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PERTURBATION SPLITTING FOR MORE
ACCURATE EIGENVALUES*

RUI RALHAT

Abstract. Let T be a symmetric tridiagonal matrix with entries and eigenvalues of different
magnitudes. For some T, small entrywise relative perturbations induce small errors in the eigenvalues,
independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix
can be written as T = XTTX with small ||[XTX — I||. Even if it is not possible to express in this
way the perturbations in every entry of 7', much can be gained by doing so for as many as possible
entries of larger magnitude. We propose a technique which consists of splitting multiplicative and
additive perturbations to produce new error bounds which, for some matrices, are much sharper
than the usual ones. Such bounds may be useful in the development of improved software for
the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision
bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and
additive), we show that when T defines well its eigenvalues, the numerical values of the pivots in the
usual decomposition T'— A = LDLT may be used to compute approximations with high relative
precision.
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1. Introduction. Let A and E be n-by-n symmetric matrices. Let A\; < -+ <
An and A1 < --- < A\, be the eigenvalues of A and A = A + E, respectively. Then
e — M| < HEH2 This is a classical result in the perturbation theory (see [44,
pp. 101-102]), which is usually referred to as Weyl’s theorem (see, for instance, [9,
p. 198]).

Weyl’s theorem can be used to get error bounds for the eigenvalues computed
by any backward stable algorithm since such an algorithm computes eigenvalues Ay
that are the exact eigenvalues of A = A + E, where ||E||2 = O(¢)||Al|2. (Here and
throughout the paper we will use € to denote the rounding error unit.) This is a
very satisfactory error bound for large eigenvalues, especially those of magnitude
close to ||A]|2, but eigenvalues much smaller than || 4|2 will have fewer correct digits
(eventually none in extreme cases).

The decade starting in 1990 was fertile in new results on bounds for relative errors
of eigenvalues and several authors have contributed to this [1], [4], [5], [16], [17], [22],
[32], [33], [34], [35], [42]. In [22], Ipsen presents a good survey of the work done until
1998. Not surprisingly, many of the published results are for the Hermitian positive
definite case. For an Hermitian indefinite matrix A and, more generally, for normal
matrices, the Hermitian positive-semidefinite factor H in the polar decomposition
A = HU, with U unitary, may be used to derive bounds for the eigenvalues of A (see
[22, Theorems 2.4 and 2.10] and the references therein).

The first relative perturbation bound for eigenvalues is due to Ostrowski. Let A=
X AX*, with X nonsingular, be a multiplicative perturbation of an Hermitian matrix
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76 RUI RALHA

A; for the eigenvalues Ay and Xk, of A and E, respectively, we have [21, Theorem
45.9]

)\k : )\min (XX*) S 3\\k S )\k : /\max (XX*)

This result is at the heart of high relative accuracy theory for the eigenvalues of
Hermitian matrices (and singular values). An immediate consequence, for real sym-
metric matrices, is the following (Theorem 2.1 in [16]): let A have eigenvalues A and
A = XTAX have eigenvalues A,. Then |:\\k — Akl < M| [|XTX — I||o. Following
Demmel [9, p. 208], we will refer to this result as the relative Weyl’s theorem.

Some types of matrices are known to define well their eigenvalues and/or singular
values. In 1990, Demmel and Kahan [4] showed that small relative perturbations in
the entries of any bidiagonal matrix cause small relative errors in the singular values,
independent of their magnitudes. They also proposed the zero-shifted QR algorithm
to compute such singular values with high relative accuracy. Another remarkable
development in this area of fast and highly accurate computation of the singular
values of bidiagonal matrices was the dqds algorithm [18], [38]. Furthermore, any
matrix with an acyclic graph (bidiagonals and many others) defines well its singular
values, and these may be computed to high accuracy using bisection [6].

In [11], Demmel et al. showed that it is possible to compute efficiently a highly
accurate SVD of a dense rectangular matrix A from a rank-revealing decomposition
(RRD) A = XDYT| ie., a decomposition where D is diagonal and X and Y are
well conditioned (but otherwise arbitrary); furthermore, also in [11], a variety of
matrix classes were described for which a special form of Gaussian elimination with
complete pivoting does provide the necessary accuracy of the computed factors X, D,
and Y. For some structured matrices (these include, among others, Cauchy matrices,
Vandermonde matrices, M-matrices, and totally nonnegative matrices), forward stable
algorithms have been proposed for the computation of highly accurate RRD. See [10],
[11], [12], [15], and [26], [27], [28], [29].

Congruence transformations play an important role in the perturbation theory
of the eigenvalues of an Hermitian positive-definite matrix A (see [22, Corollary 2.2]
and [34, Theorem 2.4]). For scaled diagonally dominant (sdd) matrices, diagonal
congruence transformations may be used to pull the grading out of the matrix [1], [5],
[35], [9]. If A is indefinite, the error bounds are the same as the error bounds for the
eigenvalues of the best scaled version of the positive-definite polar factor of A (see
[22, Corollary 2.6] and [42, Theorem 2.13]).

Symmetric tridiagonal matrices do not always define well their eigenvalues, not
even in the positive-definite case. In this paper, we focus our attention on symmetric
tridiagonal matrices with entries of different magnitudes. Our matrices, however, are
not necessarily sdd.

Suppose that we are given a symmetric matrix A which has entries of different
orders of magnitude and assume small relative perturbations of size O(¢) in its entries
(or, at least, small relative perturbations in the entries of larger size). With A= A+FE,
it is clear that | E||2 is proportional to the size of the largest entries in A, and the
classical error bound, provided by Weyl’s theorem, may not be very satisfactory for
small eigenvalues, if they arise. For this reason, we attack A with a congruence X TAX
to get A = A+ F with ||F||2 < ||E||2 and || XT X —I||5 of size O(e); the relative Weyl’s
theorem gives

(1.1) Ak = Ml < [IXTX — Il]2 - [Nl
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PERTURBATION SPLITTING FOR MORE ACCURATE EIGENVALUES 77

and we get

(12) = Ml < e = Ml = el S IXTX = Tl (Ml +(1F
which, in some cases, is a much sharper bound than

(1.3) Xk = Al < B, -

In the following sections, we exploit this idea in the context of symmetric tridi-
agonal matrices, although it can also be applied to dense symmetric matrices. In
section 2, we analyze the perturbation of the eigenvalues of affine transformations of
Golub—Kahan matrices. Section 3 contains the main perturbation result, Theorem 3.1,
which states that a symmetric tridiagonal matrix 7', with diagonals a;, defines well
the eigenvalues whose magnitude is not much smaller than max|a;|. In section 4 we
present a detailed numerical example to show that for matrices with entries of different
magnitudes, depending upon the location of the entries of larger size, the eigenvalues
may or may not be all well defined. In section 5 we describe a fast procedure that
will produce an estimate for the value of || F||2 in the bound (1.2). In sections 6 and
7 we present applications of our perturbation results; in section 6 we show that the
numerical values of the pivots in the decomposition T — A\l = LDLT, computed in
the usual way, may be used to determine the eigenvalues with high relative accuracy,
if the matrix T defines them well, and in section 7 we show that our results are useful
in the context of a mixed precision bisection algorithm.

2. Constant main diagonal. It is well known that, for n even, the eigenvalues
of the Golub-Kahan matrix

[0 b
b1 0 by
(2.1) T(0) = by 0
. bnfl
L bn_l O .
are
(22) —0’1§---§—0’g§0’g<---§0’1,
where o), (k= 1,..., %) are the singular values of
b1 by
(2.3) B= bs
bn—2
bnfl

(see, for instance, Lemma 5.5 in [9]). This relation may be used in both directions; that
is, one may compute singular values of B as the corresponding positive eigenvalues of
T(0) or one may compute eigenvalues of T(0) from the corresponding singular values
of B. This last option may also be used for the computation of the eigenvalues of
a skew-symmetric tridiagonal matrix with high relative accuracy (see [41]). We will
therefore be interested in matrices with the structure given in (2.1), with n even or
odd. We have the following result.
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78 RUI RALHA

PROPOSITION 2.1. Let T(0) be as given in (2.1), and let Doy (k =1,...,%
if n is even and k = 1,...,"T+1 if n is odd) and Doy (k= 1,...,% if n is even and
k=1,..., an if n is odd) be the principal minors of T'(0) of order odd and even,
respectively. We have

k
(2.4) Doj_1 =0, Dy, = (—1)". H_:1 b3,y
Thus, for n even, T(0) is singular if and only if baj—1 =0 for some j, 1 < j < k; if
n is odd, then D,, = 0; i.e., T(0) is always singular.

Proof. The proof follows easily from Dy = 0, Dy = —b?, and the relation D; =
— ?71 X Dj_Q fOI‘j > 3. O

When n is odd, we may keep relating 7'(0) to a bidiagonal matrix. For this, we
construct a matrix of even order by adding a row and a column of zeros to T'(0). The
resulting matrix has a double eigenvalue equal to zero. The corresponding bidiagonal
in (2.3) is now replaced by the singular matrix with diagonal entries b, ..., b,_2,
b, = 0 and superdiagonal entries ba, ..., b,_1.

Small relative perturbations of the off-diagonal pairs of 7(0) may be expressed in
terms of a congruence transformation X77(0)X with X diagonal very close to iden-
tity (see [1], [16], and [22, Example 5.1]). Therefore, T'(0) defines well its eigenvalues
(even when n is odd, because the zero eigenvalue is unchanged by perturbations in
the off-diagonal entries). From [9, Theorem 5.13] we may conclude the following.

COROLLARY 2.2. Let T(0) be as given in (2.1), and let T(0) be the tridiagonal
matriz which results from T(0) by replacing each by, with by, = by(1 + 0x) with |6)] <
e 1. Let \y < -+ <\, be the eigenvalues of T(0) and Xl <. < Xn the eigenvalues
of T(0). For every eigenvalue (even if zero) we can write

(2.5) e = Al < €(n,e) il
where
(2.6) E(ne)=(2n—1)e+0 ().

Now, we consider affine transformations of 7'(0). If T'(c) is a symmetric tridiagonal
matrix whose main diagonal entries are equal to a constant ¢, then T'(0) = T'(¢) — ¢l
has zeros in the main diagonal and Corollary 2.2 does apply. We have the following.

PROPOSITION 2.3. Let A(0) and A\k(c) be the eigenvalues of T(0) and T(c) =
T(0) + cI, respectively; let X (0) be the eigenvalues of T(0), as defined in Corollary
2.2, and A (c) the eigenvalues of T(c) = T(0) + cI. For A\g(c) # 0 we have

c

=50

(2.7) Ai(e) = A(e)] < &(n,e)

el

where £(n, €) is as given in (2.6). B B B
_ Proof. Since Ag(c) = Ax(0) + ¢ and Ax(c) = Ax(0) + ¢, we have Ag(c) — Ak(c) =
Ak(0) — Ax(0); using (2.5), we get

Ak(e) = A()] < &(n,e) A (0)],
which, for A;(c) # 0, can be written as
Ak (0)
Ak(€)

(2.8) ﬁﬂd—M@NS&m@‘ MM@»
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PERTURBATION SPLITTING FOR MORE ACCURATE EIGENVALUES 79

Replacing A\ (0) with A\g(c) — ¢ gives (2.7). O
Small relative perturbations in the off-diagonal entries of T'(c) cause relative errors
in the eigenvalues which depend upon the ratio

(2.9)

Therefore, we see that the relative errors will be small except for those eigenvalues
Ai(c) such that |[Ag(0)] > [Ar(c)], i.e.,

(2.10) [Ak(c)] < ||
Furthermore, (2.7) shows that the relative error of A (c) approaches zero when \g(c)

gets close to c.
Ezample 1. Consider the matrix

1 106
106 1 1
1 1 1
(2.11) T(1) = L1
1 1 108
106 1

The function eig of MATLAB (version 7.4) produces the following approximations for
the eigenvalues (note that with a previous version of MATLAB we got much worse
values for A3(1) and A4(1)):

/\~1(1) = —9.999990000005000e+005, Xg(l) = —9.999990000005000e+4005,
53(1) = 1.139421890172798e—012, 54(1) = 1.999999999999141e+000,
As(1) = 1.000001000000500e+006, A6(1) = 1.000001000000500e+006.

The classical error analysis gives us, with e =272 forallk=1,...,6,

Mk (1) = Ae(D)] < O IT (D)l = O(1071°).

Thus, for k # 3 and k # 4, Xk(l) is an accurate approximation of the corresponding
true eigenvalue (1), and A\4(1) has at least 9 or 10 correct decimal digits. Interest-

ingly, we may improve upon the computed values X3(1) and X4(1). Since we know the
exact value det(T'(1)) = 2 x 10*2 — 1, we use the relation

6

Na(1) = det(T(1))/ T[] A1)

k=1,k#3
to compute an approximation
p— 6 ~
(2.12) Xs(1) = f1 | det(T(1))/ ] (1)
k=1,k#3
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80 RUI RALHA

which has at least nine correct decimal significant digits. We have

6
Xa(1) =det(T(1))/ [ [T M)+ ¢x) | 1+ re)

k=1,k#3

where ¢ for k # 3 is the relative error in Xk(l) and the term ke, with & < 5.05,
accounts for the rounding errors in the four multiplications and one division. Since
the relative errors ¢y, in the four eigenvalues of larger size are all bounded by O (2752),
the size of the relative error in A3(1) is determined essentially by the size of ¢y,
which we know to be bounded by O (107'%). The computation of (2.12) in MATLAB
produces A3(1) = 9.999999999999297¢—013. Since the interval [A3(1), As(1)] of the
true eigenvalues is known to be centered in ¢ = 1, we compute A\y(1) = 2 — A\3(1) =
1.999999999999000e+000 with 16 correct digits. Again, we may use (2.12), replacing

A4 (1) with X4(1) to compute Ag(1) = 1.000000000000000e—012 with a relative error
bounded by O(e). Now, according to Proposition 2.3, if MATLAB could deliver the
exact eigenvalues of a matrix differing from T'(1) by relative perturbations of size O(¢)
in the off-diagonal entries,® A4(1) would be closer to A4(1), and for As(1) we would
have

1

) = 2V = [1 = 155 000 a(0)] = 107 (),

and such approximation, although not as good as A3(1) or even A3(1), is significantly
better than the computed As(1). It is also worth mentioning that in MATLAB, svd(T)
and [L,U]=lu(T); eig(U*L), where T is the matrix in our example, both produce
approximations A4(1) and A3(1) which do satisfy the error bound (2.7).2

We conclude this section by emphasizing that the matrix in our example is not
sdd and the theory of Barlow and Demmel does not apply here.

3. A perturbation theory result. In the previous section, we showed that
small relative changes in the off-diagonal entries of a symmetric tridiagonal matrix
with constant main diagonal ¢ do not cause too much perturbation in those eigenvalues
of magnitude not much smaller than the constant |¢|. To this end, we have used a
simple affine transformation of the given matrix to produce a Golub—Kahan matrix
whose relative perturbations in the off-diagonal pairs may be entirely expressed in
terms of a congruence transformation X77T(0)X, with X very close to identity. A
similar result may be obtained without the affine transform by directly expressing
the perturbations in the off-diagonal entries in terms of a congruence transformation.
This is a more general procedure since it applies to any symmetric tridiagonal matrix.
We have the following theorem.

I This is what the bisection method can actually deliver; see section 6.
2Z7latko Drmac has brought to our attention the accuracy of these approximations.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 3.1. Let
(3.1) T =

and

ar (1+m) b (1+01)
32) T |0+
. b1 (1+3,_1)
bn_1 (1+5n—1) QA (1+77n)

where O and g are tiny quantities such that |0x] < € and |ng| < e. Denoting by A
and A the ordered eigenvalues of T and T, respectively, the following relation holds,
foreachk=1,...,n:

(3.3) |)\k — Xk| < 2.02ne <max|aj| + |Xk|> .
J

Proof. We use a diagonal congruence to account for all the off-diag perturbations
and then just see what it does to the diagonal entries: lo and behold, it makes just a
few more changes from what was there initially. Concretely, if we write

(3.4) T=XTTX
with X diagonal, X(1,1) =1, X(2,2) = (1+4;)" ", and
(3.5) X(Gi) =(+60) " X@G-1j-1)""  j=3...n,

we get T(i,j) = T(i,j) for i # j, T(1,1) = a1 (1 + 1), and

(3.6) TG, ) =a;1+m)-X(G,4)%  j=2,....n.
We write

and since ¢1 = 0 and |J;| < ¢, from (3.5), assuming that 2 (n — 1) e < 0.01, we get
(3.8) 6| <2.02( —1)e, j=2,....n,

and || XTX — I||2 < max;|¢;| < 2.02ne. From (3.6)—(3.8) and taking into account
that |n;| < e, we may write, for each j = 1,...,n, assuming that (2n —1)e < 0.01,
T3, j) = a; (1+6;) with |6;] < 1.01(2j — 1) e. Therefore, we have T =T + F with
F a diagonal matrix such that

(3.9) |F|l, = max|a;|[0;] < 2.02ne - max |a;| .
J J
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Applying the relative Weyl’s theorem to matrices T and T in (3.4), we get |)\k - /\k|
Xe| - ||XTX — I||2, and we may finally write [\ — k| < [Ak — M| + [k — Akl
IFlly + [Ak] - [|XTX — I|]2, which, after some simplifications, gives (3.3). 0

If A # 0, the bound (3.3) may be written as

IAIA

‘)\k —Xk‘ maxlajl
(3.10) - <2.02ne |1+ =
P X
Part of the novelty of Theorem 3.1 for relative perturbation theory is that, as expressed
n (3.10), a general symmetric tridiagonal matrix 7' defines well those eigenvalues
whose magnitude is not much smaller than max |a;|.

For the case of a matrix with zeros in the main diagonal, we get from (3.3)

(3.11) Ak — Ak| < 2.02ne|\g|

and we note that this is essentially the bound given in (2.5), with |\x| replaced with
| Akl-

It must be observed that there are many distinct congruences X which are able to
produce T with unperturbed off-diagonal entries. We have used X with X (1,1) =1,
but it is possible to use a different X, setting X (k,k) = 1, for any £k = 1,...,n;
then, we choose the values of X(k — 1,k —1),...,X(1,1) to remove perturbations
from entries by_1, ..., by, by this order, and X(k+ 1,k +1),...,X(n,n) to remove
perturbations from entries bk, . bn,l In particular, by choosmg k = n/2 we may
reduce the bounds (3.3) and (3.10) by a factor of 2.

Finally, we remark that there is a diagonal X which, besides the off-diagonal
perturbations, also expresses, in multiplicative terms, the perturbation in any diagonal
entry ax: X (k, k) is chosen to remove the perturbation in ay, and the remaining entries
of X are determined as we have just described. So, in the bounds (3.3) and (3.10)
we may replace max |a;| with the second largest absolute value of the diagonal entries
of T

4. More general perturbations: An example. There are matrices for which
the bound (3.10) is sharp. This is the case with matrices of constant main diagonal
c since, as we have seen in section 2, the relative error in Xk(c) depends upon the
ratio ¢/Ak(c). In discussing the relative errors of small eigenvalues computed with the
bisection method, Wilkinson also observed (see [44, p. 307]) that the method (which
we know to be able to compute accurately the eigenvalues if the matrix defines them
well) could not compute accurately the small eigenvalues of such a matrix.

However, we know that there are other matrices for which the bound (3.10) is too
pessimistic. This is the case of the sdd matrices. We now show that there are other
matrices, not sdd, which define well their eigenvalues, even in cases where their size
is much smaller than that of some of the diagonal entries.

In the previous section, we expressed the perturbations in the off-diagonal entries
in terms of a diagonal congruence,

(4.1) T=X"TX.

Although X does not account for the perturbations in the diagonal entries, the key
point of our analysis is based upon the fact that

(4.2) T=T+F
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PERTURBATION SPLITTING FOR MORE ACCURATE EIGENVALUES 83

with || F||, independent of the size of the off-diagonal entries.

In a more general situation, 7" may have entries of different order of magnitude,
and we are interested in expressing the perturbations in the entries of larger size,
independently of their location, in terms of the transformation expressed in (4.1). We
point out that in the general case, F' in (4.2) does not need to be a diagonal matrix.
Again, we start with a numerical example to motivate the general procedure that will
be proposed in the next section.

Example 2. Consider the matrices

1 10° 0 105 10° 0
T, = | 10° 10° 10° |, T, = | 10° 10° 1
0 10° 1 0 1 1

The approximations for the eigenvalues of T7 and Ts, computed with MATLAB, are

A1(T1) = —9.999933333407408e+004,
A2(Ty) = 1.000000000014616e+000,
A3(T1) = 2.000003333340741e+005

and

A1(Tz) = —3.660259320914954e—001,
A2(Tz) = 1.366023432085007¢+000,
A3(T2) = 2.000000000025000e+005.

In both cases, we know that the absolute errors in these approximations have a bound
of size O (107) because the norm of the matrices is O (10°) and € is O (107*6). To
gain insight into the influence of perturbations, we used again the function eig of
MATLAB to compute the eigenvalues of the matrices

B L(14+m) 10°(1+61) 0
Ty = | 105(1+61) 10°(1+m2) 105(1+ 62)
0 10°(1+d2)  1(1+m3)
and
N 10°(1+np) 105(1+ &) 0
Ty=| 10°(1+68) 10°(1+n,) 1(1+5))
0 1(1+65)  1(1+4n5)

with n, 1}, Ok, and &}, randomly generated, all bounded by ¢ = 10~7 in absolute value.
We got the errors

Ty Ty)~  3.1e—008,
AQ(Tl) — )\2( 1) ~ —9.96—009,
Ty T~  89e—010

and

T5) — M (T}) ~  —T7.1e—003,
Xo(To) = Xo(To) = 5.1e—004,
Ty) — X3(Tz) = —1.4e—008,
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which are clearly due to the perturbations, not to the numerical errors in the function
eig. We see that the eigenvalues of 77 exhibit absolute errors much smaller than
| T1]|,e &~ 2 x 1072, which do correspond to relative errors smaller than ¢ = 1077,

but the error in A; (T3) is close to T3], e = 2 x 1072, Why does T} define well its
eigenvalues? First, we note that 7} is not sdd; therefore [1, Theorem 4] does not
apply. Furthermore, we computed the polar factor H of T'1 = T;, in MATLAB, from
[V,D] = eig(T1); H = V % abs(D) = V', and observed that the results of [22, section
2.8] are also unable to explain the good results obtained for 7. Now, take

(1+6) " (1 +m)?
X = (L)~
(1+02) " (L +m)'?

and verify that for fl = XTT\ X we get

~ (T4+nm)(14061) 21 +mn2) 10° 0
T = 10° 105 10°
0 105 (14 n3)(1+ d2)72(1 +12)

As in the example given in section 2, we have managed to produce a matrix fl with no
perturbations in the entries of larger size and, as a consequence, we have T =T + F
with ||F'||, much smaller than ||T7 — T ||2; furthermore, since X is close to the identity
matrix, the relative Weyl’s theorem guarantees that the eigenvalues of fl and Tl are
close. The situation is quite different with T5 because it is not possible to express the
perturbations in all the larger entries T»(1, 1), T2(2,2), T5(1,2), and T2(2,1) in terms
of a multiplicative perturbation X TT X , with some X close to the identity matrix.

5. A fast procedure to compute the error bound. In general, given a
symmetric tridiagonal 7" with entries of different magnitudes and small relative per-
turbations, as expressed in 7' given in (3.2), we want to find a diagonal matrix X,
with entries very close to the unity, such that the relations (4.1) and (4.2) hold, with
| F'||, as small as possible.

The example in the previous section shows that the rate of success of the procedure
depends upon the locations of the entries of larger magnitude relatively to each other.
Since our goal is to minimize, as much as possible, the size of the perturbed entries
in T, we start by producing a sequence of 2n — 1 numbers, sorting the entries of T’
by decreasing order of their absolute values and “clean” as many entries as possible
in this sequence. To simplify the presentation, we say that we clean the entry (i, 7)
when, in the course of the transformation (4.1), we get T(i,5) = T(4, j), getting rid
of the perturbation in f(i, j). In practice, we do not carry out such an operation,
we just need to assume that it has been done. (This is in fact a combinatorial task
and does not require any arithmetic at all.) By “operation of index k,” k=1,...,n,
we will mean the transformation that multiplies the kth row and the kth column of
T, i.e., the diagonal congruence associated with X (k, k) in (4.1). We illustrate the
cleaning procedure with the following example.

Ezxample 3. Suppose that our matrix 7', of order n = 5, is such that

(5.1) |a1| = [bs| = [b2| = [as| = |ba| = |az| = |b1] = |as| = |as].
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First, we remove the perturbation from a; (1 4 71), the entry of largest size, by setting
X(1,1)=0+ 771)71/2; because we want a; to remain unperturbed, we close the index
1; i.e., it is removed from the set of indices allowed for subsequent operations. Next, to
clean bs (1 + 03) , we have two options: an operation of index 3 or an operation of in-
dex 4. Note that after cleaning b3 (1 + J3) the indices 3 and 4 will be closed; therefore,
before cleaning b3 (1 + d3), we clean a4 (1 + 74), since |as| > |ag|, and close index 4.
Then, we clean b3 (1 4 d3) (1 + 174)_1/2 and close index 3. The next entry in (5.1) is bs,
and the set of indices still open is {2, 5}. So, we clean by (1 + 65) (14 d3) " (1 + 7]4)1/2.
At this point, it is still possible to clean by (1 + d4) (1 + 7]4)_1/2, which is next in (5.1),
and this is the last entry to be cleaned. To summarize, with X diagonal such that

X(1,1) = (1+m) ",

X(2,2) = (1+6)" 1(1+53)(1+n4) vz
X(3,3) = (1+38) " (L+n)"?,
X(4,4) = (L+n) "2,
X(5,5)=(1+6)"" (1+n4)1/2,

we get the following entries for T=XTTX:

ay=ay, Q4= a4, by=0by, bz=10b3, bs=by,

Gr=as(1+m2) (1+82) 2 (1+8)° 1 +m)" ",
a3 =as(1+n3) (1+35) " (1+m),
s = as (1+n5) (1+02) " (1 +n0)"?,

( )~

by =by (146) (L+m) Y2 (1 +8) " (1+65) (1+n0) 2.

Therefore, we may write T =T + F with

0 by
b1 51 agné 0
F= 0 asny 0 ,
0 0 0
0 asn;

where 07, 75, n5, and 75 are all of magnitude O(e) and the null entries do correspond
to those positions that have been cleaned. In our example, if |a1| > |as| (remember
that as is the entry of largest size that has not been possible to clean), then ||T'— T,
is much larger than ||F'||, and the bound (1.2) will be much sharper than the bound
(1.3) for the eigenvalues of size significantly smaller than ||T||,. The gain, in terms
of the sharpness of the bound that we get for the absolute errors in the eigenvalues,
depends roughly on how large the ratio |a1|/ |ag| is.

We should remark that the described procedure is not optimal for symmetric
tridiagonal matrices whose entries satisfy the condition max |a;| < min|b;|. In fact,
by closing indices 1,...,n, in this ordering, we may clean all off-diagonal elements, as
we did in Theorem 3.1; however, the procedure, as presented before, will clean first the
off-diagonal entries of larger size and will not allow, in general, all off-diagonal entries
to be cleaned. There are other cases for which our cleaning algorithm is not optimal
and where it may be possible to use combinatorial analysis to improve the technique.
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It should be noted that it is not possible to clean every entry of a submatrix

5 o]
bj  ajn
for any j = 1,...,n — 1. Therefore, the error bound in (1.2) will never be smaller
than M - O(g), where
M= max win {los| oyl gl

In particular, for the matrix 75 in the example given in section 4, we have M = 10°.

We finish this section by noting that our procedure can be readily adapted for
general symmetric matrices A to clean up to n entries. As for the tridiagonal case,
after ordering the nonzero entries of A, in decreasing absolute values, we clean as
many entries as possible in this sequence. To clean a pair of off-diagonal entries, say,
A(i,j) and A(j,1), there may be a choice for the index to use (if both i and j are
open). Because after cleaning A(4,7) and A(j,4), both indices will be closed, we may,
similarly to the procedure that we have used in the tridiagonal case, clean first A(i, 1)
or A(j,7), the one of larger absolute value. A better solution may consist in looking
at the size of the remaining entries in the ith and jth columns (or rows) and trying
to clean the one of bigger size. Let this be the pair A(i,p) and A(p, i) for some p # ¢
and p # j. If the index p is already close, then it is certainly a good decision to
clean entries A(i,p) and A(p,?) before cleaning entries A(%, j) and A(j,i). However,
if index p is still open, the cleaning of the entries A(i,p) and A(p, ) closes p, and this
may prevent the eventual cleaning of a bigger entry in the pth column (row). For this
reason, it appears to be sensible to clean the pair A(%,q) and A(g, %) such that

4G, @) = |A(g, )] = max {|A(r, 9)], [A(r, 5]},

where C denotes the set of indices which are already closed at this point. As it happens
with the tridiagonal case, we cannot claim that this always produces the best possible
X. Nevertheless, this procedure is very fast and may improve significantly the error
bounds for the eigenvalues.

6. Accurate computation of the pivots. Using the very same idea of com-
bining additive perturbations with multiplicative perturbations, we now show that the
numerical values of the pivots of a symmetric tridiagonal matrix, computed through
the formulae (6.1), may be used to determine eigenvalues with high relative accuracy.
This may be of interest in the practical development of a parallel implementation of
an algorithm which combines bisection with a faster zerofinder. Even in the context
of sequential processing, there may still be room for new codes to take advantage of
special features of matrices like those exploited in this paper. For instance, the state-
of-the-art dqds algorithm, described in [40] and now implemented in the DSTEMR
routine of the latest release of LAPACK, cannot guarantee high relative accuracy
for the eigenvalues of symmetric tridiagonal indefinite matrices that define well their
eigenvalues. In such cases, the only LAPACK routine that warrants full precision is
DSTEBZ which implements the bisection method.

For a matrix T as given in Theorem 3.1, bisection (and related methods) is based
upon the decomposition 7' — A\ = LDLT, where L is unit lower bidiagonal and D
= diag(q1, . - .,qn) is diagonal. The numbers g are computed through

(h()\) =a1 — A,
(6.1) N =ar — A —=b7_1/qe—1 (\), E=2,...,n.
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For each A, the inertia of T'— AI, which is given by the signs of the gx()), can be
used to locate eigenvalues. It is well known (see [25, p. 35] and [9, p. 230]) that the
bisection method is able to compute the eigenvalues of a symmetric matrix which is
very close to the exact one. In fact, the values gx(A\) computed with (6.1) in floating
point arithmetic have the same signs as the values gi(\) that would be obtained if
exact arithmetic was carried out with the matrix 7" such that3

(6.2) 'dk = ag,
gk = b (1 + 5k> , where |5k| <2.5e+0 (62) .

However, if one is to use not only the signs but also the numerical values of g (\),
in the context of a method with a faster convergence rate, the previous result does
not apply because it does not guarantee that the computed values of g () do corre-
spond to a matrix T with entries satisfying the relations (6.2). In the context of the
computation of singular values of bidiagonal matrices with relative accuracy, Demmel
and Kahan [4, p. 24] briefly mentioned the possible use of zerofinders, different from
simple bisection, to refine intervals; however, no details were given on the accuracy of
the computed values gx(A).

It is not true, in general, that the computed pivots are the exact ones for a matrix
with small relative changes in its entries. However, an analysis similar to that used
by Wilkinson for the leading principal minors (see [44, p. 303]) allows us to show that
the computed values gi () are the exact ones corresponding to off-diagonal entries
with small relative perturbations and diagonal entries with additive perturbations of
size (ar — A) O (€). Writing the perturbed diagonal entries in the form

ap =ar (1+0(€)) — AO (e),

we see that the computed gx(\) do correspond to a matrix with small relative per-
turbations in its entries plus a diagonal additive perturbation of size || O (€). More
precisely, we have the next theorem.

THEOREM 6.1. Let T be a tridiagonal matriz as in (3.1). For a given A, the
values of g1 (N), ..., qn () computed with the formulae (6.1) are the exact values
corresponding to a matriz having diagonal entries ar = ar (1 +nk) — Mg and off-
diagonal entries Ek_l =bg—1(1 + 0k—1), where

el < 2.02¢,
(6.3) { 165_1] < 3.03¢.

Proof. The proof is by induction. The result is obviously true for k = 1. Let us
assume that the computed

a A, gr—1(N)
are exact for a matrix having modified elements up to a,_; and Er,g and then show
that the computed ¢, () is the exact value for a matrix having those modified elements
and also the elements @, and b,_1. If we assume that g._; (A) # 0 and represent by

€1, €2, €3, and &4 the individual errors in the four operations involved in (6.1), we get

31n [6], it is shown that a similar result holds for symmetric matrices with acyclic graphs.
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for the computed value of g, (\)

b2 (1+e2)

g (A) = [(ar =A) (1 +&1) - (I+e3)| (1+e4)

gr—1 ()
b2 (1+6,-1)
(6.4) :ar(1+n7’)_A(1+nf’)_Wa

where . = (1+e1)(1+¢e4) —1and §—1 = (1 +e2) (1 +e3) (1 +e4) — 1, so that we
get

< 2.
(6.5) { |7]r| < 2.02¢,

16,_1] < 3.03c.

Now, we may get g.—1 (A\) = 0. If the arithmetic can handle the division by zero,
as IEEE arithmetic does, then it gives ¢ (\) = —oo, independently of the value of
b.—1 # 0, and we can write, in this case,

(6.6) M =6r_1=0,

which, of course, satisfy the bounds (6.3). Furthermore, with g. (\) = —oc in (6.1),
we get that

Gr+1 (A) = (ar41 = A) (1 +nr41)
does not depend upon the value of b, and we can write
(6.7) ] < e, 8 =0.

In case the arithmetic in use does not handle the division by zero, we may replace
Gr—1(A) = 0 with g.—1 (\) = a,_1€ since this corresponds to perturbing a,_; to
ar—1(1+¢€),in (6.1), for k =r — 1. O

So, for a given A, the computed g (\) do correspond to a matrix

(6.8) T=T+D,

where T differs from T by small relative perturbations in its (diagonal and off-
diagonal) entries and D is a diagonal matrix with entries of size bounded by 2.02¢ |A|.
Therefore, if T' defines well its eigenvalues so that for A\x, # 0 and some small constant
v, we may write, denoting by Ax the eigenvalues of T,

‘)\k —;\\k‘ < "/€|/\k|,

we get, denoting by Ax the eigenvalues of T and taking into account that ID] <
2.02¢ |\,

‘/\k - Xk‘ < ve || + 2.02¢ |\
or
Al

(6.9) ‘Ak-Xk‘g <74—202§GI>6|AM,
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which shows that the relative error in Xk is small whenever the ratio % is not large.
In practice, the bisection method, based upon the inertia of T — AI, is used until we
have a good approximation for the target eigenvalue; therefore, if one starts using
the numerical values g (A) only when a few significant digits are correct, we have
that % ~ 1 and, in this case, the bound in (6.9) guarantees small relative errors.
Note that from the point of view of convergence speed, it is premature to switch from
bisection to a method with a better asymptotic rate of convergence before we have an
approximation with a few correct digits anyway. So we claim that the numerical values
of the pivots may be used to compute the eigenvalues with high relative accuracy

whenever T defines them well.

7. Toward a mixed precision bisection algorithm. Another practical ap-
plication that we envisage for our results is a mixed precision bisection algorithm.
Processors are arriving on the market that are much faster for single precision float-
ing point operations than for double precision arithmetic. Examples include the Intel
Pentium IV and M processors, AMD’s Opteron architectures, and the IBM Cell Broad
Engine processor. When working in single precision, floating point operations can be
performed up to two times faster on the Pentium and up to 10 times faster on the Cell
than for double precision [31]. This technological change is likely to have a significant
impact in the design of many numerical algorithms. Some work has already been
carried out in the context of iterative refinement for linear systems (see [2], [30], [31]).

In an implementation of the bisection method, tailored for such processors, single
precision arithmetic may be used to deliver intervals that are refined using double
precision arithmetic. Because each interval produced in single precision is not guar-
anteed to contain the desired eigenvalue (unless some form of interval arithmetic is
implemented), it cannot be accepted blindly and may need to be corrected in double
precision.

Now, a critical issue is to decide when to switch from single to double precision.
If we switch too soon, we will be using expensive double precision arithmetic that
could have been carried out in the single format; on the other hand, if we go too far
in single precision, an incorrect interval will be produced and we pay a penalty for
correcting the interval. It is for this reason that a good stopping criterion for the
single precision phase is much more important than a stopping criterion in the usual
situation where double precision is used from the very beginning.

For a matrix 7" with diagonal elements a; of size much smaller than |||, we
may, taking the relation (3.3) into account, switch from single to double precision
immediately after locating an eigenvalue in the interval [y, z] such that

(7.1) z—y< O(es)maxm.i'ﬂ

where €5 denotes the single precision roundoff error unit. More generally, for a matrix
with entries of different magnitudes, we may use the procedure described in section
5 to compute the largest size M of the entries that cannot be cleaned and replace
max |a;| with M in (7.1). For sdd matrices, this does not provide a good stopping
criteria; therefore, a different test would be required in conjunction with the one
proposed here.

8. Conclusions and further work. We have combined well-known results of
the perturbation theory to derive new error bounds for the eigenvalues of symmetric
tridiagonal matrices. Our bounds are sharper than the usual bounds in the case of
certain matrices with entries and eigenvalues of varying size. As an application of this
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idea, we have shown that a symmetric tridiagonal matrix 7', with diagonal entries a;,
defines well the eigenvalues whose magnitude is not much smaller than max |a;|. This
can be understood as a generalization of the well-known fact that a Golub—Kahan
matrix defines well all its eigenvalues. As a practical application of our perturbation
technique, we have shown that the numerical values and not only the signs of the
pivots, computed in the usual way, may be used to find, with high relative accuracy,
those eigenvalues which are well defined. Also, we have briefly considered a mixed
precision bisection algorithm and have shown that our perturbation technique may
help in the critical issue of determining when to switch from single to double precision.
We are currently working in this line of research.
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