
Universidade do Minho
Escola de Engenharia

Tiago Magalhães

Implementation of a virtualized 5G network

June, 2023

Universidade do Minho
Escola de Engenharia

Tiago Magalhães

Implementation of a virtualized 5G network

Master Dissertation

Integrated Master Degree in Informatics Engineering

Work supervised by

António Luís Duarte Costa

Helena Fernández López

June, 2023

ii

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

,

(Location) (Date)

(Tiago Magalhães)

Acknowledgements

I would like to express my gratitude to my supervisors for their support and guidance and for allowing me

to take this dissertation. I would also like to thank my friends whom I have met during my university course.

I am grateful for the great memories and experiences shared and the support and help they provided me.

Furthermore, I would like to thank my family, especially my parents and brother, for allowing me to pursue

my studies at the university and for their support throughout these years.

iv

Abstract

Implementation of a virtualized 5G network

Many organizations have developed open software components for 5G (Fifth Generation) networks and

recognize the importance of new technologies based on virtualization and softwarization.

With these solutions, it is possible to implement a 5G virtualized network without having access to a

mobile network, which has many restrictions.

Implementing a 5G testbed is essential because it allows the creation of a framework that can enable

the development and research of new solutions related to 5G.

This dissertation proposes a solution that uses open-source software to emulate the access network

and deploys software modules that implement core network functionalities. Moreover, network capabilities,

as well as interoperability, are described.

Keywords: 5G Simulation, 5G Testbed, 5G Virtualization, Softwarization, Emulator

v

Resumo

Implementação de uma rede 5G virtualizada

Muitas organizações têm desenvolvido soluções de software aberto para componentes da rede 5G

(Fifth Generation) e reconhecido a importância de novas tecnologias baseadas em virtualização e em

princípios de software.

É possível implementar uma rede virtualizada 5G com base nestas soluções, sem necessidade de ter

acesso a uma rede móvel, o que possui muitas restrições.

A criação de um ambiente de testes 5G é importante, uma vez que permite criar uma estrutura que

pode possibilitar o desenvolvimento e o estudo de novas soluções relacionadas com o 5G.

Nesta dissertação, é proposta uma solução emulando a rede de acesso e implementando um core

recorrendo a software de código aberto. As capacidades da rede são descritas, bem como a interopera-

bilidade entre as diferentes soluções.

Palavras-chave:

5G, Ambiente de testes, Virtualização, Software, Emulador

vi

Contents

List of Figures x

Listings xii

Glossary xiii

Acronyms xiv

1 Introduction 1

1.1 Context . 1

1.2 Problem . 2

1.3 Motivation . 2

1.4 Objectives . 3

1.5 Document Structure . 3

2 Concepts and technologies 4

2.1 5G . 4

2.1.1 5G Architecture . 5

2.2 ETSI NFV MANO . 8

2.2.1 NFV . 8

2.3 SDN . 10

2.4 Emulators and Simulators . 11

2.4.1 Simulators . 11

2.4.2 Emulators . 12

2.5 Simu5G . 12

2.6 Discrete Event Simulation . 13

2.6.1 Discrete Event Simulation in OMNeT++ 14

2.7 Core Network . 14

2.7.1 OAI . 14

2.7.2 free5GC . 15

vii

CONTENTS

2.7.3 Open5GS . 15

2.7.4 Magma . 15

2.8 Summary . 16

3 Literature Review 17

3.1 Towards softwarization and virtualization of 5G networks 18

3.1.1 Radio Access Network . 18

3.1.2 Core Network . 19

3.1.3 Transport Networks . 19

3.1.4 Open virtualization and management frameworks 19

3.1.5 Mobile Edge Computing . 20

3.2 5G testbeds . 20

3.2.1 Open and Programmable 5G Network-in-a-Box 20

3.2.2 5G Testbed Development for Network Slicing 21

3.2.3 Testbed for 5G Connected Artificial Intelligence on Virtualized Networks . . . 22

3.2.4 Virtualized C-RAN with Mininet and OAI Supporting Flexible Network Topologies 23

3.2.5 A Cloud-based SDN / NFV Testbed for End-to-End Network Slicing in 4G / 5G. 23

3.3 Summary . 24

4 Conceptual Solution 25

4.1 RAN and user terminal emulation/simulation . 25

4.1.1 5G Core . 31

4.2 Virtualized 5G Network design . 32

5 Implementation 34

5.1 Simu5G Virtual Machine installation . 34

5.1.1 Simu5G Virtual Machine hardware . 34

5.1.2 Simu5G prerequisites . 34

5.2 Free5GC Virtual Machine installation . 36

5.2.1 Free5GC prerequisites . 36

5.3 Network Setup . 40

5.3.1 Virtual Machines Connection . 40

5.3.2 Simu5G Network . 41

5.4 Simu5G MEC framework . 44

5.4.1 MEC Apps implementation . 46

6 Results 57

viii

CONTENTS

6.1 Simulation test . 57

6.2 End-to-end system test . 58

6.3 Simu5G MEC Framework test . 62

7 Conclusions and future work 65

7.1 Conclusion . 65

7.2 Future Work . 67

Bibliography 68

ix

List of Figures

1 5G High Level System architecture (Extracted from [16]). 6

2 NFV MANO framework architecture (Extracted from [17]). 9

3 SDN architecture (Extracted from [19]). 11

4 Architecture of the testbed ”Open and Programmable 5G Network-in-a-Box”(Extracted from

[33]). 20

5 Architecture of the testbed ”5G Testbed Development for Network Slicing”(Extracted from

[34]). 21

6 Architecture of the testbed ”5G Connected Artificial Intelligence on Virtualized Networks”(Extracted

from [35]). 22

7 Architecture of the testbed ”Virtualized C-RAN with Mininet and OAI Supporting Flexible Net-

work Topologies”(Extracted from [38]). 23

8 Architecture of the testbed ”A Cloud-based SDN / NFV Testbed for End-to-End Network Slicing

in 4G / 5G”(Extracted from [39]). 23

9 5G System Design. 32

10 Simu5G simulation scenarios. 33

11 VM1 architecture . 43

12 MEC architecture (Extracted from [53]) . 44

13 MEC App model. 55

14 UE App model. 56

15 Simu5G simulation scenarios. 58

16 Wireshark packets captured from scenario 1. 58

17 Ping command. 59

18 IP routes in application namespace. 59

19 Sim-veth2 traffic. 59

20 Emulation running. 59

21 Ping to the simulated router. 60

x

List of Figures

22 veth1 traffic . 60

23 sim-veth1 traffic . 60

24 uesimtun0 traffic. 61

25 upfgtp traffic. 61

26 Ping response. 61

27 Ping response. 61

28 MEC App execution. 63

29 UE App execution. 63

30 Traffic image sent to MEC App. 63

31 Image resulting from detection sent to UE App. 63

xi

Listings

4.1 NED file excerpt example of Simu5G usage. 28

4.2 INI file excerpt example of Simu5G usage. 29

5.1 01-network-manager-all.yaml Simu5G Virtual Machine (VM). 40

5.2 Router mrt file Simu5G emulation. 41

5.3 Application Descriptor example. 45

5.4 Application Descriptor with emulated MEC App. 45

5.5 Initialized method with device app. 47

5.6 Defining initial events. 47

5.7 Schedule first event. 48

5.8 Register signal. 48

5.9 handleMessage first block . 48

5.10 handleMessage second block . 49

5.11 handleMessage third block . 50

5.12 Costum Packet definition in mypacket.msg file . 51

5.13 Process Ack Start. 51

5.14 Handle Event. 52

5.15 InitializeMecApp. 53

5.16 handleProcessedMessage. 53

5.17 handleEvent in MECApp. 54

xii

Glossary

eNB eNB (sam as eNodeB) is a 3GPP-compliant implementation of the 4G base station.

eNodeB eNodeB is a 3GPP-compliant implementation of the 4G base station.

gNB gNB (same as gNodeB) is a 3GPP-compliant implementation of the 5G base station.

gNodeB gNodeB is a 3GPP-compliant implementation of the 5G base station.

Non Standalone 5G RAN is used with the existing LTE RAN and Core.

Standalone The standalone (SA) mode of 5G uses 5G RAN with 5G Core instead LTE Evolved

Packet Core.

xiii

Acronyms

3D Three dimensional

3GPP 3rd Generation Partnership Project

5G Fifth Generation

5GC 5G Core Network

AF Application Function

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

AUSF Authentication Server Function

BBU Baseband Unit

BS Base Station

CBR Constant Bit Rate

CLI Command Line Interface

CN Core Network

COTS commercial off-the-shelf

CPU Central Processing Unit

CU Central Unit

CUPS Control and User Plane Separation

D2D Device to Device

DL Downlink

DN Data Network

DU Distributed Unit

xiv

ACRONYMS

e2e End-to-End

EPC Envolved Packet Core

ETSI European Telecommunications Standards Institute

FCAPS Fault, Configuration, Accounting, Performance, and Security

FDD Frequency Division Duplex

FES Future Event Set

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IoT Internet of things

LTE Long Term Evolution

M2M Machine to Machine

MAC Media Access Control Layer

MANO Management and Orchestration

MEC Multi Access Edge Computing

MIMO Multiple-Input Multiple-Output

ML Machine Learning

mm-wave Millimeter Wave

NEF Network Exposure Function

NF Network Functions

NFV Network Function Virtualization

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NG New Generation

NRF Network Repository Function

xv

ACRONYMS

NS Network Service

NSF Network Exposure Function

NSSF Network Slice Selection Function

OAI Open Air Interface

PCF Policy Control Function

PDU Packet Data Unit

PFC Policy Control Function

PHY Physical Layer

PNF Physical Network Functions

RAN Radio Access Network

REST Representational State Transfer

RF Radio Frequency

RRC Radio Resource Control

RRH Remote Radio Head

RU Radio Unit

SBI Service-based Interfaces

SDN Software Defined Network

SMF Session Management Function

SON Self-Organizing Network

SSH Secure Socket Shell

TLS Transport Layer Security

TN Transport Network

UDM Unified Data Management

UDP User Datagram Protocol

UDR Unified Data Repository

UDSF Unstructured Data Storage Function

xvi

ACRONYMS

UE User Equipment

UL Uplink

UPF User Plane Function

veth Virtual Ethernet

VIM Virtualized Infrastructure Manager

VL Virtual Link

VM Virtual Machine

VNF Virtual Network Function

VNFM VNF Manager

VoD Trace-based Video-on-demands

VoIP Voice-over-IP

xvii

C
h
a
p
te

r

1
Introduction

To make the Fifth Generation (5G) networks more accessible, cost-effective, and efficient, virtualization

and softwarization techniques like Software Defined Network (SDN) and Network Function Virtualization

(NFV) are being used. These technologies allow for breaking down network functions into smaller blocks,

increasing flexibility and reducing costs.

This dissertation discusses the problem of testing and developing new 5G solutions due to vendor

constraints, licenses, and specialized equipment, especially with the high cost of 5G Base Stations (BSs).

The motivation for this research is to create a virtualized 5G network using open-source software that can

be used for future experimentation.

The objectives of this research are to identify and use free software modules to implement the core

functionalities of the 5G network and create scenarios of increasing complexity to test these functionalities.

The document is structured into six additional chapters that cover the research methodology, literature

review, simulation and emulation of 5G networks, evaluation of scenarios, and finally, conclusion.

1.1 Context

With the increase in the use of smartphones, and the emergence of Internet of things (IoT) and new

applications such as self-driving cars, Three dimensional (3D) video, and ultra-high definition screens, it is

essential that the network can respond to pressing challenges, such as scalability, and the need for higher

data rates. Thus, the 5G cellular network will be essential to meet these demands [1, 2].

There was a gradual evolution until this generation, starting in 1980 and having experienced a new

generation every ten years, this decade being the fifth. To meet the demands identified above, 5G architec-

ture and new technologies, such as using Millimeter Wave (mm-wave) and small cells, which allow higher

1

CHAPTER 1. INTRODUCTION

data rates with reduced latency, and massive Multiple-Input Multiple-Output (MIMO) that improve energy

efficiency will play a crucial role.

Although traffic is growing exponentially, investing in more specialized infrastructure is no longer sus-

tainable. Therefore, the use of solutions based on new technologies such as SDN and NFV can reduce

constraints and hardware costs and increase management, flexibility, energy efficiency, and End-to-End

(e2e) latency [3]. In addition, many emerging verticals such as eHealth, energy, and city management will

benefit from 5G enhancements.

It can be seen that many benefits to 5G come from softwarization (e.g., increased programmabil-

ity), virtualization, and disaggregation of network functions (i.e., separation of control and data planes).

Consequently, standards bodies have embraced these technologies, as have other organizations promot-

ing open-source solutions to stimulate innovation, competitiveness, research, and interoperability. These

technologies contribute to removing barriers to 5G adoption. Furthermore, these increase the speed and

security of 5G development because they can be broken into small blocks and reviewed frequently, leading

to advanced use cases sooner and at lower costs.

1.2 Problem

Developing and testing new solutions and use cases requires access to a cellular network in operation.

However, vendor constraints, licenses, and specialized equipment exist, especially with 5G. For example,

a BS costs four times higher than a Long Term Evolution (LTE) BS [4].

With a virtualized 5G network using open-source publicly available software, it is possible to lower

expenses and additional features can be implemented and adapted. However, despite the emergence of

such solutions, it is essential to evaluate and validate how the different modules from different organiza-

tions can be used interoperably and what functionalities and 3rd Generation Partnership Project (3GPP)

specifications can be achieved.

1.3 Motivation

Many industry associations, mobile operators, and researchers have driven the use of solutions based on

software and virtualization [5, 6]. In addition, it should be possible to implement a virtualized 5G network

from emerging solutions. Among these solutions are simulation/emulation frameworks such as Simu5G

[7], and publicly available open source software modules for Radio Access Network (RAN) and 5G Core

Network (5GC) such as srsLTE [8], and free5GC [9], in addition to others provided by organizations such

as Open Air Interface (OAI).

A virtualized 5G testbed can be used to research and develop 5G solutions. For instance, novel algo-

rithms for New Generation (NG) protocol stack, orchestration techniques, better use of resource allocation

2

CHAPTER 1. INTRODUCTION

[10], network slicing [11], and simulation of an urban environment. As a result, all these use cases can

be tested, measured, and verified before real usage with reduced costs and constraints.

1.4 Objectives

This dissertation aims to implement a 5G virtualized network to be used for future experimentation. This

work chooses to emulate the user devices and the access network and deploy software modules that im-

plement the core functionalities of the 5G network. Therefore, in the first phase, it is necessary to identify a

simulator/emulator of 5G mobile networks and then software modules whose use, for research purposes,

is free of charge and implement the 5GC network. After this identification, scenarios with increasing com-

plexity will be defined and implemented. The first scenario aims to simulate an e2e 5G network, with only

one BS and a reduced number of user devices. The second scenario extends this network, providing sev-

eral user devices with different mobility standards. Finally, in the last scenario, the user devices and the

access network are emulated and connected to a set of software modules that implement core network

functionality. The limitations and features offered will be identified in each of these scenarios.

1.5 Document Structure

The dissertation has six additional chapters. Chapter 1 begins with an introduction, in which a contextu-

alization and problem formulation is made, as well as the motivation and goals to achieve. In Chapter

2, concepts and technologies related to the dissertation are addressed. Chapter 3 introduces the role of

virtualization and softwarization in 5G networks. Then, 5G testbeds architecture and capabilities related

to the problem are described. In Chapter 4, the solution to solve the problem is presented. Then, Chapter

5 describes the implementation of the proposed solution, and in Chapter, 6 the results are discussed.

Finally, Chapter 7 presents the conclusion and identifies potential future enhancements.

3

C
h
a
p
te

r

2
Concepts and technologies

This chapter aims to provide a comprehensive background on the concepts and technologies related to the

dissertation. Firstly, a brief overview of the different generations of mobile networks is presented, focusing

on the latest 5G network and its key features and enabling technologies. The chapter then delves deeper

into the concepts of softwarization and virtualization in 5G networks, specifically the use of NFV and SDN,

which form the foundation of the 5G architecture. Furthermore, the chapter highlights emulators/simula-

tors of RAN and software modules whose use for research purposes is free of charge that implement the

core of the 5G network are identified.

2.1 5G

Since its first generation, mobile networks have been mainly composed of RAN, which is constituted by

the BS, the User Equipment (UE), and the core.

The RAN connects UEs to BSs and then BSs to the core network, which is linked to the global internet.

The core network provides services to users connected through the RAN, such as aggregation that com-

bines the links from RAN to increase throughput, authentication, and gateways to access other networks.

These components, over the generations, have been enhanced to improve data rate, mobility, coverage,

and spectral efficiency [1].

Nowadays, with the growth of mobile traffic, the need for networks to support much more devices as a

result of the emergence of IoT paradigm and new user-oriented mobile multimedia applications like mobile

video conferencing, streaming video, augmented reality, and online gaming, new technologies are needed

to meet these challenges [12, 13].

4

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

Therefore, 5G architecture and technologies will have to count these new applications and the need to

handle more traffic per area and energy efficiency. It follows that the 5G technology enablers are:

• The use of mm-wave frequencies from 3-300 GHz will increase capacity because it depends on

spectral efficiency and bandwidth [14].

• Massive MIMO, due to the use of higher frequencies, the use of arrays of hundred antennas are

possible. Moreover, these antennas are positioned in order to be directed to devices through spatial

multiplexing. Hence, this technology improves energy efficiency and capacity [14].

• Small Cells are BSs with compact size and lower power consumption. Because mm-wave have

higher path loss, diffraction, and blockage, the use of these cells in urban areas and indoor envi-

ronments will provide better coverage and low latency [14].

• Device to Device (D2D) will enable low latency and scalability because devices will communicate

directly without going through the network infrastructure, decreasing control signal and latency [1].

These enhancements will benefit new emerging verticals such as:

• IoT paradigm, which involves millions of different devices. Data collected by these devices will benefit

from high bandwidth and capacity with 5G.

• Vehicular and healthcare applications will benefit from low latency, since these kinds of applications

require fast feedback.

• Smart Cities and public safety systems will need higher bandwidth and reduced latency.

• Augmented reality applications are becoming popular in education, gaming, and simulations. Thus,

5G low latency can enable real-time usage [15].

Emerging software technologies like SDN and NFV will also have a role in 5G network.

2.1.1 5G Architecture

In order to implement the 5G testbed, it is necessary to know what are the necessary components. Figure

1 shows compliant 3GPP 5G architecture.

5

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

Figure 1: 5G High Level System architecture (Extracted from [16]).

This architecture shows two significant components: RAN and 5GC. The RAN is constituted by UE and

(R)AN, and these two communicate over a radio interface and are responsible for network selection, identifi-

cation and authentication, authorization, access control and barring, policy control, and lawful interception

[16].

The architecture’s main goal is to enable the use of virtualization and softwarization. As a result of

decoupled Network Functions (NF) and the separation of user and control plane functions assuming a

service-based architecture, where each NF interacts with each other through the exposed interfaces, to-

wards to provide scalability, distributed deployment, and network slicing.

The NFs presented in a 5G system are the following:

• Authentication Server Function (AUSF) responsible for providing authentication service related to

the UE when other NF requests;

• Access and Mobility Management Function (AMF) is responsible for mobility management and

security, and it is the termination that connects the control plane of the RAN, by establishing the

connection between the UE and 5GC;

• Data Network (DN), e.g. operator services, Internet access or 3rd party services;

• Unstructured Data Storage Function (UDSF) is responsible for storing and managing unstructured

data;

• Network Exposure Function (NEF) handles the access of third-party applications to the 5GC. This

application are usually related to monitoring, partners and policies;

6

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

• Network Repository Function (NRF) is a repository that handles the discovery process of other 5G

network functions;

• Network Slice Selection Function (NSSF) is responsible to select the set of Network slices that will

serve the UE;

• Policy Control Function (PCF) is responsible for managing the network policy with regard to control

plane functions and to enforce them;

• Session Management Function (SMF), is responsible for session management, for instance to han-

dle UE IP address allocation, session establishment, modify and release;

• Unified Data Management (UDM) is responsible to store user data such as identification, subscrip-

tion and authorization;

• Unified Data Repository (UDR) stores data related to the subscription, policy and structured data

for exposure;

• User Plane Function (UPF) handles Quality of Service, forwarding and routing between the RAN and

the DN;

The interfaces connecting the control plane interfaces are denominated Service-based Interfaces (SBI)

and are connected to a bus, which allows communication among NFs through open Application Program-

ming Interfaces (APIs).

• Namf : interface exposed by AMF.

• Nsmf : interface exposed by SMF.

• Nnef : interface exposed by NEF.

• Npcf : interface exposed by PCF.

• Nudm: interface exposed by UDM.

• Naf : interface exposed by Application Function (AF).

• Nnrf : interface exposed by NRF.

• Nnssf : interface exposed by NSSF.

• Nausf : interface exposed by AUSF.

• Nudr : interface exposed by UDR.

7

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

• Nudsf : interface exposed by UDSF.

The reference point interfaces are referenced by starting with an ”N”followed by a number, and on the

contrary with SBI it uses point-to-point connection.

• N1, connects the UE and the AMF using NAS protocol.

• N2, connects the (R)AN and the AMF using NGAP protocol.

• N3, connects the (R)AN and the UPF using GTP protocol.

• N4, connects the SMF and the UPF using Packet Forwarding Control Protocol (PFCP).

• N6, connects the UPF and the DN.

• N9, connection between two UPFs.

2.2 ETSI NFV MANO

In Europe, NFVs standardization initiatives are done by European Telecommunications Standards Institute

(ETSI) to provide a standardized approach for the deployment and management of virtualized network

functions, which helps reduce operational costs and improve flexibility and agility in network infrastructure.

2.2.1 NFV

Usually, network functions are executed in the vendor’s hardware. With NFV paradigm, these functions are

virtualized and decoupled from the hardware. These functions can be encapsulated as virtual machines or

containers. As a result, providers can run these functions in off-the-shelf hardware instead of a proprietary

one. In addition, Virtual Network Functions (VNFs) can be connected between each other and with different

solution providers if open interfaces are employed, which allows the building of complex network services.

Moreover, if more capacity is needed, instead of deploying specialized hardware, a new VNF can be de-

ployed in a fast and automated way. For these reasons, operators can build more scalable and flexible

networks while reducing the costs of expensive hardware devices [17].

NFV can be deployed in data centers, network nodes, and end-user premises. However, to achieve

provisioning, instantiation, energy efficiency, and interconnection between VNFs, ETSI designed the NFV

Management and Orchestration (MANO) architectural framework [17].

Figure 2 depicts the functional blocks of the architecture and the reference points that connect each

block. The main building blocks present in the architecture are:

8

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

Figure 2: NFV MANO framework architecture (Extracted from [17]).

• Virtualized Infrastructure Manager (VIM) is responsible for controlling the NFV Infrastructure (NFVI),

which is in control of physical resources like computing, storage, and networking and software

resources such as the hypervisor. Available functionalities are the connection between the virtualized

resources with the physical ones.

• VNF Manager (VNFM) manages the lifecycle of VNF instances, such as instantiation, modification,

scaling, termination, and upgrading.

• NFV Orchestrator (NFVO) is responsible for the orchestration of resources and Network Services

(NSs). The NS orchestrations include VNF deployment, interconnections, and lifecycle manage-

ment. The network orchestration includes monitoring the allocated resources. Moreover, it will pro-

vide management of multiple VIMs and NFVOs.

The other functional blocks are:

• OSS/BSS, which are the combination of applications and systems that a service provider uses,

these applications and systems can implement new functionalities to the MANO framework by

communicating through the reference point (Or-Ma-NFVO).

• Element Management has the role for Fault, Configuration, Accounting, Performance, and Security

(FCAPS) for a VNF.

9

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

• Repositories store information that is accessible through reference points to other functional blocks.

– VNF catalog is a repository that supports the management of VNF Packages.

– NS catalog provides a repository of all Network Services through the management of NS

deployment templates, which describes the services and deployment services. This is used by

the NFVO to instantiate a NS, that can be formed by many NFVs, Physical Network Functionss

(PNFs), Virtual Links (VLs), and VNF Forwarding Graphs.

– NFV instances is a repository with records about Network Services instances and VNF in-

stances.

– NFVI resources keep information about available, reserved, and allocated resources in NFVI

environment.

2.3 SDN

SDN is a paradigm to make networks programmable through a controller, which is programmable soft-

ware that can be deployed on servers and has a global vision of the network topology. Based on this

centralized vision, it diffuses traffic rules or updates policies. In these networks, the control plane and

data plane are separated, transforming the data plane devices into simple forwarding devices that are

able to run in commercial off-the-shelf (COTS) hardware, while the forwarding decisions are programmed

by the controller rules. Because traditional networks are built with specialized routers and switches with

closed and proprietary code running on them, it is, therefore, difficult to test/develop new protocols and

solutions. As a result, network management becomes difficult since changes need to be made by manual

reconfiguration of individual elements. Moreover, automation and dynamic adaptation can provide failure

solving and load balancing. The key element of this paradigm is the separation of control and data plane,

which provides programmability through open APIs. A possible SDN architecture is shown in Figure 3. The

northbound uses Representational State Transfers (RESTs) APIs while southbound communication uses

OpenFlow protocol, which is usually built on top of Transport Layer Security (TLS) to provide a secure

OpenFlow channel [18–20].

The SDN approach enables the following requirements [19]:

• Adaptability - Networks must adjust dynamically according to the application’s needs, policies, and

network conditions.

• Automation - Changes such as configurations and provisioning must be done automatically in order

to reduce manual work and errors.

• Maintainability - Deployment of new applications is transparent.

10

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

Figure 3: SDN architecture (Extracted from [19]).

• Model Management - Network management software must allow management of the network at a

higher level rather than implementing changes through individual network elements.

• Mobility - The control plane must take into account mobile user devices and virtual servers.

• Security - Applications should have security integrated.

• On-demand Scaling - The network must have the ability to scale up and scale down.

2.4 Emulators and Simulators

Network testbeds can be implemented using simulators and emulators. Whereas the first one allows en-

gineers to replicate the behavior of a network, an emulator allows them to introduce real devices and

applications into a simulated network to mimic the behavior of a live network.

2.4.1 Simulators

In simulators, the operations of real devices and their interactions are modeled based on mathematical

formulas, providing the fundamental behavior of a system without simulating all the details. Simulators

must be validated in order to be accurate and results are not different from real-world usage [21]. Usually, a

11

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

network simulator is a closed environment that does not allow communication with external devices. On the

other hand, However, simulators are slower than real-world environments. On the other hand, simulators

can be slower than real-world environments. For instance, 1 millisecond (1ms) in simulator time can last

much longer in real time.

Simulators are divided into two categories:

1. Physical layer simulators - Usually, simulators related to 5G are physical layer simulators. In other

words, they are interested in measuring physical-layer quantities/design (spectral efficiency, an-

tenna layout, transmission schemes, etc.), and layers above the MAC layer are usually not modeled

[7, 22].

2. End-to-end simulators - End-to-end simulators are interested in the performance of application-level

quantities (e2e delay, the throughput of user transactions, etc.) and include models of application

logic and layer-2 above protocols, as well network equipment running those protocols [7, 22].

2.4.2 Emulators

Emulators are used in real-time and real devices and applications can communicate with simulated devices.

Therefore, it is capable of retrieving real-time statistics.

Simu5G can run as an emulator, thus it is able to communicate with external devices and be interoper-

able with other frameworks. For example, the core network can be emulated by other software, and mobile

edge computing frameworks like Intel Smart Edge (previously, OpenNESS project) can communicate with

the 5G network emulated by Simu5G.

2.5 Simu5G

Whereas there are tools to simulate the physical layer (Vienna 5G, Matlab, etc.), a novice tool that pro-

vides 5G end-to-end simulation is Simu5G, which is based on the OMNeT++ event simulator. OMNeT++

is a simulation library and framework, firstly for building network simulators. Due to OMNeT++ providing a

component architecture for models, reusability and easier integration with different OMNeT++ base frame-

works can be reached. For instance, Veins (Vehicular Network simulation framework) can be integrated

with Simu5G.

Alternatively, there are other e2e simulators for 5G, such as 5G-LENA, and 5G-air-simulator. Neverthe-

less, these simulators do not provide some functionalities. 5G-LENA does not provide Frequency Division

Duplex (FDD) and both do not enable D2D applications and Non Standalone 5G deployment. On the

contrary, 5G-air-simulator provides Massive MIMO and broadcast functionalities.

A significant annotation of end-to-end simulators is the lack of scalability due to simulating the whole

protocol stack in all nodes. Simu5G solved scalability issues by including heterogeneous GNodeB. However,

12

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

the GNodeB light-cell mode does not simulate the 5G NG protocol stack. As a result, overhead is reduced

but provides interference. Simu5G was validated according to scenarios presented in 3GPP evaluation

document [7, 22].

Simu5G is a discrete-event simulation library for 4G/5G New Radio networks based on the OMNeT++

framework. The simulation library in OMNeT++ is a collection of C++ classes that provide the basic building

blocks for creating simulation models. It includes classes for creating modules, messages, gates, and

connections, as well as classes for managing the simulation itself, such as the simulation kernel and event

scheduler.

One of the key features of the simulation library is its support for hierarchical modules. This allows

developers to create complex models by combining simple modules into compound modules, and then

combining those compound modules into even larger structures. The library also supports message pass-

ing between modules, which allows modules to communicate with each other and exchange data.

Another important feature of the simulation library is its support for parameterization. Modules can

be defined with parameters that can be set at runtime, allowing developers to create flexible models that

can be easily customized for different scenarios. The library also includes support for topology description,

which allows developers to define the structure of their models using a simple text-based language.

The simulation library also includes support for result recording and analysis. Simulation results can

be written to output files in a variety of formats, including line-oriented text files, output vector files, and

output scalar files. These files can then be analyzed using a variety of tools and programming languages,

including Matlab, GNU R, Perl, Python.

2.6 Discrete Event Simulation

A discrete event simulation is characterized by having the following components:

• State - Set of variables that represent properties/variables needed to describe the modeled system.

• Event - An occurrence in a specific time that modifies the state of the system being modeled.

• Clock - Variable responsible for keeping the current value of the simulated time in the model.

• Events list - A list containing information about events and the time that they will occur.

In a discrete event simulation, the system and its behavior are represented as a sequence of events,

and time advances in discrete jumps between instances of event occurrence. In other words, the clock is

set to the instant of the beginning of the next event, and no changes or time progression are considered

between events. Therefore, time progresses only when a change occurs in the system. As a result, the

simulation time is highly dependent on the occurrence of events. In comparison to continuous systems,

state changes occur continuously over time.

13

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

Events in a discrete event simulation are instantaneous and can be scheduled for specific times, and

a list of upcoming events is maintained. When an event occurs, it triggers a change in the simulation’s

state.

2.6.1 Discrete Event Simulation in OMNeT++

In OMNeT++, the event loop is the core of the simulation engine. It is responsible for scheduling and

executing events in the simulation from the Future Event Set (FES). Events are scheduled to occur at a

specific simulation time, and the event loop makes sure they run in the right order. [23].

Events are processed in strict timestamp order to maintain causality, which ensures that no current

event may have an effect on earlier events. Processing an event involves calls to user-supplied code.

In summary, the event loop in OMNeT++ uses schedulers to manage the scheduling of events, and

the FES to keep track of scheduled events and ensure they are executed in the correct order.

The simulation works according to the following order:

1. Initialize: Set up the network, initialize state and statistic variables, and insert initial events to the

FES.

2. While the FES is not empty and the simulation not yet complete.

a) Fetch the initial event from FES.

b) Update the clock with event time.

c) Process the event according to user logic, such as updating the state and inserting/deleting

new events.

3. Finish simulation: Record statistics information and enables to perform of any necessary finalization

after the simulation has finished.

2.7 Core Network

This section presents projects that are developing 5GC in order to be fully compliant with 3GPP releases.

2.7.1 OAI

The OAI Core Network (CN) development has as objective to be fully compliant with 3GPP. At this point, the

OAI CN has the following CN entities functional AMF, SMF, NRF, AUSF, UDM, UDR, and UPF. Additionally,

OAI CN supports registration, deregistration and session establishment, modification, and release proce-

dures. Moreover, network function registration and discovery are also supported. Therefore, the entities

14

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

can be deployed, scalable, and adapted to the network needs according to Network Slices parameters

and data network name. Some limitations are location services, IPv6 support, and slice functions that

are only available with basic functionalities. Some components such as AF, UDSF, PCF, and NEF are not

implemented yet [24, 25].

2.7.2 free5GC

Free5GC is written in GO language, and it is compatible with Ubuntu. The objective is to implement the core

defined in 3GPP Release 15 (R15) and beyond. Currently, it is fully functional. The project implements all

the CN entities except UDSF, AF, and NEF and are not expected to be implemented near future. Moreover,

it has 5GC Orchestrator integrated, supports applications services, and has network services and slicing

like OAI CN. [9, 24].

2.7.3 Open5GS

Open5GS is an open implementation of 5GC and Envolved Packet Core (EPC), written in C language, and

it is 3GPP Release-16 compliant. Open5GS includes the core entities like OAI CN, IPv6 support, and on

the contrary, with OAI CN implements PCF component, which operators can create and deploy network

policies in real-time and prioritizing types of traffic. Although advanced 5G Standalone core functionalities,

such as slicing, are currently under development [24, 26].

2.7.4 Magma

Magma is an open-source solution that provides a mobile core network (5GC and EPC) developed by

Facebook Connectivity in order to simplify the deployment of cellular networks in rural areas [24, 26].

Magma has three components:

• Access Gateways - Includes core network, which provides network services. Can be deployed on

the cloud or next to radio equipment

• Orchestrator - It is a cloud service to monitor and apply configuration changes.

• Federation Gateway - It is a proxy between the Magma core running in the access gateway and the

network operator infrastructure.

All these projects implement real cores, since no elements are modeled or abstracted.

15

CHAPTER 2. CONCEPTS AND TECHNOLOGIES

2.8 Summary

The fifth generation of mobile networks, known as 5G, aims to address the growing demands of mobile traf-

fic and new user-oriented mobile multimedia applications, such as mobile video conferencing, streaming

video, augmented reality, and online gaming. This is accomplished through various technology enablers,

including mm-wave, Massive MIMO, Small Cells, and D2D communication. These advancements are ex-

pected to increase capacity, improve energy efficiency, and reduce latency, thus enhancing the overall

user experience. Furthermore, 5G has the potential to benefit emerging technologies, such as the IoT and

Augmented Reality.

5G mobile networks use technologies like SDN and NFV to improve connectivity and reduce latency.

NFV is a paradigm in which network functions are virtualized and decoupled from the hardware, allowing

them to run on off-the-shelf hardware instead of proprietary hardware. This makes networks more scal-

able and flexible while reducing costs. Additionally, VNFs can be connected between each other and with

different solution providers using open interfaces, allowing for the building of complex network services.

This enables faster creation of new services.

On the other hand, SDN is a network architecture in which the control plane and the data plane are

decoupled, allowing for network control to be directly programmable and the network’s global state to be

visible. This allows for more flexibility and agility in managing the network and implementing new services.

The combined use of NFV and SDN in 5G networks can provide significant advantages, such as cost

savings, increased agility, and improved scalability. In addition, these technologies enable more flexible

and efficient use of network resources, making it easier to add new services and adapt to changing network

conditions. Furthermore, using virtualized and software-defined network functions allows for faster deploy-

ment and more accessible network management, resulting in faster and more efficient service delivery.

Adopting these technologies has also led to creating a more open environment for innovation in the 5G

industry. They separate proprietary hardware and software, allowing for the emergence of several open-

source solutions for 5G core implementation, such as the OAI, free5GC, Open5GS, and Magma projects.

The flexibility and configurability offered by these open-source solutions allow for greater experimentation

and customization in deploying 5G networks, fostering innovation and driving the development of new

technologies.

When implementing 5G RAN, one of the solutions available are emulators and simulators, which are

used to test and evaluate the performance of 5G networks. These tools mimic real-world network conditions

and environments, offering a controlled and repeatable testing environment for 5G systems. This allows

developers to test the 5G network’s performance, capacity, and scalability before deploying it in the real

world. Furthermore, emulators and simulators are also used to test new features and services and identify

and resolve potential issues before they arise in the live network.

16

C
h
a
p
te

r

3
Literature Review

The literature review in this chapter initially focuses on the role of virtualization and softwarization in 5G

networks, highlighting the trends, technologies, and frameworks that have been developed. The objective

is to gather information about examples of 5G testbeds architectures that have already been implemented

and their capabilities.

Softwarization is the use of a given capability that is implemented through software rather than tra-

ditional hardware. This provides flexibility, since deployment is automatic and dynamic configuration is

possible, as it is only necessary to update software that is not dependent on vendor’s hardware. Virtual-

ization, on the other hand, is the process of abstracting resources that were previously given in hardware

and transferring them to software. This allows efficient resource allocation, traffic adaptation, and easier

management due to abstraction. As a result, Capital Expenditure (CAPEX) and Operational Expenditure

(OPEX) can be reduced.

New principles based on softwarization and virtualization, such as SDN, Multi Access Edge Comput-

ing (MEC), network virtualization, and cloud computing, are being proposed in 5G architecture to bring

enhancements. According to the literature, diverse open-source software, frameworks, and libraries have

emerged based on these principles.

The chapter then goes on to discuss how softwarization technologies are used in the different 5G

components. It covers the Radio Access Network, where the main differences in the protocol stack occur

in the Media Access Control Layer (MAC) and Physical Layer (PHY) layers, and the need for cloud computing

and SDN principles in RAN architecture. The chapter also covers the Core Network, where a service oriented

design with well-defined APIs is the main innovation, and Transport Networks, where SDN technology will

be critical to adapt the network according to the RAN needs.

Finally, the chapter discusses previously established 5G testbeds and their capabilities, including the

17

CHAPTER 3. LITERATURE REVIEW

various architectural designs implemented.

3.1 Towards softwarization and virtualization of 5G networks

Softwarization is the use of a given capability that is implemented through software rather than traditional

hardware. This provides flexibility, since deployment is automatic and dynamic configuration is possible

because it is just necessary to update software that is not dependent on the vendor’s hardware. Virtualiza-

tion is the process of abstracting resources that were previously given in hardware and transferring them

to software. This allows efficient resource allocation, traffic adaptation, and easier management due to ab-

straction. As a result, Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) can be reduced.

For these reasons, virtualization and softwarization are key enablers for 5G networks in order to provide

agility, flexibility, fine-grain control, and reliability [27].

New principles based on softwarization and virtualization, such as SDN, MEC, network virtualization,

and cloud computing, are being proposed in 5G architecture to bring enhancements. According to [24],

diverse open source software, frameworks, and libraries emerged based on these principles.

Next, it is discussed how softwarization technologies are used in the different 5G components.

3.1.1 Radio Access Network

The main differences in the protocol stack in RAN, by contrast with the previous generations, occur in the

MAC and PHY layers since the use of mm-wave. Although the main differences were driven by mm-wave,

5G specifies a family of waveforms. At the PHY layer, the flexibility introduced by the setting of waveform

parameters (numerology) allows the network to adapt conforming to the requirements of various users and

services [28]. Alternatively, in LTE, in which there is only one waveform, therefore single-numerology.

Despite the improvements at the protocol stack level, there is a need for cloud computing and SDN

principles in RAN architecture. Furthermore, with the increase in traffic, operators need to put more re-

sources and invest in more specialized infrastructure (small cells and MIMO). In addition, to address the

energy efficiency challenge, it is important to note that the base station is the equipment in the 5G archi-

tecture that consumes more power. Moreover, placing more small cells to extend coverage and capacity

can lead to overhead in the network due to frequent handovers [29].

For these reasons, the RAN architecture needs to be redesigned in order to reduce hardware constraints

and costs while improving flexibility for upgrades in the infrastructure, coverage, and energy efficiency [12].

A new innovation in 5G was the Central Unit (CU)/Distributed Unit (DU) split, where the BS is divided into

two logical units, the CU with higher layer stack functionalities and DU with lower layer stack functionalities,

which can be distributed. In addition, the lower part of the physical layer can be separated from the DU in

a standalone Radio Unit (RU). However, in the early generations, these components were located together.

18

CHAPTER 3. LITERATURE REVIEW

Therefore, it can be seen that the SDN principles are in this split, where RU operates as transceiver and all

the control and processing operations are executed through open interfaces and API. Network virtualization

is present in RAN since there are frameworks that provide these functionalities virtualized decoupled from

hardware. With this virtualization, cloudification of the RAN can be obtained by deploying in the cloud a

Baseband Unit (BBU)(CU/DU) pool that is responsible for allocating resources to RUs. Examples of open

source frameworks that allow the deployment of a virtualized RAN are OAI and srsRAN. These frameworks

implement the UE and GNodeB, although OAI allows deploying these components in Standalone mode

and BS deployment in split mode [24].

3.1.2 Core Network

The 5G core has, as the main innovation, a service oriented design with well-defined APIs, being the

network services deployed as VNFs and control and user plane separation into different network functions

following the SDN principles. This enables the deployment of VNFs in different locations in the network

architecture based on different requirements such as latency, storage capacity, and processing [24, 30].

Another principle presented in 5GC is Control and User Plane Separation (CUPS) from the SDN principle

in order to improve efficiency, user plane operations are distributed closer to users while still allowing

centralized control plane functions [31]. Examples of open source frameworks that allow the deployment

of a virtualized core are OAI, Open5GS, and free5GC.

3.1.3 Transport Networks

In addition to the radio access and core networks, the transport network will be critical in 5G in order to

achieve flexibility and adaptability. Here, SDN technology will be fundamental to adapt the network accord-

ing to the RAN needs. Moreover, with RAN coordination, mobility, and load balancing can be efficiently

coordinated [30, 32].

3.1.4 Open virtualization and management frameworks

Another new technology is an NFV MANO framework, whose main goals are management, orchestration,

and deployment of network resources like computing, storage, and virtual machines/containers resources

on the cloud. Consequently, the complexity of the underlying resources is abstracted and easier to manage

functionalities such as network configuration, monitoring, maintenance, fault management, and security.

Therefore, this framework has a crucial role in the management and deployment of e2e networks [24, 30].

Some popular MANO frameworks are ONAP, OSM, and Open Baton. All these frameworks support

virtual machines and containers as infrastructure, VNFs as network services, and have external APIs to

communicate. The differences are in the technologies. OSM supports containers with Kubernetes, Open

19

CHAPTER 3. LITERATURE REVIEW

Baton with Docker, and ONAP with both. All are compliant with ETSI MANO, except ONAP. OSM and

ONAP support communication with REST APIs. On the other hand, Open Baton supports JAVA SDK. All

these frameworks provide network slicing, which is a multi-tenancy virtualization approach in which logical

networks are isolated from hardware and software components and distributed as slices to tenants. This

is possible because the orchestrator can allocate the virtualized resources to different slices, according to

different requirements [24].

3.1.5 Mobile Edge Computing

Because of the intention to virtualize 5G network components, another enabler is MEC which brings critical

network architecture components closer to users. For instance, virtualized applications can be deployed at

the RAN, closer to the user. Therefore, MEC can enhance 5G latency and throughput. Some frameworks

that enable MEC are LL-MEC and LightEdge. LightEdge is interoperable with frameworks like Open5GS,

while LL-MEC can provide network slicing [24].

3.2 5G testbeds

This section describes testbeds presented in the literature and their capabilities.

3.2.1 Open and Programmable 5G Network-in-a-Box

Figure 4: Architecture of the testbed ”Open and Programmable 5G Network-in-a-Box”(Extracted from [33]).

The testbed proposed in [33] is a network-in-box solution and shows an architecture based on open

software stack and general proposed hardware to demonstrate end-to-end connectivity in 5G Non Stan-

dalone mode and 4G LTE mode. The eNodeB, GNodeB and the EPC are based on OAI. This testbed

operates at sub-6 GHz frequency and is able to evaluate based on latency and throughput performance in

different frequency bands.

20

CHAPTER 3. LITERATURE REVIEW

3.2.2 5G Testbed Development for Network Slicing

Figure 5: Architecture of the testbed ”5G Testbed Development for Network Slicing”(Extracted from [34]).

This testbed proposed in [34], by contrast with the previous one, uses cloud computing and enables

network slicing, also RAN and Core uses OAI modules. However, instead of direct deployment on general

purpose hardware, the RAN and Core are deployed in Docker containers, and there are two instances

of core to provide slicing. Network slicing is achieved through virtual networks by Docker Containers, with

modified UE, core and gNodeB by the authors to provide configuration and management of network slices.

The objective was to study and test performance issues, security and how slice selection works in RAN

and core protocols.

21

CHAPTER 3. LITERATURE REVIEW

3.2.3 Testbed for 5G Connected Artificial Intelligence on Virtualized

Networks

Figure 6: Architecture of the testbed ”5G Connected Artificial Intelligence on Virtualized Net-
works”(Extracted from [35]).

The [35] testbed, in comparison with the previous ones, the main goal is to enable Machine Learning (ML)

applications with the aim of based on Artificial Intelligence (AI) decisions to optimize the network. Likewise,

this testbed uses OAI modules for RAN but with split architecture with docker containers instead of mono-

lithic implementation and Free5GC to implement core. Moreover, it has a virtualized Transport Network

(TN) emulated using Mininet [36]. This testbed provides network slicing at RAN level due to the usage of

a controller in RAN (FlexRAN [37]), which will set up the RAN functions and policy configuration that will

be included in the slice. The information retrieved by this controller and TN controller (Ryu SDN controller)

is used by the AI agent ML models to deduce various slice configurations. The slicing process is accom-

plished by communicating through FlexRAN API to indicate, for example, what resources to allocate, what

algorithms should the slice use, etc. The other application tested was how it should VNFs be positioned

to meet the specifications of a network slice. The architecture does not follow MANO implementation in

order to provide a lightweight and simple architecture, for this reasons Kubernetes is used as orchestrator.

On the contrary, this testbed did not need to modify modules to enable slicing. Alternatively, the FlexRAN

platform that allowed the slice management was used. Yet, end-to-end slicing is not provided due to lacking

at core and TN.

22

CHAPTER 3. LITERATURE REVIEW

3.2.4 Virtualized C-RAN with Mininet and OAI Supporting Flexible

Network Topologies

Figure 7: Architecture of the testbed ”Virtualized C-RAN with Mininet and OAI Supporting Flexible Network
Topologies”(Extracted from [38]).

The testbed [38] shown in Figure 7 provides a virtualized cloud RAN with a BBU pool and Remote Radio

Head (RRH) pool. These modules are implemented by OAI in two separated virtual machines, and likewise

with the previous uses Mininet to emulate transport networks (backhaul and fronthaul) with SDN in virtual

machines. The core network is in another virtual machine using OAI to emulate EPC Core. This testbed

enables experimentation of different configurations for fronthaul to test congestion control, quality of service

metrics, and resource management under different network topologies and conditions.

3.2.5 A Cloud-based SDN / NFV Testbed for End-to-End Network Slicing in

4G / 5G.

Figure 8: Architecture of the testbed ”A Cloud-based SDN / NFV Testbed for End-to-End Network Slicing in
4G / 5G”(Extracted from [39]).

23

CHAPTER 3. LITERATURE REVIEW

In the testbed [39] displayed in Figure 8, OSM is used as NFV orchestrator, since it allows several VIMs

which enables cross-location, OAI as core, srsLTE as RAN and SDN Controllers in RAN, core and TN

to enable end to end slicing. In addition, this testbed has ML toolkits integrated because of using 5G-

EmPOWER as SDN Controller, which has these tools integrated.

3.3 Summary

In summary, 5G is becoming more virtualized and software-based to increase flexibility and programma-

bility, which is leading to more significant disruptions than in previous generations. This presents both

challenges and opportunities for innovation. As a result, many testbeds are being developed to study vari-

ous use cases, improvements, and architecture decisions for 5G, such as deployment scenarios, such as

the location of NFs and MEC, new algorithms, network slicing, and the use of AI.

The first two testbeds mentioned in the previous text are among the earliest in the literature and do

not have the ability to scale. The first testbed relies on hardware and does not utilize software-based

approaches, while the second testbed focuses on the concept of network slicing using docker technology,

but does not achieve a high level of complexity or scalability. However, it is possible to achieve more scalable

network slicing using current technologies.

The testbeds 3, 4, and 5, since they use OAI RAN, present some limitations in representing a large

network because there are scalability limitations in the use of several BSs and UEs. Moreover, both testbeds

3 and 5 need the use of Software Defined Radio, which increases the costs and hardware requirements.

This dissertation proposes to study the interoperability of a new tool called Simu5G, which allows for the

integration of various 5G enablers, such as MEC, D2D, and vehicular networks, without the need to connect

to other frameworks. In addition, Simu5G allows for the study of how network conditions can impact the

development of applications by enabling the possibility of mobility, support for different numbers of UEs

and GNB, and customization of radio layer functionalities. As a result, it is expected the study of new use

cases would be more accessible and extensible using this testbed.

24

C
h
a
p
te

r

4
Conceptual Solution

This chapter proposes an architecture to build a virtualized 5G network using open-source available compo-

nents deployed in virtual machines. The chapter starts by explaining the decisions leading to the selected

components, followed by a description of those components. The chapter ends with a specific proposal

on how to connect them for tests.

4.1 RAN and user terminal emulation/simulation

The work aims to implement a fully virtualized 5G network. It can be seen that the RAN is a core element

of the system. Emulators and simulators were sought since they do not require physical Radio Frequency

(RF) hardware or a COTS terminal. This would increase costs, and the study of hardware compatibility

would be necessary. Moreover, the objective is to implement a fully virtualized testbed. Thus, to simulate

the RAN, RAN products were studied:

• my5G-RANTester [40], it is a tool used to evaluate and understand 5G functionalities by providing

different tests and emulating control and data planes for the UE and GNodeB.

This emulator provides conformance tests for evaluating the following system procedures:

– UE Registration

– GNodeB Registration

– Packet Data Unit (PDU) session request

After successful registration, it is possible to check the connectivity with the internet through the

tunnel created between RAN and 5GC (data plane). Moreover, the performance tests available

25

CHAPTER 4. CONCEPTUAL SOLUTION

measure the latency of UE registration and AMF responses per second. Additionally, a stress test

with queued UEs one at a time, which simulates a GNodeB with multiple UEs is available to test the

scalability. The necessary configurations to allow the connection between interfaces and network

elements is done through a yaml file.

Overall, this framework is more concerned with the 5GC and the linking between this and the

access network. Therefore, a simulation of the wireless channel is not provided. Because of this,

my5G-RANTester main cornerstone is allowing the study of 5GC functionalities by observing packets

through wireshark, black-boxing testing the functionality and the compliance with the 3GPP Release

15, and evaluating the performance. Despite focusing on 5GC functionalities, the network functions

mainly tested are AMF, SMF, and UPF since those are directly related to the RAN through the NAS

and NGAP protocols. Therefore, the RAN level only offers a few applications [41].

• gNBsim [42], it is another tool that simulates GNodeB and UE by generating NAS and NGAP mes-

sages and supports the following procedures to be tested:

– UE Registration;

– UE Initiated PDU Session Establishment;

– UE Initiated De-registration;

– AN Release;

– UE Initiated Service Request;

– Network triggered PDU Session Release;

– UE Requested PDU Session Release;

– Network triggered UE Deregistration.

Moreover, it is capable of sending generated Internet Control Message Protocol (ICMP) requests

over the existing data plane.

Altogether, this tool is similar to the previous, being the primary objective testing 5GC functionalities.

Alternatively, each test can be configured to run in parallel or sequential order, and the number of

data packets to be sent can be set up. Moreover, provides a profile feature that provides automation

to specify and release the tests and customize the tests by compounding and making use of the

standard tests provided.

• UERANSIM [43] simulates a 5G Standalone UE and RAN. It implements NAS and NGAP protocol

and system procedures such as UE and Network initiated De-registration, UE initiated PDU session

establishment, etc.

26

CHAPTER 4. CONCEPTUAL SOLUTION

At the user plane, it implements GTP protocol, with ipv4 and ipv6 supported. The radio protocols

below the Radio Resource Control (RRC) layer are not implemented, being partially simulated over

User Datagram Protocol (UDP). Nevertheless, the primary RRC methods are available.

The necessary configurations to allow the connection between interfaces and network elements are

done through a yaml file.

Conversely, UERANSIM is less focused on testing than the previous tools, even though it can serve

that purpose. The main difference is the data plane usage with several types of applications, thus

it is possible to use the N3 connection to access the internet using applications such as ping,

tcpdump, Hypertext Transfer Protocol (HTTP), Secure Socket Shell (SSH), and wget, whereas the

other tools only allow using ICMP.

• OpenAirInterface is an open platform for implementing the core and RAN of a communication

system. Its RAN project has a real-time approach, where elements are real, requires hardware to

implement the software-defined radio frontend, and is compatible with commercial terminals.

It also offers a deprecated emulation platform (OAISim) for emulating UEs and GNodeB, with com-

munication between them based on an emulated physical channel. The environment can be con-

figured with various parameters, including path loss, channel model, antenna description, system

bandwidth, and frequency. Also, the network topology can be configured with mobility models.

Traffic load types such as Voice-over-IP (VoIP), Machine to Machine (M2M), and gaming are avail-

able, with packet trace in Wireshark at layer 3. Configurations can be programmed in OAI scenario

descriptors (OSDs).

The platform offers parallel emulation, enabling several GNodeB and UEs to be virtualized on the

same or different machines, improving scalability. In addition, it displays low-level stack metrics on

a dashboard and traffic and application metrics through standard output logging.

Scalability is achieved through parallelism and dynamic allocation of PHY abstraction and channel

modeling on multiple threads, with a PHY abstraction mode to make emulation faster.

Two simulators are available: the RF Simulator for testing without an RF board and the L2 nFAPI.

The RF Simulator runs faster/slower than real-time based on CPU and supports ”noS1”mode where

generated IP traffic loads are sent and received between gNB and UE in tunnel interfaces (”oaitun”)

by applications like ping and iperf. The ”phy-test,”where random Uplink (UL) and Downlink (DL)

traffic is generated at every scheduling opportunity. Some exceptions can occur since OAI UE are

not thread-safe. Thus, it is necessary to run with multi-threading restrictions.

The L2 nFAPI Simulator uses an NFAPI interface to connect the ENodeB and UEs. NFAPI is a

standard interface that defines a set of messages, commands, and parameters for exchanging

information between the PHY and MAC layers, such as scheduling and channel state information.

27

CHAPTER 4. CONCEPTUAL SOLUTION

For example, with NFAPI, the MAC layer can request data from the PHY layer, and the PHY layer

can send data to the MAC layer and request control information.

This direct communication through NFAPI instead of the PHY layer offers greater efficiency and

flexibility. In addition, the simulator aims to support multi-UE simulation with many UE (ideally up

to 255), though currently, it only supports 16.

• Simu5G [44] it is a simulator based on the OMNeT++ framework, and it is able to run as an

emulator.

By contrast with the previous emulators/simulators, it provides mobile network applications such

as VoIP, Constant Bit Rate (CBR), and Trace-based Video-on-demands (VoD).

In terms of extensibility, due to being integrated into the OMNeT++ framework, other models from

the INET framework can be used to extend, such as VEINs, which allow using vehicular networks.

Furthermore, the emulation mode can integrate other frameworks and applications outside INET

and use actual-world conditions. Besides, it uses a modular architecture concept from OMNeT++,

which turns easier to extend, allowing the development of new modules, algorithms, and protocols.

Simu5G is based on two types of files, NED and INI. These are the high-level files that configure

the network. The low-level logic related to the behavior of the different components in a network is

done through C++ modules.

The NED file is declarative and describes the topology that represents the network. An example of

a NED file is shown in Listing 4.1. In this file Simu5G models are imported to represent network

elements, such as the UE, background cells and the channel control, which models the transmission

medium between the connections where proprieties such as propagation models, path loss and

signal attenuation are defined, while the connections are established using the ++ operator, which

selects the first available unconnected interface for the element.

1 import simu5g.nodes.NR.NRUe;

2 import simu5g.nodes.backgroundCell.BackgroundCell;

3 import simu5g.world.radio.LteChannelControl;

4 import inet.node.ethernet.Eth10G;

5 import inet.node.inet.Router;

6

7

8 network NetworkName

9 {

10 parameters:

28

CHAPTER 4. CONCEPTUAL SOLUTION

11 int numUe = default(1);

12 int numBgCells = default(0);

13 submodules:

14 channelControl: LteChannelControl {

15 @display(”p=50,25;is=s”);

16 }

17 ...

18 connections:

19 //# Data Network connections

20 server.pppg++ <--> Eth10G <--> router.pppg++;

21 router.pppg++ <--> Eth10G <--> upf.filterGate;

22 upf.pppg++ <--> Eth10G <--> gnb.ppp;

23

Listing 4.1: NED file excerpt example of Simu5G usage.

The INI file is where various parameters related to simulation and network elements are configured,

as shown in Listing 4.2. The primary parameters that define the Simu5G network include UE mo-

bility, numerology, bandwidth, which is determined according to the number of resource blocks.

In addition other essential parameters include carrier frequency, transmission power, simulation

time, and other parameters can be defined based on the specifications of Simu5G modules.

1 # Config name

2 [General]

3 # Simulation configuration such as images folder to use

4 # during simulation, time of the simulation and

5 # directories where the statistics will be saved

6 image-path=../../../images

7 output-scalar-file = ${resultdir}/${configname}/${repetition}.sca

8 output-vector-file = ${resultdir}/${configname}/${repetition}.vec

9 # Simulation Time

10 sim-time-limit=20s

11 **.routingRecorder.enabled = false

12

13 # UE element definition of initial position and mobility

14 *.ue[0].mobility.initialX = 450m

15 *.ue[0].mobility.initialY = 350m

16 *.ue[0].mobility.speed = 0mps

29

CHAPTER 4. CONCEPTUAL SOLUTION

17 *.ue[0].mobility.initialMovementHeading = 0deg

18 *.ue[0].mobility.typename = ”LinearMobility”

19

20 # Resource blocks

21 **.numBands = 100

22 # Transmission Power

23 **.ueTxPower = 26 # dBm

24 **.eNodeBTxPower = 40 # dBm

25

26 # Carrier frequency *.carrierAggregation.componentCarrier[0].numerologyIndex

↪→ = 0

27 # Numerologia

28 *.carrierAggregation.componentCarrier[0].carrierFrequency = 2GHz

29

Listing 4.2: INI file excerpt example of Simu5G usage.

Additionally, INET modules define a number of widely used statistics in the NED file. Some of these

statistics are recorded into scalars, histograms or vectors by default, offering a set of metrics.

The interaction with the previous emulators mentioned is done via Command Line Interface (CLI).

Although Simu5G can be used through a terminal, the OMNeT++ provides a graphical runtime

environment, which allows a way of visualizing and animating network components and the flow of

messages, making it easier for beginners to understand a system at a higher level [45].

Simu5G provides some 5G enablers such as D2D communication, small cells, and MEC. As men-

tioned in Chapter 2 Simu5G is an e2e simulator but allows to specify low-level parameters such as

different types of scheduling algorithms, carrier aggregation and other parameters at the MAC and

PHY layer that are the layer with changes in relation with the previous generations as mentioned in

Chapter 3.

With this framework, it is possible to study network planning by building a representation of real

access networks by introducing mobility and interference and testing different applications.

The two most appropriate solutions for the work requirements are OAISim and Simu5G. Simu5G is

based on 3GPP specifications and uses the OMNeT++ stack, while OAI SimuLTE uses the 3GPP stack.

However, OAISim is outdated, and its documentation is incomplete, lacking detail and clarity. Thus not the

most updated version of the RAN would be used. Simu5G emulator capabilities, on the other hand, have

been thoroughly documented and tested, making it more reliable, including support for hundreds of UEs.

30

CHAPTER 4. CONCEPTUAL SOLUTION

The use of the same code for both emulation and real-time mode in OAI is not practical for the current

work, as it does not involve the use of real devices. Simu5G, on the other hand, provides flexibility in both

emulated and simulated environments.

In OAI, OSDs do not support variable parameters, so when running an emulation, a different OSD

must be prepared for each combination of parameter values. In Simu5G, there is support for variable

parameters and automation to run different scenarios.

This work aims to build a e2e system to be the basis for 5G experimentation. In terms of ease of use,

Simu5G provides more utilities and amore effortless ability to integrate new systems, test new applications,

plan and visualize real scenarios and with the ability to provide metrics as the other alternatives. The out-

of-the-box implementation of MEC is a key factor in Simu5G’s suitability as a system-level network solution.

Furthermore, there is no literature on Simu5G being used as a RAN emulator connected to a 5GC.

Given these considerations, the choice of Simu5G as the most suitable solution for building an end-

to-end 5G experimentation system is recommended.

4.1.1 5G Core

With regard to 5GC software modules mentioned in Chapter 2, all the publicly available modules studied,

with the exception of Magma, follow 3GPP architecture. This is essential to follow open standards because

it will facilitate interoperability with other solutions which follow the same. All software modules provide

good documentation and active communities, althoughMagma has fewer examples of interoperability with

other software. All have the main features implemented to deploy, so this testbed can be agnostic to the

5GC. At this moment, free5GC is in a more stable and advanced development maturity. For that reason,

this was the software package of choice.

It is important to consider how the connection between the Simu5G can be made to connect to the N3

interface, since Simu5G only offers data plane support. Simu5G allows communication externally through

a Virtual Ethernet (veth) device, which is created in pairs to connect a network namespace to another

physical network device in another namespace, although it can be as standalone network devices [46].

A network namespace uses a copy of the network stack from the host in an isolated way by defining

new routes, interfaces, and rules that only will apply to traffic inside the namespace without using the host

rules. As a result, this is useful not to collide rules and offer logical division. However, a veth interface is not

configured to use GTP-U protocol. Nonetheless, from the selection of RAN software previously described, all

those solutions provide a TUN interface, a virtual interface to be used by user space programs without the

need for a physical interface that connects through N3. So using the provided TUN by UERANSIM, whose

usage can be manually utilized and offers more support than the alternatives, it is possible to connect

Simu5G with the selected 5GC.

31

CHAPTER 4. CONCEPTUAL SOLUTION

4.2 Virtualized 5G Network design

Figure 9 shows a block diagram of the 5G network to be implemented, there is a logical division with virtual

machines to separate the RAN and 5GC, which makes sense since the core is stepping into cloudification

in data centers. However, RAN can have some of its elements in the cloud. Moreover, the UE and Base

stations will have to exist in urban areas with specific planning and fixed. Another reason for different VMs

is the recommendation from the UERANSIM documentation to use RANs and 5GC in different machines.

Figure 9: 5G System Design.

As shown, technologies such as MANO, SDN controller, and multi-split design alternatives, e.g. NF

deployed in different locations, were not used. This option does not affect the objective of achieving an

end-to-end connectivity solution and allows reducing complexity.

As mentioned, to implement the virtualized 5G network, sequential steps have been defined. According

to [47], even the most simple testbed needs a considerable complexity of deployment, configuring, and

monitoring due to the fast progress of related software. Moreover, interoperability with the different solutions

is unclear [24]. Therefore, it is essential to set clear iterative goals. Firstly, two scenarios were developed

to simulate an end-to-end 5G network using Simu5G, as depicted in Figure 10.

In Scenario 1, the network is simulated with two UEs and one GNodeB. The GNodeB is connected to

the UPF, which acts as a gateway to other networks that are represented by the Router. As shown, the

Simu5G simulates the data plane, and that is why only the User Plane Function (UPF) is represented as

part of the 5GC. This scenario is used to explore the functionalities of the simulator. Wireshark will be used

32

CHAPTER 4. CONCEPTUAL SOLUTION

(a) Scenario 1. (b) Scenario 2.

Figure 10: Simu5G simulation scenarios.

to sniff packets and understand how the handover process is executed. In the second scenario, 10b more

UEs are added, and different mobility patterns will be explored.

33

C
h
a
p
te

r

5
Implementation

In this chapter, a specific implementation of a testbed supported by two virtual machines is presented.

The goal is to provide all the steps required to instantiate and test the scenario proposed in the previous

chapter (Figure 9). Two virtual machines were deployed on a server at the Department of Informatics at

the University of Minho, which uses VMware ESXi as the hypervisor to host 5GC and Simu5G running as

an emulator. The following procedure is based on [48–50].

5.1 Simu5G Virtual Machine installation

One VM was used to install Simu5G, with enough resources to meet the installation requirements. The

next sections provide a detailed description of the procedure that was followed.

5.1.1 Simu5G Virtual Machine hardware

The Simu5G VM was deployed with 25 GB of storage, 4 GB of RAM, 2 vCPUs, using the operational system

Ubuntu x86 18.04 LTS.

5.1.2 Simu5G prerequisites

Since Simu5G is supported by OMNET++ and INET framework, it is required to install OMNeT++ v6.0

pre11 version and INET v3.4.2.

1. To install OMNeT++ prerequisites the following commands are necessary:

$ sudo apt-get update

34

CHAPTER 5. IMPLEMENTATION

$ sudo apt-get install build-essential clang lld gdb bison \

flex perl \

python3 python3-pip qt5-default libqt5opengl5-dev \

libxml2-dev zlib1g-dev doxygen graphviz libwebkit2gtk-4.0-37

$ python3 -m pip install --user --upgrade numpy pandas \

matplotlib scipy seaborn posix_ipc

$ sudo apt-get install openscenegraph-plugin-osgearth libosgearth-dev

$ sudo apt-get install openmpi-bin libopenmpi-dev

2. With the prerequisites installed, the next step is to download OMNET++, unpack the archive and

set the environment variables to run the OMNET++ using the terminal:

$ tar xvfz omnetpp-6.0pre11-src-linux.tgz

$ cd omnetpp-6.0pre11

$ source setenv

$ gedit ~/.bashrc

...

export PATH=$HOME/omnetpp-6.0pre11/bin:$PATH

$ source ~/.bashrc

3. Finally, to configure and build, the commands below are used:

$./configure

$ make

4. To verify that everything operates properly, the following tests are executed:

$ cd samples/aloha

$./aloha

Once the binary is launched, the graphical environment with a set of simulation examples similar

to the University of Hawaii radio network will appear, allowing the user to run simulations and verify

that no errors have occurred.

35

CHAPTER 5. IMPLEMENTATION

5. With OMNeT++ working, the INETv4.3.2 package was downloaded and then extracted in the OM-

NeT++ workspace. Then with the Integrated Development Environment (IDE), the unpacked INET

project was imported via File -> Import -> Existing Projects to the Workspace and built (Project ->

Build).

$ tar xvfz inet-4.3.2.tgz

$ cp -r inet-4.3.2 omenetpp-6.0pre11/{workspace-name}/

6. Finally, the last step is to download Simu5G (Simu5G-1.2.1.tar.gz) and extract it next to the

INET directory. Build and set Simu5G environment variables in Simu5G directory:

$. setenv

$ make makefiles

$ make

An error occurred during the building phase because some Python modules required by the IDE were

not found. To fix this error the line #include <limits> needs to be added to the top of these two files:

src/sim/chistogramstrategy.cc and src/sim/simtime.cc

5.2 Free5GC Virtual Machine installation

A second virtual machine(VM2) was created to install Free5GC, meeting minimal hardware requirements.

The following sections detail the procedure followed.

Free5GC stage 3 version was deployed on the VM 2, where each core network function was con-

tainerized and interconnected to emulate the core network. This setup used 160 GB of storage, 4 GB

of RAM, and 2 vCPUs, while running the Ubuntu x86 18.04 LTS operational system with kernel version

5.0.0-23-generic.

5.2.1 Free5GC prerequisites

1. It is necessary to update the Linux kernel to 5.0.0-23-generic.

a) Check kernel version and update repositories:

$ uname -r

$ sudo apt update && sudo apt upgrade

36

CHAPTER 5. IMPLEMENTATION

b) Search and install kernel version:

$ apt search linux-headers-5.0.0.23

$ ls -l /usr/linux-headers-5.0.0.23

$ sudo apt install linux-image-5.0.0-23-generic

$ sudo apt install linux-headers-5.0.0-23-generic

c) Update grub and initramfs:

$ sudo update-initramfs -u -k all

$ sudo update-grub

$ reboot

2. Free5GC uses a customized 5G GTP-U kernel module tested with the kernel version installed before.

This module handles PFCP packets.

$ git clone https://github.com/free5gc/gtp5g.git

$ cd gtp5g

$ make

$ sudo make install

3. Free5GC was developed using Go 1.14.4. First, it is necessary to check the Golang version:

$ go version

4. If the Golang version mismatches the version supported by free5GC, the necessary steps to follow

are:

$ sudo rm -rf /usr/local/go

$ wget https://dl.google.com/go/go1.14.4.linux-amd64.tar.gz

$ sudo tar -C /usr/local -zxvf go1.14.4.linux-amd64.tar.gz

Otherwise, if Golang is not present in the system:

37

CHAPTER 5. IMPLEMENTATION

$ wget https://dl.google.com/go/go1.14.4.linux-amd64.tar.gz

$ sudo tar -C /usr/local -zxvf go1.14.4.linux-amd64.tar.gz

In both cases, update .bashrc to include Go in the PATH:

$ mkdir -p ~/go/{bin,pkg,src}

$ echo 'export GOPATH=$HOME/go' >> ~/.bashrc

$ echo 'export GOROOT=/usr/local/go' >> ~/.bashrc

$ echo 'export PATH=$PATH:$GOPATH/bin:$GOROOT/bin' >> ~/.bashrc

$ source ~/.bashrc

5. Subsequently, install the packages needed to run the control and user plane elements:

$ sudo apt -y update

$ sudo apt -y install mongodb wget git

$ sudo systemctl start mongodb

$ sudo apt -y update

$ sudo apt -y install git gcc cmake autoconf libtool pkg-config \

libmnl-dev libyaml-dev

$ go get -u github.com/sirupsen/logrus

6. To install the control plane, it is necessary the free5GC code repository and install the Go depen-

dencies:

$ cd ~

$ git clone --recursive -b v3.0.4 -j \

`nproc` https://github.com/free5gc/free5gc.git

$ cd free5gc

$ go mod download

7. To compile the network functions services:

38

CHAPTER 5. IMPLEMENTATION

$ cd ~/free5gc

$ make all

8. Install the UPF using the following commands:

$ cd ~/free5gc

$ make upf

9. Install WebConsole to register UEs:

a) Install Node.js and packages with Yarn:

$ sudo apt remove cmdtest

$ sudo apt remove yarn

$ curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | \

sudo apt-key add -

$ echo ”deb https://dl.yarnpkg.com/debian/ stable main” \

| sudo tee /etc/apt/sources.list.d/yarn.list

$ curl -sL https://deb.nodesource.com/setup_12.x | \

sudo -E bash -

$ sudo apt-get update

$ sudo apt-get install -y nodejs yarn

b) Build:

$ cd ~/free5gc

$ make webconsole

c) Run tests related to procedures such as Registration, ServiceRequest, Handover, Deregistra-

tion, PDUSessionReleaseRequest, N2Handover, and Non3GPP. If the tests succeed, no errors

should appear in the log.

$ chmod +x ./test.sh

$./test.sh <procedure_name>

39

CHAPTER 5. IMPLEMENTATION

5.3 Network Setup

This section addresses all the necessary steps to configure the network level of the system.

5.3.1 Virtual Machines Connection

In order to connect the two VMss, an isolated network between them was created.

1. Create a new vSwitch and give it the appropriate name without attaching any uplink adapters.

2. Add to each VM of the virtual network adapter the new vSwitch via Edit Settings -> Add -> Network

Adapter and select from the presented list.

3. Make sure both virtual machines have two vNICs (one for the internet connection and one for the

private connection)

4. Assign a static IP address on the virtual machines to the new network adapter.

a) Assign static IP with netplan:

$ cd /etc/netplan

$ ls

01-network-manager-all.yaml

$ cat 01-network-manager-all.yaml

b) Edit the Netplan configuration file in the following way:

1 network:

2 version: 2

3 renderer: NetworkManager

4 ethernets:

5 ens192:

6 dhcp4: no

7 addresses: [192.168.254.1/24]

8

Listing 5.1: 01-network-manager-all.yaml Simu5G VM.

c) Check for errors in the configuration:

$ sudo netplan try

d) Apply the new changes:

40

CHAPTER 5. IMPLEMENTATION

$ sudo netplan apply

e) Verify that the interface has the given IP:

$ ifconfig ens192 | grep inet

5.3.2 Simu5G Network

Enabling IP forwarding is required to Simu5G VM reroute packets from the veth to VM2.

1. Check if IPv4 forwarding is enabled:

$ sysctl net.ipv4.ip_forward

2. If forward equals 0 (false), enable it:

$ sysctl -w net.ipv4.ip_forward=1

Using NAT to connect Simu5G packets to TUN interface uesimtun0:

$ iptables -A FORWARD -o uesimtun0 -i veth1 -j ACCEPT

And setting up the NAT to translate IP on packets from veth-netns0 to the IP of uesimtun0 as they are

about to go out (POSTROUTING):

iptables -t nat -A POSTROUTING -s 10.0.3.2/24 -o uesimtun0 -j MASQUERADE

Check out the routing table within Simu5G router and add a gateway to forward packets to the veth as

presented in listing 5.2.

1 ifconfig:

2

3 # interface to the external server

4 name: eth0

5 inet_addr: 192.168.2.1

6 Mask: 255.255.255.0

7 MTU: 1500

8 Metric: 1

9 POINTTOPOINT MULTICAST

10

11 # interface to the gnb

41

CHAPTER 5. IMPLEMENTATION

12 name: ppp0

13 inet_addr: 10.0.2.1

14 Mask: 255.255.255.0

15 MTU: 1500

16 POINTTOPOINT MULTICAST

17 ifconfigend.

18

19 route:

20

21 #Destination Gateway Genmask Flags Metric Iface

22 192.168.2.0 * 255.255.255.0 H 0 eth0

23 192.168.3.0 * 255.255.255.0 H 0 ppp0

24 0.0.0.0 192.168.2.2 0.0.0.0 G 0 eth0

25

26 routeend.

Listing 5.2: Router mrt file Simu5G emulation.

With the software configured and deployed, it is necessary to configure Simu5G as emulator and to

make packets traverse Simu5G to reach VM2.

Figure 11 shows a detailed view of the emulation setup, where VM1 includes the UEs and RAN compo-

nents emulated by running the Simu5G in emulator mode. VM2 contains the core network components,

such as 5GC and OAI, which are connected to the UE and RAN components through the (uesimtun0) tun-

nel. These VMs are deployed in a virtualization server, using VMware ESXi as Bare Metal Hypervisor, and

are connected with Bridged Networking mode, which allows seeing Simu5G VM and 5GC VMs as nodes

in the network as if they were physically connected. VMware ESXi enables this abstraction.

To enable packet traversal through Simu5G, a veth (virtual Ethernet) interface was configured, allowing

Simu5G to capture packets. UE and Router will receive packets destined to veths by INET’s ExtLowerEther-

netInterface modules. These modules can receive real packets through network interface cards coupled to

the modules, with the interfaces being created using veth. The router sends packets to the veth connecting

the Simu5G router to the useimtun0 interface. The tunnel then forwards the packets to the core VM and

vice-versa [51, 52].

42

CHAPTER 5. IMPLEMENTATION

Figure 11: VM1 architecture

To set up the virtual devices and the necessary routing, the following script was used:

sudo ip netns add ns1

sudo ip link add sim-veth1 type veth peer name veth1

sudo ip link add veth2 netns ns1 type veth peer name sim-veth2

sudo ip addr add 192.168.2.2/24 dev veth1

sudo ip netns exec ns1 ip addr add 192.168.3.2/24 dev veth2

sudo ip netns exec ns1 ip link set veth2 up

sudo ip link set sim-veth1 up

sudo ip link set sim-veth2 up

sudo ip link set veth1 up

sudo route add -net 192.168.3.0 netmask 255.255.255.0 dev veth1

sudo ip netns exec ns1 route add default dev veth2

sudo ethtool --offload veth1 rx off tx off

sudo ip netns exec ns1 ethtool --offload veth1 rx off tx off

43

CHAPTER 5. IMPLEMENTATION

Enabling the emulation feature requires accessing the IDE by right-clicking on the INET folder, select-

ing Properties, then choosing Project Features, and finally selecting the radio button relative to Network

Emulation Support.

5.4 Simu5G MEC framework

As shown in Figure 12, the MEC system involves many components. Thus, Simu5G provides models

for these components. The core element of this technology is the MEC orchestrator, with a view of the

system as a whole. It will manage the requests for instantiation of MEC Apps and determining which

MEC host is the most appropriate for the app based on a policy defined by the user according to the

following parameters: CPU, memory, disk, and MEC services. This policy can be changed by overriding

the findbestmechost method of the MEC Orchestrator module. Moreover, it has a list of MEC hosts, and it

will request the MEC platform which is responsible for the lifecycle of the MEC apps, such as instantiation,

relocation, and termination. The UALCMP which is an OMNeT++ component that acts as a proxy and

receives requests from a Device application usually embedded in UE. These received requests are related

to lifecycle procedures, such as the instantiation and termination of the MEC app through an API [53, 54].

Figure 12: MEC architecture (Extracted from [53])

In Simu5G simulation, the UALCMP model provides the API to be consumed by the Device App that

will initiate the creation and termination of MEC Apps, if the UALCMP is connected to an INET external

interface, it will be possible to have a Device App running outside the simulator. The MEC orchestrator is

a simple module connected to the UALCMP through an OMNeT++ module that manages the MEC hosts.

Those can be configured through the mecHostList parameter [53].

44

CHAPTER 5. IMPLEMENTATION

After a MEC App creation request is sent from the UALCMP connected to a Device app, the MEC

orchestrator selects the most suitable MEC host from those related with the MEC system based on a

policy defined by the user according to requirements. The requirements of the MEC apps are specified in

a JSON file called App Descriptor, as exemplified in Listing 5.3. The required MEC services and computing

resources, such as RAM, CPU and disk are specified in this file.

1 {

2 ”appDid” : ”MECAPP”,

3 ”appName” : ”AppName”,

4 ”appProvider” : ”simu5g.apps.mec.appName.AppName”,

5 ”appInfoName” : ”appInfoName_”,

6 ”appDescription” : ”appDescription_”,

7 ”virtualComputeDescriptor” :{

8 ”virtualDisk”: 60,

9 ”virtualCpu” : 2000,

10 ”virtualMemory”:60

11 },

12 ”appServiceRequired”: [

13 {

14 ”ServiceDependency” :{

15 ”serName” : ”LocationService”,

16 ”version” : ”v2”,

17 ”serCategory”: ”Location”

18 }

19 }

20],

21 }

Listing 5.3: Application Descriptor example.

If the MEC App is simulated, the appProvider field is used to supply the module name required to

create the module that implements the MEC App. Otherwise, if it is emulated it is necessary to add the ip

and the port where the application is hosted, as show in Listing 5.4.

1 {

2 ”emulatedMecApplication” :{

3 ”ipAddress”: ”192.168.1.2”,

4 ”port”: 2015

45

CHAPTER 5. IMPLEMENTATION

5 }

6 }

Listing 5.4: Application Descriptor with emulated MEC App.

All these requests are not standard compliant because they use OMNeT++ messages through module

communications. This still allows having a standard behavior without losing functionality

When the Orchestrator selects the MEC Host responsible to allocate the MEC app, it will be instan-

tiated by creating an OMNeT++ model running the application logic. The Device app, embedded in UE,

manages the instantiation/termination of MEC apps. The Device App communicates through an API with

the UALCMP and establishes a UDP socket connection shared with the UE app. The communication over

the UDP socket is done through messages with code that can determine the start, termination, and ac-

knowledgements of the previous requests. The basic structure of these messages is composed of code

related to the message type, the length of the subsequent package size, and the data. The following codes

are implemented in Simu5G:

0. Instantiates the creation of an MEC App, by receiving its name as a payload.

1. Termination request of an MEC App, and with the App name as payload;

2. Acknowledgment related to the Start(responds with the Ip address and Port of the instantiated MEC

App);

3. Acknowledgment related to the Termination.

4. Code relative to negative acknowledgement related to the Start of an MEC App.

5. Code relative to negative acknowledgement related to the termination of an MEC App.

The configuration of components, such as VIM and Orchestrator are done via NED/INI files, for in-

stance, the maximum resources possible to be allocated.

The Simu5G MEC Platform is integrated with MEC Services such as a Location Service and a Radio

Network Service. The latter provides network information related to radio network conditions. This way,

MEC Apps can use this information to optimize or provide new services according to these conditions.

In addition, the former service offers information about the location of devices, which may be helpful for

location-based recommendations and vehicular networks [55, 56].

5.4.1 MEC Apps implementation

To develop an internal application, it is necessary to create the UE App using the Device module provided

by the Simu5G framework, which are modeled as depicted in Figures 14 and 13. The Device module then

46

CHAPTER 5. IMPLEMENTATION

sends requests for the instantiation or termination of MEC apps to the UALCMP (User Application-Layer

Control and Management Plane) via a REST API. Therefore, the logic of a UE App should be initiated by

requesting the instantiation or termination of the MEC App from the Device App.

Firstly, it is necessary to define the initialize function, which executes this method prior to the start

of the simulation and is responsible for configuring the simulation clock, initialize state, and statistical

counters.

To initiate the installation or termination of a MEC app, it is necessary to establish a connection with

the Device App, which will then request the MEC app from the UALCMP.

The par struct reads parameter values from the module present in the ini file, which is used to cus-

tomize the behavior.

The following code in on the Listing 5.5 demonstrates how to establish this connection:

1 void UEApp::initialize(int stage)

2 {

3 cSimpleModule::initialize(stage);

4 // avoid multiple initializations

5 if (stage!=inet::INITSTAGE_APPLICATION_LAYER)

6 return;

7

8 localPort_ = par(”localPort”);

9 deviceAppPort_ = par(”deviceAppPort”);

10

11 char* deviceAppAddressStr = (char*)par(”deviceAppAddress”).stringValue();

12 deviceAppAddress_ = inet::L3AddressResolver().resolve(deviceAppAddressStr);

13

14 //binding socket

15 socket.setOutputGate(gate(”socketOut”));

16 socket.bind(localPort_);

17

18 mecAppName = par(”mecAppName”).stringValue();

Listing 5.5: Initialized method with device app.

Next, it is necessary to define the initial events that need to be added to the FES (Future Event Set),

as shown in Listing 5.6.

1 mecAppStart_ = new cMessage(”mecAppStart”);

2 sendRequest_ = new cMessage(”sendRequest”);

47

CHAPTER 5. IMPLEMENTATION

Listing 5.6: Defining initial events.

In the INET Framework, there are various methods available to schedule the first event in a simulation.

The ”send()”method is used to transmit messages between modules, while the scheduleAt method is

employed to set up events that occur at a specific time, including self-messaging events. Furthermore,

cancelEvent method allows for the removal of events that have been scheduled using scheduleAt.

By utilizing these methods, it is possible to efficiently schedule events and control the flow of the

simulation.

Within this method, it is essential to schedule the first event that will initiate the execution of the

handleMessage method. As exemplified in listing 5.7, this event should be a MEC Start Request to the

Device App, which will retrieve the port and address to communicate with the MEC App.

1 simtime_t startTime = par(”startTime”);

2 scheduleAt(simTime() + startTime, mecAppStart);

Listing 5.7: Schedule first event.

Finally, the statistical counters are initialized, and an example of such a counter is e the response time,

which will be recorded. To initialize a statistic, it is necessary to register it using the registerSignal method

and save it as a signal variable to enable its recall later, as depicted in 5.8. To calculate the response time

requires timestamps for when a packet is sent and received, and the process for obtaining the timestamps

will be further explained.

1 simsignal_t responseTime_ = registerSignal(”responseTime”);

2 }

Listing 5.8: Register signal.

The handleMessagemethod receives and dispatches the events to the appropriate processing function.

It is not recommended to store state variables in local variables within this method because they will be

destroyed once the method finishes executing.

As a UE App, it will be necessary to handle events from other modules, including the Device App and

the MEC App, as well as process its own events.

The method can be split into three blocks, with the first one including a condition that determines how

it handles messages addressed to itself, as illustrated in listing 5.9.

1 void UeApp::handleMessage(cMessage *msg)

48

CHAPTER 5. IMPLEMENTATION

2 if (msg->isSelfMessage())

3 {

4 if(!strcmp(msg->getName(), ”mecAppStart”))

5 processStart();

6 else if(!strcmp(msg->getName(), ”event2”))

7 processEvent2();

8 else

9 throw cRuntimeError(”Error”);

10 }

Listing 5.9: handleMessage first block

Then the second block, as shown in listing 5.10 is responsible for handling the upcoming events

received from the Device App, which will consist of the acknowledgment messages indicating the initial-

ization/termination status of MEC Apps.

1 else

2 {

3 inet::Packet* packet = check_and_cast<inet::Packet*>(msg);

4 inet::L3Address ipAdd = packet->getTag<L3AddressInd>()->getSrcAddress();

5

6 if(ipAdd == deviceAppAddress_ || ipAdd == inet::L3Address(”127.0.0.1”))

7 {

8 auto mePkt = packet->peekAtFront<DeviceAppPacket>();

9

10 if (mePkt == 0)

11 throw cRuntimeError(”UERequestApp::handleMessage - \tFATAL! Error when

↪→ casting to DeviceAppPacket”);

12 if(!strcmp(mePkt->getType(), ACK_START_MECAPP))

13 processAckStart(msg);

14 else if(!strcmp(mePkt->getType(), ACK_STOP_MECAPP))

15 processAckStop(msg);

16 else

17 throw cRuntimeError(”UERequestApp::handleMessage - \tFATAL! Error,

↪→ DeviceAppPacket type %s not recognized”, mePkt->getType());

18 }

Listing 5.10: handleMessage second block

49

CHAPTER 5. IMPLEMENTATION

Finally, the listing 5.11 shows how the third is responsible for handling the messages from the MEC

App.

1 else

2 {

3 auto mePkt = packet->peekAtFront<RequestResponseAppPacket>();

4 if (mePkt == 0)

5 throw cRuntimeError(”UERequestApp::handleMessage - \tFATAL! Error when

↪→ casting to RequestAppPacket”);

6

7 if(mePkt->getType() == Event3)

8 handleEvent3(msg);

9 else if(mePkt->getType() == Event4)

10 handleEvent4(msg);

11 else

12 throw cRuntimeError(”UERequestApp::handleMessage - \tFATAL! Error,

↪→ RequestAppPacket type %d not recognized”, mePkt->getType());

13 }

14 }

15 }

Listing 5.11: handleMessage third block

After implementing the previous methods, the next step is to create functions that can process the

events.

After the first scheduled event, mecAppStart, is triggered, it is directed to the module as shown in

listing 5.9. The handler then will call processStart method to send the Start request to the DeviceApp.

Upon receiving the Start ACK from the DeviceApp, it will be necessary defining the appropriate function to

process it. For instance, a process function can be used to create a packet to send to the UE and modify

the state of the start_ variable accordingly.

In most use cases related to networks, packets are used as the primary data structure. To demonstrate

how to use the packet API and implement a method that processes an event, let us consider as an example

the code in Listing 5.13 with the previous scenario, where a packet is sent after receiving the ACK message

as an approach for dealing with the message.

A packet is composed of different data types called chunks. These chunks can represent bits, slices,

and protocols, and users can define their custom chunks in a message file as displayed in listing 5.12.

To construct the packet chunks, it is recommended to use the makeShared method provided by the

INET framework, instead of the new operator. This is due to chunks being shared between packets with

50

CHAPTER 5. IMPLEMENTATION

shared pointers. Therefore, when creating a packet with its data, such as timestamp, length, and request

type, the makeShared method will allocate and manage memory deallocation when the packet pointer

goes out of scope.

Listing 5.12 demonstrated that the packet will include a sentTime field that will be used to calculate

the response time, and the type of the request that identifies the event.

1 import nodes.mec.MECPlatform.MECPackets;

2 import inet.networklayer.common.L3Address;

3 import inet.common.INETDefs;

4 import inet.common.packet.chunk.Chunk;

5

6 class MyPacket extends inet::FieldsChunk

7 {

8 int type;

9 simtime_t sentTime;

10 }

Listing 5.12: Costum Packet definition in mypacket.msg file

1 void UEApp::processAckStart(cMessage* msg)

2 {

3 inet::Packet* packet = check_and_cast<inet::Packet*>(msg);

4 auto pkt = packet->peekAtFront<DeviceAppStartAckPacket>();

5

6 if(pkt->getResult() == true)

7 {

8 // Get UEAPP Adress and Port.

9 mecAppAddress_ = L3AddressResolver().resolve(pkt->getIpAddress());

10 mecAppPort_ = pkt->getPort();

11 // Remove first event.

12 cancelEvent(selfStart_);

13

14 inet::Packet* pkt = new inet::Packet(”MyPacket”);

15 auto req = inet::makeShared<MyPacket>();

16

17 // Set packet attributes

18 req->setType(UEAPP_REQUEST);

19 req->setSentTime(simTime());

51

CHAPTER 5. IMPLEMENTATION

20 // Bit size packet in inherited field

21 req->setChunkLength(inet::B(requestPacketSize_));

22 // Append chunck to packet

23 pkt->insertAtBack(req);

24 start_ = simTime();

25 socket.sendTo(pkt, mecAppAddress_ , mecAppPort_);

26 }

27 }

Listing 5.13: Process Ack Start.

Once this module receives the response, another processing function must be defined. In this case,

the available information enables the response time calculation, as the packet was sent and the response

subsequently received. To do this, the sentTime field is retrieved, and the difference between the current

simulated time and the sentTime is calculated. After this, the signal is emitted to record the time statistic.

Listing 5.14 shows the code with the previous logic.

1 void UEApp::handleEvent3(cMessage* msg)

2 {

3 inet::Packet* packet = check_and_cast<inet::Packet*>(msg);

4 auto res = packet->peekAtFront<RequestResponseAppPacket>();

5 res->getSentTime();

6 simtime_t respTime = simTime()- res->getRequestSentTimestamp();

7 emit(responseTime_, respTime);

8 delete packet;

9 }

Listing 5.14: Handle Event.

Developing a MEC App follows a similar logic to that of a UE application. However, instead of building an

application from scratch, the MecAppBase module is utilized, which provides several pre-defined functions

that need to be overridden. These functions include the handling of messages, scheduling of messages,

management of socket connections, establishing contact with the Mp1 interface, and using the MEC

services.

By utilizing the MecAppBase module, developers do not need to worry about the underlying details of

the MEC host’s processing power or the scheduling of messages and socket connections. Instead, they

can focus on implementing the core functionality of the application. The module handles the handling of

messages, while the developer needs to implement the handleProceedMessage, handleSelfMessage, and

handleHttp methods.

52

CHAPTER 5. IMPLEMENTATION

This approach provides an abstraction layer that simplifies the development process and allows devel-

opers to build MEC applications more efficiently. By leveraging the MecAppBase module, developers can

focus on implementing the key features of the application, while the module handles the low-level details

of communication and scheduling.

Therefore, as illustrated in Listing 5.15, the initialize method follows the same logic as before, but there

is no need to schedule a first event since it will wait for a request from the UE App. Instead, it is necessary

to bind the socket to receive and send requests to the UE App and connect to the MP1 interface through

the inherited fields from the parent class.

1 void MECApp::initialize(int stage)

2 {

3 MecAppBase::initialize(stage);

4

5 // avoid multiple initializations

6 if (stage != inet::INITSTAGE_APPLICATION_LAYER)

7 return;

8

9 localUePort_ = par(”localUePort”);

10 ueAppSocket_.setOutputGate(gate(”socketOut”));

11 ueAppSocket_.bind(localUePort_);

12

13 mp1Socket_ = addNewSocket();

14 connect(mp1Socket_, mp1Address, mp1Port);

15 }

Listing 5.15: InitializeMecApp.

Instead of coding the entire logic of the handleMessagemethod, it is necessary to write separate meth-

ods that compose the handle message. These methods include handleProcessedMessage, which handles

events from the UE App, and handleHttpMessage, which is typically composed of handleMp1Message and

handleServiceMessage. The former is responsible for discovering MEC Services, while the latter parses

and manages the responses or notifications from the MEC Services. The handleProcessedMessage func-

tion, in the context of the previous example, would be responsible for dealing with the UEAPP_REQUEST

event, as depicted in Listing 5.16.

1 void MECApp::handleProcessedMessage(cMessage *msg)

2 {

3 if(ueSocket.belongsToSocket(msg)) {

53

CHAPTER 5. IMPLEMENTATION

4 inet::Packet* packet = check_and_cast<inet::Packet*>(msg);

5 auto req = packet->peekAtFront<RequestResponseAppPacket>();

6 if(req->getType() == UEAPP_REQUEST)

7 handleEvent(msg);

8

9 }

10 MecAppBase::handleProcessedMessage(msg);

Listing 5.16: handleProcessedMessage.

As displayed in Listing 5.17, the handleEvent method logic is similar to the UEAPP_REQUEST event,

as a packet is sent. However, the sentTime field is updated to calculate the correct request time.

1 void MECApp::handleEvent(msg)

2 {

3 inet::Packet* packet = check_and_cast<inet::Packet*>(msg);

4 ueAppAddress = packet->getTag<L3AddressInd>()->getSrcAddress();

5 ueAppPort = packet->getTag<L4PortInd>()->getSrcPort();

6

7 auto req = packet->removeAtFront<MyPacket>();

8 req->setType(MECAPP_RESPONSE);

9 req->setSentTime(simTime());

10 req->setChunkLength(B(packetSize_));

11 inet::Packet* pkt = new inet::Packet(”MyPacket”);

12 pkt->insertAtBack(req);

13

14 ueAppSocket_.sendTo(pkt, ueAppAddress, ueAppPort);

15

16 }

Listing 5.17: handleEvent in MECApp.

The following diagrams in Figure 13 and Figure 14 illustrate the concepts explained in this section and

demonstrate how the different methods interact with each other with Simu5G and OMNeT++ event loop.

54

CHAPTER 5. IMPLEMENTATION

Figure 13: MEC App model.

55

CHAPTER 5. IMPLEMENTATION

Figure 14: UE App model.

56

C
h
a
p
te

r

6
Results

This chapter presents a set of results obtained using the virtualized 5G network deployed based on the

proposed architecture and components. Firstly, a set of tests were conducted to test end-to-end connectivity

between a UE and a host in an external network. Connectivity is observed by capturing packets in several

points of the network, while packets move from UE through RAN to UPF and the data network. Finally, a

test planned to show a MEC use case is presented.

6.1 Simulation test

The first scenario is implemented as depicted in Figure 15. However, Simu5G does not support capturing

packets at layer 2 and its applications, the packets were captured at layer3, simulated through INET appli-

cation and not Simu5G application as shown in Figure 16. The behavior was similar between scenarios,

as the applications transmitted packets at a constant rate. However, with introduced mobility, packet loss

occurred.

Only the UPF component from the core is deployed in this setup because Simu5G only supports the

user plane. In an emulation scenario where the core is provided by another software, components related

to the control plane would also be presented.

In these scenarios, the user devices start by sending a video streaming request to the server and

then the server starts streaming and sending UDP packets at a constant rate to the clients. The mobility

shown in Figure 15b is linear, which has constant speed or acceleration or bonnMotion mobility, which

can represent a mobility dataset.

57

CHAPTER 6. RESULTS

(a) Simu5G simulation scenario 1(a). (b) Simu5G simulation scenario 1(b).

Figure 15: Simu5G simulation scenarios.

Figure 16: Wireshark packets captured from scenario 1.

6.2 End-to-end system test

The first result obtained is a test to verify if the end-to-end network connectivity is successful. In other

terms, if a packet can traverse the implemented emulated network, reaching all its components. This test

guarantees that all components of the emulated network are accessible and that the routing ensure that

the packets arrive at those same components.

To perform this test the ping command was employed, which is a command used to validate connec-

tivity and reachability in a network. Since we can specify an IP address, it will offer information such as the

duration of the data transmission and if the host can get a response from the specific address. The other

tool used is Wireshark to ensure that the packets reach the desired interfaces.

The first step is to run the ping command in the application namespace as in Figure 17 it ended to

isolate applications that have as objective cross the simulation network. The namespace is isolated, and it

owns separate network interfaces and routing tables. Therefore, all the application traffic must follow the

rules presented in Figure 18 for the application namespace, not the host.

58

CHAPTER 6. RESULTS

Figure 17: Ping command.

Figure 18: IP routes in application namespace.

These rules guarantee that the ingress traffic goes to the emulated environment via veth2 as we can

see in Figure 19.

Figure 19: Sim-veth2 traffic.

Once in the simulation, the traffic will be governed by the rules configured in the .mrt files, as shown

in Listing 5.2, which configures the routing tables of the simulated elements in Simu5G. If the emulation

stops, traffic will no longer flow through veth1 between the router and the tunnel, and a ping command, for

instance, to 10.0.2.1(router) will not reach the destination. To confirm that traffic is reaching the simulation

a ping command to the simulated router is executed (Figure 21).

Figure 20: Emulation running.

59

CHAPTER 6. RESULTS

Figure 21: Ping to the simulated router.

After that, the connection between the router and tunnel is made through the veth pair veth1 sim-veth1.

And it is possible to see the traffic reaching the pair as shown in Figures 22 and 23 .

Figure 22: veth1 traffic

Figure 23: sim-veth1 traffic

Subsequently, the packets are expected to reach the TUN interface due to the NAT and packet forward-

ing rules introduced as shown in Figure 24.

60

CHAPTER 6. RESULTS

Figure 24: uesimtun0 traffic.

Then, as seen in Figure 25, packets arrive at the 5GC interface.

Figure 25: upfgtp traffic.

Traffic reaches all the expected interfaces, and the ping is successful, as illustrated in Figure 26. The

ping command was configured to send 100 packets with a 1s delay between each packet.

Figure 26: Ping response.

The metrics collected using this test were the average latency of 61.869ms, and a jitter of 6.752ms

as shown in Figure 27.

Figure 27: Ping response.

61

CHAPTER 6. RESULTS

6.3 Simu5G MEC Framework test

This test has, as its primary objective, to test the Simu5G emulation making use of one of its features, an

ETSI MEC scenario, as Simu5G is distinguishable from other solutions for integrating this technology. In

contrast, the solutions that provide MEC capability are more focused on this technology, being necessary

to integrate with other components to have a whole system. Furthermore, Simu5G expects to offer a quick

method for testing some features of MEC applications in emulated or simulated deployments.

This test uses the emulated mode to test a MEC scenario. It was created, a MEC App that collects an

image from the UE. In this case, it could be an image of traffic in a street to represent a real-world use

case, and the MEC app will take advantage of AI, specifically the YOLOv5 deep learning framework built on

the PyTorch platform, to identify obstacles in the image and send it as a response to the UE, which in this

example is used the It can be seen how this use case will benefit from the MEC technology by reducing

the latency by being close to the RAN, which is crucial in a vehicular network. Moreover, the AI models add

overhead, taking a long time to process. The service location is another feature that could be used related

to car mobility through an API request. Nonetheless, it was not the case in this test.

There were realized three tests the first with The MEC app requiring 10 MB of RAM, 10 MB of storage,

1500 instructions per second of CPU and the second MEC app requiring 2 GB of RAM, 4 GB of storage,

3000 instructions per second of CPU. Additionally, the third test was performed without a MEC solution.

The Figure 29 shows the UE App initiating the MEC App, then receives as ACK the IP Address to

connect to the MEC App. Subsequently, it sends the image depicted in Figure 30. The MEC App receives

the image as demonstrated in Figure 31 and runs the detector to find obstacles presented in the image

received. After that, the detection is sent to the UE App. The UE App receives the images and sends to

the device app the request to terminate the MEC App. Finally, The device app sends a termination ACK to

confirm. The network is composed by 1 UE, 1 gNodeB, 1 MEC Host, 1 UPF, 1 MEC orchestrator, and 1

MEC App.

To obtain the results, the traffic was captured at the UE component’s NIC interface up to the RLC

layer, which is responsible for data transmission over the radio link. The device with the App was used for

this purpose. The higher the throughput and the lower the delay parameters, the faster the application will

perform.

Accordingly, to the results, the transfer of images takes minutes to complete. This is due to packets be-

ing sent with 1s intervals in order for the emulation can maintain real-time speed. Although this represents

a long time it does not cause substantial issues, as the real packets are processed as they were generated

inside the simulation distortions, besides the duration of the capture and injection into the simulation [57,

58].

62

CHAPTER 6. RESULTS

Figure 28: MEC App execution.

Figure 29: UE App execution.

Figure 30: Traffic image sent to MEC App.

From the results presented in Table 1, Table 2 and Table 3, it can be seen that the increased using

a MEC solution improves the performance since the throughput is higher. When specifying the same

application with the need for more resources in a network without other MEC Apps competing, for resources

there is a higher Throughput and lower Delay since it will have more computation power.

Figure 31: Image resulting from detection sent to UE App.

63

CHAPTER 6. RESULTS

Table 1: Test results with lower resources requirements.

Parameter Value

ThroughputUL mean 599.395649Bps

DealyUL mean 0.012697s

ThroughputDL mean 310.240893Bps

DelayDL mean 0.0006115s

Table 2: Test results with higher resources requirements.

Parameter Value

ThroughputUL mean 601.988267Bps

DealyUL mean 0.012629s

ThroughputDL mean 315.911434Bps

DelayDL mean 0.0005857s

Table 3: Test without MEC solution.

Parameter Value

ThroughputUL mean 462.836514Bps
DealyUL mean 0.013407s
ThroughputDL mean 284.505164Bps
DelayDL mean 0.0007983s

64

C
h
a
p
te

r

7
Conclusions and future work

In this chapter, conclusions and future work are presented.

7.1 Conclusion

This work aims the deployment of a fully virtualized 5G using open-source software that is publicly available,

allowing for research and experimentation without requiring access to an operational cellular network or

equipment.

To achieve this goal, initially, different generations of mobile networks were studied, with a focus on the

5G network and its key features. Also, concepts of softwarization and virtualization were considered. Soft-

warization refers to the implementation of capabilities through software, providing flexibility in deployment

and dynamic configuration. Virtualization, on the other hand, is the abstraction of hardware resources and

their transfer to software, enabling efficient resource allocation, traffic adaptation, and easier manage-

ment. Both concepts help to reduce capital and operational expenses in 5G networks. Moreover, the use

of NFV and SDN was also considered since they are present in the 5G architecture. Then, different 5G

testbeds and their capabilities were discussed in order to understand the various architectural designs.

There were studied five testbeds proposed in research papers. The testbed proposed on [33], called ”Open

and Programmable 5G Network-in-a-Box”is a network-in-box solution that tests 5G Non Standalone mode

and 4G LTE mode. The second one, ”5G Testbed Development for Network Slicing”proposed in [34] uses

cloud computing to enable network slicing. The [35] testbed, ”Testbed for 5G Connected Artificial Intelli-

gence on Virtualized Networks,”enables machine learning applications to optimize the network based on

AI decisions. The testbed presented in [38], ”Virtualized C-RAN with Mininet and OAI Supporting Flexible

Network Topologies”provides a virtualized cloud RAN with a BBU pool and RRH pool to experiment with

65

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

different configurations. The last testbed [39], ”A Cloud-based SDN / NFV Testbed for End-to-End Network

Slicing in 4G / 5G”, uses OSM as NFV orchestrator, OAI as core, srsLTE as RAN, and SDN controllers

in RAN, core, and TN to enable end-to-end slicing. Each testbed has unique features and objectives for

evaluating the performance, security, and functionality of 5G networks.

After that, emulators/simulators for the RAN and software modules that implement the 5GC function-

alities were identified and the most suitable ones, based on their functionalities, were chosen.

A conceptual design utilizing Simu5G and Free5GC was proposed and deployed on two virtual ma-

chines using VMWare as the hypervisor. The server was located at the University of Minho.

Simu5G is a simulation tool that provides end-to-end simulation of 5G networks using the OMNeT++

event simulator. Unlike other simulation tools that only simulate the physical layer, Simu5G provides a

simulation of the entire 5G protocol stack, from the application layer down to the physical layer. One of

the advantages of Simu5G is that it is based on the OMNeT++ framework, which provides a component

architecture for models, making it easy to reuse and integrate different OMNeT++ base frameworks. For

instance, Simu5G can be integrated with Veins, a vehicular network simulation framework.

Free5GC is an open-source project written in GO language that aims to implement the core function-

alities defined in 3GPP Release 15 and beyond. The project includes all the CN entities except UDSF,

AF, and NEF, which are not expected to be implemented in the near future. It also has 5GC Orchestrator

integrated, supports application services, and has network services and slicing like OAI CN.

Finally, the network was tested to evaluate using simulation and emulation modes. Moreover, a test

involving MEC applications was performed.

The proposed virtualized 5G network was implemented and tested. Simu5G was employed to emulate

UEs and RAN, and was connected to free5GC, a 5G core. Due to the limitations of Simu5G, the network

does not implement a control plane and does provide MEC features that have been tested.

5G is becoming more software-based and virtualized, leading to significant disruptions and opportu-

nities for innovation. The previously discussed testbeds were developed to study various aspects of 5G,

including deployment scenarios, network slicing, and the use of AI, being limited in scalability. The testbed

proposed here with Simu5G is a fully virtualized solution, which offers a more cost-effective approach than

using physical equipment. However, the hardware used in the simulation and emulation still has an impact.

In particular, when emulating a network, it is important to ensure that the simulation maintains a real-time

requirement. Additionally, there are recommended hardware requirements for the 5G core implementa-

tion. This testbed is most concentrated on offering an environment for developers to test applications and

different scenarios where 5G will be important at the application level. That’s why not having the control

plane is not a big disadvantage since most of the studied testbeds are more interested in studying how

the 5G network can improve by integrating orchestrators, adding how network functions can be deployed

in different architectural designs or specific algorithms at the protocol level. Instead, here what matters

is the application level and how the application will behave in a 5G scenario by being able to customize

66

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

topologies and adding features such as D2D and MEC.

As mentioned in [59], several enablers, such as end-to-end slicing, Self-Organizing Network (SON),

and Cloud RAN are under investigation with no standard recommendations. The proposed testbed allows

testing at the application level with stable enablers and implementations. Therefore, having a control plane

available will be more important for these new enablers.

Simu5G offers scenarios with integration with both 5G and 4G (non-standalone), which is important

since some transition from the previous generation is being made with this hybrid approach. This network

is a valuable tool for researchers and developers who will be able, among others, to test mobility scenarios

as well as to evaluate MEC applications.

7.2 Future Work

Considering that 5G has many use cases, there are many possibilities for future work. In terms of infras-

tructure, for example, monitoring and availability of the resources used by the core machine could be

necessary if the test bed starts to have much use. The possibility of guaranteeing the availability of the

network could be implemented by replicating some NFs such as SMF DNN and UPD or selecting the UPF

according to the gNodeB, for instance, to distribute traffic. This could be done by setting up new virtual

machines with the according NFS and configuring the configuration files available to support multiple NFS

and know their addresses.

Regarding integration with other simulation tools, VEINs would be a good framework for vehicular

network research, giving a prominent feature to the testbed. Moreover, it should be possible to integrate

Simu5G and Veins, since it is an open-source framework for running vehicular network simulations based

on OMNeT++ and SUMO.

Another feature that can be integrated in the future is support for network slicing, a trending 5G

technology, which would require much more technical work. It would require developing the procedures in

Simu5G at the RAN level to select the Slice and control plane communication with the core. The Integration

of AI, which brings innovation to 5G Networks, would be another feature. There is some information on

integration with OMNeT++, but the interoperability with Simu5G would be necessary to study.

Concerning automation, RAN usage is IDEs-centric, which is suitable for beginners. In this sense, an-

other possible improvement would be to develop a framework that converts NED files, which are declarative

files that define the network topology. Simu5G models such as UE, background cells, and channel control

are imported in the NED file to represent network elements. The channel control defines the properties

of the transmission medium, while connections between the network elements are established using the

elements available gates, to XML and updates them in the Simu5G VM. In that way, it would be possible

to run the emulation without an IDE. Moreover, it is necessary to repeatedly open manually new terminals

and connections to test several applications, which could be improved.

67

Bibliography

[1] A. Gupta and R. K. Jha. “A Survey of 5G Network: Architecture and Emerging Technologies.” In:

IEEE Access 3 (2015), pp. 1206–1232. issn: 21693536. doi: 10.1109/ACCESS.2015.2461602

(cit. on pp. 1, 4, 5).

[2] G. Pujolle. Software Networks: Virtualization, SDN, 5G and Security. Wiley-ISTE, 2015. isbn: 2019950464

(cit. on p. 1).

[3] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai. “A survey on low latency towards 5G: RAN,

core network and caching solutions.” In: IEEE Communications Surveys and Tutorials 20.4 (2018),

pp. 3098–3130. issn: 1553877X. doi: 10.1109/COMST.2018.2841349. arXiv: 1708.02562

(cit. on p. 2).

[4] T. Lynn, J. G. Mooney, B. Lee, · Patricia, and T. Endo. The Cloud-to-Thing Continuum: Opportunities

and Challenges in Cloud, Fog and Edge Computing. July. 2020, p. 163. isbn: 9783030411091. doi:

10.1007/978-3-030-41110-7. url: http://www.palgrave.com/gp/series/16004

(cit. on p. 2).

[5] Intel and Ericsson Pioneer Cloud RAN Acceleration - Technology@Intel. url: https://blogs.

intel.com/technology/2021/06/intel-ericsson-collab-on-cloud-ran/ (visited on

12/17/2021) (cit. on p. 2).

[6] I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li. “Recent progress on C-RAN centralization

and cloudification.” In: IEEE Access 2 (2014), pp. 1030–1039. issn: 21693536. doi: 10.1109/

ACCESS.2014.2351411 (cit. on p. 2).

[7] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis. “SiMu5G–An OMNeT++ library for end-to-

end performance evaluation of 5G networks.” In: IEEE Access 8 (2020), pp. 181176–181191. issn:

21693536. doi: 10.1109/ACCESS.2020.3028550 (cit. on pp. 2, 12, 13).

[8] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and D. J. Leith. “srsLTE:

An open-source platform for LTE evolution and experimentation.” In: Proceedings of the Annual

International Conference on Mobile Computing and Networking, MOBICOM 03-07-Octo.October

(2016), pp. 25–32. doi: 10.1145/2980159.2980163. arXiv: 1602.04629 (cit. on p. 2).

[9] free5GC. url: https://www.free5gc.org/ (visited on 02/03/2022) (cit. on pp. 2, 15).

68

https://doi.org/10.1109/ACCESS.2015.2461602
https://doi.org/10.1109/COMST.2018.2841349
https://arxiv.org/abs/1708.02562
https://doi.org/10.1007/978-3-030-41110-7
http://www.palgrave.com/gp/series/16004
https://blogs.intel.com/technology/2021/06/intel-ericsson-collab-on-cloud-ran/
https://blogs.intel.com/technology/2021/06/intel-ericsson-collab-on-cloud-ran/
https://doi.org/10.1109/ACCESS.2014.2351411
https://doi.org/10.1109/ACCESS.2014.2351411
https://doi.org/10.1109/ACCESS.2020.3028550
https://doi.org/10.1145/2980159.2980163
https://arxiv.org/abs/1602.04629
https://www.free5gc.org/

BIBLIOGRAPHY

[10] H. Halabian. “Distributed Resource Allocation Optimization in 5G Virtualized Networks.” In: IEEE

Journal on Selected Areas in Communications 37.3 (2019), pp. 627–642. issn: 15580008. doi:

10.1109/JSAC.2019.2894305 (cit. on p. 3).

[11] A. Esmaeily and K. Kralevska. “Small-Scale 5G Testbeds for Network Slicing Deployment: A System-

atic Review.” In: Wireless Communications and Mobile Computing 2021 (2021). issn: 15308677.

doi: 10.1155/2021/6655216. arXiv: 2104.08834 (cit. on p. 3).

[12] M. Agiwal, A. Roy, and N. Saxena. “Next generation 5G wireless networks: A comprehensive survey.”

In: IEEE Communications Surveys and Tutorials 18.3 (2016), pp. 1617–1655. issn: 1553877X. doi:

10.1109/COMST.2016.2532458 (cit. on pp. 4, 18).

[13] A. Gohil, H. Modi, and S. K. Patel. “5G technology of mobile communication: A survey.” In: 2013

International Conference on Intelligent Systems and Signal Processing, ISSP 2013 (2013), pp. 288–

292. doi: 10.1109/ISSP.2013.6526920 (cit. on p. 4).

[14] S. Mumtaz, Rodriguez , Jonathan, Dai , Linglong. mmWave Massive MIMO 1st Edition A Paradigm

for 5G. 2016, p. 10. isbn: 9780128044186 (cit. on p. 5).

[15] “Ieee 5G and Beyond Technology R oadmap.” In: (2017) (cit. on p. 5).

[16] TSGS. TS 123 501 - V15.3.0 - 5G; System Architecture for the 5G System (3GPP TS 23.501 version

15.3.0 Release 15). 2018. url: https://portal.etsi.org/TB/ETSIDeliverableStatus.

aspx (cit. on p. 6).

[17] NFV. “GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV); Management and Orches-

tration.” In: (2014). url: http://portal.etsi.org/chaircor/ETSI_support.asp (cit. on

pp. 8, 9).

[18] B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero, I. Trajkovska, P. S.

Khodashenas, L. Goratti, M. Paolino, E. Sfakianakis, F. Liberal, and G. Xilouris. “Technology pillars

in the architecture of future 5G mobile networks: NFV, MEC and SDN.” In: Computer Standards

and Interfaces 54 (2017), pp. 216–228. issn: 09205489. doi: 10.1016/j.csi.2016.12.007

(cit. on p. 10).

[19] E. Edition, O. Systems, S. Edition, and B. D. Communications. the William Stallings Books on

Computer Data and Computer Communications , Eighth Edition. Vol. 139. 3. 2011, pp. 523–535.

isbn: 9780136073734. doi: 10.1007/11935070 (cit. on pp. 10, 11).

[20] M. S. Bonfim, K. L. Dias, and S. F. Fernandes. “Integrated NFV/SDN architectures: A systematic lit-

erature review.” In: ACM Computing Surveys 51.6 (2019). issn: 15577341. doi: 10.1145/3172866.

arXiv: 1801.01516 (cit. on p. 10).

69

https://doi.org/10.1109/JSAC.2019.2894305
https://doi.org/10.1155/2021/6655216
https://arxiv.org/abs/2104.08834
https://doi.org/10.1109/COMST.2016.2532458
https://doi.org/10.1109/ISSP.2013.6526920
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
http://portal.etsi.org/chaircor/ETSI_support.asp
https://doi.org/10.1016/j.csi.2016.12.007
https://doi.org/10.1007/11935070
https://doi.org/10.1145/3172866
https://arxiv.org/abs/1801.01516

BIBLIOGRAPHY

[21] S. Y. Wang, C. L. Chou, and C. M. Yang. “EstiNet openflow network simulator and emulator.” In:

IEEE Communications Magazine 51.9 (2013), pp. 110–117. issn: 01636804. doi: 10.1109/MCOM.

2013.6588659 (cit. on p. 11).

[22] G. Nardini, G. Stea, A. Virdis, and D. Sabella. “Simu5G: A system-level simulator for 5G networks.”

In: SIMULTECH 2020 - Proceedings of the 10th International Conference on Simulation and Mod-

eling Methodologies, Technologies and Applications Simultech (2020), pp. 68–80. doi: 10.5220/

0009826400680080 (cit. on pp. 12, 13).

[23] OMNeT++ - Simulation Manual. url: https://doc.omnetpp.org/omnetpp5/manual/ (visited

on 02/03/2022) (cit. on p. 14).

[24] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia. “Open, Programmable, and Virtual-

ized 5G Networks: State-of-the-Art and the Road Ahead.” In: Computer Networks 182.May (2020),

p. 107516. issn: 13891286. doi: 10.1016/j.comnet.2020.107516. arXiv: 2005.10027. url:

https://doi.org/10.1016/j.comnet.2020.107516 (cit. on pp. 15, 18–20, 32).

[25] 5G CORE NETWORK – OpenAirInterface. url: https://openairinterface.org/oai-5g-

core-network-project/ (visited on 02/03/2022) (cit. on p. 15).

[26] Open5GS | Open5GS is a C-language implementation of 5G Core and EPC, i.e. the core network of

NR/LTE network (Release-16). url: https://open5gs.org/open5gs/ (visited on 02/03/2022)

(cit. on p. 15).

[27] M. Condoluci and T. Mahmoodi. “Softwarization and virtualization in 5G mobile networks: Benefits,

trends and challenges.” In: Computer Networks 146 (2018), pp. 65–84. issn: 13891286. doi: 10.

1016/j.comnet.2018.09.005. url: https://doi.org/10.1016/j.comnet.2018.09.005

(cit. on p. 18).

[28] A. Yazar, B. Peköz, and H. Arslan. “Fundamentals of Multi-Numerology 5G New Radio.” In: (2018).

arXiv: 1805.02842v2. url: http://arxiv.org/abs/1805.02842 (cit. on p. 18).

[29] W. S. Afifi, A. A. El-Moursy, M. Saad, S. M. Nassar, and H. M. El-Hennawy. “Importance of Cloud

Computing in 5G Radio Access Networks.” In: January (2019), pp. 255–268. doi: 10.4018/978-

1-7998-1152-7.ch010 (cit. on p. 18).

[30] G. P. A. W. Group. “View on 5G Architecture.” In: Version 3.0, June 2019 June (2019), pp. 21–470.

url: https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-

White-Paper_v3.0_PublicConsultation.pdf (cit. on p. 19).

[31] “cups-white-paper.” In: () (cit. on p. 19).

[32] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines. “5G network slicing using SDN and NFV: A

survey of taxonomy, architectures and future challenges.” In: Computer Networks 167.2020 (2020).

issn: 13891286. doi: 10.1016/j.comnet.2019.106984 (cit. on p. 19).

70

https://doi.org/10.1109/MCOM.2013.6588659
https://doi.org/10.1109/MCOM.2013.6588659
https://doi.org/10.5220/0009826400680080
https://doi.org/10.5220/0009826400680080
https://doc.omnetpp.org/omnetpp5/manual/
https://doi.org/10.1016/j.comnet.2020.107516
https://arxiv.org/abs/2005.10027
https://doi.org/10.1016/j.comnet.2020.107516
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://open5gs.org/open5gs/
https://doi.org/10.1016/j.comnet.2018.09.005
https://doi.org/10.1016/j.comnet.2018.09.005
https://doi.org/10.1016/j.comnet.2018.09.005
https://arxiv.org/abs/1805.02842v2
http://arxiv.org/abs/1805.02842
https://doi.org/10.4018/978-1-7998-1152-7.ch010
https://doi.org/10.4018/978-1-7998-1152-7.ch010
https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://doi.org/10.1016/j.comnet.2019.106984

BIBLIOGRAPHY

[33] A. Aijaz, B. Holden, and F. Meng. “Open and Programmable 5G Network-in-a-Box : Technology

Demonstration and Evaluation Results.” In: (), pp. 6–8. arXiv: arXiv:2104.11074v1 (cit. on

pp. 20, 65).

[34] A. Shorov. “5G testbed development for network slicing evaluation.” In: Proceedings of the 2019

IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus

2019 (2019), pp. 39–44. doi: 10.1109/EIConRus.2019.8656861 (cit. on pp. 21, 65).

[35] C. V. Nahum, L. De Novoa Martins Pinto, V. B. Tavares, P. Batista, S. Lins, N. Linder, and A. Klautau.

“Testbed for 5G Connected Artificial Intelligence on Virtualized Networks.” In: IEEE Access 8.Ml

(2020), pp. 223202–223213. issn: 21693536. doi: 10.1109/ACCESS.2020.3043876 (cit. on

pp. 22, 65).

[36] Mininet: An Instant Virtual Network on Your Laptop (or Other PC) - Mininet. url: http://mininet.

org/ (visited on 02/03/2022) (cit. on p. 22).

[37] Flexran · Mosaic5G. url: https://mosaic5g.io/flexran/ (visited on 02/03/2022) (cit. on

p. 22).

[38] G. Couto, C. Nahum, V. Tavares, J. Pereira, P. Batista, and A. Klautau. “Virtualized C-RAN with

Mininet and OAI Supporting Flexible Network Topologies.” In: (2020). doi: 10 . 14209 / sbrt .

2020.1570657866 (cit. on pp. 23, 65).

[39] A. Esmaeily, K. Kralevska, and D. Gligoroski. “A Cloud-based SDN / NFV Testbed for End-to-End

Network Slicing in 4G / 5G.” In: (2020), pp. 29–35 (cit. on pp. 23, 24, 66).

[40] my5G/my5G-RANTester: my5G-RANTester is a gNB/UE simulator for studying 3GPP standards and

stressing a 5G core. url: https://github.com/my5G/my5G-RANTester/ (cit. on p. 25).

[41] L. B. Silveira, H. C. de Resende, C. B. Both, J. M. Marquez-Barja, B. Silvestre, and K. V. Cardoso.

Tutorial on communication between access networks and the 5G core. Oct. 2022. doi: 10.1016/

j.comnet.2022.109301 (cit. on p. 26).

[42] omec-project/gnbsim: gNB simulator. url: https://github.com/omec- project/gnbsim

(cit. on p. 26).

[43] Home · aligungr/UERANSIM Wiki. url: https://github.com/aligungr/UERANSIM/wiki

(cit. on p. 26).

[44] Simu5G - 5G New Radio User Plane Simulator for OMNeT++ and INET. url: http://simu5g.org/

(cit. on p. 28).

[45] A. Varga and R. Hornig. AN OVERVIEW OF THE OMNeT++ SIMULATION ENVIRONMENT. isbn:

9789639799202 (cit. on p. 30).

71

https://arxiv.org/abs/arXiv:2104.11074v1
https://doi.org/10.1109/EIConRus.2019.8656861
https://doi.org/10.1109/ACCESS.2020.3043876
http://mininet.org/
http://mininet.org/
https://mosaic5g.io/flexran/
https://doi.org/10.14209/sbrt.2020.1570657866
https://doi.org/10.14209/sbrt.2020.1570657866
https://github.com/my5G/my5G-RANTester/
https://doi.org/10.1016/j.comnet.2022.109301
https://doi.org/10.1016/j.comnet.2022.109301
https://github.com/omec-project/gnbsim
https://github.com/aligungr/UERANSIM/wiki
http://simu5g.org/

BIBLIOGRAPHY

[46] veth(4) - Linux manual page. url: https://man7.org/linux/man-pages/man4/veth.4.html

(visited on 02/03/2022) (cit. on p. 31).

[47] T. Dreibholz. “Flexible 4G/5G Testbed Setup for Mobile Edge Computing Using OpenAirInterface

and Open Source MANO.” In: Advances in Intelligent Systems and Computing 1150 AISC (2020),

pp. 1143–1153. issn: 21945365. doi: 10.1007/978-3-030-44038-1_105 (cit. on p. 32).

[48] Simu5G - 5G New Radio User Plane Simulation Model for INET. url: http://simu5g.org/

install.html (cit. on p. 34).

[49] Home · free5gc/free5gc Wiki. url: https://github.com/free5gc/free5gc/wiki (cit. on

p. 34).

[50] OMNeT++ Installation Guide. 1992 (cit. on p. 34).

[51] G. Nardini, G. Stea, and A. Virdis. “Scalable real-time emulation of 5G networks with Simu5G.” In:

IEEE Access 9 (2021), pp. 148504–148520. issn: 21693536. doi: 10.1109/ACCESS.2021.

3123873 (cit. on p. 42).

[52] Simu5G - 5G New Radio User Plane Simulator for OMNeT++ and INET. url: http://www.simu5g.

org/emulation.html (visited on 01/24/2022) (cit. on p. 42).

[53] A. Noferi, G. Nardini, G. Stea, and A. Virdis. “Deployment and configuration of MEC apps with

Simu5G.” In: (Sept. 2021). url: http://arxiv.org/abs/2109.12048 (cit. on p. 44).

[54] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha, F. Jiangping, D.

Frydman, G. Verin, K.-W. Wen, K. Kim, R. Arora, A. Odgers, L. M. Contreras, and S. Scarpina. ETSI

White Paper No. 28 MEC in 5G networks. 2018. url: www.etsi.org (cit. on p. 44).

[55] Mec. GS MEC 013 - V2.1.1 - Multi-access Edge Computing (MEC); Location API. 2019. url: https:

//portal.etsi.org/TB/ETSIDeliverableStatus.aspx (cit. on p. 46).

[56] Mec. GS MEC 012 - V1.1.1 - Mobile Edge Computing (MEC); Radio Network Information API. 2017.

url: https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx (cit. on p. 46).

[57] I. of Electrical, E. Engineers, and I. C. Society. 2020 IEEE 31st Annual International Symposium on

Personal, Indoor and Mobile Radio Communications. isbn: 9781728144900 (cit. on p. 62).

[58] A. Noferi, G. Nardini, G. Stea, and A. Virdis. Rapid prototyping and performance evaluation of MEC-

based applications (cit. on p. 62).

[59] L. B. D. Silveira, H. C. D. Resende, C. B. Both, J. M. Marquez-Barja, B. Silvestre, and V Cardoso.

Tutorial on communication between access networks and the 5G core. url: https://www.3gpp.

org/ (cit. on p. 67).

72

https://man7.org/linux/man-pages/man4/veth.4.html
https://doi.org/10.1007/978-3-030-44038-1_105
http://simu5g.org/install.html
http://simu5g.org/install.html
https://github.com/free5gc/free5gc/wiki
https://doi.org/10.1109/ACCESS.2021.3123873
https://doi.org/10.1109/ACCESS.2021.3123873
http://www.simu5g.org/emulation.html
http://www.simu5g.org/emulation.html
http://arxiv.org/abs/2109.12048
www.etsi.org
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://www.3gpp.org/
https://www.3gpp.org/

	List of Figures
	Listings
	Glossary
	Acronyms
	Introduction
	Context
	Problem
	Motivation
	Objectives
	Document Structure

	Concepts and technologies
	5G
	5G Architecture

	ETSI NFV MANO
	NFV

	SDN
	Emulators and Simulators
	Simulators
	Emulators

	Simu5G
	Discrete Event Simulation
	Discrete Event Simulation in OMNeT++

	Core Network
	OAI
	free5GC
	Open5GS
	Magma

	Summary

	Literature Review
	Towards softwarization and virtualization of 5G networks
	Radio Access Network
	Core Network
	Transport Networks
	Open virtualization and management frameworks
	Mobile Edge Computing

	5G testbeds
	Open and Programmable 5G Network-in-a-Box
	5G Testbed Development for Network Slicing
	Testbed for 5G Connected Artificial Intelligence on Virtualized Networks
	Virtualized C-RAN with Mininet and OAI Supporting Flexible Network Topologies
	A Cloud-based SDN / NFV Testbed for End-to-End Network Slicing in 4G / 5G.

	Summary

	Conceptual Solution
	RAN and user terminal emulation/simulation
	5G Core

	Virtualized 5G Network design

	Implementation
	Simu5G Virtual Machine installation
	Simu5G Virtual Machine hardware
	Simu5G prerequisites

	Free5GC Virtual Machine installation
	Free5GC prerequisites

	Network Setup
	Virtual Machines Connection
	Simu5G Network

	Simu5G MEC framework
	MEC Apps implementation

	Results
	Simulation test
	End-to-end system test
	Simu5G MEC Framework test

	Conclusions and future work
	Conclusion
	Future Work

	Bibliography

