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A B S T R A C T

When dealing with several years of daily data, such as the number of daily admissions to a hospital’s emergency
department (ED), how complex does it get to forecast into the future? With that in mind, this study has two
main goals: to explore the differences between several methodologies, considering both single and multiple-
seasonal patterns; and to select the most suitable model for the administration of a Portuguese hospital to
use while managing their ED. To that end, we first considered the data as a time series with a single weekly
seasonal pattern. We then modelled the data using time series regression, linear regression with autoregressive
integrated moving average (ARIMA) errors, seasonal ARIMA and exponential smoothing techniques. Second,
the data was set to be a time series with weekly and annual seasonal patterns. Then, using Fourier terms, we
applied time series regression, linear regression with ARIMA errors and trigonometric exponential smoothing
state space models with Box–Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) for
the analysis. After selecting the best-fitting models using the Akaike Information Criteria (AIC) values, we
forecasted into the future and compared the results using both training and test datasets’ root mean square
error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) values. The time series
regression model based on seasonal variables and a weekly seasonal pattern gives the best results. However, we
decided to use linear regression with ARIMA errors, seasonal variables, and both weekly and annual seasonal
patterns. This produces similar results but allows for the annual seasonality to be considered, which is useful
when more data is added.
. Introduction

The Portuguese National Health Service relies heavily on public hos-
itals, complex systems with multiple areas and departments allocating
ifferent activities and resources. The emergency department (ED) is
ne of the main areas of a hospital. The main focus of this department,
s the name implies, is the treatment of situations that need immediate
ttention.

However, according to the report from the Comissão de Reavaliação
a Rede Nacional de Emergência/Urgência [1], in 2010, approximately
6% of admissions to national emergency services were not episodes
f an urgent nature. Hence, about 6 million annual admissions to
ainland Portugal’s public emergency services result from abusive

nd non-urgent situations. This adds weight to a service that is itself
esponsible for somewhat unpredictable situations, meaning an over-
rowded department, which leads to excessive waiting times and a
ower response rate.

Given the financial constraints hospitals face, resource allocation
ust be balanced between cost and efficiency. It is then clear that
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E-mail address: adrimsvieira@gmail.com (A. Vieira).

hospital administrators must efficiently assign human and material
resources to the ED. For this reason, in a central hospital that serves a
large population, with the number of admissions to the ED being highly
variable, forecasting is essential. In other words, a reliable system for
predicting admissions to an ED is crucial.

Previous research has shown that attendance at the ED is condi-
tional on several factors: meteorological [2–10]; seasonal [3,5,6,8,10–
12]; epidemiological [10,13,14]; and even environmental [4,10,15,16].

Attia and Edward [2] found no significant effect of environmental
conditions on the number of admissions to a paediatric unit’s ED. Noble
et al. [7], on the other hand, found that the number of patients who
went to the ED of three Boston hospitals without using an ambu-
lance (potentially non-urgent cases) was higher when the weather was
favourable. To model the number of daily admissions in a veterans
hospital, Holleman et al. [6] used both meteorological and calendar
variables, concluding that maximum temperature, snow presence, sea-
son, day of the week, bank holiday, and week of the month were
significant explanatory variables. Attempting to explain the number of
ttps://doi.org/10.1016/j.health.2023.100146
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admissions into an ED in Denver, Batal et al. [3] discovered maximum
temperature and snow presence as statistically significant meteorolog-
ical variables, and day of the week, the month of the year, season,
and the day after a bank holiday as statistically significant calendar
variables. Regarding environmental variables, Diaz et al. [4] found,
while conducting a study in Madrid, that relative humidity and ozone
concentration explained the number of admissions at the ED. Lin et al.
[15] found a positive association between the concentration of several
air pollutants (ozone, carbon monoxide, nitrogen dioxide among oth-
ers) and the admissions to the ED of Changsha Central Hospital. Results
from a study conducted in the Lisbon Metropolitan Area by Franco
et al. [16] showed the existence of a significant correlation between air
pollutants and admissions to the ED, with carbon monoxide and ozone
leading to a higher number of admissions. As for epidemiological vari-
ables, Fuhrmann et al. [14] found a direct positive association between
the number of admissions and the number of flu and pneumonia cases
in a hospital’s ED in North Carolina. A positive correlation between the
number of flu cases and the number of admissions to the ED was also
concluded in a study conducted in five Milanese hospitals by Murtas
et al. [10].

Also, according to Batal et al. [3], Holleman et al. [6], Diehl
et al. [5], Wargon et al. [17], Marcilio et al. [18], Vieira and Sousa
[12] and Erkamp et al. [19], Mondays have the highest number of
emergency room admissions, which decreases throughout the week,
with fewer admissions on weekends. In turn, Hitzek et al. [20] con-
cluded exactly the opposite — weekend ED admissions proved to be
significantly higher than weekday admissions.

A further challenge in this kind of analysis is the complexity of
seasonal patterns in time series data, which is growing due to high-
frequency data recording [21]. For example, in a time series with only
one year of monthly observations, there is usually only one periodical
variation - a monthly seasonal pattern. However, if we take several
years’ worth of hourly data, the situation is different — daily, weekly,
monthly, and annual seasonal patterns are common in this type of
data [22].

The issue with such complex seasonal patterns is that only one
seasonal pattern can be modelled by the conventional time series meth-
ods (e.g. autoregressive integrated moving average (ARIMA), seasonal
ARIMA (SARIMA), exponential smoothing). Therefore, other techniques
must be employed to handle patterns with several seasonal compo-
nents or even patterns with non-integer seasonalities (e.g. trigonometric
exponential smoothing state space models with Box–Cox transforma-
tion, ARMA errors, Trend and Seasonal components (TBATS), linear
regression with ARIMA errors and Fourier terms) - [21,23].

Hence, a set of daily data spanning several years is a good example
of a time series expected to have multiple seasonal patterns — at least
weekly and annual [21]. The data under study fits this description since
it was recorded daily across a four-year period.

To model their daily data, the authors of the majority of the stud-
ies already mentioned [3,5,6,8,10,13,19,24,25] used linear regression
(with or without the inclusion of meteorological, epidemiological, and
environmental covariates) or time series models (SARIMA and exponen-
tial smoothing models). In addition, Jones et al. [24] and Rocha and
Rodrigues [25] also made use of artificial neural network models. In
turn, linear regression with ARIMA errors was the modelling approach
considered by Vieira and Sousa [12] and Murtas et al. [10]. As a result
of how simple it is to model patterns and trends using these methods,
which are usually easy to comprehend, they are often used across the
literature. However, in each of these studies, the data is modelled using
a single seasonal pattern, which may not be ideal.

As already mentioned, this work analyses a dataset on the number of
daily admissions to an ED. The data have been recorded from January
1st 2013, until December 31st 2016.

A preliminary analysis of the data showed that the number of daily
admissions to the ED had been increasingly changing over the years,
having a weekly seasonal pattern, as expected [21,24]. In this case,
2

the more straightforward and standard approach would be to set the
frequency of the seasonal pattern to 7. However, as already discussed,
daily data frequently include more than one seasonal pattern [21].
In fact, in this particular situation, both weekly and annual seasonal
patterns are present in the data. The frequency of the seasonal patterns
should then be set as 7 and 365.25 (we use 365.25 as the period instead
of 365 to accommodate for leap years). However, as previously stated,
not all methodologies allow the inclusion of more than one seasonal
pattern or a non-integer frequency. For example, SARIMA and some
exponential smoothing approaches only accommodate one seasonal
pattern and shorter integer frequencies, which means that the seasonal
pattern of 365.25 cannot be used when employing these approaches.

Therefore, we intend to compare the forecasting results when daily
data are analysed using various modelling approaches, considering both
single-seasonal and multiple-seasonal patterns while paying attention
to the nature of the correlation structure. In addition, there is interest in
selecting the most appropriate and somehow simple time series model
for the hospital administration to use while resource managing.

In Section 2, we give more detailed information about the data.
Section 3 describes the statistical methodologies we use to model the
data while, in Section 4, we apply the said methodology to the data to
understand the differences in the forecasting results. Finally, Section 5
summarises the main conclusions of this paper.

A two-sided significance of 5% was used. Statistical analysis was
performed with R Version 4.0.3 [26].

2. Motivation

2.1. Hospital of Braga

The Hospital of Braga opened in the city of Braga, northwest Por-
tugal, in May 2011. This hospital is the primary reference hospital
for approximately 320,000 inhabitants and the secondary reference
hospital for about 780,000 patients.

In an urgent situation, the Hospital of Braga guarantees to care for
any patient, Portuguese or not, with no daily limit on the number of
patients to be treated. That being said, this public hospital covers an
area of about 1.1 million inhabitants, more than 10% of the Portuguese
population [27].

The admission of a patient into the hospital can be elective or
urgent. When a patient’s admission is scheduled in advance, we are
in the presence of an elective admission. However, when a patient is
admitted through the ED in an unexpected way, the admission is said
to be urgent.

At the ED, the admission is made accordingly to the Manchester
Triage System [28]. After answering some clinical questions, the patient
receives a coloured bracelet according to the situation’s urgency. The
colour assigned to the patient determines the maximum waiting time
(in minutes) he must undergo until the first medical observation.

According to the administration of this facility, each doctor and
their team treats, on average, 70 patients each day (some non-medical
staff members may be on the team of several doctors). Therefore, an
adequate forecast of the daily number of patients results in a more
precise selection of staff members.

2.2. Dataset

Between January 1st 2013, and December 31st 2016, 531,164
people were admitted to the ED of the Hospital of Braga, with 79.22%
of the situations referring to residents of the hospital’s primary area
of action and 18.28% referring to residents of the hospital’s secondary
area of action.

A total of 288,016 (54.22%) patients were female, and 243,148
(45.78%) were male. Their age ranged between 19 and 106 years, with
an average of 53.76 years (standard deviation (SD) ± 20.17). Please
note that the Hospital of Braga has a separate emergency department
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Fig. 1. Boxplots displaying the distribution of daily admissions to the ED of the Hospital of Braga by day of the week (a), month (b), holiday (c), and year (d).
dedicated solely to children, which is why our data does not include
under 19-year-old patients.

Only 9.35% of admissions were Immediate or Very Urgent, and
59.74% of admissions were Urgent. On the other hand, 30.55% of
admissions to the ED were classified as Standard or Non-urgent.

From a preliminary analysis, we conclude that the number of pa-
tients who go to this ED is higher on Mondays, with an average of
415.60 patients (SD ±35.80) and decreases over the week, reaching its
minimum on Sundays with an average of 305.70 patients (SD ±29.07).
On average, the number of patients admitted to the ED is less on
holiday days (mean of 324.75 patients, SD ±35.32) than on non-holiday
days (mean of 364.77 patients, SD ±45.72). In terms of the number
of patients admitted to the ED by month of the year, July (mean of
380.05, SD ±45.46) and August (mean of 384.93, SD ±52.16) have the
higher daily admissions. Also, the daily average of patients entering the
ED in 2013 is 345.34 (SD ± 43.11); in 2014 is 359.63 (SD ± 42.38); in
2015 is 362.37 (SD ± 41.34); in 2016 is 386.84 (SD ± 46.93). The same
conclusions can be drawn from the analysis of the boxplots in Fig. 1,
which show the distribution of daily admissions to the ED by day of the
week (Fig. 1(a)), month (Fig. 1(b)), holiday (Fig. 1(c)), and year (Fig. 1
d)).

Fig. 2 shows the daily number of admissions to the ED in grey and
a non-parametric estimate of its mean, obtained with the smooth.
spline function of R, in black. The data appears to show an increasing
trend, as well as an annual seasonal pattern.

In order to better understand the time series, we decomposed it
using the Multiple Seasonal-Trend decomposition using Loess (MSTL)
procedure proposed by Bandara et al. [29]. The MSTL technique is
available to implement through the mstl function from the R package
forecast [30]. The decomposition of the time series is displayed
in Fig. 3. Aside from the trend component (second panel) and the
remainder component (fifth panel), there are two seasonal patterns dis-
played, one for the week (third panel) and another for the year (fourth
panel). Notice the vertical scales. In this situation, the trend component
presents a narrower scale than the other components, indicating that
the data exhibit a slight linear trend. The existence of the weekly and
3

annual seasonalities can also be verified, with the weekly seasonality
being relatively stronger than the annual seasonality.

In light of this, we consider a first scenario in which the data is
presented as a time series with a weekly pattern. Additionally, given the
existence of an annual seasonal pattern, we consider a second scenario
in which the data is a time series with both weekly and annual seasonal
patterns.

Note that, when time series data exhibit variation that increases or
decreases with the series level, applying a transformation to such data
can be advantageous [21]. A widely used family of transformations is
the Box–Cox family of transformations [31]. Hence, in both scenarios,
we log-transformed the data to smooth the across time variance (Box–
Cox transformation with 𝜆 = 0). Remember that, while the Box–Cox
family of transformations is introduced as part of the TBATS models in
Section 3.5, which searches for and considers a Box–Cox transformation
by design, all methodologies used can deal with the transformed time
series data. We computed 𝜆 using the BoxCox.lambda function from
the forecast package in R [30]. Because the returned value was close
to zero, we applied the logarithmic transformation to the data in all
scenarios. The Box–Cox transformation outputted by TBATS also uses
𝜆 = 0 (see Section 4.2.3).

From the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [32],
there is statistical evidence that the series is, in fact, non-stationary
(p < 0.01), varying with time.

3. Methodology

Using all data available, we divided the analysis into two parts,
accordingly to the two main objectives we defined in Section 1.

For the first objective, that is, to compare results considering both
single-seasonal and multiple-seasonal patterns, we established a two-
step approach.

In the first scenario, we considered the data as a time series with
a single weekly seasonal pattern (seasonal period of 7). We applied
four methodologies — time series regression, SARIMA, exponential
smoothing and linear regression with ARIMA errors. Regarding the
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Fig. 2. Daily Admissions to the ED of the Hospital of Braga from January 1st 2013 until December 31st 2016 (grey lines) with a non-parametric estimate of its mean (black solid
line). The vertical black dashed lines indicate the first day of 2014, 2015 and 2016.
Fig. 3. Number of daily admissions to the ED of the Hospital of Braga from January 1st 2013 to December 21st 2016 (1st panel) and its four additive components — trend
component (2nd panel), weekly and annual seasonal components (3rd and 4th panels, respectively), and remainder component (5th panel).
second scenario, the data was set to be a time series with two seasonal
patterns, weekly and annual (seasonal periods of 7 and 365.25). We
used the standard time series regression, linear regression with ARIMA
errors and TBATS models for the analysis.

For each methodology within each scenario, we compared the mod-
els’ goodness of fit using the Akaike Information Criteria (AIC - Akaike
[33]) values, thus choosing the most suitable models. We then fore-
casted into the future and compared the results against the actual
observed data. In order to do this, we used three measures: the mean
absolute percentage error (MAPE - Coleman and Swanson [34]), the
root mean square error (RMSE - Barnston [35]) and the mean absolute
error (MAE - Sammut and Webb [36]).

Given such comparison, it was then possible to choose a model
(or models) the hospital administration could use to forecast the daily
number of admissions at their ED.

Over the next subsections, we describe the methodologies used to
model the data. But first, let us consider 𝑦 , 𝑡 = 1,… , 𝑛 as the response
𝑡 c

4

variable at time 𝑡 (in this case the response variable refers to the daily
number of admissions at the ED in day 𝑡).

3.1. Time series regression

Time series regression [21] explains and models a time series assum-
ing a linear association with other time series. This method allows one
to model, with the introduction of covariates, both trend and seasonal
variation, with easily interpretable results. Such models are written as

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 +⋯ + 𝛽𝑘𝑥𝑘,𝑡 + 𝜖𝑡, (1)

where, 𝑥1, 𝑥2,… , 𝑥𝑘 represent the 𝑘 covariates, and 𝛽1, 𝛽2,… , 𝛽𝑘 each
associated regression parameter. The 𝛽𝑗 , 𝑗 = 1,… , 𝑘 regression param-
eter measures the effect, on average, of its corresponding covariate
over the response, after considering the effects of the 𝑘 − 1 remaining

ovariates. The parameter 𝛽0 represents the predicted value for 𝑦𝑡 when
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all covariates are set to 0 or take the baseline category. As for 𝜖𝑡, it
describes the error at each time point 𝑡.

The regression parameters are estimated by the least squares
method. Errors should have mean zero and be uncorrelated. Having
the errors be normally distributed with a constant variance 𝜎2 is also
elpful, though not necessary, for estimating prediction intervals. Also,
he covariates should not be correlated.

To test the existence of autocorrelation in the residuals, we used
he Breusch–Godfrey test, with the null hypothesis being ‘‘there is no
utocorrelation in the residuals’’.

To fit the linear regression model to the time series data, we used the
slm function from the forecast package in R [30]. This function

is similar to the lm function, generally used in linear regression.
However, this is better suited for working with time series data since
it offers additional features, such as the ability to introduce a Box–Cox
transformation parameter as an argument.

In this case, we introduced the covariate time (𝑡 - number of days
since January 1st) as a way to model the linear trend that appears to
be present in the data.

We considered three seasonal variables: day of the week, month of
the year and whether a given day is a holiday or not. These variables
were created as dummy (zero–one) variables, where one represents the
occurrence of the event. As holidays we considered: New Year’s Day,
Carnival Tuesday, Good Friday, Easter Sunday, Freedom Day, Labour
Day, Corpus Christi, Portugal Day, Assumption Day, Republic Day, All
Saints Day, Restoration of Independence, Immaculate Conception Day
and Christmas Day.

As meteorological variables, we used the daily maximum tempera-
ture in degrees Celsius (data from Instituto Dom Luiz - FCUL [37]). In
terms of epidemiological factors, we took into account the number of
flu cases in the previous week (data from Administração Regional de
Saúde do Norte). We assumed that both data sets were time series with
a weekly pattern.

Notice that including meteorological or epidemiological variables
in the final model will imply that, when forecasting, this information
has to be forecasted a priori. In practice, this can result in higher
inaccuracies in predictions. For that reason, models with or without
these covariates were fitted and compared.

Note: An alternative to using seasonal variables is to use Fourier
terms. This is especially useful for long seasonal periods. Usually, fewer
predictors are needed with Fourier terms versus categorical variables,
especially when the seasonal period is large. The maximum number of
Fourier terms allowed is 𝑚∕2, where 𝑚 denotes the frequency of the
seasonal pattern - [21]. The 𝐾 number of Fourier terms to be included
in the regression equation is the one that minimises the model’s AIC
value. A time series regression model with Fourier terms is written as

𝑦𝑡 = 𝛽0 +
𝑘
∑

𝑗=1
𝛽𝑗𝑥𝑗,𝑡 +

𝐾
∑

𝑘′=1

[

𝛼𝑘′ sin
(

2𝜋𝑘′𝑡
𝑚

)

+ 𝛾𝑘′ cos
(

2𝜋𝑘′𝑡
𝑚

)]

+ 𝜖𝑡, (2)

where 𝛼𝑘′ and 𝛾𝑘′ , 𝑘′ = 1,… , 𝐾 represent the amplitudes of the sine
and cosine waves, respectively.

3.2. Seasonal autoregressive integrated moving average (SARIMA)

The non-seasonal model of order (𝑝, 𝑑, 𝑞) - ARIMA(𝑝, 𝑑, 𝑞) - results
f combining of an autoregression model of order 𝑝 (AR(𝑝)), a moving
verage model of order 𝑞 (MA(𝑞)) and the differencing of degree 𝑑.

As indicated, the ARIMA model is a non-seasonal model. A sea-
onal component, may however be considered. ARIMA models with a
easonal component are known as Seasonal Autoregressive Integrated
oving Average (SARIMA) models [38].

This technique does not include the use of external variables and
s not as easy to interpret and identify as the previous one. However,
ARIMA models are capable of modelling a wide range of seasonal data.
5

SARIMA model is formed by including seasonal terms in the ARIMA
odels and it is written as

RIMA (𝑝, 𝑑, 𝑞)(𝑃 ,𝐷,𝑄)[𝑚],

here (𝑝, 𝑑, 𝑞) account for the non-seasonal part of the model and
𝑃 ,𝐷,𝑄) describe the seasonal part of the model. The characters 𝑝 and
𝑃 represent the number of non-seasonal and seasonal autoregressive
terms; 𝑞 and 𝑄 indicate the number of non-seasonal and seasonal

oving average terms; 𝑑 and 𝐷 represent the non-seasonal and seasonal
ifferences that must be performed to transform the time series into
tationary. The frequency of the seasonal pattern is denoted by 𝑚.

We assume 𝜙1, 𝜙2,… , 𝜙𝑘 as the parameters related to the non-
seasonal autoregressive part of the model; 𝜃1, 𝜃2,… , 𝜃𝑘 as the param-
eters related to the non-seasonal moving average part of the model;
𝛷1, 𝛷2,… , 𝛷𝑘 as the parameters related to the seasonal autoregressive
part of the model; and 𝛩1, 𝛩2,… , 𝛩𝑘 as the parameters related to the
seasonal moving average part of the model.

To fit the SARIMA models we used the Arima function, with the
seasonal argument, from the forecast package in R [30]. SARIMA
models allow the introduction of recurrent patterns, like the weekly
pattern (i.e. 7 days) we assumed our first-scenario time series to have.
However, it does not accommodate for non-integer seasonal patterns,
and actually, in R, the Arima function only allows seasonal periods up
to 350. Estimation of parameters is achieved by maximum likelihood.
The errors should have mean zero and be uncorrelated. As with the
time series regression, having the errors be normally distributed with
a constant variance 𝜎2 is useful when estimating prediction intervals.

To evaluate the existence of autocorrelation in the residuals, we
used the Ljung–Box test, with the null hypothesis being ‘‘there is no
autocorrelation in the residuals’’.

3.3. Exponential smoothing

Exponential smoothing is a class of forecasting techniques for
smoothing time-series data using the exponential window function
[21]. Unlike the moving average models, which weigh past obser-
vations equally when they fall within the moving average window,
exponential smoothing uses weights that decrease exponentially over
time. In other words, the more recent the observation, the higher the
associated weight.

According to the characteristics of the time series under study, there
are several forms of exponential smoothing methods. We will focus on
the exponential smoothing approach proposed by Hyndman et al. [39]
- the Error, Trend, Seasonal (ETS) models. The ETS models are a class of
time series models with an underlying state space model that comprises
a level component, a trend component, a seasonal component and an
error component. One of the most significant benefits of this technique
is that it is fully automated and simple to implement. However, as
with ARIMA models, the inclusion of other relevant data, like external
variables, is not allowed.

Each state space model is labelled as ETS(⋅, ⋅, ⋅) for (Error, Trend,
Seasonal). As possibilities for each component we are assuming Error
= {A,M}, Trend = {N,A𝑑 ,A} and Seasonal = {N,A,M}. Here, the letters
A stand for additive, A𝑑 for additive damped, M for multiplicative, and
N for none. This allows one to consider several exponential smoothing
models.

We considered only models where Seasonal≠N, meaning a seasonal
pattern is taken into account. Such models fall under the Holt-Winters’
method [40,41]. Also, since we transformed the data, the ets func-
tion from the forecast package in R [30] does not allow the use
of multiplicative models. Additionally, since they have been proven
successful across time-series data analysis, we considered models with
an additive damped trend [42]. Therefore, in this work, we only took
into consideration the following models
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• ETS(A,A,A)

𝑦𝑡 = 𝓁𝑡−1 + 𝑏𝑡−1 + 𝑠𝑡−𝑚 + 𝜖𝑡
𝓁𝑡 = 𝓁𝑡−1 + 𝑏𝑡−1 + 𝛼𝜖𝑡
𝑏𝑡 = 𝑏𝑡−1 + 𝛽𝜖𝑡

𝑠𝑡 = 𝑠𝑡−𝑚 + 𝛾𝜖𝑡 (3)

• ETS(A,Ad,A)

𝑦𝑡 = 𝓁𝑡−1 + 𝜙𝑏𝑡−1 + 𝑠𝑡−𝑚 + 𝜖𝑡
𝓁𝑡 = 𝓁𝑡−1 + 𝜙𝑏𝑡−1 + 𝛼𝜖𝑡
𝑏𝑡 = 𝜙𝑏𝑡−1 + 𝛽𝜖𝑡

𝑠𝑡 = 𝑠𝑡−𝑚 + 𝛾𝜖𝑡 (4)

• ETS(A,N,A)

𝑦𝑡 = 𝓁𝑡−1 + 𝑠𝑡−𝑚 + 𝜖𝑡
𝓁𝑡 = 𝓁𝑡−1 + 𝛼𝜖𝑡

𝑠𝑡 = 𝑠𝑡−𝑚 + 𝛾𝜖𝑡 (5)

Each model comprises an equation that describes the observed data
(𝑦𝑡), and some state equations that describe how the level (𝓁𝑡), trend
(𝑏𝑡) and seasonal (𝑠𝑡) components change over time 𝑡. Each model is
also described by a set of parameters 𝛼 (smoothing parameter for the
level of the series), 𝛽 (smoothing parameter for the trend component),
𝛾 (smoothing parameter for the seasonal component), 𝜙 (damping
parameter) and 𝜎2 (variance of the error component, that should be
a white noise process).

The state space equations for each existing ETS model are fully
disclosed in [39]. As hinted above, to fit the ETS model we used the
ets function from the forecast package in R [30].

When fitting a model, both the parameters (𝛼, 𝛽, 𝛾 and 𝜙), and the
initial states (𝓁0, 𝑏0, 𝑠0 and 𝑠−1,… , 𝑠−𝑚+1, (𝑚 represents the seasonal
pattern considered) can be specified. However, if not specified, their
estimation is achieved by maximum likelihood. Note that, regarding
the initial seasonal states alone, there are 𝑚 − 1 parameters to esti-
mate. Hence, for a larger seasonal pattern, estimation becomes almost
impossible. Actually, in R, the seasonal frequency is limited to 24.

When considering an additive model, the errors are assumed as
uncorrelated, with a normal distribution with mean zero and constant
variance 𝜎2. To evaluate the existence of autocorrelation in the residu-
als, we used the Ljung–Box test, with the null hypothesis being ‘‘there
is no autocorrelation in the residuals’’.

3.4. Linear regression with ARIMA errors

Linear regression with ARIMA errors combines two of the most
used statistical techniques (Linear Regression and ARIMA) into a single
model for forecasting time-series data.

The combination of both ARIMA and linear regression methods
allows the inclusion of both time-subject aspects and other pertinent
information (e.g. the effect of external variables) into one modelling
method [21].

Hence, linear regression with ARIMA errors should be considered
when introducing both covariates and serial correlation.

A linear regression with ARIMA errors is defined by the linear
regression Eq. (1) (see Section 3.1). In this equation, the assumed
uncorrelated error term, 𝜖𝑡, is substituted for an error term, 𝛿𝑡, that
can be autocorrelated. This autocorrelated error term is assumed as an
ARIMA process. Hence, the linear regression with ARIMA errors model
is given by

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 +⋯ + 𝛽𝑝𝑥𝑝,𝑡 + 𝛿𝑡 (6)

𝛿𝑡 = 𝜙1𝛿𝑡−1 +⋯ + 𝜙𝑝𝛿𝑡−𝑝 + 𝜖𝑡 − 𝜃1𝜖𝑡−1 −⋯ − 𝜃𝑞𝜖𝑡−𝑞 , (7)
6

where 𝛽0, 𝛽1,… , 𝛽𝑝, 𝜙1, 𝜙2,… , 𝜙𝑝 and 𝜃1, 𝜃2,… , 𝜃𝑞 denote the regression
parameters, the non-seasonal autoregression parameters and the non-
seasonal moving average parameters, respectively. 𝛿𝑡 ∼ 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)
and 𝜖𝑡 ∼ 𝑁(0, 𝜎2).

The parameters of linear regression with ARIMA errors are esti-
mated simultaneously, usually by the least squares method, as with
time series regression. However, this time the sum of squared 𝜖𝑡 is
the one to be minimised and not the sum of squared 𝛿𝑡. Maximum
likelihood can also be used to estimate the parameters.

Notice that if any seasonal difference is taken into account, all
variables in the regression model will also be differentiated before the
model is estimated.

As with time series regression: the covariate time (𝑡) was introduced
to model the trend that appears to be present in the data; day of
the week, month of the year and holidays were introduced to model
the seasonal component (Fourier terms are also capable of modelling
the seasonal component of the data and were used); models with
or without meteorological and epidemiological variables were fitted.
See Section 3.1 for further details about the regression component of
the model.

In order to fit a linear regression with ARIMA errors in R, one should
use the xreg argument of the Arima or the auto.arima function
from the forecast package [30].

To evaluate the existence of autocorrelation in the residuals, which
should behave like a normally distributed white noise process, we
used the Ljung–Box test, with the null hypothesis being ‘‘there is no
autocorrelation in the residuals’’.

3.5. Trigonometric exponential smoothing state space model with Box–Cox
transformation, ARMA errors, Trend and Seasonal components (TBATS)

A TBATS model is an innovations state space model that allows for
multiple non-integer seasonality cycles, contrary to the BATS (acronym
for Box–Cox transformation, ARMA errors, Trend, and Seasonal compo-
nents) model [43]. In reality, the TBATS model is an improvement on
both the BATS model and the methodology described in Section 3.3. In
this model, 𝑇 denotes the trigonometric terms (Fourier terms) for sea-
sonality, B denotes the Box–Cox transformation, A denotes the ARMA
errors, 𝑇 denotes the trend term, and S denotes the seasonal periods.

Usually, a TBATS model is designated as
(

𝜆, {𝑝, 𝑞} , 𝜙,
{

⟨𝑚1, 𝑘1⟩,… ,
⟨𝑚𝑇 , 𝑘𝑇 ⟩

})

and can be described by the following equations

• Box–Cox transformation

𝑦(𝜆)𝑡 =

{

𝑦𝜆𝑡 −1
𝜆 , 𝑖𝑓 𝜆 ≠ 0

𝑙𝑜𝑔(𝑦𝑡), 𝑖𝑓 𝜆 = 0
(8)

• Seasonal periods

𝑦(𝜆)𝑡 = 𝑙𝑡−1 + 𝜙𝑏𝑡−1 +
𝑇
∑

𝑖=1
𝑠(𝑖)𝑡−𝑚𝑖

+ 𝑑𝑡 (9)

• Trend

𝑙𝑡 = 𝑙𝑡−1 + 𝜙𝑏𝑡−1 + 𝛼𝑑𝑡

𝑏𝑡 = (1 − 𝜙)𝑏 + 𝜙𝑏𝑡−1 + 𝛽𝑑𝑡 (10)

• ARMA error

𝑑𝑡 =
𝑝
∑

𝑖=1
𝜙𝑖𝑑𝑡−𝑖 +

𝑞
∑

𝑗=1
𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡 (11)

• Trigonometric terms (Fourier terms)

𝑠(𝑖)𝑡 =
𝑘𝑖
∑

𝑗=1
𝑠(𝑖)𝑗,𝑡

𝑠(𝑖)𝑗,𝑡 = 𝑠(𝑖)𝑗,𝑡−1 cos 𝜐
(𝑖)
𝑗 + 𝑠∗(𝑖)𝑗,𝑡−1 sin 𝜐

(𝑖)
𝑗 + 𝛾 (𝑖)1 𝑑𝑡

𝑠∗(𝑖) = −𝑠(𝑖) sin 𝜐(𝑖) + 𝑠∗(𝑖) cos 𝜐(𝑖) + 𝛾 (𝑖)𝑑 (12)
𝑗,𝑡 𝑗,𝑡−1 𝑗 𝑗,𝑡−1 𝑗 2 𝑡
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Table 1
Description of each time series regression model and respective AIC value.

Model Used covariates AIC

Model 1 Time, day, month, holiday, maximum temperature
and number of flu cases

−2583.41

Model 2 Time, day, month, holiday and maximum temperature −2578.37
Model 3 Time, day, month, holiday and number of flu cases −2577.83
Model 4 Time, day, month and holiday −2571.68

where 𝑦(𝜆)𝑡 denotes the Box–Cox transformation with parameter 𝜆 per-
formed on the time series; 𝑙𝑡 and 𝑏𝑡 describe how the level and short-run
rend change over time; 𝑏 denotes the long-run trend; 𝜙 represents the
amping parameter; 𝑠(𝑖)𝑡 denotes the 𝑖th seasonal component at time
; 𝑚1,… , 𝑚𝑇 are the list of the seasonal periods and 𝑘1,… , 𝑘𝑇 are the
orresponding number of Fourier terms used for each seasonality; 𝑑𝑡
enotes an ARMA(𝑝, 𝑞) process to model the errors; and 𝜖𝑡 is a Gaussian
hite-noise process with zero mean and variance 𝜎2; 𝛼, 𝛽 and 𝛾1, 𝛾2

epresent the smoothing parameters and 𝜐(𝑖)𝑗 = 2𝜋𝑗∕𝑚𝑖, 𝑖 = 1,… , 𝑇 ; 𝑠∗(𝑖)𝑗,𝑡
epresent the change of the 𝑖th seasonal component over time.

As in the case of ETS models, this model is fully automated and
imple to implement. Also, compared to other methods, such as linear
egression with ARIMA errors, the TBATS approach allows the season-
lity to change slowly over time. However, as with ETS and ARIMA
odels, the inclusion of other relevant data, like external variables,

s not allowed. In contrast with the ETS and ARIMA models, TBATS
odels have the ability to handle multiple seasonal patterns in addition

o non-integer frequencies such as the 365.25 periodicity we utilised to
ccount for the annual seasonal pattern [44].

To fit the TBATS model we used the tbats function from the
orecast package in R [30]. Again, to evaluate the existence of
utocorrelation in the residuals, which should also behave like a white
oise process, we used the Ljung–Box test, with the null hypothesis
eing ‘‘there is no autocorrelation in the residuals’’.

. Results

Let us consider the first three years (2013, 2014 and 2015) of data
n the admissions to the Hospital of Braga’s ED as our training dataset
nd data from 2016 as our test dataset.

We started by modelling the training dataset using the various
ethods discussed in Section 3, considering a single seasonal pattern

weekly) and multiple seasonal patterns (weekly and annual) sepa-
ately. Then, to assess the models’ goodness of fit, we compared the
IC values of the models considered for each modelling technique.
aving chosen a maximum of two models (with the lowest AIC values)
ithin each method, we compared the models between methods (single

easonal pattern vs multiple seasonal patterns) using the RMSE, MAE
nd MAPE values of both training and test datasets.

It should be noted that the AIC can be helpful for selecting between
odels within the same methodology. However, it should not be used

o compare models that utilise different methods since the likelihood is
ften computed differently [21].

.1. Single seasonal pattern

.1.1. Time series regression
The models used in this subsection are described in Table 1. In

ddition, the AIC values for each model are also listed in Table 1.
As described in Section 3.1, we introduced the variable time (𝑡)

o model the trend present in the data. On the other hand, to model
easonality, we introduced as covariates the day of the week, the month
f the year, and whether a given day is a holiday or not. Also, the
aximum daily temperature and the number of flu cases the week

efore were introduced in the time series regression model. All four

odels present all covariates as statistically significant. Also, all models

7

Table 2
Description of each SARIMA model and respective AIC value.

Model SARIMA terms AIC

Model 5 ARIMA(2,0,2)(0,1,2) [7] −2535.39
Model 6 ARIMA(2,0,2)(1,1,1) [7] −2533.73
Model 7 ARIMA(2,0,2)(1,1,2) [7] −2536.14
Model 8 ARIMA(2,0,1)(0,1,2) [7] −2537.26
Model 9 ARIMA(3,0,2)(0,1,2) [7] −2538.11
Model 10 ARIMA(2,0,3)(0,1,2) [7] −2540.05

Table 3
Description of each ETS model and respective AIC value.

Model ETS components AIC

Model 11a ETS(A,N,A) 2045.54
Model 12b ETS(A,A𝑑 ,A) 2049.90
Model 13 ETS(A,A,A) 2052.64

aUsing the automatic selecting argument of the ets function, with a non-damped trend.
bUsing the automatic selecting argument of the ets function, with a damped trend.

reveal statistical evidence of existing autocorrelation in the residuals (p
< 0.0001 for the Breusch–Godfrey test).

Model 1 presents the lower value of AIC (−2583.41). Therefore it
was the chosen time series regression model assuming a single seasonal
pattern to forecast into 2016.

Notice that, if using Model 1 to forecast future admission num-
bers, the hospital administration needs to have information on both
meteorological and epidemiological variables. These would need to be
forecasted, which leads to more error. However, regarding the maxi-
mum daily temperature, the hospital could use the information on the
weather forecast given by the Portuguese Institute of the Sea and the
Atmosphere (Instituto Português do Mar e da Atmosfera in Portuguese).
As for the number of flu cases, the information is not so easy to obtain
or predict. We forecasted the flu-related data using the auto.arima
for this model. Hence, in case the hospital’s administration decides
against using the number of flu cases or the maximum temperature, we
also considered Model 4 (AIC = −2571.68) to forecast into the future.

4.1.2. SARIMA models
We started by modelling the trend present in the data with a

seasonal difference at lag 7. It was not necessary to differentiate again
(p = 0.1 for the KPSS-test).

After that, we analysed the ACF and PACF plots to identify the
orders of seasonal and non-seasonal autoregressive and moving average
terms. Also, the auto.arima function of the package forecast in
R was implemented. However, the model obtained with auto.arima
failed the Ljung–Box test (𝑝 = 1.25e–11, there is statistical evidence that
the residuals are correlated), and for that, it was disregarded.

The models taken into consideration are listed in Table 2. The AIC
values for each model are also included in Table 2.

All models presented p > 0.05 for the Ljung–Box test, which
means there is statistical evidence that the residuals are not corre-
lated. The model with the lowest AIC value (−2540.05) - Model 10
(ARIMA(2,0,3)(0,1,2) [7]) - was taken into consideration. This model
also accounted for significant parameters overall (the first moving
average parameter did not reveal statistical significance), while most of
the remaining models reveal no statistical significance for the second
parameter of the moving average process.

4.1.3. Exponential smoothing
As was already mentioned in Section 3.3, the ETS models are en-

tirely automated. Therefore we started by using the automatic selecting
argument of the ets function (package forecast) in R, with both
damped and non-damped trend component. We specified a third model
(Model 13) for comparison. The used models are described in Table 3,
alongside their respective AIC values.
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Table 4
Description of each linear regression with ARIMA errors model and respective AIC value.

Model Used covariates ARIMA terms AIC

Model 14 Time, day, month, holiday,
maximum temperature
and number of flu cases

ARIMA(2,0,0) −2638.21

Model 15 Time, day, month, holiday
and maximum temperature

ARIMA(2,0,1) −2638.62

Model 16 Time, day, month, holiday
and number of flu cases

ARIMA(2,0,0) −2634.77

Model 17 Time, day, month and holiday ARIMA(2,0,1) −2633.88
Table 5
Description of each linear regression model with 𝐾 = 62 Fourier terms and respective AIC value.

Model Used covariates AIC

Model 18 Time, day, month, holiday, maximum temperature
and number of flu cases

−2639.23

Model 19 Time, day, month, holiday and maximum temperature −2639.51
Model 20 Time, day, month, holiday and number of flu cases −2632.03
Model 21 Time, day, month and holiday −2631.51
w
t
d
a
s
f

4

w
i
m

d
i

p
y
t
d
p

i
i
u
f
e
t

4

m
w

A
r

4

t
t
d
t

All models reveal statistical evidence of existing autocorrelation in
he residuals (p < 0.0001 for the Ljung–Box test). In order to compare
odelling approaches and then forecast, we selected Model 11 since it
resented the smaller AIC value (2045.54).

.1.4. Linear regression with ARIMA errors
As in time series regression, here we introduce the time variable

𝑡) to model the trend present in the data, and the day of the week,
he month of the year and whether a given day is a holiday or not as
ovariates to model seasonality. We also introduced the daily maximum
emperature and the number of influenza cases in the previous week.
aving the regression part of the model, we used the auto.arima

unction to select the ARIMA components of the error term.
The models considered are described in Table 4. In addition, the AIC

alues for each model are also listed in Table 4.
All four models reveal statistical evidence of existing autocorrela-

ion in the residuals (p < 0.0001 for the Ljung–Box test).
Model 15 presents the lower value of AIC (−2638.62). Therefore it

was the chosen model assuming a single seasonal pattern to forecast
into 2016.

As in time series regression, if using Model 15 to forecast future
admissions numbers, the hospital administration needs information
on the meteorological variables. Again, the hospital could use the
information on the weather forecast given by the Portuguese Institute of
the Sea and the Atmosphere (Instituto Português do Mar e da Atmosfera
in Portuguese). We also considered Model 17 (AIC = −2633.88) to fore-
cast the future in case the hospital decides against using the maximum
temperature as a covariate.

4.2. Multiple seasonal patterns

4.2.1. Time series regression
Considering the time series with a weekly seasonal pattern, we

included the longer annual seasonality by introducing Fourier terms
in the regression model. We selected the number of Fourier terms by
minimising the AIC.

Hence, the models considered, with 𝐾 = 62 Fourier terms, are
escribed in Table 5. Also, the AIC values for each model are listed
n Table 5.

The variable time (𝑡) was again introduced to model the trend
resent in the data. In addition, the covariates day of the week, month
f the year and whether a given day is a holiday or not were included
o model seasonality. We also introduced as possible covariates the
aily maximum temperature and the number of influenza cases in the
revious week.
8

Model 19 presents the lower value of AIC (−2639.51). Therefore it
as the chosen model assuming both weekly and annual seasonal pat-

erns to forecast into 2016. Nevertheless, if the hospital administration
oes not want to use meteorological or epidemiological covariates, we
ssume model 21 for comparison (AIC = −2631.51). All models reveal
tatistical evidence of existing autocorrelation in the residuals (p < 0.02
or the Breusch–Godfrey test).

.2.2. Linear regression with ARIMA errors
Again, considering the time series with a weekly seasonal pattern,

e included the longer annual seasonality by introducing Fourier terms
n the regression model. We selected the number of Fourier terms by
inimising the AIC.

Hence, the models considered, with 𝐾 = 5 Fourier terms, are
escribed in Table 6. Also, the AIC values for each model are listed
n Table 6.

The variable time was introduced as a way to model the trend
resent in the data. The covariates day of the week, month of the
ear and whether a given day is a holiday or not were included
o model seasonality. We also introduced as possible covariates the
aily maximum temperature and the number of influenza cases in the
revious week.

Model 23 presents the lower value of AIC (−2647.52). Therefore
t was the chosen model assuming both seasonal patterns to forecast
nto 2016. But, again, if the hospital administration does not want to
se meteorological or epidemiological covariates, we assume Model 25
or comparison (AIC = −2641.05). All models still reveal statistical
vidence of existing autocorrelation in the residuals (p < 0.0001 for
he Ljung–Box test).

.2.3. TBATS
As mentioned in Section 3.5, the TBATS models are fully auto-

ated. Therefore, after setting the seasonal periods as 7 and 365.25
e used the automatic function tbats (package forecast) in R

to select the model. The fitted model, Model 26, is given by TBATS
(0, {2, 2} ,−, {⟨7, 3⟩, ⟨365.25, 1⟩}), and has an AIC value of 14883.77.

dditionally, the model reveals statistical evidence of existing autocor-
elation in the residuals (p < 0.02 for the Ljung–Box test).

.3. Single seasonal pattern vs. multiple seasonal patterns

In this subsection, we are comparing the models selected (using
he AIC values) in Sections 4.1 and 4.2. In order to do that, we used
he RMSE, the MAE and the MAPE values of both training and test
atasets. This allows us to understand the models’ fitting capacity and
o evaluate their forecasting performance.
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Table 6
Description of each linear regression with ARIMA errors model, with 𝐾 = 5 Fourier terms and respective
AIC values.

Model Used covariates ARIMA terms AIC

Model 22 Time, day, month, holiday,
maximum temperature
and number of flu cases

ARIMA(1,0,0) −2645.73

Model 23 Time, day, month, holiday
and maximum temperature

ARIMA(1,0,0) −2647.52

Model 24 Time, day, month, holiday
and number of flu cases

ARIMA(1,0,0) −2639.57

Model 25 Time, day, month and holiday ARIMA(1,0,0) −2641.05
Table 7
Description of each model under consideration, along with the training and test data’s corresponding RMSE, MAE, and MAPE values.

Methodology Model Dataset RMSE MAE MAPE

Single seasonal pattern
(weekly)

Time series regression with seasonal,
meteorological and epidemiological variables Model 1 Training 25.62 19.76 5.62%

Test 33.56 26.82 6.83%
Time series regression,
with only seasonal variables Model 4 Training 25.80 19.78 5.63%

Test 33.04 26.37 6.70%

SARIMA Model 10 Training 26.03 19.96 5.67%
Test 42.15 33.78 8.46%

Exponential Smoothing Model 11 Training 26.76 20.54 5.86%
Test 40.90 32.55 8.16%

Regression with ARIMA errors,
seasonal and meteorological variables Model 15 Training 24.92 19.17 5.46%

Test 33.93 27.07 6.86%
Regression with ARIMA errors,
and seasonal variables Model 17 Training 24.97 19.14 5.46%

Test 33.14 26.42 6.72%

Multiple seasonal patterns
(weekly and annual)

Time series regression with Fourier terms,
seasonal and meteorological variables Model 19 Training 22.45 17.49 4.96%

Test 34.31 27.77 7.09%
Time series regression with Fourier terms,
and seasonal variables Model 21 Training 22.53 17.49 4.96%

Test 33.59 26.99 6.91%
Regression with ARIMA errors, Fourier terms,
seasonal and meteorological variables Model 23 Training 24.65 19.05 5.42%

Test 33.95 27.29 6.92%
Regression with ARIMA errors, Fourier terms,
and seasonal variables Model 25 Training 24.73 19.07 5.43%

Test 33.04 26.39 6.72%

TBATS Model 26 Training 26.35 20.21 5.76%
Test 37.02 29.53 7.45%
Remember that we considered data on the number of admissions to
he ED from 2013, 2014 and 2015 as our training dataset and data from
016 as our test dataset. The values of interest for each model, given
he single or multiple seasonal patterns, can be seen in Table 7.

Concerning the methods used within the single seasonal pattern
ramework, notice that the linear regression with ARIMA errors models
it the training data a little bit better than the other approaches. On
he other hand, the standard time series regression model with only
easonal variables provides slightly more accurate forecasts on the test
ata. In fact, both standard time series regression and linear regression
ith ARIMA errors models using only seasonal variables produce more
ccurate forecasts. In turn, when using the SARIMA and ETS models to
it the training dataset, they both produce better results than the time
eries regression with seasonal, meteorological and epidemiological
ariables. However, when it comes to forecasting the test data, the
ARIMA and ETS models are the ones with the worst performance.

Also, note that the SARIMA models are the only ones that show
ncorrelated residuals. However, they are the ones who produce the
east accurate forecasts. Keep in mind that, the existence of correlation
n the residuals implies that there is still some information in the
ata the models could not explain. However, it does not imply one
s not able to produce forecasts. Actually, the forecasts from a model
ith autocorrelated residuals are unbiased; the prediction intervals
re the ones that are larger than they would be if the residuals were
ncorrelated [21].

As for the techniques within the framework of multiple seasonal
atterns, the time series regression models fit the training data better
han the other methods, followed by linear regression with ARIMA
rrors models. Concerning the forecasts over the test data, the time
eries regression and linear regression with ARIMA errors models us-
ng only seasonal variables produce more accurate forecasts. On the
9

other hand, the TBATS model reveals worst predictive power than the
other techniques. This is possibly due to the non-inclusion of external
variables like whether a day is a holiday or not [45].

In general, incorporating both weekly and annual seasonal patterns
is shown to be effective in terms of goodness of fit over the training
data. However, that does not always seem to be the case, at least in
terms of their ability to forecast the test findings. In fact, in terms
of the accuracy of the forecasts, the best performing model is the
one using standard time series regression with only seasonal variables
(Model 4), closely followed by the models using linear regression with
ARIMA errors and only seasonal explanatory variables, both with a
single (Model 17) or multiple seasonal patterns (Model 25).

In contrast, the TBATS model (Model 26) with two seasonal pat-
terns and the SARIMA (Model 10) and exponential smoothing (Model
11) models using only one seasonal pattern performed worse when
modelling the training data and forecasting the test data.

5. Discussion and conclusions

In terms of the most straightforward exploratory analysis, we found
that similar to prior studies [3,5,6,10,17,18], Mondays have the highest
number of ED admissions, which decreases throughout the week, with
fewer admissions on weekends. This, together with the fact that fewer
people are admitted to the ED on holidays, leads to the same conclusion
drawn by [3]: people may prefer to postpone their visit to the ED rather
than lose their free time. It is also likely that people will become ill as
a result of their holiday and weekend indulgences. Also, the number of
admissions is higher in summer months than in winter months, contrary
to what Batal et al. [3] and Holleman et al. [6] discovered, but in line
with what Diehl et al. [5] concluded.

As for the inclusion of meteorological (maximum temperature) and
epidemiological (number of flu cases) variables in the several models
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Fig. 4. Forecast of daily admissions to the Emergency Department for the year of 2016 using Model 4 (solid dark grey line) and using Model 25 (solid light grey line) against
the real values (black dotted line). The dashed grey lines represent the lower and upper values of the 95% intervals (dashed dark grey line for Model 4 and dashed light grey
line for Model 25).
that allow for covariates, the conclusion seems to be in line with
that of Batal et al. [3], Holleman et al. [6], Jones et al. [24] and
Vieira and Sousa [12] - although the inclusion of such variables in the
models translates into a marginally better fit to the training data, it
provides less accurate forecasts of the test data. For that reason, and
since the actual difference in the fitting of the training data itself is
almost non-existing, we would refrain from using models that include
meteorological or epidemiological variables.

Although methods taking into account both weekly and annual
seasonal patterns reveal better results when fitting the training data,
methods taking only a weekly seasonal pattern result in marginally
better forecasts. In fact, the most accurate forecasts are given by the
simpler model – Model 4 – which utilises standard time series regres-
sion based on seasonal variables and a weekly seasonal pattern. In fact,
this is consistent with what is found in the literature [3,24]. Model 4
forecasts the daily number of admissions to the ED of the Hospital of
Braga with an accuracy of 6.70%. The linear regression with ARIMA
errors model with a weekly seasonal pattern (Model 17) forecasts with
an accuracy of 6.72%, followed by the linear regression with ARIMA
errors model with both weekly and annual seasonal patterns (Model
25), which also has a MAPE of 6.72%.

The non-regression-based techniques revealed the worst perfor-
mances. Even the most sophisticated method (TBATS), which is entirely
automated, considers both seasonalities and allows such seasonalities to
fluctuate over time, produced less accurate outcomes (MAPE of 7.45%).

Therefore, in terms of model selection, Model 25 (linear regression
with ARIMA errors, seasonal variables, weekly and annual seasonal
patterns) is the model we advise the hospital administration to use.
This model provides good results in terms of accuracy and goodness
of fit, and it allows for the annual seasonality to be taken into account,
which is useful in the long run when more years of daily data are to be
added.

Alternatively, Model 4 (time series regression with seasonal vari-
ables and a weekly seasonal pattern) can also be of consideration.
It performs the best in terms of forecast and is easier to use and
understand.

Fig. 4 shows the forecasts for daily admissions to the ED of the
Hospital of Braga for the year 2016 using Model 4 and using Model
25 against the actual observed values, as well as their respective
10
95% confidence intervals. Graphically, Model 25 seems to follow the
seasonal pattern of the actual data slightly better than Model 4.

By considering and comparing several forecasting techniques that
account for single and multiple seasonal patterns, our work fulfils a
lacuna in the literature regarding high-frequency recorded daily data
containing complex seasonal patterns.

For future work, we would like to test this model on other hospitals
in the country since the model is already being implemented in Braga,
with good feedback from the administration. Also, it would be inter-
esting to study the number of admissions not daily but hourly and to
study the number of admissions by medical area within the ED.
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