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A B S T R A C T   

This paper presents a novel model for predicting the impact response of steel fiber reinforced concrete (SFRC) 
beams. The model utilizes the principles of energy conservation and impulse-momentum theorem to calculate the 
maximum reaction force and peak impact force. A tensile behavior model for simulating the concrete behavior is 
proposed considering the effect of volume fraction of steel fibers and the effect of strain rate on the concrete 
properties. Additionally, the conventional beam theory, along with a cross-section-layered approach, is used to 
express the total beam’s reaction forces vs deflection relationship. Afterwards, the model calculates the 
maximum midspan deflection of SFRC beams subjected to impact loading by applying the principle of conser-
vation of energy and considering the effect of strain rate. The proposed model is compared with 121 impact tests, 
and the results show that the model can estimate the maximum reaction force of SFRC beams with acceptable 
accuracy.   

1. Introduction 

Concrete is one of the most applied materials in structural con-
structions. The addition of fibers to plain concrete can reduce its brittle 
behavior [1]. By designing a proper mix composition for mobilizing 
effectively the fiber reinforcement mechanisms, the maximum concrete 
crack width can decrease significantly, because the fibers have increased 
the post-cracking tensile capacity provided by the fibers [2]. Over the 
past decades, steel fibers have been utilized as a reinforcement system to 
ameliorate the mechanical characteristics and durability of structural 
elements, when tension and shear dominate their failure modes [3], as 
occurs in beams. The higher shear capacity of steel fiber reinforced 
concrete (SFRC) beams over their corresponding non-fibrous reference 
beams, is due to the fibers pullout mechanisms, bridging the shear cracks 
caused by the applied shear force. Restraining the relative movement of 
these crack faces also enhances the aggregate interlock shear-resisting 
mechanisms. Finally, by offering resistance to crack propagation, fi-
bers ensure a higher volume of uncracked concrete subjected to 
compression that contributes to the beam’s shear capacity, [4–6]. These 
advantages of fiber addition in the concrete mixture can be seen in the 
post-cracking tensile capacity, impact resistance, and toughness, but in 

current applications, the fiber content has a minimal effect on the 
compressive strength [7–9]. 

In contrast, mechanical properties of concrete are influenced by the 
strain rate applied during loading, [1]. Concrete responds differently to 
varying strain rates depending on the type of loading, whether it’s 
compressive, tensile, or flexural, [6–12]. The dynamic increase factor 
(DIF) is commonly used to characterize the strain rate dependence of 
concrete materials, [4–6]. DIF of a certain material property is the ratio 
of its dynamic to quasi-static values. Studies conducted on the dynamic 
behavior of SFRC have demonstrated that higher loading strain rates 
lead to an increase in both the tensile strength and mode-I fracture en-
ergy, [13–22]. Consequently, both tensile and flexural behavior of 
concrete are rate dependent parameters. These properties affect signif-
icantly the flexural behavior of SFRC beams, [23]. Accordingly, the 
energy absorption capacity and the reaction force of SFRC beams are 
also strain rate dependent. In SFRC beams subjected to impact loading, 
part of the overall energy applied by the impactor is absorbed by the 
beam’s deformational capacity, while the rest is spent by the internal 
work produced by an applied stress field during the deformation of the 
corresponding body (due to the beam’s acceleration motion under 
impact loading), [24–26]. Therefore, in a simply supported beam sub-
jected to impact loading, the total force exerted by the impactor is equal 
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to the sum of the total inertia forces and reaction forces acting on the 
beam’s supports. The impact force that causes the beam’s failure is 
defined as the impact strength capacity of the SFRC beam, [27,28]. It 
should be noted that a time delay exists between the reaction force re-
sponses and the impact force, due to the time taken by the shear stress 
wave to travel from the impact loading point to the beam’s supports [23, 
29]. This implies that, during the time delay, the supports do not sense 
any loads, and the beam is effectively subjected to a one-point load at its 
midspan. However, since this time delay depends on the geometrical 
properties of elements and is relatively small compared to the total 
impact loading time [11,13,28], the test process is simulated assuming a 
three-point bending test by ignoring the time delay, aiming to avoid 
more complexity in the model. 

Experimental research on the flexural behavior of SFRC beams under 
impact load has faced some advances in the past, but due to the complex 
phenomena involving the simulation of this behavior, analytical models 
are still scarce. In an effort to predict the behavior of SFRC beams sub-
jected to drop-weight impact, an analytical model was established based 
on the energy conservation law, [24]. According to the kinetic energy of 
the impactor, the SFRC beam can develop the following types of 
response: (a) completely fails and separates into two segments and may 
have some residual kinetic energy after it fractures [11,13,23]; (b) ab-
sorbs the kinetic energy of impactor without failure, [14]. At the point of 

complete failure of SFRC beams under impact loading, the total reaction 
forces and inertia force are equivalent to the SFRC beams’ impact 
strength capacity. This indicates that the minimum initial energy 
required to fracture the SFRC beam is equivalent to the sum of the po-
tential energy generated by the beam’s deflection and the energy 
absorbed by the beam (calculated by the area under the SFRC beam’s 
reaction force-deflection diagram). As a result, a critical kinetic energy 
value of the impactor can be defined for every SFRC beam, which is 
dependent on the beam’s energy absorption capacity. When SFRC beams 
absorb the total energy of the impactor without failure, the impact 
force-deflection diagram is predictable, and accordingly, the maximum 
reaction force of the beam can be obtained. 

The present paper proposes a practical innovative model with a 
design framework that can be used to predict both the maximum mid-
span deflection and the peak impact force of simply supported SFRC 
beams subjected to impact loading. The existing inertia effect during the 
impact process, often ignored in the literature, is considered in this 
paper. Although the inertia force can be ignored in calculating the re-
action force, it must be predicted to obtain the impact force (applied by 
the impactor). In the present research, an analytical model is proposed 
to predict the maximum acceleration, inertia force and corresponding 
moment and shear force distribution along the beam. Then, a strain rate- 
dependent constitutive model to predict the impact force-deflection 

List of symbols and abbreviations 

Abbreviations 
DIF Dynamic increase factor 
FRC Fiber reinforced concrete 
ITZ Interfacial transition zone and mean 
MAD Mean absolute deviation 
MAPE Mean absolute percentage error 
SFRC Steel fiber reinforced concrete 

Symbols 
A Beam’s cross-section area [m2] 
exp Experimental results 
E Concrete modulus of elasticity [MPa] 
Ec,dy Dynamic modulus of elasticity [MPa] 
EP Initial potential energy [J] 
Ecap. Energy absorption capacity of the beam [J] 
Ek Initial kinetic energy [J] 
Emax Energy absorbed by the beam up to δmax[J] 
Ek,cr Critical kinetic energy [J] 
E′

k Kinetic energy of impactor at the moment of failure [J] 
fcm Static compressive strength [MPa] 
fcm,dy Dynamic compressive strength [MPa] 
fctm,dy Dynamic tensile strength [MPa] 
g Gravity acceleration [m/s2] 
GFf Static fracture energy [N/m] 
GF,dy Dynamic fracture energy [N/m] 
gFf Static fracture energy density [MPa] 
gFf ,dy Dynamic fracture energy density [MPa] 
H Height of impactor [m] 
I Inertia moment of beam’s cross-section [m4] 
k Linear flexural stiffness of the beam [N/m] 
l Beam’s length [m] 
lb Characteristic length [m] 
m Impactor mass [kg] 
m′ Mass of the beam [kg] 
M Beam’s bending moment [N.m] 
Mun Bending moment due to a unit load configuration [N.m] 

Ml Bending moment due to a real load configuration [N.m] 
Mpeak Peak moment [N.m] 
N Total number of specimens 
pre Model predictions 
Pb Total reaction forces in the supports [N] 
Pb,peak Peak reaction forces [N] 
Pi Total inertia force [N] 
Pt Impact force [N] 
pi,mid Inertia forces at the beam’s midspan [N/m] 
pi,end Inertia forces at ends of the beam [N/m] 
ΔP Impulse variation [kg.m/s] 
s Beam’s overhanging length [m] 
tp Time interval of the impact load [s] 
Vc Initial contact velocity [m/s] 
Vpeak Peak shear force [N] 
Vs Velocity of SFRC beam and impactor after collision [m/s] 
V′ Velocity of the impactor at the moment of failure [m/s] 
V(x) Shear force during beam’s length [N] 
Wf Fiber weight percentage [%] 
γ Shear strain 
δm Deflection due to bending [m] 
δmax Maximum midspan deflection [m] 
δpeak Peak deflection at beam’s midspan [m] 
δu Ultimate deflection at beam’s midspan [m] 
δv Deflection due to shear [m] 
δ̇d Dynamic midspan displacement rate [m/s] 
δ̈ Beam’s midspan acceleration [m/s2] 
δ̈max Maximum midspan acceleration [m/s2] 
εcr Strain at static tensile strength 
εcl Strain at peak stress 
ε̇c Compressive strain rate [1/s] 
ε̇t Tensile strain rate [1/s] 
ρ Density of SFRC [kg/m3] 
χ Beam’s curvature [1/m] 
ψ Total inertia force to impact force ratio 
ω Predicted to experimental peak impact force ratio  
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relation of the SFRC beam is derived. Accordingly, an energy-balanced 
approach is proposed to determine the maximum impact force. 
Finally, the predictive performance of the proposed model is appraised 
by using experimental results of 121 SFRC beams tested under drop- 
weight impact loads. 

2. Proposed analytical model 

Due to the existing acceleration caused by dynamic loading at the 
beam’s midspan, the behavior of the beams under quasi-static and dy-
namic loading are different. Therefore, the maximum acceleration at the 
beam’s midspan is an effective parameter to analyze its flexural 
behavior. In order to calculate the maximum acceleration, a statistical 
analysis is performed, and a simplified model is suggested, based on the 
available experimental results, [17]. Then, according to the mechanical 
characteristics of the concrete and geometry of the beam, a model is 
proposed to predict the maximum impact force at the midspan. The 
model is clearly explained through a flowchart (in Section 2.2). The 
predictive performance of a model for determining the beam’s total 
reaction forces-deflection diagram subjected to the impact loading de-
pends on the accuracy of the models used for simulating the compressive 
and tensile behavior of SFRCs under different strain rates. Hence, a focus 
is given in these aspects. Finally, considering the moment-curvature 
diagram obtained based from a layered-section approach, the SFRC 
beam geometry and using the unit-load method, the force-deflection 
diagram is obtained. 

2.1. Dynamic response of a SFRC beam under an impact load 

When a beam is subjected to impact loading, acceleration is gener-
ated, and this causes an inertia force to develop along the beam. The 
direction of the inertia force is opposite to the direction of the beam’s 
movement. Consequently, unlike the beam under static loading, the 
impact force, Pt, on a simply supported beam is equal to the summation 
of the reaction forces in the supports, Pb = R1 + R2, and the total inertia 
forces, Pi, Eq. (1). 

Pt = Pi + Pb (1) 

The total inertia force (total area under inertia force distribution), Pi 

Eq. (2)), is function of acceleration (δ̈), density of materials (ρ), and 
beam’s cross-section area (A). The results derived experiments con-
ducted on fiber-reinforced concrete (FRC) elements are supporting the 
assumption considered by Bentur et al. [17] which states that the ac-
celerations and displacements along the beam’s length are distributed 
linearly, see Eq. (2). Hence, the value of inertia forces at the midspan, 
pi,mid, and at the ends of the beam, pi,end, are calculated based on the 
geometry of the beam, Eqs. (3) and ((4). 

Pi = ρAδ̈max

[
l
3
+

8
3

s3

l2

]

(2)  

pi,mid =
2lPi

l2 − 4s2 (3)  

pi,end =
4sPi

l2 − 4s2 (4)  

where l and s are the beam’s length and overhanging length, respec-
tively, as shown in Fig. 1. Based on the assumed linear inertia force 
distribution along the beam [17] and the load applied by the impactor, 
shear force and moment distribution along the beam can be obtained 
from Eqs. (5a) and (5b). 

V(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
2ψPt

l2 − 4s2

)
(
x2 − 2sx

)
, 0 ≤ x < s

(
2ψPt

l2 − 4s2

)
(
x2 − 2sx

)
+

(
(1 − ψ)Pt

2

)

, s ≤ x ≤ s +
l
2

(5a)  

M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
2ψPt

3
(
l2 − 4s2)

]
(
x3 − 3sx2), 0 ≤ x < s

[
2ψPt

3
(
l2 − 4s2)

]
(
x3 − 3sx2)+

[
(1 − ψ)Pt

2

]

(x − s), s ≤ x ≤ s +
l
2

(5b)  

ψ =
Pi

Pt
=

Pi

Pi + Pb
(6) 

The maximum midspan acceleration of the beam is, in general, 
dependent on the height and mass of impactor, beam geometry, and 
materials properties, [9]. To predict accurately the maximum midspan 
acceleration, a model must include the abovementioned parameters. 
The linear flexural stiffness of a simply supported beam, 48EI/l3, was 
considered as representative, where E and I are the concrete modulus of 
elasticity and the inertia moment of the beam’s cross-section, respec-
tively. Due to the limited experimental data, shear stiffness of the beam 
is ignored in proposing a model of maximum midspan acceleration. 
Based on the available experimental results conducted by Banthia et al. 
[9], the present research performs a statistical analysis to investigate the 
effect of the following input variables: beam stiffness, height and mass of 
the impactor, on the maximum beam’s midspan acceleration. After 
further statistical processing to clean data from incorrect or incomplete 
records with missing information on important variables, the database 
was limited to 33 simply supported beams tested under impact loading. 
According to this database, the statistical P-value of the mass of the 
impactor is more than 0.05, which means that the mass of the impactor 
has a negligible effect on the maximum acceleration at the beam’s 
midspan. The closer to zero is the P-value, the more significant is the 
variable from the statistical point of view, i.e., the effect of dependent 
parameters on the independent parameter is stronger. Additionally, 
since the data does not have much variation in input variables, the beam 
flexural stiffness and the height of the impactor were considered as 
categorical input variables instead of continuous input variables. 
Considering the limited availability of studies in this particular field, the 
classifications were performed using statistical calculations in order to 
achieve a reasonable level of accuracy. To achieve almost the same 

Fig. 1. Shear, bending moment, and loading diagrams for a beam under an 
impact loading. 
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amount of data in each category, the beam stiffness was divided into 
three groups, while the height of the impactor was divided into four 
groups, Table 1. This division was done to ensure that each category 
contained a similar amount of data, thereby maintaining a balanced 
distribution. According to this organization of the input data, if data is 
placed in any of the categories, each group of data has a specific number 
that indicates their effectiveness. For example, for the height of the 
impactor, if the data is in the first category, the value of H1 is equal to 
one (effective), while the value of H2, H3, and H4 are zero (ineffective). 
In the performed statistical analysis, a linear regression was adopted, 
and the results obtained are presented in Table 2. 

Finally, based on the five input variables (three groups of the height 
of impactor, H2, H3, and H4, and two groups of the beam’s flexural 
stiffness, k2 and k3), a curve fitting of the maximum midspan accelera-
tion, δ̈max, recorded in the experimental tests with SFRC beams was 
derived (as shown in Fig. 2). Eq. (7) was obtained by employing the 
statistical approach of the least-squares method to determine the 
optimal match for a collection of data points through the reduction of 
the overall sum of discrepancies or residuals from the fitted curve. The 
correlation coefficient is 88%. The maximum midspan acceleration is 
utilized to calculate the maximum inertia force during the loading. It 
must be noted that the maximum acceleration in this relationship is 
calculated in terms of g = 9.81 m.s− 2, 

δ̈max[g] = 691.4 + 85.5H2 + 373.4H3 + 548.1H4 − 78.4k2 − 289.3k3 (7)  

where the values of H2, H3, H4, k2 and k3 are shown in Table 1. The 
present linear regression model, Table 2, includes a constant called the 
regression intercept and three estimating regression coefficients that 
show the effect of each dependent variable (H2, H3, H4, k2 and k3) on the 
independent variable (δ̈max). The standard error of the mean is an esti-
mate of a parameter that indicates how different the total mean is likely 
to be from a sample mean. The confidence interval of 95% on the mean 
for each variable is shown, which indicates that the estimated mean falls 
within the range of 95% of the results. The variables of H1 and k1 are 
considered the base parameters of the categorical data. It means that the 
constant value of 691.4 is for the condition where H1 and k1 are equal to 
one and the values of H2, H3, H4, k2 and k3 are null. According to the 
proposed model, the beam’s acceleration increases with the height of the 
impactor (positive coefficients) and decreases with the beam’s stiffness 
(negative coefficients). 

The effect of these two categorical parameters (H and k) on the 
maximum beam’s midspan acceleration, by using Eq. (7), can be 
reasonably justified by the deformational response of a beam under the 
applied impact loading process., Failure of SFRC elements can be abrupt 
due to a lack of efficiency of fiber reinforcement mechanisms in wide 
cracks, because the fiber reinforcement has a discrete nature and, 
generally, a relatively small content of fibers is used in real applications. 
After collision, during impact loading, the SFRC beam and impactor will 
have the same velocity, Vs (see Fig. 3c), which is dependent on the initial 
contact velocity, Vc (see Fig. 3b), [27]. It should be noted that the 
horizontal velocities and acceleration was ignored during impact pro-
cess. On the other hand, the initial contact velocity (or height of the 
impactor) can be considered as one of the parameters with higher in-
fluence on the beam’s acceleration. By raising the contact velocity, the 

velocity difference before and after collision increases. The strain rate 
effects on the beam’s behavior increases with the contact velocity due to 
the alterations of the material properties and leads to an increase in 
compressive and tensile strengths of the SFRC beam. Consequently, the 
energy absorption capacity of the beam would be higher and the velocity 
after collision does not necessarily increase. In addition, since the con-
crete brittleness increases with the beam’s stiffness, the energy absorp-
tion capacity of SFRC beam also decreases with the beam’s stiffness. 
Therefore, by increasing the beam’s stiffness, the velocity difference 
before and after collision decreases. Moreover, based on the conserva-
tion of energy law, the contact velocity of the impactor is independent 
from its mass, m. As a result, both the height of the impactor (H) and the 
stiffness of the SFRC beam are effective parameters for the maximum 
midspan acceleration [30]. 

The sensitivity analysis on the height of the impactor and on the 
stiffness of the beam is illustrated in Fig. 4 which is based on Eq. (7). For 
evaluating the effect of H and k on the maximum midspan acceleration 
separately, the null values of k2 and k3 (for H) and H2, H3, and H4 (for k) 
are considered, respectively. As shown in Fig. 4, δ̈max increases with H, 
and decreases with the beam’s stiffness. The obtained results support the 
existence of three categories for the effect of the height of the impactor 
and two categories for the effect of the beam’s flexural stiffness. 

2.2. Energy-balance based model 

The energy-balance model is a frequently employed method for 
predicting impact force [24,27]. During the impact event, the initial 
kinetic energy of the impactor, Ek, results in the deformation of the 
beam. As shown in Fig. 5, for a SFRC beam under the dropping down of 
an impactor the energy balance equation is defined as the equality of the 
initial kinetic energy of impactor before collision and total energy 
absorbed by SFRC beam and the kinetic energy of impactor after colli-
sion (in case of SFRC fracture). The impact model is developed assuming 
SFRC beams subjected to symmetric impact loading conditions without 
any rotational movement of the beams, as the relevant experimental 
studies in the literature did not monitor or report these rotational 
movements during the impact loading tests. However, it was evidenced 
that for the symmetric loading conditions, the contribution of possible 
rotational energy to overall dynamic behavior of element is relatively 
small compared to other effective factors [30,31]. Therefore, the mini-
mized effect of rotational energy is assumed during the impact process. 
Energy absorption capacity of the beam, Ecap., is obtained by integrating 
the beam’s force (Pb)-deflection response (f(δ)), see Eq. (8), where Pb is 
the total reaction. The evaluation of f(δ) will be treated in Section 2.3 by 
considering the flexural and shear stiffness of the beam. 

The initial potential energy, EP, of the impactor at the specified 
height, H, is converted into the initial kinetic energy, Ek, at its contact 
moment with the beam. This condition is represented by Eq. (9b), from 
which it can be obtained the initial contact velocity, Vc, Eq. (9b), where 
m and g are the mass of the impactor and the gravity acceleration and, 
respectively. 

Ecap. =

∫δu

0

f (δ)dδ (8)  

Ek = EP → 0.5mV2
c = mgH (9a)  

Vc =
̅̅̅̅̅̅̅̅̅
2gH

√
(9b) 

As mentioned previously, there are two scenarios regarding the SFRC 
beam behavior under impact loading. In one scenario, it is assumed that 
the SFRC beam does not fail abruptly during impact loading, i.e., it 
deforms up to its maximum deflection, δmax, when the impactor’s ve-
locity reaches zero, and, consequently, all initial kinetic energy is 
dissipated by deforming the beam. In the other scenario, the SFRC beam 

Table 1 
Categorical data for the adopted variables.  

Variables Categorical type 

k ≤ 2.5E+ 07 N.m− 1 k1 = 1; k2 = 0; k3 = 0 
2.5E+ 07 N.m− 1 < k ≤ 3.5E+ 07 N.m− 1 k1 = 0; k2 = 1; k3 = 0 
k > 3.5E+ 07 N.m− 1 k1 = 0; k2 = 0; k3 = 1 
H ≤ 0.2 m H1 = 1; H2 = 0; H3 = 0; H4 = 0 
0.2 m < H ≤ 0.4 m H1 = 0; H2 = 1; H3 = 0; H4 = 0 
0.4 m < H ≤ 0.6 m H1 = 0; H2 = 0; H3 = 1; H4 = 0 
H > 0.6 m H1 = 0; H2 = 0; H3 = 0; H4 = 1  
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is assumed to completely fracture, thereby after the collision between 
the impactor and beam, the impactor passes through the beam. The 
impactor’s kinetic energy after the collision is dependent on its initial 
kinetic energy before the collision and the energy absorption capacity of 
the beam, ignoring the effect of rotational energy during impact process. 
Consequently, to define these two scenarios, a critical kinetic energy, 
Ek,cr, is proposed, as being the maximum initial kinetic energy that the 
beam can absorb up to its failure. In other words, Ek,cr is the minimum 
amount of energy to completely fracture the SFRC beam, which is 
determined from the energy balance equation: 

Ek,cr + Ep, def . = Ecap. (10)  

Ek,cr = Ecap. − Ep, def . =

∫δu

0

f (δ)dδ − (m+m′)gδu (11a)  

m′ = ρbh(l+ 2s) (11b)  

where Ep, def . is the potential energy resulting from the deflection of the 
beam, Fig. 5. In Eq. (11b) δu and m′ are the ultimate deflection and the 
mass of the beam, respectively. This equation shows that the critical 
kinetic energy, Ek,cr, depends on the mass of the beam and impactor, as 
well as on the energy absorption capacity of the SFRC beam up to its 
ultimate deflection. Considering the effect of the strain rate on the SFRC 
properties (tensile and compressive behavior), the flexural behavior of 
the SFRC beam can be predicted for beams with different geometries. 
The strain rate effects introduced in the beam depend on the initial 
collision velocity induced by impactor height. Therefore, the change in 
the initial height of the impactor causes a change in the behavior of the 
SFRC, which in turn changes the beam’s bearing capacity. For each 
value of Ek, the energy balance equation can be written based on the 
overall deformation of the SFRC beam: 

Ek + Ep, def . = Emax → 0.5mV2
c + (m+m′)gδmax =

∫δmax

0

f (δ)dδ; Ek

≤ Ek,cr

(12)  

Ek + Ep, def . = Ecap. + E′
k → 0.5mV2

c + (m+m′)gδu

=

∫δu

0

f (δ)dδ + 0.5mV′2; Ek > Ek,cr (13)  

Table 2 
Summary output of regression statistics.  

Variables Coefficients Standard Error P-value Lower 95% Upper 95% 

Intercept 691.401 60.184 6.7E-12 567.912 814.809 

The beam’s stiffness, k (N.m− 1) k1 Base parameter of the categorical data 
k2 − 78.381 67.217 2.5E-03 − 216.301 59.538 
k3 − 289.331 62.825 8.8E-05 − 418.238 − 160.422 

The height of the impactor, H (m) H1 Base parameter of the categorical data 
H2 85.511 73.976 2.5E-02 − 66.276 237.299 
H3 373.356 64.913 4.1E-06 240.165 506.547 
H4 548.052 99.099 7.2E-06 344.901 751.203  

Fig. 2. Comparison of maximum beam’s midspan acceleration registered 
experimentally and estimated statistically. 

Fig. 3. Process of collision; (a) releasing the impactor; (b) contact moment; (c) after collision.  
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V′ =

⎛

⎜
⎝V2

c +

2(m + m′)gδu − 2
∫δu

0

f (δ)dδ

m

⎞

⎟
⎠

0.5

(14)  

where Emax is the energy absorbed by the beam up to δmax (maximum 
midspan deflection of the beam) in the first scenario, and E′

k is the kinetic 
energy produced by the impactor at the moment of failure (when the 
beam attains δu), and V′ is the velocity of the impactor at this moment, 
which can be determined from Eq. (14). 

In the first scenario, the initial kinetic energy is lower than the 
critical one, condition provided by Eq. (12). In this case, the SFRC beam 
condition can be in both stages of the pre-peak in case of Eq. (15a) or to 
the post-peak (softening stage) in case of Eq. (15b). If the initial kinetic 

energy is higher than the critical one, second scenario condition pro-
vided by Eq. (13), the SFRC beam absorbed completely its fracture en-
ergy, a situation represented by Eq. (15a). In the options corresponding 
to Eqs. (15b) and (15c), the maximum total reaction force is attained, 
which is determined from the total reaction vs deflection relationship of 
the SFRC beam at δ = δpeak. Since the impact force (Pt) is the sum of 
reaction forces (Pb) and inertia (Pi), and the inertia force is dependent on 
the contact velocity, the Pt is different in the options corresponding to 
Eqs. (15b) and (15c). Based on the experimental results [9,11,13,15,30] 
obtained on the flexural behavior of SFRC beams under impact loading, 
a deflection softening stage generally occurs after peak point (δpeak,

Pb,peak). Therefore, in this research, a softening behavior is assumed for 
post peak behavior of SFRC beams, Fig. 6. 

Fig. 4. Influence of k and H on the δ̈max according to Eq. (7).  

Fig. 5. Beam under impact load and entities used for the evaluation of the energy in impact loading.  
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Pb = f (δmax) → Pt = f (δmax) + Pi, Ek ≤ Ek,cr and δmax < δpeak

(15a)  

Pb = Pb,peak → Pt = Pb,peak + Pi, Ek ≤ Ek,cr and δpeak ≤ δmax

< δu

(15b)  

Pb = Pb,peak → Pt = Pb,peak + Pi, Ek > Ek,cr (15c) 

Furthermore, for achieving the time vs impact force diagram, the 
time interval of the impact load, tp, must be obtained. Based on exper-
imental results [11,13,23,28], Fig. 7 represents a typical time-force di-
agram. As shown in Fig. 7, the impact force-time diagram can be 
idealized by a positive and a negative force gradient up to tp. The con-
servation of momentum can be expressed for the SFRC beam and 
impactor collision [27]. Due to the fact that the momentum of a system 
remains constant unless an outside force is applied [32], the impulse 
variation during impact loading, ΔP, (area under the diagram of time vs 
total impact force) is equal to the difference between initial and stable 
momentum (when the impact force reaches a null value), mVc and mVs, 
respectively, see Eqs. (16) and (17) and Fig. 3. The area under the 
idealized impact force-time diagram can be calculated based on the Pt 

and tp, (
∫tp

0

f(t)dt =
Pt . tp

2 ). 

ΔP = mVc − mVs =

∫tp

0

f (t)dt (16)  

tp =
2m(Vc − Vs)

Pt
(17) 

As soon as the impact force achieves a null value, the SFRC beam and 
the impactor displace at the same velocity, Vs. In this condition, ac-
cording to the conservation of momentum, the momentum before 
collision is equal to the momentum of both the SFRC beam and the 
impactor with velocity of Vs. Therefore, the value of Vs can be obtained 
from the following equation, which is in line with research performed by 
Zhao et al. [27]: 

ΔP = 0 → (m+m′)Vs = mVc (18a)  

Vs =
mVc

(m + m′)
(18b) 

As it is challenging to ascertain the variations in displacement rate 
throughout the impact loading, a constant value is utilized to assess the 
loading rate effect on material characteristics. In this research, Vs is 

considered as the maximum displacement rate under impact loading, δ̇d. 

2.3. Energy absorption capacity of SFRC beams (total beam’s reaction 
forces-deflection diagram) 

In this section, the total beam’s reaction forces-deflection diagram is 
derived for a SFRC beam subjected to impact loading. For this purpose, 
firstly, the material properties of SFRC at compressive and tensile 
behavior under strain rate effects are defined. Then, the moment- 
curvature diagram for the cross-section of a beam is determined. 
Finally, using the unit-load method (see Appendix A), the total beam’s 
reaction forces-deflection diagram is obtained. 

2.3.1. Constitutive laws 
The stress-strain relation of SFRC materials have been investigated 

by numerous studies in the literature [33–39]. In the current study, the 
constitutive law proposed by Barros et al. [35] is utilized to simulate the 
uniaxial stress-strain relation of SFRC, since the effect of steel fiber 
content is considered as a direct parameter, Fig. 8a. The compressive 
stress-strain relation is expressed by Eqs (19): 

σc

fcm
=

(
εc
εcl

)

(1 − p − q) + q
(

εc
εcl

)
+ p

(
εc
εcl

)(1− q)/p (19a)  

q = 1 − p −
fcm

Ecεcl
(19b)  

εcl = 2.2 × 10− 3 + 0.0002Wf (19c)  

where fcm, εcl, Wf and Ec are the static compressive strength (MPa), the 
strain at peak stress, the fiber weight percentage in the mixture, and the 
initial tangent modulus of elasticity, respectively. The value of param-
eter pis between 0 and 1 and it is calculated by the Eq. (20): 

p = 1 − 0.919exp
(
− 0.39Wf

)
(20) 

It is assumed that the value of Ec is the same for both tensile and 
compressive regimes and can be estimated by Eq. (21). It is considered 
that the ultimate compressive strain has a value of 0.0035. An additional 
assumption made is that any concrete layer whose compressive strain is 
greater than 0.0035 is deemed to have a null compressive strength 
capacity. 

Ec = 2.15 × 104
[

fcm

10

]1/3

(21) 

The tensile behavior of the SFRC usually used in structural applica-
tions can be satisfactorily simulated by the three-linear stress-strain di-
agram represented in Fig. 8b, whose branches are reproduced by the Eqs 
(22) [35,40]: 

σt =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ecεt, εt ≤ εcr

Ec

(
α − 1
p1 − 1

)

(εt − εcr) + fctm, εcr < εt ≤ p1εcr

Ec

(
α

p1 − p2

)

(εt − p2εcr), p1εcr < εt ≤ p2εcr

(22a)  

fctm = 1.4
(

fcm − 8
10

)2/3

(fcm inMPa) (22b)  

α = 2s / l (22c)  

where εcr is the strain at static tensile strength, fctm, p1 and p2 are mul-
tiples of εcr. The softening behavior is modelled by the mode I fracture 
parameters, namely, fctm, the fracture energy, GFf , and α and p1 pa-
rameters defining the transition point between the two softening 

Fig. 6. Schematic representation of the total beam’s reaction forces-deflection 
diagram of a SFRC beam. 
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branches. Since strain concept is used for modeling the tensile softening 
stage, a characteristic length, lb = w /εt , to bridge crack width with 
strain entities is used (gFf = GFf /lb). According to Bazant and Oh [41], lb 

can be approximated as three times the maximum aggregate size. The 
GFf of certain types of SFRC can be determined from Eq. (23a), where GF 

is the mode-I fracture energy of plain concrete of the same strength class 
of the SFRC, determined from Eq. (23d) [33]. The values defining the 
bilinear softening diagram (p1 and p2) can be derived from inverse 
analysis [42]. 

GFf

GF
= 19.953 + 3.213Wf (23a)  

lb ≃ 3. Dmax (23b)  

p2 =
2GFf

αlbfctmεcr
−

p1 − α
α (23c)  

GF = 73f 0.18
cm GF [N /m] and fcm[MPa] (23d)  

2.3.2. Strain rate effect 
Since concrete is a material whose behavior depends on the strain 

rate that it is submitted to, constitutive laws must be also function of this 
variable. In this research, to determine the strain rate effect on the 
compressive behavior of SFRC, both modulus of elasticity and 
compressive strength are calculated according to fib-Model Code 2010 
recommendations, Eqs. (24) and (25), [33]. Due to fiber-bridging action, 
fiber reinforcement affects more predominantly the concrete tensile 
behavior rather than its compressive behavior. Hence, the model 

proposed by Malver and Ross [39] is adopted for considering the effect 
of strain rate on the tensile strength of SFRC, since it has demonstrated 
good predictive performance regarding the experimental results, Eq. 
(26a). 

fcm,dy

fcm
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
ε̇c

30 × 10− 6

)0.014

, ε̇c ≤ 30 s− 1

0.012
(

ε̇c

30 × 10− 6

)1/3

, ε̇c > 30 s− 1

(24)  

Ec,dy

Ec
=

(
ε̇c

30 × 10− 6

)0.026

(25)  

fctm,dy

fctm
==

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
ε̇t

1 × 10− 6

)μ

, ε̇t ≤ 1 s− 1

β
(

ε̇t

1 × 10− 6

)1/3

, ε̇t > 1 s− 1

(26a)  

μ = (1 + 0.6fcm)
− 1 (26b)  

log(β) = 6μ − 2 (26c)  

where Ec,dy and fcm,dy represent the modulus of elasticity and the 
compressive strength of SFRC under compressive strain rate (ε̇c), and 
fctm,dy is the tensile strength of SFRC under tensile strain rate (ε̇t). Due to 
the fact that the compressive strength of concrete is typically much 
greater than its tensile strength, the behavior of an SFRC beam (without 

Fig. 7. Idealized time-force diagram.  

Fig. 8. (a) Compressive and (b) Tensile stress-strain relation for SFRC.  
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longitudinal reinforcement) is frequently controlled by its tensile 
behavior. As a result, the tensile modulus of elasticity, tensile strength, 
and fracture energy of the SFRC are crucial parameters for determining 
the beam behavior under impact load. Using the modulus of elasticity 
obtained from compressive testing, a linear stress-strain relationship 
was utilized to model the pre-cracking tensile behavior. The fracture 
energy of SFRC is approximately estimated by Eq. (23a) and the effect of 
loading rate is simulated by Eq. (27). The model proposed by Zhang 
et al. [23] is utilized for defining the DIF of fracture energy to investigate 
the strain rate effect on the fracture energy of SFRC, as follows: 

DIFG =
GFf ,dy

GFf
= 1 +

(
7.6× 10− 6)

(
δ̇d

1mm/s

)1.54

(27)  

where GFf and GF,dy are the SFRC fracture energy under static (calculated 
by Eq. (23a)) and dynamic flexural loading conditions, respectively, 
while δ̇d is the dynamic midspan displacement rate. Based on the beam 
bending theory for the three-point bending test in linear phase before 
cracking, the relationship between the midspan deflection rate, δ̇d, and 
the strain rate, ε̇c = ε̇t, at the extreme surfaces of the cross section can be 
obtained from the following equation [28]: 

ε̇c = ε̇t =
6hδ̇d

l2 , δ̇d = Vs (28) 

According to the experimental results [14–17,23] and for sake of 
simplicity, under impact load, the post peak tensile behavior of SFRC can 
be assumed linear with respect to the strain rate effect on the fracture 
energy under these circumstances, Fig. 9b. The strain rate has an equal 
effect on both the fracture energy and fracture energy density, gFf 

(defined as the area under the stress-cracking strain diagram), assuming 
that lb under dynamic and static loading is the same. 

DIFG =
GFf ,dy

GFf
=

gFf ,dy

gFf
(29)  

where gFf = GFf /lb and gFf ,dy = GFf ,dy /lb are respectively the area under 
the static and dynamic post-cracking tensile stress-strain diagram, Fig. 9. 

To determine the tensile and compressive behavior of SFRC under 
impact load, it is important to consider that the fracture mechanism of 
this composite material varies with the loading rate, [43]. It is hy-
pothesized that cracks in the matrix parts of SFRC start in the weaker 
interfacial transition zone (ITZ) between the aggregate and the matrix. 
These cracks then propagate through the matrix until they connect with 
other ITZs, eventually resulting in a complete rupture of the specimen. 
In another word, during quasi-static loading, propagating cracks have 
adequate time to find the path of least resistance. However, under higher 
loading rates, cracks form rapidly and are compelled to propagate 

through the shortest available path, which may comprise elements with 
higher resistance, such as aggregates, leading to an increase in strength. 

On the other hand, based on the experimental study performed by 
Ulzurrun et al. [11], it was observed that by increasing the loading rate 
(height of impactor), the susceptibility of fiber rupture increases. This 
can be justified by the increase of the friction coefficient with the slip 
rate in the fiber pullout mechanism [44] and the higher stiffness 
response of the surrounding concrete matrix when submitted to higher 
pressure rate of due to fiber pullout, mainly by inclined fibers toward the 
crack plane, [45]. The fiber reinforcement performance depends on the 
strain rate, the geometry and the tensile strength of the fiber, [11]. In the 
range of quasi-static displacement rate, smooth fibers exhibit a clear 
dependency on displacement pullout rate, whereas hooked-end fibers 
can be considered largely insensitive to it, [43,44]. Under impact 
loading, hooked-end fibers are more prone to rupture when the strain 
rate is increased, [15]. In the case of concrete reinforced with smooth 
fibers, the mandatory fiber failure mechanism is pullout (debonding), 
regardless of the loading rate, [15]. 

By increasing the strain rate loading conditions of concrete rein-
forced with steel fibers (considering the different failure mechanisms of 
pull-out, debonding, and rupture), the load carrying capacity and pre- 
peak stiffness of this composite increase, but its ductility decreases, 
which is reflected in the bilinear stress-strain relationship proposed in 
Fig. 9b, [15]. The pre-peak phase is approximated by a linear branch 
whose stiffness is simulated by the dynamic modulus of elasticity, Ec,dy, 
estimated by Eq. (25). By considering εcr,dy = fct,dy /Ec,dy, assuming the 
characteristic length not dependent on the strain rate and determining 
the dynamic tensile strength, fct,dy, and fracture energy, GFf ,dy, from Eqs. 
(26a) and (27), respectively, the softening branch is directly charac-
terized. For this purpose, the coefficient ξ is proposed in the present 
study: 

ξ =
2Ec,dyGFf ,dy

lbf 2
ctm,dy

+ 1 (30)  

εcr and εcr,dy are the strain correspond to peak tensile strength in static 
and dynamic loading conditions, respectively, while ξ is a multiple of the 
εcr,dy, defining the ultimate tensile strain under dynamic loading con-
ditions. 

2.3.3. Moment-curvature diagram 
The beams force-deflection response can be predicted with the 

moment-curvature relationship (M − χ) determined from a layered- 
section approach that considers the constitutive laws of the materials 
used, strain compatibility (assuming linear strain distribution along the 
section for both quasi-static and dynamic behavior) and force equilib-
rium, Fig. 10a. In the current study, the sectional analysis software 

Fig. 9. Proposed method for defining the dynamic (a) compressive and (b) tensile behavior of the SFRC.  
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DOCROS [46] is used to determine the M − χ relationship of a 
cross-section, Fig. 10b. Both tensile and compressive stress-strain re-
lations of SFRC are modified for dynamic loading according to the 
suggestions presented in previous section and were used as a material 
properties model in DOCROS. 

2.3.4. Beam’s reaction forces-deflection diagram 
To derive the total reaction force-deflection diagram of a SFRC beam 

subjected to impact loading, the bending moment, M(x), and shear force, 
V(x), diagrams must be calculated by considering the effect of inertia 
force, Fig. 11. Considering the beam’s geometry and total inertia force to 
total applied force ratio, ψ , the shear force and bending moment dia-
grams are calculated from the Eqs. (5a) and (5b). The total inertia force, 
Pi, is calculated by Eq. (2) and ψ is a function of Pb, Eq. (6). 

The span-depth ratio of short beam specimens normally used for 
laboratory testing frequently lies in the range of 2 – 4 and, therefore, 
shear can have a non-negligible contribution for the total deflection of 
the beam. Consequently, the beam’s total deflection, δ, considers the 
addition of the parcel due to bending, δm, with the parcel due to shear, 
δv. The unit-load method (or conjugate-beam) is used to obtain the total 
deflection [47], according to Eq. (31), 

δ = δm + δv =

∫l

0

Mun.Ml

EI
dx +

∫l

0

Vun.Vl

GA.fsh
dx (31)  

where Mun and Ml are the bending moment diagrams due to a unit load 
configuration (corresponding to the deflection to be obtained) and the 
real load configuration the beam is subjected, respectively; EI is the 
flexural stiffness of the beam’s cross section; Vun and Vl are the shear 
force diagrams due to the unit load configuration and the real load 
configuration, respectively; GA.fsh is the shear stiffness of the beam’s 
cross section [47], where fsh is the shear shape factor that for rectangular 
cross sections is equal to 5/6. In a nonlinear analysis, EI and GA.fsh 
should decrease with the damage induced in the cross sections due to the 
applied bending moments and shear forces. δm can be calculated by 
using the conjugate-beam method and replacing Ml/EI in Eq. (31) by the 
corresponding curvature, χ. For each value of bending moment along the 
beam, Eq. (5a), the χ value is obtained from the M − χ relationship 
derived from the sectional analysis by software DOCROS [46]. The M − χ 
diagram of the beam can be divided in two parts, namely, pre-peak and 
post-peak, see Fig. 11. 

In pre-peak part (up to the peak moment, Mpeak), all beam length is in 
the pre-peak stage and the curvature distribution along the beam is 
obtained from the moment-curvature diagram shown in Fig. 11a. In 
another word, by applying the amount of χ as a distributed load along 
the conjugate-beam, the bending moment at each point of the conjugate- 
beam length would be equivalent to its deflection along the original- 

beam (see A. Calculating of beam’s total reaction force-deflection 
diagram). 

In post-peak part, for a major part of SFRC used in real applications, 
the M − χ response of a representative cross section presents a softening 
stage for curvatures higher than the curvature corresponding to the peak 
moment, χ > χpeak. It means that although the curvature continues to 
increase, the bending moment decreases. In this case, the conjugate- 
beam method must be modified for this condition to consider the soft-
ening behavior of SFRC beam in the post-peak stage. At this stage 
(χ > χpeak), it is assumed that the beam’s midspan (point B of the beam in 
Fig. 11) is only transfer to the post-peak stage and follows the softening 
portion of the M − χ relationship which is in the line of Elsaigh et al. [48] 
findings, Fig. 12. It means that a pseudo-plastic hinge occurs at midspan 
of the beam with a negligible length that can be considered as a point, 
(point B of the beam in Fig. 13). While the other sections of the beam 
enter in an unloading stage with slope of (EI)sec = Mpeak /χpeak (Fig. 12). 
Therefore, the force applied to the beam decreases while the crack width 
and deflection at the midspan increases. For calculating the midspan 
deflection, in addition to the distributed curvature due to distributed 
moment along the beam, the post-peak increment of curvature [(χs −

χpeak).2Δx] is applied to the beam’s midspan as a point load, Fig. 13. The 
point curvature at the midspan [(χs − χpeak).2Δx] explains the effect of 
increasing crack width at the beams midspan, see A. Calculating of 
beam’s total reaction force-deflection diagram. For simplifying the 
calculation process, the beam’s length is divided in small segments of 
length Δx, see Fig. 12. It should be noted that this method has been also 
used for predicting the load-deflection in four-point bending tests, [48]. 

The deflection due to the contribution of shear deformation, δv, can 
be calculated by using the conjugate-beam method and replacing Vl/

GAfsh in Eq. (31) with the corresponding shear strain, γ. For each value of 
shear force along the beam, Eq. (5a), the γ can be obtained from the 
linear part of the V − γ relationship which is in line with the research of 
Elsaigh et al. [48] and Bryan et al. [49], see Fig. 14a. At any stage 
throughout the loading process, shear strains on the V − γ response 
shown in Fig. 14a are calculated by dividing the shear force to the 
shearing stiffness which is assumed constant for SFRC beam. The shear 
force can be obtained from the shear diagram of the beam. Referring to 
the load configurations shown in Fig. 14b, the shear deflection in the 
beam is due to the shear forces in parts AB and BC. At the onset of the 
flexural cracks at midspan, these two parts unload elastically which 
result in less complexities compared to that followed for the 
moment-curvature analysis. 

In other words, by applying the amount of γ as a distributed load 
along the conjugate-beam, the shear force at each point of the conjugate- 
beam length would be equivalent to its deflection along the original- 
beam, see A. Calculating of beam’s total reaction force-deflection dia-
gram. By increasing the total force at the beam’s midspan up to the peak 

Fig. 10. (a) Layered approach with compatibility of strains and stress diagram; (b) Moment-curvature relationship for a SFRC section from a section analysis.  
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shear force, Vpeak, the midspan deflection, shear force and shear strain 
increase. As soon as the shear force reaches Vpeak (when the moment 
reaches to Mpeak), although the midspan deflection increases, the shear 
force and shear strain decrease and the effect of shear strain on the 
midspan deflection is reduced. Fig. 15 shows the free-body diagram for 
the conjugate-beam for calculating δv. 

Finally, the total deflection was calculated by using the superposition 
concept as the sum of both effects (δv and δm). Considering both effects of 
shear force and bending moment on the deflection at the beam’s mid-
span, the impact force-deflection relation is obtained for simply sup-
ported SFRC beam. The flowchart of the model is represented in Fig. 16. 

As shown in Fig. 16, at first, the input data considered is beam ge-
ometry, concrete density, fiber volume percentage, compressive 
strength of the matrix, impactor mass and height. According to the input 
data, the quasi-static behavior of SFRC is obtained. In the next step, 
according to the loading rate resulting from the contact velocity of the 
impactor and concrete, the dynamic behavior of SFRC is obtained. Next, 
the force-displacement diagram on the midspan of the beam can be 
drawn by considering the inertial force along the beam. The initial ki-
netic energy applied by the impactor is determined and compared with 
the critical kinetic energy of the beam. Then, according to the energy 
dissipation capacity of SFRC beam, the maximum force [fpeak (post-peak 

stage) or f(δmax) (pre-peak stage)] is calculated. Finally, according to the 
obtained maximum force, the impact and the beam reaction forces are 
determined. 

3. Assessment of the proposed model 

3.1. Experimental database 

A database consisting of 121 SFRC beams that were tested under 
drop-weight impact at midspan was gathered from previous studies in 
this field, [9–15,23,47] to validate the proposed model for predicting 
the peak response of SFRC beams under impact loading. All considered 
specimens in the present study were simply supported SFRC beams with 
rectangular cross-section tested under impact loading by the impactors 
with a spherical shape nose. In order to gain a better understanding of 
the data collected, the range and frequency percentage of some of the 
basic parameters in the models are given in Fig. 17 and Table 3. 

3.2. Sensitivity analysis 

A sensitivity analysis was performed for the reaction force-deflection 
diagram considering some parameters such as compressive strength, 

Fig. 11. Moment and curvature distributions and moment-curvature relationship for an applied load, Pt , at (a) pre-peak stage; (b) post-peak stage.  
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Fig. 12. Free-body diagram for the conjugate-beam at (a) pre-peak stage; (b) post-peak stage.  

Fig. 13. Free-body diagram of the conjugate-beam for calculating δm at (a) pre-peak stage; (b) post-peak stage.  
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fiber weight percentage, impactor velocity, and beam’s span length to 
height ratio. The relevant results are represented in Fig. 18. The 
experimental result of the reaction force-deflection behavior conducted 
by Zhang et al. [23] was used to analyze the sensitivity of the model to 
the important parameters, Table 4. The different values of compressive 
strength used for evaluation were 40, 80, 120, 160, and 200 MPa. An 
increase of 245% occurred in the reaction force capacity when this 
parameter increased from 40 to 200 MPa. Similarly, different values 
were selected for fiber weight percentage. The reaction force increases 
with the fiber weight percentage due to a positive effect on the post-peak 
behavior of SFRC. In addition, the effect of using different impactor 
velocities (contact velocity) on the reaction-force-deflection behavior of 
the SFRC beam was represented in Fig. 18. The sensitivity analysis due 
to the geometry of the SFRC beam was observed by studying the span 
length to height ratios of 2, 3, 4, 5, and 6, respectively. Increasing the 
beam’s span length to height ratio decreases the reaction force while 

causing an increase in the peak and ultimate deflections. 

3.3. Peak impact force validation 

To validate the peak impact force predicted by the proposed model, 
some experimental results in literature [11,15,23]) were considered and 
the total SFRC beam’s reaction forces-deflection responses under impact 
loading presented in the literature and obtained from the proposed 
model were compared as a design example. B. Example from literature 
(Zhang et al. [23]) for obtaining impact response of show the calculation 
of reaction-force deflection and impact-time diagrams of the SFRC beam 
in detail. The input data of three specimens tested under drop weight 
impact are shown in Table 4. 

From Eqs. (1) to (14), the energy balance relationships can be written 
for the present SFRC beam, and based on the obtained reaction force- 
deflection diagram, the peak impact forces and maximum reaction 

Fig. 14. (a) Shear force - shear strain relationship; (b) shear force and shear strain distributions for an applied load.  

Fig. 15. Free-body diagram for the conjugate-beam for calculating δv.  
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forces are calculated using Eq. (15a). Fig. 19 shows the correlations 
between calculated and experimental [11,15,23] total beam’s reaction 
forces-deflection responses and impact-time diagram during impact 
process. The model error in estimating the peak impact force for the 
beams #1, #2, and #3 is 0.7, 17.8, and 10.6%, respectively, which 

means that the analytical method can calculate the experimental result 
with satisfactory accuracy. 

This method was applied to predict all obtained results from the 
literature review. According to the calculated results and their com-
parison with experimental results, the approach used is deemed to be 

Fig. 16. Flowchart to determine the peak impact force using energy-balance model.  
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Fig. 17. Distribution of the experimental parameters; (a) impactor velocity; (b) impactor mass; (c) SFRC compressive strength; (d) SFRC modulus of elasticity; (e) 
beam width; (f) beam height; (g) beam length; (h) steel fiber volume; (i) shape of fiber. 

Table 3 
Range and most frequent of each experimental parameter.  

Parameter Min. Max. Most frequent Parameter Min. Max. Most frequent 
Impactor velocity [m.s− 1] 0.89 6.26 6.26 Impactor mass [kg] 15 120 23 
Compressive strength [MPa] 34 229 140 Modulus of elasticity [GPa] 29 49 35 
Initial kinetic energy [J] 35 1716 500 Beam span length [mm] 300 960 300 
Beam length [mm] 350 980 350 Beam height [mm] 50 150 100 
Beam width [mm] 100 150 100 SF volume [%] 0.00 6.00 1.00 
SF shape – – Smooth SF aspect ratio 50 101 65 

SF: Steel Fiber  
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sufficiently accurate. Fig. 20 illustrates a comparison between the 
experimental data and the predicted outcomes obtained from the pro-
posed model. As it can be realized from the figures, the developed model 
predicts the peak impact force with an error that is less than 20%. 
Moreover, the best-fit lines for the predicted load of impactors is Pb,pre =

Pb,exp with R-squared of 0.82. As can be seen, in the lower range of 
values, corresponding to the lower strain rate, most of the predicted 
peak impact forces are higher than the experimental ones. When the 
value of impact force is increased, the model has a greater tendency to 
underestimate the results (Fig. 21a). Two main reasons can be behind 
this observation. First, the proposed simplified model is derived based 
on the energy-balance method, while with the increase of the impact 

force, the process of energy consumption becomes more complicated. It 
means that the energy-balance based model included some simplified 
assumption such as the linear acceleration distribution along the beam 
during impact process that influences the inertia force and subsequently 
the impact force. Furthermore, in the higher contact velocity between 
impactor and beam, the effective length of the beam might be changed, 
consequently the value of Vs is different and the value of the displace-
ment rate and strain rate are changed. 

The proposed model estimates the minimum energy required to 
cause failure in an SFRC beam, based on its material properties and 
geometry, using Eq. (11b). In the present study, the mean absolute de-
viation (MAD) and mean absolute percentage error (MAPE) are used for 

Fig. 18. Sensitivity analysis of reaction force-deflection curve due to (a) compressive strength; (b) fiber weight percentage; (c) impactor velocity; (d) beam’s span 
length to height ratio. 

Table 4 
Input data of three specimens tested under drop weight impact by literature [11,15,23].  

ID type h [mm] b [mm] s [mm] l [mm] wf [%] Steel fiber shape ρ [kg.m− 3] fcm [MPa] M [kg] H [mm] δ̇ [mm.s− 1]             

#1 by [11] 150 150 50 500 1.67 Prismatic 2320 59 100 1750 5900 
#2 by [15] 100 100 50 300 3.25 Hooked 2388 41 35 120 1470 
#3 by [23] 150 150 100 500 3.98 Hybrid* 2408 114 121 360 2660  

* Straight and hooked steel fibers. 
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Fig. 19. Experimental and analytical (a) reaction forces-deflection responses; (b) impact force-time diagram.  

Fig. 20. Comparison of experimental and predicted values of maximum reaction force, Pb; (a) All results; (b) for Pb < 100 kN.  
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assessing the accuracy of the model. 

MAD =

(
1
N

)
∑N

1
|prei − expi| (32)  

MAPE =

(
1
N

)
∑N

1

(
prei − expi

expi

)

(33)  

where, N, exp, and pre are the total number of specimens, the experi-
mental results, and the model predictions, respectively. The value of 
MAPE and MAD for the proposed model are 10% and 6.70, respectively. 
By increasing the number of data, it is expected that the precision of the 
model is enhanced. In addition, the predicted to experimental peak 
impact force ratio, ω, is established. Subsequently a statistical analysis is 

conducted on ω. The mean value of ω is 1.03 and its coefficient of 
variation is 0.13. The mass and velocity of impactor, the mass of the 
SFRC beam and the section height of the SFRC beam have been known as 
the physically significant parameters in predicting the peak impact 
response of the SFRC beam. The variation of ω with the mentioned pa-
rameters is shown in Fig. 21, and a value less than 1.3 was obtained. It 
means that the overall distribution of ω can be independent of the 
impact parameters. Consequently, the suggested model is able to be used 
for a wide range of these parameters. 

4. Conclusion  

• In the present study, a new analytical approach was proposed to 
predict the impact response of simply supported steel fiber 

Fig. 21. Influence of the main parameters on ω (a) initial impactor velocity. (b) impactor mass; (c) beam mass; (d) beam height.  

M. Bakhshi et al.                                                                                                                                                                                                                                



International Journal of Impact Engineering 182 (2023) 104768

19

reinforced concrete (SFRC) beams using drop weight test. The pro-
posed design methodology considers the theoretical basis derived 
from the impulse-momentum theorem and the principle of conser-
vation of energy for calculating the maximum reaction force and the 
peak impact force. It also considers the moment-curvature response 
of a beam’s cross-section under dynamic loading. This method as-
sumes that the inertia force along the beam can be simulated by 
linear distribution. Using the conventional beam theory, a moment- 
curvature relationship is achieved in conjunction with a cross- 
section-layered approach. Then, the unit-load method is utilized to 
obtain the total beam’s reaction forces-deflection relationship of the 
beam.  

• The tensile and compressive behavior of concrete (the tensile 
strength and the mode-I fracture energy) are essential parameters in 
the flexural behavior of SFRC beams. Therefore, the effect of loading 
rate (strain rate) on the tensile and compressive behavior of SFRC 
was taken into account for calculating the moment-curvature 
response of a beam. The present study assumes that the tensile 
behavior of SFRC under high strain rate loading can be simulated by 
a bilinear diagram defining pre-cracking and post-cracking. Also, 
regarding the compressive behavior of SFRC, the strain rate affects 
the modulus of elasticity and the compressive strength.  

• According to the impulse-momentum theorem and the principle of 
conservation of energy, the proposed model is able to predict the 
least amount of initial kinetic energy of impactor to fracture an SFRC 
beam and the impact loading time. Also, the velocity of the impactor 
after passing the SFRC beam can be calculated, which may be a 
beneficial parameter in anti-impact design. Subsequently, the 
maximum midspan deflection of SFRC beams under impact loading 
is determined considering the strain rate effect.  

• Based on existing experimental results, the proposed model is 
applicable for various impactor mass and velocity combinations as 
well as for different geometries and masses of the beam. The accu-
racy of the proposed model in predicting the reaction forces of SFRC 
beams subjected to impact loading has been verified by comparing it 

to 121 experimental tests. Although the proposed model tends to 
slightly underestimate the reaction force of SFRC beams. The pro-
posed model can be used for predicting the flexural behavior of SFRC 
under impact loading and also for simulating and design of SFRC 
beams under impact loading. 

CRediT authorship contribution statement 

Mohammad Bakhshi: Conceptualization, Methodology, Software, 
Writing – original draft. Joaquim A.O. Barros: Writing – review & 
editing, Supervision. Mohammadali Rezazadeh: Conceptualization, 
Writing – review & editing. Isabel B. Valente: Validation, Writing – 
review & editing. Honeyeh Ramezansefat: Conceptualization, Writing 
– review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors acknowledge the support provided by FCT through the 
project “FemWebAI - Integrated approach for reliable and advanced 
analysis and design of sustainable construction systems in fiber rein-
forced concrete”, with reference PTDC/ECI-EST/6300/2020. The first 
author gratefully acknowledges the financial support of FCT for the Ph. 
D. Grant SFRH/BD/149246/2019.  

A. Calculating of beam’s total reaction force-deflection diagram 

According to the dynamic behavior of SFRC and beam geometry, the moment-curvature diagram is obtained. Then the force-deflection diagram 
can be derived from the moment-curvature curve of the SFRC beam as following steps: 

Step 1: Separating the moment-curvature curve to 2N discrete portions; assuming moment subdivision of ΔM 
To define the moment-curvature diagram of the beam’s midspan cross section with several points, the diagram is divided into two stages of pre- and 

post-peak, Fig. A1. The number of defined points before and after the peak is equal. From the moment-curvature diagram, a certain amount of 
curvature (χj) can be derived for each moment value (Mj). In Fig. A1, Mpre and Mpost show the bending moment at the pre-peak and post-peak stage, 
respectively, as well as χpre and χpost show the curvature at the pre-peak and post-peak stage, respectively. 
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Fig. A1. Schematic discrete portions of moment-curvature curve.  
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N =
Mpeak

ΔM
(A4) 

Step 2: Calculation of the total reaction forces of the simply supported SFRC beam with overhang on both sides 
According to the Eq. (5a), the value of the total impact force (Pt) can be written in terms of the value of the moment at the beam’s midspan [M(s +

l/2)]. The reaction forces (sum of two supports force) is calculated based on the total inertia force in each loading step (j) replacing the value of ψ by Pi
Pt

, 
see Eqs. (1) and (6). Finally, the total reaction forces (Pb,j) correspond to each value of Mj are obtained based on the Pi,j. 

Pb,j =

[
12
(
l2 − 4s2

)
Mj − Pi,j

(
l3 − 12s2l − 16s3

)

3l
(
l2 − 4s2

)

]

(A5) 
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The total inertia force (Pi = Pi,peak) calculated by Eq. (2) corresponds to Pb,peak. The Pi,j shows the value of inertia force at each loading step which is 
obtained proportional to the Pb,j. It means that the value of ψ is assumed constant during impact process. 

Pb,j

Pb,peak
=

Pi,j

Pi,peak
(A6)  

Pb,peak =

[
12
(
l2 − 4s2

)
Mpeak − Pi,peak

(
l3 − 12s2l − 16s3

)

3l
(
l2 − 4s2

)

]

(A7) 

The Eq. (A5) can be written based on the Pb,j. 

Pb,j =

[
12

(
l2 − 4s2

)
Mj. Pb,peak

(
Pb,peak

)
(3l)

(
l2 − 4s2

)
+
(
Pi,peak

)(
l3 − 12s2l − 16s3

)

]

(A8) 

The value of Pb,j represents the Y-axis of the reaction force-deflection diagram and Pb,peak corresponds to Mpeak. This means that for each point 
defined in the moment-curvature diagram, a corresponding point in the force-displacement diagram is obtained. 

Step 3: Separating the length of the beam to 2N′ discrete portions; assuming length subdivision of Δx. Figs. A2 and A3

Fig. A2. Schematic discrete portions of beam length.  

0 ≤ x ≤ s +
l
2
; 2N′ =

l + 2s
Δx

; xi = 0;Δx; s +
l
2

(A9) 

According to the division made for the length of the beam and the moment-curvature diagram, as well as the relationship of the bending moment 
distribution along the length of the beam, for each moment in the moment-curvature diagram (Mj at beam’s midspan), the value of the moment at all 
points along the length of the beam can be calculated. 

m
(
x,Mj

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
2Pi,j

3
(
l2 − 4s2)

]
(
x3 − 3sx2), 0 ≤ x < s

[
2Pi,j

3
(
l2 − 4s2)

]
(
x3 − 3sx2)+

(
Pb,j

2

)

(x − s), s ≤ x ≤ s +
l
2

(A10) 

The values of Δm′ and Δm show the difference between the peak moment (Mpeak) and the moment at the beam’s midspan (Mj) and the other points 
of the beam [m(x,Mj)] at the post-peak stage, respectively. These values are used for calculating the midspan deflection at the post-peak stage. 

Δm
(
x,Mj

)
= Mpeak − m

(
x,Mj

)
; Δm′ = Mpeak − Mpost (A11)  
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⎥
⎥
⎥
⎦
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(A12) 

Step 4: Calculation of the midspan deflection due to bending moment 

To calculate the δmj, the unit-load method (or conjugate-beam) is used (δm =

∫l

0

Mun.Ml

EI
dx). For this purpose, firstly, the M − χ diagram is divided 

into two stages of pre- and post-peak, Fig. A1. At the pre-peak stage (χj ≤ χpeak or j ≤ N), based on the distribution of the moment along the beam [see 
Eq. (5a)], the distribution of curvature can be obtained (see Step 1). By using the unit-load method (or conjugate-beam) and considering the curvature 
as the applied load (χj ≤ χpeak), the value of the moment at the midspan of the conjugate-beam is equal to the midspan deflection of the original-beam 
(δmj). This means that for each value of Mj in the pre-peak stage, δmj is calculated. This concept can be expressed as the following relationship. 

d2δmj

dx2 =
m
(
x,Mj

)

EI
; δmj =

∫ ∫ [
m
(
x,Mj

)

EI

]

dx2 (A13)  
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δmj =

∫s+l/2

0

linterp
[
Mpre, χpre,m

(
x,Mj

)]
.x.dx; j ≤ N (A14) 

Regards to post-peak stage (χj > χpeak or N < j ≤ 2N), it is assumed that the beam’s midspan will follow the softening portion of the M − χ rela-
tionship. While the other sections of the beam entered in an unloading stage with slope of (EI)sec = Mpeak /χpeak. As a result, although the amount of Mj 

(and Pb,j) decreases at the beam’s midspan, the amount of χj (and δmj) increases, see Section 2.3.4 Beam’s reaction forces-deflection diagram. The 
difference between the post-peak curvature (χj) and χpeak in the original-beam’s midspan is considered as a point load in the conjugate-beam’s 
midspan. In this case, the moment value in the conjugate-beam’s midspan (with uniformly distributed loading due to the uniformly distributed 
curvature in the original-beam and a point load in the beam’s midspan due to the (χj − χpeak).2Δx) would be equivalent to its deflection in the original- 
beam. The δmj for the post-peak stage can be calculated by follow equation. 

δmj =

⎡

⎣
∫s+l/2

0

linterp
(
Mpre, χpre,m

(
x,Mj

))
.x.dx

⎤

⎦+

[

linterp
(

Δm′, χpost,Δm
(

s+
l
2
,Mj

))]

×
l
2
; j > N (A13) 

Eq. (A11) includes two terms that the first and second terms show the beam’s midspan deflection due to the uniformly distributed curvature along 
entire beam and the point load in the beam’s midspan, respectively. 

Step 5: Calculation of the midspan deflection due to shear force 

To calculate the δvj, the unit-load method (or conjugate-beam) is used (δv =

∫l

0

Vun.Vl

GA.fsh
dx). At any stage throughout the loading process of the beam, 

shear strains on the V − γ linear response (see Fig. 14a) are calculated by dividing the shear force by the shearing rigidity (GAfsh). This means that in 
the pre-peak stage, the effect of shear forces on deflection increases up to Ppeak, then its effect decreases with increasing deflection in the post-peak 
stage. It is worth noting that the shear force at each point of the beam (Vj) can be obtained by Eq. (5a). The value of Vj at the beam’s midspan can be 
obtained by replacing (s+ l/2) by x in Eq. (5a). 

Vj =
Pb,j

2
(A14) 

By using the unit-load method (or conjugate-beam) and considering the shear strain as the applied load, the value of the shear at the midspan of the 
conjugate-beam is equal to the midspan deflection of the original-beam (δvj). 

δvj =
Vj

G.A.fsh

∫s+l/2

s

1. dx =
Pb,j . l

4Gbhfsh
(A15) 

Finally, since the effects of shear and moment on midspan deflection were calculated separately, the superposition concept was used to calculate 
the total deflection as the sum of both effects (δvj and δmj). 

δj = δmj + δvj (A16) 

The value of δj represents the X-axis of the reaction force-deflection diagram and δpeak corresponds to Ppeak. Considering both effect of shear force 
and moment on the deflection at the beam’s midspan, the reaction force-deflection responses is obtained for simply supported SFRC beam. The impact 
force-deflection response is determined based on the force equilibrium in the simply supported SFRC beam (Pt = Pi + Pb =

Pb
(1− ψ)). As a result, the 

technique adopted is thought to be adequately precise. Care must be taken when using this method to calculate the force-deflection response for beams 
with different loading configurations.

Fig. A3. Schematic reaction force-deflection (Pb − δ) diagrams for the simply supported SFRC beam.  

B. Example from literature (Zhang et al. [23]) for obtaining impact response of SFRC beam 

B.1 Input data for the analytical model Table B1 
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Table B1 
Input data for the analytical model.  

h [mm] b [mm] l [mm] s [mm] fsh fcm [MPa] wf [%] ρ [kg.m− 3] m [kg] H [mm] υ 

150 150 500 100 5/6 114 1.23 2408 120.6 360 0.2  

B.2 Loading and beam’s test setup Fig. B1

Fig. B1. (a) Beam’s test setup; (b) Loading condition.  

B.3 Calculating the maximum acceleration and total inertia force, Eqs. (2) – (7) Table B2  

Table B2 
Calculating the maximum acceleration and total inertia force.  

E [MPa] A [mm2] I [mm4] k [N.m− 1] k2 H2 H3 δ̈max [m.s− 2] Pi [kN] Pi,mid [kN] Pi,end [kN] 

48,388 22,500 4.2E+07 7.8E+08 1 1 0 5953 56.1 267.2 106.9  

B.4 Calculating the quasi-static compressive and tensile behavior of SFRC, Eqs. (19a) – (23a) Table B3 and Fig. B2  

Table B3 
Input data to adopt the quasi-static stress-strain relation of SFRC materials.  

Ec [MPa] p q εcl p2 p1 α εcr GF [N.m− 1] GFf [N.m− 1] Dmax [mm] lb [mm] gFf [kN.m − 2] fctm [MPa] 

48,388 0.43 − 0.39 2.45E-03 598 1.1 0.4 1.40E-04 171.2 4093.1 12 36 113.7 6.76  

Fig. B2. Quasi-static stress-strain relation for SFRC in (a) Compression; (b) Tension.  

B.5 Calculating the dynamic compressive and tensile behavior of SFRC, Eqs. (24) – (30) Table B4 and Fig. B3  
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Table B4 
Input data to adopt the dynamic stress-strain relation of SFRC materials.  

m′ [kg] Vc[m.s− 1] Vs[m.s− 1] δ̇d[mm.s− 1] ε̇c[s− 1] ε̇t[s− 1] Ec,dy [MPa] fcm,dy [MPa] fctm,dy [MPa] DIFG GFf ,dy [N.m− 1] gFf,dy [kN.m− 2] ξ 

37.9 2.7 2.0 2022.1 7.28 7.28 66,795 135.6 15.99 1.94 7928.4 220.2 116.1  

Fig. B3. Dynamic stress-strain relation for SFRC in (a) Compression; (b) Tension.  

B.6 Deriving the moment-curvature diagram from the sectional analysis by DOCROS[46] Fig. B4

Fig. B4. Moment-curvature curve; (a) DOCROS output; (b) Simplifying to discrete points (2N = 10).  

B.7 Beam’s reaction forces-deflection diagram using the unit-load method (or conjugate-beam), Eq. (31) Tables B5 and B6  

Table B5 
The values of moment and curvature at each point of curve (2N = 10, ΔM = 3983 N.m).  

Stage Pre-peak Post-peak 
1 ≤ j ≤ 2N 1 2 3 4 5 6 7 8 9 10 

χj [m
− 1] 1.43E-03 2.84E-03 4.57E-03 8.55E-03 4.80E-02 1.20E-01 1.64E-01 2.08E-01 2.90E-01 6.89E-01 

Mj [N.m] 3.39E+03 6.77E+03 1.02E+04 1.35E+04 1.52E+04 1.35E+04 1.02E+04 6.77E+03 3.39E+03 0.00E+00   
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Table B6 
The values of reaction forces Pb,j based on each value of Mj.  

Stage Pre-peak Post-peak 
1 ≤ j ≤ 2N 1 2 3 4 5 6 7 8 9 10 

Pi,j [kN] 12.47 24.95 37.42 49.89 56.10 (Pi,peak) 49.89 37.42 24.95 12.47 0.00 
Pb,j [kN] 25.14 50.29 75.43 100.58 113.10 (Pb,peak) 100.58 75.43 50.29 25.14 0.00  

The value of 0.33 was obtained for ψthat is constant during impact loading. Fig. B5 and Tables B7 and B8

Fig. B5. Separating the beam’s length to 2N′ = 14 discrete portions; assuming length subdivision of Δx = 50 mm.   

Table B7 
The value of m(x,Mj) at the pre-peak stage.  

0 ≤ x ≤ s +l/2 [mm] 1 ≤ j ≤ N 

1 2 3 4 5 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
50 − 2.47E+01 − 4.95E+01 − 7.42E+01 − 9.90E+01 − 1.11E+02 
100 − 7.92E+01 − 1.58E+02 − 2.38E+02 − 3.17E+02 − 3.56E+02 
150 4.95E+02 9.90E+02 1.48E+03 1.98E+03 2.23E+03 
200 1.10E+03 2.20E+03 3.30E+03 4.40E+03 4.94E+03 
250 1.76E+03 3.52E+03 5.29E+03 7.05E+03 7.93E+03 
300 2.51E+03 5.03E+03 7.54E+03 1.01E+04 1.13E+04 
350 (midspan) 3.39E+03 6.77E+03 1.02E+04 1.35E+04 1.52E+04   

Table B8 
The value of m(x,Mj) at the post-peak stage.  

0 ≤ x ≤ s +l/2 [mm] N+ 1 ≤ j ≤ 2N 

6 7 8 9 10 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
50 − 9.90E+01 − 7.42E+01 − 4.95E+01 − 2.47E+01 0.00E+00 
100 − 3.17E+02 − 2.38E+02 − 1.58E+02 − 7.92E+01 0.00E+00 
150 1.98E+03 1.48E+03 9.90E+02 4.95E+02 0.00E+00 
200 4.40E+03 3.30E+03 2.20E+03 1.10E+03 0.00E+00 
250 7.05E+03 5.29E+03 3.52E+03 1.76E+03 0.00E+00 
300 1.01E+04 7.54E+03 5.03E+03 2.51E+03 0.00E+00 
350 (midspan) 1.35E+04 1.02E+04 6.77E+03 3.39E+03 0.00E+00  

It should be noted that due to symmetry in geometry and loading, m(x,Mj) at half the beam’s length was calculated which can be used for the other 
half of the beam as well. According to M − χ diagram, the value of curvature along the beam [χ(x,Mj)] for each value of midspan moment Mj in the pre- 
peak stage is obtained. Table B9  

Table B9 
The value of χ(x,Mj) at the pre-peak stage.  

0 ≤ x ≤ s +l/2 [mm] 1 ≤ j ≤ N 

1 2 3 4 5 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
50 9.37E-06 1.87E-05 2.81E-05 3.75E-05 4.69E-05 
100 3.00E-05 6.00E-05 9.00E-05 1.20E-04 1.50E-04 
150 2.66E-04 5.33E-04 7.99E-04 1.07E-03 1.33E-03 
200 5.74E-04 1.15E-03 1.72E-03 2.29E-03 2.86E-03 
250 9.04E-04 1.81E-03 2.71E-03 3.66E-03 4.76E-03 
300 1.27E-03 2.53E-03 3.89E-03 5.49E-03 9.03E-03 
350 (midspan) 1.68E-03 3.35E-03 5.38E-03 1.01E-02 5.65E-02 
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Regards to post-peak stage, it is assumed that the beam’s midspan will follow the softening portion of the M − χ relationship. While the other 
sections of the beam entered in an unloading stage with slope of (EI)sec = Mpeak /χpeak. Table B10, Fig. B6 and B7 and Table B11  

Table B10 
The value of χ(x,Mj) at the post-peak stage.  

0 ≤ x ≤ s +l/2 [mm] N+ 1 ≤ j ≤ 2N 

6 7 8 9 10 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
50 3.67E-04 2.75E-04 1.84E-04 9.18E-05 0.00E+00 
100 1.17E-03 8.81E-04 5.87E-04 2.94E-04 0.00E+00 
150 7.34E-03 5.51E-03 3.67E-03 1.84E-03 0.00E+00 
200 1.63E-02 1.22E-02 8.15E-03 4.07E-03 0.00E+00 
250 2.61E-02 1.96E-02 1.31E-02 6.53E-03 0.00E+00 
300 3.73E-02 2.80E-02 1.86E-02 9.32E-03 0.00E+00 
350 (midspan) 1.20E-01 1.64E-01 2.08E-01 2.90E-01 6.89E-01  

Fig. B6. Curvature distribution along the beam’s length; (a) at pre-peak stage; and (b) at post-peak stage.  

Fig. B7. Post-peak stage of moment-curvature.   

M. Bakhshi et al.                                                                                                                                                                                                                                



International Journal of Impact Engineering 182 (2023) 104768

27

Table B11 
The values of deflection due to moment, δm,j, and due to shear, δv,j.  

Stage Pre-peak Post-peak 
1 ≤ j ≤ 2N 1 2 3 4 5 6 7 8 9 10 

δm,j [mm] 6.25E-02 1.25E-01 1.91E-01 2.79E-01 6.77E-01 (δm,peak) 9.29E-01 1.24E+00 1.66E+00 2.61E+00 8.02E+00 
δv,j [mm] 8.31E-03 1.66E-02 2.49E-02 3.33E-02 3.74E-02 (δv,peak) 3.33E-02 2.49E-02 1.66E-02 8.31E-03 0.00E+00 
δj [mm] 7.08E-02 1.41E-01 2.16E-01 3.13E-01 7.15E-01 (δpeak) 9.62E-01 1.27E+00 1.67E+00 2.62E+00 8.02E+00  

Since the analyzed specimen from literature (Zhang et al. [23]) was completely fractured under impact loading, the analytical reaction 
forces-midspan diagram can be compared to the experimental results. Fig. B8

Fig. B8. (a) Reaction forces- and impact force-midspan deflection diagram; (b) Comparison between the experimental (Zhang et al. [23]) and analytical results.  

B.8 Calculation of the impact response of SFRC beam (Pt) under drop-weight impact using energy-balance based model, Eqs. (8) – (18b) 
Table B12 and Fig. B9  

Table B12 
Proposed energy-balance based model.  

Ecap. [J] δu [mm] U [J] Ek,cr [J] Ek [J] Ek ≥ Ek,cr ? E′
k [J] V′ [m.s− 1] Pb = Pb,peak [kN] Pt = Pb + Pi [kN] ΔP [N.s] tp [ms] 

242.1 8.02 12.5 229.6 425.9 YES 196.3 1.8 113.1 169.2 66.3 0.78  

Fig. B9. Analytical and experimental (Zhang et al. [23]) impact forces vs time.  
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[31] Yazıcı Ş, Arel HŞ, Tabak V. The effects of impact loading on the mechanical 
properties of the SFRCs. Constr Build Mater 2013;41:68–72. 

[32] Yoo D-Y, Banthia N. Impact resistance of fiber-reinforced concrete–a review. Cem 
Concr Compos 2019;104:103389. 

[33] CEB-FIP. Model code 2010. Com Euro-international du bet 2010. 
[34] Sujivorakul C. Model of hooked steel fibers reinforced concrete under tension. High 

Perform Fiber Reinf Cem Compos 2012;6:19–26. Springer. 
[35] Barros JAO, Figueiras JA. Flexural behavior of SFRC: testing and modeling. J Mater 

Civ Eng 1999;11:331–9. 
[36] Ou YC, Tsai MS, Liu KY, Chang KC. Compressive behavior of steel-fiber-reinforced 

concrete with a high reinforcing index. J Mater Civ Eng 2012;24:207–15. 
[37] Wang ZL, Liu YS, Shen RF. Stress–strain relationship of steel fiber-reinforced 

concrete under dynamic compression. Constr Build Mater 2008;22:811–9. 
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compression. Matéria (Rio Janeiro) 2010;15:260–6. 

[39] Malvar LJ, Ross CA. Review of strain rate effects for concrete in tension. ACI Mater 
J 1998;95:735–9. 

[40] CEB-FIP. Design code 1990. Com Euro Int Du Bet 1990:51–9. 
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