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ABSTRACT 

The Finite Element Method (FEM) has become one of the most used numerical tools for 

advanced modelling of unreinforced masonry buildings. Implicit methods are often used to 

solve the set of equations in structural problems. Although they are reliable given their 

precision, the computational effort is high and strongly dependent on the convergence 

criteria. These difficulties increase when structural problems involve nonlinear dynamic 

responses, such as the seismic analysis of masonry buildings, where the quasi-brittle 

behaviour of the material hinders the convergence of the solution. Explicit methods can 

overcome this obstacle, as they were developed for mechanical problems with severe 

geometric and material discontinuities. The explicit solvers require a significantly small time 

increment to produce accurate results, leading to analyses with many thousands of steps, 

but with less computational effort. However, some parameters affect the stability of the 

solution and the accuracy of the results. This article addresses these parameters and their 

influence on the dynamic response of an unreinforced masonry building. Four FEM models 

were created using Abaqus/Explicit to perform a sensitivity analysis. The number and type of 

elements were varied (linear fully integrated elements and reduced integration elements with 

hourglass control), aiming at evaluating their effect on the energy balance, which is a 

parameter that controls the quality of the solution. 
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1. INTRODUCTION 

The Finite Element Method (FEM) is a common computational tool used in civil engineering 

research. In the implicit solvers, a solution to the set of equations involves iteration until a 

convergence criterion is satisfied for each increment. When the problem includes strong 

nonlinearities, many iterations are usually needed to solve for an increment, or even, there is 

no convergence. These issues are overcome by the explicit solvers since they do not use an 

iterative process to solve the system of equations. Nevertheless, they need a large number 

of small time increments to obtain accurate results [1]. The explicit method has a great 

capacity and advantage in analysing transient dynamics of a high nonlinear system including 

large deformation, large rotation, nonlinear material, contact, and crash [2]. 

It is a wide practice the use of FEM models with implicit solvers in the assessment of 

historical unreinforced masonry buildings. Although the power and accuracy of the tool have 

been already demonstrated, the computational cost to run nonlinear dynamic analyses is still 

an inconvenience, mainly for large models, in which local failures of the material cause 

convergence difficulties.   

Explicit solutions for modelling unreinforced masonry walls and buildings have barely been 

used. For example, Tarque et al. [3] simulated the experimental campaign of an adobe 

building tested on a shake table obtaining acceptable results. Yang [4] performed an 

extensive study comparing explicit and implicit methods for solving dynamic problems 

involving quasi-brittle materials, demonstrating that both procedures have similar results if 

the time increment in the explicit solver is small enough. Noor-E-Khuda et al. [5]  reproduced 

the out-of-plane behaviour of unreinforced masonry walls with different configurations and 

boundary conditions tests in the laboratory.  

In the present work, Abaqus/Explicit [6] is used to perform a parametric analysis of a partial 

model of an unreinforced masonry building. The scope is to assess the response 

dependency on the type of element and the refinement of the mesh during a seismic analysis 

with strong accelerations. Given that the explicit method deals with dynamic problems, the 

conservation of energy is a key aspect to consider for the reliability of the results. Therefore, 

the evaluation takes into account the energy balance. First, in the dead load application 

kinetic energy is an important factor, and second, during the seismic analysis, the balance 

between external work, total energy, internal energy and artificial energy plays an 

important role. 

2. EXPLICIT METHOD FOR FEM MODELS 

In general, the explicit integration method uses the central difference operator to integrate 

the equation of motion, solving the problem without formation and inversion of the stiffness 

matrix, unlike the implicit solvers. Therefore, each time increment is computationally 

inexpensive to solve [2,5]. The explicit dynamic method is conditionally stable, meaning that, 

to produce accurate results, the time increment ∆𝑡 must be smaller than the limiting time 

increment, which is related to the highest frequency of the system 𝜔௠௔௫, material property 

and length of the element [2]. Since the time is quite small, the analysis requires thousands 



of increments, which is inexpensive as the equations are not solved simultaneously. The 

stability limit is calculated using Equation (6) (see Section 5). Since it is not feasible to 

calculate the exact value of 𝜔௠௔௫, conservative estimates are applied instead, assuming the 

concept of a dilatation wave travelling along the element length 𝐿௘: 

∆𝑡 ൌ 𝐿௘ට
ఘ

ா
                                                                                                                               (1) 

where 𝐸  is the Young’s modulus and 𝜌  is the material density [7]. Abaqus/Explicit 

automatically calculates the increment time and reduces it by a factor between 1/√3 to 1 for 

a three-dimensional model [8]. 

3. DESCRIPTION OF THE BUILDING PROTOTYPE  

Figure 1 presents the layout of the building selected for the analysis. It is a prototype of the 

typical viceregal dwellings built in the 17th and 18th centuries in many cities in Mexico during 

the Spanish colony. The prototype consists of two floors with interstory height that varies 

from 4.95 to 5.10 m. The rooms surround two patios, and doors and windows are aligned. 

The thickness of the walls varies from 0.90 m (façade) to 0.60 m (inner walls). The use of 

diverse types of volcanic stones extracted from quarries was a widespread practice in the 

center of the country. Rubble masonry was used in the construction of foundations and walls, 

while dressed stones were used for columns and arches. Both floors and roof are flat slabs 

composed of a large set of timber joists (0.15 x 0.20 m), disposed perpendicular to the 

façade and with a spacing of 0.30 m, that support a layer of brick, compacted earth, and 

pavement. There is no mechanical connection between the joists and walls, relying only on 

frictional resistance to avoid the sliding of joists. 

     
Figure 1. Building prototype of the viceregal dwellings in Mexico. 



4. MECHANICAL PROPERTIES 

Density, Young’s modulus and compression strength applied for masonry were obtained 

from Chávez et al. [9], who performed tests on some samples taken from churches in the 

centre of Mexico. Regarding the tension properties, the strength was assumed 10% of the 

compression strength. Foundation and walls have the same properties since both were 

normally built with rubble masonry and similar material quality. Timber for joists and lintels is 

assumed to remain in the linear range during all the analysis since no damage in these 

elements is expected. Density and Young’s modulus for timber were taken from Guzmán [10]. 

Table 1 presents the mechanical properties of masonry and timber. 

Table 1. Mechanical properties  

 
Density 

[kg/m3] 

Young’s 

modulus 

[N/m2] 

Poisson’s 

ratio 

Compression 

strength 

[N/m2] 

Tension 

strength 

[N/m2] 

Tension 

fracture 

energy 

[N/m] 

Rubble masonry 1794 1.43e+09 0.2 1.90e+06 1.90e+05 50 

Timber 610 8.8e+09 0.3    

4.1 Constitutive law for masonry  

The material model adopted for the analyses was the concrete damage plasticity (CDP) 

model since it can describe the nonlinear behaviour of other quasi-brittle materials, including 

masonry, as demonstrated by D’Altri et al. [11]. This model is provided in Abaqus and has 

been implemented to simulate the response of several unreinforced masonry buildings for 

nonlinear static and dynamic analyses [3,12,13].  

This model allows the analysis of materials with different strength in tension and in 

compression, assuming two damage parameters to describe the tensile cracking (0 ൑ 𝑑௧ ൏ 1) 

and compressive crushing (0 ൑ 𝑑௖ ൏ 1) [14]. The stress-strain relations in uniaxial tension 𝜎௧, 
and compression 𝜎௖ are: 

𝜎௧ ൌ ሺ1 െ 𝑑௧ሻ𝐸଴൫𝜀௧ െ 𝜀௧
௣൯,  𝜎௖ ൌ ሺ1 െ 𝑑௖ሻ𝐸଴൫𝜀௖ െ 𝜀௖

௣൯                                                                (2) 

where 𝐸଴ is the initial Young’s modulus of the material, 𝜀௧ and 𝜀௖ are the uniaxial tensile and 

compressive strains, and 𝜀௧
௣ and 𝜀௖

௣ are the uniaxial tensile and compressive plastic strains 

(Figure 2). Based on the values in Table 1 the stress-strain compression and tension curves 

were calculated (Figure 3). The damage parameters were obtained with an approximation 

given by  𝑑 ൌ 1 െ 𝜎/𝜎௠௔௫. 

 



 

Figure 2. a) Tensile and b) compression uniaxial nonlinear curves (D’Altri et al., 2019). 

a)   b)  

Figure 3. Tensile and compression uniaxial nonlinear curves adopted in the analysis.  

CDP model requires other five parameters to describe the yield surface. These parameters 

are the dilatancy angle 𝜓, for which a value of 10° was adopted. The ratio between the 

biaxial and uniaxial compressive strength 𝑓௕଴ 𝑓௖଴⁄ , assumed equal to 1.16. The parameter 𝐾, 

set to 2/3, as recommended by Abaqus [8]. The viscoplastic regularization (viscoplastic 

parameter), which is used (with a value larger than zero) to avoid convergence problems in 

implicit analysis, was assumed as zero since the explicit method is applied in this case. The 

last parameter is the eccentricity, considered as 0.1. For further details, the reader is referred 

to [8,14]. 

5. RAYLEIGH DAMPING IN THE EXPLICIT METHOD 

Abaqus only allows Rayleigh damping for explicit solutions [8]. This damping type assumes 

that the damping matrix 𝑪 is a combination of the mass 𝑴 and stiffness 𝑲 matrices with the 

respective damping parameters [15]:  

𝑪 ൌ 𝛼𝑴൅ 𝛽𝑲                                                                                                                          (3) 

For each angular frequency of the system 𝜔௔, the effective damping ratio is related to the 

mass damping parameter 𝛼 and the stiffness damping parameter 𝛽 through: 

𝜉 ൌ
ఈ

ଶఠೌ
൅

ఉఠೌ

ଶ
                                                                                                                          (4) 

The mass damping parameter controls the low frequencies while the stiffness damping 

parameter dominates the high frequencies. To calculate 𝛼 and 𝛽, the fundamental frequency 

of the structure 𝜔଴  and a higher frequency 𝜔௠௔௫  that contributes considerably to the 
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response are selected. If the modes associated with those frequencies have the same 

damping ratio, which is reasonable based on experimental data, then: 

𝛼 ൌ 𝜉
ଶఠబఠ೘ೌೣ

ఠబାఠ೘ೌೣ
;  𝛽 ൌ 𝜉

ଶ

ఠబାఠ೘ೌೣ
                                                                                                 (5) 

In order to guarantee numerical stability in the explicit method, small steps are required for 

the accurate integration of the highest eigenfrequency 𝜔௠௔௫. Such steps should be smaller 

than the stability time increment given by: 

∆𝑡 ൑
ଶ

ఠ೘ೌೣ
ቀඥ1 ൅ 𝜉௠௔௫ଶ െ 𝜉௠௔௫ቁ                                                                                                (6) 

if 𝜔௠௔௫ is high, 
ఈ

ଶఠ೘ೌೣ
→ 0, thus 𝛼 does not affect the time increment significantly. However, 

the term related to 𝛽  can reduce the time increment and even can make the analysis 

unattainable for large models. To avoid this problem and minimize the computational cost, 

stiffness proportional damping is usually taken as zero [16] and only the mass proportional 

damping is applied [17]. 

Thus, in this study only the 𝛼 parameter was calculated while the 𝛽 parameter was set to 

zero in all the analyses. Regarding the damping ratio, it is normally considered as 3% for 

unreinforced masonry buildings.   

6. NUMERICAL MODEL 

Since the building prototype is too large, a partial and simplified model was adopted for the 

nonlinear dynamic analysis (Figure 4). Foundation, walls and lintels were modelled with solid 

elements. The joists (beam element type B21) were also included in the model to evaluate 

the effects of the floor and roof on the response of the building. During a cyclic load, for 

example in an earthquake, the joists may slide out of the walls when tensional forces develop 

and cannot penetrate if there is compression. Thus, translator connections with nonlinear 

behaviour (low stiffness for tension and high stiffness for compression) simulate the link 

between walls and joists. 

Based on the eigenvalues analyses, previously performed, it was possible to determine that 

the dynamic properties of the partial and complete model remain the same for the out-of-

plane behaviour of the façade. 

 

Figure 4. Geometry of the partial model.  



6.1 Mesh and element type 

The explicit solution in Abaqus only includes linear solid elements with reduced integration 

and hexahedral elements fully integrated [8]. Fully integrated elements use two integration 

points in each direction. Despite the high accuracy of this type of element, shear locking 

affects their performance when subjected to bending loads, since they are numerically stiffer 

than they actually should be [18]. Increasing the number of elements does not avoid the 

shear locking. Therefore, they are recommended when the actions will produce minimal 

bending. Reduced integration linear elements have a single integration point located at the 

centroid. The advantage of using only one integration point per element is that the 

computational time is reduced [19], and shear locking is not presented. However, they have 

a spurious behaviour called hourglassing that can propagate in coarse meshes producing 

meaningless results. When the element is subjected to certain deformations, the neutral axes 

remain unchanged in length and rotation, so the location of the integration point is not altered 

and therefore any variation in the stress-strain field is calculated (Figure 5). As a result, the 

element is free to distort because no strain energy is produced to counteract such 

deformation [18]. Hourglass effect is prevented by using at least four elements through the 

thickness [19] when structures carry bending loads. Additionally, an artificial stiffness 

(represented as artificial energy) introduced by the software avoids large deformations. 

a) b)  

Figure 5. a) Hourglass mode and b) propagation of the hourglass effect [18].  

Four models with different meshes were generated to evaluate the effects of the type and 

size of the elements on the results. Model 3F has three fully integrated elements (C3D8) 

through the thickness of the façade, whereas Model 3R, Model 4R and Model 6R contain 

three, four and six reduced integration elements (C3D8R), respectively, along the thickness 

of the elements where bending may occur, as shown in Figure 6.  

a) b) c) 

Figure 6. a) Model 3F and Model 3R (41 660 elements), b) Model 4R (98 043 elements), and 
c) Model 6R (210 250 elements).  



7. ENERGY BALANCE 

Energy balance is an important parameter in explicit solutions that can help, by means of 

comparisons between various energy components, to assess the quality of the model and 

the reliability of the results. For the presented case, the energy conservation equation is: 

𝐸ூ ൅ 𝐸௏ ൅ 𝐸௄ െ 𝐸ௐ ൌ 𝐸௧௢௧௔௟ ൌ 0                                                                                              (7) 

where 𝐸ூ  is the internal energy, 𝐸௏  is the energy dissipated by damping mechanism 

(including the material damping), 𝐸௄  is the kinetic energy, and 𝐸ௐ  is the work done by 

external loads. Internal energy is the sum of recoverable elastic strain energy, the energy 

dissipated through plasticity, the energy dissipated through viscoelasticity or creep of the 

materials, the energy dissipated through damage, and artificial strain energy. In numerical 

methods, 𝐸௧௢௧௔௟ is only an approximation to a constant equal to zero, generally with an error 

of less than 1% [8], i.e., the ratio 𝐸௧௢௧௔௟ 𝐸ௐ⁄ ൏ 1% during the complete analysis.  

7.1 Artificial energy and hourglass controls 

If reduced integration elements are used, the FEM solver adds artificial forces to control the 

hourglass effect in parts of the model that start to deform. Artificial stiffness is converted into 

artificial energy, which can increase during the analysis to amounts comparable to physical 

energies [20]. This is one of the main sources of errors in the results. A common criterion is 

that the artificial energy should be small relative to the internal energy, no more than 1% [7]. 

However, this rule is more appropriate for quasi-static analysis, where there are small 

deformations, and the velocity of load application is relatively slow. For dynamic problems, a 

range between 5 to 10% is assumed as a reasonable limit for engineering applications 

[2,21,22]. 

Numerical solvers usually adopt viscous damping or small elastic stiffness added to the 

stiffness matrix to stop the formation of anomalous modes [2]. In this regard, Abaqus/Explicit 

has various numerical techniques to suppress hourglass appearing and propagation [8]. 

Based on previous analyses carried out on the FEM models and the sensitivity analysis 

performed by [19], two hourglass controls were applied to the three models with reduced 

integration elements. The enhanced approach minimizes the hourglass modes of the 

elements connected to the floor and roof, while stiffness (displacement hourglass set to 0.01) 

constraints the rest of the elements. The combination reduces significantly the artificial 

energy and supresses spurious distortions of the solid elements for the present case study.  

8. DYNAMIC ACTIONS 

First, the models were subjected to self-weight. An explicit solution is always a dynamic 

solution. Thus, the application of the dead load must be carried out with a quasi-static 

analysis with a low velocity. The gravity was applied with a smooth function with a time of 1 s, 

which allows the dilatation wave to travel along the complete model. The results are feasible 

if the kinetic energy of the system is equal or close to zero during the time application.   



Several nonlinear dynamic analyses were performed to compare the behaviour of the four 

models under different intensities of ground acceleration (10, 25, 50 and 75%). The explicit 

solver is more efficient when the dynamic actions are introduced as velocities instead of 

accelerations or displacements [8]. Figure 7 shows the North-South component of the Emilia 

Romagna’s earthquake recorded in the seismic station in Mirandola (Italy), on May 29th, 2012 

[23]. The velocity was applied only in one direction to produce the out-of-plane collapse of 

the façade.  

 

Figure 7. Seismic signal used in the analyses. 

9. RESULTS 

The performance of the models was evaluated in terms of energy, running time, 

displacement of a control point (located at the top-centre of the façade), and a qualitative 

assessment of the damage. The ratio between the total energy and external work must be 

less than 1% and the ratio between the artificial energy and the internal energy should 

remain below 5%. Table 2 presents a summary of the main results regarding running time 

and energy balance. 

Table 2. Summary of the main results. 

Intensity Model 3F Model 6R  Model 4R Model 3R 
 

Time TE 

(%) 

Time TE 

(%) 

AE 

(%) 

Time TE 

(%) 

AE 

(%) 

Time TE 

(%) 

AE 

(%) 

10% 
22h 

57min 
0.09 

23h 

53min 
0.26 0.29 

8h 

45min 
0.15 0.15 

4h 

50min 
0.09 0.14 

25% 
19h 

43min 
0.23 

19h 

12min 
0.63 1.44 

9h 

45min 
0.36 0.69 

4h 

49min 
0.23 0.56 

50% 
17h 

45min 
0.13 

23h 

27min 
0.28 1.99 

10h 

5min 
0.18 2.37 

5h  

2min 
2.77 0.15 

75% 
2h 

45min 
0.60 

3h 

52min 
0.15 ˃5 

1h 

58min 
0.10 ˃5 59min 0.10 ˃5 

9.1 Seismic record scaled to 10% 

In the first set of analyses, the four models remained within the linear range since the 

intensity of the action was small. Thus, the ratios of energy remain quite below the limits 

(less than 0.3% for both artificial and total energies as shown in Table 2). The displacement 
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history of the control point is the same in all the models. However, the running time increases 

considerably for Model 3F and Model 6R, as expected given the number of elements and 

integration points.  

9.2 Seismic record scaled to 25% 

In the first analysis, the damage pattern in all the models is the same. Some parts of the 

building start developing cracks, mainly in the connection between the façade and orthogonal 

walls. Given that distortion of elements is larger, the algorithm for hourglass control 

introduces forces which are reflected in the energy balance. However, both energies are still 

within the range in all the models (no more than 1.5% for artificial energy and 0.63% for total 

energy) (Table 2). In terms of displacements, the responses depicted in Figure 8 are almost 

equal, with some variations for Model 3F at the last half of the seismic excitation. The time 

for Model 3F and Model 6R is over 19 hours of computation, whereas Model 3R and 

Model 4R are less than 10 hours. 

 
Figure 8. Displacements of the control point for 25% of the seismic action. 

9.3 Seismic record scaled to 50% 

For the 50% earthquake, the façade completely detached from all the orthogonal walls and 

the base cracks in the four models (Figure 9). Since the damaged elements had larger 

deformations, more artificial energy was required to suppress hourglass modes. Model 6R 

maintained the ratio below 2% while in Model 3R and Model 4R the artificial energy 

represented more than 2% of the internal energy. Regarding the total energy, it remained 

below 0.30% in the four models. In terms of time of analysis, Model 6R lasted more than 23 

hours to finish the analysis, while Model 4R and Model 3R terminated in less than 10 hours 

(Table 2). The displacement time history of the control point is similar in all the analyses, with 

small variations after 10 s (Figure 10).  
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Figure 9. Damage pattern for 50% of the seismic action. 

  

Figure 10. Displacements of the control point for 50% of the seismic action. 

9.4 Seismic record scaled to 75% 

In the analysis with the 75% of the earthquake, all the models presented similar damage at 

the façade with cracks developed in the same zones, with exception of Model 3F, which also 

failed on the roof level (Figure 11). The artificial energy raised over the 5% limit in the three 

models with reduced integration elements around second 6.2, just right after the largest 

ground displacement of the signal (Figure 12). Total energy was stable in the three models, 

however, in Model 3F, there was an abrupted change around second 6.2, which indicates a 

problem in the solution. The displacements of the control point in the four analyses were 

similar until second 6.2, when the energies of the system are no longer in balance (Figure 

13). At this time, it was assumed that the façade collapsed since the levels of artificial energy 

indicated high distortion of the damaged elements. To achieve this point of the analysis, 

Model 6R lasted almost 4 hours, while Model 3R ran less than 1 hour. The other two models 

were within this range of time.  

 

 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25D
es

lo
ca

m
en

to
 (m

)

Tempo

Model 6R

Model 3F

Model 4R

Model 3R



 

Model 6R

 

Model 3F 

 

Model 4R

 

Model 3R

 

Figure 11. Damage pattern for 75% of the seismic action. 
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Figure 12. Artificial energy ratio for 75% of the seismic action. 

 

Figure 13. Displacements of the control point for 75% of the seismic action. 

Comparing the energy balance, it is clear that, for relatively small distortions, models with a 

refined mesh (Model 6R) introduce more artificial energy. However, when the nonlinearities 

increase during the analysis (larger intensities of the earthquake), the artificial energy arises 
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in models with coarse meshes. Regarding the running time, Abaqus/Explicit computes ∆𝑡 at 

each increment and updates the value based on the current distortion of the elements. Thus, 

the analysis may last more time when the elements start changing their dimension due to the 

deformations, as it was the case for the highest seismic action.  

10. CONCLUSION 

Explicit solutions are an alternative for solving problems where the interactions between the 

structural elements have a strong nonlinearity relationship, as in the present case in which 

the behaviour of the material is brittle and the connections between walls and joists represent 

convergence issues for implicit solutions given the drastic change of stiffness from 

compression to tension.  

For dynamic analysis with high nonlinearities and displacements, the mesh refinement and 

regularity of the elements should be considered for models with reduced integration elements. 

A coarse mesh reduces the computational cost, but nonreal distortions may arise and 

propagate easily. Despite hourglass controls can be applied to minimize the unrealistic 

modes, the artificial energy can be large if coarse meshes are used. The solution is to 

generate a more refined mesh, mainly on those parts of the model that are subjected to large 

deformations and stresses due to the artificial energy generated is minor. On the other hand, 

more elements in the model increase the computational demand since the set of equations is 

larger and the increment time ∆𝑡  is related to the size of the smallest element. Thus, a 

combination of mesh size and hourglass controls should be addressed to obtain accurate or 

acceptable results.  

Some issues that are still on discussion in the scientific community is the application of a 

more suitable damping technique that can control the high frequencies and the time efficient. 

Therefore, explicit solutions should be used carefully for the seismic analysis of buildings. 

Additionally, more parametric analyses and comparison between explicit and implicit solvers 

for unreinforced masonry buildings are required. The results could serve to develop 

guidelines for users during the process of modelling, analysis and postprocessing of data.  
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