 1 ReLU Instance Normalization

10 Upsampling (Conv3DTranspose) 128 3 2 ReLU Instance Normalization

11 Upsampling (Conv3DTranspose) 64 3 2 ReLU Instance Normalization

12 Conv3D 1 7 1 Sigmoid None

The first layer of the generator architecture consists of a 3D convolutional layer with a stride of 1, a kernel

size of 7, an instance normalization, and a ReLU activation function. Then, two downsample blocks are

applied sequentially, these incorporate a 3D convolution with a stride of 2, a kernel size of 3, an instance

normalization, and a ReLU activation function. Subsequently, there are six residual blocks, each block

includes two 3D convolutional layers with a kernel size of 3, an instance normalization, and a ReLU activation

function. After the residual blocks, a skip connection is applied between the output of the last residual
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block and the output of the second downsample block. Two upsample blocks are implemented, which

increase the spatial dimensions of the feature maps while decreasing the number of filters. Each upsample

block is composed by a 3D transposed convolutional layer with a stride of 2, a kernel size of 3, an instance

normalization, and a ReLU activation function. Skip connections are applied between the output of the first

upsample block and the output of the first downsample block and between the output of the last upsample

block and the first convolutional layer. Finally, the last layer consists of a 3D convolutional layer with a stride

of 1, a kernel size of 7, and a sigmoid activation function.

According to the literature, the first and last layers are critical for the preservation of anatomical structures

in medical imaging [53]. Moreover, the addition of skip connections allows for low-level information from the

input to be fed directly to the output, preserving and reconstructing details from the source images. These

are believed to be particularly important to reduce the loss of high-resolution information in deeper layers of

the network. Overall, the use of skip connections can enhance the preservation of detailed information in

images and improve the quality of the generated images [56].

4.3 Training Detai ls

Pre-training the generator has been demonstrated to improve the performance of both networks. The

generator was pre-trained for 150 epochs, using the Binary Cross Entropy loss function and the Adam

optimizer with a learning rate of 2e-4.

4.3.1 CycleGAN

The CycleGAN was trained for 150 epochs. The weights of the pre-trained generator were used to initialize

the CycleGAN generators. The batch size, learning rate, and momentum parameters values used were those

suggested in the literature for the CycleGAN, 1, 2e-4, 𝛽1 = 0.5 and 𝛽2 = 0.999, respectively [48].
It should be noted that during the training step it is necessary to define different loss functions to guide

the model learning process:

• Generator loss — computes the Mean Squared Error (MSE) between the generated images and a

tensor of ones (target output). This loss depends, directly, on the performance of the discriminator,

and by minimizing the generator’s loss function, it will produce more realistic samples [44].

• Discriminator loss — computes the MSE between the real and generated images and tensors of ones

and zeros, respectively. By minimizing this loss, the discriminator learns to better distinguish between

real and generated images.
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• Cycle consistency loss — calculates the mean absolute difference between the real image and its

reconstruction. This loss function helps to ensure that consistent samples are generated across

domains, and prevents the generators from producing contradictory samples [48].

• Identity loss — calculates the mean absolute difference between the real image and the output image.

By minimizing this loss function the CycleGAN ensures that the output content is consistent with the

input [48].

4.3.2 Pix2Pix

The Pix2Pix was trained for 100 epochs. The weights of the pre-trained generator were used to initialize its

generator. The batch size, learning rate, and momentum parameters values used were those suggested in

the literature for the Pix2Pix, 1, 2e-4, 𝛽1 = 0.5 and 𝛽2 = 0.999, respectively [50].
To guide the learning process, the generator loss and discriminator loss, described in the previous

subsection, were applied. Additionally, the generator loss function includes the calculation of the mean

absolute difference between the desired output and the generated image. This is denominated L1-norm

and provides a measure of dissimilarity between the two samples, encouraging the generator to generate

samples similar to the target images.

Furthermore, in both networks, the objective function was divided by 2 during the optimization of the

discriminators, which decreases the learning rate of the discriminators compared to the generators [50].

4.4 Evaluat ion Metr ics [47]

The following metrics were applied to evaluate the performance of the proposed methods:

• Peak signal-to-noise ratio (PSNR) — metric, commonly, applied to evaluate reconstructions, one of the

main applications of volumetric GANs. It evaluates the quality of images/volumes and for this reason

is widely used in medical imaging. The higher the PSNR, the better the quality of the reconstructed

image [57].

• Structural similarity index measure (SSIM) — the second most used metric in reconstruction problems.

It assesses the quality of the data, taking into account human perception, that is, it extracts structural

information, such as human vision. A value closer to 1 indicates a better image quality [58].

• Visual — visual evaluation is one of the best tools for evaluating the images generated by GANs and is

broadly utilized as a metric in CycleGAN-based architectures.
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• Dice similarity coefficient — a statistical tool that determines the similarity between two datasets.

Despite being mostly used for model evaluation of segmentation algorithms, it is a general concept

that can be used in many applications [59].

In the generator pre-training, apart from the metrics, mentioned above, the accuracy of the healthy

scapula reconstruction was calculated. In the training phase of CycleGAN and Pix2Pix, the SSIM and PSNR

metrics were determined between the real images of the healthy domain and the generated images. The dice

similarity coefficient was also computed between the target image and the generated output. Furthermore,

all reconstructions were evaluated visually to assess the quality and reliability of the results.

In the test step, the SSIM and PSNR metrics provide an overall assessment of the similarity and quality of

the generated images compared to the real images in the test dataset.

4.5 Qual i tat ive Test

As mentioned previously, an abnormal deviation of the glenoid fossa version can affect the biomechanics

and stability of the glenohumeral joint. A pathological version was proven to increase stress and wear on the

glenoid component. Therefore, it is crucial to normalize the glenoid version during shoulder arthroplasty to

improve the functional outcome and longevity of the implant [17]. Consequently, to evaluate the condition

of the glenoid in the acquired reconstructions, the relevant landmarks were manually annotated to calculate

the glenoid version (Figure 18). Then, the algorithm used in the classification of the dataset was applied,

which employed Friedman’s line method to evaluate the version of the glenoid.

Figure 18: Example of a manual annotation of landmarks.
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R E S U L T S

This chapter presents the metrics obtained to evaluate the performance of the models in the reconstruction

of glenoid bone defects. The focus is on presenting the quantitative measures achieved to evaluate the

accuracy and efficiency of the models. Additionally, the chapter includes qualitative test results, which are

crucial for evaluating the medical validity and clinical applicability of the obtained outcomes. By combining

quantitative metrics and qualitative assessments, this chapter provides a comprehensive overview of the

models’ performance and their potential in the field of glenoid bone defect reconstruction. The dataset

used in this study was divided into three subsets: the training set, the validation set, and the test set. The

training set consisted of 111 images of healthy scapulae. The validation set comprised 10% of the training

set. Finally, the test set comprised 24 images of unhealthy scapulae, which were reserved for evaluating the

performance of the models in reconstructing glenoid bone defects. It is important to note that the validation

and test sets in this study did not include volumes from the same individuals.

Table 4 presents the results of the generator pre-training. By observing the values obtained for each

metric, it can be inferred that the training and validation phases were both successful. Moreover, a training

loss of 7.4354e-4 and a validation loss of 0.0040 were obtained. Visually, the reconstructions appeared to

be correct.

Table 4: Generator pre-training results

Generator Pre-training Train Validation

SSIM 0.9976 0.9946

PSNR 75.5020 77.8550

Dice similarity coefficient 0.9942 0.9838

Accuracy 0.9997 0.9990

Table 5 shows the relevant evaluation metrics achieved during the training and testing of CycleGAN. In

the training phase, the 𝐺 and 𝐹 generators obtained losses of 0.3747 and 0.4204, respectively. On the

other hand, the 𝑋 and 𝑌 discriminators got losses of 0.0709 and 0.0884, in that order. Visually, only a few

promising reconstructions were registered (Figure 19).
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Table 5: Results of the training and test steps of the CycleGAN model

CycleGAN Train Test

SSIM 0.9820 0.9740

PSNR 53.5711 27.6460

Dice similarity coefficient 0.9621 —

Figure 19: Example of a reconstruction after testing the CycleGAN model.

Table 6 presents the pertinent evaluation metrics achieved during Pix2Pix training and testing. The gener-

ator and the discriminator exhibited losses of 0.2502 and 0.2500, in that order. Most of the reconstructions

seemed, visually, correct (Figure 20).

Table 6: Results of the training and test steps of the Pix2Pix model

Pix2Pix Train Test

SSIM 0.9987 0.9902

PSNR 114.6688 29.1981

Dice similarity coefficient 0.9971 —

Figure 20: Example of a reconstruction after testing the Pix2Pix model.

It should be emphasized, during training, the SSIM and PSNR metrics correspond to the values determined

between the real images of the healthy domain and the generated images of healthy scapulae. In the
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test, the metrics were calculated between the real images (unhealthy scapulae) and the generated images,

samples produced by the generator, which wants to generate images similar to those of the real dataset of

the healthy domain. Additionally, the SSIM and PSNR test values refer to the mean values obtained after

testing the test dataset. During testing, the calculation of the dice similarity coefficient was not performed

due to the absence of a target image for reconstruction.

5.1 Qual i tat ive Test Results

The primary goal of this study is to reconstruct glenoid bone defects so that the predicted version is comprised

in the range [-5º, 10º] since the purpose of shoulder arthroplasty is to accurately restore the patient’s

healthy anatomy. Each test phase consisted in evaluating the performance of the model using a dataset of

24 images of unhealthy scapulae. It is important to note that these images were submitted to the same

preprocessing as the training images of the respective model, including the removal of the glenoid cavity.

The Pix2Pix model successfully reconstructed the glenoid bone defects in the majority of cases. Out of

the 24 artificial bone defects, the model was able to accurately reconstruct 21 cases, resulting in a success

rate of 87.5%. These reconstructions presented a healthy version within the desired range of [-5º, 10º],

indicating the model’s ability to closely approximate the normal glenoid version. However, there was one

case where the model generated a reconstruction that did not fit the healthy range. Considering the normal

version as 0º (true value), a Mean Absolute Error (MAE) of 2.6875 was obtained.

Unfortunately, the CycleGAN model results are insufficient to assess its quality. The absence of a reference

image imposes limitations on the ability of the CycleGAN model to learn and capture the specific features

required for glenoid bone defect reconstruction, i.e., as a model designed to handle unpaired data, it cannot

directly compare the original and target domains. Furthermore, the reliance on a small dataset further

amplifies this restriction, as the model has fewer examples to learn from. Consequently, the model may

have difficulty in effectively learning the mapping functions necessary for generating high-quality images.
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R E S U L T S AN A L Y S I S A ND D I S C U S S I O N

Virtual reconstruction technology provides a crucial reference for the reconstruction of glenoid bone defects,

irrespective of their primary etiology, facilitating preoperative planning of reconstructive surgical interventions.

The positioning of the glenoid component in excessive retroversion leads to altered biomechanics and an

increase in glenoid shearing forces. It has been proven that a retroversion greater than 10º will result in

more than 5 mm of posterior translation of the humeral head. Additionally, a glenoid placed in 15º of

retroversion causes an increase in the peak strain, liftoff, and slippage of the implant, which can lead to its

loosening and failure. Based on previous studies, the goal of surgery is to restore the glenoid version to

within 10º of a patient’s native glenoid version [40].

The virtual reconstruction techniques present in clinical practice and literature manifest some drawbacks.

The mirroring of the contralateral joint, the gold standard, can only be applied in the case of unilateral

arthropathy and assumes that the scapula is symmetrical, which can lead to errors in the glenoid version

calculation. It should be noted that the contralateral joint must not have been subject to previous surgeries

and injuries [14, 39]. The use of a standard model of the healthy glenoid does not consider the individual

anatomical variability of the scapula. The results obtained from the linear regression models of Resh’s angle

and AGWA are not reliable, compared to the conventional technique [38, 40]. On the other hand, the SSM

relies on the process of registering the shape of the bone structure. Consequently, there is a need to develop

an intelligent solution to reconstruct the glenoid healthy bone, to improve clinical practice [14].

Recently, there has been an increasing interest in the application of CycleGAN for 3D image-to-image

translation, particularly, in the field of medical imaging. In the context of healthy bone reconstruction, a

CycleGAN-based approach can be used to generate a healthy bone image from an unhealthy bone image (an

image of a scapula with the glenoid removed), preserving the underlying anatomical structure and features

of the original image. The training process involves using two GANs that are trained in a cyclic way to learn

the mapping between two distinct domains, in this case, the unhealthy bone domain and the healthy bone

domain. On the other hand, Pix2Pix, previously mentioned, is an image translation model, just like CycleGAN.

However, it performs training with paired data, i.e., it translates from the source domain to the target domain

via a one-to-one mapping, unlike CycleGAN. The major difference between the CycleGAN architecture and

the Pix2Pix architecture is the addition of cycle consistency loss to allow training with unpaired data. In both
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models, during training, the generators are optimized to minimize the discrepancy between the generated

images and the real images, while the discriminators are adjusted to discern between real and synthetic

images. For image translation and volumetric reconstructions, the CycleGAN-based architecture is the

preferred choice for such ends, but the study dataset is insufficient to evaluate this model at its full potential.

Thereby, the performance of Pix2Pix will also be examined, since it takes into consideration a reference

image at the training step and, therefore, the size of the dataset may not be so critical to achieving good

results.

The pretrained generator used to initialize the CycleGAN and Pix2Pix generators, achieved a high SSIM

and dice similarity coefficient of 0.9976 and 0.9942, respectively, indicating a strong similarity between

the generated and reference images. The high PSNR value of 75.5020, implies that the generated images

present a low level of noise and distortion compared to the target images. The validation results show that

the pretrained generator can generalize to unseen data.

During training and testing, the Pix2Pix model attained a high SSIM of 0.9987 and 0.9902, in that order,

suggesting a great structural similarity between the generated images and the real images. The training

phase yielded a high PSNR of 114.6688, indicating a low level of noise and distortion in the generated

images compared to the target images. Nevertheless, in the test phase, the PSNR decreased, significantly,

to 29.1981, pointing to a higher level of noise and distortion in the generated images. The dice similarity

coefficient reached a high value of 0.9971 during the training of the Pix2Pix model, this value suggests

that the model can preserve structural information and details. The generator and discriminator losses of

0.2502 and 0.2500, respectively, indicate a balanced and competitive training process between the two

GAN components. Overall, the results show that the Pix2Pix model is able to translate images from the

unhealthy domain to the healthy domain.

During the training and testing processes, the CycleGAN model achieves an SSIM of 0.9820 and 0.9740,

respectively, suggesting a substantial similarity in structure between the generated images and the real

images. In the training phase, the model attained a PSNR of 53.5711, which indicates a low level of noise

and distortion between the generated images and the target domain images. However, in the test step, the

PSNR value drops notably to 27.6460. The dice similarity coefficient of 0.9621 attained during the training

period is typically considered a good value, suggesting a proper alignment of the generated images with

the real images of the healthy domain. However, it is important to note that this value primarily reflects

the overall similarity of the entire scapula rather than specifically focusing on the glenoid region, that is,

this metric may not be reliable. During the training phase, the 𝐺 and 𝐹 generators obtained losses of

0.3747 and 0.4204, respectively, while the 𝑋 and 𝑌 discriminators achieved losses of 0.0709 and 0.0884,

correspondingly. These loss values imply that the discriminators had a better performance in comparison to

the generators. The slightly higher loss values of the generators indicate that they had difficulty generating

images similar to those in the healthy domain.
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In the testing phases of the Pix2Pix and CycleGAN models, there was a noticeable decrease in PSNR

values, indicating that there may be a loss in the detail and quality of the images generated during the

translation process. This may be due to the usage of images with glenohumeral arthropathy, which may

have a different probability distribution.

In the case of the Pix2Pix model, most of the reconstructions seemed, visually, correct, as opposed to

the CycleGAN model, where only a few promising reconstructions were registered. Visual image analysis

is the most, commonly, used and one of the best tools to evaluate images generated by GANs. Visual

assessment of the quality of the images may not be the best option, as the person in question may not

have the necessary skills to analyze medical images. Therefore, it depends on expert opinion, which can be

expensive, time-consuming, and not always easy to obtain [47].

The results of this study emphasize the promising performance of the Pix2Pix model in reconstructing

glenoid bone defects and restoring the pathological version in unhealthy scapulae. The Pix2Pix model

demonstrates its potential as a valuable technique in this domain, with a success rate of 87.5% and a MAE

of 2.6875. It is important to note that a direct comparison with existing techniques was not conducted as

the models have different evaluation criteria and practical limitations. Furthermore, it should be noted that

due to the inaccessibility of the models, it was not possible to test and evaluate their performance using

the specific dataset used in this study. Consequently, a direct comparison of the Pix2Pix model with these

techniques was not feasible. Future investigations should be centered on comparing the Pix2Pix model with

other established methods, particularly the mirroring of the contralateral joint and SSM (Table 1).

Although the study demonstrates the potential of the CycleGAN and Pix2Pix models for 3D image-to-image

translation in medical imaging, it is crucial to recognize some limitations and areas that can be improved.

The categorization of the dataset images, based on the modified Walch classification, may have led to

inaccuracies in the results since it only considers one morphological parameter of the scapula. Similarly,

the qualitative test that calculates the glenoid version to determine the condition of the glenoid also relies on

the same classification algorithm. It is important to note that in this process, I annotated the 3D landmarks,

which can introduce errors and impact the accuracy of the results. Ideally, these tasks should have been

performed by an expert in the field of medical imaging, which can be a time-consuming and costly solution.

The complexity of clinical cases, eventual artefacts, and the overfitting of the training set has the potential to

impact the accuracy of the reconstructions [42]. The reduced size of the dataset amplified the limitations of

the CycleGAN and Pix2Pix models. Regarding CycleGAN, the dependence on a smaller dataset enhances

its constraints, since this model handles unpaired data and cannot compare directly between the source

and target domains. This restriction can impact the ability of the model to learn the mapping functions and

produce high-quality images. Likewise, even though Pix2Pix enables training with paired data, the small

size of the dataset can affect its performance. Capturing the complexity of the reconstruction task can be

challenging and lead to non-optimal results and limited generalization. Moreover, processing volumetric data

requires a computer with high processing and storage capacity [47]. For example, the CycleGAN involves
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the training of four CNNs simultaneously and several filter responses need to be stored, for each layer

of every CNN [52]. Thus, hardware limitation remains an adversity [47]. The model training and testing

processes were conducted using an Amazon Web Services (AWS) EC2 instance type g5.xlarge (GPU 24GB

RAM 16GB), taking advantage of its computational resources.

Looking at future perspectives, there are various potential areas for improvement and research in this

study. The problems mentioned in section 3.3, i.e., mode collapse, non-convergence, and diminished

gradient, are even harder to overcome when it concerns volumetric data. Likewise, due to the lack of an

appropriate metric to compare the different models, it would be crucial to find a metric similar to human

intelligence to enhance the results of volumetric data generation using GANs [47]. In addition, evaluating

the performance of the models on a larger dataset would allow a more comprehensive assessment of their

results.

Taking into consideration a significantly larger dataset, both models are expected to outperform in

reconstructing a defective glenoid. This opens up a possibility for the development of an automated and

intelligent virtual reconstruction tool that can be effectively used in clinical applications.
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CONC LU S I O N

The present project was conducted in a company environment at PeekMed®, with the aim of investigating

a possible solution for the reconstruction of glenoid cavity bone defects, contributing to the preoperative

planning of shoulder arthroplasty.

The complexity and variability of the glenoid anatomy have posed significant challenges for the medical

community, especially in reconstructive surgeries. Patients with osteoarthritis often present alterations in

the morphological aspects of the glenohumeral joint, which may lead to loosening of the joint. Glenohumeral

osteoarthritis is defined by progressive degeneration of the articular cartilage of the humeral head and

glenoid component leading to pain, stiffness, and limitation of range of motion. Its diagnosis is based on

medical history, physical examination, and imaging. Walch’s classification is a method for categorizing the

morphological alterations observed in arthritic glenoids and is widely acknowledged as the predominant

system in the context of shoulder replacement procedures. Its primary objective is to emphasize the critical

role of the glenoid version and the relationship between the humeral head and the glenoid in preoperative

planning and surgical interventions. The optimal treatment for osteoarthritis of the glenohumeral joint is

frequently controversial and is chosen according to the patient’s age, symptoms severity, activity level,

imaging results, and medical comorbidity. If nonsurgical measures are ineffective, particularly in the case

of pain, surgical options are considered. Preoperative planning is crucial for the success of orthopedic

procedures. Radiology, especially imaging studies, plays a vital role in this planning process. Medical imaging

assesses important aspects of the glenohumeral joint, such as bone stock, glenoid version, GHSI, and HHM.

These morphological parameters can be affected by degenerative osteoarticular pathology. Understanding

the relationship between soft tissues and bone structures is also essential for effective preoperative planning.

The virtual reconstruction methods in literature and clinical practice have some limitations. Consequently,

there is a need to develop an intelligent solution to reconstruct the glenoid healthy bone, to improve clinical

practice. The performance of generative models was investigated, in this case, the CycleGAN and Pix2Pix.

Overall, the results emphasize the effectiveness of the Pix2Pix model in reconstructing glenoid bone

defects, with a high success rate and an accurate restoration of a healthy version in the desired range,

compared to the CycleGAN model.
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The objectives defined in section 1.2 have been successfully accomplished. The main objective was the

virtual reconstruction of the healthy anatomy of the glenoid cavity from 3D CT images, using GDL techniques.

The quantitative aspects reinforce its validity, the method under study aligns perfectly with the fundamental

target of shoulder arthroplasty, which is to accurately restore the patient’s healthy anatomy. Although the

Pix2Pix model has not been directly compared with existing methods, it is expected to have the potential to

surpass them and become the gold standard for glenoid bone reconstruction.

While the study highlights the potential of CycleGAN and Pix2Pix models to reconstruct a defective glenoid,

it is important to acknowledge certain limitations and identify areas for further improvement. It is crucial

to acknowledge that the limited size of the dataset was a constraint in training the CycleGAN and Pix2Pix

models and may have affected their overall performance in terms of their ability to generalize and produce

high-quality images. The algorithm used for the classification of the dataset images and the qualitative test

only takes into account one morphological parameter of the glenoid to assess its condition, which may

have impacted the results obtained. Additionally, the manual annotation of the landmarks may also have

influenced the accuracy of the results. These tasks should have been carried out by an expert in the field of

medical imaging, which can be a time-consuming and expensive solution. Lastly, it would be paramount

to overcome the hardware limitations and find a metric that mimics human intelligence to improve GANs

results and compare different models.

Considering a substantially larger dataset, both models are expected to outperform in the reconstruction of

a defective glenoid. This presents an opportunity to develop an automated and intelligent virtual reconstruction

tool and incorporate it into a 3D preoperative planning system.
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