o
=
ol
E:
s .8
c '®
5 2
2%
N
T
_gm
= S
is
:E
.
=T
&S
3 £
E o
v 35
T =
o ®
20
58
E o
-

Jodo Paulo Oliveira Vidal

Uminho | 2023

Universidade do Minho
Escola de Engenharia

Joao Paulo Oliveira Vidal
Improved simulation methods to

control the temperature
in thermoplastic extrusion

October 2023

Universidade do Minho
Escola de Engenharia

Joao Paulo Oliveira Vidal

Improved simulation methods to control the

temperature in thermoplastic extrusion

Dissertacao de Mestrado

Mestrado em Engenharia do Produto

Trabalho efetuado sob a orientacao do

Professor Doutor Joao Miguel Nobrega

outubro de 2023

DIREITOS DE AUTOR E CONDICOES DE UTILIZACAO DO TRABALHO POR TERCEIROS

Este € um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as
regras e boas praticas internacionalmente aceites, no que concerne aos direitos de autor e direitos
CONEXxos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licenca abaixo indicada.
Caso o utilizador necessite de permissao para poder fazer um uso do trabalho em condicbes nao
previstas no licenciamento indicado, devera contactar o autor, através do RepositoriUM da

Universidade do Minho.

Licenca concedida aos utilizadores deste trabalho

Atribuicao-NaoComercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/

Acknowlegments

Firstly, | would like to express my profound gratitude to Dr. Miguel Nobrega for his invaluable guidance

and steadfast support throughout this academic journey.

| extend my sincere thanks to Soprefa - Componentes Industriais SA, represented by Dr. Avelino

Fonseca and Alberto Sacramento, for their support and collaboration.

To my family, especially my brother and parents, | am deeply thankful for their unwavering support,

encouragement, and belief in my abilities.
Last but certainly not least, | want to express my heartfelt gratitude to my wife, Pheak, for her patience,

unwavering support, and for being my constant source of inspiration throughout this journey and in life

in general.

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity. | confirm that | have not used
plagiarism or any form of undue use of information or falsification of results along the process leading
to its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the University of Minho.
Universidade do Minho, 31 de outubro de 2023

Resumo

Metodologias avancadas para controlo da temperatura em extrusao de termoplasticos

A extrusdo de termoplasticos € um método amplamente utilizado para o processamento de materiais
termoplasticos, sendo o controlo de temperatura um fator critico que afeta a qualidade do produto
devido a sensibilidade dos materiais termoplasticos a temperatura. As atuais ferramentas de
engenharia assistida por computador (CAE) empregues para modelar o processo de extrusao
frequentemente simplificam o processo de calculo do campo de temperatura e baseando-se em
aproximacdes, como a definicdo de temperatura apenas nas superficies dos canais de fluxo. Por outro
lado, os processos praticos de extrusdao usam sensores em locais especificos para monitorizar e regular
dispositivos de aquecimento, criando uma lacuna entre a simulacdo e os sistemas de controlo do
mundo real. As consequéncias dessa diferenca nunca foram avaliadas. Esta dissertacdo de mestrado
aborda essas limitacbes ao introduzir uma abordagem de modelacao com multiplas regides que
representa fielmente a configuracdo real e o comportamento dos sistemas de controlo de temperatura
de extrusao.

Nesta dissertacao de mestrado, é apresentada uma metodologia inovadora, com o objetivo de superar
as limitacdes da modelacdo numérica atual dos processos de extrusdo de perfis. A abordagem
implementada considera condicdes de controlo de temperatura mais realistas. As principais
contribuicdes incluem o desenvolvimento de um sistema de célculo transiente, incompressivel, nao-isotérmico e
com capacidade de resolver multiplas regides, implementado na biblioteca computacional OpenFOAM.
Além disso, ¢ introduzida uma condicdo de fronteira inovadora para replicar o controlo Proporcional-
Integral-Diferencial (PID) de resisténcias de aquecimento que as controla com base em medicdes de
termopar. Os resultados do estudo revelam desvios significativos nos campos de temperatura nas paredes dos
canais de fluxo em comparacdo com as abordagens convencionais, enquanto demonstram efeitos
reduzidos no campo de velocidade e uniformidade do fluxo na saida, particularmente durante a
operacao em regime estacionario.

Os resultados deste projeto de mestrado contribuem significativamente para o avanco da compreensao
dos aspectos dos processos de extrusao, fornecendo informacdes valiosas para otimizar o controlo de
temperatura no processo. Os modelos e analises desenvolvidos estabelecem uma base sélida para
investigacdes futuras nesse dominio e abrem caminho para o desenvolvimento de estratégias de
controlo de temperatura mais eficientes e precisas na extrusao de termoplasticos.

Palavras-Chave: extrusao de perfis poliméricos, modelacdo numérica, OpenFOAM®, simulacao multi

regiao

Abstract

Improved simulation methods to control the temperature in thermoplastic extrusion
Thermoplastic extrusion is a widely utilized method for processing thermoplastic materials, with
temperature control being a critical factor impacting product quality due to the temperature sensitivity of
thermoplastic materials. Current computer-aided engineering (CAE) tools for modeling the extrusion
process often oversimplify the temperature field calculation, relying on approximations such as
performing the temperature calculation just to to the flow channel surfaces. Practical extrusion
processes, on the other hand, use sensors at specific locations to monitor the temperature and control
the operation of the heating devices, creating a gap between simulation and real-world control systems.
The consequences of these differences were never assessed before. This MSc dissertation addresses
these shortcomings by introducing a multi-region modeling approach that faithfully represents the actual
setup and behavior of extrusion temperature control systems.

Within this master's dissertation, a novel methodology is presented, aimed at overcoming the limitations
of current state-of-the-art numerical modeling in profile extrusion transformation processes. The
approach focus on achieving more realistic temperature control conditions, departing from the
simplifications employed in previous approaches. Key contributions include the development of a
transient, incompressible, non-isothermal, and multi-region solver incorporated into the OpenFOAM
computational library. Additionally, a specialized boundary condition is introduced to emulate
Proportional-integral-Differential (PID) control of heaters based on realtime thermocouple
measurements. The study's findings reveal deviations in temperature fields at flow channel walls
compared to conventional assumptions, while demonstrating reduced effects on the velocity field and
flow uniformity at the outlet, particularly during steady-state operation conditions.

The outcomes of this MSc project significantly contribute to advancing our comprehension of the
thermal aspects in extrusion processes, providing valuable insights for optimizing temperature control
within the process. The developed models and analyses establish a strong foundation for future
research in this domain and pave the way for the development of more efficient and precise

temperature control strategies in thermoplastic extrusion.

Keywords: multi-region simulation, numerical modeling, OpenFOAM®, polymer profile extrusion

CONTENTS

ACKNOWIEZMENES....eeeeiiieernirmnssnnensinnmsssrnnsssnsnsssnnssssrnnsssnsnsssnnssssnnnssssnnnsnnnssnnsnnnssnssnnssnnsnnns iiii
T T v
1 g T vi
List Of FigUIeS....ciiiiiiiiisisssissssssssssssssssssnssnsssnssnnssnssnnssnnsnssssnsnssssssnnssnssnnssnnssnnssnssnnsnnssnnsnnnnn ix
List Of Tables...ccceeeeemueenniiiiiiiiririnieeeiiiiieeeneteeeteneeiiiieceeeeeeeenneeeeeiiiseeteeeeesasessesessssessenes xi
List of Abbreviations and ACrONYMS.......cecuuriresssnremsisnnsssmnnsssnmnsssnnsnssrnnssssrnnsssssnssssnssnnssnnss Xii
NomeNCIature........cuiieeeiirireeir e s s s s R e nm Xiii
| 1110 To 1 1o PO TSRO P PP PPR PR 1
1.1, The polymer eXtrUSION PrOCESS......uiiiiieie ittt e ettt ettt ettt ettt ette e e erbe e e eabe e e ebaeeeas 1
1.2. Computational SImulation COAES......ccuuiiiiiiiiiiii e 3
1.3 State Of the @rt. .o 4
| 1011117 (o P PP P PR PPR PR 8

L T O o)1= T 1)Y= RSP RSRRP 8
1.6, DisSertation SHUCTUIE.........ouiiiiiie et 9

2. NUMENCAl DEVEIOPIMENTS. ...ttt et e e et e e e e e e eneas 10
2.1, IMUHRE FEEION SOIVEL ... ettt ettt ettt e e e te e e ette e e e et raaaeeeeaeas 10
211, MEthOAOIOZY.....vieeieeeecee et 11
2.1.2. Solver Implementation.............ooiiiiiii e 13

2.2. Heater control boundary condition...........coouiiiiiii i 18
A R =114 ToTo (o] o=y VTSR STRRR TR 18
2.2.2. IMPIEMENTALION. ... ciiiiii e 18

N 00T [11T 0 1= L TSP 22
3.1, RNEOIOZY MOUEL.....eiiiieieiiceie et et e e ete e e ate e e erbe e e eateeee e 22
3.2, 2D CASE STUIES. ...eeueeerteeiie ettt ettt ettt e e nes 23
3.3, ReSUItS @Nd AISCUSSION.eitiiiiiitieiti ettt e tee e e 26
4. INAUSEAl CASE STUAY.vieiiieiie ettt ettt e e et e e e tee e e e e e e et eeeeeeaaa 31
O B (=T g1 =1 o) o ST PPR 31
4.1.1. Geometries and Boundary conditions............coooueeiiiiieiiii i 33
4.1.2. Conventional @pPrOaCh.........cocuiii ittt 33
4.1.3. Multi region @pPrOACH........viiii it 34

O S 1 (=T Br=T o] o] (oY= Tod P 36

4.2, ReSUItS @and DISCUSSION.......cuuiiiiiiiiiiiie ittt 37
4.2.1. Mesh Sensitivity @analySiS.........eciicueiiie i 37
4.2.2. ReSUIS @Nd DISCUSSION......uviiiiiriiiiieiieie ettt 39
4.2.3. Comparison Multi-region, conventional and hybrid case studies...........ccoceeevveeeeinnnnen. 41
Conclusions and FULUIE WOPK.........ooiiiiiiiiii e 45
RETEIENCES. ... bbbttt 46
Appendix 1 — initContinUILYErrS.H Code.......coiiiiiiiie e 51
Appendix 2 — continUItYErrs.H Code.......c.uiiiiiiiicie e 52
AppendixX 3 = THUIAH COUB.....ccoiiiiiiiie e s 52
AppendiX 4 — TSOIA.H COdE.....c.uiiiiiiii e 53
Appendix 5 — createMesh.H COode........ccuiiiiiiiiiii e 53
Appendix 6 — createFields.H Code.......cuui i 54
Appendix 7 - chtMultiRegionPimpleFoam.H Code..........ccccoiiiiiiiiiiiiii e, 57
Appendix 8 - externalWallHeatFluxTemperaturePIDFvPatchScalarField.C code..........ccccveeenneas 60
Appendix 9 - externalWallHeatFluxTemperaturePIDFvPatchScalarField.H code.............cccooon. 68

viii

List of Figures

Figure 1: Polymer extrusion profile €XamPle........c.ueieiiiueieie ittt 1
Figure 2: Typical €XtrUSION lINE.........oiiiiiei ettt ettt e ettt e e e e e e e et baaeeeaea e 1
Figure 3: Typical die heating control €lemMENtS..........cooiuviii i 2
Figure 4: Cartridge heater (adapted from [5])......cociiiiiiiii e 2
Figure 5: Band heater (@adapted from [B])......ccocvriiiiiiiiiie ettt aeee s 3
FIBUIE B EXTIUARE SCIBW....eii ittt ettt e e s tbe e e e et bae e e e e e 4
Figure 7: SiNGIE SCIEW EXITUAEL.vvieeeiee ettt e e et e e et e e et e e s be e e ebeeeabee e e e 4
FIGUIE 8: TWIN-SCIEW EXITURK.vvieeiitiee ettt e et e e s ettt e e e e et e e e e s et e e e e e eraaee e e s e e nssnannes 5
Figure 9: Extrusion die mounted on the extrUder............ooouviiiiiciii e 6
Figure 10: Typical openFoam case structure (adapted from [53])....ccccvvvvieiiiiiiiiicee e, 10
Figure 11: Typical chtMultiRegionPimpleFOAM case Struture..........ccccoovveiiiiiciiie e 11
Figure 12: pimpleFoam source code folder CONTENTSuvviiiicieiee e 12
Figure 13: chtMultiRegionPimpleFoam source code folder contents...........ccoeeveveiiieiiiie s 12
Figure 14: chtMultiRegionPimpleFoam solution flowchart...........ccccoooviiiiiiiiiic e, 14
Figure 15: openFoam implementation o fluid energy conservation equation............ccccoeeveviiviiveeeeeennn 15
Figure 16: openFoam implementation o solid energy conservation equation............ccceceeeeviiiiiiiiiiien, 15
Figure 17: Fluid mesh creation implementation on createMesh.C..........cccooeiiiiiiiiiiii e 16
Figure 18: Solid mesh creation implementation on createMesh.C............cocooviiiiii i 16
Figure 19: Temperature field declaration on createFields.C...........coovviiiiiiiiiiiii e, 17
Figure 20: Temperature control flOWChart.......cc.ooooviiiiiiii e 18
Figure 21: area-averaged temperature implementation..............ooveeeie i 19
Figure 22: PID function implementation.............ooiiuiiie i 20
Figure 23: Representation of the Robin boundary condition............cocovivviiiiiiiiiiee e 20
Figure 24: Conditional response and Robin boundary condition implementation............cccccoeevvvveeennnn. 21
Figure 25: Polycarbonate rheology data.........c..eeiiicuviiii it 22
Figure 26: 2D Case study base geometry and boundary patches..........ccccooiiiiiiiiiiiiiciccc 23
Figure 27: 2D case study mesh bIOCK diVISION.........cccveiiiiiiiiie et 24
Figure 28: 2D case StUY MESH ... et aeee s 26
Figure 29: 2D case StUAY MESH 2.t aeee s 26
Figure 30: 2D case StUdY MESHh 3. ..t aeee s 26
Figure 31: 2D case study mesh refinement STUAY........covvviiiiiiiii e 27
Figure 32: 2D case study walls and sensor temperature behaviour.............coceeeevviiiiiiiiieie e 28

Figure 33: 2D case study effect of sensor distance to flow channel...........ccccovvveviiiiicicic e, 28

Figure 34: 2D case study effect of sensor distance to flow channel inlet.............cooeveeeiiiiiiiiiiieiiis 29
Figure 35: 2D case study temperature field (t=10008).......ccuuiiiiiiiiieeiice e 30
Figure 36: 2D case study pressure field (f=1000S)........ccccviiiiiiieiiiei e 30
Figure 37: 2D case study velocity field(t=1000S)........cccovuiiiiiiiiiiie et 30
Figure 38: Industrial case study profile CrOSS-SECON......c.vviieiiciiie e 31
Figure 39: Industrial case study extrusion di€ ZONES...........uveeiiiieeiei it 31
Figure 40: Industrial case study die heating control elements............coovvvveiiiiiii e, 32
Figure 41: Industrial case study outlet cross section diviSioNn.........ccuveeiveveeiiiiiiiie e 32
Figure 42: Conventional approach geometry and boundary patches.........cccccooviiiiiiiiiiiiii. 33
Figure 43: Industrial case study multi region approach geometry.........ccovvveiiiiieeii e 34
Figure 44: Industrial case Study MESH L1........oooiiiiiiiiiic et 37
Figure 45: Industrial case StUAY MESH 2........oeiiiiiiiie ettt e araaaees 37
Figure 46: Industrial case StudY MESH 3.ooii oot araraees 38
Figure 47: Industrial case study multi region Mesh L.........ccovviiiiiiiiii i 38
Figure 48: Industrial case study multi region MESh 2.........cccvviiiiioii e 39
Figure 49: Industrial case study multi region temperature evolution in the adapter........ccocvvevvevnenein. 40
Figure 50: Industrial case study multi region temperature evolution in the di€........cccoeeevviiiiiiiiinnenn. 40
Figure 51: Industrial case study multi region objective function evolution.............cccevvveeeiiciieieee 41

Figure 52: Industrial case study temperature field , comparison between conventional , multi-region and
g1 CTe I o o 0= ol g 1= TSRS 42
Figure 53: Industrial case study pressure field , comparison between conventional, multi-region and
g1 CTe B o o 0 =Tl g 1= TSRS 42
Figure 54: Industrial case study velocity field at outlet ,comparison between conventional , multi-region
o100 I 001D CTo =T o] 0T oY= Yo L= 43
Figure 55: Industrial case study temperature field at the flow channel outlet,comparison between
conventional , multi-region and mMixed aPPrOACHES.........coociiiiiiiieeee e 43
Figure 56: Industrial case study individual objective functions(Fobj,i) plot , comparison between
conventional , multi-region and mMixed aPPrOACHES.........coociiiiiieie e 43
Figure 57: Industrial case study temperature at ES7, comparison between conventional, multi-region

o100 I 001D CTo =T o] 0T oY= Yo L= 44

List of Tables

1o LT B 011/ T o 0] o= =T PSRRRRP 22
Table 2: Die Material PrOPEIIES.vveeeiieeeie ettt ettt s et e e e e et e e e s eab bbb e e areasaeeeaeeees 23
Table 3: 2D case study boundary CONAItIoNS..........coovviiiiiiiiie et 24
Table 4:2D case study heater temperature boundary conditon parameters.........cccccvvevvvivieeiieeiiieiens 24
Table 5: 2D case study mesh size by block and total..........cccuevviiiiviiii i 25
Table 6: Industrial case study conventional approach boundary conditions...........cccvvveeiiiiiiiiiiieieens 34
Table 7: Industrial case study multi region approach boundary conditions..........ccccccoeeveeeiiiiiiiiniiinn, 35

Table 8: Industrial case study, multi region approach adapter heater boundary condition parameters..35

Table 9: Industrial case study, multi region approach die land heater boundary condition parameters. 36

Table 10: Industrial case study mixed approach boundary conditions............coeevvvveiiiviiiie e 36
Table 11: Industrial case study conventional approach errors in function of cell number.................... 38
Table 12: Industrial case study multi region approach errors in function of cell number..................... 39

xi

List of Abbreviations and Acronyms

BEM - Boundary Element Method

CAD - Computer-Aided Design

CAE - Computer-Aided Engineering

CFD - Computational Fluid Dynamics

FEM - Finite Element Method

FVM - Finite Volume Method

GNU - GNU's Not Unix!

LED - Light-Emitting Diode

PIMPLE - Concatetantion of SIMPLE and PISO
PID - Proportional-Integral-Derivative

PISO - Pressure-Implicit with Splitting of Operators
SIMPLE - Semi-Implicit Method for Pressure Linked Equations

SMEs - Small and Medium-sized Enterprises

Xii

Nomenclature

Greek symbols

a - Thermal Diffusivity

y - Shear Rate

1 - Shear Viscosity

Mo - Viscosity at zero shear rate

N« - Viscosity at infinite shear rate
A - Relaxation Time

o - Fluid Density

T - Stress Tensor

k -Thermal Conductivity

Roman symbols

A - Area

C , - Specific Heat Capacity
D - Strain Tensor

E, - Energy Flux

h - Heat Transfer Coefficient
K, - Derivative Gain

K, - Integral Gain

K, - Proportional Gain

n - Power-law index

q - Heat Flux

R - Universal Gas Constant
t - Time

T - Temperature

Tihermocouple- Target Temperature

T - Room Temperature

u - Vector Velocity

Xiii

1. INTRODUCTION

1.1. THE POLYMER EXTRUSION PROCESS

The polymer extrusion process is an important industrial manufacturing technique used to produce
thermoplastic profiles, as shown in Figure 1 for a broad range of industrial sectors, from the construction

industry to the automotive sector [1].

Figure 1: Polymer extrusion profile example

A typical profile extrusion line comprises five main parts: Extruder, Die, Calibration & Cooling, Haul-
off, and Cutting, as shown in Figure 2. Each of these components has a well-defined function in the

production process.

\/

— QO |
I

j_ U J OO

ie Calibration & Cooling Haul-off Cutting

Extruder

Figure 2: Typical extrusion line
The process begins by introducing the polymer pellets into a hopper, which feeds the barrel of the
extruder by gravity. Within the extruder, the pellets are conveyed by one or multiple rotating screws. As

the polymer progresses, it is heated to the desired temperature, generating at the polymer melt. At the

1

outlet of the extruder, the molten polymer material is forced through the die, which shapes it into a
specific cross-section. After exiting the die, the polymer profile needs to be cooled and calibrated to
reach its final cross-section. This is usually achieved by pulling it through a calibrating/cooling system.
The intermediate product is then cut at the cutting unit. In addition to these components, the extrusion
line includes a haul-off unit, which pulls the profile at a constant linear velocity [2].

Temperature is one of the most critical variables in the polymer extrusion process, as it plays a
fundamental role in achieving high-quality products [4]. To ensure good thermal stability, it is
important to have an effective control of the extrusion die heating.The control is based on the temperature
values acquired by the thermocouples, which will regulate the state of the heaters.

Thetypical locations of heaters and thermocouples can be seen at Figure 3. There are two main types of
heaters commonly used for this purpose: cartridge heaters (Figure 4) and band heaters (Figure 5) [5,6].

The band heaters are widely utilized and offer ceramic insulation, which helps maintaining the desired

temperature in the extrusion process.

Heater Heater
Adapter Die Land

{
)

-

[\

Torpedo

Thermocouple
Adapter

Thermocouple
Die Land

Figure 3: Typical die heating control elements

Figure 4: Cartridge heater (adapted from [5])

Figure 5: Band heater (adapted from [6])

To control the heater devices and achieve a stable temperature field in the die, several methods have
been developed. Starting from the 1970s, researchers proposed Proportional-Integral-Derivative (PID)
control algorithms to regulate temperature in polymer extrusion and concluded that the lack of
capability of most polymer extrusion process controllers to handle nonlinearities and obtain temperature
feedback is a significant limitation [7]. Later, researchers began implementing fuzzy logic algorithms

[8].

1.2.COMPUTATIONAL SIMULATION CODES

Computational simulation is an important tool for modern companies because it allows designers and
engineers to acquire knowledge on physical processes and data that would be difficult, expensive, or
even impossible to obtain experimentally[9].

Nowadays, commercial CFD packages are available [10], however, the costs can be prohibitive for
Small and Medium-sized Enterprises(SMEs) and researchers [11]. With the advent of open-source
software, companies and individual users have come together in communities to promote the
development of software [12]. These software options have the advantage of being available for free,
relying on a community of users for service and support, and allowing faster innovation and
customization in the field of computational modelling. Some libraries in this domain are Calculix [12],
Elmer FEM [13] and OpenFOAM [14].

OpenFOAM® is an open-source computational numerical modelling library written in C++, which makes
it a satisfactory solution for solving CFD problems, while enabling users to implement complex physical
models easily and reliably [15]. This library is distributed under the GNU license, providing users with the
freedom to modify and redistribute the software and a guarantee of permanent free use [4]. OpenFOAM®

comprises approximately 200 applications divided into two categories: solvers and utilities. The solvers

are designed to solve specific problems in fluid (or continuum) mechanics, while the utilities are

designed to perform tasks involving data manipulation.

1.3. STATE OF THE ART

The development and use of CAE tools have experienced rapid growth over the last 3 decades, enabling
the modelling of various stages of the extrusion process.

As mentioned earlier, the polymer extrusion process consists of five main parts, with three being the
most important and difficult to design, thus can benefit from computational simulation. These parts are
the Extruder, Die, and Calibrator.

Starting with the extruder, the main focus is on modelling the flow in the barrel, which is induced by the
screw rotation, as depicted in Figure 6. Extruders can be categorized into two main types: single-screw

extruders and twin-screw extruders.

Figure 6: Extruder Screw
For single-screw extruders (as shown in Figure 7) in 1966, Tadmor Z[14] presented a method for modelling
polymer melting, where the temperature was imposed at the walls. Later, Altinkaynak et al. [15]
assessed the effect of the melting profile on various material properties and processing conditions using
a three-dimensional approach based on the Finite Element Method (FEM). In these studies, the

temperature was assumed to be imposed at the barrel and screw walls.

Polymer

Figure 7: Single screw extruder
For twin-screw extruders (as shown in Figure 8), Bawiskar [16] conducted an assessment in 1998 on
the effect of operating conditions on melting. They also considered a constant temperature at the walls

of the barrel and screw. Subsequently, Wilczynski and White [17], on the other hand, developed a

model for melting in counter-rotating twin-screw extruders. They incorporated a heat transfer coefficient

and utilized the temperature of the barrel and screw materials to calculate the temperature at the walls.

Hopper

Barrel
Screws
Figure 8: Twin-screw extruder

The extrusion die (as depicted in Figure 9) is the crucial component that shapes the molten material
to the desired cross section geometry, making it the most important tool in the extrusion process.
Therefore, aiming at guiding its design, it is essential to develop modelling tools that enable the
simulation of extrusion die performance. In 1990, Vicek et al. [18] developed a model for a small
laboratory sheet die and compared it with experimental results. It is worth noting that the energy flux at

the flow channel wall was quantified by:

Er
S =h(r-T1,) (1)

E
where XT is the energy flux divided by the area, T is the temperature at cell center, T, is the temperature at

the wall and h the heat transfer coefficient. This evidences that the wall temperature was assumed to
be constant.

In 2013, Nobrega et al. [19] introduced a methodology for numerical modelling of polymer flow at the
extrusion die. Their approach involved imposing a boundary condition for the temperature at the outer
surface of the flow channel, while considering the torpedo (see Figure 3) as insulated. Although there
is no clear evidence that this is the appropriate boundary condition for this region. Their study concluded that the
flow distribution is primarily influenced by the melt inlet temperature and the temperature of the flow
channel wall, particularly in regions with small thickness [19], which evidences the relevance of the

accuracy on the temperature field boundary conditions.

Figure 9: Extrusion die mounted on the extruder

Later, Goncalves [20] expanded the previously mentioned work to enable the modelling of complex 3D
shapes. However, this specific code did not consider temperature effects on the flow.

Extrudate swell is a significant phenomenon in polymer extrusion that has garnered attention from
researchers. This rheological phenomenon is characterized by the expansion of the polymer melt at the
die outlet, which occurs due to flow redistribution and stress relaxation [21,22]. In 1988, Tran-Cong and
Phan-Tien [52] initially introduced an implementation of the Boundary Element Method (BEM) to solve a
general three-dimensional viscoelastic flow problem, specifically with the aim of simulating extrudate
swell. Later in 2003, Gifford [23] proposed a methodology to compensate for extrudate swell. It is
noteworthy to mention that Gifford's work assumed isothermal conditions and Newtonian constitutive
models.

The utilization of numerical tools is well-known to enhance the efficiency of tool development [24].
Linked with the ability to model the flow in the extrusion dies, and in response to an increasing market
demand for higher product quality and production rates [25,26], several authors have proposed
methodologies to improve the design and/or optimize polymer profile extrusion dies. This task is
complex, particularly due to the intricate profile cross section, which, among others, usually comprises
varying thicknesses that promote different restriction to flow and difficult the achievement of the desired
flow balance [1].

Traditionally, companies have relied on trial-and-error approaches, which resort on the expertise of
workers with years of experimental knowledge [27], to design profile extrusion dies. However, these

approaches often require numerous iterations before achieving a satisfactory result , and the number

of iterations tends to increase with the complexity of the profile [1]. As a result, the cost of profile
development rises due to raw material expenditure, machine time, and labour costs [28].

In 2004, Michaeli and Klau [29] proposed a method that combines Finite Element Analysis (FEM) and a
Flow Analysis Network to automate die design optimization. In 2006, Sienz et al. [30] utilized an
isothermal FEM solver to model and optimize slit dies.

In 2016, Sai and Pradeep [33] investigated the effects of various features on flow balance in polymer
profile extrusion dies, considering mandrel features and imposing temperature at the walls. In 2019,
Lebaal [34] published a study on the optimization of slit extrusion dies, highlighting that even a 5%
variation in temperature had significant effects on flow distribution. In this case, temperature was
imposed at the flow channel walls.

Nobrega et al. [37-39] further contributed to this field by implementing and verifying a 3D non-
isothermal code specifically for the calibrator stage. Their work in this area was conducted in the years
2004, 2008, and 2016.

Currently, there are two main commercial numerical modelling software programs used to simulate
polymer extrusion die flow channels: PolyXtrue [40] and Polyflow [41]. Analysing the literature that
utilizes these software programs, we can observe that in case studies involving mandrel/torpedo features

often the temperature in imposed on those surfaces [42-46].

1.4. MOTIVATION

Polymer extrusion, as highlighted in the State of the Art (Section 1.3) and the preceding process
description, is a crucial industrial process. However, the current modelling approach employed to
simulate flow within the extruder and extrusion die relies on several simplifications. Regarding temperature
control, computational modelling assumes that the temperature set for the tool prevails at the flow
channel wall [49] In practical applications, though, temperature control is achieved using thermocouples
that measure the temperature within the metallic tool. Furthermore, heaters are typically situated on the
tool surface, and their operation is guided by thermocouple readings [50].

Moreover, despite an extensive literature review, no prior validation of the approach commonly adopted
in published research, which treats torpedo surfaces as insulated, was performed.

With the advancement of Computer-Aided Engineering (CAE) tools, the opportunity arises to reduce
these simplifications and evaluate the errors they introduce. This progress might enable researchers
and industrial professionals to expedite the development and assessment of novel temperature control

techniques.

1.5. OBJECTIVES

The primary goal of this study was to establish and validate a novel modelling approach for polymer
extrusion dies that closely resembles real-world practices. To ensure the widespread applicability
of these advancements, numerical implementations were conducted using an open-source computational
library.

To achieve this overarching goal, several intermediate objectives must be addressed: (i) a
comprehensive exploration of the OpenFOAM framework to determine the most suitable approach. (i)
the development of essential codes for both the calculation tool and boundary conditions. (iii)
specification and implementation of the most appropriate methods for geometry and computational
mesh generation. (iv) the assessment of these developments through multiple case studies.

Given its widespread use, adaptability, and the author's experience with OpenFOAM®, it has been

selected as the computational tool for this research.

1.6. DISSERTATION STRUCTURE

This dissertation is organized as follows. In the present chapter to help to better understand the
polymer extrusion process and the works performed a polymer extrusion process description the state
of the art, motivation, and the objectives of this work are presented. Chapter 2 covers the
implementation of a new boundary condition and a new solver in the OpenFOAM® computational
library. The subsequent chapter, Chapter 3, addressesthe assessment work done for the new boundary
condition and solver. Chapter 4 presents an industrial case analysis where traditional, and the proposed

modelling approach are compared. Finally, in Chapter 5 the main conclusions and proposals for future

work are provided.

2. NUMERICAL DEVELOPMENTS

This section, details the actions taken to develop a multi-region solver and a heater control boundary
condition. The primary objective is to enhance the modeling process by modelling the flow channel and

extrusion die.

2.1. IMULTI REGION SOLVER

A typical single region case solver in openFoam structure (see Figure 10) is composed by a case folder,
that comprises a time directory, where the files with boundary conditions and initial conditions for the
fields are set, a constant folder with a (x)Properties file (e.g. transportProperties, thermophysicalProperties,)
and a polyMesh folder, being the first usually named transportProperties where the physical properties
of the material are defined and the last where the mesh data is stored. The last main folder is the
system folder where the files controlDict, ivSchemes, fvSolutions and blockMeshDict are located.
The controlDict file is the file that mainly serves to control the timestep, the initial and end time of
the simulation, the /Schemes is where the discretization schemes are defined, the fvSolution is the file
where the linear solvers are selected andits operation specified, the last file is the blockMeshDict
although not mandatory, it provides the mesh generation dictionary that generates the mesh
in OpenFOAM.

Case
Folder

|
[I]

time
E directories constant E System

[/

[/

=B | xPropertie || || [<) | controlDic
= s = t
R
D polyMesh | — | \&]| |fvSchemes
N .
— | [E5] | fvSolution
L] 25 |blockMesh
= Dict

Figure 10: Typical openFoam case structure (adapted from [53])

10

The implemented multi region solver approach case structure is presented at Figure 11, and mainly
adds for each main folder (time directories, constant and system) a new folder for each new region,
namely fluid and solid. At folder O in the solid folder the file T is where the initial temperature and
boundary conditions are defined for the solid region. In the folder fluid, a file p, Tand U are required to
define the pressure , temperature and velocity fields boundary and initial conditions for the fluid region.
In the constant folder, we find three folders, polyMesh , solid and fluid. Inside solid we find
transportProperties file were the thermal properties (kappa - thermal conductivity and DT - thermal
diffusivitty) for the solid region are defined. Thefluid folder contains two files, transportProperties and
turbulenceProperties, which are the files to define, respectively, the rheological and the turbulence

modelling parameters.

[| I [1

time .
@ diteclories constant @ system D Solid D Fluid

—— 1 i |

Solid E Fluid D polyMesh Fluid Ij Solid -
L B | transportP \\ b | ransportP
=] | roperties S =] | roperties S|

= oid

[l

1

B
controlDict] | fvSchemes]| | fvSchemes

[
@)

) D
b'°°[‘)‘i"é'195h fuSolutions fuSolution

I
=]

[
—

[
)
]
[

B |turbulence

=] | Properties

l==) | ShappyHex
=] | MeshDict

I
(2|
I
[

=

[
(2|
(=g

Figure 11: Typical chtMultiRegionPimpleFOAM case struture

2.1.1. METHODOLOGY

To customize the solver according to the requirements, the following steps were performed:

e pimpleFoam source code folder (see Figure 12) was copied, and folder name renamed as
chtMultiRegionPimpleFoam. The solver pimpleFoam was selected as it is a large time-step transient solver

for incompressible flows.

11

pimpleFoam

[\

pimpleFoam.C
[\
é pEgn.H
[\

_ UEgn.H
1\

— correctPhi.H
[\

— createFields.H
A

— setRDeltaT.H

Figure 12: pimpleFoam source code folder contents

Contains the files initContinuityErrs.H, continuityErrs.H, createMesh.H, courantNo.H, Tfluid.H

and Tsolid.H resulting in the structure illustrated in Figure 13.

chtMultiRegionPimpleFoam

N
chtMultiRegionPimpleFoam.C
= S
B2

initContinuityErrs.H

continuityErrs.H

N
_ UEgn.H
1N
— correctPhi.H
TfluidH |=|—

A
— createFields.H
Tsolid.H | =
bl N
— setRDeltaT.H

Figure 13: chtMultiRegionPimpleFoam source code folder contents

createMesh.H |=

12

the file initContinuityErrs.H from the folder
$FOAM_SRC/finiteVolume/cfdTools/incompressible/ was copied and changed to initialise the
cumulative continuity error for the fluid region only,as presented in Appendix 1,

the file continuityErrs.H from the folder $FOAM_SRC/finiteVolume/cfdTools/incompressible/
was copied and changed to calculate and print the continuity errors for the fluid region only, as
shown in Appendix 2,

the "Tfluid.C" and "Tsolid.C" files were created to incorporate the fluid (Appendix 3) and solid
(Appendix 4) equations to be solved, respectively,

To create the meshes for the 2 domains (fluid, and solid) the file createMesh.H was created
(Appendix 5),

the file createFields.H was updated to account for the needed dictionaries and fields. The
resulting code is presented at Appendix 6.

The main solver file was updated to include the new files in the main code (Appendix 7).

2.1.2. SOLVER IMPLEMENTATION

As stated at Section 2.1.1 the multi region solver implementation was based on pimpleFoam [54], that

is a single incompressible phase unsteady solver that uses PIMPLE method to address pressure —

velocity coupling, by combining PISO and SIMPLE methods.

The equations solved are the momentum conservation Eq.(1)

du
Py V-(puu)=-Vp+V-t, (1)

and the mass conservation Eq.(2)

Vu=0, (2)

To account for the temperature effect, the energy conservation equations for both domains should be

considered, both for the fluid (Eq.3) and for the solid (Eq.(4),

M4y y.@T) V- (aVT) = L1:7u, (3)
at Cp -

‘;—[T — V- (aVT) = 0, (4)

In the equations presented above, T represents the temperature, p the fluid density, u the velocity

vector, p the pressure, ¢, the specific heat, and a the thermal difusivity. In Eq.(3), the last termon

the right-hand side (7:V u) accounts for the viscous dissipation contribution, from which T is the

deviatoric stress tensor that is calculated as presented in Eq.(5),

13

7 =2n(y,T)D, ()

1 is shear viscosity that depends both on temperature (T) and shear rate (Y) and D is the rate of
strain tensor that is given by Eq.(6),

D- é([w} 4 [Va)T) (6)

where Vu, is the velocity gradient tensor.

To account for the shear rate and temperature effects on the flow in result of shear viscosity changes

the Bird-Carreau model was used coupled with the Arrhenius law, as given by Eq.(7) and Eq.(8):

) ar{ Ny~ Nw
U(Y’T>:ar’7w+ ()1,, (7)
[1#(a,ay[) 2
o —exp| E l_i)) -
' R\T T,/

As illustrated in the flowchart presented in Figure 14, the developed transient solver is mainly
composed by a loop (PIMPLE loop) that solves the momentum balance equations, mass conservation,

and energy conservation equations for the fluid and solid for a pre-defined number of iterations at each

START

»‘ YES >< END

NO

t=t+At

PIMPLE Iter = 0

Solve Momentum
Balance Equations

time step.

d

Solve Mass

Conservation Equations
-
Q]
g |+
Solve Energy S 5
Conservation for Fluid W=
A T |y
Region = |
a =
o

Solve Energy
Conservation for Solid
Region

YES PIMPLE lter = NO —
Max PIMPLE lter?

Figure 14: chtMultiRegionPimpleFoam solution flowchart

Since the solver selected already incorporates the essential capability for solving the equations of

governing momentum balance and mass conservation, the focus of this presentation will be directed
14

towards detailing the implementation of the fluid and solid energy conservation equations. Additionally,
the tasks performed to create two distinct mesh regions, will present a fundamental requirement for
addressing the specific challenges posed by the envisaged problem. The implementation of the energy

conservation for the fluid (Eqg.(3)) presented in Figure 15 accounts for several terms:

oT
e ddt(Tf) which stands for the FIE

e div(phi,Tf) representing V «(uT|
e laplacian(DTf,Tf) which corresponds to the V :(aV T

¢ the last term represents the viscous dissipation, expressed as (1/c_)*(tau && gradU), which

1
represents — 7:Vu
CD

e the terms preceded by “fvm::” indicate that they are evaluated implicitly

¢ the terms preceded by “fvc::” indicate that they are evaluated explicitly

volTensorField gradU = fvc::grad(U);
volScalarField nu = laminarTransport.nu();
volTensorField tau = nu*(gradU + gradU.T());
fvScalarMatrix fluidTEgn

(

fvm: :ddt(Tf)

+ fvm::div(phi, Tf)

- fvm::laplacian(DTf,Tf)

- (1/c_)*(tau && gradu)

)

O© 00 N O U1 & W N -

fu
(o)

Figure 15: openFoam implementation of fluid energy conservation equation

The implementation of the energy conservation for solids (Eq.(4)) was coded as shown in Figure 16
where

® ddt(Ts) represents the %—f .

® laplacian(DTs,Ts) corresponds to V - (aV T

fvScalarMatrix solidTEqgn
(

fvm::ddt(Ts)

- fvm::laplacian(DTs,Ts)
);

O A W N =

Figure 16: openFoam implementation of solid energy conservation equation

15

The implementation of the multi-region capacity in pimpleFoam solver was achieved by creating and

including the file 'createMesh.C' in the main solver file. The code for this implementation is presented in

Figure 17 and Figure 18 which are the part of the code where the mesh reading is defined.

28 Info << "Create fluid mesh";

29

30 fvMesh fluidMesh
31 (

32 IOobject

33 (

34 "fluid",

35 runTime.timeName(),
36 runTime,

37 I0object::MUST READ
38)

39),

Figure 17: Fluid mesh creation implementation on createMesh.C

41
42
43
44
45
46
47
48
49
50
51

Info << "Create solid mesh";
fvMesh solidMesh

(

IOobject

(

"solid",
runTime.timeName(),
runTime,

IOobject: :MUST READ
)

)

Figure 18: Solid mesh creation implementation on createMesh.C

To add the needed temperature fields (fluid, Tf, and solid, Ts) to the multi region solver, they must be

declared in the file “createFields.C" as shown at Figure 19, linking each variable, Tf and Ts to its mesh

domain, “fluidMesh” and “solidMesh”, respectivily.

16

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Info<< "Reading field Tfluid\n" << endl;
volScalarField Tf

(

I0object

(

wpn
runTime.timeName(),
fluidMesh,
IOobject: :MUST READ,
IOobject: :AUTO WRITE
),

fluidMesh

)

Info<< "Reading field Tsolid\n" << endl;
volScalarField Ts

(

I0object

(

wpn
runTime.timeName(),
solidMesh,
I0object: :MUST READ,
I0object: :AUTO WRITE
),

solidMesh

)

Figure 19: Temperature field declaration on createFields.C

The coupling between the two regions was performed by using the already implemented boundary

condition named compressible::turbulentTemperatureRadCoupledMixed.

17

2.2. HEATER CONTROL BOUNDARY CONDITION

2.2.1. METHODOLOGY

To create the new boundary condition that will perform the control of the heaters, the following steps

were performed:

* A boundary condition similar to the one we need to implement was selected. The boundary
condition selected was the externalWallHeatFluxTemperature. This boundary condition already
have the option to apply a power to a wall instead of applying temperature.

e The selected boundary code was copied and renamed externalWallHeatFluxTemperaturePID
and the files were renamed accordingly

e The files externalWallHeatFluxTemperaturePID.C and externalWallHeatFluxTemperaturePID.H

were modified to implement the PID control of the heat flux.

2.2.2. |IMPLEMENTATION

The boundary conditioncode implements a control loop that mimics the polymer extrusion heaters control
loop. The input this boundary condition requires is the power density of the heater, the target
temperature, the PID control parameters(proportional, integral and derivative gains), the natural
convection coefficient between Air and the Heater, the ambient temperature, the die material thermal
conductivity and the sensor patch name. As presented in the Figure 20, the control loop starts by

reading the temperature from the sensor patch name. This task is performed as shown in Eq.(9),

SET POINT

de NO
dt

Y
v

u(t) = Kpe(t) + K; f e(t)dt + K, HEATER OFF

PID Controller YES

v

HEATER ON

Thermocouple reading

Figure 20: Temperature control flowchart

18

i
T,,——— 9)

where:

. Tavg is the area-averaged temperature.

e T.represents the temperature value on each individual element or cell within the patch.

e A, represents the area of each individual element or cell within the patch.

e nis the total number of faces within the patch.
This boundary condition was implemented with source code as shown in Figure 21, where
T.boundaryField()[sensorPatchID] is the temperature field in the sensor patch and

mesh.Sf().boundaryField()[sensorPatchlD] is the face area normal vector.

380sensorPatchT=mag(gSum(T.boundaryField()
[sensorPatchID]*mesh.Sf().boundaryField()[sensorPatchID]));
381 // get boundary area

382 const scalar sensorArea =
mag(gSum(mesh.Sf().boundaryField()[sensorPatchID]));

383 // get Tave

384 scalar Tave = sensorPatchT / sensorArea;

Figure 21: area-averaged temperature implementation

The implementation of the PID control algorithm was based in Eq.(10),

de

ult)=Kelt)+K, [elt)di+K, o,

(10)

where

probe ~ L obj (1)
* K, is the proportional gain

* K, isthe integral gain and

* K, is the derivative gain.

The implemented code presented in Figure 22 represents the implementation of Eq.(10) and Eq.(11) in

OpenFOAM.

19

386 error_ = Tave_ - Tobj ;

387 errorIntegral = oldErrorIntegral + error_;

388 scalar errorDifferential = -(oldError_ - error_) / deltaT;

389 scalar PIDfunction =P_*error +I *errorIntegral +D *errorDifferential;

Figure 22: PID function implementation
where:

® line 386 represents Eq.(10)

* P is K,
e I is K,
e D is K,

Finally, after implementing the PID equation, a conditional operator was added to the boundary
condition. If wu(t) < O energy should be supplied by the heater, thus a fixed gradient boundary
condition is applied to the temperature field to provide the power supplied by the heater. Conversely, if
u(t) > 0 a Robin boundary condition [56] is applied, as shown in Figure 23 representing the heat loss

by natural convection, Eq.(12) and Eq.(13). This implementation in OpenFOAM is described in Figure 24.

(of=0
oref =0 cu(t) <0
Vore fT: —iqu (12)
o> >< T
of = h .
gref =0 cu(t) >0
k
[Voref =g
T ee=0f X dpref+(1-¢f) (13)
Boundary
o /
: Solid
| |d|
o @o— ®
I T,
: Tface TcellCenter
I
L e e e e e e e - —
X

T =T,
h(Too - Tface) = —k%

Figure 23: Representation of the Robin boundary condition

20

396
397
417
418
419
434
435
436
480
481
482
483

484
485

491

501

if (PIDfunction < 0)
{

refGrad() = (heatFlux + qr)/kappa(Tp);
refValue() = 0;
valueFraction() = 0;

else

refGrad() = 0;
forAll(Tp, 1)

{

refValue()[i] = (hpTal[il + qr[il)/hp[il;
valueFraction()[i] = hp[i]l/(hp[i] + kappaDeltaCoeffs[i]);
}

mixedFvPatchScalarField: :updateCoeffs();

Figure 24: Conditional response and Robin boundary condition implementation

21

3. CODE ASSESSMENT

This section, describes the task undertaken to validate the developed codes, specifically through the

description of several representative 2D simulations of the extrusion process.

3.1. RHEOLOGY MODEL

For the rheology model, a polycarbonate material was chosen and the shear viscosity/shear rate curve

resultant from the Bird-Carreau coupled with Arrhenius law is presented at Figure 25.

10000

1000

n (Pa.s)

® 225 °C shifted to 245 °C

® 245°C

® 265 °C shifted to 245 °C
—Bird-Carreau Fit

100
0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Shear rate (1/s)

Figure 25: Polycarbonate rheology data
To perform the simulation, the polymer material properties used are presented in Table 1 and the die
material properties are presented in Table 2.

Table 1: Polymer properties

Property Symbol Value Units
viscosity at zero shear rate Mo 5382 Pas
viscosity at infinite shear rate M. 0 Pas
relaxation time A 0.0013 S
power-law index n 0.35
activation energy divided by the E 13951.59
universal gas constant R K
reference temperature T, 518.15 K
thermal diftusivity a 1.458¢-7 m2/s
specific heat capacity C, 1200 J/(kg. K)
thermal conductivity k 021 W/ (m.K)

22

Table 2: Die material properties

Property Symbol Value Units
thermal diffusivity a 3.33e-6; m?/s
thermal conductivity k 16 W/(m.K)

3.2. 2D CASE STUDIES

To assess the code implementations simplified 2D cases were tested with the aim of confirming if the

code and the boundary conditions were behaving as expected.

For that a 2D geometry representative of an extrusion die cross section was build, as illustrated in
Figure 26 where the Heater boundary represents the heating elements of a extrusion die. The wall
represents the extrusion die surfaces exposed to air and the thermocouple patch the surface where the

thermocouple touchs the extrusion die material.

Heater

425

Wall

Inlet

Wall Fluid

Heater

Thermocouple

Figure 26: 2D Case study base geometry and boundary patches

The boundary conditions used are presented in Table 3 being the Heater controlled by new Heater

control boundary condition “externalWallHeatFluxTemperaturePID”.

Table 3: 2D case study boundary conditions

Patch Pressure Velocity Temperature
Inlet Null Gradient | Fixed Value Fixed Value
(0.25 m/min) | (235 °C)

Heater N/A N/A ExternalWallHeatFluxTemperaturePID
(see Table 4 for the parameters)

Thermocouple | N/A N/A Null Gradient

Wall N/A N/A Null Gradient

Wall Fluid Null Gradient | No Slip Null Gradient

Interface Null Gradient | No Slip compressible::turbulentTemperatureRadCoupled
Mixed

Outlet Fixed Value Null Gradient | Null Gradient

(0 MPa)

Table 4:2D case study heater temperature boundary conditon parameters

Property Symbol Value | Units
Proportional gain K, 1
Integral gain K, 0
Derivative gain K, 0
Room Temperature Too 25 °C
Target Temperature Tthermocouple | 245 | °C
Conductivity k 16 | W/mK)
Heat transfer coefficient | 2 25 W/ (m?K)
Heat flux q 35000 | W/m*

The meshing was performed using blockMesh and eight blocks were generated as shown in Figure 27, For
the purpose of studying mesh independence, three meshes were generated (see Table 5 for mesh size
details) as shown in Figure 28, 29 and 30 where is clear that the first mesh is the least refined, while

the last mesh is the most refined.

A B
c D L
P G H

=

X
Figure 27: 2D case study mesh block division

24

Table 5: 2D case study mesh size by block and total

Block Mesh 1 Mesh 2| Mesh 3
A 14750 | 59000 |236000
B 14750 | 59000 |236000
Cc 5000 | 20000 |80000
D 500 2000 |24000
E 5000 | 20000 |80000
F 1500 |6000 |24000
G 150 600 800

H 1500 |6000 |24000
Total Cells | 43150 | 172600 [690400

HHHHHHHH

Figure 30: 2D case study mesh 3

3.3. RESULTS AND DISCUSSION

To assess grid independence, the simulations were run for 100 seconds, and the values for pressure at
inlet (Pinlet) , average temperature at outlet (Toutlet), average temperature at walls (Twalls), average
temperature at sensor (Tsensor) and run time were normalized with the reference value being the
reference field for the most refined mesh (See Figure 31). Based on the obtained results, Mesh 2

was selected for subsquent studies.

26

First, the PID function was assessed to determine if it was working as expected. The behaviour of the
temperature at the heater was observed, and it matched the expected pattern, as illustrated in Figure
32. When the temperature at the thermocouple (sensor) was below the target temperature (245°C), the
PID function would turn on the heater until the thermocouple reached the desired temperature. The
observed temperature peak in the sensor and the time lag between the control location and the
measurement location is a common characteristic in control systems . This phenomenon occurs due to
several factors: process inertia causes a delay in reaching the desired temperature when
increasing heater power, leading to a temporary rise in the sensor's temperature, the spatial separation
between the heater and the sensor introduces a time lag as the heat propagates through the system.
(The heater's electrical resistance typically responds quickly to the increased power, contributing to an
initial temperature spike, while the sensor, such as a thermocouple, may have a slower response due to
heat propagation delays). Consequently, the temperature peak observed in the sensor is a natural
consequence of the system's dynamics, and proper PID controller tuning is essential to minimize such

temperature spikes and ensure precise and stable temperature control.

1r

09 F
0.8
E
=07 = Pinlet
=
.L;'_j = Toutlet
§ 0.6 = Twalls
é 0.5 Tsensor
g ® Run Time(s)

o
~

©
w

02 F

Mesh 1 Mesh 2 Mesh 3

Figure 31: 2D case study mesh refinement study

27

Walls and sensor temperature behaviour

280 ¢ 250
275 £ - —
E f H 249
270 E i, n—i—4 i
= F H [: |
S, 265) i - 1248
° 260 E 1 " 'l \ ::] - ==-Twalls
Bo_EN PN Ly | 247
Q 255 T A t X T e Tsensor
£ TERY A HA !
5250 X AN — - 246
R
240 F LA ~~o S~o_ b f| 25
n ST Jr <1
235 B b L e oy
0 200 400 600 800 1000

Time[s]

Figure 32: 2D case study walls and sensor temperature behaviour

After assessing the behavior of the heater boundary condition, the effect of the distance from the
thermocouple to the flow channel was studied. For this purpose, the distance was varied by +/-10%
when compared with the Base Case. The results obtained are plotted in Figure 33. The curve labeled
"-10%" represents the farthest location from the flow channel to the thermocouple, while the "+10%"
curve represents the closest location. Based on these results, it can be concluded that for this system,
when the thermocouple is closer to the flow channel, there are higher temperature fluctuations at the
outlet, which likely result from a greater distance between the heater and the thermocouple. This
greater distance leads to longer propagations times and thus, higher temperatures at the heater, which
propagate through the system, causing increased temperature fluctuations at the outlet. Another effect
noted in this test case is the increase in temperature fluctuation amplitude for each cycle. This is
probably a result of the system losing more heat through the outer walls than through the fluid outlet,

resulting in an increase in the outlet's average temperature every time the heater turns on. However, for
longer periods the steadystate oscilation is expected.

Effect of sensor distance to flow channel

250
249 -
’” N
o :\. \
T 248 VA SN
> i ot — .. —. -10 % (farthest)
: I NN
7 247 I‘.’_.:' s +10 % (closest)
é : : ’,' H ’-\ Y ---- Basecase
S 246 /’ NS —
/ AN \
245 p==£ A\, N
244
0 200 400 600 800 1000
Time[s]

Figure 33: 2D case study effect of sensor distance to flow channel

In the final study of the 2D case, the objective was to assess the impact of varying the distance

between the thermocouple and the flow channel inlet, with distances adjusted by +/-10%. The results
28

are presented in Figure 34, where the "-10%" curve represents the farthest distance from the outlet to
the thermocouple, while the "+10%" curve represents the closest distance. Based on these findings, it
can be concluded that, for this system, the placement of the thermocouple close to the inlet has a
negligible effect on temperature fluctuations. However, when the thermocouple is positioned farther
away from the inlet, larger temperature fluctuations are observed. This is likely due to its proximity to
the outlet, causing the sensor to detect temperature changes more rapidly, resulting in longer heater
operation times and subsequently higher outlet temperatures. Similar to previous observations, an
increasing amplitude of temperature fluctuations was noted, indicating that the system loses more heat
through its outer walls than through the fluid outlet, consequently leading to a rise in the outlet's
average temperature each time the heater activates. However, for longer periods the steadystate
oscilation is expected.

Effect of sensor distance to channel inlet

251
250 F =
E ~
N FARRN 27 B
_ 249 F p— Ve NN
& 3 7 N R I N
= 3 Eh A I 5\ —--— +10% (farthest)
® 248 4 LI i S
2 I /! N s i \.‘\ V| e -10% (closet)
g 247 Fa + A ' —X— ___- Basecase
£ F N\ i y k | kY 3
2 / \'\.\ ilf A £ Y
246 7 N = 7 0
F / Ny S v S k!
215 =< NE& L B =
244 t
0 200 400 600 800 1000
Time[s]

Figure 34: 2D case study effect of sensor distance to flow channel inlet

The results presented in the 2D case study have effectively assessed and validated the approach
implemented in OpenFOAM. Furthermore, from a qualitative perspective, the solver has accurately
resolved the fields of temperature, pressure, and velocity, as illustrated in Figure 35, where the
temperature field exhibits continuity and higher values near the heater. In Figure 36, the pressure field
is also continuous, with higher pressure at the inlet compared to the outlet, demonstrating variation
along the channel. Finally, Figure 37 displays a velocity field with a parabolic profile, further confirming

the correctness of the solver's performance.

29

TIEl
2370 2800 2450 260.0 265.0 2610
I

e Cee—

Figure 35: 2D case study temperature field (t=1000s)

p(Mpa)
0.00 0.700 0.200 0300 0.400 0.500 0.600 0700 0.800 0.920

e osee—

Figure 36: 2D case study pressure field (t=1000s)

utm/min)
000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0897
|

Figure 37: 2D case study velocity field(t=1000s)

30

4. INDUSTRIAL CASE STUDY

In this section, three distinct approaches for modeling the extrusion process are presented, and a
comparative analysis is conducted to assess the influence of the simplifications currently employed in

the modeling of the extrusion process.

4.1. PRESENTATION

The industrial case study focuses on the production of a LED encasing profile, as depicted in Figure
38. The extrusion die used in this study comprises two different regions with independent heaters, the
adapter and the die land, as illustrated in Figure 39 . Additionally, each heater has its own
thermocouple, as shown in Figure 40. To accurately represent the flow channel and die geometry, the

CAD software was utilized to create the corresponding models.

Figure 38: Industrial case study profile cross-section

Adapter

Die Land

Figure 39: Industrial case study extrusion die zones

31

Heater Heater
Adapter Die Land

Thermocouple
Adapter

Thermocouple
Die Land

Figure 40: Industrial case study die heating control elements
To quantify the die performance, first the outlet section was divided into Elemental Sections (ESi) and

Intersection Sections (ISi) (see Figure 41).

—

Figure 41: Industrial case study outlet cross section division

Then for each section the flow rate (Q;) is computed, which is used to calculate the individual section

objective function (F ;) as presented at Eq.(14),

Q;
-1
Qarger (14)

Fobj,i =

max

Q, ,1)
Qtarget

where Q.. is the objective flow rate for individual section with is computed as shown in Eq.(15)

Ai
Qtarget = Utarget x Ato[al x A—l ’ (]-5)
tota

32

U e is the target velocity, 4; is the section cross-section area and A, is the outlet cross-section

area.

With the F . ; the global objective function F oy is computed by area weight average summing the

absolute value of all ES and IS, F ;. ;, as given in Eq.(16)

Atarget N

(16)

Z ||F0bj,i
__ES+IS

F Obj A

target, tot

4.1.1. GEOMETRIES AND BOUNDARY CONDITIONS

The industrial case study comprises two geometries and three sets of boundary conditions that will be
presented below. Initially were assessed the Conventional and the Multi Region approach. The conventional
approach only considers the flow channel, while the herein proposed Multi-region approach includes additionally
the die in the simulation. It is worth noting that in both approaches a symmetry plane was used to reduce
the computational size of the problem. After the conventional and multi region studies, a third study named
mixed was prepared using the knowledge acquired by the multi region approach to tune the boundary

condition used at the conventional approach. All cases are described in the following subsections.

4.1.2. CONVENTIONAL APPROACH

To simulate the process using the conventional approach, only the flow channel was considered and

it was divided into several sections, as shown in Figure 42. This division of the CAD geometry is

necessary for the subsequent application of different boundary conditions, as presented in Table 6.

Symmetry

Figure 42: Conventional approach geometry and boundary patches

33

Table 6: Industrial case study conventional approach boundary conditions

Patch Pressure Velocity Temperature
Inlet Null Gradient Fixed Value Fixed Value
(0.282 m/min) (245 °C)

Adapter Null Gradient No Slip Fixed Value

(228 °C)
Die Land Null Gradient No Slip Fixed Value

(220 °C)
Torpedo Null Gradient No Slip Null Gradient
Symmetry Symmetry Symmetry Symmetry
Outlet Fixed Value Null Gradient Null Gradient

(0 MPa)

4.1.3. MULTI REGION APPROACH

The new approach proposed to simulate the flow in the extrusion die requires dividing both the die and

flow channel surface into various patches, as shown in Figure 43.

Adapter

Figure 43: Industrial case study multi region approach geometry

The applied boundary conditions are presented in Table 7 andare the
compressible::turbulentTemperatureRadCoupledMixed and externalWallHeatFluxTemperaturePID

already discussed in the Section 2.1.

34

Table 7: Industrial case study multi region approach boundary conditions

Patch Pressure Velocity Temperature
Inlet Null Gradient | Fixed Value Fixed Value
(0.282 m/min) | (245 °C)

Adapter Heater N/A N/A ExternalWallHeatFluxTemperaturePID
(see Table Table 8)

Die Land Heater N/A N/A ExternalWallHeatFluxTemperaturePID
(see Table Table 9)

Adapter N/A N/A Null Gradient

Thermocouple

Die Land | N/A N/A Null Gradient

Thermocouple

Die Wall N/A N/A Natural Convection
Convective Heat Transfer Coefficient :
25 W/(m?K)

Adapter Wall N/A N/A Null Gradient

Interface Null Gradient | No Slip compressible::turbulentTemperatureRad
CoupledMixed

Symmetry Symmetry Symmetry Symmetry

Outlet Fixed Value Null Gradient Null Gradient

(0 MPa)

Table 8: Industrial case study, multi region approach adapter heater boundary condition parameters

Property Symbol Value | Units

Proportional gain K, 1

Integral gain K, 0

Derivative gain K4 0

Room Temperature T 25 °C

Target Temperature Tihermocouple 220 °C

Thermal Conductivity | K 16 W/(m.K)

Heat transfer coefficient| 25 W/ (m?K)
2

Heat flux q 35000) W/m

35

Table 9: Industrial case study, multi region approach die land heater boundary condition parameters

Property Symbol Value | Units
Proportional gain K, 1 -
Integral gain K; 0 -
Derivative gain K, 0 ”

Room Temperature T o5 °C
Target Temperature Tihermocouple| 230 °C
Conductivity k 16 W/(m.K)
Heat transfer coefficient|h 25 W/ (m?K)
Heat flux q 35000 | W/m?

MIXED APPROACH

The mixed approach was carried out after completing the simulations of the multi-region approach.

Since the temperature of the flow channel wall was significantly higher than that imposed in the

conventional approach, it was decided to adopt the same setup as used in the conventional approach.

However, and contrary to the conventional approach applied before, the temperature boundary conditions

were then updated to correspond to the values obtained for the multi-region approach. The new boundary

conditions are presented in Table 10.

Table 10: Industrial case study mixed approach boundary conditions

Patch Pressure Velocity Temperature
Inlet Null Gradient Fixed Value Fixed Value
(0.282 m/min) (245 °C)

Adapter Null Gradient No Slip Fixed Value

(232 °C)
Die Land Null Gradient No Slip Fixed Value

(230 °C)
Torpedo Null Gradient No Slip Null Gradient
Symmetry Symmetry Symmetry Symmetry
Outlet Fixed Value Null Gradient Null Gradient

(0 MPa)

36

4.2. RESULTS AND DISCUSSION

4.2.1. MESH SENSITIVITY ANALYSIS

Before conducting the numerical studies, a mesh sensitivity study was performed to determine the
required level of refinement. The mesh generation process was carried out using snappyHexMesh [55]
for all case study approaches. The meshes generated for the conventional approach are presented in

Figures 44,45 and 46 From these meshes, Mesh M2 was selected based on its low error, as

demonstrated in Table 11.

Figure 44: Industrial case study mesh 1

Figure 45: Industrial case study mesh 2

37

Figure 46: Industrial case study mesh 3

Table 11: Industrial case study conventional approach errors in function of cell number

N° Cells Po/Po_m3 | Fobj/Fobj_m3
M1 339866 1.38% 4.30%
M2 714931 1.06% 2.23%
M3 1657684 0.00% 0.00%

Due to the complexity of the multi-region approach, it was only possible to generate two grids using
snappyHexMesh. Higher refinement levels generated meshes with surfaces allocated to the wrong domain
and that invalidated the mesh. This issue should be further investigated in the future.

The generated meshes for the multi-region approach are displayed in Figures 47 and 48. Despite the limited
refinement, the quantities of interest did not show significant changes, as indicated in Table 12 . As a result

of these findings, Mesh 2 was selected to proceed with the studies.

Figure 47: Industrial case study multi region mesh 1

38

Figure 48: Industrial case study multi region mesh 2

Table 12: Industrial case study multi region approach errors in function of cell number

Time=1000 s
o : Po
N°Cells | Cell Siz[(mm] (MPa] T Average ES1 [C]
M1 2234129 | 0.716133799 | 17.16 253.03
M2 4923331 | 0.550314017 | 16.77 253.21

4.2.2. RESULTS AND DISCUSSION

In Figures 49 and 50, it is possible to evaluate the impact of the heater operation and the corresponding
temperature at the thermocouple (Probe die). It is evident that system inertia causes the heater and the
thermocouple to exhibit different temperature profiles. While the heater experiences sharp rises and

losses in temperature, the thermocouple displays an almost parabolic profile.

39

Temperature evolution in the adapter region

247 ; | . I I

| 1 | 1
| —_
%) | | | | 5
L2 | | | | | =
o 242 | e
5 | ! ! | S
L I - - - - - - - - - - - - - b4
% OFF - E g
8,;.,_/ a
£ 5
o L3
° -

222
0 100 200 300 400 500 1000
Time [C]
= Heater = = = State Thermocouple Target Temperature

Figure 49: Industrial case study multi region temperature evolution in the adapter

Temperature evolution in the die region

Temperature [°C)
Temperature [°C]

0 100 200 300 400 500 600 700 800 900 1000

Time [s]
Heater - = = State Thermocouple Target Temperature

Figure 50: Industrial case study multi region temperature evolution in the die
At t=300s of simulation, the objective function stabilized, and the impact of the heater operation

became almost negligible, as demonstrated in Figure 51. This indicates that, in this particular case,

steady-state conditions were nearly attained.

40

D 0.094
0.093
0.3
0.092
_ 0.25
Qo
Lo 0.091
0.2
0.09
0.15 1400 1450 1500 1550 1600
0.1
0.05
0 200 400 600 800 1000 1200 1400 1600

Time [s]

Figure 51: Industrial case study multi region objective function evolution

4.2.3. COMPARISON MULTI-REGION, CONVENTIONAL AND HYBRID CASE STUDIES

In the multi-region case, higher temperature were predicted at the outer wall of the flow channel, as
shown in Figure 52. This likely occurs as a result of thermal inertia and temperature overshoot when the
controller turns the heaters on and off. Comparing the temperature fields calculated from the different
simulation approaches, it is also possible that the traditional approach that uses the torpedo as insulated
predicted similar results to the multi-region approach.

Regarding the pressure field, the higher temperatures predicted in the multi-region approach led to a
lower pressure drop, as illustrated in Figure 53. At the outlet, the predicted flow fields were similar in all
approaches. However, the multi-region approach exhibited a higher velocity peak, as presented in
Figure 54. This is also likely due to the higher temperatures that we can see at Figure 52 and Figure 55,
which induce a decrease in viscosity and, consequently, higher velocity. This effect is also seen at
Figure 56 that presents the objective function results which are very similar in all sections, except ES7
where was predicted more flow in mixed approach than in the multi-region and traditional approachs.
Analysing the Figure 57, which presents the temperature field in that specific section, it becomes
clear that the higher flow prediction is a consequence of the higher temperatures on this particular

section.

41

Multi-region Mixed

Conventional

T(:C)
220. 225. 230. 235. 240. 245. 250. 255. 260. 265. 270. 277.
| | | |

Figure 52: Industrial case study temperature field , comparison

between conventional , multi-region and mixed approaches

Multi-region Mixed

Conventional

p (MPa)
0.00 2,00 4.00 6.00 8.00 100 120 148

! ; Ve

Figure 53: Industrial case study pressure field , comparison

between conventional, multi-region and mixed approaches

42

Conventional Multi-region Mixed

B S S W

U (Mm/min)
0.0 1.0 1.5 2.0 2.5 3.03.54.045 50 5.9

' ose—
Figure 54: Industrial case study velocity field at outlet ,comparison between conventional , multi-

region and mixed approaches

Conventional Multi-region Mixed

— Y

T [°C]
220 230 240 250 260 270 277

i

Figure 55: Industrial case study temperature field at the flow channel outlet,comparison between

conventional , multi-region and mixed approaches

0.2

++ Muli-region
-+ Conventional

-« Mixed .

ES1 ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9
Figure 56: Industrial case study individual objective functions(Fobj,i) plot ,

comparison between conventional , multi-region and mixed approaches

43

Conventional Multi-region Mixed

T [°C]
220 230 240 25|>0 260 270 277

| |

Figure 57: Industrial case study temperature at ES7, comparison between conventional,

multi-region and mixed approaches

44

5. CONCLUSIONS AND FUTURE WORK

In this MSc project, a novel methodology for numerical modeling of the profile extrusion die
transformation process was implemented and evaluated. This methodology aimed to model the process
under more realistic temperature control conditions, in contrast to the simplifications made in the
previous state-of-the-art approaches. We also aimed to assess how these changes affected the accuracy
of the simulation predictions.

During the implementation, we developed a new transient, incompressible, non-isothermal, and multi-
region solver that was implemented on the OpenFOAM computational library. Additionally, we created a new
boundary condition to mimic the behavior of heaters controlled by a Proportional-Integral-Differential
(PID) function, which takes measurements from a thermocouple located at a specific point within the
tool.

This MSc project, assessed three polymer extrusion die modelling approaches, namelly the
conventional approach where only the flow channel is modelled, the multi-region approach where both
flow channel and extrusion die are modelled and a mixed approach that used the calculated temperatures
in the solid-fluid interface from the multi-region approach as boundary condition for the flow channel.
Our findings demonstrate that the pressure drop calculated using the conventional approach was higher
than with the multi-region approach. This difference resulted from temperature fields at the flow
channel walls, which significantly deviated from the assumptions made in the conventional approaches.
These deviations led to increased flow resistance due to lower temperatures. However, in the industrial
case we studied, temperature variations had a reduced impact on the velocity field. Furthermore, the
results obtained revealed that temperature fluctuations had a negligible effect on flow uniformity at the
flow channel outlet once the process reached a steady state. Nevertheless, it is worth noting that in
some specific locations, variations in wallimposed temperatures can substantially modify local flow
distributions.

As part of future work, applying the multi-region approach to a wider range of industrial cases and
evaluating the effect of PID control parameters on process stability and flow distribution, is advised. This
will allow to fully explore the potential of the multi region approach, including the optimization of PID

parameters for enhanced control.

45

References

[1] Michaeli, W. (2003). Extrusion Dies for Plastics and Rubber. Carl Hanser Verlag GmbH & Co. KG.
https://doi.org/10.3139/9783446401815
[2] Rauwendaal, C. (2014). Polymer Extrusion. Carl Hanser Verlag GmbH & Co. KG.
https://doi.org/10.3139/9781569905395
[3] Industrial Quick Search (IQS®). (n.d.). Plastic Extrusion https://www.igsdirectory.com/articles/plast

ic-extrusion.html.Acessed in: 1 jun. 2023.
[4] Abeykoon, C., Martin, P. J., Li, K., & Kelly, A. L. (2014). Dynamic modelling of die melt temperature

profile in polymer extrusion: Effects of process settings, screw geometry and material. In Applied
Mathematical ~ Modelling (Vol. 38, Issue 4, pp. 1224-1236). Elsevier BV.
https://doi.org/10.1016/j.apm.2013.08.004

[5] RESITEC. Catalogo Resisténcias Cartucho.(n.d.) https://www.resitec.pt/en/produtos/sondas-e-
resistencias/resistencias-eletricas-para-diversos-fins/resistencias-de-cartucho. Acessed in: 1 jun. 2023.

[6] RESITEC. Resisténcias de Banda. (n.d.) https://www.resitec.pt/en/produtos/sondas-e-
resistencias/resistencias-eletricas-para-diversos-fins/resistencias-de-banda. Acessed in: 1 jun. 2023.

[7] C. Abeykoon, K. Li, P. J. Martin, M. McAfee, and G. W. Irwin, “Extruder melt tempeature control with

fuzzy logic,” Proceedings of 18th IFAC World Congress, pp. 8577-8582, 2011.

[8] Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y.-C. (2014). OpenFOAM for
Computational Fluid Dynamics. In Notices of the American Mathematical Society (Vol. 61, Issue 4, p.
354). American Mathematical Society (AMS). https://doi.org/10.1090/noti1095

[9] Codes — CFD-Wiki, the free CFD reference. (n.d.) https://www.cfd-online.com/Wiki/Codes. Acessed
in: 7 jul. 2023.

[10] Fuggetta, A. (2003). Open source software——an evaluation. In Journal of Systems and Software
(Vol. 66, Issue 1, pp. 77-90). Elsevier BV. https://doi.org/10.1016/s0164-1212(02)00065-1

[11] K. Wittig, ‘CalculiX USER'S MANUAL-CalculiX GraphiX, Version 2.20". 2022.
http://www.dhondt.de/cgx_2.20.pdf. Acessed in: 7 jul. 2023.

[12] P. Raback and M. Malinen, ‘Overview of EImer’. (n.d.) http://www.csc.fi/elmer. Acessed in: 7 jul.
2023.

[13] H. Jasak, ‘OpenFOAM: Open source CFD in research and industry’, International Journal of Naval
Architecture and Ocean Engineering, wvol. 1, no. 2, pp. 89-94, 2009, doi:
https://doi.org/10.2478/1JNAOE-2013-0011.

46

[14] Z. Tadmor, ‘Fundamentals of plasticating extrusion. |. A theoretical model for melting’, Polym Eng
Sci, vol. 6, no. 3, pp. 185-190, 1966, doi: https://doi.org/10.1002/pen.760060303.
[15] A. Altinkaynak, M. Gupta, M. A. Spalding, and S. L. Crabtree, ‘Melting in a Single Screw Extruder:
Experiments and 3D Finite Element Simulations’, International Polymer Processing, vol. 26, no. 2, pp.
182-196, 2011.
[16] S. Bawiskar and J. L. White, ‘Melting model for modular self-wiping co-rotating twin-screw
extruders’, Polym Eng Sci, wvol. 38, no. 5, pp. 727-740, 1998, doi:
https://doi.org/10.1002/pen.10238.
[17] K. Wilczynski and J. L. White, ‘Melting model for intermeshing counter-rotating twin-screw
extruders’, Polym Eng Sci, wvol. 43, no. 10, pp. 1715-1726, 2003, doi
https://doi.org/10.1002/pen.10145.
[18] J. Vicek, G. N. Mailvaganam, J. Vlachopoulos, and J. Perdikoulias, ‘Computer simulation and
experiments of flow distribution in flat sheet dies’, Advances in Polymer Technology, vol. 10, no. 4, pp.
309-322, Dec. 1990, doi: 10.1002/ADV.1990.060100407.
[19] J. M. Nébrega, O. S. Carneiro, P. J. Oliveira, and F. T. Pinho, ‘Part I: Automatic Design’,
International Polymer Processing, vol. 18, no. 3, pp. 298-306, 2003, doi: doi:10.3139/217.1745.
[20] N. D. Gongalves, O. S. Carneiro, and J. M. Nobrega, ‘Design of complex profile extrusion dies
through numerical modeling’, J Nonnewton Fluid Mech, vol. 200, pp. 103-110, Oct. 2013, doi:
10.1016/j.jnnfm.2013.02.007.
[21] J. Vlachopoulos, ‘Extrudate Swell in Polymers’, Reviews on the deformation behavior of materials,
vol. 3, pp. 219-248, Jan. 1981.
[22] D. Tang, F. H. Marchesini, L. Cardon, and D. R. D’hooge, ‘State of the-Art for Extrudate Swell of
Molten Polymers: From Fundamental Understanding at Molecular Scale toward Optimal Die Design at
Final Product Scale’, Macromol Mater Eng, vol. 305, no. 11, p. 2000340, Nov. 2020, doi:
10.1002/MAME.202000340.
[23] W. A. Gifford, ‘Compensating for die swell in the design of profile dies’, Polym Eng Sci, vol. 43, no.
10, pp. 1657-1665, Oct. 2003, doi: 10.1002/PEN.10139.
[24] Karadogan, Celalettin, ‘Advanced methods in numerical modeling of extrusion processes’, 2005,
doi: 10.3929/ETHZ-A-004940061.
[25] N. D. F. Gongalves, ‘Computer-aided design of extrusion forming tools for complex geometry
profiles’, Universidade do Minho (Portugal), 2013.
[26] V. Hristov and J. Vlachopoulos, ‘Thermoplastic silicone elastomer lubricant in extrusion of
polypropylene wood flour composites’, Advances in Polymer Technology, vol. 26, no. 2, pp. 100-108,
Jun. 2007, doi: 10.1002/ADV.20090.

47

[27 Cameiro, O.S. and Noébrega, J.M. (2012) Design of extrusion forming tools. Shawbury, Shrewsbury:
Smithers Rapra Technology Ltd.

[28] Tadmor, Z. and Gogos, C.G. (2006) Principles of polymer processing. Hoboken: Wiley-Interscience.
[29] W. Michaeli and S. Kaul, ‘Approach of an automatic extrusion die optimization’, Journal of Polymer
Engineering, vol. 24, no. 1-3 SPEC. ISS., pp. 123-136, May 2004, doi: 10.1515/POLYENG.2004.24.1-
3.123.

[30] J. Sienz, S. J. Bates, and J. F. T. Pittman, ‘Flow restrictor design for extrusion slit dies for a range
of materials: Simulation and comparison of optimization techniques’, Finite Elements in Analysis and
Design, vol. 42, no. 5, 2006, doi: 10.1016/].finel.2005.06.008.

[31] N. Lebaal, F. Schmidt, and S. Puissant, ‘Design and optimization of three-dimensional extrusion
dies, using constraint optimization algorithm’, Finite Elements in Analysis and Design, vol. 45, no. 5,
pp. 333-340, Apr. 2009, doi: 10.1016/J.FINEL.2008.10.008.

[32] 0. Yilmaz, H. Gunes, and K. Kirkkopru, ‘Optimization of a profile extrusion die for flow balance’,
Fibers and Polymers, vol. 15, no. 4, 2014, doi: 10.1007/s12221-014-0753-3.

[33] A. Sai and E. Pradeep, ‘Design features and optimization of profile extrusion dies’, 2016,
doi:10.37099/mtu.dc.etdr/ 166

[34] N. Lebaal, ‘Robust low-cost meta-modeling optimization algorithm based on meta-heuristic and
knowledge databases approach: Application to polymer extrusion die design’, Finite Elements in
Analysis and Design, vol. 162, pp. 51-66, Sep. 2019, doi: 10.1016/J.FINEL.2019.05.004.

[35] P. Sheehy, P. A. Tanguy, and D. Blouin, ‘A finite element model for complex profile calibration’,
Polym Eng Sci, vol. 34, no. 8, pp. 650-656, Apr. 1994, doi:
https://doi.org/10.1002/pen.760340806.

[36] Fradette, L., Tanguy, P.A., Hurez, P. and Blouin, D. (1996), "On the determination of heat transfer
coefficient between pvc and steel in vacuum extrusion calibrators", International Journal of Numerical
Methods for Heat & Fluid Flow, Vol. 6 No. 1, pp. 3-12. https://doi.org/10.1108/EUM0000000004095
[37] O. S. Carneiro, J. M. Nobrega, J. Covas, P. Oliveira, and F. Pinho, A study on the thermal
performance of calibrators, vol. 1. 2004.

[38] Nobrega, J. M., Carneiro, O. S., Gaspar-Cunha, A. and Gongalves, N. D.. "Design of Calibrators for
Profile Extrusion — Optimizing Multi-step Systems" International Polymer Processing, vol. 23, no. 3,
2008, pp. 331-338. https://doi.org/10.3139/217.2148

[39] F. Habla et al., ‘Development and validation of a model for the temperature distribution in the
extrusion calibration stage’, Appl Therm Eng, wvol. 100, Feb. 2016, doi:
10.1016/|.applthermaleng.2016.01.166.

48

[40] Dassault Systéemes, ‘PolyXtrue|SOLIDWORKS'. (n.d.) https://www.solidworks.com/partner-
product/polyxtrue (accessed Jun. 29, 2023).

[41] I. ANSYS, ‘Ansys Polyflow | Plastic Extrusion Simulation Software’. (n.d.)
https://www.ansys.com/products/fluids/ansys-polyflow (accessed Jun. 29, 2023).

[42] K. Ryckebosh and M. Gupta, ‘Optimization of a profile coextrusion die using a three-dimensional
flow simulation software’, 2015.

[43] M. Gupta and K. Ryckebosch, ‘Simulation of the Flow in a Bilayer PVC Window Profile Die with
Gradually Changing Calibrator Profiles’, Society of Plastics Engineers Annual Technical (ANTEC), vol.
68, 2021.

[44] Peplifi, K., & Mozer, A. (2012). Comparison of bottle wall thickness distribution obtain in real
manufacturing conditions and in ansys polyflow simulation environment. Journal of Polish CIMAC, 7,
231-235.

[45] Gupta, Mahesh. (2012). Effect of Polymer Viscosity on Post-Die Extrudate Shape Change in
Coextruded Profiles. Annual Technical Conference - ANTEC, Conference Proceedings. 2.

[46] Zhang, G., Huang, X., Li, S. et al. Improved inverse design method for thin-wall hollow profiled
polymer extrusion die based on FEM-CFD simulations. Int J Adv Manuf Technol 106, 2909-2919
(2020). https://doi.org/10.1007/s00170-019-04785-w

[47] Rajkumar, A., Ferras, L., Fernandes, C., Carneiro, O., Becker, M. & Nébrega, J. (2017). Design
Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies. International Polymer
Processing, 32(1), 58-71. https://doi.org/10.3139/217.3272

[48] O. S. Carneiro, A. Rajkumar, L. L. Ferras, C. Fernandes, A. Sacramento, and J. M. Nobrega,
‘Computer-aided die design: A new open-source methodology’, in AIP Conference Proceedings,
American Institute of Physics Inc., May 2017. doi: 10.1063/1.4982987.

[49] Rajkumar, ‘A. Improved methodologies for the design of extrusion forming tools’. Universidade do
Minho (Portugal), 2017.

[50] C. Abeykoon, P. J. Martin, A. L. Kelly, and E. C. Brown, ‘A review and evaluation of melt
temperature sensors for polymer extrusion’, Sens Actuators A Phys, vol. 182, pp. 16-27, 2012, doi:
10.1016/j.sna.2012.04.026.

[51] J. Vera-Sorroche et al., ‘Thermal optimisation of polymer extrusion using in-process monitoring
techniques’, Appl Therm Eng, wvol. 53, no. 2, pp. 405-413, May 2013, doi:
10.1016/|.applthermaleng.2012.04.013.

[52] Tran-Cong, T., Phan-Thien, N. Three-dimensional study of extrusion processes by Boundary

Element Method.. Rheol Acta 27, 639-648 (1988). https://doi.org/10.1007/BF01337460

49

[53] OPENCFD LTD. File structure of OpenFOAM cases. (n.d.)
https://www.openfoam.com/documentation/user-guide/ 2-openfoam-cases/ 2. 1-file-structure-of-
openfoam-cases. Acessed in: 26 set. 2023.

[54} OPENCFD LTD. OpenFOAM: User Guide: pimpleFoam. (n.d.)
<https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-
incompressible-pimpleFoam.html>. Acessed in: 23 maio. 2023.

[55] OPENCFD LTD. OpenFOAM: User Guide: snappyHexMesh. (n.d.)

<https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-
snappyhexmesh.html>. Acessed in: 2 maio. 2023.

[56] SIMSCALE. What Are Boundary Conditions? Numerics Background. (n.d.)
<https://www.simscale.com/docs/simwiki/numerics-background/what-are-boundary-conditions/>.

Acessed in: 2 set. 2023.

50

APPENDIX 1 — INITCONTINUITYERRS.H CODE

OCoOoO~NOUEA,WN R

10
11
12
13

15
16
17
18
19
20
21
22
23

25
26

28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50

52
53
54
55

57
58
59

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2011 OpenFOAM Foundation

Copyright (C) 2019 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFO0AM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Global
cumulativeContErr

Description
Declare and initialise the cumulative continuity error.

#ifndef initContinuityErrs H
#define initContinuityErrs H

uniformDimensionedScalarField fluidcumulativeContErrIO
(

IOobject

(

"cumulativeContErr",

runTime. timeName(),

"uniform",

fluidMesh,

IOobject::READ IF PRESENT,

IOobject::AUTO WRITE

),

dimensionedScalar(dimless, Zero)

);

scalar& cumulativeContErr = fluidcumulativeContErrIO.value();

#endif

A L L

51

APPENDIX 2 — CONTINUITYERRS.H CODE

Co~NOOUTA, WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43
44
45
46
47
48
49
50

/ F ield | OpenFOAM: The Open Source CFD Toolbox
/ 0 peration |

/ A nd | www.openfoam.com
/ M anipulation |

License
This file is part of OpenFOAM.

OpenFO0AM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Global
continuityErrs

Description
Calculates and prints the continuity errors.

volScalarField contErr(fvc::div(phi));

scalar sumLocalContErr = runTime.deltaTValue()*
mag(contErr) () .weightedAverage(fluidMesh.V()).value();

scalar globalContErr = runTime.deltaTValue()*
contErr.weightedAverage(fluidMesh.V()).value();
cumulativeContErr += globalContErr;

Info<< "time step continuity errors : sum local = " << sumLocalContErr
<< ", global = " << globalContErr

<< ", cumulative = " << cumulativeContErr

<< endl;

}

// 3K 3k 3k 3k 3k 3k 3k Sk K Sk 5k 5k 5k 5k 5k 5K 5K 5K 5K 5K 5K 3K K >k K >k >k >k sk >k sk sk sk sk sk sk skosk sk sk ok k Sk Sk Sk Sk 5k ok 5k ok 5k 5k 5K 5K 5K 5K 5K 5K K K K K >k >k >k >k >k ok kokokok sk //

APPENDIX 3 — TFLUID.H CODE

volTensorField gradU = fvc::grad(U);
volScalarField nu = laminarTransport.nu();
volTensorField tau = nu*(gradU + gradU.T());
fvScalarMatrix fluidTEgn

(

fvm: :ddt(Tf)

+ fvm::div(phi, Tf)

52

8
9
10

- fvm::laplacian(DTf,Tf)
- (1/c_)*(tau & gradu)

’

APPENDIX 4 — TsoLID.H CODE

U WNRE

fvScalarMatrix solidTEgn

(

fvm: :ddt(Ts)

)

fvm::laplacian(DTs,Ts)

APPENDIX 5 — CREATEMESH.H CODE

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

License
This file is part of OpenFOAM, distributed under GPL-3.0-or-later.

Description
Create a fvMesh (specified region or defaultRegion) with
additional handling of -dry-run and -dry-run-write options.

Required Variables
- args [arglList]
- runTime [Time]

Provided Variables

- regionName [word]

- mesh [fvMesh]

- meshPtr [autoPtr<fvMesh>]

Info << "Create fluid mesh";

fvMesh fluidMesh

(

I0object

(

“fluid",
runTime.timeName(),
runTime,

IOobject: :MUST READ
)

);

Info << "Create solid mesh";
fvMesh solidMesh

(

I0object

(

"solid",
runTime.timeName(),

53

48 runTime,
49 IOobject::MUST READ

50)
51);
52

APPENDIX 6 — CREATEFIELDS.H CODE

#include "createRDeltaT.H"

Info<< "Reading field p\n" << endl;
volScalarField p

(

I0object

(

"p",
runTime.timeName(),
10 fluidMesh,

11 IOobject::MUST READ,
12 IOobject::AUTO WRITE
13),

14 fluidMesh

15);

OCoNOUA, WN -

17 Info<< "Reading field U\n" << endl;
18 volVectorField U

19 (

20 IOobject
21 (

22 "U",

23 runTime.timeName(),

24 fluidMesh,

25 1I0object::MUST _READ,

26 IOobject::AUTO WRITE

27),

28 fluidMesh

29);

31 Info<< "Reading field Tfluid\n" << endl;
32 volScalarField Tf

33 |

34 I0object
35 |

36 IITII’

37 runTime.timeName(),
38 fluidMesh,

39 IOobject::MUST READ,
40 TIOobject::AUTO WRITE
41),

42 fluidMesh

43);

45 Info<< "Reading field Tsolid\n" << endl;
46 volScalarField Ts

47 |

48 1I0object
49 (

50 IITII,

51 runTime.timeName(),
52 solidMesh,

53 1IOobject::MUST READ,
54 I0object::AUTO WRITE

55),
56 solidMesh
57);

54

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

I0dictionary solidTransportProperties
(

I0object

(

"transportProperties"”,
runTime.constant(),

solidMesh,

I0object: :MUST READ,

IOobject::NO WRITE

)

)

Info<< "\tReading solid thermal diffusivity\n" << endl;
volScalarField DTs

(

I0object

(

||DT|| ,
runTime.timeName(),
solidMesh,
IOobject::NO READ,
IOobject::NO WRITE

),

solidMesh,
dimensionedScalar

(

||DT|| ,

dimViscosity,
solidTransportProperties. lookup("DT")
)

);

Info<< "\tReading solid thermal conductivity\n" << endl;
volScalarField kappaS
(

I0object

(

n kappall ,
runTime.timeName(),
solidMesh,
I0object::NO _READ,
IOobject::NO WRITE

)

solidMesh,
dimensionedScalar

(

n kappall ,

dimViscosity,
solidTransportProperties. lookup("kappa")
)

);

I0dictionary fluidTransportProperties
(

I0object

(
"transportProperties",
runTime.constant(),
fluidMesh,
I0object: :MUST READ,
IOobject::NO WRITE

)

)

Info<< "\tReading fluid thermal conductivity\n" << endl;
volScalarField kappaF
(

I0object

(

n kappall ,
runTime.timeName(),
fluidMesh,

55

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

IOobject::NO READ,
IOobject::NO WRITE
)

fluidMesh,
dimensionedScalar

(

n kappall ,
dimViscosity,
fluidTransportProperties.lookup("kappa")
)

)i

Info<< "\tReading fluid thermal diffusivity\n" << endl;
volScalarField DTf
(

I0object

(

IIDTII ,
runTime.timeName(),
fluidMesh,
I0object::NO _READ,
IOobject::NO WRITE
)

fluidMesh,
dimensionedScalar

(

||DT|| ,

dimViscosity,
fluidTransportProperties.lookup("DT")
)

)i

volScalarField c_

(

I0object

(

IICII ,
runTime.timeName(),
fluidMesh,
I0object::NO READ,
IOobject::NO WRITE
)

fluidMesh,
dimensionedScalar

(

cy
fluidTransportProperties.lookup("c")
)

);

#include "createPhi.H"

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell(p, pimple.dict(), pRefCell, pRefValue);
fluidMesh.setFluxRequired(p.name());

singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible: :turbulenceModel> turbulence

(

incompressible: :turbulenceModel: :New(U, phi, laminarTransport)
)

#include "createMRF.H"
#include "createFvOptions.H"

56

APPENDIX 7 — CHTMULTIREGIONPIMPLEFOAM.H CODE

F ield | OpenFOAM: The Open Source CFD Toolbox
0 peration |

A nd | www.openfoam.com

/ M anipulation |

Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.

License

This file is part of OpenFOAM.

NN

OpenFO0AM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
chtMultiPimpleFoam. C

Group
grpIncompressibleSolvers

Description
Multi-region Transient solver for incompressible, turbulent flow of Newtonian

fluids

35

on a moving mesh.

\heading Solver details
The solver uses the PIMPLE (merged PISO-SIMPLE) algorithm to solve the
continuity equation:

\ [
\div \vec{U} = 0
\]

and momentum equation:

\f[

\ddt{\vec{U}} + \div \left(\vec{U} \vec{U} \right) - \div \gvec{R}
= - \grad p + \vec{S} U

\f]

Where:

\vartable

\vec{U} | Velocity

p | Pressure

\vec{R} | Stress tensor
\vec{S} U | Momentum source
\endvartable

Sub-models include:
- turbulence modelling, i.e. laminar, RAS or LES
- run-time selectable MRF and finite volume options, e.g. explicit porosity

\heading Required fields
57

\plaintable

U | Velocity [m/s]

p | Kinematic pressure, p/rho [m2/s2]

\<turbulence fields\> | As required by user selection
\endplaintable

Note

The motion frequency of this solver can be influenced by the presence
of "updateControl" and "updateInterval" in the dynamicMeshDict.

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"

#include "CorrectPhi.H"

#include "fvOptions.H"

#include "localEulerDdtScheme.H"
#include "fvcSmooth.H"

int main(int argc, char *argv([])

{

argList::addNote

(

"Transient solver for incompressible, turbulent flow"
" of Newtonian fluids on a moving mesh."

);
//#include "postProcess.H"

#include "addCheckCaseOptions.H"
#include "setRootCaselLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "createDyMControls.H"
#include "createMesh.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createUfIfPresent.H"
#include "CourantNo.H"

#include "setInitialDeltaT.H"

turbulence->validate();

if ('LTS)

{

#include "CourantNo.H"
#include "setInitialDeltaT.H"

}

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{
#include "readDyMControls.H"

if (LTS)

{

#include "setRDeltaT.H"
}

else

{

#include "CourantNo.H"

58

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

#include "setDeltaT.H"

}

++runTime;

Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)

// Do any mesh changes
mesh.controlledUpdate();

if (mesh.changing())
{

MRF.update();

if (correctPhi)

{
// Calculate absolute flux

// from the mapped surface velocity
phi = mesh.Sf() & Uf();

#include "correctPhi.H"

// Make the flux relative to the mesh motion
fvc: :makeRelative(phi, U);

}

if (checkMeshCourantNo)

{

#include "meshCourantNo.H"
}

}

}

#include "UEgn.H"

// --- Pressure corrector loop
while (pimple.correct())

{

#include "pEqn.H"

}

if (pimple.turbCorr())
{

laminarTransport.correct();
turbulence->correct();

}

Info<< "Solving temperature\n" << endl;

#include "Tsolid.H"

scalar TSResidual = solidTEgn.solve().initialResidual();

#include "Tfluid.H"

scalar TFResidual = fluidTEgn.solve().initialResidual();

scalar globalResidual = (TSResidual + TFResidual)/2;

Info<< "Global Temperature Residuals :" << globalResidual << endl;

}
runTime.write();

runTime.printExecutionTime(Info);

}
Info<< "End\n" << endl;

return 0;

}

i e e L Ly

59

APPENDIX 8 —

EXTERNALWALLHEATFLUXTEMPERATUREPIDFVPATCHSCALARFIELD.

C CODE
IR A e *|
2=========
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / 0 peration |
5 \\ / And | www.openfoam.com
6 \\/ M anipulation |
o
8 Copyright (C) 2011-2017 OpenFOAM Foundation
9 Copyright (C) 2015-2020 OpenCFD Ltd.
I i R T
11 License
12 This file is part of OpenFOAM.
13
14 OpenFOAM is free software: you can redistribute it and/or modify it
15 wunder the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26
D R e e */
28
29 #include "externalWallHeatFluxTemperaturePIDFvPatchScalarField.H"
30 #include "addToRunTimeSelectionTable.H"
31 #include "fvPatchFieldMapper.H"
32 #include "surfaceFields.H"
33 #include "volFields.H"
34 #include "physicoChemicalConstants.H"
35 #include "OFstream.H"
36
37 using Foam::constant::physicoChemical::sigma;
38
40
41 const Foam::Enum
472 <
43 Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField: :operationMode
44 >
45 Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField: :operationModeNames
46 ({
47 { operationMode::fixedHeatFlux, "flux" },
48 1});
49
50 //****************Constr-uctors**************//
51
52 Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField::
53 externalWallHeatFluxTemperaturePIDFvPatchScalarField
54 (
55 const fvPatch& p,
56 const DimensionedField<scalar, volMesh>& iF
57)
58 :
59 mixedFvPatchScalarField(p, iF),

60

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

temperatureCoupledBase

(

patch(),

"undefined",

"undefined",

"undefined-K",

"undefined-alpha"

)

mode (fixedHeatFlux),

//ADDED

sensorName ("wall probe"),

Tobj (650),

P (1),

I (1),

D_(1),

Tave (0),

error_(0),

errorIntegral (0),

oldTave (0),

oldError (0),

oldErrorIntegral (0),

timeIndex (db().time().timeIndex()),
//ADDED

Q (nullptr),
g (nullptr),
h_ (nullptr),
Ta_ (nullptr),
relaxation (1),
emissivity (0),
grRelaxation (1),
grName_("undefined-qr"),
thicknesslLayers (),
kappaLayers ()

{

refValue() = 0;
refGrad() = 0;
valueFraction() = 1;

}

Foam: :externalWallHeatFluxTemperaturePIDFvPatchScalarField::
externalWallHeatFluxTemperaturePIDFvPatchScalarField

(

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF,

const dictionary& dict

)

mixedFvPatchScalarField(p, iF),
temperatureCoupledBase(patch(), dict),

mode (operationModeNames.get("mode", dict)),

//ADDED

sensorName (dict.getOrDefault<word>("sensorName", "None")),
Tobj (dict.getOrDefault<scalar>("Tobj", 650)),
P_(dict.getOrDefault<scalar>("P", 1)),

I (dict.getOrDefault<scalar>("I", 1)),

D (dict.getOrDefault<scalar>("D", 1)),

Tave (0),

error_(0),

errorIntegral (0),

oldTave (0),

oldError (0),

oldErrorIntegral (0),

timeIndex (db().time().timeIndex()),

//ADDED

Q (nullptr)
g_(nullptr)
h_ (nullptr)
Ta (nullptr
relaxation

),
dict.getOrDefault<scalar>("relaxation", 1)),

61

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

emissivity (dict.getOrDefault<scalar>("emissivity", 0)),
grRelaxation (dict.getOrDefault<scalar>("qrRelaxation", 1)),
grName_(dict.getOrDefault<word>("qr", "none")),
thicknesslLayers (),

kappaLayers ()

{

switch (mode)

{

case fixedHeatFlux:

{

q_ = PatchFunctionl<scalar>::New(patch().patch(), "q", dict);
break;

}

}

fvPatchScalarField: :operator=(scalarField("value", dict, p.size()));

if (grName_ != "none")

if (dict.found("qrPrevious"))

{

grPrevious = scalarField("qrPrevious", dict, p.size());
}

else

{

grPrevious .resize(p.size(), Zero);

}

}

if (dict.found("refValue"))

{

// Full restart

refValue() = scalarField("refValue", dict, p.size());
refGrad() = scalarField("refGradient", dict, p.size());
valueFraction() = scalarField("valueFraction", dict, p.size());
}

else

{

// Start from user entered data. Assume fixedValue.
refValue() = *this;

refGrad() = 0;

valueFraction() = 1;

}

h = PatchFunctionl<scalar>::New(patch().patch(), "h", dict);
Ta_ = Functionl<scalar>::New("Ta", dict, &db());

}

Foam: :externalWallHeatFluxTemperaturePIDFvPatchScalarField::
externalWallHeatFluxTemperaturePIDFvPatchScalarField

(

const externalWallHeatFluxTemperaturePIDFvPatchScalarField& rhs,
const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF,

const fvPatchFieldMapper& mapper

)

mixedFvPatchScalarField(rhs, p, iF, mapper),
temperatureCoupledBase(patch(), rhs),
mode (rhs.mode),

//ADDED

sensorName_ (rhs.sensorName),

Tobj (rhs.Tobj),

P (rhs.P_),

I (rhs.I),

D (rhs.D),

Tave (rhs.Tave),

error_(rhs.error_),

errorIntegral (rhs.errorIntegral),

62

198 oldTave (rhs.oldTave),

199 oldError _(rhs.oldError),

200 oldErrorIntegral (rhs.oldErrorIntegral),
201 timeIndex (rhs.timeIndex),

202 //ADDED

203 Q (rhs.Q .clone()),

204 g _(rhs.q_.clone(patch().patch())),
205 h_(rhs.h_.clone(patch().patch())),
206 Ta (rhs.Ta .clone()),

207 relaxation (rhs.relaxation),

208 emissivity (rhs.emissivity),

209 qgrPrevious (),

210 grRelaxation (rhs.grRelaxation),

211 qgrName_ (rhs.qgrName),

212 thicknessLayers (rhs.thicknessLayers),
213 kappalLayers (rhs.kappalLayers)

214 {

215 if (grName_ !'= "none")

216

217 qrPrevious .resize(mapper.size());

218 qrPrevious .map(rhs.qrPrevious , mapper);

219 }
220 '}
221

222 Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField::
223 externalWallHeatFluxTemperaturePIDFvPatchScalarField

224 (

225 const externalWallHeatFluxTemperaturePIDFvPatchScalarField& rhs
226)

227

228 mixedFvPatchScalarField(rhs),

229 temperatureCoupledBase(rhs),

230 mode (rhs.mode),

231 //ADDED

232 sensorName (rhs.sensorName),

233 Tobj (rhs.Tobj),

234 P _(rhs.P),

235 I (rhs.I),

236 D (rhs.D),

237 Tave_ (rhs.Tave),

238 error_(rhs.error),

239 errorIntegral (rhs.errorIntegral),

240 oldTave (rhs.oldTave),

241 oldError (rhs.oldError_),

242 oldErrorIntegral (rhs.oldErrorIntegral),

243 timeIndex_ (rhs.timeIndex),
244 //ADDED

245 Q _(rhs.Q _.clone()),

246 q_(rhs.qg_.clone(patch().patch())),
247 h_(rhs.h_.clone(patch().patch())),

248 Ta (rhs.Ta .clone()),

249 relaxation (rhs.relaxation),

250 emissivity (rhs.emissivity),

251 qrPrevious (rhs.qrPrevious),

252 qgrRelaxation (rhs.qrRelaxation),

253 qgrName_(rhs.qrName),

254 thicknesslLayers (rhs.thicknesslLayers),

255 kappalLayers (rhs.kappalLayers)

256 {}

257

258 Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField::
259 externalWallHeatFluxTemperaturePIDFvPatchScalarField

260 (

261 const externalWallHeatFluxTemperaturePIDFvPatchScalarField& rhs,
262 const DimensionedField<scalar, volMesh>& iF

263)

264

265 mixedFvPatchScalarField(rhs, iF),

266 temperatureCoupledBase(patch(), rhs),

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

mode (rhs.mode),

//ADDED

sensorName_(rhs.sensorName),

Tobj (rhs.Tobj),

P (rhs.P_),

I (rhs.I),

D (rhs.D),

Tave (rhs.Tave),

error _(rhs.error),

errorIntegral (rhs.errorIntegral),
oldTave (rhs.oldTave),

oldError (rhs.oldError),
oldErrorIntegral (rhs.oldErrorIntegral),
timeIndex (rhs.timeIndex),
//ADDED

Q (rhs.Q .clone()),

g (rhs.q _.clone(patch().patch())),
h (rhs.h_.clone(patch().patch())),

Ta (rhs.Ta_.clone()),

relaxation (rhs.relaxation),
emissivity (rhs.emissivity),
grPrevious (rhs.qgrPrevious),
grRelaxation_ (rhs.qrRelaxation),
grName_(rhs.qrName),

thicknessLayers (rhs.thicknessLayers),
kappaLayers (rhs.kappalLayers)

{}

//***************MemberFunCtions*************//

void Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField: :autoMap
(

const fvPatchFieldMapper& mapper

)

{

mixedFvPatchScalarField: :autoMap(mapper);
// temperatureCoupledBase: :autoMap(mapper);

if (q)

{

g_->autoMap(mapper) ;

}

if (h))

{

h_->autoMap(mapper) ;

}

if (grName_ != "none")

grPrevious .autoMap(mapper);
}
}

void Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField: :rmap
(

const fvPatchScalarField& ptf,

const labellList& addr

)

{
mixedFvPatchScalarField::rmap(ptf, addr);

const auto& rhs =
refCast<const externalWallHeatFluxTemperaturePIDFvPatchScalarField>(ptf);

// temperatureCoupledBase::rmap(rhs, addr);
if (q_)

{
g _->rmap(rhs.q (), addr);

64

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

}

if (qrName_ != "none")

{

grPrevious .rmap(rhs.qrPrevious , addr);
}

}

oid Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField: :updateCoeffs()
{

if (updated())

{

return;

}

//get time step

scalar deltaT =db().time().deltaTValue();
// Update the old-time quantities

if (timeIndex_ != db().time().timeIndex())
{

timeIndex_ = db().time().timeIndex();
oldTave = Tave_ ;

oldError = error_;

oldErrorIntegral = errorIntegral ;

}

const fvPatch& p = this->patch();

//get patch ID

const label sensorPatchID =
p.patch().boundaryMesh().findPatchID(sensorName);

if (sensorPatchID < 0)

{

FatalErrorInFunction

<< "Unable to find sensor patch " << sensorName

<< abort(FatalError);

}

//get Patch

const fvPatch& sensorPatch = p.boundaryMesh()[sensorPatchID];
//get Temperature

auto& T =

this->db().objectRegistry::template lookupObject<volScalarField>
(IITII) ;

const fvMesh& mesh = patch().boundaryMesh().mesh();

//sum Temperature

scalar sensorPatchT

=O’
380sensorPatchT=mag(gSum(T.boundaryField()[sensorPatchID]*mesh.Sf().boundaryField()

[sensorPatchID]));

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

// get boundary area
const scalar sensorArea = mag(gSum(mesh.Sf().boundaryField()[sensorPatchID]));

// get Tave

scalar Tave = sensorPatchT / sensorArea;

// Errors

error_ = Tave_ - Tobj ;

errorIntegral = oldErrorIntegral + error_;

scalar errorDifferential = -(oldError_ - error_) / deltaT;

scalar PIDfunction = P *error + I *errorIntegral + D *errorDifferential;
//scalar PIDfunction = P _*error ;

//scalar PIDfunction = P *error + I *errorIntegral ;

Info<< nl << " PID function :" << PIDfunction << " s"

<< nl << " Tave :" << Tave << " s"

<< nl << " Tobj :" << Tobj << S
<< nl << endl;

if (PIDfunction < 0)

{
const scalarField& Tp(*this);

const scalarField valueFractionO(valueFraction());
const scalarField refValueO(refValue());

scalarField qr(Tp.size(), Zero);

65

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

if (grName_!= "none")

{

qr =

grRelaxation_

*patch().lookupPatchField<volScalarField, scalar>(qrName)
+ (1 - grRelaxation_)*qrPrevious_;

grPrevious = qr;

}

tmp<scalarField> heatFlux =
gq_->value(this->db().time().timeOutputValue());

refGrad() = (heatFlux + qr)/kappa(Tp);
refValue() = 0;
valueFraction() = 0;

//valueFraction() =
// relaxation *valueFraction() + (1 - relaxation_)*valueFraction@;
//refValue() = relaxation *refValue() + (1 - relaxation)*refValue0;

mixedFvPatchScalarField: :updateCoeffs();
DebugInfo

<< patch().boundaryMesh().mesh().name() <<
<< internalField().name() << " :"

<< " heat transfer rate:" << gSum(kappa(Tp)*patch().magSf()*snGrad())
<< " wall temperature "

<< min:" << gMin(*this)

<< max:" << gMax(*this)

<< " avg:" << gAverage(*this) << nl;

}

else

{
const scalarField& Tp(*this);

<< patch().name() <<

const scalarField valueFractionO(valueFraction());
const scalarField refValueO(refValue());

scalarField qr(Tp.size(), Zero);
if (grName_ != "none")

qr =

grRelaxation

*patch().lookupPatchField<volScalarField, scalar>(qrName)
+ (1 - grRelaxation)*qrPrevious_;

grPrevious = qr;

}

//refGrad() = 0;

//refValue() = 0;

//valueFraction() = 0;

tmp<scalarField> thtcCoeff =

(

h _->value(this->db().time().timeQutputValue()) + VSMALL
)i

const auto& htcCoeff thtcCoeff();

scalar totalSolidRes 0;

if (thicknesslLayers .size())

{
forAll(thicknessLayers , ilayer)

const scalar 1 = thicknessLayers [ilayer];
if (kappaLayers [ilLayer] > 0)

{

totalSolidRes += 1/kappalLayers [ilayer];

}

}

}
scalarField hp(1/(1/htcCoeff + totalSolidRes));

66

473 const scalar Ta =

474 Ta_->value(this->db().time().timeOutputValue());
475 scalarField hpTa(hp*Ta);

476 const scalarField kappaDeltaCoeffs

477 |
478 this->kappa(Tp)*patch().deltaCoeffs()
479 ;

480 refGrad() = 0;
481 forAll(Tp, 1)

482 |

483 refValue()[i] = (hpTal[il + qr[i])/hp[il;

484 valueFraction()[i] = hp[i]/(hp[i] + kappaDeltaCoeffs[i]);
485 }

486

487 //valueFraction() =

488 // relaxation *valueFraction() + (1 - relaxation)*valueFraction0;
489 //refValue() = relaxation *refValue() + (1 - relaxation)*refValue0;
490

491 mixedFvPatchScalarField: :updateCoeffs();

492 DebugInfo

493 << patch().boundaryMesh().mesh().name() << ':' << patch().name() << ':'
494 << internalField().name() << " :"

495 << " heat transfer rate:" << gSum(kappa(Tp)*patch().magSf()*snGrad())
496 << " wall temperature "

497 << " min:" << gMin(*this)

498 << " max:" << gMax(*this)

499 << " avg:" << gAverage(*this) << nl;

500 }

501 }

502

503 void Foam::externalWallHeatFluxTemperaturePIDFvPatchScalarField::write
504 (

505 Ostream& os

506) const

507 {

508 fvPatchScalarField::write(os);

509

510 os.writeEntry("mode", operationModeNames[mode]);

511 temperatureCoupledBase: :write(os);

512

513 if (Q))

514 {

515 Q ->writeData(os);

516 }

517 if (q.)

518

519 q ->writeData(os);

520 }

521

522 if (Ta))

523 {

524 Ta_->writeData(os);

525 }

526

527 os.writeEntry("qr", qrName_);

528

529 if (grName_ != "none")

530

531 os.writeEntry("qrRelaxation", qrRelaxation_);

532

533 grPrevious .writeEntry("qrPrevious", o0s);

534 '}

535

536 refValue().writeEntry("refValue", os);

537 refGrad().writeEntry("refGradient", o0s);

538 valueFraction().writeEntry("valueFraction", o0s);

539 //ADDED//

540 os.writeEntry("Tobj", Tobj);

541 os.writeEntry("sensorName", sensorName);

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

0s
0s

.writeEntry("P", P_);
.writeEntry("I", I);

os.writeEntry("D", D_);

os.writeEntry("error", error_);
os.writeEntry("errorIntegral"”, errorIntegral);
Info<< nl << " Gradient :" << refValue() << " s"
<< nl << endl;

//ADDED//

writeEntry("value", os);

J/ K K K K kK ok Kk ok K ok ok ok ok ok kK Kk k kK kK K kK x K ok Kk Kk K ok x X ok /)

namespace Foam

{
makePatchTypeField

(
fvPatchScalarField,
externalWallHeatFluxTemperaturePIDFvPatchScalarField

);
}

//

e EE L Y

APPENDIX 9 —

EXTERNALWALLHEATFLUXTEMPERATUREPIDFVPATCHSCALARFIELD.

H coDE
R A e *|
2 o o o o o |
3 I / F ield | OpenFOAM: The Open Source CFD Toolbox
4 I\ / 0 peration |
5 '\ 7/ A nd | www.openfoam.com
6 W/ M anipulation |
i
8 Copyright (C) 2011-2017 OpenFOAM Foundation
9 Copyright (C) 2020 OpenCFD Ltd.
I i T T
11 License
12 This file is part of OpenFOAM.
13
14 OpenFO0AM is free software: you can redistribute it and/or modify it
15 under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26
27 C(lass
28 Foam: :externalWallHeatFluxTemperaturePIDFvPatchScalarField
29
30 Group
31 grpThermoBoundaryConditions grpWallBoundaryConditions
32

33 Description

68

Usag

Default

61

Note

This boundary condition applies a heat flux conditio
on an external wall in one of three modes:

- fixed power: supply Q
- fixed heat flux: supply q
- fixed heat transfer coefficient: supply h and Ta

where:
\vartable
Q | Power [W]
qg | Heat flux [W/m™2]
h | Heat transfer coefficient [W/m"~2/K]
Ta | Ambient temperature [K]
\endvartable

n to temperature

For heat transfer coefficient mode optional thin thermal layer resistances
can be specified through thicknessLayers and kappalLayers entries.

The thermal conductivity \c kappa can either be retr
possible sources, as detailed in the class temperatu

The ambient temperature Ta is specified as a Foam::Functionl of time but

uniform in space.

e
\table
Property | Description
mode | 'power', 'flux' or 'coefficient'
Q | Power [W]
q | Heat flux [W/m"2]
h | Heat transfer coefficient [W/m~2/K] | fo
Ta | Ambient temperature [K] | fo

thicknessLayers | Layer thicknesses [m]
kappalLayers | Layer thermal conductivities [W/m/K]

relaxation | Relaxation for the wall temperature
emissivity | Surface emissivity for radiative flux
qr | Name of the radiative field

qgrRelaxation | Relaxation factor for radiative field
kappaMethod | Inherited from temperatureCoupledBase
kappa | Inherited from temperatureCoupledBase
\endtable

Example of the boundary condition specification:
\verbatim

<patchName>

{
type externalWallHeatFluxTemperature;
mode coefficient;
Ta constant 300.0;
h constant 10.0;
thicknesslLayers (0.1 0.2 0.3 0.4);
kappalLayers (1234);
kappaMethod fluidThermo;
value $internalField;

}

\endverbatim

Quantities that are considered "global" (eg, power,
can be specified as Functionl types.

Quantities that may have local variations (eg, htc,
can be specified as PatchFunctionl types.

101 See also

ieved from various
reCoupledBase.

| Required |

| yes |
| for mode 'power'’
| for mode 'flux'
r mode 'coefficient'
r mode 'coefficient'
| no |
| no |
| no | 1
to ambient | no | @
| no | none
| no | 1
| inherited |
| inherited |

ambient temperature)

heat-flux)

69

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

Foam: : temperatureCoupledBase
Foam: :mixedFvPatchScalarField

SourceFiles
externallWWallHeatFluxTemperaturePIDFvPatchScalarField.C

#ifndef externalWallHeatFluxTemperaturePIDFvPatchScalarField H
#define externalWallHeatFluxTemperaturePIDFvPatchScalarField H

#include "mixedFvPatchFields.H"
#include "temperatureCoupledBase.H"
#include "PatchFunctionl.H"

J/ K K R K K Kk ok ok ok ok K ok kK Kk K ok ok ok kK kK ok ok ok ok Kk kK Kk kK ok kK K ok x X /)

namespace Foam

class externalWallHeatFluxTemperaturePIDFvPatchScalarField

public mixedFvPatchScalarField,
public temperatureCoupledBase

{
public:
// Public Data
//- Operation mode enumeration
enum operationMode
fixedPower, //!< Heat power [W]
fixedHeatFlux, //!< Heat flux [W/m2]
b
static const Enum<operationMode> operationModeNames;
private:

// Private Data

//- Operation mode
operationMode mode ;

//- Heat power [W]
autoPtr<Functionl<scalar>> Q ;

//- Heat flux [W/m2]
autoPtr<PatchFunctionl<scalar>> q_;

//- Heat flux coeficient [W/m2K
autoPtr<PatchFunctionl<scalar>> h ;

//- Ambient temperature [K]
autoPtr<Functionl<scalar>> Ta_;

//- Relaxation for the wall temperature (thermal inertia)
scalar relaxation_;

//- Optional surface emissivity for radiative transfer to ambient
scalar emissivity ;

//- Cache qr for relaxation

70

171 scalarField qgrPrevious ;

172

173 //- Relaxation for qr

174 scalar qrRelaxation_;

175

176 //- Name of the radiative heat flux
177 const word grName_;

178

179 //- Thickness of layers

180 scalarList thicknesslLayers_;

181

182 //- Conductivity of layers

183 scalarList kappalLayers ;

184 //ADDED for PID

185 //- Name of the sensor patch

186 const word sensorName_;

187

188 //- Desired Temperature

189 const scalar Tobj_;

190

191 //- Proportional gain

192 const scalar P_;

193

194 //- Integral gain

195 const scalar I ;

196

197 //- Derivative gain

198 const scalar D_;

199

200 //- Average Temperature

201 scalar Tave ;

202

203 //- Error

204 scalar error_;

205

206 //- Error integral w.r.t. time

207 scalar errorIntegral ;

208

209 //- 0ld Average Temperature

210 scalar oldTave ;

211

212 //- 0ld error

213 scalar oldError_;

214

215 //- 0ld error integral w.r.t. time
216 scalar oldErrorIntegral ;

217

218 //- Time index of the last update
219 label timeIndex ;

220

221 public:

222

223 //- Runtime type information

224 TypeName ("externalWallHeatFluxTemperaturePID");
225

226

227 // Constructors

228

229 //- Construct from patch and internal field
230 externalWallHeatFluxTemperaturePIDFvPatchScalarField
231 (

232 const fvPatch§&,

233 const DimensionedField<scalar, volMesh>&
234);

235

236 //- Construct from patch, internal field and dictionary
237 externalWallHeatFluxTemperaturePIDFvPatchScalarField
238 (

239 const fvPatch&,

71

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

const DimensionedField<scalar, volMesh>&,
const dictionaryé&
);

//- Construct by mapping given
// externalWallHeatFluxTemperaturePIDFvPatchScalarField
// onto a new patch
externalWallHeatFluxTemperaturePIDFvPatchScalarField
(
const externalWallHeatFluxTemperaturePIDFvPatchScalarField§&,
const fvPatch&,
const DimensionedField<scalar, volMesh>&,
const fvPatchFieldMapper&
);
//- Construct as copy
externalWallHeatFluxTemperaturePIDFvPatchScalarField
(

);

const externalWallHeatFluxTemperaturePIDFvPatchScalarField&

//- Construct and return a clone
virtual tmp<fvPatchScalarField> clone() const

{

return tmp<fvPatchScalarField>

(
new externalWallHeatFluxTemperaturePIDFvPatchScalarField(*this)
);
}

//- Construct as copy setting internal field reference
externalWallHeatFluxTemperaturePIDFvPatchScalarField
(
const externalWallHeatFluxTemperaturePIDFvPatchScalarField§&,
const DimensionedField<scalar, volMesh>&
);

//- Construct and return a clone setting internal field reference
virtual tmp<fvPatchScalarField> clone
(
const DimensionedField<scalar, volMesh>& iF
) const
{
return tmp<fvPatchScalarField>
(
new externalWallHeatFluxTemperaturePIDFvPatchScalarField(*this, iF)
);

// Member functions

// Access

//- Allow manipulation of the boundary values
virtual bool fixesValue() const

{
}

return false;

// Mapping functions
//- Map (and resize as needed) from self given a mapping object
virtual void autoMap
(

);

const fvPatchFieldMapperé&

72

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

//- Reverse map the given fvPatchField onto this fvPatchField
virtual void rmap

(
const fvPatchScalarField§,
const labellList&

)i
// Evaluation functions
//- Update the coefficients associated with the patch field
virtual void updateCoeffs();
// I-0
//- Write

void write(Ostream&) const;

};

// k sk >k sk ok >k %k %k % %k % %k % %k % >k % >} 3%) 3%) %) %k) % X% % % >} % k X% >} Xk //

} // End namespace Foam

// k sk >k sk ok >k %k %k % %k % >k % >k % %k % >} %) %) %) %k) % X% % % >} x 3k X% >} X //

#endif

338 // 3k >k 3k 3k >k >k ok sk >k sk ok sk sk ok Sk >k >k sk Sk sk sk ok Sk 3k sk Sk sk >k sk Sk sk >k sk sk sk sk sk sk >k ok ke sk >k sk Sk sk sk sk Sk sk 3k ok Sk sk sk ok sk >k sk ok sk >k sk ok sk >k sk sk kok sk sk >k //

73

