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Abstract. The dynamic analysis of planar multibody systems with revolute clearance joints, includ-
ing dry contact and lubrication effects is presented here. The clearances are always present in the
kinematic joints. They are known to be the sources for impact forces, which ultimately result in
wear and tear of the joints. A joint with clearance is included in the multibody system much like a
revolute joint. If there is no lubricant in the joint, impacts occur in the system and the corresponding
impulsive forces are transmitted throughout the multibody system. These impacts and the eventual
continuous contact are described here by a force model that accounts for the geometric and material
characteristics of the journal and bearing. In most of the machines and mechanisms, the joints are
designed to operate with some lubricant fluid. The high pressures generated in the lubricant fluid
act to keep the journal and the bearing surfaces apart. Moreover, the lubricant provides protection
against wear and tear. The equations governing the dynamical behavior of the general mechanical
systems incorporate the impact force due to the joint clearance without lubricant, as well as the hydro-
dynamic forces owing to the lubrication effect. A continuous contact model provides the intra-joint
impact forces. The friction effects due to the contact in the joints are also represented. In addition,
a general methodology for modeling lubricated revolute joints in multibody mechanical systems is
also presented. Results for a slider-crank mechanism with a revolute clearance joint between the
connecting rod and the slider are presented and used to discuss the assumptions and procedures
adopted.
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1. Introduction

The dynamic analysis of mechanical systems has been developed assuming, in
general, that the kinematic joints are perfect, i.e., joints characterized by perfect
adjustments, no wear or deformations, perfectly aligned pairs and no friction. How-
ever, the clearances are always present in the kinematic joints and are known to be
sources for impact forces, which ultimately result in wear and tear of the joints.
As a matter of fact, the impacts within the machine joints with clearances lead
to the degradation of the overall system performance [1, 2]. The serious conse-
quences of the clearance joints on the behavior of the mechanical systems have
motivated various theoretical and experimental investigations over the last three
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decades [3–7]. Most of them are referred to planar and unlubricated joints. Ravn
[1] and Schwab [8] are among the few who have incorporated the lubrication effect
at the clearance joints in the simulation of multibody systems. In these works, the
mechanical systems used to demonstrate the methods proposed were four bar link-
age and slider–crank mechanisms. However, modeling the dynamics of mechanical
systems with clearance joints and imperfections is a challenging issue in multibody
dynamics and much work still remains to be done to achieve satisfactory modeling
tools.

A joint with clearance is included in the multibody system much like a revolute
joint, which has the kinematic constraints, replaced by a pair of forces representing
the journal-bearing contact. Therefore, the clearance in a revolute joint implies that
the system to which this is applied has two extra degrees of freedom. The dynamics
of the joint is then controlled by forces developed on the journal and bearing. Thus,
while a perfect revolute joint in a multibody system imposes kinematic constraints,
a revolute clearance joint leads to force constraints.

If there is no lubricant in the joint, impacts occur in the system and the cor-
responding impulse is transmitted throughout the multibody system. These im-
pacts and the eventual continuous contact are described here by a force model
that accounts for the geometric and material characteristics of the journal and
bearing. The energy-dissipative effects are introduced in the joint through the
contact force model and by friction forces that develop during the contact. In
most of the machines and mechanisms, the joints are designed to operate with
some lubricant fluid. The high pressures generated in the lubricant fluid act to
keep the journal and the bearing surfaces apart. Moreover, the lubricant pro-
vides protection against wear and tear. The importance of the analysis of lubri-
cated joints in the mutibody mechanical systems is obvious due to the demand for
the proper design of the journal-bearings in many industrial applications. In gen-
eral, multibody mechanical systems use journal-bearings in which the load varies
in both magnitude and direction, which results in dynamically loaded journal-
bearing.

In what concerns to the clearance modelization, there are, in general,
three approaches to model mechanical systems with revolute clearance joints,
namely:

• Massless link approach [9, 10], in which the presence of clearance at a joint
is modeled by adding a massless link with a fixed length equal to the radial
clearance, as it is shown inFigure 1a. This results in the mechanism having an
additional degree of freedom. Furthermore, this model assumes that there is
contact between the journal and bearing all the time, being unable to represent
free flight trajectories. Hence, the resulting equations of motion are found to be
highly nonlinear and complex to solve. Wu and Earles [10] used the massless link
model to successfully predict the occurrence of contact loss in revolute joints of
planar linkage mechanisms.
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Figure 1. Examples of models for revolute joints with clearance: (a) massless link model; (b)
spring-damper model.

• Spring-damper approach [5, 6], in which the clearance is modeled by introducing
a spring-damper element, which simulates the surface elasticity as pictured in
Figure 1b. This model does not represent well the physical nature of energy
transfer process, and it is difficult to quantify the parameters of the spring and
damper elements. Dubowsky [11] investigated the dynamic effects of clearance
in planar mechanisms by simulating the elasticity of the contacting surfaces by
linear springs and dampers.

• Momentum exchange approach [1, 12], in this model the journal-bearing ele-
ments are considered as two impacting bodies and contact forces controling the
dynamics of the clearance joint.

Thus, in the massless link and spring-damper models, the clearance is replaced
by equivalent components, which try to simulate the behavior of the clearance as
closely as possible, whereas the momentum exchange approach is more realistic
since the impact force model allows, with high level of approximation, to simulate
the elasticity of the contacting surfaces as well as the energy dissipation during the
impact.

The main emphasis of this paper is on the modeling and the clearance of rev-
olute joints in multibody systems. Cartesian coordinates are used to describe the
system components and the kinematic joints. The equations governing the dy-
namical behavior of the general mechanical systems incorporate the impact force
due to the collision of the journal and the bearing, as well as the hydrodynamic
forces owing to the lubrication effect. A continuous contact model, in which the
local deformation and contact forces are treated as continuous, provides the intra-
joint impact forces. For this model, it is assumed that material compliance and
damping coefficients are available. The friction effects due to the contact in the
joints are also modeled. In addition, a general methodology for modeling lubri-
cated revolute joints in multibody mechanical systems is also presented. Results for
a slider–crank mechanism with a revolute clearance joint between the connecting-
rod and the slider are presented and used to discuss the assumptions and procedures
adopted.
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Figure 2. Schematic representation of a general multibody mechanical system.

2. Equations of Motion for Multibody Systems

To be able to analyze the transient response of a constrained dynamic system, it is
first necessary to formulate the equations of motion that govern the behavior of the
multibody system. Figure 2 depictsa multibody system (MBS), which consists of
a collection of rigid and/or flexible bodies interconnected by kinematic joints and
possibly some force elements. The forces applied over the system components may
be the result of springs, dampers, actuators or external applied forces describing,
gravitational, contact/impact or other forces. A wide variety of mechanical systems
can be modeled in this way [13].

If the configuration of the MBS is described by n Cartesian coordinates q, then
a set of m algebraic kinematic independent holonomic constraints � can be written
in a compact form as,

Φ (q, t) = 0 (1)

Differentiating Equation (1) with respect to time yields the velocity constraint
equation. After a second differentiation with respect to time the acceleration con-
straint equation is obtained

Φqq̇ = υ (2)

Φqq̈ = γ (3)

where Φq is the Jacobian matrix of the constraint equations, υ is the right side of
velocity equations and γ is the right side of acceleration equations, which contains
the terms that are exclusively function of velocity, position and time.
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The equations of motion for a constrained MBS of rigid bodies are written as
[13]

Mq̈ = g + g(c) (4)

where M is the system mass matrix, q̈ is the vector that contains the state accel-
erations, g is the generalized force vector, which contains all external forces and
moments and g(c) is the vector of constraint reaction equations.

The joint reaction forces can be expressed in terms of the Jacobian matrix of the
constraint equations and the vector of Lagrange multipliers as [14]

g(c) = −ΦT
qλ (5)

where λ is the vector that contains m unknown Lagrange multipliers associated
with m holonomic constraints. Substitution of Equation (5) in Equation (4) yields

Mq̈ + ΦT
qλ = g (6)

In dynamic analysis, a unique solution is obtained when the constraint equations
are considered simultaneously with the differential equations of motion with proper
set of initial conditions [13]. Therefore, Equation (3) is appended to Equation (6),
yielding a system of differential algebraic equations that are solved for q̈ and λ.
This system is given by,

[
M ΦT

q

Φq 0

] {
q̈

λ

}
=

{
g

γ

}
(7)

In each integration time-step, the accelerations vector, q̈, together with velocities
vector, q̇, are integrated to obtain the system velocities and positions at the next
time-step. This procedure is repeated up to final time will be reached.

The set of differential algebraic equations of motion (7) does not use explicitly
the position and velocity equations associated to the kinematic constraints, Equa-
tions (1) and (2), respectively. Consequently, for moderate or long time simulations,
the original constraint equations are rapidly violated due to the integration process.
Thus, to stabilize or keep under control the constraints violation, Equation (7) is
solved by using the Baumgarte Stabilization Method [15], and the integration pro-
cess is performed using a predictor-corrector [16] algorithm with variable step and
order.
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3. Model for Revolute Clearance Joints with Dry Contact

3.1. DEFINITION

The existence of clearance in the joints of mechanical systems is inevitable. Some
clearance between the parts of mechanical systems is necessary to allow relative mo-
tion of the connected bodies, as well as to permit the assemblage of the mechanical
systems. The clearance also exists due to manufacturing tolerances, imperfections,
wear and material deformation. It is known that the performance of a MBS is de-
graded by the presence of clearance due to the impact forces, which contribute to
bearing failure due to the shock loading, to reducing life, due to material fatigue,
to generating high noise levels, causing energy dissipation and to excite unwanted
vibratory responses.

In general, a clearance joint can be included in a multibody system much like a
revolute joint. The classical approach, known as zero-clearance approach, considers
that the connecting points of two bodies linked by a revolute joint are coincident.
The introduction of the clearance in a joint separates these two points. Figure 3
depictsa revolute joint with clearance, that is, a journal-bearing. The difference in
radius between the bearing and the journal defines the size of the radial clearance.

Although, a revolute joint with clearance does not constraint any degree of free-
dom from the mechanical system like the ideal joint, it imposes some kinematic
restrictions, limiting the journal to move within the bearing. Thus, when clearance
is present in a revolute joint, the two kinematic constraints are removed and two
degrees of freedom are introduced instead. The dynamics of the joint is then con-
trolled by forces working on the journal and the bearing. Thus, whilst a perfect
revolute joint in a mechanical system imposes kinematic constraints, a revolute
clearance joint leads to force constraints. When contact exists between the journal
and bearing, a contact force is applied perpendicular to the plane of collision. The
force is typically applied as a spring-damper element. If this element is linear,
the approach is known as the Kelvin-Voigt model. When the relation is nonlinear,
the model is generally based on the Hertz contact law [17].

Figure 3. Revolute joint with clearance, that is, the so-called journal-bearing.
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Over the last two decades several published research works have studied the
different modes of motion of the journal inside the bearing [18, 19], namely:

• Contact or following mode, in this mode, the journal and the bearing are in contact
and a sliding motion relative to each other is assumed to exist. In this mode, the
penetration depth varies along the circumference of the journal. This mode is
ended at the instant when the journal and bearing separate and the journal enters
the free-flight mode.

• Free-flight mode, in which the journal moves freely within the bearing bound-
aries, i.e., the journal and the bearing joint are not in contact, hence there is no
reaction force between these two elements.

• Impact mode, which occurs at the termination of the free-flight mode, impact
forces are applied and removed. This mode is characterized by a discontinu-
ity in the kinematic and dynamic characteristics, and a significant exchange of
momentum occurs between the two impacting bodies.

During the dynamic simulation of a revolute joint with clearance, if the path of
the journal center is plotted for each instant, these different modes of motion can
be easily observed.

3.2. MATHEMATICAL MODEL

In order for the real joints to be used, it is necessary to develop a mathematical
model for revolute clearance joints in the multibody mechanical systems. Figure 4
showstwo bodies i and j connected by a generic revolute joint with clearance. Part
of body i is the bearing and part of body j is the journal. The center of mass of

Figure 4. Generic revolute joint with clearance in a multibody mechanical system.



54 P. FLORES ET AL.

bodies i and j are Oi and O j , respectively. Body-fixed coordinate systems ξη are
attached at their center of mass, while the XY coordinate frame represents the global
coordinate system. Point Pi indicates the center of the bearing, and the center of
the journal is at point Pj .

In the dynamic simulation, the behavior of the revolute clearance joint is treated
as an oblique eccentric impact between the journal and the bearing. The mechanics
of this type of impact involve both relative normal velocity and tangential velocity.
When impact occurs, an appropriate contact law is applied and the resulting forces
are introduced as generalized forces in the equations of motion of the MBS.

From Figure 4, the eccentricity vector eij, which connects the centers of the
bearing and the journal, is calculated as,

eij = rP
j − rP

i (8)

where both rP
j and rP

i are described in global coordinates with respect to the inertial
reference frame [13], that is,

rP
k = rk + Aks ′ P

k , (k = i, j) (9)

The magnitude of the eccentricity vector is evaluated as,

eij =
√

eT
ijeij (10)

The unit vector n normal to the surfaces of collision between the bearing and
the journal is aligned with the eccentricity vector. This is written as,

n = eij

eij
(11)

The unit vector has the same direction as the line of centers of the bearing and the
journal. With reference toFigure 5, the penetration depth due to the impact between
the journal and the bearing is evaluated as

δ = eij − c (12)

where c is the radial clearance, given as the difference between the radius of the
journal and the radius of the bearing. Consequently, the radial clearance is specified
quantity.

Let points Qi and Qj indicate the contact points on body i and j , respectively.
Then, the position of the contact or control points Qi and Qj are evaluated as,

rQ
k = rk + Aks′Q

k + Rkn, (k = i, j) (13)

where Ri and R j are the bearing and journal radius, respectively.
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Figure 5. Penetration depth due to the impact between the bearing and the journal.

In some contact models, it is important to evaluate dissipative effects that develop
during impact. In such models it is necessary to calculate the relative velocity
between impacting surfaces. The velocity of the contact points Qi and Qj in the
global coordinate system can be found by differentiating equation (13) with respect
to time, yielding

ṙQ
k = ṙk + Ȧks′Q

k + Rk ṅ, (k = i, j) (14)

where (•̇) denotes the derivative with respect to the time of quantity (•).
The relative velocity of the contact points is projected onto the plane of collision,

yielding a relative normal velocity, vN , and a relative tangential velocity, vT , as
shown in Figure 6. Thenormal relative velocity determines whether the contact
bodies are approaching or separating. Similarly, the tangential relative velocity
determines whether the contact bodies are sliding or sticking. The relative scalar
velocities, normal and tangential to the plane of collision are found by projecting
the relative impact velocity onto each one of these directions,

vN = (
ṙQ

j − ṙQ
i

)T
n (15)

vT = (
ṙQ

j − ṙQ
i

)T
t (16)

where t is obtained by rotating the normal vector n in the counter clockwise
direction by 90◦.

At the contact points work normal and tangential forces, fN and fT , respectively.
These forces can be evaluated using a contact force law and a friction law, for
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Figure 6. Velocities vectors of impact between the bearing and journal.

Figure 7. Force vectors that working at the points of contact.

example the Coulomb law. The contributions to the generalized vector of forces
and moments, g in Equation (7), are found by projecting the normal force and
tangential forces onto the X and Y directions. These forces that act on the contact
points of bodies i and j are transferred to the center of mass of bodies, respectively.
Referring toFigure 7, the forces and moments working on the center of mass of
body iare given by,

fi = fN + fT (17)

mi = −(
yQ

i − yi
)
f x
i + (

x Q
i − xi

)
f y
i (18)
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The forces and moments corresponding to the body j are written as,

f j = − fi (19)

m j = (
x Q

j − x j
)
f y

j − (
yQ

j − y j
)
f x

j (20)

The actual magnitudes of the forces are only dependent on the contact force
model used.

3.3. CONTACT/IMPACT FORCE MODELS

To evaluate efficiently the contact forces between the bearing and journal, in a revo-
lute joint with clearance, special attention must be given to the numerical description
of the contact model. Information on the impact velocity, material properties of the
colliding bodies and geometry characteristics of the surfaces in contact must be
included into the force contact model. These characteristics are observed with a
continuous contact force, in which the deformation and contact force are consid-
ered as continuous functions. Furthermore, it is important that the contact model
can add to the stable integration of the MBS equation of motion.

The simplest contact force relationship, known as Kelvin-Voigt viscous-elastic
model, is modeled by a parallel spring-damper element [20]. The spring represents
the elasticity of the contacting bodies, and the damper describes the loss of kinetic
energy during the impact. This model assumes that both the spring and damper are
linear. When the contact bodies are separating from each other, the energy loss is
included in the contact model by multiplying the rebound force with a coefficient of
restitution. The normal Kelvin-Voigt contact force fN , is calculated from penetration
depth, δ, multiplied by a spring constant, K , yielding

fN =
{

K δ

K δe
if
if

vN > 0
vN < 0

(loading phase)
(unloading phase)

, (21)

where K is the spring stiffness, δ is the relative penetration depth, e is the restitution
coefficient and vN is the relative normal velocity of the colliding bodies. The main
difficulty of this model deals with the quantification of the spring constant, which
depends on the geometry and physical properties of contacting bodies. It is an
oversimplification of the model to assume linear relation between penetration depth
and contact force because the contact force depends on the shape of the surfaces
in contact, the conditions of the surfaces, material properties, and so on, which
suggests a relation of more complex nature.

The best-known contact force law between two spheres of isotropic materials is
due to the pioneering work of Hertz, which is based on the theory of elasticity [21].
The Hertz contact theory is restricted to frictionless surfaces and perfectly elastic
solids. The nonlinear normal contact force, known as the Hertz force-displacement
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law, is evaluated as a function of indentation between two colliding bodies, as
follows,

fN = Kδn (22)

where K is the generalized stiffness contact and δ is the relative normal indentation
between the bodies. The exponent n is generally set to 1.5 for metallic surfaces.
In other materials, such as glass or plastic, it can be either higher or lower. The
generalized parameter K is dependent on the material properties and the shape of
the contact surfaces. For two spheres in contact, the generalized stiffness coefficient
is function on the radii of the spheres body i and j and the material properties as
[22],

K = 4

3π (σi + σ j )

[
Ri R j

Ri − R j

] 1
2

(23)

where the material parameters σi and σ j are given by,

σk = 1 − ν2
k

π Ek
, (k = i, j) (24)

variables νk and Ek are, respectively, the Poisson’s ratio and the Young’s modulus
associated with the material of each sphere. It is important to note that the radius of
the journal, body j , is inserted as negative value because of the opposite curvature
of the impacting surfaces. It is apparent that the Hertz contact law given by Equation
(22) cannot be used during both phases of contact, loading and unloading, since
this model takes not into account the energy dissipation in the process of impact,
i.e., this is a pure elastic contact model. The advantage of the Hertz law relative
to Kelvin-Voigt model is its nonlinearity, that for the case of the parameter n > 1
penalizes the larger penetration.

Hunt and Crossley [23] represent the contact forces by the Hertz force-
displacement law plus a nonlinear visco-elastic element. On the basis of Hunt and
Crossley work, Lankarani and Nikravesh [17] developed a contact force model with
hysteresis damping for impact in multibody systems. This model uses the general
trend of Hertz contact law and a hysteresis damping function is incorporated, which
represents the energy dissipation during the impact. In fact, when an elastic body
is subjected to cyclic load, the energy loss in the material causes a hysteresis loop
in the force-displacement diagram. The contact force including internal damping
can be written as [17]

fN = Kδn

[
1 + 3(1 − e2)

4

δ̇

δ̇
(−)

]
(25)
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where the generalized parameter K can be evaluated by Equations (23) and (24),
e is the restitution coefficient, δ̇ is the relative penetration velocity and δ̇

(−)
is the

relative impact velocity. Equation (25) is only valid for impact velocities lower than
the propagation velocity of elastic waves across the bodies, i.e., δ̇(−) ≤ 10−5

√
E/ρ,

where E is the Young modulus and ρ is the material mass density [24]. The velocity
of wave propagation

√
E/ρ, is the larger of two propagation velocities of the elastic

deformation waves in the colliding bodies. Impact at higher velocities, exceeding
the propagation velocity of the elastic deformation waves, is likely to dissipate
energy in a form of permanent indentation. Lankarani and Nikravesh [25] also
proposed a new approach for contact force analysis, which includes permanent
indentation. Indeed, at fairly moderate or higher velocities of colliding bodies,
especially metallic solids, permanent indentations are left behind on the colliding
surfaces. Hence, local plasticity of the surfaces in contact becomes the dominant
source of energy dissipation during impact.

The contact models given by Equations (22) and (25) are only valid for impacts
between colliding spheres. For an internal pin configuration, a literature search
has failed to yield a force-displacement relationship for an elastic pin in a circular
hole or the contact between two cylinders. Based on Hertz theory, Dubowsky and
Freudenstein [6] presented an expression for the indentation as function of the
contact force for the internal of a shaft inside a cylinder as,

δ = fN

(
σi + σ j

L

)[
ln

(
Lm(Ri − R j )

fN Ri R j (σi + σ j )

)
+ 1

]
(26)

where Rij and σ ij represent the same quantities that appear in Equation (23), L is the
length of the cylinder and the exponent m has a value 3. With the indentation depth,
δ, known in Equation (26) it is necessary to employ an iterative scheme, such as
Newton-Raphson method to solve it for the normal contact force fN . An equation
similar expression (26) was suggested by Goldsmith [22], but with exponent value
of m equal to 1. This value, however, leads to a problem with the consistency
of units. The ESDU-78035 Tribology Series [26] presented some expressions for
contact mechanics analysis. For a circular contact the ESDU-78035 model is the
same as the pure Hertz law. For rectangular contact, e.g., a pin inside a cylinder,
the expression is,

δ = fN

(
σi + σ j

L

)[
ln

(
4L(Ri − R j )

fN (σi + σ j )

)
+ 1

]
(27)

The cylindrical models presented above are purely elastic, i.e., no energy dissi-
pation is accounted during impact process. Thus, Lankarani and Nikravesh contact
force model given by Equation (25), which is valid only for colliding spheres, is
largely used for cylindrical contacts own to its simplicity. An equivalent stiffness
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value, obtained from using Equation (26) or (27), is used in Equation (25) in case
of cylinder-to-cylinder contact.

3.4. FRICTION FORCE MODEL

In a multibody system, friction forces are likely to appear in joints where there are
contacting surfaces belonging to different bodies that have a relative sliding mo-
tion. The Coulomb law [27] of sliding friction can represent the most fundamental
and simplest model of friction between dry contacting surfaces. This law relates
tangential and normal components of reaction force at the contact point by intro-
ducing a coefficient of friction, which acts if relative sliding occurs. The computer
implementation of the Coulomb friction model in a general-purpose program can
lead to numerical difficulties, as it is highly nonlinear and it can involve switching
between sliding and stiction conditions. A consistent consideration of the Coulomb
friction model can be found in some research papers devoted to subject [28, 29].
The dynamic friction force, in the presence of sliding, can be written as [30]

fT = −c f cd fN
vT

vT
(28)

where c f is the friction coefficient, fN is the normal force, vT is the relative tan-
gential velocity and cd is a dynamic correction coefficient, which is expressed as,

cd =




0 if vT ≤ v0

vT − v0

v1 − v0
if v0 ≤ vT ≤ v1

1 if vT ≥ v1

(29)

The dynamic correction factor prevents that the friction force changes direction
for almost null values of the tangential velocity, which is perceived by the integration
algorithm as a dynamic response with high frequency contents, forcing to reduce
the time-step size. The modified friction model represented by Equation (28) does
not account for the adherence between the sliding contact surfaces.

3.5. NUMERICAL ASPECTS ASSOCIATED TO THE CONTACT ANALYSIS

As mentioned before in a revolute clearance joint three different types of motion
between the journal and the bearing can be observed, namely: free flight motion,
impact mode and continuous contact motion [19]. In dynamic simulation it is very
important to find the precise instant of transition between these different sates. This
requires close interaction with the numerical procedure to continuously detect and
analyze all types of motion. If not, errors may built-up and the final results will be
inaccurate.
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When a system consists of fast and slow components, that is, the eigenvalues are
widely spread, the system is designated as being stiff [13]. Stiffness in the system
equations of motion arises, when the gross motion of the overall mechanism is
combined with the nonlinear contact forces that lead to rapid changes in velocity
and accelerations. In addition, when the equations of motion are described by a
coupled set of differential and algebraic equations, the error of the response system is
particularly sensitive to constraints violation. Constraints violation inevitably leads
to artificial and undesired changes in the energy of the system. However, by applying
a stabilization technique the constraint violation can be reduced and kept under
control. During the numerical integration procedure, both the order and the step size
are adjusted to keep the error tolerance under control. In particular, the variable step
size of the integration scheme is a desirable feature when integrating systems that
exhibit different time scales, such as in MBS with clearance joints. Thus, large steps
are taken when the motion is controlled by free flight type and when impact occurs
the step size is decreased substantially to capture the high frequency response of the
system.

One of the most critical aspects in dynamic simulation of the MBS with revo-
lute clearance joints is the detection of the precise instant of contact between the
journal and the bearing. In addition, the numerical model to characterize the contact
between the bodies requires the knowledge of the preimpact conditions, that is, the
impact velocity and the direction of the plane of collision. The contact duration as
well as the penetration cannot be predicted from the preimpact conditions due to
the influence of the kinematic constraint imposed by all bodies in the overall system
motion. Thus, before the first impact, the journal can freely move inside the bearing
and, in this phase, the step size is relatively large and the global configuration of the
system is characterized by large translational and rotational displacements. There-
fore, the first impact between the journal and the bearing is often made with a high
penetration depth, and, consequently, the contact forces are large too. Associated to
this overestimated penetration depth between the bodies there are numerical errors
that cause inaccurate results.

As it was previously presented, the relative position between the journal and the
bearing are given,

δ = eij − c (30)

where eij is the absolute eccentricity, and c is the radial clearance. Negative values
of δ mean that there is no contact between the journal and the bearing. Otherwise,
there is contact between the two bodies. Thus, the detection of the instant of contact
occurs when the sign of penetration changes between the two discrete moments in
time, t and t + 
t , i.e.,

δ(q(t))T δ(q(t + 
t)) < 0 (31)
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Therefore, contact is detected when Equation (31) is verified. Such moment in
time can be found by using an iterative procedure, such as the Newton-Raphson
method.

An alternative way to determine the instant of contact uses the characteristics
the integration algorithm selected. Say that during the normal integration procedure
the first contact is detected and that the value of the penetration is higher that a
prescribed tolerance. In such case the integration time-step is rejected and a new
time-step smaller than the previous is tested. The integration process progresses,
most probably from a system state for which there is no contact and progresses until
contact is detected again. Because the time-step is smaller it is expected that the
penetration of this first contact is smaller than the one obtained before. The time-
step is rejected until a step is taken, which is within the penetration tolerance. When
the ‘first’ penetration is within the penetration tolerance, it is assumed that such is
the moment of the impact and the position and relative velocity of the contact points
and the direction of the plane of collision are recorded. It should be highlighted that
with this methodology, the step size can reach small values too when compared to
the step needed to keep the integration tolerance error under control. Hence, the
numerical system can become unstable if the penetration tolerance imposed is too
small. In the present work, the contact detection is based on this strategy.

4. Lubricated Revolute Joints

4.1. DYNAMICALLY LOADED JOURNAL-BEARINGS

In most of the machines and mechanisms, the joints are designed to operate with
some lubricant fluid. The high pressures generated in the lubricant fluid act to keep
the journal and the bearing apart. Moreover, the thin film formed by lubricant re-
duces friction and wear, provides some load capacity, and adds damping to dissipate
undesirable mechanical vibrations. In general, multibody mechanical systems use
journal-bearings, in which the load varies in both magnitude and direction, result-
ing in dynamically loaded journal-bearing. Typical examples of dynamically loaded
journal-bearings include the crankshaft bearings in combustion engines, and high-
speed turbines bearings supporting dynamic loads caused by unbalanced rotors.

In a broad sense, dynamically loaded journal-bearings can be classified into two
groups, namely: squeeze-film action and wedge-film action [31]. The first group
refers to the situations in which the journal does not rotate about its center, rather,
the journal moves along some path inside the bearing. The second group deals with
cases in which there is journal rotation. In a journal-bearing, squeeze-film action
is dominant when the relative rotational velocity is small compared to the relative
radial velocity. When the relative rotational velocity between the two elements is
high the wedge-film effect must also be considered.

Reynolds’ equation is used to evaluate the forces developed by the fluid film
pressure field. Pinkus and Sternlicht [31], among others, have presented a detailed
derivation of the Reynolds’ equation, which can be deduced from the Navier-Stokes
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equations. The Reynolds’ equation involves viscosity, density and film thickness as
parameters. By setting fluid density constant, the isothermal generalized Reynolds’
equation is [31],

∂

∂ X

(
h3

µ

∂p

∂ X

)
+ ∂

∂ Z

(
h3

µ

∂p

∂ Z

)
= 6U

∂h

∂ X
+ 12

dh

dt
(32)

The two terms on the right-hand side of Equation (32) represent the two different
effects of pressure generation in the lubricant film, that is, wedge-film action and
squeeze-film action, respectively. In the present analysis instead of knowing the
applied load, the relative journal-bearing motion characteristics are known and the
fluid force from the pressure distribution in the lubricant is the quantity that has to
be calculated.

4.2. SQUEEZE-FILM FORCE FOR LONG JOURNAL-BEARINGS

Equation (32) is a nonhomogeneous partial differential of elliptical type. The exact
solution of the Reynolds’ equation is difficult to obtain, and in general requires
considerable numerical effort. It is possible to solve the equation approximately
when the first or the second terms on the left-hand side are treated as zero, corre-
sponding the solutions to an infinitely short and an infinitely long journal-bearing,
respectively.

For an infinitely long journal-bearing, a constant fluid pressure and negligible
leakage in the Z-direction is assumed. In many cases it is possible to treat a journal-
bearing as infinitely long and consider only the middle point of it. This approach
is valid for length-to-diameter (L/D) ratios greater than 2 [32].

In what follows, the expression for squeeze force of infinite journal-bearings
is presented. Squeeze forces are exerted when a fluid is squeezed between two
approaching surfaces. In journal-bearing, squeeze-film action is dominant when
the relative rotational velocity is small compared to the relative radial velocity, and
consequently it is justifiable to drop the wedge-film term in the Reynolds’ equation.
The objective is to evaluate the resulting force from the given state of position and
velocity of the journal-bearing.

In the approximation of an infinitely long journal-bearing, the axial flow is ne-
glected when compared with the circumferential flow; hence the Reynolds’ equation
reduces to a one dimensional problem and the pressure filed is given by [32]

p = 6µR3
J ε̇

c2

cos θ (2 − ε cos θ )

(1 − ε cos θ )2 (33)

The force f on the journal that must be applied to equilibrate the fluid pressure
can be evaluated as an integral of the pressure filed over the surface of the journal
yielding,
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f = 12πµL R3
J ε̇

c2(1 − ε2)
3
2

(34)

where µ is the dynamic lubricant viscosity, L is the journal-bearing length, RJ is
the journal radius, c is the radial clearance ε is the eccentricity ratio and ε̇ is the
time rate of change of eccentricity ratio.

The direction of the force is collinear with the line of centers of the jour-
nal and bearing, which is described by the eccentricity vector. Thus, the squeeze
force can be introduced into the equation of motion of MBS as generalized force
with the journal and bearing centers as points of action for the force and reac-
tion force, respectively. It should be highlighted that the effect of cavitation is
not considered in Equation (34), that is, it is assumed that a continuous film ex-
ists all around the journal-bearing. However, these conditions are not satisfactory
from the physical point of view because the lubricant fluids cannot sustain nega-
tive pressures. Based on the mechanics of the journal-bearing of pure squeeze-film
action journal-bearing, Ravn [33] includes cavitation effect assuming that negative
pressure occurs on the half of journal surface, which faces away from the moving
direction.

4.3. MODELING LUBRICATED REVOLUTE JOINTS – HYBRID MODEL

Lubricated revolute joints in MBS do not produce any kinematic constraint like
the ideal revolute joints. Instead, they act like a force element producing time
dependent forces. Unlike the dry contact model, in a revolute clearance joint with
lubricant the gap between the journal and bearing is filled with a lubricant fluid.
When there is relative motion between the journal and bearing, the force produced
is not zero but depends on the viscosity of the lubricant and the relative position and
velocity.

Equation (34), which represents the action on the journal that maintains in
equilibrium the field pressure, is valid for situations when the load-capacity of the
wedge-film effect is negligible compared to that of the squeeze-film effect. In the
squeeze-film lubrication, the journal moves along a radial line in the direction of
the applied load, thus, the film thickness decreases and the fluid is forced to flow
up around the journal and out the ends of the bearing. Since the squeeze force
is proportional to the rate of decrease of fluid film thickness, it is apparent the
lubricant acts like a nonlinear viscous damper resisting to the load when the film
thickness is decreasing. As the fluid film thickness becomes very thin, that is, the
journal is very close to the bearing surface, the force due to the lubricant evaluated
from Equation (34) becomes very large. Hence, a discontinuity appears when the
film thickness approaches zero, and, consequently, the squeeze force approaches
infinity. It is, therefore, assumed that for a certain film thickness, called boundary
layer, the fluid can no longer be squeezed out and the journal and bearing wall are
considered to be in contact, in a similar way as in the dry contact situation.
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The practical criterion for determining whether or not a journal-bearing is oper-
ating satisfactorily is the value of the minimum oil film thickness, which is probably
the most important parameter in the performance of the journal-bearings. However,
it is not easy to establish a unique value of minimum film thickness that can be
assumed to be safe since a great deal depends on the manufacturing process, the
alignment of the machine elements associated with the journal-bearings, the general
operating conditions, including the environment of the machine, amongst others.
Moreover, the value of the minimum oil film thickness defines the kind of regime of
lubrication is present in the journal-bearing, namely: thick-film lubrication, where
the journal-bearing surfaces are totally separated by the lubricant; thin-film lubri-
cation, in which the field of pressure developed, produces elastic deformation. The
lubrication between two moving surfaces can shift from one of these two regimes to
another, depending on the load, velocity, lubricant viscosity, roughness of surfaces.

For highly loaded contact, the pressure causes elastic deformation of the sur-
faces, which can be of the same order as the lubricant film thickness. These circum-
stances are dramatically different from those found in hydrodynamic regime. The
contribution of the theory of elasticity with the hydrodynamic lubrication is called
Elasto-Hydrodynamic Lubrication theory (EHL).

Figure 8 schematicallyshows the shape of the lubricant film thickness and the
pressure distribution within a typical Elasto-Hydrodynamic contact. Due to the
normal load P the contacting bodies are deformed. The viscous lubricant, adhering
to the surfaces of the moving bodies, is dragged into the high-pressure zone of the
contact, therefore, separates the mating surfaces. The pressure distribution within
Elasto-Hydrodynamic contact is similar to the dry Hertzian pressure distribution.
At the inlet zone, the pressure is slowly built-up until it approximately reaches the
maximum Hertzian pressure p. The Elasto-Hydrodynamic lubrication theory goes
beyond the scope of the present work.

A hybrid model, which combines the squeeze-film action and the dry con-
tact model, is proposed. Figure 9 showsa partial view of a mechanical system

Figure 8. Typical Elasto-Hydrodynamic contact; qualitative shape lubricant film and pressure
profile.
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Figure 9. Mechanical system representing a revolute joint with lubricant effect.

representing a revolute clearance joint with lubrication effect, where both the jour-
nal and the bearing can have planar motion. The parallel spring-damper element
represented by a continuous line refers to the solid-to-solid contact between the
journal and the bearing wall, whereas, the damper represented by a dashed line is
required only for the lubricated model [34].

If there is no lubricant between the journal and the bearing, the journal can freely
move inside the bearing boundaries. When the gap between the two elements is
filled with a fluid lubricant, a viscous resistance force exists and opposes to the
journal motion. Since the radial clearance is specified, the journal and bearing can
work in two different modes:

• Mode 1: the journal and the bearing wall are not in contact with each other
and they have a relative radial motion. For the journal-bearing model without
lubricant, when eij < c the journal is in free flight motion and the forces associated
to the journal and bearing are null. For lubricated journal-bearing model, the
lubricant transmits a force, which must be evaluated from the state variables of
the mechanical system.

• Mode 2: the journal and bearing wall are in contact, thus the contact force between
the journal and the bearing is modeled as nonlinear Hertz contact law with a
hysteresis damping factor.

In short, for a lubricated revolute joint, when the film thickness decreases to
the thickness of the boundary layer the model switches from mode 1 to mode
2 and the procedure for the dry contact model is used. After the journal changes
direction and the bearing wall deformation return to zero, the model switches back to
mode 1.

Since the EHL pressure profile is similar to the Hertzian pressure distribution, it
is reasonable to change from squeeze-film action, hydrodynamic lubrication regime,
to pure dry contact model. To avoid numerical instabilities and to ensure a smooth
transition from pure squeeze-film model to dry contact model, a weighted average
is used. When the journal reaches the boundary layer, for which the hydrodynamic
theory is not valid, the squeeze-film force model is being substituted by the dry
contact force model (seeFigures 10a and 10b).
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Figure 10. (a) Pure squeeze and dry contact force models; (b) and hybrid force model.

This approach ensures continuity in the joint reaction force, when the squeeze
force model is switched to dry contact force model. Mathematically, the hybrid
force model is,

f =




fsqueeze if e ≤ c

(c + e0) − e

e0
fsqueeze + e − c

e0
fdry if c ≤ e ≤ c + e0

fdry if e ≥ c + e0

(35)

where e0 and e1 are given tolerances for the eccentricity. The values of these param-
eters must be chosen carefully, since they depend strongly on the clearance size.
It should be noted that the clearance used for the pure squeeze-film force model is
not c but it is c + e1 instead.

5. Application Example – Slider–Crank Mechanism

An elementary slider–crank mechanism is used to study the influence of clearance
joint models in the dynamic behavior. Figure 11 showsthe configuration of the
slider–crank mechanism, which consists of four rigid bodies, that represent the

Figure 11. Slider-crank mechanism with a revolute clearance joint.
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Table I. Geometric and inertia propertites of slider–crank mechanism.

Moment of
Body Nr. Length (m) Mass (Kg) inertia (Kgm2)

2 0.05 0.30 0.00001

3 0.12 0.21 0.00025

4 – 0.14 –

Table II. Simulation parameters for the slider–crank mechanism.

Bearing radius 10.0 mm Poisson’s ratio 0.3

Journal radius 9.5 mm Baumgarte – α 5

Restitution coefficient 0.9 Baumgarte – β 5

Friction coefficient 0.03 Integration step size 0.00001 s

Young’s modulus 207GPa Integration tolerance 0.000001

crank, connecting-rod, slider and ground, two ideal revolute joints and one ideal
translational joint. A revolute clearance joint exists between the connecting-rod and
slider. The length and inertia properties of each body are shown inTable I.

In the dynamic simulation, the crank rotates at constant angular velocity equal to
5000 r.p.m. clockwise. The initial simulation configuration corresponds to the top
dead point and the position and velocity journal center are taken to be zero. Initially,
the journal and bearing centers coincide.Table II shows the dynamic parameters
used in simulation.

Three different situations are analyzed in this work. In the first one, the contact
between the journal and the bearing is modeled as dry frictionless contact and the
contact force law is given by Equation (25). This model is only valid for colliding
spherical surfaces, however, the use is motivated by its simplicity and easiness to
implement in a computational program. In the second case, the dry contact is also
modeled with Coulomb friction expressed by Equation (28). In the third situation,
a hybrid model, that is, a mix between the squeeze force and dry contact force, is
used. The behavior of the slider–crank mechanism is quantified by the values of
the slider velocity and acceleration, and torque that acts on the crank. In addition,
the relative motion between the journal and bearing centers are plotted. The results
are provided for two complete crank rotations after steady-state has been reached.

For the first simulation the slider velocity and acceleration are shown
inFigure 12(a) and 12(b), respectively. Looking at the velocity curve of the slider,
the influence of the joint clearance is clearly observed. The horizontal lines in the
velocities correspond to constant slider velocity which occurs when the journal is
in free flight motion inside the bearing. Sudden changes in velocity are own to
the impact between the journal and bearing, which are visible by the step shaped
curve of the velocity diagram. Smooth changes in velocity can also be observed
indicating that the journal and the bearing are in continuous contact, i.e., the journal
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Figure 12. Velocity (a) and acceleration (b) of the slider for the dry contact model without
friction.

Figure 13. Crank moment (a) and journal center path (b) for the dry contact model without
friction.

follows the bearing wall. This situation is confirmed by smooth changes in the ac-
celeration curve. The impacts between the journal and bearing are visible in the
acceleration curve by high peak values, which are immediately followed by null
acceleration that correspond to the free flight motion.

The moment applied on the crank to be able to maintain constant, the crank
angular velocity is shown inFigure 13(a). The peaks observed on the moment curve
are due to the impact forces that are propagated through the rigid bodies of the slider–
crank mechanism. The path of the journal center relative to the bearing center is
shown in Figure 13(b), where it can be clearly observed the different types of motion
between the journal and the bearing, that is, the free flight motion, the impact with
rebound, and the continuous contact. The relative penetration depth is visible by the
points outside the clearance circle. A point is plotted for each integration time-step.
The point density in Figure 13(b) is very high when the journal contacts the bearing,
which means that the step size is small. When the journal is in free flight motion
the time-step is increased and consequently the dots plotted in the Figure 13(b) are
further apart.
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Figure 14. Velocity (a) and acceleration (b) of the slider for the dry contact model with friction.

Figure 15. Crank moment (a) and journal center path (b) for the dry contact model with friction.

The second simulation refers to the case, in which the contact between the
journal and bearing is modeled by the Lankarani and Nikravesh contact force model
together with the Coulomb friction law. In a general, the effect of the friction is
to reduce the force peaks due to the impact between the journal and the bearing.
This can be observed in the velocity and acceleration slider curves given byFigures
14(a) and 14(b), respectively.Figure 15(b) shows that the path of the journal center
is characterized by a continuous contact motion, i.e., the journal follow the bearing
wall during all simulation.

The third simulation deals to the case of hybrid model, which combines the
squeeze-film action and the dry contact model. The lubricant in the example is a
SAE grade 40, which is used in combustion engines. The absolute lubricant viscosity
is 400cP. It can be observed in the results for this case, displayedinFigures 16 and
17, that the same qualitative behavior is observed when compared to the case where
friction forces are modeled. The lubricant acts like a damper reducing the level of
impacts between the journal and bearing.

The overall results are corroborated by published works on this field for the
cases that include the dry contact force models [1, 8]. The results obtained with the
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Figure 16. Velocity (a) and acceleration (b) of the slider for the hybrid model.

Figure 17. Crank moment (a) and journal center path (b) for the hybrid model.

hybrid model are validated qualitatively by reference to the other models described.
Because this is a model proposed for the first time, it is not possible to find in the
literature any results that allow for its quantitative validation.

6. Conclusions

A comprehensive approach to the modeling revolute clearance joints in multibody
systems has been presented in this work. In the process different contact models have
been revised in face of their suitability to represent the impact between the bodies
joined by the joint. The methodologies proposed have been exemplified through the
application to the dynamics of a slider–crank mechanism with a revolute clearance
joint. It was shown that the solution strategy of the contact problem associated with
the modeling of joints with clearances is very sensitive to the procedure used to
detect contact. In the sequel of the techniques, a numerical strategy compatible with
the use of a variable time-step integration algorithm has been proposed to have a
time-step selection strategy that is compatible with the identification of the start of
contact.
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The application of the methodologies proposed to the slider–crank enabled to
demonstrate the feasibility of the three contact models proposed. It was shown
that the use of the continuous force model, which represents dry contact, when no
friction forces are considered lead to unrealistic high peaks in the slider acceleration
because the energy dissipation predicted is clearly too low. However, for dry contact
model with friction forces or for the hybrid model, the levels of impact force is
reduced considerably, and thereby simulate the actual mechanical systems more
realistically, when the results are compared with those proposed in the literature.
The hybrid model that considers the existence of the lubrication during the free flight
of the journal and the possibility for dry contact under some conditions seems to be
very well fitted to describe joints with clearances. However, because this is a novel
model there are no results in the literature yet that can support this observation.

An important result from this research work is that mechanical systems with
clearance joints can have a predictable nonlinear dynamic response and the method-
ology allows for the calculation of the variation of the driving moments. This is an
important feature for the design and control of these systems. The models presented
throughout this paper can be used to predict the dynamic response of the machines
and mechanisms having clearance joints, namely in what concerns the peak values
of impact forces and position and velocity deviations.
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