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2Mechanical Engineering Department, Wichita State University, Kansas, USA
3Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Lisboa, Portugal

Abstract: This work deals with the modelling of lubricated revolute joints in multibody mechanical systems.

In most machines and mechanisms, the joints are designed to operate with some lubricant fluid. The high press-

ures generated in the lubricant fluid act to keep the journal and the bearing apart. Moreover, the thin film formed

by lubricant reduces friction and wear, provides load capacity and adds damping to dissipate undesirable mech-

anical vibrations. In the dynamic analysis of journal–bearings, the hydrodynamic forces, which include both

squeeze and wedge effects, produced by the lubricant fluid oppose the journal motion. These forces are obtained

by integrating the pressure distribution evaluated with the aid of Reynolds’ equation written for the dynamic

regime. The hydrodynamic forces are nonlinear functions of journal centre position and velocity relative to

the bearing centre. In a simple way, the hydrodynamic forces built up by the lubricant fluid are evaluated

from the state of variable of the system and included into the equations of motion of the mechanical system.

Results for an elementary slider–crank mechanism, in which a lubricated revolute joint connects the connecting

rod and slider, are used to discuss the assumptions and procedures adopted.
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NOTATION

A rotational transformation matrix

c radial clearance size

e eccentricity vector

e absolute eccentricity

F external load applied to the journal–bearing

g generalized force vector

h fluid film thickness

L length of the journal–bearing

M system mass matrix

m moment

p fluid pressure

Pi centre of the bearing

Pj centre of the journal

q̈ vector that contains the state of accelerations

RB radius of the bearing

RJ radius of the journal

r unit vector along the eccentricity direction

r radial direction

rP vector of global position of point P

sP vector of global coordinates of point P

s
0P vector of local coordinates of point P

t tangential direction

U relative tangential velocity

XY two-dimensional global coordinate system

a Baumgarte stabilization coefficient

b Baumgarte stabilization coefficient

1 eccentricity ratio

_11 time rate of eccentricity ratio

Fq Jacobian matrix

g right-hand side vector of acceleration equations

g angle of the line between the eccentricity vector

and x-axis

_gg first derivative of the g with respect to time

l vector of Lagrange multipliers

m dynamic fluid viscosity

u angular position

v relative angular velocity

jh two-dimensional body-fixed coordinate system

1 INTRODUCTION

The present work deals with the modelling of lubricated

revolute joints in multibody mechanical systems.
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In actual joints, clearance, friction and impact are always

present in mechanical systems, mainly when there is no fluid

lubricant. These phenomena can significantly change the

dynamic response of the mechanical systems in so far as

the impact causes noise, increases the level of vibrations,

reduces the fatigue life and results in loss of precision. An

overview literature on this topic up to 1980 is given by

Haines [1]. More recently, some works have addressed the

dynamic analysis of multibody mechanical systems with

revolute clearance joints [2–4]. When the clearance joints

are considered as dry, i.e., without lubricant, impacts

take place and consequently the dynamic behaviour of the

mechanical systems can be drastically modified.

However, in most machines and mechanisms, the joints

are designed to operate with some lubricant fluid. The

high pressures generated in the lubricant fluid act to keep

the journal and the bearing apart. Moreover, the thin film

formed by lubricant reduces friction and wear, provides

load capacity, and adds damping to dissipate undesirable

mechanical vibrations. Consequently, proper modelling of

lubricated revolute joints in multibody systems is required

to achieve better understanding of the dynamic performance

of the machines. This aspect gains paramount importance

due to the demand for the proper design of the journal–

bearings in many industrial applications. Ravn [2],

Schwab [3], and Alshaer and Lankarani [5] are amongst

the few researchers who have incorporated the effect of

the lubricant fluid in the dynamic study of multibody

mechanical systems.

In general, multibody systems use journal–bearings in

which the load varies in both magnitude and direction,

which results in dynamically loaded journal–bearings.

Typical examples of dynamically loaded journal–bearings

include the crankshaft bearings in combustion engines,

and high-speed turbine bearings supporting dynamic loads

caused by an unbalanced rotor.

In the dynamic analysis of journal–bearings, the hydro-

dynamic forces produced by the lubricant fluid oppose the

journal motion. These forces are obtained by integrating

the pressure distribution evaluated with the aid of Reynolds’

equation written for the dynamic regime. The hydrodynamic

forces are nonlinear functions of journal centre position and

velocity relative to the bearing centre. In a dynamic regime

the journal centre has an orbit situated within a circle radius

equal to the radial clearance. Thus, a lubricated revolute

joint does not impose kinematic constraints like an ideal

revolute joint; instead it deals with force constraints.

For dynamically loaded journal–bearings the classic

analysis problem is predicting the motion of the journal

centre under arbitrary and known loading. In contrast, in

the present analysis the time variable parameters are known

from the dynamic analysis and the instantaneous force on

the journal–bearing is calculated.

In a simple way, the forces built up by the lubricant fluid

are evaluated from the variables of the system and included

in the equations of motion of the mechanical system. To

carry out the dynamic analysis of the multibody system

with lubricated revolute joints, an effective model is pre-

sented in this work. Both squeeze and wedge hydrodynamic

effects are included in the dynamically loaded journal–

bearings.

It should be mentioned that the methodology presented

here uses the superposition principle for load capacity due

to wedge effect entrainment and the squeeze film effect sep-

arately. This is only approximate, and has been adopted in

the paper in order to arrive at an analytical rather a numeri-

cal solution. Furthermore, the methodology is only appli-

cable to long bearings, and that is not the case in most

engine bearings, where a finite width bearing is used, but

it is useful for many other crank–slider mechanisms. It

should be highlighted that in the methodology used in the

present work, the applied loads and bearing reactions do

not cause any deformation of the bearing bushing or shell.

Thus, a hydrodynamic regime of lubrication is assumed

at all times. In many modern mechanisms and at high tran-

sient loads these conditions are not always met. Thus, a

more representative elastohydrodynamic solution may be

required, such as in thin shell engine bearings of modern

vehicles. This is the price paid for computational efficiency.

Results for a planar slider–crank mechanism in which a

lubricated revolute joint connects the connecting rod and

slider bodies are used to discuss the assumptions and

procedures adopted.

2 MULTIBODY SYSTEMS FORMULATION

The equations of motion for planar multibody mechanical

systems are written as a coupled set of differential and alge-

braic equations, which can be expressed as the form [6]

M FT
q

Fq 0

� �
€qq
l

� �
¼

g
g

� �
(1)

where M is the system mass matrix, the vector q̈ contains

the generalized state accelerations, Fq is the Jacobian of

constraint equations, the vector l holds the Lagrange multi-

pliers, g is the vector of quadratic velocity terms and g
is the vector of generalized forces which contains the exter-

nal applied forces as well as the forces developed in the

lubricated revolute clearance joint.

A set of additional conditions together with the kinematic

constraints defines the initial positions and velocities

required to start the dynamic simulation. These initial con-

ditions are obtained from kinematic simulation of the mech-

anical system in which all of the joints are assumed to be

ideal or perfect joints. The subsequent initial conditions

for each time step in the simulation are obtained from the

results of the previous time step.

In order to stabilize or keep under control the constraint

violation, equation (1) is solved using the Baumgarte stabil-

ization method [7]. The integration process is performed

using a predictor–corrector algorithm with variable step

and order [8].
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3 HYDRODYNAMIC FORCES IN DYNAMIC
JOURNAL–BEARINGS

In most machines and mechanisms, the joints are designed

to operate with some lubricant fluid. The high pressures gen-

erated in the lubricant fluid act to keep the journal and the

bearing apart. Moreover, the thin film formed by lubricant

reduces friction and wear, provides load capacity and adds

damping to dissipate undesirable mechanical vibrations.

In general, multibody mechanical systems use journal–

bearings in which the load varies in both magnitude and

direction, which results in dynamically loaded journal–

bearings. When the load acting on the journal–bearing is

not constant in direction and/or module, the journal centre

describes a trajectory within the bearing boundaries. Typical

examples of dynamically loaded journal–bearings include

the crankshaft bearings in combustion engines, and high-

speed turbines bearings supporting dynamic loads caused

by rotor unbalanced. Figure 1 provides a general configur-

ation of a dynamically loaded journal–bearing and notation.

In a broad sense, dynamically loaded journal–bearings

can be classified into two groups, namely squeeze-film

action and wedge-film action [9]. The first group refers to

the situations in which the journal does not rotate about its

centre, rather, the journal moves along some path inside

the bearing. The second group deals with cases in which

there is journal rotation. In a journal–bearing, squeeze-

film action is dominant when the relative rotational velocity

is small compared with the relative radial velocity. When

the relative rotational velocity between the two elements

is high, the wedge-film effect must also be considered.

Reynolds’ equation is used to evaluate the forces devel-

oped by the fluid film pressure field. Pinkus and Sternlicht

[9], amongst others, have presented a detailed derivation

of the Reynolds’ equation, which can be deduced either

from the Navier–Stokes equations or from first principles.

The Reynolds equation contains viscosity, density and film

thickness as parameters. Furthermore, the derivation of this

equation is based upon several premises, namely, the flow is

laminar, the fluid is Newtonian and incompressible, the

pressure across the film thickness is constant, the journal

and bearing axis are parallel, the fluid inertia is negligible,

there is no slip at the bearing surface, the bearing and

journal surfaces are rigid, and no oil supply groove is

considered. Under these assumptions, the isothermal gener-

alized Reynolds’ equation can be written as

@

@X

h3

m

@p

@X

� �
þ
@

@Z

h3

m

@p

@X

� �
¼ 6U

@h

@X
þ 12

dh

dt
(2)

The two terms on the right-hand side of equation (2)

represent the two different effects of pressure generation

in the lubricant film, that is, wedge-film action and squeeze-

film action, respectively.

It is known that equation (2) is one non-homogeneous

partial differential of elliptical type. The exact solution of

the Reynolds’ equation is difficult to obtain, and in general

requires considerable numerical effort. However, it is

possible to solve the equation approximately where the

first or second term on the left-hand side is treated as

zero. These solutions correspond to those for an infinitely

short and infinitely long journal–bearing, respectively.

For an infinitely long journal–bearing, a constant fluid

pressure and negligible leakage in the Z-direction are

assumed. In many cases it is possible to treat a journal–

bearing as infinitely long and consider only the middle

point of it. This approach is valid for length-to-diameter

(L/D) ratios greater than 2 [10].

Thus, the Reynolds equation for an infinitely long

journal–bearing can be written as

@

@X

h3

m

@p

@X

� �
¼ 6U

@h

@X
þ 12

dh

dt
(3)

The pressure distribution in the fluid is given by [9]

p ¼ 6m
RJ

c

� �2

(v� 2 _gg)(2þ 1 cos u)1 sin u

(2þ 12)(1þ 1 cos u)2

þ
_11

1

1

(1þ 1 cos u)2
�

1

(1þ 1)2

� �
8>><
>>:

9>>=
>>;

(4)

Equation (4) enables the calculation of the pressure field

in a hydrodynamic loaded journal–bearing as a function of

the dynamic parameters v, 1, _11 and _gg.

It is convenient to determine the force components of the

resultant pressure along and perpendicular to the line of

centres. These force components can be obtained by inte-

gration of the pressure field either around the entire surface,

2p, or around a half-surface, p, that is, equation (4) is inte-

grated only over the positive region by setting the pressure

in the remaining portion equation to zero. These boundary

conditions associated with the pressure field correspond

to Sommerfeld’s and Gümbel’s conditions, respectively.

Sommerfeld’s conditions (complete film) do not take into

account the cavitation phenomenon and, consequently, theFig. 1 Dynamically loaded journal–bearing
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existence of negative pressures for p , u , 2p. This case

is unreal due to the fluid incapacity to sustain sub-ambient

pressures. Gümbel’s conditions (rupture film) preconize

the existence of a zero pressure zone between p and 2p.

This situation, however, configures fluid film discontinuity

at u ¼ 2p.

For the Sommerfeld’s conditions (full film) the component

force of the fluid film can be written as [9]

Fr ¼ �
12pmLR3

J _11

c2(1� 12)3=2
(5)

Ft ¼
12pmLR3

J1(v� 2 _gg)

c2(2þ 12)(1� 12)1=2
(6)

Equation (5) refers to the force from the squeeze-film

action, and equation (6) refers to the force from the

wedge-film effect. These equations reduce to the steady-

state form for the full Sommerfeld solution when 2 _gg ¼ _11 ¼
0 [10].

The component forces obtained from the integration only

over the positive regions by setting the pressure in the

remaining portions equal to zero involve finding the zero

points, i.e., the angles at which the pressure begins and

ends. This analysis involves a good deal of mathematical

manipulation (for details, see Reference [9]). The com-

ponent forces along eccentricity direction and normal to it

are for _11 . 0 given by

Fr ¼ �
mLR3

J

c2

6_11

(2þ 12)(1� 12)3=2

� 4k12 þ (2þ 12)p
k þ 3

k þ 3=2

� �
(7)

Ft ¼
mLR3

J

c2

6p1(v� 2 _gg)

(2þ 12)(1� 12)1=2

k þ 3

k þ 3=2
(8)

and for _11 , 0

Fr ¼ �
mLR3

J

c2

6_11

(2þ 12)(1� 12)3=2

� 4k12 � (2þ 12)p
k

k þ 3=2

� �
(9)

Ft ¼
mLR3

J

c2

6p1(v� 2 _gg)

(2þ 12)(1� 12)1=2

k

k þ 3=2
(10)

where the parameter k is defined as

k2 ¼ (1� 12)
v� 2 _gg

2_11

� �
þ

1

12

� �
(11)

In the present work, m is the dynamic fluid viscosity, L is

the journal–bearing length, RJ is the journal radius, c is the

radial clearance, v is the relative angular velocity between

the journal and the bearing, 1 is the eccentricity ratio

which is obtained from distance between the bearing and

journal centres divided by the radial clearance and g is the

angle between the eccentricity direction and the x0-axis.

The dot above expressions denotes the time derivative of

the corresponding parameter.

Equations (5)–(10) for infinitely long journal–bearings

present the connection between the journal centre motion

and the fluid reaction force on the journal. The solution

of these equations presents no problem since the journal

centre motion is known from dynamic analysis.

The force components of the resulting pressure distri-

bution along and perpendicular to the line of centres have

to be projected onto the x and y directions. From Fig. 1 it

is clear that

Fx ¼ Fr cos g� Ft sin g (12)

Fy ¼ Fr sin gþ Ft cos g (13)

In classic design of journal–bearings the external forces

are known and the motion of the journal centre inside the

bearing boundaries is evaluated by solving the differential

equations for the time-dependent variables. Yet, in the

present analysis, instead of knowing the applied load, the

relative journal–bearing motion characteristics are known

and the fluid force from the pressure distribution in the

lubricant is desired. Thus, since all the variables are

known from dynamic analysis, the hydrodynamic forces

given by equations (12) and (13) are introduced as

generalized forces in the system’s equations of motion.

4 MODELLING LUBRICATED REVOLUTE

JOINTS IN MULTIBODY SYSTEMS

In multibody mechanical systems, a lubricated revolute

joint, the so-called journal–bearing, does not produce any

kinematic constraint like the ideal joint. Instead, it acts in

a similar way to a force element, producing time-dependent

forces. These hydrodynamic forces are nonlinear functions

of the time parameters, v, 1, _11, g and _gg, which can be

evaluated at any instant of time from the dynamic analysis

of the mechanical system.

Thus, in order to evaluate the forces produced by the fluid

lubricant on the journal–bearing, the different dynamic para-

meters on which these forces depend need to be evaluated.

Figure 2 shows a general configuration of a dynamically

loaded journal–bearing in a multibody mechanical system.

The two bodies i and j are connected by a lubricated revolute

clearance joint, in which the gap between the bearing and

the journal is filled with a fluid lubricant. The fluid lubricant

introduces damping and stiffness to the system. Part of body

i is the bearing and part of body j is the journal. The centre

of mass of bodies i is Oi and the centre of mass of body j is

denoted by Oj. The local coordinate systems of bodies i and

j are attached to their centre of mass, while the global coor-

dinate system is represented by the xy-coordinate. Point Pi

indicates the centre of the bearing, and the centre of the jour-

nal is at point Pj.
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With regard to Fig. 2, the eccentricity vector e, which

connects the centres of the bearing and the journal, is

calculated as

e ¼ r P
j � r P

i (14)

where both rj
P and ri

P are described in global coordinates

with respect to the inertial reference frame [6]

r P
k ¼ rk þ Aks0Pk (k ¼ i, j) (15)

The rotational transformation matrix is given by

Ak ¼
cosfk �sinfk

sinfk cosfk

� �
(k ¼ i, j) (16)

Thus, equation (14) can be rewritten as

e ¼ r P
j þ Ajs

0P
j � r P

i � Ais
0P
i (17)

The magnitude of the eccentricity vector can be

evaluated as

e ¼
ffiffiffiffiffiffiffi
eTe
p

(18)

A unit vector, r, along the eccentricity direction is

defined as

r ¼
e

e
(19)

The unit vector has the same direction as the line of

centres of the bearing and the journal, here denoted as the

radial direction, while the tangential direction is obtained

by rotating vector r 908 in a counter-clockwise direction.

The parameter 1 which defines the eccentricity ratio is

obtained from distance between the bearing and journal

centre divided by the radial clearance, that is

1 ¼
e

c
(20)

The parameter _11 can be obtained by differentiating

equation (17), and dividing the result by radial clearance.

Differentiating equation (17) results in

ėe ¼ ṙrP
j þ ȦAjs

0P
j � ṙrP

i � ȦAis
0P
i (21)

where the dot denotes the derivative with respect to the time.

The time rate of eccentricity ratio is given by

_11 ¼
_ee

c
(22)

The line of centres between the bearing and the journal

makes an angle g with the x0-axis, as shown in Fig. 2.

Since the unit radial vector r has the same direction as the

line of centres, the angle g can be defined as

cos g

sin g

� �
¼

rx

ry

� �
(23)

Therefore,

g ¼ tan�1 ry

rx

(24)

The parameter _gg can be obtained by differentiating

equation (24) with respect to the time, yielding,

_gg ¼
ex _eey � _eexey

e2
(25)

The components of forces of the resulting pressure

projected onto the x and y directions given by equations

(12) and (13) act on the journal centre. Thus, these forces

have to be transferred to the centres of mass of both the

bearing and the journal. Concerning Fig. 3, the forces and

moments that act on the centre of mass of journal body,

Oj, are given by

f x
j

f
y
j

mj

2
4

3
5 ¼

Fx

Fy

�(j P
j sinfj þ hP

j cosfj)Fx

þ(j P
j cosfj � hP

j sinfj)Fy

2
664

3
775 (26)

Fig. 2 Generic configuration of dynamically loaded journal–

bearing in a multibody system
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and for the centre of mass of bearing body at Oi,

f x
i

f
y
i

mi

2
4

3
5 ¼

�Fx

�Fy

(j P
i sinfi þ hP

i cosfi þ ey)Fx

�(j P
i cosfi � hP

i sinfi þ ex)Fy

2
664

3
775

(27)

The transport moment produced by transferring the forces

from the centre of journal to the centre of the bearing can be

evaluated as

mT ¼ eyFx � exFy (28)

5 APPLICATION EXAMPLE:
SLIDER–CRANK MECHANISM

An elementary slider–crank mechanism is used to illustrate

the efficiency and accuracy of the methodology presented

throughout this work. Figure 4 depicts the kinematic configu-

ration of the planar slider–crank mechanism, which consists

of four bodies, including ground, two ideal revolute joints

and one ideal translational joint. The body numbers and

their corresponding coordinate systems are shown in Fig. 4.

A revolute clearance joint exists between the connecting

rod and slider. This rotational joint is modelled with the

hydrodynamic formulation presented in the previous sec-

tions. This joint is an example of a lubricated journal–

bearing in which the load varies in both magnitude and

direction. In order to keep the analysis simple and to illus-

trate the dynamic clearance joint behaviour, all the bodies

are considered to be rigid and the inertia due to the driving

motor is neglected. The dimensions and inertia properties of

each body are listed in Table 1.

In the dynamic simulation the crank is the driving (motor)

body and rotates with a constant angular velocity equal to

5000 rpm clockwise. The initial configuration corresponds

to crank and connecting rod collinear and the position and

velocity journal centre are taken to be zero. Initially the

journal and bearing centres are coincident. The properties

for the dynamic simulation are listed in Table 2.

In order to study the influence of the use of the hydro-

dynamic model in the dynamic behaviour of the slider–crank

mechanism, a long time simulation was done. The time

interval used corresponded to two complete crank rotations.

The dynamic behaviour of the slider–crank mechanism was

measured by quantifying the reaction force developed in the

lubricated revolute joint and the crank torque necessary to

maintain constant the crank angular velocity. In addition,

the trajectory of the journal centre inside the bearing and

the minimum fluid thickness are presented. The dynamic

analysis performed with lubricated revolute joints is com-

pared with a simulation in which all joints are considered

to be ideal.

Figure 5 shows the reaction force developed in the lubri-

cated revolute joint, that is, the resultant force due to the

generation of the pressure field. The results are of the

same order as those obtained with ideal joint. The smooth

curve obtained for reaction force is propagated throughout

the mechanical systems until the crank moment. The reac-

tion moment on the crank represents the input power

necessary to maintain constant the crank angular velocity.

In a similar manner to the reaction force, the crank

moment obtained with hydrodynamic model matched

quite well with the crank moment obtained with ideal

joint simulation.

Fig. 3 Vectors of forces working at the journal and bearing

Fig. 4 Slider–crank mechanism with a lubricated revolute

joint between the connecting rod and slider

Table 1 Governing properties for the slider–crank mechanism

Body no. Length (m) Mass (kg)
Moment of
inertia (Kg m2)

2 0.05 0.30 0.00001
3 0.12 0.21 0.00025
4 — 0.14 —

Table 2 Parameters used in the dynamic

simulation

Bearing radius 10.0 mm
Journal bearing 9.8 mm
Journal–bearing length 40.0 mm
Dynamic fluid viscosity 400 cP
Baumgarte coefficient, a 5
Baumgarte coefficient, b 5
Integration time step 0.00001 s
Integration tolerance 0.000001 s
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Looking at the results for the reaction force and reaction

moment (see Fig. 6), it is clear that they are basically

the same as for the case with ideal joints. The first and

the second crank rotations show the same results, which

indicates that the system has reached the steady state.

This can be confirmed by the orbit of the journal centre

relative to the bearing centre, in which the journal

moves far from the bearing wall, that is, there is always

a minimum film lubricant in between the two bodies (see

Fig. 7).

The practical criterion for determining whether or not a

journal–bearing is operating satisfactorily is the value of

the minimum oil film thickness, which is probably the

most important quantity in the performance of the

journal–bearings. It is not easy to state a unique value of

minimum film thickness that can be assumed to be safe

since a great deal depends on the manufacturing process,

the alignment of the machine elements associated with the

journal–bearings, the general operating conditions, includ-

ing the environment of the machine, etc. In practical engin-

eering design it is recommended that the minimum oil film

thickness should be at least 0.00015 mm/mm of bearing

diameter [11].

The minimum film thickness is related to the eccentricity

ratio (1) and radial clearance (c) by the equation [10]

hmin ¼ c(1� 1) (29)

The value of the minimum oil film thickness defines the

regime of lubrication present in the journal–bearing,

namely thick-film lubrication, where the journal–bearing

surfaces are totally separated by the lubricant, or thin-film

lubrication, in which the field of pressure developed

produces elastic deformation. The lubrication between two

moving surfaces can shift from one of these two regimes

to another, depending on the load, velocity, lubricant

viscosity and roughness of the surfaces.

For the journal–bearing considered in the present work,

the minimum or safe oil film thickness that ensures good

operating conditions is of order of 0.003 mm. Figure 8

shows the minimum oil film thickness for the two crank

rotations. The value of the minimum fluid film thickness

is greater than the safe film thickness, meaning that the

hydrodynamic lubrication is effective performed and com-

pletely separates the journal and bearing surfaces, avoiding

the solid-to-solid contact.

It should be highlighted that the methodology used in this

work applies to light and medium loaded bearings, where no

deformation of contiguous solid surfaces occurs. For the

case of deformation, the elastohydrodynamic regime of

lubrication becomes important. The theory of elastohy-

drodynamics is quite complex and goes beyond the scope

of the present work. For details, the interested reader is

referred to Reference [12].

Fig. 5 Reaction force developed in the lubricated joint

Fig. 6 Reaction or driving crank moment

Fig. 7 Journal centre trajectory inside the bearing

Fig. 8 Minimum oil film thickness in the journal–bearing
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6 CONCLUSIONS

A general and comprehensive methodology for modelling

lubricated revolute clearance joints in mechanical systems

was presented throughout this work. In multibody mechan-

ical systems the external force that acts on the journal–

bearing can vary in both magnitude and direction, and

often cyclically, which results in a dynamically loaded

journal–bearing. Hence, the journal centre describes a

trajectory inside the bearing boundaries. The hydrodynamic

film thickness is formed simultaneously by squeeze-film and

wedge-film actions.

The results for the hydrodynamic lubrication model

matched quite well with those obtained with ideal joints

since a minimum fluid film thickness was ensured and

steady state had been reached, meaning that the use of

lubricant at the machine joints is an effective way to ensure

better performance. For instance, the crank moment required

to maintain constant the crank angular velocity is very

smooth, meaning that the global motion of the slider–

crank mechanism with a lubricated joint is periodic.

Indeed, the lubricant acts like a nonlinear spring-damper

in so far as the lubricated journal–bearing absorbs some of

the energy produced by the slider when it accelerates or

decelerates, which results in lower reaction moment

compared with ideal joints. Indeed, the lubricant introduces

effective stiffness and damping to the slider–crank

mechanism.

The hydrodynamic model for lubricated revolute joints in

multibody systems is numerically efficient and fast because

the pressure distribution is not evaluated. Further, the

methodology is easy and straightforward to implement in

a computational code because resultant forces due to the

fluid action are in explicit form.

The model presented throughout this paper can be used to

predict the dynamic response of the machines and mechan-

isms having lubricated revolute clearance joints.

Numerical difficulties can be observed if either the fluid

viscosity is very low or the radial clearance of the

journal–bearing is too large, which leads to large eccentri-

cities and consequently the system becomes stiff. However,

for an appropriate choice of these parameters, the method-

ology presented in this work is quite useful in the design

of mechanical systems with lubricated revolute joints.
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