

"Transmitância ótica de resinas compostas na cimentação de restaurações indiretas -Um estudo in vitro"

Rita Fidalgo-Pereira^{1,2}, Valter Fernandes², Óscar Carvalho³, Orlanda Torres^{2,4}, Susana O.Catarino³, Júlio C.M. Souza^{1,4,5}

¹Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal; ²University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal; ³Centre for MicroElectromechanical Systems (CMEMS-UMINHO), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal; ⁴Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal;

INTRODUÇÃO

RESULTADOS E DISCUSSÃO

A longevidade das restaurações indiretas adesivas depende, entre outros fatores, do tipo de material restaurador, da espessura do material restaurador, propriedades do cimento à base de resina e do procedimento de fotopolimerização¹.

OBJETIVO

O objetivo do presente estudo foi avaliar a transmissão da luz através de uma resina composta manufaturada em CAD/CAM com diferentes espessuras e com a utilização de cimentos à base de resina e resinas compostas como material de cimentação.

MATERIAIS E MÉTODOS

Blocos de resina composta reforçados com 89 wt % em partículas inorgânicas foram seccionados em espessuras de 2 e 3 mm. Para a cimentação da resina composta manufaturada em CAD/CAM foram utilizadas resinas compostas fluídas com diferente conteúdo inorgânico, 60 wt % e 83 wt %. Foi também utilizada resina composta termo induzida com 83 wt % e cimentos convencionais dual, com 78 e 73 wt % em partículas luz através de um inorgânicas. Foram realizados ensaios de transmissão da espectrofotómetro com um monocromador integrado antes e após a fotopolimerização. Através da nanoindentação obtiveram-se as características mecânicas de cada material, permitindo também a avaliação indireta da eficácia da polimerização. Através de microscopia ótica e microscopia eletrónica realizou-se a análise microestrutural.

Obtiveram-se valores mais elevados de transmissão da luz para os 2 mm de espessura com a resina composta fluída de 60 wt %. Para os 3 mm de espessura a resina fluída reforçada com 83 wt % em partículas inorgânicas obteve os melhores resultados. Para ambas as espessuras, o cimento dual com 78 wt % obteve os menores resultados.

Figura 2. Microscopia eletrónica de varrimento (A) bloco de resina composta reforçado com 89 wt.% em partículas inorgânicas (B) Microestrutura do cimento dual reforçado com 78 wt.% em partículas inorgânicas.

A microestrutura dos materiais utilizados para cimentação afeta a transmissão da luz

Espectrofotometria

Fibra ótica (entrada) Análise de dados

Fibra ótica (saída)

Microscopia

Figura 1. (A) e (B) Corte do bloco de resina composta reforçada com 89 wt% em partículas inorgânicas em espessuras de 2 e 3 mm; (C) Cimentação das amostras com resinas compostas fluídas reforçadas com 83, 60 e 83 wt.% em partículas inorgânicas e dois cimentos dual reforçados com 78 e 73 wt.% em partículas inorgânicas; (D) Esquema dos testes de transmissão de luz através de espectrofotometria; (E) Caracterização microestrutural através de microscopia eletrónica de varrimento e microscopia ótica.

ao longo dos materiais. Espessuras restauradoras em resinas compostas manufaturadas em CAD/CAM com 89 wt % diminuem a transmissão da luz quando a espessura é de 3mm comparativamente a espessuras de 2mm^{3,4,5}.

CONCLUSÕES

Outros materiais além de cimentos à base de resina podem ser considerados para a cimentação de resinas compostas manufaturadas em CAD/CAM para espessuras restauradoras de 2 mm, tais como resinas compostas fluídas. Em espessuras restauradoras de 3 mm devem ser utilizados cimentos dual à base de resina, uma vez que a quantidade de luz que atinge o material de cimentação é baixa.

REFERÊNCIAS

¹Mendonça LM, Ramalho IS, Lima L, Pires LA, Pegoraro TA, Pegoraro LF. Influence of the composition and shades of ceramics on light transmission and degree of conversion of dual-cured resin cements. J Appl Oral Sci 2019;27:e20180351. https://doi.org/10.1590/1678-7757-2018-0351

²Hardy CMF, Bebelman S, Leloup G, Hadis MA, Palin WM, Leprince JG. Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials. Dental Materials 2018;34:1278–88

30kutan Y, Kandemir B, Donmez MB, Yucel MT. Effect of the thickness of CAD-CAM materials on the shear bond strength of light-polymerized resin cement. Eur J Oral Sci 2022:130:e12892.

⁴Ilie N. Transmitted irradiance through ceramics: effect on the mechanical properties of a luting resin cement. Clin Oral Investig 2017;21:1183–90. https://doi.org/10.1007/s00784-016-1891-3.

⁵Lee IB, An W, Chang J, Um CM. Influence of ceramic thickness and curing mode on the polymerization shrinkage kinetics of dual-cured resin cements. Dental Materials 2008;24:1141–7. https://doi.org/https://doi.org/10.1016/j.dental.2008.03.015