
Universidade do Minho
Escola de Engenharia

Victor Francisco Mendes de Freitas
Gomes da Fonte

Outubro de 2008

U
M

in
ho

|2
00

8

Causality Tracking in
Dynamic Distributed Systems

Vi
ct

or
 F

ra
nc

is
co

 M
en

de
s

de
 F

re
ita

s
G

om
es

 d
a

Fo
nt

e
C

a
u

sa
li
ty

 T
ra

c
k
in

g
 i
n

 D
yn

a
m

ic
 D

is
tr

ib
u

te
d

 S
ys

te
m

s

Tese de Doutoramento
Tecnologias da Programação

Trabalho efectuado sob a orientação do
Professor Doutor Carlos Baquero Moreno
e do
Professor Doutor Paulo Sérgio Almeida

Universidade do Minho
Escola de Engenharia

Victor Francisco Mendes de Freitas
Gomes da Fonte

Outubro de 2008

Causality Tracking in
Dynamic Distributed Systems

Resumo

A causalidade desempenha um papel central no tratamento de problemas impor-
tantes de sistemas distribuídos, tais como na replicação de dados, na análise de
execuções, na comunicação em grupo e na determinação de estados globais. Por
forma a ser útil, a causalidade precisa de ser concretizada em mecanismos que
procedam ao seu registo.

Os mecanismos existentes, tais como os vectores versão e os relógios vectoriais,
assumem a existência de um mapeamento entre identificadores globalmente únicos
e contadores inteiros. Num sistema em que é conhecido o número de entidades, é
possível pré-configurar estes identificadores por forma a ocuparem posições distin-
tas num vector ou serem-lhe atribuídos nomes distintos. A gestão destas identi-
dades é bem mais problemática em ambientes dinâmicos, com grande número de
entidades e onde estas são permanentemente criadas e destruídas. Esta situação é
agravada na presença de partições de rede. As soluções actuais para o registo de
causalidade não se revelam apropriadas a estes cenários, cada vez mais relevantes.

Esta tese apresenta novos mecanismos de registo de causalidade que têm a pro-
priedade de poder ser usados em cenários com um número dinâmico de entidades.
Estes mecanismos permitem a criação descentralizada de entidades (processos ou
réplicas) sem requerer identificadores globais ou coordenação global para a sua
geração. Estes mecanismos apresentam codificações com tamanho variável, o que
permite uma adaptação automática ao número de entidades em jogo, crescendo e
colapsando de acordo com as necessidades.

i

Abstract

Causality plays a central role as a building block in solving important problems
in distributed systems, such as replication, debugging, group communication and
global snapshots. To be useful, causality must be realised by actual mechanisms
that can track it and encode it.

Existing causality tracking mechanisms, such as vector clocks and version vec-
tors, rely on mappings from globally unique identifiers to integer counters. In a
system with a well known set of entities these identifiers can be pre-configured
and given distinct positions in a vector or distinct names in a mapping. Identity
management is more problematic in dynamic systems, with a large and highly vari-
able number of entities, being worsened when network partitions occur. Present
solutions for causality tracking are not appropriate to these increasingly common
scenarios.

This thesis introduces novel causality tracking mechanisms that can be used in
scenarios with a dynamic number of entities. These allow completely decentralised
creation of entities (processes or replicas) with no need for global identifiers or
global coordination. These mechanisms have a variable size representation that
adapts automatically to the number of entities, growing or shrinking appropri-
ately.

iii

Acknowledgements

First of all, I want to thank Carlos Baquero and Paulo Sérgio Almeida for accepting
being my advisers. Their insightful guidance, their patience and constant support
profoundly shaped this work.

For his initial call, that ultimately lured me into the field of Distributed Sys-
tems, and above all things, for a friendship that I treasure, I’m deeply grateful to
Francisco Moura.

To all past and current members of the Distributed Systems Group I want to
thank for making this such a fun and always exciting place to work. Special thanks
to Rui, Orlando, Tó, Zé Pedro, Coutinho, and, of course, to Carlos, Paulo Sérgio
and Francisco Moura, for their encouragement and all the fruitful discussions.

Finally, I would like to thank my sisters, Ana and Bárbara, for being my biggest
fans, and my parents Maria de Jesus and Victor for raising me so wisely and for
their unconditional support in all aspects of my life.

To my loving wife, Teresa, I dedicate this thesis.

v

Contents

1 Introduction 1

1.1 Decentralised Causality Tracking 2

1.2 Dissertation Outline . 3

2 Logical Clock Systems 7

2.1 System Model . 8

2.2 The Importance of Causality . 8

2.2.1 The Happens-Before Relation 9

2.2.2 Logical Clocks . 10

2.3 Classical Causality Tracking Mechanisms 11

2.3.1 Scalar Clocks . 11

2.3.2 Vector Clocks . 12

2.3.3 Version Vectors . 14

2.4 Vector Clocks and the Problem of Scale 15

2.5 Static, Well-Connected Environments 16

2.5.1 The Differential Approach 17

2.5.2 The Plausible Clock Approach 19

2.6 Dynamic, Weakly-Connected Environments 21

2.6.1 Causality Tracking in Roam 22

vii

2.6.2 Causality Tracking in Bayou 25

2.6.3 Tree Clocks . 28

2.6.4 Hash Histories . 30

3 Panasync 33

3.1 Introduction . 33

3.2 Related Work . 34

3.3 Revisiting Copy Constructs . 36

3.4 Panasync Operations . 37

3.5 Synopsis of Time-Stamping . 39

3.6 Example Scenarios . 40

3.6.1 First Scenario . 40

3.6.2 Second Scenario . 41

3.7 Design Issues . 42

3.8 Conclusions and Future Work . 43

4 Version Stamps 47

4.1 Introduction . 47

4.1.1 Fixed vs. Variable number of Replicas 49

4.1.2 Frontier Elements vs. All Elements 50

4.1.3 Structure of the Chapter . 52

4.2 Causal Histories in Dynamic Settings 52

4.3 Version Stamps . 54

4.3.1 Synopsis of Formal Presentation 56

4.4 Version Stamps: Non-Reducing . 56

4.5 Correspondence Between Causal Histories and Version Stamps . . . 59

4.6 Simplifying Version Stamps upon Joins 61

4.7 Conclusions . 64

4.8 Proof of Invariants and Main Proposition 65

5 Improving on Version Stamps 73

5.1 Introduction . 73

5.2 Version Stamps . 75

5.2.1 Pollution of the Namespace 76

5.3 Dynamic Map Clocks . 77

5.3.1 Non-Pollution of the Namespace 78

5.4 Discussion . 79

6 Interval Tree Clocks 81

6.1 Introduction . 82

6.2 Related Work . 83

6.3 Fork-Event-Join Model . 84

6.4 Function Space Based Clock Mechanisms 87

6.5 Interval Tree Clocks . 89

6.5.1 An Example . 92

6.5.2 Normal Form . 92

6.5.3 Operations over ITC . 94

6.6 Exercising ITCs . 99

6.7 Conclusions . 100

6.8 A Binary Encoding for ITC . 101

7 Conclusions 103

7.1 Summary of Contributions . 105

7.2 Research Directions . 106

7.2.1 Assessing ITC Load . 106

7.2.2 Behaviour under Churn . 106

7.2.3 Identity Theft . 107

A Version Stamps Implementation 119

A.1 Core Implementation . 119

A.2 Auxiliary Functions . 122

B Dynamic Map Clocks Implementation 123

B.1 Core Implementation . 123

B.2 Auxiliary Functions . 127

C Implementation of ITC 129

C.1 Core Implementation . 129

List of Figures

3.1 Example runs with Panasync tools. 44

3.2 First Scenario. Here a single branch dominates the other branches.
The mv action that renames one of the pfiles does not change its
identity and time-stamp. 45

3.3 Second Scenario. Two parallel branches suffer concurrent changes
and are re-conciliated with a merge content. The resulting pfile
inherits existing domination relations and supersedes an early branch. 45

4.1 Use of version vectors to track updates among three replicas. 48

4.2 Some possible evolutions of data elements showing two frontiers of
coexisting elements (denoted by single and double-dotted lines). . . 50

4.3 Encoding a fixed number of replicas (left) under fork-and-join dy-
namics (right). 50

4.4 Version Stamps. 55

5.1 A set of partially ordered events with version stamps. 76

5.2 Pollution in the identity component of version stamps. 77

5.3 A set of partially ordered events with dynamic map clocks. 78

5.4 Non-pollution of the identity component in the dynamic map clock
mechanism. 78

6.1 Core operations. 86

xi

6.2 Some composite operations. 87

6.3 Average space consumption of an ITC stamp, in dynamic and static
settings. 99

List of Tables

3.1 Classic file constructs. 36

3.2 Some Panasync constructs. 38

xiii

xiv

Chapter 1

Introduction

Ordering of events has always been a crucial issue in distributed systems. The
knowledge that an event has occurred after another and that it is a potential con-
sequence of the other (i.e. there is a causal relationship between them) forms the
basis of many algorithms used in distributed applications. Examples include com-
munication protocols, distributed debugging, termination detection, distributed
mutual exclusion, data management and version control.

These issues have been studied for many years, since the initial formalisation
of the concept in the late 70s [Lam78]. Solutions have been proposed, in the
subsequent decade [PPR+83, Fid89, Mat89c], that are easy to implement with a
centralised configuration service or when the number of nodes is known in advance.
The assumptions made in the initial implementations of the concept (vector clocks
and version vectors) fitted the spirit of a time when systems were deployed on
LANs, and the scale and dynamics of the internet was much more contained.

Along the last two decades there was a strong push towards more dynamic
scenarios. This was clearly driven by technological and theoretical advances that
came with the advent of mobile computing [Sat96], peer-to-peer [Ora01], popula-
tion protocols [AR07], sensor networks [CES04] and more recently cloud comput-
ing [Vog08]. In these settings, distributed interactions are no longer among a well
known set of entities, either processes or data items. They now include evolving
memberships of participating entities in possibly large numbers and high churn

1

2 CHAPTER 1. INTRODUCTION

rates, autonomic deployment of new entities, disconnection and re-integration of
entities.

1.1 Decentralised Causality Tracking

The abstract definition of causality relies on describing a partial ordering of events
or states that are causally related in the course of a distributed computation.
Events are related when processes perform computation steps, when messages
are sent or received, when data is updated, etc. The transitive closure of this
relationship leads to a partial order, which can be represented by a directed acyclic
graph.

In its abstract form causality stems naturally from the flow of potential influ-
ence that spawns from distributed runs and is independent from whether processes
can have a local access to it. However, to be useful, causality must be realised by
actual mechanisms that can track it, represent it as actual bits of information, and
answer questions such as: “are events a and b concurrent?” or is “a in the causal
past of b?”

Version vectors and vector clocks, the classic mechanisms that realise causality
and make it usable in actual distributed applications introduce some centralisation
assumptions. These are implicit in the use of a vector position for each partici-
pating entity or in requiring globally unique names for each entity. This is easily
acceptable in systems with static memberships and when no partitions occur. In
these contexts it is easy to pre-configure global identities or to run system-wide
distributed protocols to obtain a consensus on new identities. However, under high
dynamics [Ray06], or when subject to network partitioning, this is no longer an
adequate solution. Even if pre-configuration of globally unique identities might
seem a feasible option (say relying on MAC addresses) there are still important
drawbacks:

• In the presence of churn, either in P2P or cloud computing [DHJ+07] set-
tings, identifiers of entities that once participated in the computation but
are no longer active keep polluting the tracking mechanisms. This has lead

1.2. DISSERTATION OUTLINE 3

to garbage collection approaches but a truly efficient solution is still an open
problem.

• The need for globally unique identifiers often implies long identifiers. If
millions of sensors are produced with unique identifiers but only an hundred
are deployed in a given place and initiate a distributed computation they
still incur in the energy drain of transmitting an oversized state.

This dissertation develops a solution to causality tracking in dynamic settings
and presents actual mechanisms that can emulate the full functionality of version
vectors and vector clocks, while relaxing the existing centralisation assumptions
that are rooted on classic identifier requirements. The model is relaxed so that only
pair-wise interactions are needed between entities (for any pattern of interactions)
and so that any entity can spawn new ones or register the termination of any other
entity.

The proposed mechanisms are more complex than the traditional ones but
allow a more flexible use. One of these mechanism in particular, Interval Tree
Clocks, presented in Chapter 6, even though it can be used in a wider range of
scenarios, manages to have a compact representation in the order of magnitude of
the classical ones, an important factor for the actual adoption and deployment of
the thesis’ contributions.

1.2 Dissertation Outline

The contributions in this thesis were published in four peer reviewed articles from
2000 to 2008. The outline of the central chapters (Chapter 3 to Chapter 6) follows
this chronology and includes these articles.

Chapter 1 This introduction.

Chapter 2 A review is made on the related work on causality and its tracking
mechanisms. Special focus is made on approaches that target more dynamic

4 CHAPTER 1. INTRODUCTION

settings and that address creation and retirement of counters. This chap-
ter complements the related work already presented in the article chapters,
where these approaches are discussed in a more compact and targeted way.

Chapter 3 This chapter presents the Panasync tool, a mechanism for causality
tracking that supports ad-hoc file copying, that was published in:

Paulo Sérgio Almeida, Carlos Baquero and Victor Fonte. Panasync:
dependency tracking among file copies ACM SIGOPS European
Workshop, pp. 7-12, ACM, 2000.

The motivation for Panasync was rooted on the observation that distributed
file systems for mobile settings are typically based on volume replication
[KS91, GHM+90], where whole sub-directories are kept in synch across a set
of machines. In Panasync individual files are the unit of replication. Many
replicas of an entity (file) can co-exist in a single machine and different en-
tities can have different numbers of replicas, placed in different devices. All
coordination is done locally, in what is now called an autonomic comput-
ing approach. In order to track this data causality in these dynamic set-
tings, Panasync introduced the first working prototype of Dynamic Version
Stamps.

Chapter 4 This chapter presents the Dynamic Version Stamps mechanism. A
condensed version of the proof was published in

Paulo Sérgio Almeida, Carlos Baquero and Victor Fonte. Version
Stamps: Decentralised Version Vectors 22th International Confer-
ence on Distributed Computing Systems (ICDCS 2002), pp. 544-
551, IEEE, July 2002.

This chapter extends this article by including the full proof of correctness for
the mechanism. Dynamic Version Stamps is the first deterministic mecha-
nism that tracks data causality in dynamic systems and introduces a decen-
tralised technique to manage identifiers that mimics some techniques used
in termination detection. Interestingly, it can track causality without the

1.2. DISSERTATION OUTLINE 5

use of counters. The mechanism can substitute the use of version vectors
for comparing co-existing entities in a consistent cut, but not vector clocks,
since it cannot handle arbitrary causal pasts.

Chapter 5 This chapter presents a description of the state consumption limita-
tions of version stamps under some possible runs, and introduces a synopsis
of a new mechanism that can overcome those limitations.

Paulo Sérgio Almeida, Carlos Baquero and Victor Fonte. Improv-
ing on Version Stamps. OTM Workshops (2), Lecture Notes in
Computer Science, Vol. 4806, pp. 1025-1031, Springer, 2007.

Version Stamps although correctly tracking data causality, exhibit a patho-
logical space growth under some runs, which seriously limits the practical ap-
plications of the approach. This aspect is dealt with by considering a mixed
approach which combines Dynamic Version Stamps-like identifiers with the
use of counters. The resulting mechanism, Dynamic Map Clocks, was tested
in a reference implementation. While working on the formalisation, a sub-
stantial improvement was made, resulting into what became the mechanism
presented in the following chapter.

Chapter 6 This chapter presents Interval Tree Clocks, a mechanism that can
track both data and process causality in dynamic settings, being a generali-
sation of both version vectors and vector clocks.

Paulo Sérgio Almeida, Carlos Baquero and Victor Fonte. Interval
Tree Clocks: A Logical Clock for Dynamic Systems. To appear in
OPODIS 2008. Lecture Notes in Computer Science, Vol. 5401,
pp. 259-274,Springer 2008.

Apart from the mechanism itself, the chapter presents two contributions that
stand on their own: the Fork-Event-Join model, a kernel that can be used
to unify the modelling of both process and data causality; and a general
framework, based on function spaces, to describe clock mechanisms, with in-
variants towards ensuring correctness of candidate mechanisms. The chapter

6 CHAPTER 1. INTRODUCTION

also presents simulation-based analysis of space consumption, which shows
the space requirements of this mechanism to be modest.

Chapter 7 This chapter discusses the results, summarises the main contributions
and points out to some research directions.

Finally, Appendixes A, B and C present reference implementations of the mech-
anisms introduced in Chapters 3, 5 and 6.

Chapter 2

Logical Clock Systems

The notions of causality and time play a central role in the design of distributed
algorithms. Although a global time reference would help solving some problems
in the field of distributed systems, this reference is usually unavailable. In spite
of that, it is often helpful to know the relative order in which events take place in
the systems, and for a number of fundamental applications this is often an actual
requirement.

Knowledge of this relative order can be achieved even in totally asynchronous
systems that have no way of measuring the passage of real time, just by observing
the causal precedence relation between events. This chapter starts by introducing
the notion of causality and its application in distributed systems. It follows by its
formal definition, and by introducing the happens-before relation as a simple way
to capture it. Next, we present the traditional mechanisms that use this happens-
before relation as a basis for a logical time reference, upon which events can be
partially ordered. It then presents a brief survey of efficient implementations of
these logical clocks mechanisms for the scenario of a well-connected static set
of processes where events can occur. Dynamic environments, however, challenge
some of the assumptions of the traditional mechanisms, and in most cases preclude
their usage. The chapter concludes by presenting some of the most interesting
approaches to causality tracking for scenarios of weakly-connected dynamic set of
processes.

7

8 CHAPTER 2. LOGICAL CLOCK SYSTEMS

2.1 System Model

We assume a traditional system model, a distributed system consisting of a set of
n asynchronous sequential processes p1, . . . , pn. The local states of these processes
are disjoint, that is, they do not share a common memory. Processes communi-
cate solely by message-passing over a communication network with an arbitrary
topology. Communication is asynchronous, having a finite but unpredictable delay.
Also, processes do not share a global clock that they can access instantaneously.
A process can execute a computing event spontaneously, and when sending a mes-
sage, it does not wait for its reception. Events are perceived to be discreet: they
are atomic and instantaneous at the level of observation. Sends are unicasts, since
messages are received by a single process.

Such a broad model is well suited for describing the general case of a traditional
distributed system, where processes execute in a heterogeneous set of hardware,
and communicate using an heterogeneous infrastructure, both subject to varying
loads in time, affecting the processing speed, and the communication delay. It is
unassuming regarding the relevant computing events, which is a useful feature for
modelling mechanisms that handle different sets of operations. If needed, it can
also be extended in order to support multicast and broadcast operations, as an
atomic composition of a sequence of send events. Finally, it can be easily adapted
in such a way that it is able to cope with a dynamic set of processes, an inherent
feature of the autonomous operation scenario motivating this work.

2.2 The Importance of Causality

A global clock is usually not available due to the inherent limitations of a dis-
tributed system. Even if we consider that a common clock is available to all
processes in the system—using an external GPS source, for instance—processes
could actually perceive different moments in time as the same instant due to un-
predictable delays caused by hardware limitations such as interrupt handling, and
to unpredictable application loads. Similarly, even if we try to synchronise the
physical clocks available to each computer, they can drift from physical time at

2.2. THE IMPORTANCE OF CAUSALITY 9

different rates due to technological limitations of both their hardware and software.

The absence of global clock makes it harder to reason about the temporal
order of events and to collect up-to-date information regarding the state of the
entire system. Still, for a number of problems, the hypothetical availability of a
global time reference would not help achieving their goals, because it does not help
establishing which events are able to influence each other. Since it would order all
events with respect to each other, this way of describing executions is not able to
capture the situation in which two computation events have no influence on each
other, that is, their inherent concurrency. The structure of causality would then
have been lost.

Causality tracking in a distributed system is a powerful concept in reasoning
and analysing about a computation, and in the design of applications. It is key
to solving a wide range of problems in distributed systems, such as in distributed
algorithm design [CL85, Mat87], in tracking of dependent events [CM91, HW88,
MN91], knowledge about the progress of the system [WB84, AAB04], and as a
concurrency measure [CB89, Fid91]. An extensive discussion of causality and its
applications can be found in Schwartz and Mattern [SM94].

2.2.1 The Happens-Before Relation

The happens-before relation, introduced by Lamport [Lam78], captures the notion
of one event happening in the past of another. This notion translates to the
ability of one event to influence others happening in its future, that is, the notion
of being their potential cause. The term potential relates to the fact that an
event happening in the past of another does not necessarily mean that it actually
influences it, or is its cause. Proper causality can be established only using semantic
information available to the application level, and it is usually more difficult to
determine. Potential causality is, however, consistent with it, since it extends the
order, possibly only relating more events. Throughout this chapter, unless noticed
otherwise, we will refer to potential causality simply as causality.

Consider two events e1 and e2 by the same process. Event e1 can causally
influence e2 if e1 occurs before e2, since each process executes sequentially. The

10 CHAPTER 2. LOGICAL CLOCK SYSTEMS

only way for one process to influence another, however, is by sending a message to
the other one. That is, an event e1 occurring at process pi causally influences an
event e2 of process pj, if e1 is the event that sends message m from pi to pj, and e2
is the event in which m is received by pj. Finally, events can, of course, causally
influence each other indirectly through other events.

This happens-before relation can be summarised in a formal description as
follows. Given two events e1 and e2, e1 happens before e2, denoted by e1 → e2, if
one of the following conditions holds [Lam78]:

• e1 and e2 are events by the same process and e1 occurs before e2;

• e1 is the send event of the message m from pi to pj, and e2 is the receive
event of m by pj;

• There is exists an event e such that e1 → e and e→ e2.

The first condition captures the causality relation between events of the same
process. Causality between events of different processes is captured by the second
condition. The third condition induces transitivity.

The important property of the happens-before relation is that it characterises
potential causality. Moreover, its definition already suggests that mechanisms may
be able to track it using local information available to each process and exploiting
the communication flow between them.

2.2.2 Logical Clocks

One possible way to capture the happens-before relation is to attach a tag to each
event that takes place in the distributed computation. A clock LCi is available at
each process pi and can be thought of as a function that assigns a value to each
event occurring at pi. The value assigned to an event e is its tag or timestamp
TSe := LCi(e). There is no relation between the values assigned by the clocks and
the physical time, hence this approach is usually called logical clocks. The logical
clocks take monotonically increasing values. In order to capture the happens-before

2.3. CLASSICAL CAUSALITY TRACKING MECHANISMS 11

relation, an irreflexive partial order < on the timestamps must also be provided, in
such a way that for every pair of events, e1 and e2, if e1 → e2, then TSe1 < TSe2 .
This is known as the clock condition [AW04].

2.3 Classical Causality Tracking Mechanisms

2.3.1 Scalar Clocks

The algorithm used to maintain Lamport’s logical clocks [Lam78] can be described
as follows. Each processor pi keeps a local variable SCi—its logical clock—, which
is a non-negative integer counter, initially set to 0. When event e happens at
process pi, it updates its logical clock SCi as follows:

• If e is an internal computation or send event, it increments SCi, SCi :=

SCi + 1;

• If e is the send of a message m, pi attaches it a timestamp TSm set to the
current value of SCi, TSm := SCi;

• If e is the receive of a message m with a timestamp TSm, pi updates SCi :=

max(SCi, TSm).

The timestamp associated with an event e, TSe, of process pi, is the new value
SCi computed during the event. The order on timestamps is the ordinary <

relation among integers.

For each process pi, the value of SCi is strictly increasing. Therefore, if e1 and
e2 are events by the same process and e1 occurs before e2, then TCe1 < TCe2 .
Furthermore, the logical timestamps of the event in which a message is received is
at least one greater than the logical timestamp of the corresponding message send
event. Therefore, if e1 is the send event of the message m from pi to pj, and e2 is
the receive event of m by pj, then TSe1 < TSe2 . These facts, together with the
natural order of integers and the transitivity of <, clearly imply that if e1 → e2,
then TSe1 < TSe2 .

12 CHAPTER 2. LOGICAL CLOCK SYSTEMS

2.3.2 Vector Clocks

The converse, however, is not true: it is possible that TSe1 < TSe2 but e1 6→ e2.
The problem is that the happens-before relation is a partial order, while the scalar
timestamps are totally ordered. Therefore, information about non-causality is lost.
Capturing this information requires the logical timestamps to be chosen from a
domain that is not totally ordered; such is the case with vectors of integers.

Let’s start by defining non-causality more precisely. Two events e1 and e2 are
concurrent, denoted by e1 ‖ e2, if e1 6→ e2 and e2 6→ e1. Intuitively, processes
cannot tell whether e1 occurs prior to e2 or vice versa, and in fact it makes no
difference which order they occur in.

Mattern [Mat89c], and Fidge [Fid89] independently described a Vector Clock
mechanism providing a way to capture causality and non-causality. This logical
clock mechanism was probably the one with the most profound practical impact,
inspiring several derivative works that cope with specific requirements.

It follows a brief description of the Vector Clock mechanism. Each process
pi keeps a local n-element array V Ci called vector clock. Each element is a non-
negative integer, initially set to 0. Every time an event e occurs at pi, it updates
V Ci applying the following rules:

• If e is an internal computation or send event, pi increments the local counter
element of V Ci as in V Ci[i] = V Ci[i] + 1;

• If e is the send event of a message m, pi attaches it a timestamp TSm set to
the current value of V Ci, as in TSm := V Ci[i];

• If e is the receive event of a message m with a timestamp TSm, pi up-
dates V Ci with the pair-wise maximum of V Ci and TSm, as in V Ci :=

max(V Ci[k], TSm[k]), ∀k ∈ 1, . . . , n, and then it increments its local counter
as in V Ci[i] = V Ci[i] + 1.

The timestamp of an event e is the value of V Ci after the rules above were
applied. In a sense, for any pair of processes pi and pj, the value of V Cj[i] is an

2.3. CLASSICAL CAUSALITY TRACKING MECHANISMS 13

estimate, maintained by pj, of V Ci[i], according to the information that reached
pj so far. Only pi can increase the value of the i-th coordinate, and therefore,
for every process pj, in every reachable configuration, V Cj[i] ≤ V Ci[i], for all i,
1 ≤ i ≤ n.

For scalar timestamps, we had the total ordering of the integers. For vector
timestamps, which are vectors of integers, a partial ordering can be defined. Let
v1 and v2 be two vectors of n integers. Then v1 ≤ v2 if and only if for every i,
1 ≤ i ≤ n, v1[i] ≤ v2[i]; and v1 < v2 if and only if v1 ≤ v2 and v1 6= v2. Vectors v1

and v2 are incomparable if neither v1 ≤ v2 nor v2 ≤ v1.

Vector timestamps are said to capture concurrency if for any pair of events e1
and e2 in any execution, e1 ‖ e2 if and only if V Ce1 and V Ce2 are incomparable.

Suppose event e1 occurs at process pi in an execution and subsequently event e2
occurs at pi. Each entry in V Ci is non-decreasing and furthermore, since e1 occurs
before e2 at pi, V Ce1 [i] < V Ce2 [i], for every i. This implies that V Ce1 < V Ce2 .

Now consider in an execution, e1 the sending of a message m with vector
timestamp TSm by pi, and e2, the receipt of this message by pj. During e2, pj
updates each entry of its vector to be at least as large as the corresponding entry
in Tm, and then pj increments its own entry by one. Therefore, it is true that
V Ce1 < V Ce2 .

These two facts, together with the transitivity of the less than relation for
vectors, imply that e1 → e2, then V Ce1 < V Ce2 .

Consider two concurrent events e1 and e2 occurring in two distinct processes,
pi and pj, respectively. Suppose V Ce1 [i] is t. Then V Ce2 [i] must be less than t,
implying that V Ce1 is not less or equal than V Ce2 , since the only way processor
pj can obtain a value for the i-th entry of its vector that is at least t is through
a chain of messages originating at pi at event e1 or later. But such a chain would
imply that e1 and e2 are not concurrent. Similarly, the j-th entry in V Ce1 must
be less than the j-th entry in V Ce2 . Thus, if V Ce1 < V Ce2 , then e1 → e2. This is
called the strong consistency condition [AW04].

14 CHAPTER 2. LOGICAL CLOCK SYSTEMS

Thus it follows that

V Ce1 < V Ce2 iff e1 → e2

and that
e1 ‖ e2 iff V Ce1 6≤ V Ce2 ∧ V Ce2 6≤ V Ce1

that is, events are incomparable. Hence, vector clocks capture concurrency.

2.3.3 Version Vectors

Parker et al. [PPR+83] introduced Version Vectors, a causality tracking mechanism
sharing an equivalent structure with vector clocks. Its main purpose is, however,
the detection of mutual inconsistency between replicas in optimistic replication
systems [SS05]. The mechanism is simple and intuitive, and became one of the
cornerstones of optimistic data management. Version vectors associate to each
replica a vector of integer counters that keeps track of the last update that is
known to have been originated in every other replica and in the replica itself.
The relevant operations in optimistic replication are typically the update of the
replica’s state, and the synchronisation of two replicas, the latter being perceived as
a synchronous event, converging the state of both replicas. Version vector mainte-
nance is, however, slightly different from vector clocks. Considering a system with
replicas r1, . . . , rn, version vectors are updated as follows:

• When replica ri is updated it increments the local entry of its version vector
V Vi[i] as in V Vi[i] := V Vi[i] + 1;

• When replicas ri and rj are synchronised, both version vectors are updated
as in V Vi = V Vj := max(V Vi[k], V Vj[k]), ∀k ∈ 1, . . . , n.

Most of the time, version vectors are used to track causality between coexist-
ing replicas, that is, between replicas forming a consistent cut of the system state
[SM94, ABF02a]. In these cases, however, version vectors are overly expressive
since, as vector clocks, they record information that enables them to assess causal-
ity and concurrency in the past of each possible consistent cut. In the typical

2.4. VECTOR CLOCKS AND THE PROBLEM OF SCALE 15

case where past can be discarded, a bounded representation of causality can be
achieved using Bounded Version Vectors [AAB04].

Although having similar data structures, Version vectors cannot be based on
the set of operations and update rules defined for standard vector clocks. Consider,
for a moment, that we try to model the synchronisation of replicas ri and rj as
the atomic composition of a message sent from ri to rj, followed by a message
from rj to ri. At the end of the synchronisation operation, the vector clocks
of both replicas would share the same values for each non-local elements. The
elements at position i, however, would have different values since ri would have
incremented its local element once again after receiving the message from rj. That
is, ∀x ∈ {1, . . . , n} \ {i}, V Ci[x] = V Cj[x], but V Cj[i] < V Ci[i]. In the end, the
states of the two replicas would have been perceived as causally related.

2.4 Vector Clocks and the Problem of Scale

Vector clocks are a useful tool in understanding the behaviour of a distributed
system. For instance, in optimistic replication [SS05], they are extensively used
in replica reconciliation by detecting conflicts [PPR+83, GHM+90, RRP97], and
determining the precise set of deltas that must be exchanged in order to progress
to a specific state [PST+97, YV01].

Its structure, however, has no bound on its size. More importantly, it grows
linearly with the number of processes in the system, and each counter grows loga-
rithmically with the number of events known to each process. The first issue can
be a problem for systems with a large number of processes. Although the vec-
tor clock mechanism requires no extra communication steps to establish causal-
ity between events, messages exchanged between processes are attached with a
timestamp of the sender’s vector clock. This message overhead can be extremely
high for large-scale distributed systems, effectively surpassing the size of the mes-
sages themselves. Storage overhead will also be paid for the vector maintained
at each process. Moreover, in situations where events are required to be logged
by the processes—for instance, preparing state reconciliation in optimistic repli-

16 CHAPTER 2. LOGICAL CLOCK SYSTEMS

cation systems—this overhead can be severe. Although usually not as critical, the
computational power will also raise with the size of the vector timestamps, thus
playing its own role in the vector clock poor scalability story.

The second issue can be a problem for systems with a high rate of events,
and eventually, for any long-running distributed computation. It stems from the
fact that processes need to count the number of events that they know to have
happened, either locally or at other processes. By the very nature of the problem,
being able to compare all events occurring in the system implies that there can
be no bound on the size of the counters. Concrete implementations, however,
usually resort to fixed-size, large-enough counters for the expected duration of the
distributed computation, a choice typically rooted in computational performance.
Oversized counters and fixed length encoding will, of course, contribute to message
and storage overheads.

In the light of these scalability problems, one might be inclined to devise a more
compact mechanism that would still be able to characterise the causal precedence
relation between events. Charron-Bost, however, proved [CBDGF95] that given
a distributed system with n processes, there is always a possible combination of
events whose causality can only be captured by vector clocks with n entries. It
may be possible to design a different mechanism to determine causality between
events, but its structure will still have a size O(n). This result discourages any
such attempt.

2.5 Static, Well-Connected Environments

This section presents an overview of relevant work on efficient causal dependency
tracking mechanisms for systems with a static set of well-connected processes. In
these systems, communication and storage efficiency are usually the main imple-
mentation focus. In order to better scale with the number of processes in the sys-
tem, they explore different trade-offs between message and local storage overheads,
and the readiness in which causality can be established. It starts by introducing
the differential approach to vector clock implementation. Next, it introduces an

2.5. STATIC, WELL-CONNECTED ENVIRONMENTS 17

approach to causality tracking providing a solution whose size is independent of
the number of processes in the system, at the expense of loosing concurrency infor-
mation. Later on, Section 2.6 will discuss some of the challenges raised by dynamic
environments, and how they are tackled by existing solutions.

2.5.1 The Differential Approach

Singhal and Kshemkalyani introduced in [SK92] a technique for implementing vec-
tor clocks that can substantially reduce the communication overhead caused by
the timestamps attached to messages. It exploits an observation regarding locality
of communication in what is perceived to be a typical distributed computation:
at any point in time, only a fraction of the processes in the system are likely
to interact frequently. This means that, between successive events occurring at
a process, only a small set of its vector clock entries are likely to change. This
technique proposes a differential approach to message timestamping that, instead
of transmitting the current complete value of the logical time, it conveys only the
sender’s vector clock entries whose value has changed since it last sent a message to
the given particular process. For this communication pattern, sending incremen-
tal changes in the timestamp can thus achieve a significant reduction of message
overheads, in particular, in systems with large sets of processes.

In this technique, each process pi maintains three vectors of integers, each of
size n: vector clock V Ci, “last updated” vector LUi, and “last sent” vector LSi.
Logical time is tracked by V Ci, almost as in the original Fidge-Mattern technique
[Fid89, Mat89c], the sole difference being that message timestamps only convey a
portion of its sender’s vector clock. In this technique, instead of a fixed-size vector,
timestamps are a set of tuples relating process identities and event counts. The
vector clock V Ci is updated as follows:

• When an internal or send event occurs at process pi, V Ci[i] := V Ci[i] + 1;

• When a message m with timestamp TSm = {(id1, ec1), . . . , (idk, eck)} is re-
ceived by pi, for each (idh, ech) in TSm, the vector V Ci is updated as in
V Ci[idh] := max(V Ci[idh], ech), followed by V Ci[i] := V Ci[i] + 1.

18 CHAPTER 2. LOGICAL CLOCK SYSTEMS

Vector LUi tracks for each entry of V Ci the local component of logical time
when its value is updated. Similarly, vector LSi records the local component of
logical time when a message is sent to each process in the system. More specifically,
LUi and LSi are updated according to the following rules:

• When the value of V Ci[j] is updated, LUi[j] := V Ci[i]

• When a message is sent to pj, LSi[j] := V Ci[i]

At any point in time, the set of position indexes of V Ci whose value has changed
since the last message sent to process pj is defined by {k | LSi(j) < LUi(k)}, and
it follows that:

• When process pi sends a message m to process pj, it attaches it timestamp
TSm := {(k, V Ci[k]) | LSi(j) < LUi(k)}

Singhal-Kshemkalyani’s technique, however, is only able to replace the original
vector clock implementation where FIFO communication channels are available. If
communication channels between processes are non-FIFO, message overtaking can
occur because reception does not necessarily respects the sending order. In these
cases, processes would not be able to correctly reconstruct the sender’s timestamp.

We conclude this discussion noting that the Singhal-Kshemkalyani’s technique
bears some resemblance to previous work published by Mattern [Mat89b]. Both
techniques require each process to maintain a vector clock of size n, but in Mat-
tern’s work, instead of two extra vectors, it keeps a complete timestamp for each
process it sends a message to. This means that regarding storage requirements,
Singhal-Kshemkalyani’s technique is clearly more efficient, consuming only O(n)

space at each process, when compared to Mattern’s O(n2) consumption. Hélary
et al describe in [HRMB03] both an improved differential technique that achieves
higher efficiency regarding overall message and storage overhead, and an exten-
sion to it that is able to cope with non-FIFO communication channels. The set
of protocols they introduced is intended to be used by an adaptive timestamp-
ing software layer whose purpose would be to select the technique minimising the
message overhead for particular distributed system and application.

2.5. STATIC, WELL-CONNECTED ENVIRONMENTS 19

2.5.2 The Plausible Clock Approach

In order to circumvent the vector clock scalability problem, Torres-Rojas and
Ahamad [TRA99] devised a solution that is able to bound the size of a vector clock
to a constant value that is less than n. This feature is obtained at the expense
of ordering events that may actually occur concurrently in the system. Causality
information, however, is not lost: causal related events are always perceived as
such by comparison of their timestamps. The authors coined this solution Plau-
sible Clocks, since the resulting order does not contradict the causal precedence
relation. This order is consistent with the weak clock condition of Lamport scalar
clocks: in fact, as we will see below, scalar clocks can actually be perceived as a
particular implementation of a plausible clock. As with scalar clocks, plausible
clocks do not guarantee the the strong clock condition, also.

Plausible clocks, however, are able to provide much better accuracy than scalar
clocks, with much lower rates of wrongly perceiving concurrent events as causal
related. The concept of plausible clock actually combines ideas from scalar and vec-
tor clocks in order to build clock mechanisms with intermediate strength [Val93].
Their trade-off between scalability and accuracy makes them a practical solution
for situations where it is acceptable to deal with an inaccurate but consistent
ordering of events with respect to causality in large scale distributed systems.

The plausible clock solution follows a space-folding approach where, instead
of exclusively tracking the number of events known from a specific process, each
element tracks events occurring in one or more processes. This means that some or
all vector elements are effectively shared between processes, and some concurrent
events will be ordered and perceived as causally related.

One example of a plausible clock is the R-Entries Vector (REV) introduced
in [TRA99]. This mechanism can be briefly described as a simple adaptation of
the traditional vector clock mechanism, where entries are shared among processes.
Consider a system with processes p1, . . . , pn, each having a vector clock Ci, whose
size is bound to a constant r < n. Let fr be a deterministic function from {1, . . . , n}
to {1, . . . , r}, mapping each process identity to a specific position in the vector
clock. Each clock is maintained as in traditional vector clocks as follows:

20 CHAPTER 2. LOGICAL CLOCK SYSTEMS

• When an internal or send event occurs at process pi it updates its vector clock
to indicate that it has progressed, in such a way that Ci[fr(i)] = Ci[fr(i)]+1.

• When a process pi sends a message it piggybacks it with the current value
of its vector clock.

• When a process pi receives a message m from process pj with a timestamp
TSm, for each x in {1, . . . , r}, Ci[x] := max(Ci[x], TSm[x]), and Ci[fr(i)] =

Ci[fr(i)] + 1.

An obvious method for deterministically associating process identities with
vector entries is the modulo r mapping, fr(i) = (i mod r) + 1, but many others
are equally viable. All processes pi such that fr(i) = k will share the same k-th
entry of the vector clock. This sharing will order some but not all concurrent
events. In fact, if r = 1, then ∀i : fr(i) = 1, and all processes share the single
entry of a vector clock whose size is 1. In this case, we actually get the original
Lamport’s scalar clock.

At the other side of spectrum, if r = n and ∀i : fr(i) = i, we get classic vector
clocks, accurately tracking causality. In this case, the vector clock entry i is private
to process pi in the sense that only pi can entail its increase.

Experimental results show that for a client/server pattern of communication,
with up to 3 servers and 100 processes, and for a REV clock of size 2, the number of
situations in which a→ b is falsely inferred from C(a) < C(b), with a and b being
actually concurrent, are between 15 and 20 percent, approximately. This error
rate is also shown to decrease linearly with the size of the REV clock. For a REV
clock size of n the resulting mechanism is the traditional vector clock. In this case,
the error rate is zero, since vector clocks accurately capture the causal precedence
relation. For a pattern of operation in which processes randomly communicate
with each other, and for the same 2-REV clock, the error rate is, however, much
higher, reaching a value of nearly 56 percent. This results can be explained by the
fact that in the client/server pattern, concurrency is inherently lower than in the
random communication pattern, the servers causally relating most of the events
occurring in the system. In fact, results also show that the error rate rises with
number of servers, due to the increased concurrency.

2.6. DYNAMIC, WEAKLY-CONNECTED ENVIRONMENTS 21

Another interesting example of a Plausible clock mechanism is also introduced
in [TRA99]. The K-Lamport Clock (KLA) is an extension of Lamport Clocks,
where each site has a vector clock of a constant size k < n, keeping a collection of
the maximum values of a scalar clock known by itself and by processes that directly
or indirectly communicate with it. The KLA clock mechanism has a very different
set of update rules and comparison than the REV plausible clock, an a slight
lower message overhead. Its main feature is that, for small vector sizes, it is able
to achieve lower error rates than the REV mechanism. For the same client/server
pattern above, the KLA mechanism is between 7 and 14 percent, approximately,
and for the random pattern scenario, it rises to a value of 52 percent. Contrary
to the REV clock, however, its error rate drops abruptly and becomes stable from
very small vector sizes. Plausible clock mechanisms can also be combined resulting
in a new plausible clock. This property can be exploited in order to achieve better
accuracy as also shown by experimental results.

2.6 Dynamic, Weakly-Connected Environments

In the previous section, a number of techniques have been briefly described, high-
lighting some of the trade-offs explored in the design of efficient mechanisms for
causality tracking in static, well-connected environments. In these environments,
knowledge of the set of processes where events take place is a key factor in achiev-
ing efficiency. Process identifiers are assumed to be known beforehand, and they
can be deterministically ordered by all processes in the system. Since the set
of processes is static, their position in the order is fixed, which enables the use
of compact fixed-size structures—such as vectors—to track information regarding
each process. Even when variable-size structures are used, they usually explore the
knowledge of the process position in the order, avoiding the use of more expensive
identifiers. Reliance on the information available in other processes, can also be
explored to complement local knowledge. The ability to run a global protocol also
enables garbage collection of non-relevant information, if needed.

When systems are dynamic, however, the size and composition of the set of
processes in the system will vary over time. In these environments, dependency

22 CHAPTER 2. LOGICAL CLOCK SYSTEMS

tracking mechanisms must accommodate the creation and retirement of processes.
In the typical case where there is no a priori knowledge of process identities, in
a well-connected environment, processes can resort to the execution of a global
algorithm to assign unique identifiers, to fix their position in the global order,
enabling processes to adapt the data structures they maintain. As the number
of processes increase, however, so does the costs of such procedure, to the point
that it may simply become impractical. For large-scale systems, communication,
storage and processing overheads preclude the assumption that processes will be
able run algorithms involving all processes in the systems. Even if these costs were
acceptable, network-partitioning is inherent to these environments, which means
that mechanisms must be devised with higher autonomy of operation, such as in
the case of process identity management.

The next sections will briefly describe some of the most relevant approaches to
causality tracking in weakly-connected, dynamic environments.

2.6.1 Causality Tracking in Roam

The Roam [RRP99] file replication system, was designed to fulfil what was per-
ceived to be three fundamental requirements regarding mobility: the need for
direct synchronisation between any two replicas in the system; the support for
large numbers of replicas; and the selective control over the files residing on each
replica’s local storage. In order to achieve these goals, Roam combines elements
from the peer architecture and the client-server model into what was called the
Ward Model [RPR96]. In this model, replicas are clustered into groups called
wards (wide area replication domains) that try to capture the notion of typical
communication partners. Replicas can be part of any number of wards, and move
between them without the need for global coordination. Within wards, communi-
cation is cheap when compared to the communication with the outside world, and
all replicas are peers that can synchronise directly. Consistency between wards
is maintained by an automatically elected master from the available peer repli-
cas, effectively participating in two or more wards. The master has, actually, a
very lightweight role: it is solely responsible for propagating updates regarding

2.6. DYNAMIC, WEAKLY-CONNECTED ENVIRONMENTS 23

the different sets of files being replicated by its peers. Intra-ward communication
is assumed to be more expensive but less frequent than communication between
peers. This model helps Roam to better fulfil the intended mobility requirements,
specially when compared to client-server replication approaches, such as Coda

[SKK+90] and Little Work [HHRB92]. At the same time, the Ward Model
helps to achieve better scalability than previous approaches to peer-based replica-
tion, such as Bayou [PSTT96], Ficus [GHM+90] and Rumor [GRR+98].

Update tracking in Roam is based on the Version Vector mechanism, but uses
an innovative technique [RRP97] that can help minimise their scalability problems.
The devised technique exploits two key observations. First, updates usually occur
in a few isolated hot-spots at any point in time. While the hot-spots may change
over time, it is rare to see a replicated object being frequently updated by everyone,
a notion well supported by Wang’s work [WRB99] on productivity environment
data taken at Locus Computing [KPR94]. Experience from Ficus and Rumor
also shows that some replicas never generate updates. The second observation is
that once an element has the same value in all replicas, it is no longer relevant for
its comparison, that is, for establishing causality or concurrency between replicas.
These observations lead to the idea of dynamically expanding the version vector
once updates are generated by each replica, and periodically compressing it by
extraction of all equal value elements.

For this end, instead of pre-allocating vector elements for each replica, as a
replica generates its first update, the vector is expanded by adding the required
new element. Zero-value elements can be trivially removed from the vector since
they are insignificant for causality tracking. Once all replicas have the same value
for a certain element, it can also be removed from each vector with no loss of
distinguishable comparison information. This technique, however, preserves the
ability for a replica to generate new updates later on, an as such, this element can
then be added to the vector as it becomes relevant once again for causality tracking.
Updates generated by cold replicas are infrequent by definition. This means that
their corresponding element’s value will quickly stabilise and propagate to the
other replicas, and as such it will be aptly removed from the vector the next time
the compression process is executed. Since at any point in time the version vector

24 CHAPTER 2. LOGICAL CLOCK SYSTEMS

will tend to keep only the elements required to establish causality or concurrency,
and that hot-spot replicas are assumed to be just a small fraction of the total,
this technique offers a potentially significant reduction of the vector size when
compared with the original approach.

This expansion and compression technique, however, requires a number of mod-
ifications to the original version vector structure. First of all, a replica’s position in
the vector can no longer be identified using a pre-defined mechanism: a replica can
have no entry in the vector timestamp, its position can change over time as other
entries are added or removed from the vector. This can be either either because a
cold replica became active, a new replica joined the system and generated its first
update, or a compression was performed. This means that a vector can no longer
be used to represent the map from replica identity to its counter value. Instead,
this technique uses an associative array indexed by replica identifier.

Extra information must also be recorded in order to periodically run the com-
pression process in such a way that: the system does not block and it is safe to
generate updates during its execution; it can operate on multiple elements; and
finally, that it can be used to remove the minimal (common) value known to all
replicas, while preserving the information required to establish that certain replicas
have seen more updates than others. The algorithm used in this technique can be
briefly described as follows. For each element, the algorithm achieves a consensus
on the value to be subtracted from the existing element. After the consensus is
established, each replica subtracts this common value from the respective element,
and when they become zero they are removed from the vector. Correctness is
guaranteed by tagging each version vector with the number of times compression
has occurred. This extra counter prevents comparison of elements when one has
already been compressed and the other has not. A spare counter is associated with
each element being compressed, allowing consensus to be reached independently
of new updates.

2.6. DYNAMIC, WEAKLY-CONNECTED ENVIRONMENTS 25

2.6.2 Causality Tracking in Bayou

Bayou [PSTT96] is an optimistic replication [SS05] database system designed pri-
marily for mobile computing environments. Among its goals, of particular interest
to this survey is Bayou’s approach to causality tracking, while coping with its
scalability and high availability requirements. Bayou is particularly relevant be-
cause these requirements are intended to be met in an environment consisting of
a potentially large and dynamic set of replicas, and where connectivity is inter-
mittent. In order to accomplish this task, Bayou resorts to a weakly consistent
replication model, and an anti-entropy propagation protocol, allowing replicas to
diverge while moving towards eventually consistent states. This is achieved by the
total propagation of writes, their consistent ordering and deterministic execution
on each replica [TTP+95].

Bayou proposes an operational environment where clients are able to read and
write any replica in the system. Writes from clients on a given replica propagate
to other replicas strictly using pair-wise communication. New replicas can be
created from any existing one, with no need for a centralised or global consensus
protocol. Knowledge of newly created replicas relies on the same anti-entropy
propagation protocol used for writes. This operational pattern actually reveals
a key design decision: operations must not involve more that two entities. This
also means that the cost of these operations is unaffected by the addition of new
replicas in the system. In Bayou, entities operate with high autonomy, which
translates into better scalability and availability. Inevitably, autonomy also means
further potential for divergence between replicas. The following paragraphs will
briefly describe Bayou’s weakly consistent model, highlighting how it tracks causal
dependency between the set of write operations known to each replica, and how it
copes with a varying set of replicas.

Each replica accepts write operations from clients, logging and applying them
to the database in the same global order. Each write is assigned a write-stamp
value, a three tuple (commit-stamp, accept-stamp, replica-id). Its initial value is, re-
spectively, the infinity value, the value of a monotonically increasing local counter,
and finally, the replica’s identifier. This write is deemed as tentative, and its

26 CHAPTER 2. LOGICAL CLOCK SYSTEMS

position in the global order can vary as the replica learns of other write opera-
tions from other replicas. Later on, it eventually receives a final commit-stamp,
an also monotonically increased counter value, this time obtained from a primary
replica. When a write becomes committed, it finalises its position in the global
order of writes. Committed writes are totally ordered according to the timestamps
assigned by the primary replica, and precede all tentative updates in the global
order. This strategy also means that, in order to guarantee eventual consistency,
replicas must be able to rollback the effects of previously executed writes and redo
them according to the evolving global serialisation order. Bayou allows clients to
observe this reordering. In fact, unlike other optimistic replication systems such
as Ficus and Coda, it does not try to provide transparent replication. Clients
must accommodate this inherent reordering of writes at each replica. In Bayou,
conflict detection and resolution is perceived to be a semantic issue, and is left to
be handled at the application level.

Update propagation honours a prefix property that states that if a replica R1

holds a write Wx accepted from a client by a replica R2, then R1 also received all
writes accepted by R2 prior to Wx. This means that all writes accepted by R2

whose accept-stamp is smaller than the one ofWx must also be known to R1. This
property enables a compact representation of the replica state since it suffices to
keep track of the largest accept-stamp assigned by each replica. In Bayou, replicas
record this information in a local Write Vector, a version vector-like structure,
mapping replica identifiers to their largest known accept-stamps. Their role is to
capture the causal precedence relation between writes among the replicas in the
system.

The main difference regarding traditional version vectors, however, relates to
Bayou’s support for a varying set of replicas in the system. In Bayou, the write
vector of a given replica grows and shrinks according to the set of active replicas
known to it. Knowledge of both the creation and the retirement of replicas is
propagated according to the same anti-entropy epidemic protocol that is used for
write propagation.

A replica Ri creates itself by sending a creation write to any replica Rl that
may be available to it. As with any other write, replica Rl assigns it a local write

2.6. DYNAMIC, WEAKLY-CONNECTED ENVIRONMENTS 27

stamp of (∞, ASl, Rl >, ASl being the current value of its accept-stamp, and
records it in the write log. The identifier of the new replica Ri becomes the tuple
(ASl, Rl). Since accept-stamps are monotonically incremented at each replica,
these recursively created identifiers are globally unique.

These identifiers have also the interesting property that enables them to be
used to track the replica’s lineage, and in particular the moment in time each of
its ancestors where created. Once Rl knows about the newly created replica, it
adds its identity to its write vector, and propagates this knowledge, as it does for
any other write from the set of active replicas it knows. Retirement of replicas
follows the same procedure. A replica Ri sends a retirement write to replica Rl.
From then on, it stops accepting write operations from clients. It is assumed that
it keeps running long enough in order to propagate its retirement to at least one
other replica. When a replica receives a retirement write accepted from other
replica, it removes its entry from its write vector.

Committed writes, however, are allowed to be removed from replicas write logs
in order to save storage resources. This means that creation and retirement writes
may never reach some of the replicas in the system. When two replicas exchange
information during the anti-entropy protocol, some write vector entries may be
unknown to one another. A replica identifier may be absent from a write vector in
one of the two situations: either a replica never heard about the missing replica,
or it learned about its creation and subsequent retirement. Fortunately, since
the identifiers can be used to track the replica’s lineage, these situations can be
disambiguated. Consider replicas R1 and R2 exchanging their write vectors during
anti-entropy. If R1 has an entry regarding a replica Ri = (ASj, Rj) unknown to
R2, and Rj is known to R2:

• If R2.WriteV ector(Rj) ≥ ASj, then R2 has seen Ri’s creation write, and R1

can remove its entry from its write vector;

• If R2.WriteV ector(Rj) < ASj, then R2 has not seen Ri’s creation write,
and thus it can not have seen its retirement write either; in this case, R2

adds Ri entry to its version vector.

Knowledge of Rj by R2 is, however, non essential. Since identifiers recursively

28 CHAPTER 2. LOGICAL CLOCK SYSTEMS

identify the moment in time a replica is created from its ancestor, the same rules
can be applied to an expanded write vector calculated from its current entries.

In spite of its elegant solution, Bayou’s identity management and causality
tracking method has its limitations and drawbacks. When the set of replicas is
large, identifiers can be a long sequence of counters, which will translate into high
storage costs in all replicas that know about it, particularly in their write logs. In
order to minimise this problem Bayou resorts to the ability of pruning entries from
write logs and write vectors, when writes are committed.

Bayou’s commit protocol resorts to the use of a primary replica, which partially
defeats its goal of autonomy of operation. This is particularly true if this primary
fails and its retirement is not propagated. To our knowledge, no hint has been
given on how a new primary gets chosen upon failure, but one can speculate that
an epidemic protocol would also be used.

Failure of a primary, will certainly have a severe impact in the system, delaying
its evolution into eventual consistent states, and increasing the storage resources
used by write logs. Another important drawback will be its operation under churn.
In this case, identifiers will be created from existing ones, and quickly retired from
the system. In this case, the size of identifiers could grow rapidly, particularly if
churn occurs over lineages, in which case size grows linearly.

2.6.3 Tree Clocks

Another interesting but limited approach to causality tracking in environments
with a dynamic set of processes is the work of Landes on Tree Clocks [Lan07]. It is
designed with the goal of scaling efficiently with the creation and the retirement of
processes, under a nested model similar to the one described by Fidge in [Fid91].
In this model, the computation starts with a single process, from which new pro-
cesses can be recursively forked, effectively forming a tree. A process retires by
joining with its parent. It is assumed that parents outlive their children, and the
computation eventually terminates with the original process that first started it.
This creation and retirement model resembles the fork and wait pattern used in
Unix process management, although in this case processes can terminate before

2.6. DYNAMIC, WEAKLY-CONNECTED ENVIRONMENTS 29

their children.

In order to track causality, tree clocks count the number of events of a single
process in the node of a tree of counters. Upon creation, counter nodes have an
initial value of zero. When the process forks, it increments its counter, and two
new nodes are appended as children of its node. Each of the resulting processes
inherits the new tree, and immediately (and exclusively) increments one of the
child counters. When a process terminates by joining with its father, the father
increments its counter and discards the node that was being updated by the ter-
minated child. Discarding this node can be done since no more events can be
recorded by the terminated process, and all processes that may have been forked
from the terminated process have also been terminated. When a counter node is
a leaf with no sibling, it is also discarded, and its ancestor node counter is incre-
mented. This leaf-without-sibling rule is applied recursively in order to simplify
the tree.

Events are compared using a breath first search for a pair of nodes in the same
position of the two trees holding different counter values. If one of the values
is zero, then there is no causal precedence between them, which means they are
concurrent. A smaller value implies causal precedence to the other event. If there
is no match for a particular node, then it is not taken into account. The first
match with different values ends the comparison algorithm.

One may note that one of the counter siblings has always a zero value. This
happens because when a process forks, each process will exclusively update one
of the new counters, the other remaining with its initial zero value. Tree clocks,
however, can be used with message passing. In this case, the value of counters in
each tree node can propagate to every coexisting process, that is, it is no longer
restricted to the process nesting pattern. On message passing, clock trees are up-
dated as follows. When a message is sent, the sender process increments its counter
node; the message is timestamped with the current value of the sender’s tree clock.
When a message is received, as with any other event, the receiving process starts
by incrementing its node counter; then, it updates each of the counters in its tree,
with the maximum value between the corresponding nodes in its tree clock and the
message timestamp; it also appends missing nodes to its tree clock, as long as they

30 CHAPTER 2. LOGICAL CLOCK SYSTEMS

are not direct descendants of its own counter node. In order to support message
passing, the join operation must be slighted modified by not allowing nodes to be
appended to the father’s clock tree, and by setting the nodes present in both trees
to the respective maximum.

Although tree clocks try to provide a natural and a scalable solution to the dy-
namic creation and termination of processes, its reliance on process nesting seems
to be an important limitation to its usage in most scenarios. The assumption
that each process outlives its descendants seems unreasonable for the general case,
and may lead to processes being artificially kept alive. This will inevitably trans-
late into structural growth that not only propagates to descendants, but also to
other processes by message passing. Enforcing processes to terminate by joining
with their direct ancestors actually preclude its usage where network partition is
frequent, and in particular, where processes must be able to operate autonomously.

2.6.4 Hash Histories

Kang et al introduce in [KWK03] the Hash History approach to causality tracking
in the context of optimistic replication. This approach is interesting because it is
independent of the number of replicas in the system, while its overhead increases
with the number of updates.

In hash histories, causality is encoded as a directed graph of version hashes
over the evolving state of each replica’s data. In a sense, this can be perceived as a
pragmatical adaptation of the intuitive causal history dependency tracking mech-
anism [SM94]. Causal histories encode causal dependencies as the set of event
identifiers that happened before each particular event in the system (including
itself), and order them according to set inclusion. They are, however, mainly a
theoretical mechanism: as its size grows indefinitely with each event, message and
storage overheads would become impracticable. Two differences can be observed
regarding causal histories, though. First, hash histories are used to track depen-
dencies among replica states, while causal histories would have been typically used
to track dependencies among update events. Second, if causal histories were used,
each update event would require a globally unique identifier in order to add it

2.6. DYNAMIC, WEAKLY-CONNECTED ENVIRONMENTS 31

to the happened-before set. In a network-partitioned environment, this globally
unique identifier could be based on a recursive creation technique, as the one used
in Bayou [PSTT96]. By contrast, hash histories obtain this update identifier from
a calculated hash value of the replica’s state. This means that in hash histories,
update identifiers and causal dependencies are only probabilistically correct.

Version hashes are also exploited as a way to minimise conflict detection when
two operations produce the same output, that is a coincidental equality. Contrary
to what would have happened if causal histories were used—or traditional version
vectors, for that matter—updates are perceived as non-conflicting.

An update event in a replica can, however, generate an hash value that already
exists in its hash history. In order to distinguish the new and old versions of a
replica, hash histories attach an epoch counter to each particular hash value. Still,
the same hash value and epoch pair can be generated concurrently by different
replicas with actual different states. In this cases, the hash history approach stip-
ulates that they are the same version, that is, it incorrectly states that they have
the same exact state, and that it can be used as a basis for future reconciliation.

Replica dominance, that is, establishing if a replica version depends on another,
is achieved by set inclusion over the hash histories. Reconciliation starts by estab-
lishing the most recent common hash value in the hash histories, and exchanges
the missing updates from that point onwards. If there is no such common hash
value, reconciliation must be achieved using the current, concurrent states of both
replicas.

Since hash histories grow with the number of updates, it is crucial to truncate
them in order to minimise message and local storage overheads. To achieve this
goal, hash values are pruned using a simple ageing method, based on roughly
synchronised clocks. For example, hash values with more than 30 days could be
discarded from the hash histories.

If the risk of having only probabilistic guarantees is acceptable, the hash history
approach seems to be an efficient causality tracking mechanisms for settings with
a large and dynamic set of replicas and a low rate of updates.

32 CHAPTER 2. LOGICAL CLOCK SYSTEMS

Chapter 3

Panasync: Dependency Tracking
Among File Copies

File copying is frequently used to implement ad hoc management of file replicas,
backups and versions. Such tasks can be assisted by appropriate applications, at
the expense of introducing some restrictions to the usage patterns. In particular,
this is the case of interactions involving disconnected machines and transportable
media. Panasync tries to support these actions by introducing a set of commands
for file copying and re-integration that complement the file-system commands and
provide support for dependency analysis among time-stamp assisted files.

3.1 Introduction

User interaction with the file system is supported by command line or by graphical
user interfaces, both alternatives providing standard operations such as file and
directory creation, renaming, copying and removal. In their normal activity users
can resort to a given operation in order to achieve different purposes. For instance,
the copy operation can be used to create a backup of a file, to branch a project or
even to substitute a file with the contents of another. Due to the simplicity of the
basic operations available to the user, the underlying purpose cannot be perceived
by the system. The system treats the operations indistinguishably, thus having no

33

34 CHAPTER 3. PANASYNC

provision to assist the user along its tasks. Consequently the user is on its own,
regarding, for instance, file version management.

The common solution to this problem is to adopt version-control environments
offering a special set of tools and often embedding their own filing structures in
the underlying file system. However, the adoption of a special environment for
versioning control is usually a matter of complexity assessment, and users tend to
avoid it when they want to manage what they perceive as a simple file duplication
or versioning task. Few users resort to versioning support tools when taking a
draft document copy to eventually work on it in a weekend.

Additionally, the use of existing versioning and replication environments calls
for a centralised or at least pre-set distributed configuration that is frequently
inadequate to the user mobility needs. Missing features encompass the uncoordi-
nated creation of new replicas and isolated forking of new versions. Together these
restrictions can lead users back to basic file system operations, or at least make
them think twice before switching into a coordinated environment.

In this article we discuss the design of a set of tools that provide autonomous
file copying and versioning. These constructs can be implemented by a set of
commands that manage additional time-stamping data over an off-the-shelf file
system or by the design of a file system extension that manages and hides the
time-stamp data. These tools can be used as a complement to the standard file
system operations.

3.2 Related Work

Replicated file systems such as Coda [KS91], Ficus [GHM+90] and Rumor

[RPG+96], are bound to rely on some notion of replication volumes (typically
subtrees in a given machine). These systems can be related to version control
systems if interpreted as providing version control over a well defined number of
branches, when allowing optimistic replica evolution on each volume.

In these systems, the use of vector time-stamps for conflict detection requires
either an indexing of the replication volumes or a way to univocally identify each

3.2. RELATED WORK 35

volume. That assumption enables the design of file time-stamps as mappings
from volume id (which can be a name or vector index) into an update counter
[PPR+83, RRP97]. A consequence of this design is that a file cannot be replicated
in the same volume, and in particular in the same directory.

Another problem is the transitive replication that can occur, for instance, when
using transportable media. In this case, the availability of one replica is not
sufficient for the autonomous creation of the new replication volume that would
host a subsequent replica. All these patterns of usage, when actually needed, lead
the users back to the use of uncoordinated copy.

The solution to the autonomous identity creation problem relies on a recursive
construction of the new ids, in the presence of a single file replica. The Bayou

system [PST+97] uses a similar technique for volume identity creation. Panasync

will use a recursive technique that is based on previous work on autonomous causal-
ity [BM99] and autonomous file time-stamping [BA99] in order to provide single
file replication and versioning.

Simple but well deployed forms of replication systems, such as Microsoft Win-
dows Briefcase and the new off-line files and folders of Windows 2000, target op-
timistic replication between a mobile unit (or an instance of transportable media)
and one host. This restricted form of replication fits the general case of replicated
file systems.

Traditional versioning systems, such as CVS1 and PRCS2, are targeted to man-
age short derivations from a central branch of development. In this sense they
support an arbitrary number of concurrent evolutions but do not treat them as
first class elements, and keep a centralised control on the versioning information.
A recent trend in versioning systems, as depicted in BitKeeper3 design, aims to
support parallel lines of development that share code improvements with a more
robust ‘diffing’ technique. This approach differs from the Panasync scenario as it
targets the management of sets of files (repositories), in contrast with a file based
approach, and focuses on ‘diff’ portability and not on causality based domina-

1http://www.sourcegear.com/CVS/
2http://www.xcf.berkeley.edu/˜jmacd/prcs.html
3http://www.bitmover.com/bitkeeper/

36 CHAPTER 3. PANASYNC

create(body,target)
echo "body" > target

copy(base,target)
cp base target

move(base,target)
mv base target

Table 3.1: Classic file constructs.

tion analysis between parallel evolutions. Nevertheless this trend appears to share
common motivation with our approach whilst at a different level.

3.3 Revisiting Copy Constructs

Panasync intends to add file based replication and versioning constructs in a way
that complements the usual file manipulation constructs. Since some of their func-
tionality will be complemented, it is important to review the possible applications
of existing operations. Considering the arbitrary syntax and Unix mapping shown
in Table 3.1, we discuss how some user tasks expressing replication or versioning
are typically performed.

If the intent is to create a new file unrelated to the other files, the operation
could be create(content,new-file-name). However it is sometimes useful to start the
new file with the content of another file (for instance when starting a new LATEX
document or a CGI script), which would lead to copy(file-name,new-file-name).

When the intent is to keep a backup copy of a given file, the operation is some-
thing like copy(file-name,file-name.orig) or slightly different, copy(file-name,file-
name.v01), if several backup versions are to be created. If, latter on, the user
wants to discard changes he issues something like copy(file-name.orig,file-name).
Alternatively if the user needs backup versions for a set of files, he might make
use of a new sub-directory that gathers a given version of the files, and then use
something like copy(*,dir-name.v01), which keeps the original file names but places
them in a different name space.

3.4. PANASYNC OPERATIONS 37

Finally, when the intent is to replicate a file or set of files the practice is to
keep the names and copy them into a different name space (disk and directory).
Later on, replica identification and the possibility of replica re-integration must be
evaluated by the user and lead to the appropriate copy or move operations.

In all these tasks the copy operation is heavily used and its different intents
are only vaguely captured by the choice of names and name spaces that the user
conducts. There is no way of providing system support to these operations and
the users are on their own to make either correct decisions or mistakes.

Its is also clear that the directory structure is used for several purposes, division
of name space, classification, and identification of different physical storage devices.
It can be the case that files like /floppy/panasync.tex and /home/cbm/psart.tex
are versions of the same entity and /src/q/readme.txt and /tmp/qinst/readme.txt
are totally unrelated.

3.4 Panasync Operations

In order to assist file replication and versioning tasks, we propose a set of commands
that track dependencies between versions of files. A file system with Panasync

extensions, or user level commands, manages ordinary as well as panasync-enabled
files, the latter having an extra time-stamp attribute. For convenience of discourse
we designate the panasync-enabled files pfiles and the others ofiles (ordinary files);
we use the term file to refer to either class. The traditional commands apply to
both file types, but pfiles can also be manipulated by the Panasync operations
as shown in Table 3.2 (where we also present possible Unix mappings).

The new operation is used to create a pfile. Its name target is mandatory and
an optional file name for initialisation is allowed by indicating a base file. Usage of
this operation means that new a lineage of files is being created and that the target
pfile is not comparable with other lineages. Ordinary files are all non comparable.

When a backup, versioning or replication action is needed, users can resort to
the duplicate operation. This operation creates a target pfile from the base pfile
and ensures that both share the same lineage. After duplication both pfiles are

38 CHAPTER 3. PANASYNC

new([base],target)
pananew base target
duplicate(base,target)
panadup base target
join(base,target)

panajoin base target

Table 3.2: Some Panasync constructs.

equivalent, share the same contents and should be regarded as siblings. In fact,
although base was the starting point they do not hold a parent/child relation.

An immediately subsequent join operation with one of these pfiles as base and
the other as target would remove base since the system detects that they share
unchanged content, as well as positions that can be determined to be equivalent
in the version lineage.

By consulting the pfiles time-stamps the join operation is able to relate any
pair of files, verify if one of the following conditions holds, and advise appropriate
action:

• Condition: base and target are in distinct lineages or one or both of them
are ofiles.
Action: Abort the join and do nothing.

• Condition: base dominates target or target dominates base.
Action: The normal action is to remove base and place in target the content
that dominates (either from base or target), but an option can be provided
to choose the dominated content.

• Condition: Neither base nor target dominates, which means that they hold
concurrent updates.
Action: Do nothing or prompt the user for a reconciliation file, in which
case both base and target are removed and the new contents are stored in
the position target. This new file dominates all files that is ancestors would
dominate.

3.5. SYNOPSIS OF TIME-STAMPING 39

This description shows that names are not important in these operations since
pfiles have enough information to distinguish file instances as well as to compare
them. As a consequence of this, the choice of pfile names need only address name
clash avoidance in the directory system that stores them.

In fact it is possible to design an option that applies a join operation recursively
to two whole subtrees. This would select all pfiles from the subtrees, produce two
flat lists of files and compare those in the same lineage, removing, for instance, the
dominated files from the first subtree.

Another useful construct, although not a basic one, is a panasync base1 base2
command that produces a join of the two files in a temporary pfile and immediately
duplicates it again into base1 and base2. The overall effect is to keep two copies
with synchronised contents.

Renaming pfiles can be done as usual with the original move command, as
long as time-stamp association to file name can be tracked. Depending on the
system, this need can lead to a simple patch to the native move command or two
the introduction of a panamv construct. The use of the native copy with a pfile as
base produces a target ofile with unrelated lineage, which is a useful functionality.

3.5 Synopsis of Time-Stamping

The complex pattern of version and lineage control can only be achieved with a
sound time-stamping technique that supports autonomous creation of a partial
order among file replicas and the identification of lineages. A presentation of the
causality model and time-stamping technique is beyond the scope of this chapter.
Some insight on the technique can be found in [BM99, BA99]. Here we will only
address some significant points that characterise this time-stamp model.

Vector time-stamps, as originally shown in [PPR+83], allow the tagging of
identical replicas with identical time-stamps. This is possible due to the fact that
the identity of the replication volumes and the information of the hosting volume
for each replica can complement the information stored in the time-stamp. On the
contrary, if we wish to have autonomous time-stamps all the relevant information

40 CHAPTER 3. PANASYNC

must be stored in each replica time-stamp. This leads to the existence of distinct
time-stamps that identify equivalent replicas. The partial order algorithm must
detect that simple replica duplication does not make them different but only raises
the possibility of separate modifications. Such replicas cease to be equivalent once
they suffer changes.

Unlike vector time-stamps, this scheme does not impose structural limits on
the number of replicas, since replica identity is recursively constructed with the
information that is locally available.

3.6 Example Scenarios

The example in Figure 3.1 (with first scenario in Figure 3.2) shows a hypothetical
use of Panasync commands under the Unix environment. In the setup phase
a new lineage is created together with the pfile pana.bib and its contents are
initialised with mybibs.bib content. We recall that there is no ordering relation
between these two files.

Afterwards the pana.bib file is duplicated to a directory mapping a floppy
device and its contents are changed with the concatenation of entry1.bib. Finally
this file is duplicated into /zip/p.bib. We can expect that /zip/p.bib and
/floppy/pana.bib are equivalent, and that both dominate the local pana.bib
content.

For simplicity all examples have been illustrated in a single machine. It must
be kept present that all operation steps are possible on any arbitrary machine that
accesses the used persistent store. This use of floppy and zip names emphasises
this possibility since they designate transportable persistent media.

3.6.1 First Scenario

Now we change the name of the floppy resident file into /floppy/panasync.bib.
In fact we can move this file to any place or system since its identity does not
depend on its name. Next we add some content to p.bib and try to join it with

3.6. EXAMPLE SCENARIOS 41

the local pana.bib.

This join is straightforward since one of the files dominates the other. As usual,
the two file supplied as argument to panajoin are checked for their relative order
and the join outcome is written to the second file argument. This is the case even
if the second file is the dominated one.

After the last panajoin invocation the three replicas from the start of this first
scenario have been collapsed into a single replica at /floppy/panasync.bib. Since
there were no concurrent changes the convergence was trivially accomplished. A
simple way to check for the presence of concurrent changes, in Figure 3.2 as well an
in the second scenario figure, it to track the bullets (•) that indicate changes. This
can be done by following the arrows, from the replicas, in the reverse direction and
check if both have changes that the other has not seen.

3.6.2 Second Scenario

In this second scenario, with its evolution outline in Figure 3.2, we make sure
that some concurrency of changes occur, by adding content to both /zip/p.bib

and /floppy/pana.bib. Consequently the join tentative over this two files fails
and issues a warning identifying the occurrence of concurrency and asking for the
provision of a content that re-conciliates the files.

The user is free to choose the content that is to be provided. Here he uses the
sdiff tool to select the merged content from the two concurrent files and supplies
it in the next panajoin invocation.

The last panajoin invocation illustrates that when merges of concurrent evo-
lution occur, the order of the new pfile is such that it dominates all the pfiles that
were previously dominated by either of the merged pfiles. This factor empowers
the user decisions when supplying a merge and helps future replica convergence,
thus constituting a very powerful property that is particular to this system.

42 CHAPTER 3. PANASYNC

3.7 Design Issues

The basic Panasync implementation will be built over a set of portable command-
line tools. The purpose of these tools is not only to test the usefulness of this
dependency tracking system, but also to ease its integration into existing file man-
agers. A second phase will encompass the exploration of an adaptation technique
for native file systems, eventually with the use of a reflection mechanism.

In Panasync, file naming is a user convenience although the system does not
rely on it to track dependencies between pfiles. Evidences from observation of
typical patterns of usage suggest that Panasync users should be able to change
pfile names at will and the system must still be able to ensure correct dependency
tracking. To achieve this purpose, Panasync will rely on a mapping from a special
pfile identifier into its name. This will enable the system to assess if two pfiles
belong to the same lineage independently of their current names. The identifier
will be given to the pfile upon creation and associated to the specified name. Each
time a move is issued the pfile identifier mapping will be updated. For practical
purposes this identifier can be generated from traditional techniques based on
existing hardware settings (e.g. ethernet address), file creation time and a random
value.

To achieve its purposes, Panasync needs to store this extended information
about pfiles. In fact, not only it will need to record the current name of each pfile,
but also its time-stamp and an MD5 digest to actually track its dependencies.

Another issue in the design of Panasync is the transparent detection of modi-
fication of pfiles’ content. This objective cannot be reliably achieved by evaluating
the creation and modification time-stamps provided by most of the traditional
file systems. Instead, Panasync calculates a MD5 digest for each pfile upon its
creation, and also stores this information on the mappings discussed above. Each
time panadup and panajoin are issued the MD5 is recalculated, enabling the de-
tection of modifications on the pfiles with the setting of a dirty attribute that is
used in the time-stamp construction algorithm.

To ensure portability Panasync will provide an external representation of
pfiles’ attributes. This will enable transferring pfiles through non-supported sys-

3.8. CONCLUSIONS AND FUTURE WORK 43

tems, such as email, for instance.

3.8 Conclusions and Future Work

We have presented the motivation behind the conception of Panasync and shown
usage scenarios. The system aims to support common tasks of file replication
and versioning, which could be done either manually, without system support, or
under control environments that are focused toward coarser grain scenarios. We
believe that the addressed patterns of fine grain file copying are bound to increase
with ongoing trends of increased user mobility and information sharing among
mobile and fixed units. The Panasync approach does not intend to substitute
the functionality of versioning systems or replicated file systems, but rather act as
orthogonal support for a particular and common class of use cases.

Apart from the practical design issues, the central point that enables the con-
ception of a system with these characteristics is the underlying time-stamping
scheme. Presently, we have reached a time-stamp design that allows identifier
simplification upon joins. This design format allows us to start the construction
of the first command prototypes.

Having designed the time-stamping mechanism, the next step will be the study
of time-stamp size impact on the system under an average work pattern. Although
not comparable with the small size of standard time attributes we are confident
that the extended control possibilities will make the use of pfiles worth in a signif-
icant set scenarios.

44 CHAPTER 3. PANASYNC

.... Setup

$ pananew mybibs.bib pana.bib
$ panadup pana.bib /floppy/pana.bib
$ cat entry1.bib >> /floppy/pana.bib
$ panadup /floppy/pana.bib /zip/p.bib

.... 1st Scenario

$ mv /floppy/pana.bib /floppy/panasync.bib
$ cat DSM.bib >> /zip/p.bib
$ panajoin pana.bib /zip/p.bib
Info: /zip/p.bib content

dominates pana.bib
$ panajoin /zip/p.bib /floppy/panasync.bib
Info: /zip/p.bib content

dominates /floppy/panasync.bib

.... 2nd Scenario

$ cat DSM.bib >> /zip/p.bib
$ cat OS.bib >> /floppy/pana.bib
$ panajoin /floppy/pana.bib /zip/p.bib
Warning: Files are concurrent

use -s to specify substitute
$ sdiff /floppy/pana.bib /zip/p.bib -o merge.bib
$ panajoin /floppy/pana.bib /zip/p.bib -s merge.bib
$ panajoin /zip/p.bib pana.bib
Info: /zip/p.bib content dominates pana.bib

Figure 3.1: Example runs with Panasync tools.

3.8. CONCLUSIONS AND FUTURE WORK 45

(floppy) panasync.bib

(zip) p.bib

OO

(floppy) panasync.bib

22ff
(zip) • p.bib

OO

(floppy) pana.bib
mv
OO�
�

(zip) p.bib
cat »
OO

(floppy) • pana.bib

llXXXXXXXXXXXX
22ffffffffffffff

(floppy) pana.bib
cat »
OO

(local) pana.bib

ff

(local) mybib.bib new
// (local) • pana.bib

llXXXXXXXXXXXX
33fffffffffff

Figure 3.2: First Scenario. Here a single branch dominates the other branches.
The mv action that renames one of the pfiles does not change its identity and
time-stamp.

(local) pana.bib

(zip) • p.bib

OO

(floppy) • pana.bib

11ccccccccccccccccccccccccccccccccccc
// merge.bib

33

(zip) • p.biboo

OO

(floppy) pana.bib
cat »
OO

(zip) p.bib
cat »
OO

(floppy) • pana.bib

kkXXXXXXXXXXX
33ffffffffffff

(floppy) pana.bib
cat »
OO

(local) pana.bib

ff

(local) mybib.bib new
// (local) • pana.bib

kkXXXXXXXXXXX
33gggggggggg

Figure 3.3: Second Scenario. Two parallel branches suffer concurrent changes
and are re-conciliated with a merge content. The resulting pfile inherits existing
domination relations and supersedes an early branch.

46 CHAPTER 3. PANASYNC

Chapter 4

Version Stamps: Decentralised
Version Vectors

Version vectors and their variants play a central role in update tracking in op-
timistic distributed systems. Existing mechanisms for a variable number of par-
ticipants use a mapping from identities to integers, and rely on some form of
global configuration or distributed naming protocol to assign unique identifiers to
each participant. These approaches are incompatible with replica creation under
arbitrary partitions, a typical mode of operation in mobile or poorly connected
environments. We present an update tracking mechanism that overcomes this
limitation; it departs from the traditional mapping and avoids the use of integer
counters, while providing all the functionality of version vectors in what concerns
version tracking.

4.1 Introduction

Mobile computing has evolved in the previous decade into what is now a common
mode of operation for a significant share of distributed systems. This mobile con-
text helped to promote optimistic strategies and, with them, the need for version
vectors in update tracking. Nevertheless, the same mobile context also brings to
surface some of the limitations of version vectors, in particular concerning the iden-

47

48 CHAPTER 4. VERSION STAMPS

A

 0
0
0

 ◦ //

 1
0
0

 //

 1
0
0

OO

��

◦ //

 2
0
0

B

 0
0
0

 //

 1
0
0

 //

 1
0
1

OO

��

C

 0
0
0

 ◦ //

 0
0
1

 //

 1
0
1

Figure 4.1: Use of version vectors to track updates among three replicas.

tification of participating entities in the computation in such potentially dynamic
environments.

The concept of version vector [PPR+83] is connected to the twin concept of
vector clock [Fid89, Mat89c], and both are rooted on causality in distributed sys-
tems [Lam78]. These concepts share an equivalent structure that consists in a
mapping from process/replica identifiers to integer counters, I ↪→ N. In practice,
version vectors and vector clocks are more often represented as a fixed sequence
of integer counters, {1, 2, . . . , k} → N, which is a reasonable choice as long as the
number of entities is known in advance. Figure 4.1 shows an execution in a repli-
cated system where fixed size version vectors are used to track updates to each of
the three replicas in the system. The direction of evolution is represented by the
arrows, with dot annotated arrows, ◦→, depicting updates on a given element of
the system.

Although structurally similar, vector clocks and version vectors play different
roles on distributed systems. Vector clocks are known to provide a view over a
distributed computation, different events being identified by distinct vector clock
values1. The role of version vectors is to detect mutual inconsistency among repli-
cas and to determine the most recent version among two causally related replicas.

1In Fidge Logical Time, two events share the same clock value when representing a synchro-
nisation event between two instances. Usually, asynchronous message passing is assumed and
this does not occur.

4.1. INTRODUCTION 49

All replicas that have seen the same updates, typically after a synchronisation
procedure, share the same version vector value – see again Figure 4.1.

A well known problem of version vectors and vector clocks is that they are
unbounded in size [RRP97, TRA99]. In fact, they are twice unbounded. Each
integer counter can grow indefinitely and the number of identified entities can also
grow unbounded.

A less known problem, which we address in this chapter, resides in the iden-
tification requirement of both version vectors and vector clocks [BM99, PST+97].
Each participating entity must be assigned a unique identifier in order to obtain a
proper mapping to integer counters. In a well connected environment, it would be
simple to request a unique identifier from a server or to run a distributed protocol
for the generation of a unique identifier. Such protocols are not possible in the cur-
rent mobile setting when subject to partitioned operation. Moreover, significant
technology and research trends are pointing towards wireless ad hoc networking
setups, where entities are autonomous and operate in local clusters on a proximity
basis [MJK+00, BCCS98, HNI+98]. In such environments, partitioned operation is
the common mode of operation and an answer to the identification problem must
be sought.

In circumstances in which we can afford probabilistically unique identifiers,
algorithms may resort to some form of random based ids in order to cope with
replica creation under partitioned environments. Contrary to these approaches,
our work does not rely on probabilistic uniqueness and assumes that guaranteed
unique identifiers must be provided.

4.1.1 Fixed vs. Variable number of Replicas

Classic replication systems operate over a well defined number of replicas. Such is
the case of the system depicted in Figure 4.1. The more general case of a dynamic
replication system, introduces the need to accommodate replica creation and re-
tirement. One approach would be to represent replica creation by introducing
new horizontal lines and new replica identifiers in the system representation, and
likewise to discontinue those lines towards the future, upon replica retirement.

50 CHAPTER 4. VERSION STAMPS

The approach we follow, instead, represents all the functionality of replica
creation, synchronisation and retirement by two simple constructs: replica forking
and joining of replicas. Synchronisation can then be represented by joining two
replicas and forking the resulting one. An example is presented in Figure 4.2.

d1
// g1

b1

<<yyyy

""EEEE

a1
◦ // a2

<<yyyy

##GGGG e1 // f1

EE���������

c1
◦ // c2

◦ // c3

;;xxxx

time //

Figure 4.2: Some possible evolutions of data elements showing two frontiers of
coexisting elements (denoted by single and double-dotted lines).

a ◦ // a′ // a′′OO

��

//

b // b′ // b′′OO

��

//

c ◦ // c′ // c′′ //

a ◦ // a′

$$HHHH a′′ //

·
$$IIII

::uuuu

·

DD

// b

55jjjjjjjjjj
b′

$$IIII b′′ //

·
$$IIII

::uuuu

· //

EE�������
c ◦ // c′

33fffffffffffffff c′′ //

Figure 4.3: Encoding a fixed number of replicas (left) under fork-and-join dynamics
(right).

This dynamic replication system is more general than the fixed one and can
be used to encode the latter. In Figure 4.3 we give the intuition to this encoding
by representing under fork-and-join dynamics a traditional version vector setting
for three replicas, using the same names for elements in equivalent positions and
omitting the name of extra elements. From this example, it is also easy to see that
an equivalent mapping can be found for runs with a variable number of replicas.

4.1.2 Frontier Elements vs. All Elements

In certain circumstances, one may want to relate any two elements occurring in
the distributed evolution, that is, all elements in the distributed computation are

4.1. INTRODUCTION 51

subject to ordering. For instance, in the computation depicted in Figure 4.2, one
may want to inquire how c2 and a1 relate and determine that a1 is in the past of
c2. Such querying could be necessary when debugging a recorded execution of the
replicated system.

In other circumstances, namely in update tracking, one may only need to relate
coexisting elements, that is, only elements in the same reachable configuration.
If this is the case, it wouldn’t make sense to query how c2 and a1 relate since
these elements never coexist in any arbitrary system evolution. In this sense, a
reachable configuration is perceived as forming a frontier. Any two elements that
are connected by a direct arrowed path never coexist, and consequently never
belong to the same frontier of contemporaneous elements.

If we concentrate on element c2 we can observe that, for the depicted evolution,
there are two possible frontiers to which c2 can belong. The first, represented by
a single dotted line, might occur if c1 gave place to c2 before the bifurcation
of b1. The second frontier, double dotted, occurs if b1’s bifurcation is prior to
c2’s transformation into c3. In fact, it is possible that both frontiers occur in a
particular system run.

In any case, an ordering system that targets frontier elements should have
enough information to relate any two events that can occur in any possible system
frontier. It is intuitive to accept that ordering of frontier elements is sufficient
for version management, since only coexisting elements are subject to queries on
their relation properties. We believe that this observation can have an important
impact on the design of future version management techniques.

Under the distinction that we have just presented it is now clear that traditional
version vectors are overly expressive: they are capable of overall ordering albeit
in their application context a frontier ordering would be sufficient. One could
conjecture that a compressed substitute of version vectors would be conceivable
for traditional settings with fixed numbers of entities, and such substitute would
not contradict Charron-Bost minimality results [CB91] (stated in the context of
vector clocks but easily inferable for version vectors). This is not, however, the
purpose of this article.

52 CHAPTER 4. VERSION STAMPS

It is easy to conclude that classical (fixed size) version vectors are associated
to frontiers of constant size, the vector dimension, while dynamic forms of version
vectors, c.f. [RRP97], act on variable frontiers.

Our goal is to develop a decentralised, autonomous form of version vectors –
named version stamps – that allows frontier ordering with autonomous creation
of identifiers from any available replica. By considering frontier ordering we seek
a compact solution to the identification problem that can act as an alternative to
version vectors in dynamic settings.

4.1.3 Structure of the Chapter

The rest of the chapter is structured as follows. The next section introduces a
model of causal histories of events, using a global view on events. Sections 3 and 4
develop the concept of version stamps and introduce a set of invariants over their
structure. Section 5 establishes a functional equivalence between version stamps
and causal histories, and Section 6 refines the version stamp model while keeping
the equivalence. Section 7 concludes the article.

4.2 Causal Histories in Dynamic Settings

Detection of version dependencies among data elements can be constructed over
a notion of causal history of update events [SM94]. In the construction of such
history we assume a global view over the system in order to obtain a description
that is intuitively correct. Afterwards, a version stamping system that does not rely
on a global view will be constructed and proved to represent the same dependency
order between elements that can be derived from the causal history.

To model causal histories we keep a mapping from element identities to sets
of update events. Since we are only interested in comparing frontier elements,
we only keep in the mapping the set of elements that define each frontier (thus
elements that may have existed in its past are not included). This map can be
seen as representing a “current configuration”.

4.2. CAUSAL HISTORIES IN DYNAMIC SETTINGS 53

Operations (update, fork and join) are described by transformations between
configurations.

We use the traditional notation for functions: {a 7→ {x}, b 7→ {y, z}, c 7→
{x, z, w}} represents a function that maps elements a, b and c to sets of events;
some events (like x and z) can be in the causal history of several elements.

Notation. We use {F ; a 7→ x, b 7→ y} to represent a function that maps a to
x, b to y and that maps other elements in the domain according to function F .
This notation expresses also that both a and b do not belong to the domain of
F . This is useful to perform “pattern matching” over functions (Note that using
F ∪ {a 7→ x, b 7→ y} does not imply that x, y 6∈ dom(F).). A similar notation can
be used for ‘pattern matching’ over sets: {A; a, b} denotes a set A ∪ {a, b} such
that a, b 6∈ A.

Definition 4.2.1 An initial configuration can be captured by {a 7→ {}} and rep-
resents a system with one data element. From any reachable configuration, the
following transformations can occur:

• {C; a 7→ A} update(a)−→ {C; a′ 7→ A ∪ {e}} with e 6∈ E({C; a 7→ A}),

• {C; a 7→ A} fork(a)−→ {C; b 7→ A, c 7→ A},

• {C; a 7→ A, b 7→ B} join(a,b)−→ {C; c 7→ A ∪B},

with E({C}) .
=

⋃
{C(i) | i ∈ dom(C)}.

Although mapping only “current” elements, the corresponding event sets store
all update events that have occurred in the causal history of each element: events
are not discarded. A global view is present because each update event has a global
unique identity that cannot be computed by only looking at the element being
updated.

When querying the relationship between elements, according to known updates,
the goal is to distinguish three possible situations: Equivalence – the same set
of events; Obsolescence – all the update events and at least one more in the

54 CHAPTER 4. VERSION STAMPS

dominating element; Mutual inconsistency – at least one different update event in
each element. Given a configuration {C; a 7→ X, b 7→ Y }:

• a equivalent to b iff X = Y ,

• a obsolete relative to b iff X ⊂ Y ,

• a inconsistent with b iff X 6⊆ Y and Y 6⊆ X.

Comparison of elements in a frontier can be deduced from the causal histories
as defined above. In fact, all these situations are represented by a pre-order on the
elements of a given frontier. Given a configuration C, for any two elements a, b in
the domain of C, we have:

a vC b⇐⇒ C(a) ⊆ C(b).

The simplicity of this model is only possible in the presence of a global view
over the set of events in the system.

4.3 Version Stamps

Our goal is to devise a stamping mechanism that can be used to infer the order
between frontier elements that is induced by comparing sets of causal histories (as
described above). The mechanism must not depend on any form of global view;
it must work autonomously and rely only on the local information that is kept
within the data elements being operated upon. An efficient use of space is also
highly desirable in order to support a practical use.

We now present an informal description of version stamps. Figure 4.4 presents
the example from Figure 4.2 where the version stamp corresponding to each el-
ement is shown. Each version stamp is made up of two components, which we
represent as [update | id]. The id component acts as the element identity: it
distinguishes the element from all other coexisting elements (in a frontier). The
update component stores information about which updates are known to a given

4.3. VERSION STAMPS 55

[| 00] // [1 | 00+01+1]
��

[| 0]

::uuu

$$III
[1 | 0+1]

��
[|] ◦ // [|]

>>}}}

 AAA [| 01] // [1 | 01+1]

::ttttttttttt
[|]

[| 1] ◦// [1 | 1] ◦ // [1 | 1]

77nnn

Figure 4.4: Version Stamps.

element. It avoids the use of counters and consists of a single id-like value which
collects id ’s as they were (in ancestor elements) when updates were performed.
Each component is presented as a sum of binary strings.

The first two version stamps in the left show that when the frontier is only
one element updates do not need to have expression on the stamps. In fact, the
update operation simply copies id into update; this means that after an update,
subsequent ones do not affect a version stamp. This is an example of the goal,
in the design of version stamps, to discard information that is irrelevant to the
comparison of coexisting elements in a frontier.

At a fork operation the id in the resulting stamps is recursively constructed by
appending either 0 or 1 to the right of the ancestor id. A fork does not modify the
update component as it does not introduce any update event (the ones tracked by
the mechanism).

When a join between two elements occurs the resulting id is built by merging
the two ancestor id ’s. The update component is built likewise, merging the two
ancestor update components; this reflects the combined knowledge of past updates.

An important property of the mechanism is the possible simplification of stamps
after joins. The intuition is that a join decreases the number of elements in a
frontier, leading to smaller identities being needed to distinguish them. A fork
followed by a join of the resulting elements should result in an element with the
original id. The intermediate elements id ’s only differ in the appended 0 and
1; after being merged they are collapsed into the original id. (A simplification
of id induces also a simplification of update.) Some analogies can be made: the
simplification of minterms in boolean algebra, the collapsing of neighbour blocks

56 CHAPTER 4. VERSION STAMPS

in the buddy memory allocation system [Kno65] or collecting weights in Huang’s
termination detection algorithm [Hua89]. Likewise, id ’s denote non-intersecting
parts of ‘the whole’; their complexity adjusts dynamically, reflecting the granularity
of the frontier of coexisting elements.

4.3.1 Synopsis of Formal Presentation

The locality goal of the mechanism can be seen to be met by looking at the
definition of the operations (below). To prove that version stamps can be used to
infer the same order as induced by causal histories, we split the presentation of
version stamps and proof of correctness in several steps.

We start by presenting a non-reducing version of the mechanism, in which no
simplification at joins occur, and prove several auxiliary invariants that charac-
terise some properties of version stamps. Afterwards, we show that both causal
histories and the non-reducing version of the mechanism induce the same pre-order
between elements at any given frontier. To do this we must first prove a stronger
result that implies the required equivalence. Finally, we present a rewriting rule
on version stamps that represents the simplification after a join. We show that
it preserves all previously defined invariants as well as the proved result relating
causal histories to version stamps.

4.4 Version Stamps: Non-Reducing

A version stamp is a pair (u, i), respectively the update and the id. Both compo-
nents share the same structure, and are members of a set N (names). We now
characterise N .

Let Σ∗ be the partially ordered set of all finite binary strings (sequences of
{0, 1}) ordered by:

r v s⇐⇒ r is a prefix of s.

We have, for example, 01 v 011 and 01 ‖ 00 (we use ‖ to denote non-
comparability). The null string is denoted by ε; it constitutes the bottom of

4.4. VERSION STAMPS: NON-REDUCING 57

Σ∗: ε v s for all strings s.

Definition 4.4.1 N is the set of all finite antichains in Σ∗, ordered by:

n1 v n2 ⇐⇒ ∀r ∈ n1.∃s ∈ n2. r v s.

For example, {0, 01} is not a valid element of N because 0 v 01, and we have
{00, 011} v {000, 011, 1} and {00, 10} 6v {000, 011, 1} as well.

As the order defined on N is the classic order in lower powerdomains [Smy78],
at first sight looks like we are in the presence of a pre-order. However, N was
defined in a way so that it is a partial order and not merely a pre-order. More
specifically:

Proposition 4.4.2 N is a partial order; moreover it is a join semillatice with
join given by:

n1 t n2
.

= {s ∈ n1 ∪ n2 | (s v r ∈ n1 ∪ n2)⇒ s = r}.

(That is the join of two names is the set of all maximal elements in their union.)

Proof. N is isomorphic to O(Σ∗) (the down-sets of strings) ordered by inclusion,
which is a complete lattice. 2

Informally, the antichains in N can be seen to represent the maximal elements
of down-sets, the order defined corresponds to inclusion of down-sets and the
join corresponds to union of down-sets. For example, {00, 011} t {000, 01, 1} =

{000, 011, 1}.

We now proceed with the definition of the first model of version stamps, in
which we do not include simplification after joins. For presentation purposes, we
describe the operations on version stamps using configurations that map elements
to version stamps. This facilitates relating causal histories to version stamps. It is
important to emphasise that this does not, however, imply that operations require
a global view: the operations manipulate the version stamps of the operated upon
elements, which themselves require no global view (contrary to the what happens

58 CHAPTER 4. VERSION STAMPS

in causal histories, where an update operation makes use of globally unique update
events). The order derived from stamps only makes use of local stamp information
as well.

Definition 4.4.3 An initial configuration can be captured by {a 7→ ({ε}, {ε})} and
represents a system with one data element. From any reachable configuration, the
following transformations can occur:

• {V ; a 7→ (u, i)} update(a)−→ {V ; a′ 7→ (i, i)},

• {V ; a 7→ (u, i)} fork(a)−→ {V ; a′ 7→ (u, i0), a′′ 7→ (u, i1)} with nx
.

= {sx | s ∈
n}, x ∈ {0, 1} being the concatenation of a digit lifted to sets of strings,

• {V ; a 7→ (ua, ia), b 7→ (ub, ib)}
join(a,b)−→ {V ; c 7→ (ua t ub, ia t ib)}.

The update component simply copies the id into update; fork maintains the
update component and appends either a 0 or a 1 to each string in the id component;
the join operation performs joins of names for each component. It is easy to see
that under the above definitions, the components in the resulting stamps are well-
formed names (antichains of strings).

We now define the pre-order on the elements of a configuration V obtained
from the version stamps in V , that will be used to make the correspondence with
causal histories. Given a configuration V , for any two elements a, b in the domain
of V , we have:

a vV b⇐⇒ fst(V (a)) v fst(V (b)).

Towards proving a proposition that relates causal histories with version stamps
we establish now some auxiliary properties of configurations of version stamps.

Invariant 4.4.4 (I1) In any reachable configuration V : ∀(a, (u, i)) ∈ V. u v i.

Proof. See Section 4.8. 2

This invariant states that in a version stamp the update is always dominated
by id. This property will ensure, on reducible version stamps models, that there

4.5. CORRESPONDENCE BETWEEN CAUSAL HISTORIES AND VERSION STAMPS59

is no obsolete information on update when replicas converge and id simplifications
are possible.

Invariant 4.4.5 (I2) In any reachable configuration V : ∀{x 7→ (ux, ix), y 7→
(uy, iy)} ⊆ V. ∀r ∈ ix, s ∈ iy. r ‖ s.

Proof. See Section 4.8. 2

This second invariant brings attention to some structural properties of the id ’s
that are present in a configuration. In a given frontier of elements each string that
is present in a given id will be non-comparable to all other strings in the same or
another id. Consequently, all id ’s in a frontier are non-comparable.

Invariant 4.4.6 (I3) In any reachable configuration V : ∀{x 7→ (ux, ix), y 7→
(uy, iy)} ⊆ V. ∀r ∈ ux. {r} v iy ⇒ {r} v uy.

Proof. See Section 4.8. 2

This invariant implies a weaker one: ∀{x 7→ (ux, ix), y 7→ (uy, iy)} ⊆ V. ux v
iy ⇒ ux v uy. The pertinence of this last invariant can be illustrated by an
example. Suppose two non-comparable elements a ‖ b with version stamps (ua, ia),
(ub, ib). If an update occurs on one of them, for instance update(a), we must
be sure that a (a′ after update) remains non-comparable to b, and b v a′ does
not happen (recall that causal histories ensure this by using fresh event names
on updates). Since update(a) produces version stamp (ia, ia) then our property
ub v ia ⇒ ub v ua means that in order for b v a′ to occur, then b v a must also
occur in the first place.

4.5 Correspondence Between Causal Histories and

Version Stamps

We now show that version stamps as defined above can be used to derive the pre-
order between elements according to inclusion of causal histories. As we described

60 CHAPTER 4. VERSION STAMPS

above, comparing elements in a configuration C of causal histories can be done
according to:

a vC b⇐⇒ C(a) ⊆ C(b).

If we have a configuration V of version stamps that corresponds to C (whose
version stamps are derived from the same system execution as C), being the order
between elements obtained from V :

a vV b⇐⇒ fst(V (a)) v fst(V (b)),

we want to prove that both C and V induce the same pre-order, i.e. vC = vV .
This means we want to show that:

C(a) ⊆ C(b)⇔ fst(V (a)) v fst(V (b)).

It can be seen that a direct proof by induction of this equivalence fails. This
failure is in itself an interesting result and can be briefly explained by the following
insight: knowing how elements compare according to causal history inclusion in a
given configuration is not enough to know how they will compare in the configu-
ration obtained after performing a given operation. In other words, even though
we are not interested in knowing the exact update events in causal histories, we
need to know something more than just how they compare even if comparison is
all we are interested in.

Technically, we need to prove a stronger equivalence, which will be used as a
stronger induction hypothesis in the proof. We show then, the following stronger
proposition. (We use fst and snd for the projections on the first and second com-
ponents of a pair. We also use the notation f [A] for the direct image of A under
f , that is f [A] = {f(x) | x ∈ A}.)

Proposition 4.5.1 Given any distributed execution with causal histories C0 −→
C1 −→ . . . −→ Ck and with version stamps V0 −→ V1 −→ . . . −→ Vk, it is true
that dom(Ck) = dom(Vk) and Ck(x) ⊆

⋃
Ck[S] ⇔ fst(Vk(x)) v

⊔
fst[Vk[S]], for

all x ∈ dom(Ck) and ∅ ⊂ S ⊆ dom(Ck).

4.6. SIMPLIFYING VERSION STAMPS UPON JOINS 61

Proof. See Section 4.8. 2

From the previous proposition, the result we want to show follows, as stated
by:

Corollary 4.5.2 Given any distributed execution with causal histories C0 −→
C1 −→ . . . −→ Ck and with version stamps V0 −→ V1 −→ . . . −→ Vk, it is true
that dom(Ck) = dom(Vk) and Ck(x) ⊆ Ck(y) ⇔ fst(Vk(x)) v fst(Vk(y)), for all
x, y in dom(Ck).

Proof. Substitute S by {y} in the previous proposition. 2

4.6 Simplifying Version Stamps upon Joins

We now describe a rewriting rule that can be applied to a version stamp and
perform the simplifications that have been informally introduced in Figure 4.4.
Such simplifications reflect, as already discussed, the dynamic adaptation of id ’s
to the ‘shape’ of the frontier. This simplification is essential towards obtaining a
realistic implementation, by minimising the space requirements of version stamps.

The simplification of a version stamp that results from a join is attempted by
repeatedly applying the following rewriting rule until it is no longer possible to
apply it:

(u, {i; s0, s1}) α−→(u′, {i; s}),

with

u′ =

{
u \ {s0, s1} ∪ {s} if s0 ∈ u or s1 ∈ u,
u otherwise.

One property of a rewriting (u, i)
α−→(u′, i′) that follows trivially from the order

on names is that u′ v u and i′ v i. As the order on names is well-founded (there
are no infinite descending chains of names), only a finite number of rewritings

62 CHAPTER 4. VERSION STAMPS

can be applied to a stamp. It is also easy to see that the rewriting is confluent.
Therefore, a stamp can be rewritten into a unique normal form.

We omit the proof of confluence as it is intuitive and concentrate on the cor-
rectness of the transformation. For that we need to show that applying a rewriting
(u, {i; s0, s1}) α−→
(u′, {i; s}) to a version stamp in a configuration V results in a configuration
V ′ where: the rewritten version stamp consists of two wellformed names (an-
tichains), the invariants I1, I2, I3 are maintained, and the relation from dom(V)

to P(dom(V)) expressed by

R(V)
.

= {(x, S) | fst(V (x)) v
⊔

fst[V [S]]}

is the same in V ′, i.e. R(V) = R(V ′).

Wellformedness of u′ and {i; s}. Regarding {i; s}, as {i; s0, s1} is an antichain,
we have for every r ∈ i that r ‖ s0 and r ‖ s1; therefore r ‖ s, which means that
{i; s} is also an antichain. Regarding u′, if neither s0 nor s1 belong to u, then
u′ = u. Otherwise, we have for every r ∈ u \ {s0, s1} that: s0 6v r and s1 6v r

(because u v {i; s0, s1}), and r 6v s (because u is an antichain); therefore, r ‖ s,
which means that u \ {s0, s1} ∪ {s} is an antichain.

Invariant I1. This is a local invariant on each stamp; it suffices to show that u′ v
{i; s}. If neither s0 nor s1 belong to u, then u′ = u v {i; s} (as u v {i; s0, s1}).
Otherwise, it is also trivial that u′ = u \ {so, s1} ∪ {s} v {i; s}, for the same
reason.

Invariant I2. This invariant involves pairs of stamps; it suffices to consider the
cases where the rewritten stamp is involved. For any other stamp (ux, ix) in V

and string r ∈ ix, due to Invariant I2 on V we have: r ‖ s0, r ‖ s1, therefore r ‖ s;
and also r ‖ t for all t ∈ i; therefore r ‖ v for all strings v ∈ {i; s}.

4.6. SIMPLIFYING VERSION STAMPS UPON JOINS 63

Invariant I3. The invariant involves expressions of the form {r} v iy ⇒ {r} v
uy, for stamps (ux, ix), (uy, iy), and r ∈ ux. As for the previous invariant, it suffices
to consider the cases where the rewritten stamp is involved:

(u′, {i; s}) = (uy, iy). Suppose {r} v {i; s}; then, {r} v {i; s0, s1} and by I3 on
configuration V {r} v u. If neither s0 nor s1 belong to u, then u′ = u and
{r} v u′. Otherwise, as {r} v {i; s}, we have r 6= s0 and r 6= s1; therefore,
{r} v u \ {so, s1} ∪ {s} = u′.

(u′, {i; s}) = (ux, ix). Suppose {r} v iy with r ∈ u′. If neither s0 nor s1 belong to
u, then u′ = u, r ∈ u; therefore, by I3 on V , we have {r} v uy. Otherwise,
in which case u′ = u \ {so, s1} ∪ {s}, we have r 6= s0 and r 6= s1; also r 6= s,
otherwise we would have {s} v iy, impossible by I2 on V ; therefore r ∈ u
and by I3 on V we have {r} v uy.

Preservation of R. We prove that applying a rewriting (u, {i; s0, s1}) α−→(u′, {i; s})
to a version stamp in a configuration V results in a configuration V ′ so that
R(V) = R(V ′). First we show that x R(V) S ⇒ x R(V ′) S. Suppose x R(V) S,
i.e. fst(V (x)) v

⊔
fst[V [S]]. We must consider two cases:

rewriting of V (x). If x ∈ S then x R(V ′) S holds trivially; if x 6∈ S, as u′ v u,
we have u′ v u v

⊔
fst[V [S]] =

⊔
fst[V ′[S]].

rewriting of V (y) with y ∈ S. The case x = y is trivial (and already covered
above). Otherwise x 6= y; let Z = S \ {y}; we have V |Z = V ′|Z and also
V (x) = V ′(x); therefore fst(V ′(x)) v

⊔
fst[V ′[Z]] t u. If s0 6∈ u and s1 6∈ u

we have u′ = u and x R(V ′) S holds trivially. Otherwise, in which case
u′ = u \ {s0, s1} ∪ {s}, due to I1 and I2 (and x 6= y) we have that s0 and s1
do not belong to fst(V (x)); therefore the inequality above still holds replacing
u by u′, and thus we have x R(V ′) S.

Now we show that x R(V ′) S ⇒ x R(V) S. Suppose x R(V ′) S, i.e.
fst(V ′(x)) v

⊔
fst[V ′[S]]. We must consider two cases:

64 CHAPTER 4. VERSION STAMPS

rewriting of V (y) with y ∈ S. The case x = y is trivial; if x 6= y, given that
u′ v u, we have fst(V (x)) = fst(V ′(x)) v

⊔
fst[V ′[S]] v

⊔
fst[V [S]].

rewriting of V (x). The case x ∈ S is trivial; in the case x 6∈ S, we have that no
string in fst[V ′[S]] is greater than or equal to s, otherwise, due to I1 there
would exist a string r in snd[V ′[S]] such that s v r, something impossible
because, due to I2, no string in snd[V ′[S]] can be comparable to s Therefore,
s 6∈ u′ which means we are in the case where u′ = u and so we have also
fst(V (x)) v

⊔
fst[V [S]].

4.7 Conclusions

Both version vectors and vector clocks rely on the availability of identifiers that
can support their ordering technique. We have argued that operation under parti-
tioned operation and mobility prevents the use of traditional techniques for unique
identifier generation, and that these operation modes are already common and call
for appropriate solutions. Additionally, data management under these operation
modes is mostly based on optimistic techniques and therefore requires robust de-
pendency tracking solutions.

In this article we addressed the identification problem in the context of data
dependency tracking. In order to achieve this goal we had to distinguish the
ordering of elements in a frontier from the ordering of any two elements in a
system run, thus contributing to the clarification of the role of version vectors.
This distinction, together with the presence of the identification problem, raises
a set of research lines, one of which was developed in the article. The other
lines concern the design of decentralised vector clocks, by exploring autonomous
identifiers on overall ordering, and the search for a more compact (possibly bound)
form of version vectors on settings with fixed identifiers and frontier ordering.

We have developed a model of causal histories that is adapted to dynamic set-
tings exhibiting autonomous interaction. We presented a version stamping mecha-
nism that only relies on information that is locally available, overcoming the need
for a global view. Finally, we established and proved a correspondence which

4.8. PROOF OF INVARIANTS AND MAIN PROPOSITION 65

states that the relation between any two given elements in a frontier, according to
inclusion of causal histories, can be computed by their version stamps.

Version stamps, having solved the autonomous identification problem while
addressing frontier ordering, provide an adequate dependency tracking mechanism
that operates in scenarios where this functionality was not available.

The presented version stamp mechanism has been implemented in the Panasync

project2 [ABF00]. This project is an application of version stamps to file replica-
tion, providing a set of tools for dependency tracking on single file copies. The
project provides a C++ STL based library implementing version stamps.

4.8 Proof of Invariants and Main Proposition

Invariant 4.4. (I1) In any reachable configuration V : ∀a 7→ (u, i) ∈ V. u v i.

Proof. The proof is by induction. In the base case we have V0 = {a 7→
({ε}, {ε})}. The invariant holds since ε v ε. The inductive step will suppose that
our invariant I1 holds on a given environment V and check for its validity under
V ′ that results from applying any of the operations update, fork, join.

update(a). From the definition of the operation we have a new element a′ with
V ′(a′) = (i, i). Since i v i the invariant holds.

fork(a). From the definition we have V (a) = (u, i) and u v i by induction
hypothesis. In V ′ we have V ′(a′) = (u, i0) and V ′(a′′) = (u, i1). We verify that
u v i0 holds by checking the definition of name concatenation together with
hypothesis u v i. The same applies to u v i1.

join(a, b). From the definition and by induction hypothesis we have in V , ua v ia

and ub v ib. We must infer in V ′ that ua t ub v ia t ib. This proposition can be

2http://sourceforge.net/projects/panasync.

66 CHAPTER 4. VERSION STAMPS

directly deduced from the above two hypothesis due to the properties of the join
semilattice. 2

Invariant 4.5. (I2) In any reachable configuration V : ∀{x 7→ (ux, ix), y 7→
(uy, iy)} ⊆ V. ∀r ∈ ix, s ∈ iy. r ‖ s.

Proof. The proof is again by induction using the same structure as above. In
the base case there are no distinct ix, iy so the invariant holds trivially.

update(a). Under this operation knowing that V (a) = (u, i) holds, V ′(a′) = (i, i)

will hold in V ′. Since both id ’s are i the invariant, true in V by hypothesis, is
preserved.

fork(a). From the definition we have V (a) = (u, i) and from induction hypoth-
esis, all ix 6= i in V exhibit ∀r ∈ ix, s ∈ i. r ‖ s. In V ′ we have V ′(a′) =

(u, i0), V ′(a′′) = (u, i1). From iterated concatenation, on fork definition, we infer
t ‖ v ⇒ t0 ‖ v (as well as t1 ‖ v) for any t, v ∈ S. This and the induction hypothe-
sis proves ∀r ∈ ix, s ∈ i0 r ‖ s, with identical reasoning for i1. Considering i0 and
i1, ∀r ∈ i1, s ∈ i0. r ‖ s results from iterated concatenation.

join(a, b). From the definition we have V (a) = (ua, ia), V (b) = (ub, ib) and from
induction hypothesis, all ix 6= ia 6= ib exhibit ∀r ∈ ix, t ∈ ia, v ∈ ib. r ‖ t∧r ‖ v∧t ‖
v. Consequently ∀r ∈ ix, s ∈ (ia∪ ib). r ‖ s. In V ′ we have V ′(c) = (uatub, iat ib).
Since iatib ⊆ ia∪ib (in fact, here iatib = ia∪ib) we reach ∀r ∈ ix, s ∈ (iatib). r ‖ s.
2

Invariant 4.6. (I3) In any reachable configuration V : ∀{x 7→ (ux, ix), y 7→
(uy, iy)} ⊆ V. ∀r ∈ ux. {r} v iy ⇒ {r} v uy.

Proof. This proof is by induction, and for each operation the invariant validity
is inferred. In this proof, notation of the form a = b v c signifies a = b and b v c.
The invariant {r} v iy ⇒ {r} v uy is checked by verifying that either {r} 6v iy

4.8. PROOF OF INVARIANTS AND MAIN PROPOSITION 67

or {r} v iy ∧ {r} v uy holds. In the base case, there is only one element and the
invariant holds trivially.

update(a). From V (a) = (u, i) we have V ′(a′) = (i, i). Suppose any two stamps
(u′x, i

′
x), (u

′
y, i
′
y) in V ′ and ∀r′ ∈ u′x. If (u′x, i

′
x) 6= (i, i) and (u′y, i

′
y) 6= (i, i) then

(ux, ix), (uy, iy) occur in V and the invariant holds from V by induction hypothesis.
Otherwise we must consider two cases:

(c′x, i
′
x) = (i, i) in which case {r′} 6v i′y since c′x = i 6= i′y and (I2).

(c′y, i
′
y) = (i, i) in which case (uy, iy) = (u, i) and either: {r} 6v iy held in V ,
leading in V ′ to {r′} 6v i′y; or {r} v iy ∧ {r} v uy held in V and becomes
induction hypothesis. In V ′, {r′} v i′y still holds since i′y = iy, and {r′} v c′y

can be inferred, since u′x = ux and {r} v uy = u v i = u′y.

fork(a). From V (a) = (u, i) we have V ′(a′) = (u, i0), V ′(a′′) = (u, i1). Suppose
any two stamps (u′x, i

′
x), (u

′
y, i
′
y) in V ′ and ∀r′ ∈ u′x. If (u′x, i

′
x) 6= (u, i0), (u′y, i

′
y) 6=

(u, i1) identical (ux, ix), (uy, iy) occurred in V and the invariant is kept. Otherwise
consider three cases (the other cases are obtained by swapping 0 and 1):

(u′x, i
′
x) = (u, i0), (u′y, i

′
y) 6= (u, i1) in which case there was in V an identical (uy, iy)

and for (ux, ix) = (c, i) we had either: {r} 6v iy and consequently {r′} 6v i′y

since u′x = u = ux; or we had {r} v iy ∧ {r} v uy, becoming induction
hypothesis. In V ′, {r′} v i′y still holds, and {r′} v u′y can be inferred, since
u′x = ux and {r} v uy = u′y.

(u′x, i
′
x) 6= (u, i0), (u′y, i

′
y) = (u, i1) in which case there was in V an identical

(ux, ix) and for (uy, iy) = (u, i) we had either: {r} 6v iy = i and consequently
{r′} 6v i′y = i1 since iterated concatenation cannot revert the 6v relation; or
we had {r} v iy ∧ {r} v uy, now becoming induction hypothesis. Again, in
V ′, {r′} v i′y will hold since u′x = ux and {r} v iy = i v i1 = i′y. {r′} v u′y

also holds, from u′x = ux and {r} v uy = u = u′y.

(u′x, i
′
x) = (u, i0), (u′y, i

′
y) = (u, i1) in which case we known that {r′} v i′y holds,

since u′x = u v i v i1 = i′y. {r′} v u′y also holds trivially since u′x = u = u′y.

68 CHAPTER 4. VERSION STAMPS

join(a, b). From V (a) = (ua, ia), V (b) = (ub, ib) we have V ′(c) = (ua tub, ia t ib).
Suppose any two stamps (u′x, i

′
x), (u

′
y, i
′
y) in V ′ and ∀r′ ∈ u′x. If none of these

stamps matches (ua t ub, ia t ib), identical (ux, ix), (uy, iy) occurred in V and the
invariant is kept. Otherwise consider two cases:

(u′x, i
′
x) = (uatub, iatib) in which case {r′} 6v i′y will hold in V ′ if there is a v = r′

in either ua or ub such that {v} 6v iy = i′y. Otherwise, {v} v iy ∧ {u} v uy

become induction hypothesis, and both {r′} v i′y = iy and {r′} v u′y = uy

hold in V ′.

(u′y, i
′
y) = (ua t ub, ia t ib) in which case {r′} 6v i′y = ia t ib will hold in V ′ if in V
{r} 6v ia and {r} 6v ib. Otherwise, one or both of {r} v ia ∧ {r} v ua and
{r} v ib ∧ {r} v ub hold in V and become induction hypothesis. In such
case, {r′} v i′y = iat ib can be inferred, since {r} v ia (or ib) and ia v iat ib.
Similarly, {r′} v u′y = ua t ub is inferred under this hypothesis.

2

Proposition 5.1 Given any distributed execution with causal histories C0 −→
C1 −→ . . . −→ Ck and with version stamps V0 −→ V1 −→ . . . −→ Vk, it is true
that dom(Ck) = dom(Vk) and Ck(x) ⊆

⋃
Ck[S] ⇔ fst(Vk(x)) v

⊔
fst[Vk[S]], for

all x ∈ dom(Ck) and ∅ ⊂ S ⊆ dom(Ck).

Proof. The proof is by induction. In the base case we have C0 = {a 7→} for some
a and V0 = {a 7→ ({ε}, {ε})}; both domains are equal ({a}); and the equivalence
holds trivially.

The inductive step for domain equality is trivial, given the definition of each op-
eration, which transforms each domain in the same way (e.g. compare Definitions
4.2.1 and 4.4.3 regarding the update operation). The inductive step for the fam-
ily of equivalencies consists of, assuming that the equivalencies C(x) ⊆

⋃
C[S]⇔

fst(V (x)) v
⊔

fst[V [S]] hold for two given environments C and V , they will hold for
the environments C ′, V ′ that result from applying any of the operations update,
fork, join to C and V , i.e. C ′(x) ⊆

⋃
C ′[S] ⇔ fst(V ′(x)) v

⊔
fst[V ′[S]] will

4.8. PROOF OF INVARIANTS AND MAIN PROPOSITION 69

hold. For each operation we prove the equivalence by showing implication in both
directions.

update(a). From the definition of the operation, we have C ′(b) = C(a)∪{e} for
some b, e; V (a) = (u, i) for some (u, i); V ′(b) = (i, i). First we prove (⇒). Assume
C ′(x) ⊆

⋃
C ′[S]. We must consider two cases:

b 6∈ S in which case e 6∈
⋃
C ′[S] and also x 6= b (otherwise we would have e ∈

C ′(x) which would contradict the assumption C ′(x) ⊆
⋃
C ′[S]); therefore

C ′(x) = C(x). As also C ′|S = C|S (as b 6∈ S), we have C(x) ⊆
⋃
C[S], and

by the induction hypothesis fst(V (x)) v
⊔

fst[V [S]]. As also V ′(x) = V (x)

and V ′|S = V |S, it follows trivially that fst(V ′(x)) v
⊔

fst[V ′[S]].

b ∈ S The case x = b is trivial. In the case x 6= b, we have C ′(x) = C(x). Let
T = S \ {b}; we have C ′|T = C|T . As C ′(b) = C(a) ∪ {e}, the assumption
becomes C ′(x) ⊆

⋃
C ′[T] ∪ C(a) ∪ {e}; therefore C(x) ⊆

⋃
C[T] ∪ C(a) (as

e 6∈ C ′(x)). By the induction hypothesis, fst(V (x)) v
⊔

fst[V [T]]tfst(V (a)).
As V (a) = (u, i), V ′(b) = (i, i) and u v i from Invariant I1, and also V (x) =

V ′(x) and V ′|T = V |T , we obtain fst(V ′(x)) v
⊔

fst[V ′[S]].

Now we prove (⇐). Assume fst(V ′(x)) v
⊔

fst[V ′[S]]. Again we must consider
two cases:

b 6∈ S in which case we have also x 6= b; otherwise we would have V ′(x) = V ′(b) =

(i, i), and there is no y = (uy, iy) ∈ S such that V (b) v V ′(y) (by Invariant
I2 iy ‖ i and by I1 uy v iy, thus uy ‖ i), which would contradict the
induction hypothesis. Therefore C ′(x) = C(x), C ′|S = C|S, V ′(x) = V (x)

and V ′|S = V |S and by the induction hypothesis it follows trivially that
C ′(x) ⊆

⋃
C ′[S].

b ∈ S The case x = b is trivial. Considering x 6= b, let T = S \ {b}. We have
fst(V ′(x)) v

⊔
fst[V ′[S]] =

⊔
fst[V ′[T]] t fst(V ′(b)), and V (x) = V ′(x),

V ′|T = V |T . It follows fst(V (x)) v
⊔

fst[V [T]] t fst(V (a)); otherwise we
would have s ∈ fst(V (x)) such that {s} v i, {s} 6v c in which case Invariant

70 CHAPTER 4. VERSION STAMPS

I3 would not hold. By induction hypothesis, C ′(x) = C(x) ⊆
⋃
C[T]∪C(a)

and since C ′(b) = C(a) ∪ {e}, it follows C ′(x) ⊆
⋃
C ′[T] ∪ C ′(b) =

⋃
C ′[S].

fork(a). This case is trivial as from the definitions we have that both causal
histories and update components are preserved in this operation.

join(a, b). From the definition of the operation, we have C ′(c) = C(a) ∪ C(b),
for some c. First we prove (⇒). Assume C ′(x) ⊆

⋃
C ′[S]. We must consider two

cases:

c 6∈ S in which case C ′|S = C|S, and V ′|S = V |S. If x 6= c, we have also C ′(x) =

C(x) and V ′(x) = V (x); using the induction hypothesis, fst(V ′(x)) v
⊔

fst[V ′[S]]

follows trivially. If x = c, then C ′(x) = C(a) ∪ C(b) ⊆
⋃
C ′[S] =

⋃
C[S].

From the induction hypothesis, we have both fst(V (a)) v
⊔

fst[V [S]] and
fst(V (b)) v

⊔
fst[V [S]]. Therefore, fst(V (c)) = fst(V (a)) t fst(V (b)) v⊔

fst[V [S]].

c ∈ S The case x = c is trivial. In the case x 6= c, let T = S \ {c}. We have
C ′(x) = C(x) and C ′|T = C|T . From the assumption, as C ′(c) = C(a) ∪
C(b), we obtain C(x) ⊆

⋃
C[T]∪C(a)∪C(b); By the induction hypothesis:

fst(V (x)) v
⊔

fst[V [T]]tfst(V (a))tfst(V (b)). As also V (x) = V ′(x), V ′|T =

V |T , and fst(V ′(c)) = fst(V (a)) t fst(V (b)), it follows that fst(V ′(c)) v⊔
fst[V ′[S]].

Now we prove (⇐). Assume fst(V ′(x)) v
⊔

fst[V ′[S]]. Again we must consider
two cases:

c 6∈ S in which case V ′|S = V |S and C ′|S = C|S. If x 6= c, we have V ′(x) = V (x)

and C ′(x) = C(x); using the induction hypothesis, C ′(x) v
⋃
C ′[S] follows

trivially. If x = c we have fst(V ′(x)) = fst(V (a))t fst(V (b)) v
⊔

fst[V ′[S]] =⊔
fst[V [S]]. From the induction hypothesis, we have both C(a) ⊆

⋃
C[S]

and C(b) ⊆
⋃
C[S]. Therefore, C ′(c) = C(a) ∪ C(b) ⊆

⋃
C[S] =

⋃
C ′[S].

4.8. PROOF OF INVARIANTS AND MAIN PROPOSITION 71

c ∈ S The case x = c is trivial. In the case x 6= c, let T = S \ {c}. We have
fst(V ′(x)) v

⊔
fst[V ′[S]] =

⊔
fst[V ′[T]] t fst(V ′(c)), and V (x) = V ′(x),

V ′|T = V |T . It follows fst(V (x)) v
⊔

fst[V [T]] t fst(V (a)) t fst(V (b)),
and by the induction hypothesis, C ′(x) = C(x) ⊆

⋃
C[T] ∪ C(a) ∪ C(b) =⋃

C[T] ∪ C ′(c) =
⋃
C ′[S].

2

72 CHAPTER 4. VERSION STAMPS

Chapter 5

Improving on Version Stamps

Optimistic distributed systems often rely on version vectors or their variants in
order to track updates on replicated objects. Some of these mechanisms rely on
some form of global configuration or distributed naming protocol in order to assign
unique identifiers to each replica. These approaches are incompatible with replica
creation under arbitrary partitions, a typical operation mode in mobile or poorly
connected environments. Other mechanisms assign unique identifiers relying on
statistical correctness. In previous work we have introduced an update tracking
mechanism that overcomes these limitations. This chapter presents results from
recent experimentation, that brought to surface a particular pattern of operation
that results in an unforeseen, unlimited growth in space consumption. We also
describe informally a new update tracking mechanism that does not exhibit this
pathological growth while providing guaranteed unique identifiers for a dynamic
number of replicas under arbitrary partitions and the same functionality of version
vectors.

5.1 Introduction

Tracking update dependencies on optimistic replication systems often resorts to
the use of version vectors [PPR+83] or some of its variants [SS05]. These mech-
anisms have been devised and have been successfully supporting traditional sce-

73

74 CHAPTER 5. IMPROVING ON VERSION STAMPS

narios with a fixed number of replicas. Extensions to version vectors have been
proposed [RRP97] in order to accommodate a variable number of replicas. How-
ever, when trying to cope with the problem of replica identification there is an
implicit assumption of global configuration or of a well connected environment in
which a distributed naming protocol can be run and replica retirement detected.
These assumptions are incompatible with replica creation (and retirement) on dis-
tributed systems subject to arbitrary partitions, a typical mode of operation of
mobile or poorly connected environments. Other approaches tackle this identifi-
cation problem relying on statistical correctness [KWK03]. These approaches, not
only may lead to occasional errors (which, even very rare, may be unacceptable),
but also lead to large identifiers.

Previous work of the present authors [ABF02b] introduced the Version Stamp
mechanism, a form of decentralised version vector overcoming these limitations. It
enables autonomous identity management, update tracking and comparison, solely
relying in local or pair-wise knowledge. This confinement is possible because:
its structure allows a local management of the identity namespace (both local
generation of identifiers when forking replicas and merging of identifiers when
joining replicas); and the information about updates to replicas is based on the
identity namespace in such a way as to allow global comparisons. This structure
was devised in such a way that it should naturally grow and collapse as replicas
are created and merged in the system.

Version Stamps have been employed in the Panasync [ABF00] decentralised file
replication system. Recent experimentation, however, brought to surface a partic-
ular pattern of operation that, when repeatedly applied, leads to an unnecessary
unbounded growth of its structure.

This chapter identifies this particular pattern of operation and illustrates how
the version stamp structure degenerates under its occurrence. It also proposes
a new version tracking mechanism – inspired by recent insights on autonomous
identity management – that does not exhibit this unnecessary structural growth.

5.2. VERSION STAMPS 75

5.2 Version Stamps

Version stamps were devised in order to track update dependencies across a set of
replicas in a mobile or poorly connected environment. In this setting, autonomous
creation of replicas and pair-wise reasoning over update dependencies are crucial
requirements. Operations on version stamps cannot depend on a global view of
the system and thus they rely exclusively on local knowledge of each replica.

The structure of a version stamp is made of an identity and an update compo-
nent. The identity component distinguishes each replica from all coexisting ones,
in any possible configuration. It is also used as an available namespace from which
new identities can be generated. This identity generated is achieved by names-
pace division as described below. The update component records “when” (in which
state) changes were applied to a replica. It consists of a single identity-like value
collected from the identity of its ancestor when the update was performed.

Three operations are provided: a fork operation supports the creation of new
replicas whose state is cloned from the original; a join operation supports the
merging of two replicas keeping one and retiring the other; and an update oper-
ation accounts for changes on the state of a replica.

An update operation simply copies the identity to the update component. This
means that after an update, subsequent ones do not affect a version stamp. This
is an example of the goal, in the design of version stamps, to discard information
that is irrelevant to the comparison of coexisting elements in a configuration.

At a fork operation the identity of the resulting version stamps is recursively
constructed by appending either ‘0’ or ‘1’ to the right of each component of the
ancestor identity. A fork does not modify the update component as it does not
introduce any update event (the ones tracked by the mechanism): it simply copies
the update component to the new version stamps. Regarding identity management,
the transformation applied to the identity component can be perceived as the
subdivision of the namespace available to a particular replica. Although a local
operation, the resulting namespaces are guaranteed to be globally unique and thus
distinguish the two new replicas from all the others in the current configuration.

76 CHAPTER 5. IMPROVING ON VERSION STAMPS

[0 | 00]
δ // [00 | 00]

$$IIIIIIIIII

[ε | 0]
δ // [0 | 0]

88ppp

&&NNN

[ε | ε] δ // [ε | ε] δ // [ε | ε]

88rrr

&&LLL [0 | 01] [00 + 1 | 00 + 1]
δ // [00 + 1 | 00 + 1]

[ε | 1]
δ // [1 | 1]

δ // [1 | 1]

22eeeeeeeeeee

Figure 5.1: A set of partially ordered events with version stamps.

When a join between two elements occur the resulting identity is built by merg-
ing the two ancestors identity components. The update component is built likewise,
merging the two ancestor update components; this reflects the combined knowledge
of past updates. Upon the join operation, the resulting identity namespace can
be perceived as the union of the two ancestors namespaces. This resulting names-
pace can then be recursively collapsed each time sibling identity namespaces are
present (namespaces that have been previously split upon a fork operation). Since
the identity component always dominates the update component (which records
information regarding past state changes), this simplification propagates to the
update component. Ultimately, joining every coexisting replica leads to a com-
pletely collapsed version stamp, bringing its structure to its initial value, that is,
two empty sets. This division and collapsing feature is an intended design goal of
the version stamp mechanism.

Figure 5.1 shows an example of the version stamp mechanism in action on a
replicated system. In this example a version stamp is represented by an [update |
identity] pair, the ε denotes an empty set and the δ denotes a local event of
state change. Though not shown in this example, as stated above, joining the
two remaining replicas would completely collapse the resulting version stamp. A
detailed and formal description of Version Stamps including its proof of correctness
can be found in [ABF02b].

5.2.1 Pollution of the Namespace

Exercising the version stamp mechanism, we have observed an undesired growth of
version stamps under a simple pattern of operation. This problem is illustrated in
Figure 5.2, which shows the identity component in a scenario where three replicas

5.3. DYNAMIC MAP CLOCKS 77

0

))TTTTTTT 00 + 100@@���

��=== 10 // 0 + 10

66mmm

((RRR 010 + 1010 + 110

1

==zzz

!!DDD 01 + 101 // 01 + 101 + 11

33ggggg

++WWWWW

11

11ccccccccccccccccccc 011 + 1011 + 111

Figure 5.2: Pollution in the identity component of version stamps.

are created and then we repeat a pattern in which two of them are joined and
forked again, while alternating replicas.

Although we end up with only three replicas, the identity components are much
more complex than in the configuration after the first two forks (with the same
number of replicas). In this scenario, the Version Stamp mechanism leads to a
overly refined namespace which cannot be simplified upon these interleaving joins.

This growth gets worse every time this operation pattern occurs and recent
experimentation does indicate that this can be a fairly common case in practical
usage scenarios. Furthermore, when an update occurs, the identity component is
copied to the update component, thus aggravating this problem.

This degeneration of the namespace does not imply that the version stamp
mechanism is incorrect but that it may consume an unreasonable amount of space.
As a result, this growth pattern of version vectors can severely affect its practical
application.

5.3 Dynamic Map Clocks

Dynamic Map Clocks imports from version stamps the basic features that support
autonomous identity management. Noticing that the lack of counters, on version
stamps, impose important restrictions on identity management that ultimately
contributed to the identified growth problem, dynamic map clocks will combine
the use of counters with a more flexible identity management scheme.

The important property that rules identity management for update tracking
is the allocation to each replica of at least one identity that is exclusive to that
replica in a given moment. When an update needs registering in a given replica, one

78 CHAPTER 5. IMPROVING ON VERSION STAMPS

[03 | 00]
δ // [004 | 00]

%%KKKKKKKKKK

[ε2 | 0]
δ // [03 | 0]

77nnn

''PPP

[ε0 | ε]
δ // [ε1 | ε]

δ // [ε2 | ε]

77ppp

''NNN [03 | 01] [004 + 14 | 00 + 1]
δ // [004 + 15 | 00 + 1]

[ε2 | 1]
δ // [13 | 1]

δ // [14 | 1]

22eeeeeeeeeeee

Figure 5.3: A set of partially ordered events with dynamic map clocks.

0
**TTTTTTT 0

ε

>>}}}

 @@@ 10 // 0 + 10

88qqqq

&&LLL 10

1

==zzz

""EEE 10 // 10 + 11

88pppp

''NNNN
��

11

22eeeeeeeeeeeeeee 1 11

Figure 5.4: Non-pollution of the identity component in the dynamic map clock
mechanism.

identity must be chosen among its exclusive identities and the associated counter
must be incremented. This identity does not need to be the same for all updates
in that replica and replicas can handover identities to other replicas.

As a consequence of these insights it is easy to conceive a scheme where replicas
can fork by either specialising a binary identity (forking 010 would derive 0100 and
0101) or by partitioning controlled identities that were obtained upon joins (forking
010 + 10 + 111 could derive 010 + 111 and 10). This is the basic mechanism that
supports dynamic map clocks and Figure 5.3 shows a run that illustrates this.
More complex rules are enforced when handling joins and setting counters upon
joins.

5.3.1 Non-Pollution of the Namespace

Considering the namespace pollution problem that was present on version stamps,
it is easy to verify that dynamic map clocks are much more flexible on the handling
of names. Figure 5.4 shows how the run that depicted a name pollution pattern
in version stamps is easily handled by this mechanism.

In some way, dynamic map clocks try to ally the innovative management of
identities that stems from version stamps with the benefits of classical counters

5.4. DISCUSSION 79

and their synthetic encoding of updates.

5.4 Discussion

Handling replication in highly decentralised systems and large scale settings—in
number of nodes, geographical distance or communication latency between nodes—
often implies the use of optimistic techniques in order to improve availability. In
these scenarios, replicas are allowed to diverge from a consistent global state but
reconciliation procedures and update propagation strategies are put in place so
that consistency can eventually be restored. All these operations must rely on
some dependency tracking mechanism in order to infer the causal relations be-
tween replica states. As mentioned before, the standard version vector mechanism
assumes a consistent management of replicas names.

In decentralised distributed systems that face partitions, large membership
changes under churn and disconnected operation, one can no longer rely on the
assumption that globally unique names are available. A way of approaching these
settings is to avoid determinism altogether and rely on probabilistic approaches
such as generating random replica names, and assume some risk of name collisions
[Heu59], or using sets of hashes of replica state to detect updates [KWK03] once
again assuming some risk of collision. If reliability cannot be compromised, as
is often the case, only a deterministic approach is appropriate. Determinism can
only be obtained by recursive generation of names, the approach developed and
formalised in our previous work on version stamps. However, as we have shown in
the present chapter, recursive generation of names can easily introduce important
growth problems in the space consumed by the version stamp mechanism.

With dynamic map clocks we achieve a better handling of the data space by
avoiding unnecessary partitions of identifiers and concentrating on the important
property that each replica must at a given moment have exclusive access to at least
one globally unique identifier. Unlike version stamps, that do not use counters,
dynamic map clocks are, in a sense, a hybrid mechanism that also relies on counters
for registering updates. This usage of counters leads to important savings in size.

80 CHAPTER 5. IMPROVING ON VERSION STAMPS

In addition, although the examples here have only shown runs with join operations,
dynamic map clocks allow the use of messages when sending metadata and support
unidirectional updating of dependency information.

While the theory of dynamic map clocks is still under development and a
proper formalisation and formal proof is ongoing work, we already have a running
implementation of the mechanism. This implementation has been tested on long
random runs under various numbers of replicas and always evaluated as correct.
This evaluation is done by contrasting the causal pre-order that the mechanism
derives with the equivalent pre-order derived by causal histories. Causal histories
are implemented by assuming global knowledge and adding unique update events
to a set of events in each replica and relating this sets by set inclusion (see [ABF02b,
SM94] for more details on causal histories). We can comment, from our experience,
that incorrect mechanisms typically fail these checks after a small number of steps
and do not stay correct in long random runs.

Another important property of dynamic map clocks, not present in version
stamps, is their potential use as substitutes for vector clocks in autonomous de-
centralised settings. Vector clocks, that are at the core of causal message delivery
protocols and distributed debugging, also rely on globally unique names thus facing
the same problems of version vectors.

Chapter 6

Interval Tree Clocks: A Logical
Clock for Dynamic Systems

Causality tracking mechanisms, such as vector clocks and version vectors, rely on
mappings from globally unique identifiers to integer counters. In a system with a
well known set of entities these ids can be pre-configured and given distinct posi-
tions in a vector or distinct names in a mapping. Id management is more problem-
atic in dynamic systems, with large and highly variable number of entities, being
worsened when network partitions occur. Present solutions for causality tracking
are not appropriate to these increasingly common scenarios. In this chapter we
introduce Interval Tree Clocks, a novel causality tracking mechanism that can be
used in scenarios with a dynamic number of entities, allowing a completely decen-
tralised creation of processes/replicas without need for global identifiers or global
coordination. The mechanism has a variable size representation that adapts au-
tomatically to the number of existing entities, growing or shrinking appropriately.
The representation is so compact that the mechanism can even be considered for
scenarios with a fixed number of entities, which makes it a general substitute for
vector clocks and version vectors.

81

82 CHAPTER 6. INTERVAL TREE CLOCKS

6.1 Introduction

Ever since causality was introduced in distributed systems [Lam78], it has played
an important role in the modelling of distributed computations. In the absence of
global clocks, causality remains as a means to reason about the order of distributed
events. In order to be useful, causality is implemented by concrete mechanisms,
such as Vector Clocks [Fid89, Mat89c] and Version Vectors [PPR+83], where a
compressed representation of the sets of events observed by processes or replicas
is kept.

These mechanisms are based on a mapping from a globally unique identifier to
an integer counter, so that each entity (i.e. process or replica) keeps track of how
many events it knows from each other entity. A special and common case is when
the number of entities is known: here ids can be integers, and a vector of counters
can be used.

Nowadays, distributed systems are much less static and predictable than those
traditionally considered when the basic causality tracking mechanisms were cre-
ated. In dynamic distributed systems [MRT+05], the number of active entities
varies during the system execution and in some settings, such as in peer-to-peer
deployments, the level of change, due to churn, can be extremely high.

Causality tracking in dynamic settings is not new [Fid91] and several proposals
analysed the dynamic creation and retirement of entities [RRP97, Gol98, PSTT96,
Lan07, ABF02b]. However, in most cases localised retirement is not supported: all
active entities must agree before an id can be removed [RRP97, Gol98, PSTT96]
and a single unreachable entity will stall garbage collection. Localised retirement
is only partially supported in [Lan07], while [ABF02b] has full support but the
mechanism itself exhibits an unreasonable structural growth that its practical use
is compromised [ABF07].

This chapter addresses causality tracking in dynamic settings and introduces
Interval Tree Clocks (ITC), a novel causality tracking mechanism that generalises
both Version Vectors and Vector Clocks. It does not require global ids but is able to
create, retire and reuse them autonomously, with no need for global coordination;
any entity can fork a new one and the number of entities can be reduced by joining

6.2. RELATED WORK 83

arbitrary pairs of entities; stamps tend to grow or shrink, adapting to the dynamic
nature of the system. Contrary to some previous approaches, ITC is suitable for
practical uses, as the space requirement scales well with the number of entities and
grows modestly over time.

In the next section we review the related work. Section 6.3 introduces a model
based on fork, event and join operations that factors out a kernel for the de-
scription of causality systems. Section 6.4 builds on the identified core operations
and introduces a general framework that expresses the properties that must be
met by concrete causality tracking mechanisms. Section 6.5 introduces the ITC
mechanism and correctness argument under the framework. Before conclusions, in
Section 6.7, we present in Section 6.6 a simple simulation based assessment of the
space requirements of the mechanism.

6.2 Related Work

After Lamport’s description of causality in distributed system [Lam78], subse-
quent work introduced the basic mechanisms and theory [PPR+83, Fid89, Mat89c,
CB91]. We refer the interested reader to the survey in [SM94] and to the historical
notes in [BR02]. After an initial focus on message passing systems, recent de-
velopments have improved causality tracking for replicated data: they addressed
efficient coding for groups of related objects [MT05]; bounded representation of
version vectors [AAB04]; and the semantics of reconciliation [GKK+06].

Fidge introduces in [Fid91] a model with a variable number of process ids. In
this model process ids are assumed globally unique and are gradually introduced by
process spawning events. No garbage collection of ids is performed when processes
terminate.

Garbage collection of terminated ids requires additional metadata in order to
assess that all active entities already witnessed the termination; otherwise, ids can-
not be safely removed from the vectors. This approach is used in [Gol98, RRP97]
together with the assumption of globally unique ids. In [PSTT96] the assumption
of global ids is dropped and each entity is able to produce a globally unique id from

84 CHAPTER 6. INTERVAL TREE CLOCKS

local information. A typical weakness in these systems is twofold: terminated ids
cannot be reused; and garbage collection is hampered by even a single unreach-
able entity. In addition, when garbage collection cannot terminate, the associated
metadata overhead cannot be freed. Since this overhead is substantial, when the
likelihood of non termination is high, it can be more efficient not to garbage collect
and keep the inactive ids.

The mechanism described in [Lan07] provides local retirement of ids but only
for restricted termination patterns (a process can only be retired by joining a direct
ancestor); moreover, the use of global ids is required.

Our own work in [ABF02b] introduced localised creation and retirements of ids
and presented Version Stamps, a dynamic substitute to version vectors. Although
still of theoretical interest as it does not use counters, and although it inspired
the id management technique used in ITC, the technique was later found out to
exhibit very adverse growth in common scenarios [ABF07]. The id management
technique used in version stamps shares many properties with credit management
techniques in termination detection algorithms [Mat89a, Hua89].

In order to control version vector growth, in Dynamo [DHJ+07] old inactive
entries are garbage collected. Although the authors tune it so that in production
systems errors are unlikely to be introduced, in general this can lead to resurgence
of old updates. Mechanisms like ITC may help in avoiding the need for these
aggressive pruning solutions.

6.3 Fork-Event-Join Model

Causality tracking mechanisms can be modelled by a set of core operations: fork,
event and join, that act on stamps (logical clocks) whose structure is a pair (i, e),
formed by an id and an event component that encodes causally known events.
Fidge used in [Fid91] a model that bears some resemblance, although not making
explicit the id component.

Causality is characterised by a partial order over the event components, (E,≤).
In version vectors, this order is the pointwise order on the event component: e ≤ e′

6.3. FORK-EVENT-JOIN MODEL 85

iff ∀k. e[k] ≤ e′[k]. In causal histories [SM94], where event components are sets of
event ids, the order is defined by set inclusion.

fork The fork operation allows the cloning of the causal past of a stamp, resulting
in a pair of stamps that have identical copies of the event component and
distinct ids; fork(i, e) = ((i1, e), (i2, e)) such that i2 6= i1. Typically, i = i1

and i2 is a new id. In some systems i2 is obtained from an external source
of unique ids, e.g. MAC addresses. In contrast, in Bayou [PSTT96] i2 is a
function of the original stamp f((i, e)); consecutive forks are assigned distinct
ids since an event is issued to increment a counter after each fork.

peek A special case of fork when it is enough to obtain an anonymous stamp
(0, e), with “null” identity, than can be used to transmit causal infor-
mation but cannot register events, peek((i, e)) = ((i, e), (0, e)). Anony-
mous stamps are typically used to create messages or as inactive copies
for later debugging of distributed executions.

event An event operation adds a new event to the event component, so that if
(i, e′) results from event((i, e)) the causal ordering is such that e < e′. This
action does a strict advance in the partial order such that e′ is not dominated
by any other entity and does not dominate more events than needed: for any
other event component x in the system, e′ 6≤ x and when x < e′ then x ≤ e.
In version vectors the event operation increments a counter associated to the
identity in the stamp: ∀k 6= i. e′[k] = e[k] and e′[i] = e[i] + 1.

join This operation merges two stamps, producing a new one. If join((i1, e1), (i2, e2))

= (i3, e3), the resulting event component e3 should be such that e1 ≤ e3 and
e2 ≤ e3. Also, e3 should not dominate more that either e1 and e2 did. This
is obtained by the order theoretical join, e3 = e1 t e2, that must be defined
for all pairs; i.e. the order must form a join semilattice. In causal histories
the join is defined by set union, and in version vectors it is obtained by the
pointwise maximum of the two vectors.

The identity should be based on the provided ones, i3 = f(i1, i2) and kept
globally unique (with the exception of anonymous ids). In most systems this

86 CHAPTER 6. INTERVAL TREE CLOCKS

is obtained by keeping only one of the ids, but if ids are to be reused it should
depend upon and incorporate both [ABF02b].

When one stamp is anonymous, join can also model message reception,
where join((i, e1), (0, e2)) = (i, e1 t e2). When both ids are defined, the join
can be used to terminate an entity and collect its causal past. Also notice
that joins can be applied when both stamps are anonymous, modelling in-
transit aggregation of messages.

(i,e) ?>=<89:;F (i1,e)

~~~~~~~

(i2,e)

@@@@@@@

(a) fork

(i,e) ?>=<89:;P (i,e)

(0,e)

@@@@@@@

(b) peek

(i,e) ?>=<89:;E (i,e′)

(c) event

(i1,e1)

???????

?>=<89:;J (i3,e3)

(i2,e2)

�������

(d) join

Figure 6.1: Core operations.

Classic operations can be described as a composition of these core operations:

send This operation is the atomic composition of event followed by peek. E.g. in
vector clock systems, message sending is modelled by incrementing the local
counter and then creating a new message.

receive A receive is the atomic composition of join followed by event. E.g. in
vector clocks taking the pointwise maximum is followed by an increment of
the local counter.

sync A sync is the atomic composition of join followed by fork. E.g. In version
vector systems and in bounded version vectors [AAB04] it models the atomic
synchronisation of two replicas.

Figure 6.2 depicts graphical representations of these composite operations, but
other composite operations could also be easily described using the same set of
core operations. For instance, a message multicast could be modelled as the atomic
composition of an event operation followed by a sequence of peek operations.



6.4. FUNCTION SPACE BASED CLOCK MECHANISMS 87

(i,e) ?>=<89:;E (i,e′) ?>=<89:;P (i,e′)

(0,e′)

@@@@@@@

(a) send

(0,e1)

???????

(i1,e2) ?>=<89:;J (i1,e3) ?>=<89:;E (i1,e4)

(b) receive

(i1,e1) ???????

?>=<89:;J (i3,e3) ?>=<89:;F (i4,e3)

~~~~~~~

(i5,e3)

@@@@@@@
(i2,e2) �������

(c) sync

Figure 6.2: Some composite operations.

Traditional descriptions assume a starting number of entities. This can be
simulated by starting from an initial seed stamp and forking several times until
the required number of entities is reached.

6.4 Function Space Based Clock Mechanisms

In this section we present a general framework which can be used to explain and in-
stantiate concrete causality tracking mechanisms, such as our own ITC presented
in the next section. Here stamps are described in terms of functions and some
invariants are presented towards ensuring correctness. Actual mechanisms can be
seen as finite encodings of such functions. Correctness of each mechanism will
follow directly from the correctness of the encoding and from respecting the corre-
sponding semantics and conditions to be met by each operation. In the following
we will make use of the standard pointwise sum, product, scaling, partial ordering
and join of functions:

(f + g)(x)
.
= f(x) + g(x),

(f · g)(x)
.
= f(x) · g(x),

(n · g)(x)
.
= n · g(x),

88 CHAPTER 6. INTERVAL TREE CLOCKS

f ≤ g
.
= ∀x. f(x) ≤ g(x),

(f t g)(x)
.
= f(x) t g(x),

and of a function 0 that maps all elements to 0:

0
.
= λx. 0.

A stamp will consist of a pair (i, e): the identity and the event components,
both functions from some arbitrary domain to natural numbers. The identity
component is a characteristic function (maps elements to {0, 1}) that defines the
set of elements in the domain available to inflate (“increment”) the event function
when an event occurs. We chose to use the characteristic function instead of the
set as it leads to better notation. The essential point towards ensuring a correct
tracking of causality is to be able to inflate the mapping of some element which no
other entity (process or replica) has access to1. This means each entity having an
identity which maps to 1 some element which is mapped to 0 in all other entities.
This is expressed by the following invariant over the identity components of all
entities:

∀i. (i ·
⊔
i′ 6=i

i′) 6= i.

We adopt a less general but more useful invariant, as it can be maintained by local
operations without access to global knowledge. It consists of having disjointness of
the parts of the domain that are mapped to 1 in each entity; i.e. non-overlapping
graphs for any pair of id functions.

∀i1 6= i2. i1 · i2 = 0.

Comparison of stamps is made through the event component:

(i1, e1) ≤ (i2, e2)
.
= e1 ≤ e2.

1If this property is not met it can still be possible to form an order that is compatible with
causality, but where some concurrent events appear as ordered. This is the case in Lamport
clocks [Lam78] and in plausible clocks [TRA99] where the stated invariant does not hold. A
Lamport clock can be modelled by having the same identity in all entities.

6.5. INTERVAL TREE CLOCKS 89

Join takes two stamps, and returns a stamp that causally dominates both
(therefore, the event component is a join of the event components), and has the
elements from both identities available for future event accounting:

join((i1, e1), (i2, e2))
.
= (i1 + i2, e1 t e2).

Fork can be any function that takes a stamp and returns two stamps which
keep the same event component, but split between them the available elements in
the identity; i.e. any function:

fork((i, e))
.
= ((i1, e), (i2, e)) subject to i1 + i2 = i and i1 · i2 = 0.

Peek is a special case of fork, which results in one anonymous stamp with 0

identity and another which keeps all the elements in the identity to itself:

peek((i, e))
.
= ((i, e), (0, e)).

Event can be any function that takes a stamp and returns another with the
same identity and with an event component inflated on any arbitrary set of ele-
ments available in the identity:

event((i, e)) = (i, e+ f · i) for any f such that f · i > 0.

An event cannot be applied to an anonymous stamp as no element in the domain
is available to be inflated.

6.5 Interval Tree Clocks

We now describe Interval Tree Clocks, a novel clock mechanism that can be used in
scenarios with a dynamic number of entities, allowing a completely decentralised
creation of processes/replicas without need for global identifiers. The mechanism
has a variable size representation that adapts automatically to the number of exist-
ing entities, growing or shrinking appropriately. There are two essential differences

90 CHAPTER 6. INTERVAL TREE CLOCKS

between ITC and classic clock mechanisms, from the point of view of our function
space framework:

• in classic mechanisms each entity uses a fixed, pre-defined function for id; in
ITC the id component of entities is manipulated to adapt to the dynamic
number of entities;

• classic mechanisms are based on functions over a discrete and typically finite
domain; ITC is based on functions over a continuous infinite domain (R) with
emphasis on the interval [0, 1); this domain can be split into an arbitrary
number of subintervals as needed.

The idea is that each entity has available, in the id, a set of intervals that it can
use to inflate the event component and to give to the successors when forking; a join
operation joins the sets of intervals. Each interval results from successive partitions
of [0, 1) into equal subintervals; the set of intervals is described by a binary tree
structure. Another binary tree structure is also used for the event component, but
this time to describe a mapping of intervals to integers. To describe the mechanism
in terms of functions, it is useful to define a unit pulse function2:

1
.
= λx.

1 x ≥ 0 ∧ x < 1,

0 x < 0 ∨ x ≥ 1.

The id component is an id tree with the recursive form (where i, i1, i2 range
over id trees):

i
.

= 0 | 1 | (i1, i2).

We define a semantic function for the interpretation of id trees as functions:

J0K = 0

J1K = 1

J(i1, i2)K = λx. Ji1K(2x) + Ji2K(2x− 1).

2In this chapter we use the lambda calculus notation for defining unary functions: a function
is anonymously defined by a lambda expression which expresses its action on its argument. For
instance, the “increment” function f such that f(x) = x+ 1 would be expressed as λx. x+ 1

6.5. INTERVAL TREE CLOCKS 91

These functions can be 1 for some subintervals of [0, 1) and 0 otherwise. For
an id (i1, i2), the functions corresponding to the two subtrees are transformed so
as to be non-zero in two non-overlapping subintervals: i1 in the interval [0, 1/2)

and i2 in the interval [1/2, 1). As an example, (1, (0, 1)) represents the function
λx.1(2x) + (λx.1(2x− 1))(2x− 1). We will also use a graphical notation, which
is based on the graph of the function over [0, 1). Examples:

(1, (0, 1)) ∼

((0, (1, 0)), (1, 0)) ∼

The event component is a binary event tree with non-negative integers in nodes;
using e, e1, e2 to range over event trees and n over non-negative integers:

e
.

= n | (n, e1, e2).

We define a semantic function for the interpretation of these trees as functions:

JnK = n · 1

J(n, e1, e2)K = n · 1 + λx. Je1K(2x) + Je2K(2x− 1).

This means that the value for an element in some subinterval is the sum of a base
value, common for the whole interval, plus a relative value from the corresponding
subtree. We will also use a graphical notation for the event component; again, it
is based on the graph of the function, obtained by “stacking” the corresponding
parts. An example:

(1, 2, (0, (1, 0, 2), 0)) ∼

A stamp in ITC is a pair (i, e), where i is an id tree and e an event tree; we will
also use a graphical notation based on stacking the two components:

(((0, (1, 0)), (1, 0)), (1, 2, (0, (1, 0, 2), 0))) ∼

92 CHAPTER 6. INTERVAL TREE CLOCKS

ITC makes use what we call the seed stamp, (1, 0), from which we can fork as
desired to obtain an initial configuration.

6.5.1 An Example

We now present an example to illustrate the intuition behind the mechanism,
showing a run with a dynamic number of entities in the fork-event-join model.
The run starts by a single entity, with the seed stamp, which forks into two; one
of these suffers one event and forks; the other suffers two events. At this point
there are three entities. Then, one entity suffers an event while the remaining two
synchronise by doing a join followed by a fork.

The example shows how ITC adapts to the number of entities and allows sim-
plifications to occur upon joins or events. While the first two forks had to split
a node in the id tree, the third one makes use of the two available subtrees. The
final join leads to a simplification in the id by merging two subtrees. It can be
seen that each event always inflates the event tree in intervals available in the id.
The event after the final join managed to perform an inflation in a way such that
the resulting event function is represented by a single integer.

6.5.2 Normal Form

There can be several equivalent representations for a given function. ITC is con-
ceived so as to keep stamps in a normal form, for the representations of both id
and event functions. This is important not only for having compact representa-
tions but also to allow simple definitions of the operations on stamps (fork, event,

6.5. INTERVAL TREE CLOCKS 93

join) as shown below. As an example, for the unit pulse, we have:

1 ∼ 1 ≡ (1, 1) ≡ (1, (1, 1)) ≡ ((1, 1), 1) ≡ . . .

This means that, if after a join the resulting id is (1, (1, 1)), we can simplify it to
1. Normalisation of the id component can be obtained by applying the following
function when building the id tree recursively:

norm((0, 0)) = 0,

norm((1, 1)) = 1,

norm(i) = i.

The event component can be also normalised, preserving its interpretation as
a function. Two examples:

(2, 1, 1) ∼ ≡ ∼ 3,

(2, (2, 1, 0), 3) ∼ ≡ ∼ (4, (0, 1, 0), 1).

To normalise the event component we will make use of the following operators
to “lift” or “sink” a tree:

bncm = n+m,

b(n, e1, e2)cm = (n+m, e1, e2),

n↓m = n−m,

(n, e1, e2)↓m = (n−m, e1, e2).

Normalisation of the event component can be obtained by applying the follow-
ing function when building a tree recursively (where m and n range over integers

94 CHAPTER 6. INTERVAL TREE CLOCKS

and e1 and e2 over normalised event trees) :

norm(n) = n,

norm((n,m,m)) = n+m,

norm((n, e1, e2)) = (n+m, e1↓m, e2↓m), where m = min(min(e1),min(e2)),

where min applied to a tree returns the minimum value of the corresponding
function in the range [0, 1):

min(e) = min
x∈[0,1)

JeK(x),

which can be obtained by the recursive function over event trees:

min(n) = n,

min((n, e1, e2)) = n+ min(min(e1),min(e2)),

or more simply, assuming the event tree is normalised:

min(n) = n,

min((n, e1, e2)) = n,

which explores the property that in a normalised event tree, one of the subtrees
has minimum equal to 0. We will also make use of the analogous max function
over event trees that returns the maximum value of the corresponding function in
the range [0, 1), and can be obtained by the recursive function:

max(n) = n,

max((n, e1, e2)) = n+ max(max(e1),max(e2)).

6.5.3 Operations over ITC

We now present the operations on ITC for the fork-event-join model. They are
defined so as to respect the operations and invariants from the function space

6.5. INTERVAL TREE CLOCKS 95

based framework presented in the previous section. All the functions below take
as input and give as result stamps in the normal form.

Comparison

Comparison of ITC can be derived from the pointwise comparison of the corre-
sponding functions:

(i1, e1) ≤ (i2, e2)
.
= Je1K ≤ Je2K.

It is trivial to see that this can be computed through a recursive function over
normalised event trees; i.e. (i1, e1) ≤ (i2, e2) ⇔ leq(e1, e2), with leq defined as
(where l and r range over the “left” and “right” subtrees):

leq(n1, n2) = n1 ≤ n2,

leq(n1, (n2, l2, r2)) = n1 ≤ n2,

leq((n1, l1, r1), n2) = n1 ≤ n2 ∧ leq(bl1cn1, n2) ∧ leq(br1cn1, n2),

leq((n1, l1, r1), (n2, l2, r2)) = n1 ≤ n2 ∧ leq(bl1cn1, bl2cn2) ∧ leq(br1cn1, br2cn2).

Fork

Forking preserves the event component, and must split the id in two parts whose
corresponding functions do not overlap and give the original one when added.

fork(i, e)
.
= ((i1, e), (i2, e)), where (i1, i2) = split(i),

for a function split such that:

(i1, i2) = split(i)⇒ Ji1K× Ji2K = 0 ∧ Ji1K + Ji2K = JiK.

96 CHAPTER 6. INTERVAL TREE CLOCKS

This is satisfied naturally using the following recursive function over id trees, as the
two subtrees of an id component always represent functions that do not overlap:

split(0) = (0, 0),

split(1) = ((1, 0), (0, 1)),

split((0, i)) = ((0, i1), (0, i2)), where (i1, i2) = split(i),

split((i, 0)) = ((i1, 0), (i2, 0)), where (i1, i2) = split(i),

split((i1, i2)) = ((i1, 0), (0, i2))

Join

Joining two entities is made by summing the corresponding id functions and mak-
ing a join of the corresponding event functions:

join((i1, e1), (i2, e2))
.
= (sum(i1, i2), join(e1, e2)),

for a sum function over identities and a join function over event trees such that:

Jsum(i1, i2)K = Ji1K + Ji2K,

Jjoin(e1, e2)K = Je1K t Je2K.

The sum function that respects the above condition and also produces a nor-
malised id is:

sum(0, i) = i,

sum(i, 0) = i,

sum((l1, r1), (l2, r2)) = norm((sum(l1, l2), sum(r1, r2))).

Likewise, the join function over event trees, producing a normalised event tree

6.5. INTERVAL TREE CLOCKS 97

is:

join(n1, n2) = max(n1, n2),

join(n1, (n2, l2, r2)) = join((n1, 0, 0), (n2, l2, r2)),

join((n1, l1, r1), n2) = join((n1, l1, r1), (n2, 0, 0)),

join((n1, l1, r1), (n2, l2, r2)) = join((n2, l2, r2), (n1, l1, r1)), if n1 > n2,

join((n1, l1, r1), (n2, l2, r2)) = norm((n1, join(l1, bl2cn2 − n1), join(r1, br2cn2 − n1))).

Event

The event operation is substantially more complex than the others. While fork and
join have a simple natural definition, event has a larger freedom of implementation
while respecting the condition:

event((i, e)) = (i, e′), subject to Je′K = JeK + f · JiK for any f such that f · JiK > 0.

Event cannot be applied to anonymous stamps; it has the precondition that the
id is non-null; i.e. i 6= 0. We can use any subset of the available id to inflate the
event function. The freedom of which part to inflate is explored in ITC so as to
simplify the event tree. Considering the final event in our larger example:

The event operation was able to fill the missing part in a tree so as to allow its
simplification to a single integer. In general, the event operation can use several
parts of the id, and may simplify several subtrees simultaneously. The operation
performs all simplifications in the event tree that are possible given the id tree.
If some simplification is possible (which means the corresponding function was
inflated), the resulting tree is returned; otherwise another procedure is applied,
that “grows” some subtree, preferably only incrementing an integer if possible.
The event operation is defined resorting to these two functions (fill and grow)
defined below:

98 CHAPTER 6. INTERVAL TREE CLOCKS

event(i, e) =

(i, fill(i, e)) if fill(i, e) 6= e,

(i, e′) otherwise, where (e′, c) = grow(i, e).

Fill either succeeds in doing one or more simplifications, or returns an unmod-
ified tree; it never increments an integer that would not lead to simplifying the
tree:

fill(0, e) = e,

fill(1, e) = max(e),

fill(i, n) = n,

fill((1, ir), (n, el, er)) = norm((n,max(max(el),min(e′r)), e
′
r)),

where e′r = fill(ir, er),

fill((il, 1), (n, el, er)) = norm((n, e′l,max(max(er),min(e′l)))),

where e′l = fill(il, el),

fill((il, ir), (n, el, er)) = norm((n, fill(il, el), fill(ir, er))).

In the following example, fill is unable to perform any simplification and grow
is used. From the two candidate inflations shown in light grey, the one chosen
requires a simple integer increment, while the other would require expanding a
node:

Grow performs a dynamic programming based optimisation to choose the in-
flation that can be performed, given the available id tree, so as to minimise the
cost of the event tree growth. It is defined recursively, returning the new event
tree and cost, so that:

• incrementing an integer is preferable over expanding an integer to a tuple;

6.6. EXERCISING ITCS 99

• to disambiguate, an operation near the root is preferable to one farther away.

grow(1, n) = (n+ 1, 0),

grow(i, n) = (e′, c+N), where (e′, c) = grow(i, (n, 0, 0)),

and N is some large constant,

grow((0, ir), (n, el, er)) = ((n, el, e
′
r), cr + 1), where (e′r, cr) = grow(ir, er),

grow((il, 0), (n, el, er)) = ((n, e′l, er), cl + 1), where (e′l, cl) = grow(il, el),

grow((il, ir), (n, el, er)) =

((n, e′l, er), cl + 1) if cl < cr,

((n, el, e
′
r), cr + 1) if cl ≥ cr,

where (e′l, cl) = grow(il, el) and (e′r, cr) = grow(ir, er).

The definition makes use of a constant N that should be greater than the
maximum tree depth that arises. This is a practical choice, to have the cost as a
simple integer. We could avoid it by having the cost as a pair under lexicographic
order, but it would “pollute” the presentation and be a distracting element.

6.6 Exercising ITCs

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

S
iz

e
in

 b
yt

es

Iterations

Data Causality in a Dynamic Setting

128 replicas
64 replicas
32 replicas
16 replicas

8 replicas
4 replicas

 1

 10

 100

 1000

 1 10 100 1000 10000

S
iz

e
in

 b
yt

es

Iterations

Process Causality in a Static Setting

128 processes
64 processes
32 processes
16 processes

8 processes
4 processes

Figure 6.3: Average space consumption of an ITC stamp, in dynamic and static
settings.

100 CHAPTER 6. INTERVAL TREE CLOCKS

In order to have a rough insight of ITC space consumption we exercised its us-
age for both dynamic and static scenarios, using a mix of data and process causal-
ity. For data causality in dynamic scenarios, each iteration consists of forking,
recording an event and joining two replicas, each performed on random replicas,
leading to constantly evolving ids. This pattern maintains the number of existing
replicas while exercising id management under churn. For process causality in
a static scenario, we operate on a fixed set of processes doing message exchanges
(via peek and join) and recording internal events; here ids remain unchanged, since
messages are anonymous.

The charts in Figure 6.3 depict the mean size (using the binary encoding shown
in Appendix 6.8) of an ITC across 100 runs of 25,000 iterations for process causal-
ity and 100,000 iterations for data causality and for different numbers of active
entities (pre-created by forking a seed stamp before iterating). It shows that space
consumption basically stabilises after a number of iterations. These results show
that ITCs can in fact be used as a practical mechanism for data and process causal-
ity in dynamic systems, contrary to Version Stamps [ABF02b] that have storage
cost growing unreasonably over time.

In order to put these numbers in perspective, the Microsoft Windows operating
system [PTR+07] uses 128 bits Universally Unique Identifiers (UUIDs) and 32 bit
counters. The storage cost of a version vector for 128 replicas would be 2560
bytes using a mapping from ids to counters and 512 bytes using a vector. The
mean size of an ITC for this scenario (at the end of the iterations) would be less
than 2900 bytes for dynamic scenarios and slightly above 170 bytes for static ones.
While vectors can be represented in a more compact way (e.g. factoring out the
smallest number), such optimisations would be irrelevant for dynamic scenarios,
where most of the cost stems from the UUIDs.

6.7 Conclusions

We have introduced Interval Tree Clocks, a novel logical clock mechanism for dy-
namic systems, where processes/replicas can be created or retired in a decentralised

6.8. A BINARY ENCODING FOR ITC 101

fashion. The mechanism has been presented using a model (fork-event-join) that
can serve as a kernel to describe all classic operations (like message sending, sym-
metric synchronisation and process creation/retirement), being suitable for both
process and data causality scenarios.

We have presented a general framework for clock mechanisms, where stamps
can be seen as finite representations of a pair of functions over a continuous domain;
the event component serves to perform comparison or join (performed pointwise);
the identity component defines a set of intervals where the event component can
be inflated (a generalisation of the classic counter increment). ITC is a concrete
mechanism that instantiates the framework, using trees to describe functions on
sets of intervals. The framework opens the way for research on future alternative
mechanisms that use different representations of functions.

Previous approaches to causality tracking for dynamic systems either require
access to globally unique ids; do not reuse ids of retired entities; require global
coordination for garbage collection of ids; or exhibit an intolerable growth in terms
of space consumption (our previous approach). ITC is the first mechanism for
dynamic systems that avoids all these problems, can be used for both process
and data causality, and requires a modest space consumption, making it a general
purpose mechanism, even for static systems.

6.8 A Binary Encoding for ITC

Here we describe a compact encoding of ITC as strings of bits. It may be relevant
when stamp size is an issue, e.g. when many entities are involved; it is appropriate
to being transmitted or stored persistently as a single blob. We do not attempt to
present an optimal (in some way) encoding, but a sensible one, which was used in
the space consumption analysis.

As an event tree tends to have very few large numbers near the root and many
very small numbers at the leaves; this prompts a variable length representation
for integers, where small integers occupy just a few bits. Also, common cases like
trees with only the left or right subtree, or with 0 for the base value are treated

102 CHAPTER 6. INTERVAL TREE CLOCKS

as special cases.

We use a notation (inspired by the bit syntax from the Erlang programming
language) where: �x, y, z� is a string of bits resulting from concatenating x, y
and z; and n:b represents number n encoded in b bits. An example: �2:3, 0:1, 1:2�
represents the string of 6 bits 010001.

enc((i, e)) = �enci(i), ence(e)�.

enci(0) = �0:2, 0:1�,

enci(1) = �0:2, 1:1�,

enci((0, i)) = �1:2, enci(i)�,

enci((i, 0)) = �2:2, enci(i)�,

enci((il, ir)) = �3:2, enci(il), enci(ir)�.

ence((0, 0, er)) = �0:1, 0:2, ence(er)�,

ence((0, el, 0)) = �0:1, 1:2, ence(el)�,

ence((0, el, er)) = �0:1, 2:2, ence(el), ence(er)�,

ence((n, 0, er)) = �0:1, 3:2, 0:1, 0:1, ence(n), ence(er)�,

ence((n, el, 0)) = �0:1, 3:2, 0:1, 1:1, ence(n), ence(el)�,

ence((n, el, er)) = �0:1, 3:2, 1:1, ence(n), ence(el), ence(er)�,

ence(n) = �1:1, encn(n, 2)�.

encn(n,B) =

�0:1, n:B� if n < 2B,

�1:1, encn(n− 2B, B + 1)� otherwise.

Chapter 7

Conclusions

This thesis explored the extension of causality tracking mechanisms to dynamic
settings, which nowadays are increasingly predominant. The initial motivation
was driven by the desire to build an ad-hoc replication system, where individual
files can be autonomously replicated and merged. This motivation in systems
design helped to give some context to the more theoretical work that was to come.
The first mechanism developed fitted the ad-hoc replication setting and had the
interesting capability of coalescing the causality tracking stamps if all replicas
merged. It also helped to realize that some mechanisms that could be made to
operate only on the frontier elements of a consistent cut, as was the case, would not
be feasible for tracking causality across the whole computation (e.g. for distributed
debugging).

Interestingly, it was a deficiency of DVS that lead to the mechanism that would
overcome these limitations. Since DVS would not scale nicely under specific runs
it become apparent that the cause for such behaviour was an invariant relating
the id and event components that forced, when doing a fork, the forking of each
bitstring in an id, even if several strings were available in the id. If id buddies did
not meet before being forked again, the growth could be uncontrolled. This made
the mechanism, although theoretically interesting and unique as it did not use
counters, of less practical relevance. If this invariant was removed, id management
would become much simpler as it would suffice to ensure that each active entity

103

104 CHAPTER 7. CONCLUSIONS

has access to an exclusive id. By combining counters with the same id struture it
became possible to reuse ids more agressively; it also became possible to track the
computation past (and not only co-existing elements in a consistent cut).

The first version of such a mechanism, Dynamic Map Clocks, was thus a combi-
nation of DVS style ids (with weaker restrictions) and integer counters. Obtaining
a valid combination was not trivial, since some subtle properties had to be met.
The exploratory research consisted in building candidate mechanisms and testing
them in lengthy runs that compared them to causal histories until no inconsisten-
cies were found. A working implementation was obtained but the mechanism was
never completely formalized; the flat structure of ids lead to unelegant definitions
of the operations and consequently difficult formal proof.

An important step was going from a flat structure to the hierarchical tree-like
structure adopted for Interval Tree Clocks. This lead to elegant definitions and
allowed more simplifications of stamps. Describing the mechanism in terms of
function spaces was important towards ensuring correctness.

The use of trees in the encoding of ITC also highlighted the possibility of mak-
ing counters relative to the parent node (and not absolute as in the flat structure
of DMC). This leads to a representation where, as information is gathered and
the system evolves in a run, counter values flow from the leaves towards the root.
This results in small counter values in the leaves, and fewer large numbers as we
approach the root. It was then natural to explore this property in a variable size
binary encoding and achieve significant space savings.

The function space representation and the causality kernel, devised together
with ITC were important steps in the understanding of causality. In particular,
function spaces help the understanding in terms of area inclusion of the relations
between causal pasts. Identities can now be seen as keys that allow access to a
given portion of the area where exclusive growth is allowed for a given active entity.
It makes it easy to accept that keys can be freely exchanged and that different
owners can, in succession, take possession of any given key.

If keys are shared (identities overlap) we will not longer have a characterization
of causality but an order that potentially orders more events, and that is only

7.1. SUMMARY OF CONTRIBUTIONS 105

consistent with causality. This is what occurs in scalar clocks and in plausibly
clocks; these mechanism can be modeled with function spaces and seen not to
respect the invariants needed to characterize causality.

7.1 Summary of Contributions

The main contributions of this thesis can be summarized as the following:

• Autonomous Identity Management. Autonomous creation of ids for causality
tracking was already explored in Bayou [PSTT96]; however, although ids
could be terminated there was no provision for id reuse. The technique used
in this thesis is fairly simple and similar ones have possibly been used in
many contexts, but to our knowledge this was the first consistent use in
causality tracking settings.

• Dynamic Version Stamps. This mechanism represents the only deterministic
technique (in contrast to Hash Histories) that does not use counters and that
can track data causality in a dynamic system (even if restricted to tracking
the frontier elements of a consistent cut). The fact that causality can be
tracked without using counters or a direct enumeration of the whole causal
history is a new finding.

• FEJ Model. The Fork-Event-Join model helps to understand the relations
among existing applications of causality. It contains the core operations
that are enough to model different scenarios that are tpypically described
resorting to different models. Standard operations (like message send, re-
ceive, broadcast or symetric synchronization) can be modelled as an atomic
composition of the core operations.

• Function Spaces. This modeling of causal history was crucial to the under-
standing of ITC, but also constitutes a generic tool for understanding other
causality tracking mechanisms. It can be used in the process of developing
future mechanisms aiming to improve on ITC.

106 CHAPTER 7. CONCLUSIONS

• Interval Tree Clocks. This mechanism, the more recent in this line of re-
search, promises to represent the first viable mechanism for tracking causal-
ity in dynamic systems, while solving most the problems that classic mecha-
nism such as version vectors or vector clocks suffer under such scenarios. The
mechanism is more complex that the classic ones, but if suitable reference
implementations are provided, adoption by the systems community can be
facilitated.

7.2 Research Directions

7.2.1 Assessing ITC Load

Storage consumption of ITC depends on several factors: whether new entities
keep being created, communication patterns, and activity rates among entities.
The exploratory simulation in Chapter 6 already shows how space consumption
evolves under some synthetic executions.

Further empirical analysis of space consumption and computational complexity
should be addressed for synthetic runs involving broadcasts. It is expected that
this will show a positive impact on space consumption since, with broadcasts, in-
formation is spread more quickly and more opportunities for tree simplification are
presented. Further analysis can be made using trace driven simulations from di-
verse application scenarios: group communication, databases, filesystems, CSCW,
and version control systems.

7.2.2 Behaviour under Churn

An important class of application scenarios involves systems that are either subject
to churn or have a large membership of entities albeit with a few entities responsible
for most activity [DHJ+07]. In these scenarios, there is an expressive pollution of
ids that are either inactive or present a very low activity. It is thus relevant to
better access the behaviour of ITC in these settings and verify if they compare
favorably to classic mechanisms. Preliminary explorations with synthetic runs give

7.2. RESEARCH DIRECTIONS 107

some confidence on this possibility.

7.2.3 Identity Theft

A more pro-active solution in the control of stamp growth in the presence of churn
or low activity entities, is to explore the possibility of having buddies taking over ids
of entities with low activity or suspected to have failed. Its seems possible to devise
an age detection algorithm that tries to detect ids that have not communicated
updates for some time.

When ids are suspected to be inactive, its id buddy can deterministically take
over the ids in order to enable future simplifications. This opens the possibility
of loosing updates in the suspected inactive ids, but such a possibility can be a
reasonable tradeoff since the resulting relation will still be consistent with causality
(i.e. a new kind of plausible clock).

108 CHAPTER 7. CONCLUSIONS

Bibliography

[AAB04] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero.
Bounded version vectors. In Guerraoui [Gue04], pages 102–116.

[ABF00] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Panasync:
Dependency tracking among file copies. In Paulo Guedes, editor,
Ninth ACM SIGOPS European Workshop, pages 7–12. DIKU - Uni-
versity of Copenhagen, 2000.

[ABF02a] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Ver-
sion stamps – decentralized version vectors. Technical Report
UMDITR2002.01, Universidade do Minho, DI/CCTC, 2002.

[ABF02b] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Version
stamps – decentralized version vectors. In Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems (ICDCS),
pages 544–551. IEEE Computer Society, 2002.

[ABF07] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Improv-
ing on version stamps. In Robert Meersman, Zahir Tari, and Pilar
Herrero, editors, On the Move to Meaningful Internet Systems 2007:
OTM 2007 Workshops, OTM Confederated International Workshops
and Posters, AWeSOMe, CAMS, OTM Academy Doctoral Consor-
tium, MONET, OnToContent, ORM, PerSys, PPN, RDDS, SSWS,
and SWWS 2007, Vilamoura, Portugal, November 25–30, 2007, Pro-
ceedings, Part II, volume 4806 of Lecture Notes in Computer Science,
pages 1025–1031. Springer, 2007.

109

110 BIBLIOGRAPHY

[AR07] James Aspnes and Eric Ruppert. An introduction to population pro-
tocols. Bulletin of the European Association for Theoretical Computer
Science, 93:98–117, October 2007. Columns: Distributed Computing.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics. John Wiley & Sons, 2004.

[BA99] Carlos Baquero and Paulo Sérgio Almeida. Towards efficient
time-stamping for autonomous versioning. In Actas informais do
EPCM’99, Encontro Português de Computação Nómada, 1999.

[BCCS98] Maria Butrico, Henry Chang, Norman Cohen, and Dennis G. Shea.
Data synchronization in mobile network computer – reference specifi-
cation. In WMR’98, ECOOP’98 Workshop Reader. Springer Verlag,
1998.

[BM99] Carlos Baquero and Francisco Moura. Causality in autonomous mo-
bile systems. In Third European Research Seminar on Advances in
Distributed Systems. Broadcast, EPFL-LSE, April 1999.

[BR02] Roberto Baldoni and Michel Raynal. Fundamentals of distributed
computing: A practical tour of vector clock systems. IEEE Dis-
tributed Systems Online, 3(2), 2002.

[CB89] Bernadette Charron-Bost. Combinatorics and geometry of consistent
cuts: Application to concurrency theory. In WDAG: International
Workshop on Distributed Algorithms. LNCS, Springer-Verlag, 1989.

[CB91] Bernadette Charron-Bost. Concerning the size of logical clocks in
distributed systems. Information Processing Letters, 39:11–16, 1991.

[CBDGF95] Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fau-
connier. Local and temporal predicates in distributed systems. ACM
Trans. Program. Lang. Syst., 17(1):157–179, 1995.

[CES04] David Culler, Deborah Estrin, and Mani Srivastava. Guest Editors’
introduction: Overview of sensor networks. Computer, 37(8), August
2004.

BIBLIOGRAPHY 111

[CL85] Mani Chandy and Leslie Lamport. Distributed snapshots: determin-
ing global states of distributed systems. Transactions on Computer
Systems, 3(1):63–75, 1985.

[CM91] Robert Cooper and Keith Marzullo. Consistent detection of global
predicates. InWorkshop on Parallel and Distributed Debugging, pages
167–174, 1991.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s
highly available key-value store. In Thomas C. Bressoud and M. Frans
Kaashoek, editors, Proceedings of the 21st ACM Symposium on Oper-
ating Systems Principles 2007, SOSP 2007, Stevenson, Washington,
USA, October 14-17, 2007, pages 205–220. ACM, 2007.

[Fid89] Colin Fidge. Timestamps in message-passing systems that preserve
the partial ordering. In 11th Australian Computer Science Confer-
ence, pages 55–66, 1989.

[Fid91] Colin Fidge. Logical time in distributed computing systems. IEEE
Computer, 24(8):28–33, August 1991.

[GHM+90] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page,
Gerald J. Popek, and Dieter Rothmeier. Implementation of the Ficus
Replicated File System. In USENIX Conference Proceedings, pages
63–71. USENIX, June 1990.

[GKK+06] Michael B. Greenwald, Sanjeev Khanna, Keshav Kunal, Benjamin C.
Pierce, and Alan Schmitt. Agreeing to agree: Conflict resolution for
optimistically replicated data. In Shlomi Dolev, editor, DISC, volume
4167 of Lecture Notes in Computer Science, pages 269–283. Springer,
2006.

[Gol98] Richard G. Golden, III. Efficient vector time with dynamic process
creation and termination. Journal of Parallel and Distributed Com-
puting (JPDC), 55(1):109–120, 1998.

112 BIBLIOGRAPHY

[GRR+98] Richard G. Guy, Peter L. Reiher, David Ratner, Michial Gunter,
Wilkie Ma, and Gerald J. Popek. Rumor: Mobile data access through
optimistic peer-to-peer replication. In ER Workshops, pages 254–265,
1998.

[Gue04] Rachid Guerraoui, editor. Distributed Computing, 18th International
Conference, DISC 2004, Amsterdam, The Netherlands, October 4–7,
2004, Proceedings, volume 3274 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

[Heu59] Gerald A. Heuer. Estimation in a certain probability problem. The
American Mathematical Monthly, 66(8):704–706, 1959.

[HHRB92] Peter Honeyman, Larry Huston, Jim Rees, and Dave Bachmann. The
LITTLEWORK Project. In In Proceedings of the Third Workshop on
Workstation Operating Systems, pages 11–14, Key Biscayne, Florida,
U.S., 1992. IEEE Computer Society Press.

[HNI+98] Jaap Haartsen, Mahmoud Naghshineh, Jon Inouye, Olaf Joeressen,
and Warren Allen. Bluetooth: Vision, goals, and architecture. ACM
Mobile Computing and Communications Review, 2(4):38–45, October
1998.

[HRMB03] Jean-Michel Hélary, Michel Raynal, Giovanna Melideo, and Roberto
Baldoni. Efficient causality-tracking timestamping. IEEE Transac-
tions on Knowledge and Data Engineering, 15, 2003.

[Hua89] Shing-Tsaan Huang. Detecting termination of distributed compu-
tations by external agents. In Proceedings of the 9th International
Conference on Distributed Computing Systems (ICDCS), pages 79–
84, Washington, DC, 1989. IEEE Computer Society.

[HW88] Dieter Haban and Wolfgang Weigel. Global events and global break-
points in distributed systems. In Proceedings of the Twenty-First
Annual Hawaii International Conference on System Sciences (21st
HICSS’88), pages 166–175, Kailua-Kona, HI, January 1988. IEEE.

BIBLIOGRAPHY 113

[Kno65] Kenneth C. Knowlton. A fast storage allocator. Communications of
the ACM, 8(10):623–625, 1965.

[KPR94] Geoffrey H. Kuenning, Gerald J. Popek, and Peter L. Reiher. An
analysis of trace data for predictive file caching in mobile computing.
In In USENIX Conference Proceedings, pages 291–303, 1994.

[KS91] James J. Kistler and Mahadev Satyanarayanan. Disconnected oper-
ation in the Coda file system. In Thirteenth ACM Symposium on
Operating Systems Principles, volume 25, pages 213–225, Asilomar
Conference Center, Pacific Grove, US, 1991.

[KWK03] Brent ByungHoon Kang, Robert Wilensky, and John Kubiatow-
icz. The hash history approach for reconciling mutual inconsistency.
In Proceedings of the 23nd International Conference on Distributed
Computing Systems (ICDCS), pages 670–677. IEEE Computer Soci-
ety, 2003.

[Lam78] Leslie Lamport. Time, clocks and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, July
1978.

[Lan07] Tobias Landes. Tree clocks: An efficient and entirely dynamic logical
time system. In Helmar Burkhart, editor, Proceedings of the IASTED
International Conference on Parallel and Distributed Computing
and Networks, as part of the 25th IASTED International Multi-
Conference on Applied Informatics, February 13–15 2007, Innsbruck,
Austria, pages 349–354. IASTED/ACTA Press, 2007.

[Mat87] Friedemann Mattern. Algorithms for distributed termination detec-
tion. Distributed Computing, 2:161–175, 1987.

[Mat89a] Friedemann Mattern. Global quiescence detection based on credit
distribution and recovery. IPL: Information Processing Letters, 30,
1989.

114 BIBLIOGRAPHY

[Mat89b] Friedemann Mattern. Verteilte Basisalgorithmen, volume 226 of
Informatik-Fachberichte. Springer-Verlag, 1989.

[Mat89c] Friedemann Mattern. Virtual time and global clocks in distributed
systems. In Workshop on Parallel and Distributed Algorithms, pages
215–226, 1989.

[MJK+00] Robert Morris, John Jannoti, Frans Kaashoek, Jinyang Li, and Dou-
glas Decouto. Carnet: A scalable ad hoc wireless network system.
In Paulo Guedes, editor, Ninth ACM SIGOPS European Workshop,
pages 61–65. DIKU - University of Copenhagen, 2000.

[MN91] Marzullo and Neiger. Detection of global state predicates. In WDAG:
International Workshop on Distributed Algorithms. LNCS, Springer-
Verlag, 1991.

[MRT+05] Achour Mostefaoui, Michel Raynal, Corentin Travers, Stacy Patter-
son, Divyakant Agrawal, and Amr El Abbadi. From static distributed
systems to dynamic systems. In Proceedings 24th IEEE Symposium
on Reliable Distributed Systems (24th SRDS’05), pages 109–118, Or-
lando, FL, USA, October 2005. IEEE Computer Society.

[MT05] Dahlia Malkhi and Douglas B. Terry. Concise version vectors in winfs.
In Pierre Fraigniaud, editor, DISC, volume 3724 of Lecture Notes in
Computer Science, pages 339–353. Springer, 2005.

[Ora01] Andy Oram, editor. Peer-to-peer: Harnessing the Power of Disrup-
tive Technologies. O’Reilly, Sebastopol, California, 2001.

[PPR+83] Douglas Stott Parker, Gerald J. Popek, Gerard Rudisin, Allen
Stoughton, Bruce J. Walker, Evelyn Walton, Johanna M. Chow,
David A. Edwards, Stephen Kiser, and Charles S. Kline. Detection of
mutual inconsistency in distributed systems. Transactions on Soft-
ware Engineering, 9(3):240–247, 1983.

[PST+97] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flexible update propagation for weakly

BIBLIOGRAPHY 115

consistent replication. In Proceedings of the 16th ACM Symposium on
Operating SystemsPrinciples (SOSP-16), Saint Malo, France, 1997.

[PSTT96] Karin Petersen, Mike Spreitzer, Douglas Terry, and Marvin Theimer.
Bayou: Replicated database services for world-wide applications.
In 7th ACM SIGOPS European Workshop, Connemara, Ireland,
September 1996. http://www.parc.xerox.com/csl/projects/bayou/.

[PTR+07] Daniel Peek, Douglas B. Terry, Venugopalan Ramasubramanian, Meg
Walraed-Sullivan, Thomas L. Rodeheffer, and Ted Wobber. Fast
encounter-based synchronization for mobile devices. Digital Informa-
tion Management, 2007. ICDIM ’07. 2nd International Conference
on, 2:750–755, 2007.

[Ray06] Michel Raynal. From static distributed systems to dynamic systems:
an approach for a first step. In ICDCS Workshops. IEEE Computer
Society, 2006.

[RPG+96] Peter Reiher, Jerry Popek, Michial Gunter, John Salomone, and
David Ratner. Peer-to-peer reconciliation based replication for mo-
bile computers. In Max Muhlhauser, editor, Special Issues in Object-
Oriented Programming, ECOOP’96 II Workshop on Mobility and
Replication. Dpunkt Verlag, 1996.

[RPR96] David Ratner, Gerald J. Popek, and Peter Reiher. The ward model:
A scalable replication architecture for mobility. In In Workshop on
Object Replication and Mobile Computing, 1996.

[RRP97] David Ratner, Peter Reiher, and Gerald Popek. Dynamic version
vector maintenance. Technical Report CSD-970022, Department of
Computer Science, University of California, Los Angeles, 1997.

[RRP99] David Ratner, Peter Reiher, and Gerald J. Popeky. Roam: A scalable
replication system for mobile computing. In In Workshop on Mobile
Databases and Distributed Systems (MDDS), pages 96–104, 1999.

116 BIBLIOGRAPHY

[Sat96] Mahadev Satyanarayanan. Fundamental challenges in mobile com-
puting. In PODC, pages 1–7, 1996.

[SK92] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation
of vector clocks. Information Processing Letters, 43(1):47–52, August
1992.

[SKK+90] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A highly avail-
able file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, 1990.

[SM94] Reinhard Schwarz and Friedemann Mattern. Detecting causal rela-
tionships in distributed computations: In search of the Holy Grail.
Distributed Computing, 3(7):149–174, 1994.

[Smy78] Michael B. Smyth. Power domains. Journal of Computer and System
Sciences, 16(1):23–36, February 1978.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Com-
puting Surveys, 37(1):42–81, 2005.

[TRA99] F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant
size logical clocks for distributed systems. Distributed Computing,
12(4):179–196, 1999.

[TTP+95] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. De-
mers, Mike J. Spreitzer, and Carl H. Hauser. Managing update con-
flicts in Bayou, a weakly connected replicated storage system. In
Proceedings of the 15th ACM Symposium on Operating Systems Prin-
ciples (SOSP-15), Copper Mountain Resort, Colorado, 1995.

[Val93] Céline Valot. Characterizing the accuracy of distributed timestamps.
SIGPLAN Notices, 28(12):43–52, 1993.

[Vog08] Werner Vogels. Beyond server consolidation. ACM Queue: Tomor-
row’s Computing Today, 6(1):20–26, January 2008.

BIBLIOGRAPHY 117

[WB84] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions to the
replicated log and dictionary problems. In PODC, pages 233–242,
1984.

[WRB99] An-I Wang, Peter L. Reiher, and Rajive Bagrodia. A simulation
evaluation of optimistic replicated filing in mobile environments. In
IPCCC, pages 43–51. IEEE, 1999.

[YV01] Haifeng Yu and Amin Vahdat. The costs and limits of availability for
replicated services. In Symposium on Operating Systems Principles,
pages 29–42, 2001.

118 BIBLIOGRAPHY

Appendix A

Version Stamps Reference
Implementation

A.1 Core Implementation

1 # vim : s e t t s=4 sw=4 ai e t :
2
3 from aux i l i a r y import ∗
4
5 opt imize = 1
6
7 debug = True
8
9 class VersionStamp (ob j e c t) :

10
11 ch_counter = 0
12 id_map = {}
13
14
15 def __init__(s e l f) :
16 s e l f . id = []
17 s e l f . up = []
18 s e l f . ch = s e t ()
19
20
21 def __repr__(s e l f) :
22 return "(%s , %s) " % (repr (s e l f . id) , r epr (s e l f . up))
23
24
25 def f o rk (s e l f) :

119

120 APPENDIX A. VERSION STAMPS IMPLEMENTATION

26
27 # Create a new VS
28 new = VersionStamp ()
29
30 # Sp l i t the i d e n t i t y s e t
31 i f l en (s e l f . id) == 0 :
32 new . id = [’ 1 ’]
33 s e l f . id = [’ 0 ’]
34 else :
35 new . id = [f + ’ 1 ’ for f in s e l f . id]
36 s e l f . id = [f + ’ 0 ’ for f in s e l f . id]
37
38 # Copy the update s e t
39 new . up = s e l f . up [:]
40
41 # Copy the causa l h i s t o r y
42 new . ch = s e l f . ch . copy ()
43
44 # Return the new VS
45 return new
46
47
48 def j o i n (s e l f , o ther) :
49
50 # Join the i d e n t i t y and update components
51 s e l f . id = s e l f . id + [e for e in other . id i f e not in s e l f . id]
52 s e l f . up = s e l f . up + [e for e in other . up i f e not in s e l f . up]
53
54 id = s e l f . id
55 up = s e l f . up
56
57 # Coalesce i d e n t i t y
58 stop = 0
59 while not stop :
60 s = [e [: −1] for e in id i f e [: −1] + s t r (1 − i n t (e [−1])) in id]
61 for e in l i s t (s e t (s)) : # unique (s)
62 id . remove (e + ’ 0 ’)
63 id . remove (e + ’ 1 ’)
64 i f l en (e) > 0 : id . append (e)
65 stop = len (s) == 0
66
67 # Remove unnecessary d e t a i l from the update component
68 for e in up [:] :
69 s = [f for f in id i f f != e and s l e q (f , e)]
70 i f s :
71 up . remove (e)
72 i f s [0] not in up :
73 up . append (s [0])
74
75 s e l f . id . s o r t ()

A.1. CORE IMPLEMENTATION 121

76 s e l f . up . s o r t ()
77
78 # Make sure up i s an ant i cha in
79 for u in up [:] :
80 i f [f for f in up i f f != u and s l e q (u , f)] :
81 up . remove (u)
82
83 for u in s e l f . up :
84 a s s e r t l en ([i for i in s e l f . id i f s l e q (u , i)]) >= 1
85
86 # Join the causa l h i s t o r i e s
87 s e l f . ch = s e l f . ch . union (other . ch)
88
89 # Destroy the o ther VS
90 other . id = []
91 other . up = []
92 other . ch . c l e a r ()
93
94
95 def update (s e l f) :
96
97 s e l f . up = s e l f . id [:]
98
99 # Add a token to the causa l h i s t o r y

100 VersionStamp . ch_counter = VersionStamp . ch_counter + 1
101 s e l f . ch . add (s e l f . ch_counter)
102
103 # Record the update in the debugging i d e n t i t y map
104 s e l f . id_map [s e l f . ch_counter − 1] = repr (s e l f . up)
105
106
107 event = update
108
109
110 def l e q (s e l f , o ther) :
111 for i in s e l f . up :
112 i f [j for j in other . up i f s l e q (i , j)] == [] :
113 return False
114 return True
115
116
117 __le__ = leq
118
119
120 def ch_leq (s e l f , o ther) :
121 return s e l f . ch <= other . ch

122 APPENDIX A. VERSION STAMPS IMPLEMENTATION

A.2 Auxiliary Functions

1 # vim : s e t t s=4 sw=4 e t a i :
2
3 def s l e q (s1 , s2) :
4 return s2 . s t a r t sw i t h (s1)

Appendix B

Dynamic Map Clocks Reference
Implementation

B.1 Core Implementation

1 # vim : s e t t s=4 sw=4 ai e t :
2
3 from aux i l i a r y import ∗
4
5 debug = True
6
7 class DynamicMapClock (ob j e c t) :
8
9 ch_counter = 0

10 id_map = {}
11
12
13 def __init__(s e l f) :
14 s e l f . id = s e t ([’ ’])
15 s e l f . up = {}
16 s e l f . ch = s e t ()
17
18
19 def __repr__(s e l f) :
20 return "(%s , %s) " % (repr (s e l f . id) , r epr (s e l f . up))
21
22
23 def f o rk (s e l f) :
24
25 def s p l i t_ i d e n t i t y () :

123

124 APPENDIX B. DYNAMIC MAP CLOCKS IMPLEMENTATION

26 """
27 Sp l i t the i d e n t i t y s e t in ha l f , r e g a r d l e s s o f the l ength
28 o f the i d e n t i t y s t r i n g s or t h e i r r e l a t i o n to the update
29 s e t . When the i d e n t i t y s e t has one s t r i n g only then i t
30 must be s p l i t , each r e s u l t i n g fragment having i t s own
31 s u f f i x (’ 0 ’ or ’ 1 ’) .
32 """
33
34 # Sp l i t i d e n t i t y s t r i n g s .
35 o id = l i s t (s e l f . id)
36 nid = oid [l en (o id) / 2 :]
37 o id = oid [: l en (o id) / 2]
38
39 # I f there i s a s i n g l e i d e n t i t y s t r i n g i t must be s p l i t .
40 i f not o id :
41 bs = nid . pop ()
42 o id . append (bs + ’ 0 ’)
43 nid . append (bs + ’ 1 ’)
44
45 return s e t (o id) , s e t (nid)
46
47 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
48
49 # Create a new DMC
50 new = DynamicMapClock ()
51
52 # Sp l i t the i d e n t i t y s e t
53 s e l f . id , new . id = sp l i t_ i d e n t i t y ()
54 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
55
56 # Copy the update s e t
57 new . up = s e l f . up . copy ()
58
59 # Copy the causa l h i s t o r y
60 new . ch = s e l f . ch . copy ()
61
62 # Return the new DMC
63 return new
64
65
66 def j o i n (s e l f , o ther) :
67
68 def c oa l e s c e_ id en t i t y () :
69 """
70 Coalesce complementary (s i b l i n g) i d e n t i t y s t r i n g s .
71 """
72
73 stop = False
74 while not stop :
75 stop = True

B.1. CORE IMPLEMENTATION 125

76 for i in s e l f . id :
77 i f i [:−1]+ ’ 0 ’ in s e l f . id and i [:−1]+ ’ 1 ’ in s e l f . id :
78 s e l f . id . remove (i [:−1]+ ’ 0 ’)
79 s e l f . id . remove (i [:−1]+ ’ 1 ’)
80 s e l f . id . add (i [: −1])
81 stop = False
82 break
83
84 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
85
86 # Join the i d e n t i t y s e t s
87 s e l f . id = s e l f . id . union (other . id)
88 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
89
90 # Coalesce the i d e n t i t y s e t (non−e s s e n t i a l f o r co r r ec tne s s)
91 coa l e s c e_ id en t i t y ()
92 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
93
94 # Join the update s e t s maxing the counter va lue s o f dup l i c a t e
95 # i d e n t i t y s t r i n g s .
96 for i in other . up :
97 s e l f . up [i] = max(other . up [i] , s e l f . up . get (i , 0))
98
99 # Remove dominated fragments from the update s e t

100 mk_upantichain (s e l f . up)
101 i f debug : a s s e r t i s_upant icha in (s e l f . up)
102
103 # Join the causa l h i s t o r i e s
104 s e l f . ch = s e l f . ch . union (other . ch)
105
106 # Destroy the o ther DMC
107 other . id . c l e a r ()
108 other . up . c l e a r ()
109 other . ch . c l e a r ()
110
111
112 def update (s e l f) :
113
114 def choose_ident i ty () :
115 """
116 Choose an i d e n t i t y s t r i n g in order to r e g i s t e r an update .
117 Any i d e n t i t y s t r i n g w i l l do , but s e v e r a l s t r a t e g i e s can be
118 used in order no minimize space .
119 """
120
121 same_ids = s e l f . id . i n t e r s e c t i o n (s e l f . up)
122 i n l i n e_ id s = s e t ([i for i in s e l f . id for j in s e l f . up
123 i f i != j and i s_ i d i n l i n e (i , j)])
124 # a l t e r n a t i v e s t r a t e g i e s
125 i f l en (same_ids) != 0 :

126 APPENDIX B. DYNAMIC MAP CLOCKS IMPLEMENTATION

126 i = same_ids . pop ()
127 e l i f l en (i n l i n e_ id s) != 0 :
128 i = in l i n e_ id s . pop ()
129 else :
130 i = s e l f . id . copy () . pop () # de f a u l t s t r a t e g y
131 return i
132
133 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
134
135 # Choose an i d e n t i t y s t r i n g
136 i = choose_ident i ty ()
137
138 # Update or add a fragment to the update s e t
139 counter s = [s e l f . up [j] for j in s e l f . up i f i s_ i d i n l i n e (i , j)] # B1
140 #counters = [s e l f . up [j] f o r j in s e l f . up i f s l e q (i , j)] # B2
141 s e l f . up [i] = max(counter s + [0]) + 1
142
143 # Remove dominated fragments from the update s e t
144 mk_upantichain (s e l f . up)
145 i f debug : a s s e r t i s_upant icha in (s e l f . up)
146
147 # Add a token to the causa l h i s t o r y
148 DynamicMapClock . ch_counter = DynamicMapClock . ch_counter + 1
149 s e l f . ch . add (s e l f . ch_counter)
150
151 # Record the update in the debugging i d e n t i t y map
152 #s e l f . id_map [s e l f . ch_counter − 1] = i + " " + s t r (s e l f . up [i])
153
154
155 event = update
156
157
158 def sync (s e l f , o ther) :
159
160 i f debug : a s s e r t i s_ idan t i cha in (s e l f . id)
161
162 # Join the update s e t s maxing the counter va lue s o f dup l i c a t e
163 # i d e n t i t y s t r i n g s .
164 for i in other . up :
165 s e l f . up [i] = max(other . up [i] , s e l f . up . get (i , 0))
166
167 # Remove dominated fragments from the update s e t
168 mk_upantichain (s e l f . up)
169 i f debug : a s s e r t i s_upant icha in (s e l f . up)
170
171 # Join the causa l h i s t o r i e s
172 s e l f . ch = s e l f . ch . union (other . ch)
173
174
175 def l e q (s e l f , o ther) :

B.2. AUXILIARY FUNCTIONS 127

176 for i in s e l f . up . i tems () :
177 i f [j for j in other . up . i tems () i f sn l eq (i , j)] == [] :
178 return False
179 return True
180
181
182 __le__ = leq
183
184
185 def ch_leq (s e l f , o ther) :
186 return s e l f . ch <= other . ch

B.2 Auxiliary Functions

1 # vim : s e t t s=4 sw=4 e t a i :
2
3 def s l e q (s1 , s2) :
4 return s2 . s t a r t sw i t h (s1)
5
6 def sn l eq (sn1 , sn2) :
7 return s l e q (sn1 [0] , sn2 [0]) and sn1 [1] <= sn2 [1] # A1
8
9 def i s_ i d i n l i n e (s1 , s2) :

10 return s l e q (s1 , s2) or s l e q (s2 , s1)
11
12 def i s_up in l i n e (sn1 , sn2) :
13 return sn l eq (sn1 , sn2) or sn l eq (sn2 , sn1)
14
15 def i s_ idan t i cha in (id) :
16 return [i for i in id for j in id
17 i f i != j and i s_ i d i n l i n e (i , j)] == []
18
19 def i s_upant icha in (up) :
20 return [i for i in up . items () for j in up . items ()
21 i f i != j and i s_up in l i n e (i , j)] == []
22
23 def mk_upantichain (up) :
24 for i in up . items () :
25 i f [j for j in up . items () i f i != j and sn l eq (i , j)] != [] :
26 del up [i [0]]

128 APPENDIX B. DYNAMIC MAP CLOCKS IMPLEMENTATION

Appendix C

Interval Tree Clocks Reference
Implementation

C.1 Core Implementation

1 −module(dmct) .
2 −export ([new/0 , event /1 , j o i n /2 , f o rk /1 , peek /1 , l e q /2]) .
3 −export ([l en /1 , s t r /1 , enc /1]) .
4 −compi le ({ i n l i n e , [{min , 2} , {max,2} , {drop , 2} , { l i f t , 2} , {base , 1} ,
5 {height , 1}]}) .
6
7 new () −> {1 , 0} .
8
9 j o i n ({I1 , E1} , {I2 , E2}) −> {sum(I1 , I2) , join_ev (E1 , E2)} .

10
11 f o rk ({I , E}) −>
12 {I1 , I2} = s p l i t (I) ,
13 {{I1 , E} , {I2 , E}} .
14
15 peek ({I , E}) −> {{0 , E} , {I , E}} .
16
17 event ({I , E}) −>
18 {I ,
19 case f i l l (I , E) of
20 E −> {_, E1} = grow (I , E) , E1 ;
21 E1 −> E1
22 end
23 } .
24
25 l eq ({_, E1} , {_, E2}) −> leq_ev (E1 , E2) .

129

130 APPENDIX C. IMPLEMENTATION OF ITC

26
27 %%
28
29 leq_ev ({N1 , L1 , R1} , {N2 , L2 , R2}) −>
30 N1 =< N2 andalso
31 leq_ev (l i f t (N1 , L1) , l i f t (N2 , L2)) andalso
32 leq_ev (l i f t (N1 , R1) , l i f t (N2 , R2)) ;
33
34 leq_ev ({N1 , L1 , R1} , N2) −>
35 N1 =< N2 andalso
36 leq_ev (l i f t (N1 , L1) , N2) andalso
37 leq_ev (l i f t (N1 , R1) , N2) ;
38
39 leq_ev (N1 , {N2 , _, _}) −> N1 =< N2 ;
40
41 leq_ev (N1 , N2) −> N1 =< N2 .
42
43 %%
44 % Normal form
45
46 norm_id ({0 , 0}) −> 0 ;
47 norm_id ({1 , 1}) −> 1 ;
48 norm_id (X) −> X.
49
50 norm_ev({N, M, M}) when i s_ in t eg e r (M) −> N + M;
51 norm_ev({N, L , R}) −>
52 M = min(base (L) , base (R)) ,
53 {N + M, drop (M, L) , drop (M, R)} .
54
55 %%
56
57 sum(0 , X) −> X;
58 sum(X, 0) −> X;
59 sum({L1 ,R1} , {L2 , R2}) −> norm_id ({sum(L1 , L2) , sum(R1 , R2)}) .
60
61 s p l i t (0) −> {0 , 0} ;
62 s p l i t (1) −> {{1 , 0} , {0 , 1}} ;
63 s p l i t ({0 , I}) −> {I1 , I2} = s p l i t (I) , {{0 , I1} , {0 , I2}} ;
64 s p l i t ({I , 0}) −> {I1 , I2} = s p l i t (I) , {{I1 , 0} , {I2 , 0}} ;
65 s p l i t ({I1 , I2}) −> {{I1 , 0} , {0 , I2}} .
66
67 %%
68
69 join_ev (E1={N1 , _, _} , E2={N2 , _, _}) when N1 > N2 −> join_ev (E2 , E1) ;
70 join_ev ({N1 , L1 , R1} , {N2 , L2 , R2}) when N1 =< N2 −>
71 D = N2 − N1 ,
72 norm_ev({N1 , join_ev (L1 , l i f t (D, L2)) , join_ev (R1 , l i f t (D, R2))}) ;
73 join_ev (N1 , {N2 , L2 , R2}) −> join_ev ({N1 , 0 , 0} , {N2 , L2 , R2}) ;
74 join_ev ({N1 , L1 , R1} , N2) −> join_ev ({N1 , L1 , R1} , {N2 , 0 , 0}) ;
75 join_ev (N1 , N2) −> max(N1 , N2) .

C.1. CORE IMPLEMENTATION 131

76
77 f i l l (0 , E) −> E;
78 f i l l (1 , E={_, _, _}) −> he ight (E) ;
79 f i l l (_, N) when i s_ in t eg e r (N) −> N;
80 f i l l ({1 , R} , {N, El , Er}) −>
81 Er1 = f i l l (R, Er) ,
82 D = max(he ight (El) , base (Er1)) ,
83 norm_ev({N, D, Er1}) ;
84 f i l l ({L , 1} , {N, El , Er}) −>
85 El1 = f i l l (L , El) ,
86 D = max(he ight (Er) , base (El1)) ,
87 norm_ev({N, El1 , D}) ;
88 f i l l ({L , R} , {N, El , Er}) −>
89 norm_ev({N, f i l l (L , El) , f i l l (R, Er)}) .
90
91 grow (1 , N) when i s_ in t eg e r (N)−>
92 {0 , N + 1} ;
93 grow ({0 , I} , {N, L , R}) −>
94 {H, E1} = grow (I , R) ,
95 {H + 1 , {N, L , E1}} ;
96 grow ({I , 0} , {N, L , R}) −>
97 {H, E1} = grow (I , L) ,
98 {H + 1 , {N, E1 , R}} ;
99 grow ({ I l , I r} , {N, L , R}) −>

100 {Hl , El} = grow (I l , L) ,
101 {Hr , Er} = grow (Ir , R) ,
102 i f
103 Hl < Hr −> {Hl + 1 , {N, El , R}} ;
104 true −> {Hr + 1 , {N, L , Er}}
105 end ;
106 grow (I , N) when i s_ in t eg e r (N)−>
107 {H, E} = grow (I , {N, 0 , 0}) ,
108 {H + 1000 , E} .
109
110 %%
111
112 he ight ({N, L , R}) −> N + max(he ight (L) , he ight (R)) ;
113 he ight (N) −> N.
114
115 base ({N, _, _}) −> N;
116 base (N) −> N.
117
118 l i f t (M, {N, L , R}) −> {N + M, L ,R} ;
119 l i f t (M, N) −> N + M.
120
121 drop (M, {N, L , R}) when M =< N −> {N − M, L ,R} ;
122 drop (M, N) when M =< N −> N − M.
123
124 max(X, Y) when X =< Y −> Y;
125 max(X, _) −> X.

132 APPENDIX C. IMPLEMENTATION OF ITC

126
127 min (X, Y) when X =< Y −> X;
128 min (_, Y) −> Y.
129
130 %%
131
132 enc ({I , E}) −> << (enc i (I))/ b i t s , (ence (E))/ b i t s >>.
133
134 enc i (0) −> <<0:2, 0:1>>;
135 enc i (1) −> <<0:2, 1:1>>;
136 enc i ({0 , I}) −> <<1:2, (enc i (I))/ b i t s >>;
137 enc i ({I , 0}) −> <<2:2, (enc i (I))/ b i t s >>;
138 enc i ({L , R}) −> <<3:2, (enc i (L))/ b i t s , (enc i (R))/ b i t s >>.
139
140 ence ({0 , 0 , R}) −> <<0:1, 0 : 2 , (ence (R))/ b i t s >>;
141 ence ({0 , L , 0}) −> <<0:1, 1 : 2 , (ence (L))/ b i t s >>;
142 ence ({0 , L , R}) −> <<0:1, 2 : 2 , (ence (L))/ b i t s , (ence (R))/ b i t s >>;
143 ence ({N, 0 , R}) −> <<0:1, 3 : 2 , 0 : 1 , 0 : 1 ,
144 (ence (N))/ b i t s , (ence (R))/ b i t s >>;
145 ence ({N, L , 0}) −> <<0:1, 3 : 2 , 0 : 1 , 1 : 1 ,
146 (ence (N))/ b i t s , (ence (L))/ b i t s >>;
147 ence ({N, L , R}) −> <<0:1, 3 : 2 , 1 : 1 ,
148 (ence (N))/ b i t s , (ence (L))/ b i t s , (ence (R))/ b i t s >>;
149 ence (N) −> encn (N, 2 , <<1:1>>).
150
151 encn (N, B, Acc) when N < (1 bsl B) −> <<Acc/ b i t s , 0 : 1 , N:B>>;
152 encn (N, B, Acc) −> encn (N − (1 bsl B) , B + 1 , <<Acc/ b i t s , 1:1>>).
153
154 l en (D) −> size (enc (D)) .
155
156 s t r ({I , E}) −> [l i s t s : f l a t t e n (s t r i (I)) , l i s t s : f l a t t e n (s t r e (E))] .
157
158 s t r i (0) −> "0" ;
159 s t r i (1) −> "" ;
160 s t r i ({0 , I}) −> "R"++s t r i (I) ;
161 s t r i ({I , 0}) −> "L"++s t r i (I) ;
162 s t r i ({L , R}) −> [" (L"++s t r i (L) , "+" , "R"++s t r i (R) , ") "] .
163
164 s t r e ({N, L , 0}) −> [s t r e (N) , "L" , s t r e (L)] ;
165 s t r e ({N, 0 , R}) −> [s t r e (N) , "R" , s t r e (R)] ;
166 s t r e ({N, L , R}) −> [s t r e (N) , " (L" , s t r e (L) , "+R" , s t r e (R) , ") "] ;
167 s t r e (N) when N > 0 −> integer_to_list (N) ;
168 s t r e (_) −> "" .

	Victor Francisco Mendes de Freitas.pdf
	Página 1
	Página 2
	Página 3
	Página 4

	thesis.pdf

