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Abstract: Buckling restrained brace frames (BRBFs) exhibit exceptional lateral stiffness, load-bearing
capacity, and energy dissipation properties, rendering them a highly promising choice for regions
susceptible to seismic activity. The precise and expeditious prediction of seismic demands on BRBFs
is a crucial and challenging task. In this paper, the potential of artificial neural networks (ANNs)
to predict the seismic demands of BRBFs is explored. The study presents the characteristics and
modelling of prototype BRBFs with different numbers of stories and material properties, utilising
the OpenSees software (Version 2.5.0) for numerical simulations. The seismic performance of the
BRBFs is evaluated using 91 near-fault pulse-like ground motions, and the maximum inter-storey
drift ratio (MIDR) and global drift ratio (GDR) are recorded as a measure of seismic demand. ANNs
are then trained to predict the MIDR and GDR of the selected prototypes. The model’s performance
is assessed by analysing the residuals and error metrics and then comparing the trend of the results
with the real dataset. Feature selection is utilised to decrease the complexity of the problem, with
spectral acceleration at the fundamental period (T) of the structure (Sa), peak ground acceleration
(PGA), peak ground velocity (PGV), and T being the primary factors impacting seismic demand
estimation. The findings demonstrate the effectiveness of the proposed ANN approach in accurately
predicting the seismic demands of BRBFs.

Keywords: pulse-wise real ground motion records; buckling restrained brace frame (BRBF);
maximum inter-storey drift ratio (MIDR); global drift ratio (GDR); feature selection; artificial neural
network (ANN)

1. Introduction

Throughout history, the built environment has experienced significant human ca-
sualties and economic losses due to the destructive nature of earthquakes. Researchers
have focused on developing innovative strategies to enhance building structural perfor-
mance while also employing alternative approaches to estimate demands on structures
and assess losses in the building stock [1–8]. In recent years, the rapid advancement of
computer processors has led to a significant increase in the utilisation of machine learn-
ing capabilities across various engineering domains [9–19]. An important application of
machine learning is to enable accurate and reliable estimation of seismic demands for
single-degree-of-freedom or more complex multi-degree-of-freedom structures, an area of
growing interest in recent times [20–24]. This capability holds great promise for reducing
the time required for analyses and predictions, thereby enhancing overall efficiency. The
literature review reveals that research efforts to predict structural responses have predomi-
nantly focused on conventional systems, such as moment-resisting frames. However, with
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the emergence of new structural systems in recent years, there is a pressing need to explore
their seismic demand.

Due to their better lateral stiffness during earthquakes and higher load capacity, brac-
ing frames have received more attention from earthquake engineers than other structural
frames [25]. Nevertheless, the buckling behaviour of the braces during compression causes
a sharp reduction in their energy dissipation and load-bearing capacity. To deal with this
disadvantage, the idea of a buckling restrained brace (BRB) was first proposed in Japan in
the 1970s [26,27]. BRB has been widely used in the literature on bridge structures [28–32].
A BRB mainly consists of two parts: the core and restraining segments. Standing out over
the entire axial force and dissipating energy is supplied by the core, while restraining
segments prevent buckling of members in compression. Also, an unbounded material
is employed between the core and restraining segments to be sure that the axial force is
only resisted by the core. The core material plays an important role in the performance
of BRBs under earthquake excitations. To provide the hysteresis behaviour of BRB, the
core material should have sufficient ductility, strength, and stiffness while maintaining
a lightweight profile. Carbon steel, low-yield-point steel, and aluminium alloys are the
most used core materials. Restraining segments have different types, including reinforced
concrete, concrete-filled steel tube, fibre-reinforced polymer, and all-steel assembled [33].
Stable lateral stiffness, sufficient energy dissipation, and comfortable replacement processes
can be counted as the principal advantages of BRBs. Acting as a structural fuse under the
maximum considered earthquake and improving the load capacity under the design basis
of an earthquake can protect the structure [34].

This paper introduces a novel approach that employs machine learning techniques
to estimate the seismic demands of buckling restrained brace frames (BRBFs). In contrast
to the existing literature, the novelty lies in the utilisation of ANN for BRBFs. Therefore,
this study represents a novel endeavour to predict seismic demand for BRBFs using ma-
chine learning techniques. By effectively training the ANN model, we aim to achieve
precise predictions of the response behaviour of these specific structural systems, thereby
addressing a critical research gap. The studied models of BRBs consist of a core for energy
absorption and dissipation, along with restraining segments to prevent buckling. Vari-
ous core materials, including carbon steel, low-yield-point steel, and aluminium alloys,
are considered alongside different types of restraining segments like reinforced concrete
and steel tubes. The paper presents the characterisation and modelling of these proto-
types with varying numbers of stories and material properties, utilising the OpenSees
software [35] for numerical simulations. Nonlinear force-beam-column and inelastic truss
elements are employed to accurately model the beam, column, and BRBs. The seismic
performance of the BRBFs is evaluated using 91 near-fault pulse-like ground motions with
different seismological characteristics, and the maximum inter-storey drift ratio (MIDR)
and global drift ratio (GDR) are recorded as measures of seismic demand. Artificial neural
networks (ANNs) are then applied to assess the MIDR and GDR of the selected prototypes,
incorporating ground motion intensity measures as explanatory variables, including ampli-
tude, frequency, and energy content, in addition to structural features. Feature selection
techniques are employed to reduce the dimensionality of the high-dimensional data and
transform seismological and engineering features into a reduced set of dimensions. The
model’s bias is checked through residual analysis, while the model’s accuracy is evaluated
separately using a predictive performance metric, namely, the coefficient of determination,
for the training and test datasets. Lastly, the results are assessed by comparing them to the
observed trend in the real dataset.

2. Ground Motion Dataset

A total of 91 near-fault pulse-like ground motions from the study of Baker [36] are
employed to perform nonlinear dynamic analyses. Baker [36] detected pulse-like ground
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motions from non-pulse ones by wavelet analysis and extracted the velocity pulses, in
which the pulse indicator (PI) is defined as below:

PI =
1

1 + e(−23.3+14.6(PGV ratio)+20.5(energy ratio))
(1)

where the PGV ratio is the peak ground velocity ratio (PGV) of the residual part of motion
after pulse extraction to the PGV of the original record. In the same way, the energy ratio is
described as the energy of the residual record divided by the energy of the original record.
The records with PI values over 0.85 are classified in the pulse-like ground motion class.

A summary of the key parameters for the selected pulse-wise 91 records, including
moment magnitude (Mw), closest distance (Rclos), epicentral distance (Repi), pulse period
(Tp), peak ground acceleration (PGA), PGV, and the ratio of PGA to PGV (PGA/PGV), is
given in Table A1, Appendix A. These records are obtained from 23 worldwide events with
Mw ranging from 5.0 to 7.6, recorded at stations located between 2.5 km and 151.7 km from
the epicentre. Figure 1 presents the distribution of ground motion parameters, including
Mw versus Repi, PGA/PGV versus PGA, and Tp versus PGV, for the selected records. The
selected records encompass a broad spectrum of magnitude, distance, and ground motion
parameters, indicating a clear diversity in their characteristics. The records exhibit PGA and
PGV values ranging from 0.1 g to 1.4 g and 30.4 cm/s to 191.1 cm/s, respectively. TP spans
from 0.4 s to 12.9 s, while PGA/PGV falls within the range of 0.18 g.s/m to 2.10 g.s/m.
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Subsequently, the gathered records are employed to conduct nonlinear time history
analyses on twenty-four specific Buckling-Restrained Braced Frames (BRBFs), with detailed
findings presented in the subsequent section.

3. Numerical Simulations of the Building Prototypes

The prototype BRBFs designed by Vafaei and Eskandari [37] are remodelled herein.
Mega-configured BRBFs with 4, 8, 12, and 15 stories and four bays are designed according
to the seismic provisions of the AISC 2005 [38] and Steel Tips 2004 [39] recommendations.
The elevation and plan view of the studied BRBFs are provided in Figure 2. The inter-storey
height and bay length of the considered BRBFs are 3.2 m and 6 m, respectively. BRBFs
are assumed to be located in Los Angeles on stiff soil type (class D) with a distance of
5 km from an active fault, so the near-fault provisions of the Uniform Building Code (UBC
1997) [40] are considered in their design. The importance factor, response modification
coefficient, and deflection amplification factor of frames are assumed to be I = 1, R = 7, and
Cd = 5.5, respectively, with non-moment-resisting beam-column connections. According to
the Coy (2007) [41] study, a connection of beams and braces to the columns is considered to
be pinned, which is shown in Figure 3. In the present study, the connection of the beam to
the column is modelled with the equal DOF command on the OpenSees platform. Base
connections are fully pinned.
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At the level of the stories, the dead and live loads are 4.7 kN/m2 and 2.0 kN/m2,
respectively, whereas at the roof level, these values are 4.0 kN/m2 and 1.5 kN/m2, respec-
tively, following the same sequence. Information on the dimensions of column and beam
sections and the core area of BRBs is available in Table A2, Appendix A.
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Numerical simulations of prototype structures are developed on the OpenSees plat-
form. The nonlinear force-beam-column element is considered for beam and column
members with distributed plasticity. The cross-section of these members is divided into
20 fibres for each flange and 20 fibres for the web. The BRBs are modelled with inelastic
truss elements. To define the materials of the beam and column, Steel01 with a kinematic
strain hardening of 2% and elastic moduli (E) ranging from 190 GPa to 215 GPa with
increments of 5 GPa are considered. Steel02 material with the given properties in Table 1,
an improved version of the Giuffre–Menegotto–Pinto model, is allocated to the bracing
members. To assign a maximum ductility of 15 for BRBs, MinMax material with a respective
minimum and maximum strain capacity of −0.01467 and 0.01467 is utilised. The isotropic
hardening parameters of steel02 are calibrated with the hysteresis behaviour of BRBs in
specimen No. 99-1 of the PEER Report 2002/08 [42]. The SAC basic loading history and the
SAC near-field loading history are the two protocols [43] to which the specimen is subjected.
For example, the comparison of hysteretic curves of experimental and numerical specimens
under two loading protocols for Steel02 material with an effective elasticity modulus (which
is obtained based on E = 200 MPa) is shown in Figure 4. The strain hardening of BRBs is
0.5%. The effective elastic moduli are assumed to overcome the difficulty of modelling
BRBs due to the unequal cross-sectional area [37]. An initial imperfection of 1/800 is set
for the buckling of columns. 50% of the total building mass is dedicated to the main nodes
of frames. Rayleigh damping ratios of 3%, 4%, 5%, 6%, and 7% are adopted for nonlinear
analysis in structural modelling. The periods of the first modes (T) of the studied structures
according to the E are presented in Table 2.

Table 1. Steel02 material properties.

fy (MPa) E (GPa) b R0 CR1 CR2 a1 a2 a3 a4

290 296–335 0.005 10 0.8 0.15 0.0005 0.01 0.0005 0.01
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Buildings 2023, 13, 2542 7 of 21

Table 2. First-mode periods of structures.

Structure

E (MPa)
190 195 200 205 210 215

4-Storey 0.55 s 0.54 s 0.53 s 0.53 s 0.52 s 0.51 s

8-Storey 0.79 s 0.78 s 0.77 s 0.76 s 0.75 s 0.74 s

12-Storey 1.12 s 1.1 s 1.089 s 1.08 s 1.06 s 1.05 s

15-Storey 1.34 s 1.32 s 1.3 s 1.29 s 1.27 s 1.26 s

Finally, the benchmark input, as detailed by Yaghmaei-Sabegh et al. (2023) [44],
adheres to engineering design codes. This study makes minor adjustments to certain
parameters to account for uncertainties. Eigenvalue analysis determines the periods of 4, 8,
12, and 15-storey BRBFs with an elastic modulus of 200 MPa, which serve as our benchmark
structures. These buildings exhibit periods of 0.53 s, 0.77 s, 1.089 s, and 1.3 s, respectively.
Furthermore, more simulations were conducted by varying the elastic modulus within the
range of 190 MPa to 215 MPa. The results indicate that the period of the frames changed by
less than 5%, which is also less than 0.05 s when compared to the benchmark buildings.

4. Artificial Neural Networks

Artificial neural networks (ANNs) have gained significant popularity in recent years
due to their ability to model complex relationships in data with higher degrees of non-
linearity effectively. Among them, the Multilayer Perceptron (MLP) is a widely used
feedforward neural network consisting of multiple layers of interconnected artificial neu-
rons or nodes [45]. In this study, an MLP from the scikit-learn library is employed to train
an ANN-based model for predicting MIDR and GDR. The scikit-learn library [46] provides
a flexible and user-friendly implementation of MLP, allowing us to define the number
of hidden layers, number of nodes at each layer, activation function, and much more. A
one-layer MLP architecture is constructed (as seen in Figure 5). The input layer of this
model consists of representative seismological and structural characteristics. In the subse-
quent section, the selection of these parameters is detailed, emphasising the assignment of
weights that accurately represent the relative importance of the features. The number of
nodes within the hidden layer is determined based on empirical testing and optimisation
(herein 100 nodes). A rectified linear unit (ReLU) activation function is selected as it was
realised to yield the highest prediction performance. This enables the model to effectively
learn and represent non-linear relationships within the data. The output layer corresponds
to the predicted MIDR and GDR values. A linear activation function is used in the output
layer to produce continuous predictions. Other hyperparameters are appropriately tuned
to prevent overfitting or underfitting. Each node in the network receives inputs from the
input layer, performs a weighted sum of these inputs using Equation (2), and applies an
activation function, given in Equation (3), to produce an output.

ui =
n

∑
k=1

xkwik + bi (2)

f (ui) = max(0, ui) (3)

In Equation (2), the input signal is represented as xk, the weighting factors of xk are
denoted as wik, bi is a constant value used to shift the activation function, and n and k
represent the total number of inputs and index of input, respectively. Additionally, ui refers
to the net output as the linear combination of the weighted inputs and bias. In Equation (3),
the function f(ui) represents the activation function, namely ReLU. This activation function
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outputs the input directly if it is positive, and if the input is negative, it outputs zero (the
maximum value between 0 and ui).
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Figure 5. Architecture of the artificial neural network (ANN) model and illustration of artificial
neurons of the hidden layer.

5. Results and Discussion

To determine the significance of various input parameters that represent both seis-
mological and structural characteristics in predicting the MIDR, this study conducts a
feature importance analysis using lightgbm algorithm [47]. The seismological parameters
considered are spectral acceleration at the fundamental period of the structure (Sa), PGA,
PGV, PGA/PGV, Arias intensity (Ia), cumulative absolute velocity (CAV), root mean square
acceleration (ARMS), root mean square acceleration (VRMS), and root mean square accelera-
tion (DRMS). Conversely, the structural parameters are the number of stories, T, modulus of
elasticity of beam and column (E), modulus of elasticity of BRB (EBRB), yield strength of
beam and column, yield strength of BRB, and damping coefficient (ζ). Figure 6 illustrates
the arrangement of the most significant parameters for predicting MIDR and GDR, sorted
from the top to the bottom. The findings indicate that the parameter Sa holds the highest
importance, whereas EBRB and yield strength in BRBs and in columns and beams have the
least significance for both MIDR and GDR.

It is worth mentioning that, due to multicollinearity between T and the number of
stories, only the variable T will be considered for further analysis. To maximise accuracy
while minimising the number of input parameters, this study utilises the initial four most
crucial parameters, namely PGA, PGV, Sa, and T (in the case of MIDR, PGV was used
instead of VRMS, which is easier to obtain). However, the analysis indicates that there is no
significant difference in the results after adopting each of these two variables. This decision
is determined based on extensive experimentation as the input layer for predicting both
MIDR and GDR. Lastly, Figure 7 presents statistical information for both input and output
parameters, including minimum (Min), maximum (Max), first quartile (Q1), third quartile
(Q3), and mean values for each parameter.
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Figure 7. Statistics of the input and output parameters.

Using these parameters, 70% of the dataset is allocated for training purposes, while
30% is reserved for testing and validation. The ANN is utilised to estimate the outputs.
Subsequently, the model’s performance is assessed by calculating the coefficient of deter-
mination (R2), Pearson coefficient of correlation (ρ), root mean squared error, and mean
absolute percentile error for both the training and testing datasets independently. The
obtained results are visualised in Figure 8. It is apparent from the plots that the predictions
are highly satisfactory, as they closely align with the ideal fit (y = x). The prediction perfor-
mance of the proposed models is shown in Table 3 for both the training and testing datasets.
The results provide statistical evidence supporting the strong performance of these models
for both training and test datasets.

Table 3. Prediction performance of the proposed models for global drift ratio (GDR) and maximum
inter-storey drift ratio (MIDR).

Output
Train Test

ρ RMSE MAPE R2 ρ RMSE MAPE R2

MIDR 0.969 0.121 0.013 0.938 0.969 0.123 0.013 0.939

GDR 0.971 0.113 0.011 0.943 0.970 0.117 0.011 0.941
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Figure 8. Predicted versus actual values in terms of (a) maximum inter-storey drift ratio (MIDR) and
(b) global drift ratio (GDR) for the training and test datasets.

Subsequently, the model’s bias is assessed by evaluating the residuals across all values
of MIDR and GDR. The residuals are calculated by subtracting the predicted values from
the observed values. The results are plotted in Figure 9. The dispersion of residual values
for both seismic demand parameters, as depicted, is deemed acceptable, with fluctuations
primarily centred around the zero line. Another significant observation is the absence of any
notable bias in the predictions in all ranges, indicating the high quality of the predictions
and the appropriate selection of parameters for the neural network design for both training
and testing data groups.
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Figure 9. Residuals in terms of (a) maximum inter-storey drift ratio (MIDR) and (b) global drift ratio
(GDR) for the training and test datasets.

Additionally, the model error distribution, which is the ratio of values obtained from
numerical simulation and the obtained values from surrogate ANN models, is depicted
in Figure 10. As clearly visible, the model errors of both GDR and MIDR models have
a balanced distribution with a mean of 1.00 and a coefficient of variation of 0.02 in both
training and test datasets. However, as evaluated through a null hypothesis test, they do
not conform to a particular distribution function.
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Figure 10. Distribution of model error for (a) MIDR with a training dataset, (b) MIDR with a test
dataset, (c) GDR with a training dataset, and (d) GDR with a test dataset.

Figure 11 depicts the correlation between input variables and MIDR and GDR, utilising
real data and model predictions. The results demonstrate similar Pearson correlation
coefficient (r) values for both real data and model predictions, which highlights the ability
of the model to track the physical behaviour of the problem at hand. It is shown that an
increase in all four input parameters will result in a rise in both GDR and MIDR.

To further analyse our results, we investigate the Shapley additive explanation (SHAP),
as introduced in reference [48]. SHAP is a method rooted in game theory that offers a
means to interpret the predictions generated by machine learning models, including ANN.
The core principle behind SHAP involves generating predictions with and without the
inclusion of individual input variables. By comparing these predictions, SHAP quantifies
the significance of each input variable in influencing the model’s output. Figure 12 presents
the SHAP values for the test database alongside the input features of the model for GDR
and MIDR. The x-axis of these graphs displays the SHAP values for each BRBF subjected to
each record, while the y-axis presents the input variables arranged in descending order of
significance, with the most influential variables at the top and the least influential at the
bottom. The colour scale used to represent the values of input variables spans from the
lowest (blue) to the highest (red). These plots reveal that the model’s outcome is notably
impacted by Sa and Ts. As evident from the observations, the models anticipate that an
increase in GDR and MIDR will occur with an increase in each of the parameters. This
alignment with the trend depicted in Figure 11 reinforces the consistency between the
model’s expectations and the observed patterns.
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It is essential to mention that our benchmark model has been rigorously validated, as
previously detailed in Yaghmaei-Sabegh et al. (2023) [44]. Within the context of machine
learning, it is worth highlighting that we have dedicated 30% of the dataset to the formation
of the test/validation dataset. It is of paramount importance to note that our model aptly
mirrors the accuracy observed within the training dataset, affirming its validation against
the actual dataset.

Finally, in accordance with the findings presented by Veismoradi and Darvishan
(2018) [49], it has been demonstrated that mega-configured BRBFs exhibit commendable
performance characteristics when subjected to both pulse-like and non-pulse-like ground
motions. Consequently, this configuration emerges as a viable and effective option for
enhancing the seismic resilience of BRBFs in the face of near-fault earthquakes. These
findings contribute significantly to the potential of mega-configured BRBFs. Therefore, we
have followed a general thought in seismic demand predictions based on machine learning
methods where the defined models could be used for approximate yet simple demand
predictions of BRBFs.

6. Conclusions

This paper presents a novel machine learning-based approach to estimate seismic de-
mands in buckling restrained brace frames (BRBFs), addressing the challenge of compression-
induced buckling behaviour. The study develops BRBFs with energy absorption cores and
restraining segments, employing various materials. Prototype BRBFs with different proper-
ties are modelled using numerical simulations and evaluated using 91 pulse-wise ground
motions. An artificial neural network (ANN) is utilised to assess seismic demands in terms
of maximum inter-storey drift ratio (MIDR) and global drift ratio (GDR), incorporating the
most representative ground motion intensity measures and structural features. The results
are summarised as follows:
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• The analysis of feature selection indicates that spectral acceleration on the fundamental
period (T) of the structure (Sa), followed by T itself, exhibits the highest level of
influence in predicting the seismic demand of BRBFs in terms of both MIDR and GDR.
On the other hand, fy in buckling restrained braces (BRBs) has the least impact.

• Out of all the considered parameters, in addition to the fy in BRBs, fy in the beams and
columns, the elastic modulus (E) of the BRBs and beams, E of beams and columns,
damping ratio (ζ), as well as the root mean square acceleration (DRMS), rank as the
least influential factors impacting the seismic demand of the studied structures in
terms of both MIDR and GDR.

• The results indicate that incorporating PGA and PGV in addition to Sa and T as input
parameters (which are the top important parameters identified through feature selec-
tion) leads to enhanced predicted outcomes in terms of performance, unbiasedness,
and variability of residuals between predictions and observed values. Notably, a
relatively higher coefficient of determination, Pearson coefficient of correlation, and
lower error values are observed in both the training and testing datasets, affirming the
close correspondence between our predictions and the observed behaviour.

• The dispersion of residual values for the examined seismic demand parameters in
this study is considered satisfactory, as most fluctuations are centred around the zero
line. Moreover, the lack of any discernible bias in the predictions emphasises the high
accuracy of our predictions and the appropriate choice of parameters in the neural
network design for both the training and testing datasets.

• Furthermore, the model error distribution, which signifies the relationship between
values generated through numerical simulations and those predicted by surrogate
ANN models, consistently exhibits a balanced distribution across both the training
and test datasets. This balance is evident in the form of a mean value of 1.00 and a
coefficient of variation of 0.02. It is noteworthy, however, that statistical analysis via a
null hypothesis test reveals that these error distributions do not align with any specific
statistical distribution function.

• Furthermore, the outcomes of the Shapley additive explanation (SHAP) analysis
demonstrate that Sa and Ts significantly impact the model predictions, corroborating
the earlier findings from the feature selection analysis.

• The study provides further insights into the influence of input variables on MIDR
and GDR using real data and model predictions. The findings reveal similar model
performance values regarding different metrics for the selected input parameters for
both real data and model predictions. This is a sign of the model’s capability to truly
consider the effects of all input parameters, along with its high accuracy.

• Mega-configured BRBFs have showcased noteworthy performance attributes when
exposed to various ground motion types, encompassing both pulse-like and non-
pulse-like motions. This configuration stands out as a promising and efficient choice
for bolstering the seismic resilience of BRBFs, particularly in the context of near-
fault seismic events. These research outcomes significantly enhance the prospects
and application of mega-configured BRBFs in seismic engineering. Therefore, this
study aligns with the prevailing trend in seismic demand prediction, employing
machine learning methodologies to establish models capable of providing simplified
yet valuable demand estimates for BRBFs.

Finally, the model presented in this paper offers a valuable tool for the rapid prediction
of seismic demand in terms of MIDR and GDR for BRBFs. However, it should be noted
that the results obtained are specific to the investigated prototypes and pulse-wise records.
Furthermore, it is noteworthy that the models introduced herein have not undergone
comparative evaluation with pre-existing models in the scientific literature. This omission
arises due to the unavailability of machine learning-based models specifically designed for
the seismic demand estimation of the structures examined in this research. Nevertheless,
we acknowledge the necessity for future investigations to build upon this research by
encompassing a wider array of building classifications and delving into alternative machine
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learning algorithms, including the effect of far-field ground motion records. This will enable
a comprehensive assessment of the models introduced in this study.
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Appendix A

Table A1. Ground motion characteristics.

No Event Year Station Mw
Rclos
(km)

Repi
(km)

Tp
(s)

PGV
(cm/s)

PGA
(g)

PGA/PGV
(g.s/m)

1 San Fernando 1971 Pacoima Dam
(upper left abut) 6.6 1.8 11.9 1.6 116.5 1.4 1.23

2 Coyote Lake 1979 Gilroy Array #6 5.7 3.1 4.4 1.2 51.5 0.5 0.88

3 Imperial
Valley-06 1979 Aeropuerto Mexicali 6.5 0.3 2.5 2.4 44.3 0.4 0.81

4 Imperial
Valley-06 1979 Agrarias 6.5 0.7 2.6 2.3 54.4 0.3 0.57

5 Imperial
Valley-06 1979 Brawley Airport 6.5 10.4 43.2 4 36.1 0.2 0.44

6 Imperial
Valley-06 1979 EC County Center FF 6.5 7.3 29.1 4.5 54.5 0.2 0.33

7 Imperial
Valley-06 1979 EC Meloland Overpass

FF 6.5 0.1 19.4 3.3 115 0.4 0.33

8 Imperial
Valley-06 1979 El Centro Array #10 6.5 6.2 26.3 4.5 46.9 0.2 0.38

9 Imperial
Valley-06 1979 El Centro Array #11 6.5 12.5 29.4 7.4 41.1 0.4 0.90

10 Imperial
Valley-06 1979 El Centro Array #3 6.5 12.9 28.7 5.2 41.1 0.2 0.56

11 Imperial
Valley-06 1979 El Centro Array #4 6.5 7.1 27.1 4.6 77.9 0.4 0.46

12 Imperial
Valley-06 1979 El Centro Array #5 6.5 4 27.8 4 91.5 0.4 0.41

13 Imperial
Valley-06 1979 El Centro Array #6 6.5 1.4 27.5 3.8 111.9 0.4 0.39

14 Imperial
Valley-06 1979 El Centro Array #7 6.5 0.6 27.6 4.2 108.8 0.5 0.42
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Table A1. Cont.

No Event Year Station Mw
Rclos
(km)

Repi
(km)

Tp
(s)

PGV
(cm/s)

PGA
(g)

PGA/PGV
(g.s/m)

15 Imperial
Valley-06 1979 El Centro Array #8 6.5 3.9 28.1 5.4 48.6 0.5 0.96

16 Imperial
Valley-06 1979 El Centro Differential

Array 6.5 5.1 27.2 5.9 59.6 0.4 0.70

17 Imperial
Valley-06 1979 Holtville Post Office 6.5 7.7 19.8 4.8 55.1 0.3 0.47

18 Mammoth
Lakes-06 1980 Long Valley Dam

(Upr L Abut) 5.9 14 1.1 33.1 0.4 1.21

19 Irpinia,
Italy-01 1980 Sturno 6.9 10.8 30.4 3.1 41.5 0.2 0.56

20 Westmorland 1981 Parachute Test Site 5.9 16.7 20.5 3.6 35.8 0.2 0.48

21 Coalinga-05 1983 Oil City 5.8 4.6 0.7 41.2 0.9 2.10

22 Coalinga-05 1983 Transmitter Hill 5.8 6 0.9 46.1 0.9 1.87

23 Coalinga-07 1983 Coalinga-14th & Elm
(Old CHP) 5.2 9.6 0.4 36.1 0.7 2.02

24 Morgan Hill 1984 Coyote Lake Dam
(SW Abut) 6.2 0.5 24.6 1 62.3 0.8 1.31

25 Morgan Hill 1984 Gilroy Array #6 6.2 9.9 36.3 1.2 35.4 0.2 0.69

26 Taiwan
SMART1(40) 1986 SMART1 C00 6.3 68.2 1.6 31.2 0.2 0.66

27 Taiwan
SMART1(40) 1986 SMART1 M07 6.3 67.2 1.6 36.1 0.2 0.64

28 N. Palm
Springs 1986 North Palm Springs 6.1 4 10.6 1.4 73.6 0.7 0.91

29 San Salvador 1986 GeotechInvestigCenter 5.8 6.3 7.9 0.9 62.3 0.8 1.36

30 Whittier
Narrows-01 1987 Downey—

Co MaintBldg 6 20.8 16 0.8 30.4 0.2 0.77

31 Whittier
Narrows-01 1987 LB—Orange Ave 6 24.5 20.7 1 32.9 0.3 0.78

32 Superstition
Hills-02 1987 Parachute Test Site 6.5 1 16 2.3 106.8 0.4 0.39

33 Loma Prieta 1989 Alameda Naval Air Stn
Hanger 6.9 71 90.8 2 32.2 0.2 0.69

34 Loma Prieta 1989 Gilroy Array #2 6.9 11.1 29.8 1.7 45.7 0.4 0.89

35 Loma Prieta 1989 Oakland—Outer
Harbor Wharf 6.9 74.3 94 1.8 49.2 0.3 0.68

36 Loma Prieta 1989 Saratoga—Aloha Ave 6.9 8.5 27.2 4.5 55.6 0.4 0.65

37 Erzican,
Turkey 1992 Erzincan 6.7 4.4 9 2.7 95.4 0.5 0.51

38 Cape
Mendocino 1992 Petrolia 7 8.2 4.5 3 82.1 0.6 0.75

39 Landers 1992 Barstow 7.3 34.9 94.8 8.9 30.4 0.1 0.45

40 Landers 1992 Lucerne 7.3 2.2 44 5.1 140.3 0.7 0.51

41 Landers 1992 Yermo Fire Station 7.3 23.6 86 7.5 53.2 0.2 0.42

42 Northridge-01 1994 Jensen Filter Plant 6.7 5.4 13 3.5 67.4 0.5 0.77
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Table A1. Cont.

No Event Year Station Mw
Rclos
(km)

Repi
(km)

Tp
(s)

PGV
(cm/s)

PGA
(g)

PGA/PGV
(g.s/m)

43 Northridge-01 1994 Jensen Filter Plant
Generator 6.7 5.4 13 3.5 67.4 0.5 0.77

44 Northridge-01 1994 LA—Wadsworth VA
Hospital North 6.7 23.6 19.6 2.4 32.4 0.3 0.85

45 Northridge-01 1994 LA Dam 6.7 5.9 11.8 1.7 77.1 0.6 0.75

46 Northridge-01 1994 Newhall—W Pico
Canyon Rd. 6.7 5.5 21.6 2.4 87.8 0.4 0.49

47 Northridge-01 1994 Pacoima Dam
(downstr) 6.7 7 20.4 0.5 50.4 0.5 0.99

48 Northridge-01 1994 Pacoima Dam
(upper left) 6.7 7 20.4 0.9 107.1 1.4 1.29

49 Northridge-01 1994 Rinaldi Receiving Sta 6.7 6.5 10.9 1.2 167.2 0.9 0.52

50 Northridge-01 1994 Sylmar—Converter Sta 6.7 5.4 13.1 3.5 130.3 0.6 0.46

51 Northridge-01 1994 Sylmar—Converter Sta
East 6.7 5.2 13.6 3.5 116.6 0.8 0.72

52 Northridge-01 1994 Sylmar—Olive View
Med FF 6.7 5.3 16.8 3.1 122.7 0.7 0.60

53 Kobe, Japan 1995 Takarazuka 6.9 0.3 38.6 1.4 72.6 0.6 0.89

54 Kobe, Japan 1995 Takatori 6.9 1.5 13.1 1.6 169.6 0.7 0.40

55 Kocaeli,
Turkey 1999 Gebze 7.5 10.9 47 5.9 52 0.2 0.46

56 Chi-Chi,
Taiwan 1999 CHY006 7.6 9.8 40.5 2.6 64.7 0.3 0.48

57 Chi-Chi,
Taiwan 1999 CHY035 7.6 12.7 43.9 1.4 42 0.3 0.62

58 Chi-Chi,
Taiwan 1999 CHY101 7.6 10 32 4.8 85.4 0.5 0.53

59 Chi-Chi,
Taiwan 1999 TAP003 7.6 102.4 151.7 3.4 33 0.1 0.28

60 Chi-Chi,
Taiwan 1999 TCU029 7.6 28.1 79.2 6.4 62.3 0.2 0.35

61 Chi-Chi,
Taiwan 1999 TCU031 7.6 30.2 80.1 6.2 59.9 0.1 0.19

62 Chi-Chi,
Taiwan 1999 TCU034 7.6 35.7 87.9 8.6 42.8 0.2 0.54

63 Chi-Chi,
Taiwan 1999 TCU036 7.6 19.8 67.8 5.4 62.4 0.1 0.22

64 Chi-Chi,
Taiwan 1999 TCU038 7.6 25.4 73.1 7 50.9 0.1 0.28

65 Chi-Chi,
Taiwan 1999 TCU040 7.6 22.1 69 6.3 53 0.1 0.27

66 Chi-Chi,
Taiwan 1999 TCU042 7.6 26.3 78.4 9.1 47.3 0.2 0.44

67 Chi-Chi,
Taiwan 1999 TCU046 7.6 16.7 68.9 8.6 44 0.1 0.32

68 Chi-Chi,
Taiwan 1999 TCU049 7.6 3.8 38.9 11.8 44.8 0.3 0.63
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Table A1. Cont.

No Event Year Station Mw
Rclos
(km)

Repi
(km)

Tp
(s)

PGV
(cm/s)

PGA
(g)

PGA/PGV
(g.s/m)

69 Chi-Chi,
Taiwan 1999 TCU053 7.6 6 41.2 12.9 41.9 0.2 0.54

70 Chi-Chi,
Taiwan 1999 TCU054 7.6 5.3 37.6 10.5 60.9 0.2 0.28

71 Chi-Chi,
Taiwan 1999 TCU056 7.6 10.5 39.7 12.9 43.5 0.1 0.29

72 Chi-Chi,
Taiwan 1999 TCU060 7.6 8.5 45.4 12 33.7 0.2 0.62

73 Chi-Chi,
Taiwan 1999 TCU065 7.6 0.6 26.7 5.7 127.7 0.8 0.64

74 Chi-Chi,
Taiwan 1999 TCU068 7.6 0.3 47.9 12.2 191.1 0.6 0.29

75 Chi-Chi,
Taiwan 1999 TCU075 7.6 0.9 20.7 5.1 88.4 0.3 0.38

76 Chi-Chi,
Taiwan 1999 TCU076 7.6 2.8 16 4 63.7 0.3 0.48

77 Chi-Chi,
Taiwan 1999 TCU082 7.6 5.2 36.2 9.2 56.1 0.2 0.44

78 Chi-Chi,
Taiwan 1999 TCU087 7.6 7 55.6 9 53.7 0.1 0.18

79 Chi-Chi,
Taiwan 1999 TCU098 7.6 47.7 99.7 7.5 32.7 0.1 0.33

80 Chi-Chi,
Taiwan 1999 TCU101 7.6 2.1 45.1 10 68.4 0.2 0.32

81 Chi-Chi,
Taiwan 1999 TCU102 7.6 1.5 45.6 9.7 106.6 0.3 0.27

82 Chi-Chi,
Taiwan 1999 TCU103 7.6 6.1 52.4 8.3 62.2 0.1 0.21

83 Chi-Chi,
Taiwan 1999 TCU104 7.6 12.9 49.3 12 31.4 0.1 0.35

84 Chi-Chi,
Taiwan 1999 TCU128 7.6 13.2 63.3 9 78.7 0.2 0.24

85 Chi-Chi,
Taiwan 1999 TCU136 7.6 8.3 48.8 10.3 51.8 0.2 0.33

86 Northwest
China-03 1997 Jiashi 6.1 19.1 1.3 37 0.3 0.72

87 Yountville 2000 Napa Fire Station #3 5 9.9 0.7 43 0.6 1.40

88 Chi-Chi,
Taiwan-03 1999 CHY024 6.2 19.7 25.5 3.2 33.1 0.2 0.56

89 Chi-Chi,
Taiwan-03 1999 CHY080 6.2 22.4 29.5 1.4 69.9 0.5 0.68

90 Chi-Chi,
Taiwan-03 1999 TCU076 6.2 14.7 20.8 0.9 59.4 0.5 0.88

91 Chi-Chi,
Taiwan-06 1999 CHY101 6.3 36 50 2.8 36.3 0.1 0.35
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Table A2. Dimensions of columns, beams, and BRBs.

Stories Exterior
Column

Interior
Column Beam Cross Section Area of

Brace (cm2)

4-Storey BRBF

1 W14 × 38 W14 × 38 W12 × 19 29.23

2 W14 × 38 W14 × 38 W12 × 19 24.62

3 W14 × 26 W14 × 26 W12 × 19 18.46

4 W14 × 26 W14 × 26 W12 × 19 13.85

8-Storey BRBF

1 W14 × 132 W14 × 74 W12 × 19 52.00

2 W14 × 132 W14 × 74 W12 × 19 52.00

3 W14 × 82 W14 × 74 W12 × 19 47.69

4 W14 × 82 W14 × 38 W12 × 19 42.50

5 W14 × 38 W14 × 38 W12 × 19 42.50

6 W14 × 38 W14 × 38 W12 × 19 30.77

7 W14 × 38 W14 × 38 W12 × 19 24.62

8 W14 × 26 W14 × 26 W12 × 16 18.46

12-Storey BRBF

1 W14 × 159 W14 × 82 W12 × 19 59.00

2 W14 × 159 W14 × 82 W12 × 19 59.00

3 W14 × 159 W14 × 82 W12 × 19 59.00

4 W14 × 159 W14 × 74 W12 × 19 59.00

5 W14 × 132 W14 × 74 W12 × 19 59.00

6 W14 × 132 W14 × 74 W12 × 19 47.69

7 W14 × 82 W14 × 74 W12 × 19 47.69

8 W14 × 82 W14 × 74 W12 × 19 42.50

9 W14 × 38 W14 × 38 W12 × 19 42.50

10 W14 × 38 W14 × 38 W12 × 19 30.77

11 W14 × 38 W14 × 38 W12 × 19 23.00

12 W14 × 26 W14 × 26 W12 × 16 18.46

15-Storey BRBF

1 W14 × 233 W14 × 82 W12 × 19 67.69

2 W14 × 233 W14 × 82 W12 × 19 67.69

3 W14 × 211 W14 × 82 W12 × 19 67.69

4 W14 × 211 W14 × 74 W12 × 19 67.69

5 W14 × 159 W14 × 74 W12 × 19 67.69

6 W14 × 159 W14 × 74 W12 × 19 59.00

7 W14 × 132 W14 × 74 W12 × 19 59.00

8 W14 × 132 W14 × 74 W12 × 19 59.00

9 W14 × 74 W14 × 38 W12 × 19 59.00

10 W14 × 74 W14 × 38 W12 × 19 46.15

11 W14 × 74 W14 × 38 W12 × 19 46.15

12 W14 × 74 W14 × 38 W12 × 19 42.50
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Table A2. Cont.

Stories Exterior
Column

Interior
Column Beam Cross Section Area of

Brace (cm2)

13 W14 × 26 W14 × 38 W12 × 19 42.50

14 W14 × 26 W14 × 38 W12 × 19 24.62

15 W14 × 26 W14 × 26 W12 × 16 18.46
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