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Abstracts 

The adaptability of hexapods for various locomotion tasks, especially in rescue and exploration missions, drives 
their application. Unlike controlled environments, these robots need to navigate ever-changing terrains, where 
ground irregularities impact foothold positions and origin shifts in contact forces. This dynamic interaction leads to 
varying hexapod postures, affecting overall system stability. This study introduces a posture control approach that 
adjusts the hexapod's main body orientation and height based on terrain topology. The strategy estimates ground 
slope using limb positions, thereby calculating novel limb trajectories to modify the hexapod's angular position. 
Adjusting the hexapod's height, based on the calculated slope, further enhances main body stability. The proposed 
methodology is implemented and evaluated on the ATHENA hexapod (All-Terrain Hexapod for Environment 
Adaptability). Control feasibility is assessed through dynamic analysis of the hexapod's multibody model on irregular 
surfaces, using computational simulations in Gazebo software. Environmental complexity's impact on hexapod 
stability is tested on both a ramp and uneven terrain. Independent analyses for each scenario evaluate the controller's 
effect on roll and pitch angular velocities, as well as height variations. Results demonstrate the strategy's suitability 
for both environments, significantly enhancing posture stability. 

 

1. Introduction 

Over the few years, the problem of dynamic modelling and analysis of hexapod robots has been studied 
for estimating the foot-ground interactions and locomotion optimization. Jin et al. [1] defined the 
equations of motion of a heavy-weight hexapod using Kane’s dynamic formulation to study the 
influence of spring-damper models in the main body’s acceleration, for a regular surface. A similar 
strategy is proposed by Liu et al. [2] for the study of the feet contact forces and the design of active 
suspension models for the legs in heavy-weight hexapod. The dynamic modelling analysis has also 
been used for the study of underwater tasks. Considering the seabed as a soft terrain, Ding et al. [3]  
implemented the dynamic model of a limb and hydrodynamic forces to study the contact forces of the 
foot when the robot crawls on the sea. In a similar approach, Wang et al. [4] presented the hexapod 
robot dynamic model for the design of passive and active suspension models in the legs, considering 
the robot’s landing in the seabed. Burkus et al. [5] developed the multibody model of a hexapod robot 
using Simscape and MATLAB to optimize its locomotion in terms of energy consumption, mass and 
joints actuation. Deepa et al. and Xue et al. [6, 7] also studied the locomotion efficiency of a hexapod 
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robot using the dynamic simulation software CoppeliaSim. Using the Euler-Lagrangian dynamic 
formulation, Chang and Lin [8] presented the study of running and turning gaits for a hexapod with 
spring-loaded inverted pendulum limbs. The same dynamic formulation is implemented by Chávez and 
Alcántara [9], in order to evaluate the energy consumption and trajectory of a hexapod walking across 
a plane. In a different application of the hexapod’s dynamic model, Ouyang et al. [10] proposed a 
Reinforcement Learning algorithm to generate locomotion using the joints’ torque and velocity, and 
the torso’s orientation. By defining the Lagrange equations of motion for each limb, the work presented 
by Zhang et al. [11] discusses the torso stability during the hexapod navigation across a plane. The 
Lagrange formulation is also used to study the motion of a hexapod’s legs and estimate the slippage 
between the foot and the ground in the work presented by Liu et al. [12]. Similarly, He et al. [13] 
presented a simplified multibody model of a hexapod robot to study the normal and tangential contact 
forces of the feet, in order to predict the sinking and slippage of these bodies in a soft terrain. Due to 
formulation complexity, the majority of presented studies only consider the limbs dynamic model to 
study the robot’s behavior. Besides, hexapod locomotion is mainly studied in regular surfaces, despite 
the terrain stiffness. However, the dynamic formulation of a hexapod robot can provide an insight into 
the robot’s behavior in different terrain topologies and assess the robot’s design and control.   

In turn, the control strategies commonly used in hexapods aim at developing efficient and adaptive 
locomotion [14–16]. Several studies employ Artificial Intelligence for the efficient gait generation in 
regular surfaces [17–19]. The study of gait generation aims at developing path planning algorithms 
based on the hexapod’s behavior, for more complex environments [20]. In the design of exploration 
hexapod robots, Simultaneous Localization and Mapping techniques have been studied for the 
navigation across unknown environments and identification of human-hostile areas [6]. Regarding 
rescue and scouting missions, the implementation of image processing and Artificial Intelligence in 
hexapod robots is also proposed for human recognition [21]. The drawback of the presented works is 
considering that the hexapod walks across regular surfaces. For locomotion across irregular terrains, 
the usage of kinematics approaches for the generation of adaptive locomotion prevails. Zhao et al. [22] 
discussed the implementation of adaptive impedance models combined with a terrain classification 
method in a hexapod, to walk across different terrain topologies. The usage of impedance models is 
also proposed by Yin et al. [23] to adapt the foothold positions based on terrain cost map estimation, 
which reduces the torso’s oscillation during locomotion. Nonetheless, the terrain’s inclination 
influences the gait efficiency, and thus the torso’s orientation must be adjusted to ensure the system’s 
stability and improve its performance. 

From the discussion described above, it is clear that there is additional room for researching the 
control and implementation of hexapod robots for irregular terrains, in terms of stability and posture 
control. It can be mentioned that the study of the hexapod’s dynamic model in complex environments 
is worthy of investigation, since most studies implement the presented control in the physical prototype 
without estimating the robot’s behavior through computational simulations. Thus, it can be observed 
that there is a gap in the thematic literature in terms of studying the dynamic modelling of hexapod 
robots as well as their posture control to walk in irregular terrains. Hence, the main purpose of this 
work is twofold. The first objective is to model the full multibody of a hexapod robot and describe the 
equations of motion that are used to evaluate the robot’s locomotion in irregular terrains from the 
dynamic point of view. The second goal of this work is to propose a posture control for generating 
stable locomotion in irregular terrains, regarding the data provided by the defined dynamic model for 
the control’s feasibility assessment.  

By and large, there are three main methodologies to deal with the problem associated with ground 
discontinuities or irregularities, namely the virtual model control, the foothold-planning approach, and 
the Artificial Intelligence (AI) enhanced methodology. In the virtual model control (VMC), the 
animal’s reflexive behavior is mimicked to adjust the hexapod robot’s posture based on the foot-force 
distribution. By using virtual springs and dampers, the VMC aims at estimating the limbs’ joints torque 
to estimate the torso center of mass position. Nelson and Quinn [24] utilized the VMC for the position 
adjustment of a hexapod when an external load is applied to the torso. These authors showed that the 
implementation of the VMC ensures that the hexapod’s main body remained horizontal during the 
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system’s navigation across complex environments. In turn, Tikam et al. [25] combined the VMC with 
virtual suspension models to adapt the system’s response to the torso height, roll, and pitch deviations. 
The VMC was assessed for the correction of a commercially available hexapod’s standing posture in 
an irregular environment. The proposed control ensures that the torso remains horizontal and that all 
limbs are in contact with the ground during the gait phase transition. Liu et al.[26] presented a similar 
strategy to control the hexapod posture when climbing stairs. For the tested running scenario, the 
methodology obtained a maximum offset value of 11.0˚ and 3.2˚ for the torso’s pitch and roll angles. 
The system’s stability potentially increases with the implementation of the VMC with impedance 
controllers on the legs, to compensate for the height deviation that occurs during the foot collision with 
the ground [26]. In the study presented by Zhang et al. [27], the combined strategy obtained a reduction 
of 53.0% and 54.0% of the roll and pitch angle variation when walking across irregular surfaces. Kim 
et al. [28] also adopted the VMC approach and considered the hexapod Little Crabster as an inverted 
pendulum with spring and damper elements to control the rotation of the system’s center of pressure. 
Besides being limited to the force sensor accuracy, the VMC effectiveness depends on complex 
mathematical models for the motion estimation, which implies a higher computational accuracy. The 
design of the virtual elements depends on the studied terrain topology. Hence the damping and stiffness 
coefficients must be constantly adjusted, to avoid a large compensation of the foot-forces. 

In the foothold planning scientific approach, the control posture is obtained by developing gait 
planning methods to adapt the foothold position according to the ground discontinuities [29–33]. The 
presented method can be implemented by using the data provided by a gyroscope or an Inertial 
Measurement Unit (IMU) as input of a kinematic-based control for the limbs’ actuation [34–38]. 
Instead of calculating the torso orientation, the robot’s relative height can be obtained through the 
estimation of the plane formed by the supporting limbs [39, 40]. The advantage of the main body 
leveling method is not resorting to external sensors to estimate the hexapod state. Xia et al. [41] 
proposed a body levelling method based on the detection of contact forces between the limbs. In a 
different approach, Chen et al. [42] proposed a proportional control to adjust the hexapod posture based 
on the relation between the feet and the torso’s linear and angular velocities. More recently, Chen et al. 
[43] also used the robot’s kinematic model to obtain a mathematical relation between the joints and the 
torso angular velocities and designed a non-singular fast terminal sliding mode control to adjust the 
angular deviations. Along with studying the hexapod’s kinematic model for posture correction, the 
limbs’ kinematic configuration can be also adjusted to increase their mobility [44, 45]. Nonetheless, 
this solution has some limitations in terms of design complexity and energy autonomy.   

The methodology of AI-enhanced posture control has received little attention in the literature. 
Azayev and Zimmerman [46] proposed a Reinforcement Learning methodology with a Recurrent 
Neural Network for the terrain classification to adjust the torso and gait velocities. Due to the fact that 
convergence studies are conducted in computational simulations, the main drawback of the presented 
methodology is the transferring of the designed model into the physical prototype.  

Building upon the literature review, it is clear that planning the torso and feet trajectories provides 
a simpler control system and generates better responses to gait fluctuations. This work discusses the 
implementation of a kinematic-based approach for the control and online path-planning of a hexapod 
mobile robot for the execution of scouting tasks in rescue missions. In more detail, an adaptive posture 
controller that regulates the torso’s height and roll and pitch orientation through the real-time planning 
of the feet’ coordinates is developed. The proposed methodology is implemented in the hexapod 
ATHENA, which aims at generating adaptive and autonomous locomotion for unstructured 
environments. Since the limbs’ actuation of ATHENA is periodic, the developed approach for the robot 
posture control estimates the terrain slope through the system’s kinematic model. With the resultant 
relative coordinates, the angular deviation between the torso and the ground is determined, and the 
foothold positions are adjusted to maintain the torso’s posture stability. The proposed method also 
calculates the hexapod’s adequate height regarding the ground’s slope, to ensure that the main body 
does not collide with obstacles during the motion performed. The control methodology is adaptable to 
the environment by adjusting the system’s response for the height and posture correction. This work 
presents contributions for the adaptive locomotion of legged robots designed for tasks in complex 
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environments. The most relevant advantage of the proposed methodology is providing a generalized 
posture control approach which can be optimized in terms of torso’s height and orientation regarding 
the type of scenario the hexapod robot must navigate. The designed control only requires information 
of the existence of contact forces on the hexapod’s feet, the angular position of each joint, and the 
torso’s height. Subsequently, the low number of required sensors for the system’s control is another 
advantage in terms of energy consumption. The exclusion of exteroceptive sensors, such as vision 
sensors, for the ground estimation decreases the method’s volatility, since the data collected by this 
type of sensor depends on the environment conditions. The control method feasibility is assessed in the 
dynamic simulation Gazebo software, considering the multibody model of the hexapod. Furthermore, 
the hexapod is evaluated in two different scenarios, namely, a 10-degree ramp and an irregular terrain. 
The objective of the two computational simulations is to determine the control response in different 
conditions in terms of terrain topology and slope variation. The height and posture adjustment methods 
are evaluated. In each case, the height and posture adjustment methods are compared against the 
outcomes obtained with a non-adaptive controller. The results show the improvement of the torso 
stability in both scenarios.  

The structure of this paper is organized as follows. Section 2 provides a description of the 
ATHENA robot and discusses its implementation in Gazebo. Section 3 presents the equations of motion 
and establishes the contact strategy to evaluate the system’s dynamic behavior, as well as the used 
kinematic model to describe and control the robot’s locomotion. Section 4 discusses the proposed 
methodology for posture and height control. Section 5 presents the main outcomes from the 
computational simulations performed in the different scenarios. Finally, Section 6 contains the 
concluding remarks of this work.    

2. Hexapod model description 

2.1. System analysis 

In this section, a description of the hexapod robot ATHENA considered in this study is presented. The 
physical prototype of the ATHENA robot is depicted in Fig. 1. From the mechanical point of view, the 
robot is composed of 25 rigid bodies, which are interconnected by 24 kinematic joints, as can be 
observed in the corresponding multibody model illustrated in Fig. 2. In this model, body b is the torso, 
being the remaining bodies axisymmetrically distributed around it. Each limb includes three revolute 
joints that are actuated by servo motors with a stall torque of 1.89 N.m. The revolute joints aim at 
connecting the torso with the coxa, femur, and tibia segments – ci, fi, and ti – which are respectively 
named Thorax-Coxa (TC), Coxa-Trochanterofemur (CTr), and Femur-Tibia (FTi). Besides that, the 
parameter pi represents the hexapod feet, which are linked with ti through prismatic joints. The passive 
connection between the two bodies aims at controlling the feet’s relative displacement caused by their 
interaction with the ground, using compression springs with a spring rate of 9.28×103 N.m. The 
displacement associated with the compression spring does not provide significant position deviations 
in the foot trajectory. These two components are combined and the relative motion between them is 
considered to be null. The inertia properties of the bodies of the ATHENA robot are listed in Table 1. 
The presented principal and secondary moments of inertia are estimated using the local reference frame 
of each body, which is attached to the respective center of mass.  
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Figure 1. General view of the physical model of the ATHENA robot. 

 

Figure 2. Schematic representation of the multibody model of the ATHENA robot. 
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Table 1. Inertial properties of ATHENA robot.  
 

Body Mass [kg] 
Moment of Inertia [kg∙mm2] 

Iξξ Iηη Iζζ Iξη Iηζ Iζξ 
b 0.7000 6293.41 4853.90 2483.73 0.77 521.86 -3.51 

ci, 1,...,6i    0.0810 49.00 126.48 129.27 0.55 0.04 5.57 

fi, 1,...,6i   0.1360 31.95 154.38 159.84 -0.07 -0.04 34.54 

ti + pi, 1,...,6i   0.0219 9.00 26.58 34.49 2.77 0.01 -0.03 

 
2.2. Model design for the computational analysis 

In order to have an efficient and accurate contact formulation between the feet and the ground, a 
simplified multibody model of the robot was developed and implemented in the Gazebo software. 
Bearing in mind that the goal of this work is to examine the presented posture control in inclined 
surfaces, the system geometry does not have a significant influence on the results, as long as the inertial 
properties are equivalent to the physical prototype. Therefore, the hexapod was modeled in Gazebo 
using simple geometries, such as spheres and planes (see Fig. 3). Most of the components were 
converted into prisms. On the contrary, the feet were modeled as spheres and therefore, during the 
collision with the ground, there is only one contact point, which is also beneficial for the computational 
point of view. All revolute joints were set to a maximum torque of 1.89 N∙m, to simulate the selected 
servo motors and the connection between the tibia and the foot is assumed fixed. Table 2 lists the model 
dimensions and the respective inertial properties. The presented principal and secondary moments of 
inertia are estimated using the local reference frame of each body, which is attached to the respective 
center of mass. 

 
Figure 3. Computational multibody model of the ATHENA robot used in the dynamic analysis. 

 

Table 2. Geometrical and inertial properties of the simplified model. 
 

Body 
Dimensions [mm] Mass 

[kg] 
Moment of Inertia [kg∙mm2] 

(length × width × height) Iξξ Iηη Iζζ Iξη Iηζ Iζξ 
b 200×120×56 0.7000 2.52 1.02 3.17 0.00 0.00 0.00 

ci, 1,...,6i    64×40×40 0.0810 3.84×10-2 2.16×10-2 3.84×10-2 0.00 0.00 0.00 

fi, 1,...,6i   80×40×40 0.1360 9.07×10-2 3.63×10-2 9.07×10-2 0.00 0.00 0.00 

ti, 1,...,6i   84×40×40 0.0134 9.38×10-3 3.47×10-3 9.38×10-3 0.00 0.00 0.00 

pi, 1,...,6i   20 (radius of the sphere) 0.0089 1.43×10-3 1.43×10-3 1.43×10-3 0.00 0.00 0.00 
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3. Problem formulation 

3.1. Equations of motion 

This section discusses the defined equations of motion for the hexapod robot, that are used to assess 
the control behavior. The computational simulations performed in Gazebo resort to the external library 
Open Dynamics Engine (ODE) to estimate the motion and forces applied to a system. The general 
equations of motion involving contact-impact events are expressed as [47],  

 n n t t− − =Mq N f N f 0  (1) 

in which 
(150,150)

M is the system’s global mass matrix, (150)
q denotes the vector that contains the bodies’ 

linear and angular accelerations, the matrices
150

n t,  nN N contain respectively the normal and 

tangent vectors with respect to the contact surfaces, and n t,  nf f are respectively the n-dimensional 

vector of the normal and tangential contact forces. It must be mentioned that the dimension of 
nf and 

tf depends on the number of contacting points. The equations of motion are calculated at the impulse 

level. In each time step, contact-impact events are detected and the equations of motion of the model 
are evaluated with respect to the bodies’ velocities. The numeric simulation’s time discretization is 
based on the Moreau’s time-stepping methodology [48].   

In turn, the contact resolution closely follows the approach proposed by Stewart-Trinkle [49] and 
Anitescu-Potra [50], which is formulated as a Linear Complementarity Problem (LCP). This type of 
formulation can be expressed as,  

 = +y Ax b  (2) 

where 
( , )n n

A and ( )n
b are constants  with n-dimension, x and y denote the system’s unknowns [47]. In 

order to obtain the quantities of x and y, the following complementary conditions must be verified [47] 

 
T 0=    y x y 0 x 0  (3) 

This methodology is implemented for the calculation of the normal contact forces.  In this strategy, 
the normal contact forces are modeled using Newton’s impact law, which considers the existence of 
compression and restitution phases during the collision between two bodies. When the compression 
phase takes place, there is impulse conservation. The model’s equations of motion are expressed at 
level velocity and impulse level can be formulated as [49, 50], 

 ( )0 0 0

n n t t
ˆ ˆ( )−− − + =M q q N f N f 0  (4) 

where the superscript 0 denotes the end of the compression phase, and
−

q is the pre-collision velocity. 

The variables nf̂ and tf̂ denote the impulses of the normal and tangential contact forces respectively. 

During the restitution phase, the bodies move in opposite directions, and the equations of motion at the 
velocity and impulse level are expressed as, 

 ( )0 0 0

n n t t r
ˆ ˆ ˆ( )+ − − + =M q q N f N f f  (5) 
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in which 
+

q is the post-collision velocity.  

The vector rf̂ , which represents the impulsive force, can be defined as, 

 
0

r n n
ˆ ˆ=f N f  (6) 

where [0,1]   is the coefficient of restitution. In this study,   equals 0.5. In order to solve the 

Newton’s impact law as an LCP, the following complementary conditions are defined [49, 50] 

 n n
ˆ=  N q 0 f 0  (7) 

 n n
ˆ  =N q 0 f 0  (8) 

These conditions evaluate both the normal relative distance between bodies and the consequent 
existence of a normal contact force. If 

nN q is null, there is a collision, and a positive normal contact 

force exists. On the contrary, if the 
nN q  is positive, then the bodies are separated, and the normal 

contact force is null.  

A similar strategy is implemented for the tangential contact analysis. In this study, the tangential 
contact forces are modeled using Coulomb’s friction law. In order to increase the model accuracy, the 
isotropic friction model is approximated to a polyhedral [51]. The complementary conditions that are 
set to solve the friction forces as an LCP are expressed as 

 n t
ˆ+  ⊥ λ N q 0 f 0  (9) 

 n t
ˆ ˆ −  ⊥ f f 0 λ 0  (10) 

where λ denotes the Lagrange multipliers, and μ is the friction coefficient, which is equal to 0.9. The 
presented inequalities state that if λ is greater than zero, there is sliding between the two surfaces. 
Otherwise, there is stick slippage between the surfaces [47].  

 

3.2. Kinematic model 

This section presents the kinematic modelling process to control the robot. The implementation of the 
proposed method requires obtaining the relation between the joints’ angular positions and the robot’s 
feet coordinates. Considering the models presented in [37, 52], the torso’s center of mass is defined as 

the reference for all calculations. The kinematic model of one limb is depicted in Fig. 4. The angles
r

2 ,  
r

3 , and 
r

4 are the relative angles of the TC, CTr, and FTi joints, respectively. The hexapod motion is 

studied by setting the motion range of the TC joint to  r

2 0.612,0.612  − rad, and the angular position 

of the remaining joints is constrained to  r r

3 4, 1.484,1.484   − rad.  

The locomotion control requires two different estimations from the kinematic model: (i) get the 
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current feet coordinates based on the joints’ angular positions to verify if the desired motion is within 
the system’s workspace, and (ii) calculate the joints’ configuration according to the trajectory applied 
to the feet. In the first analysis, the Denavit-Hartenberg convention is used to obtain the relative position 
of the foot w.r.t. the reference frame B. Using the Denavit-Hartenberg parameters presented in Table 
3, the relative transformation between B and the hexapod feet can be established as, 

 

1 2 3 4 1 2 3 4 1 2 p

0 1 2 3 4 1 2 3 4 1 2 p

4

3 4 3 4 p

cos( )cos( ) cos( )sin( ) sin( )

sin( )cos( ) sin( )sin( ) cos( )

sin( ) cos( ) 0

0 0 0 1

r r r r r r r r r r B

r r r r r r r r r r B

r r r r B

x

y
T

z

         

         

   

 + + − + + +
 

+ + − + + − + =
 + +
 
  

 (11) 

where the vector  
T

p p p, , , 1,...,6B B B B

i x y z i= p  contains the feet’ relative coordinates, which are 

expressed as, 

 

r r r r r r

1 2 4 3 4 3 3 2 1 1

r r r r r r

i 1 2 4 3 4 3 3 2 1 1

r r r

4 3 4 3 3

cos( )( cos( ) cos ) cos

sin( )( cos( ) cos ) sin

sin( ) sin

B

l l l l

l l l l

l l

     

     

  

 + + + + +
 

= + + + + + 
 + + 

p  (12) 

 

Figure 4. Schematic representation of the joints’ angular motion. 
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Table 3. Denavit-Hartenberg parameters for all relative transformations between 

the reference frame B and the hexapod’s foot pi. 
 

Transformation αi ai  θi di  

{0}→{1} 0  l1  0 

{1}→{2} 
 

l2  0 

{2}→{3}  0 l3  0 

{3}→{4}  0 l4  0 

The limb’s inverse kinematics calculation is essential to control the driven joints’ positions. The 
inverse kinematics formulation uses the feet’s position to obtain the relative angular positions of the 

joints. For this matter, the value of 
r

1 is constant and depends on the leg position as,  

 

0

0

r

1

0

0

0,  1

atan ,  2

π atan ,  3

π,  4

π atan ,  5

atan ,  6

i

l
i

w

l
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w

i
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i

w

l
i

w



=


  =   


  − =   
= 

=
  

+ =  
 


  − = 

  

 (13) 

The calculation of 
r

2 depends on the fixed reference frame Q, which is placed on the TC joint (see Fig. 

5)). Thus, the angular position of this driven joint is defined as, 

 
pr

2

p

atan

Q

Q

x

y


 
=  

 
 

 (14) 

in which  
T

p p p, ,Q Q Q Q

i x y z=p denotes the relative position of pi w.r.t. Q, and is expressed as, 

 
0 1

1( )Q B

i i

−=p T p  (15) 

r

4

r

3

r

2

r

1

π
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where
0

1T is the transformation matrix between the reference frames B and Q. The estimation of the 

remaining angular positions requires knowing the position of the reference frame U, which is placed 
on the CTr joint. Using the Denavit-Hartenberg convention, the position of U w.r.t. Q is defined as,  

 
0 1 0

1 2( )Q

i

−=u T T  (16) 

Considering the vector sp between the reference frame U and the foot, the value of the CTr and the 
FTi joints is as follows, 
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where zU and zp represent respectively the vertical position of the reference frame U and the foot. The 
presented equations of motion and kinematic model of the ATHENA robot contain fundamental 
concepts for the design and assessment of the developed posture control strategy.  

 

Figure 5. Schematic representation of the limbs model. 

4. Control strategy for the locomotion of ATHENA across inclined surfaces 

4.1. Gait generation 

The locomotion of the ATHENA robot adopts the tripod gait. Amongst the commonly adopted gaits in 

hexapod robots, the tripod pattern provides the highest velocity of the main body, despite decreasing 

the system’s stability due to the number of supporting limbs. If the designed control for the posture 

adjustment provides good results for the tripod gait, then the methodology is considered assessed for 

other locomotion types. Considering the gait state, the limbs execute a different motion. In the swing 
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phase, the feet reach a new foothold position by executing a cubic Bézier trajectory expressed as, 

 
g , g

0

( ) (t ) ,  0,  t 1,...,6
n

B n j j B

i i j

j

t t t t i−

=

 = −    p p  (19) 

where n represents to the number of control points, tg is the trajectory’s time interval, and ,

B

i jp  denote 

the control points of the trajectory. The first control point corresponds to the foot’s initial position ,0

B

ip  

which is defined by Eq. (12). The remaining control points are determined as, 

 

T

,1 ,00, ,
4 3

B B

i i

s h 
= + 
 

p p  (20) 

 

T

,2 ,0

3
0, ,

4 3

B B

i i

h
s

 
= + 
 

p p  (21) 

  
T

,3 ,00, ,0B B

i is= +p p  (22) 

in which h is the maximum height and s denotes the stride. 

In the stance phase, the feet are in contact with the ground while propelling the torso forward. 

Thus, the foot’s trajectory is defined as 

 

T
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i i

s
t t t

  
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p p  (23) 

In both phases, the result of the foot trajectory must be converted into motor commands, using the 

inverse kinematics model established in subsection 3.2. 

 

4.2. Posture adjustment 

The aforementioned footpath planning of the limbs considers that the hexapod robot walks across a 

regular and smooth surface. Thus, the displacement of the torso’s height and orientation is neglected, 

and consequently the system is stable. Nonetheless, the variation of the terrain topology affects the 

hexapod’s achievable foothold positions and corresponding torso’s posture. The terrain complexity 

increases the displacement of the torso’s position, which constrains the hexapod’s ability to surmount 

inclined surfaces. Bearing that in mind, the proposed strategy aims at adjusting the hexapod’s height 

and orientation by estimating the ground inclination. 

The terrain perception is estimated by the relative position of the feet w.r.t. the torso, which is 

given by Eq. (12). For this purpose, the control evaluates the relative coordinates of the feet, which are 

in contact with the ground. Using the relative coordinates of the supporting feet, the terrain can be 

approximated to a characteristic plane expressed as 

 p p p pa b c d+ + − =x y z 0  (24) 

in which ap, bp, cp, and dp are constants, and ,  ,  fx y z are f-dimensional vectors that contain the 

coordinates of the supporting feet. With the values of ap, bp, cp, and dp, the norm vector of the plane g 
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is obtained. The developed algorithm for the detection of the supporting limbs, and the calculation of 

the norm vector, is described by the following steps (see Fig. 6). In each gait cycle, the algorithm reads 

the normal contact forces using the force sensors placed on each foot. In a regular surface, there are 

exactly three legs with positive normal contact forces, hence, the ground plane equation can be 

estimated using Eq. (24). Nonetheless, the number of supporting limbs changes with the terrain 

irregularities. If the terrain topology forces the hexapod to have more than three supporting limbs, a 

random subset with three of the legs in contact with the ground is applied for the estimation of the 

ground plane. In case of having less than three legs in the stance phase, the algorithm searches amongst 

the remaining limbs which should be in contact with the ground, and their trajectory is extended until 

a positive normal contact force is read by the force sensors. After that, there are sufficient supporting 

limbs to estimate the terrain’s characteristic plane using Eq. (24). Figure 7 shows a generic 

configuration of the ATHENA hexapod walking across an inclined and irregular surface. Considering 

the torso’s local reference, and a two-dimensional representation of g in the ηζ and ξζ planes, the angular 

displacement of the pitch and roll angles is determined as, 

    
T Tζ

α g g ζ

ζ

'
arccos , ' , 0,1

'
x z

 
 = =  =
 
 

g n
g n

g n
 (25) 
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 (26) 

where δα represents the pitch displacement, nζ denotes a unitary vector, and δβ is the angular deviation 

in the roll orientation.  
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Figure 6. Schematic representation of the contact detection algorithm. 

The terrain’s inclination affects the relative motion between the torso and the ground. Figure 8 

shows the angular displacement performed by the ATHENA hexapod climbing a 10-degree ramp in 

Gazebo, without controlling the torso posture. From the analysis of this plot, it can be observed that in 

each gait cycle, the transition between gait phases causes an abrupt change of the roll and pitch angles, 

due to the alternation between the supporting limbs and consequent inaccurate planning of the foothold 

positions. Thus, it is of paramount importance to ensure that during the gait phase transition, all limbs 

are in contact with the ground and their height is adjusted to the estimated surface plane. Subsequently, 

the results variation of the roll and pitch angles in each gait cycle assess the torso’s instability when the 

hexapod climbs the ramp. The posture variation is influenced by the limbs’ trajectory in the stance 

phase, which is responsible for adjusting the torso’s angular positions. Considering the outcome from 

the computational simulation with simple control, it can be concluded that the proposed control strategy 

is able to adjust the feet’ coordinates regarding the torso’s orientation and height. Since the swing phase 

is mainly influenced by the torso’s height, the final control point of the cubic Bézier trajectory is defined 

as 

  ,3 z z ,0 z0, , ,  [0,  1]O O

i is k k= + p p  (27) 

where kz is a control parameter, and δz denotes the height displacement, being the difference between 
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the relative height w.r.t. the ground measured by an infrared sensor placed on the torso, and the 

reference height, which denotes the torso’s height considering the hexapod’s standing posture. 

Regarding the stance phase, the control strategy requires an adjustment using Eq. (23) according to the 

torso orientation in inclined surfaces. Thus, the feet’s final position in the stance phase is expressed as 

follows, 

 ,f r ,0

O O

i i= +p t p  (28) 

in which tr denotes the transformation vector, that are expressed by, 

 
(4,4) (4,4) (4,4)

r x α α y β β z z α β( ) ( ) ( ),    ,  [0, 1]k k k k k  = t R R T  (29) 

where Rx and Ry denote the rotation matrix along the axes x and y respectively, kα and kβ are the 

corresponding control parameters for the pitch and roll angles, and T is the transformation matrix 

defined as, 
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Bearing in mind that the transformation of ,f

O

ip , the stance phase is defined as 
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Figure 7. Schematic representation of the plane formed by the supporting limbs. 
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Figure 8. Angular displacement between the torso and the ground with simple control methodology. 

5. Computational simulations 

5.1. Computational setup 

The proposed computational procedure to control the ATHENA robot has been implemented and 

evaluated in the Gazebo software. The ODE library is considered in the computational simulations with 

a time step equal to 50 ms to solve the equations of motion and provide data regarding the torso posture. 

The controller implementation in the Gazebo environment uses a ROS-based client-server 

infrastructure with a rate of 20 Hz to simulate real-time data acquisition. An IMU and an infrared sensor 

are placed on the hexapod’s torso, to assess the body’s angular velocities and height, which are 

estimated by the ODE library.  

The computational simulations are performed for a 10-degree ramp and an irregular terrain. The 

two scenarios are presented in Fig. 9. The surface’s inclination defined for the ramp scenario is 

representative and is appropriate to assess the control methodology (see Fig. 9(a)). A similar strategy 

is utilized in the testbed scenario portrayed in Fig. 9(b). The second situation contains blocks with 

different heights between 0.04 m and 0.13 m and aims at studying the proposed control in a more 

demanding scenario in terms of terrain topology variation. In both computational cases, the hexapod 

adopts a tripod gait with tg = 1 s, and the kinetic friction coefficient is set to 0.9. For the height 

adjustment, the hexapod’s standing posture, which is used as reference for the infrared sensor readings, 

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20

A
n

g
u

la
r 

d
is

p
la

c
e

m
e

n
t 

[r
a

d
]

Time [s]

δα

δβ

Ramp
α

β



Robotica 17 
 

is set when 
r

2 0 =  rad, 
r

3 0 =  rad, and 
r

4
π

2
 = −  rad. 

 
Figure 9. Environments tested in the computational simulations: (a) ramp with 10-degree slope, (b) 

irregular terrain. 

 

5.2. Discussion 

In each environment, the influence of the parameters kz, kα and kβ on the control system’s response is 

analyzed. It must be noticed that the value of the parameters can be defined by an infinite number of 

combinations. The main goal of this work is to assess the feasibility of the proposed control, hence, kz, 

kα and kβ are restrained to a set of discrete values (kz, kα, kβ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}), which 

provides a general overview into the influence of the constants kz, kα and kβ in the posture stability in 

the two defined scenarios. The hexapod’s posture is evaluated according to the torso’s height w.r.t. the 

ground and the angular velocities in the roll and pitch directions. In each computational simulation, the 

root-mean-square value of the aforementioned variables is estimated per gait cycle, and the resultant 

variation is examined.  

 

5.2.1. Ramp scenario 

The first computational simulations that were performed consider kα= kβ=0.0 and kh ∈ {0.0, 0.2, 0.4, 

0.6, 0.8, 1.0}. If kz=0.0 takes place, the control system does not adjust the torso’s height, and when 

kz=1.0, there is full implementation of the estimated δz in the limbs’ trajectories. The obtained results 

for the relative height and angular velocities are presented in Fig. 10. Using the simple control as 

reference (kz=0.0), it can be observed that the implementation of the height adjustment improves the 

hexapod robot’s stability, due to the significant decrease of the height’s interquartile range when kz>0.0 

(see Fig 10(a)). In comparison to the median value for kz=0.0, which corresponds to 0.068 m, there is, 

on average, an increase of 58.42% in the torso’s height when the proposed control strategy is 

implemented. Although the highest median value occurs when kz=1.0, which corresponds to 0.112 m, 

the height variation is smaller when kz∈ {0.6, 0.8}. The height adjustment does not affect the torso’s 

orientation and angular velocity. Fig. 10(b) depicts the plots for the pitch velocity. The obtained results 

show that the pitch velocity’s median increases when kz=1.0. Thus, it can be concluded that, for the 

maximum height, the variation of the torso’s pitch angle increases, and the hexapod’s posture becomes 

unstable. For the remaining cases, kz∈ {0.2, 0.4, 0.6, 0.8}, the hexapod’s stability improves, since there 

is has an average reduction of 18.91% of the median value, and a decrease of the interquartile range. 

Amongst the obtained results for the pitch velocity, the robot achieves its stable configuration when 

kz=0.8, due to the smallest interquartile range and median value, which corresponds to 0.064 rad/s. 

Regarding the roll angle, the implementation of kz=1.0 increases the variation of the angular velocity, 

which penalizes the robot’s stability (see Fig. 10(c)). However, in the remaining cases, an improvement 

of the velocity variation is observed, corresponding to a decrease of 30.74% of the median value. In 

this case study, the smallest variation is observed when kz∈ {0.2, 0.8}. 

(a) (b)
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Figure 10. Results obtained for the height control in the ramp scenario: (a) Height variation; (b) 

Pitch velocity variation; (c) Roll velocity variation. 

A similar strategy is implemented for the analysis of the computational simulations performed 

considering kz = kβ=0.0 and kα ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} (see Fig. 11). Taking the simple control 

(kα=0.0) as a reference, the adjustment of the torso’s pitch orientation does not have a significant 

influence on the height’s variation (see Fig. 11(a)). However, for the results regarding the angular 

velocities in the pitch and roll directions, the configuration kα=0.6 provides a good improvement in the 

system’s stability, both in terms of the interquartile range and the median value, which decreases 

39.56% and 35.7% respectively in the pitch and roll velocities (see Figs. 11(b) and 11(c)). 
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Figure 11. Results obtained for the pitch angle control in the ramp scenario: (a) Height variation; 

(b) Pitch velocity variation; (c) Roll velocity variation. 

Although control of the torso’s roll angle is not important for the tested environment, the 

computational simulations considering kz = kα = 0.0 and kβ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} were also 

performed. Figure 12 shows the outcome of the computational simulations performed. Similarly to the 

results presented for kα, the control of the torso’s roll angle does not have a significant effect on the 

height variation (see Fig. 12(a)), despite the considerable decrease of the median value when kβ ∈ {0.2, 

0.6}. Regarding pitch velocity, the interquartile range between configurations is considered identical, 

which means that there is no improvement in the system’s stability (see Fig. 12(b)). Nonetheless, the 

minimum median value takes place when kβ=0.4, and corresponds to 0.077 rad/s. In terms of the results 

for the roll velocity, which is plotted in Fig. 12(c), the variable’s median improves for kβ ∈ {0.4, 0.6, 

1.0}, which corresponds to a decrease respectively of 14.54%, 2.32%, and 15%. Nonetheless, by 

analyzing the maximum values and interquartile ranges, it is not possible to conclude that the 

implementation of kβ>0.0 provides good results for the hexapod’s posture in the ramp environment.  
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Figure 12. Results obtained for the roll angle control in the ramp scenario: (a) Height variation; (b) 

Pitch velocity variation; (c) Roll velocity variation. 

 

5.2.2. Irregular terrain scenario  

In comparison to the study presented to the previous section, a similar approach to the performance of 

the computational simulations is implemented in the testbed scenario. In this case, it is expected to 

observe a higher instability of the torso due to the terrain irregularities. The first analysis takes into 

account that kα= kβ=0.0 and kz ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Figure 13 depicts the outcome of the 

computational simulations performed. Considering the simple control (kz=0.0) as a reference for this 

analysis and observing the interquartile ranges, the implementation of the torso’s height control 

significantly improves the hexapod robot stability (see Fig. 13(a)). The minimum variation of the results 

occurs when kz ∈ {0.6, 0.8, 1.0} and the maximum median value corresponds to 0.107 m, presented 

when kz=0.8. Nonetheless, the variation of torso’s angular velocity increases (see Figs. 13(b) and 13(c)). 

Without considering kz=0.2, the average increase of the pitch velocity’s median value corresponds to 

66.66%. Regarding the roll velocity, the maximum torso’s instability takes place when kz ∈ {0.2, 0.8}, 

and the most stable configuration occurs when kz=0.4. Thus, despite ensuring a more stable height of 

the torso, the correction of the feet’ relative height increases the variation of the hexapod’s orientation.  
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Figure 13. Results obtained for the height control in the irregular terrain scenario: (a) Height 

variation; (b) Pitch velocity variation; (c) Roll velocity variation. 

 

Similarly to the ramp, the influence of kα on the torso posture does not provide significant 

enhancement in terms of height stability control (see Fig. 14(a)). Considering kα=0.0 as a reference and 

observing the height variation, the optimal configuration corresponds to kα=0.4. By observing the 

results depicted in Fig. 14(b), the control of the torso’s pitch angle decreases the hexapod’s stability. 

The most unstable configurations take place when kα ∈ {0.8, 1.0}, which means that the torso cannot 

have the same inclination as the ground. Nonetheless, if kα ∈ {0.4, 0.6}, the median roll velocity of the 

torso decreases, respectively, 8.43% and 16.00%, providing a possible improvement of the system’s 

stability (see Fig. 14(c)). 
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Figure 14. Results obtained for the pitch angle control in the irregular terrain scenario: (a) Height 

variation; (b) Pitch velocity variation; (c) Roll velocity variation. 

 

The influence of the roll angle control is studied by considering kz=kα=0.0 and kβ ∈ {0, 0.2, 0.4, 

0.6, 0.8, 1.0}. The implementation of this parameter does not have a significant effect on the height 

variation (see Fig. 15(a)), despite the decrease of 14.85% of the median value when kβ=0.2. The roll 

control provides good results in terms of the variation of the pitch velocity (see Fig. 15(b)). When kβ ∈ 

{0.2, 0.4} is considered, the median value decreases respectively 20.39% and 38.80%. Additionally, 

there is a consequent decrease in the interquartile range, which shows evidence that the hexapod’s 

locomotion is adjusted to the terrain topology. Regarding the roll velocity, the interquartile range is 

improved when compared to kβ=0.0, except for kβ=0.2. Thus, in comparison to the ramp environment, 

it is concluded that the roll angle control plays a key role in the hexapod’s stability for more complex 

scenarios.  
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Figure 15. Results obtained for the roll angle control in the irregular terrain scenario: (a) Height 

variation; (b) Pitch velocity variation; (c) Roll velocity variation. 

 
5.2.3. Enhanced posture control for the ramp and irregular terrain scenarios 

Considering the results obtained in the previous sections, in that follows computational simulations for 

two demonstrative applications of the designed posture control. In each analysis, the values of kz, kα 

and kβ are selected and compared against the outcome of a simple control (kz=kα = kβ = 0.0). For the 

ramp environment, the control of the torso’s height and pitch orientation has a higher impact on the 

system’s stability than the roll orientation control. Thus, kβ is considered null. Considering the height 

stability, the value of kz which presents the most stable results for the height variation also has a negative 

influence on the torso’s angular velocities. Thus, the ideal value for kz is 0.8. Regarding the pitch 

orientation, kα does not influence the height displacement. This parameter is selected according to its 

impact on the torso’s orientation. Amongst the collected data, kα = 0.6 provides good results for both 

the pitch and roll velocities. Therefore, the final configuration of the control strategy for the ramp 

scenario is defined as kz = 0.8, kα = 0.6, and kβ = 0. Figure 16 presents the performed computational 

simulations. Overall, the torso’s posture and stability improved when compared to the locomotion with 

simple control. The height’s median increased by 60.77% and the interquartile range significantly 

reduced, which means that the hexapod had a similar height throughout the entire simulation (see Fig. 

16(a)). The implementation of the proposed control strategy caused a reduction of 11.92% and 35.98% 

respectively of the median of the pitch and roll angular velocities (see Figs. 16(b) and 16(c)). Therefore, 

the angular displacement of the torso decreased, and the gait can be considered optimized.  
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Figure 16. Results obtained for the ramp scenario: (a) Height variation; (b) Pitch velocity variation; 

(c) Roll velocity variation. 

 

In the irregular terrain environment, the selection of the control parameters takes into account that 

the hexapod robot must have a stable height to overcome the terrain. Bearing that in mind, the value of 

kz is selected regardless of its influence on the torso’s angular velocities. Thus, the adequate value for 

the height adjustment’s control parameter is 0.6. The value of kα does not affect the variation of the 

height and pitch velocity. Nonetheless, kα is set to 0.4. In opposite to the ramp scenario, roll control is 

relevant for ensuring the correct adaptation of the hexapod’s gait to the terrain. The variable kβ is set to 

0.4 due to the stability improvement for all variables. The obtained results are presented in Fig. 17. The 

proposed control shows a different behavior in terms of the control of the torso’s orientation due to the 

terrain irregularities. When compared against a simple control, the height variation drastically reduced, 

and the median raised from 0.03 to 0.01 m (see Fig. 17(a)). Nonetheless, the results for the angular 

velocities were a problem (see Figs. 17(b) and 17(c)). For the pitch velocity, there is an increase of 

54.33% in the median value, and the roll velocity’s median is 82.16% higher. Despite the adjustments 

of the control strategy, the terrain irregularity causes a higher variation of the torso’s position due to 

the variation of the surface’s position. With the simple control, the torso collided with the ground due 

to an insufficient height. On the contrary, with the developed posture the torso had a collision-free 

navigation. Bearing that in mind, it can be concluded that with posture control, the hexapod is less 

prone to collide with the terrain, and thus the posture becomes stable. 

(a) (b)

(c)
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Figure 17. Results obtained for the irregular terrain scenario: (a) Height variation; (b) Pitch 

velocity variation; (c) Roll velocity variation. 

 

Considering that the physical prototype of the hexapod robot is currently under development, and 

it is not possible to examine the designed control method in real-world conditions, the posture control 

validation follows the Zero-Moment Point (ZMP) approach, that is commonly found in the literature 

[53-55]. The presented methodology evaluates the locomotion stability by measuring the distance 

between the ZMP projection, and the edges of the support polygon in each time step. If the ZMP 

coordinates are close to the polygon’s center, the robot is considered stable. Since the equations of 

motion of the Gazebo software are modeled at the velocity level, the ZMP cannot be calculated using 

the linear acceleration of the torso. Thus, for the computational simulations, the ZMP is estimated using 

the following expression [53, 54] 
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where n represents the number of limbs, fn,i denotes the normal contact force of the ith limb, and 

 p p,  yi ix are the relative of each foot. The stability margin is given by [53] 

 ( )ZMP 1 emin ,  ,s d d=  (33) 

(a) (b)

(c)



26 Cambridge Authors 
 

 

in which di represents the distance of the ZMP towards the edges of the support polygon, and e denotes 

the number of edges of the support polygon. The hexapod robot stability improves when the quantity 

of sZMP increases. For the posture control validation, the deviation of the ZMP and the support polygon’s 

center and the stability margin are compared against a simple locomotion control.  

In Fig. 18(a), the variance of the displacement between the ZMP and the support polygon’s center 

is presented for the ramp environment. With the implementation of the enhanced posture control, there 

is a significant decrease in the interquartile range of the ZMP distance to the polygon’s center, which 

supports the stability improvement of the locomotion. In comparison to the simple control, the variation 

of the median quantity is considered negligible. The adjustment of the torso’s pitch and roll angles 

affects the final coordinates of the feet, which causes the amplitude growth observed in the posture 

control. In terms of stability margin, the parameter’s median improves, and the data oscillation 

decreases (see Fig. 18(b)). Subsequently, the ZMP is within the support polygon, and it is considered 

that the hexapod robot improves its stability with the developed posture control.   

 

 
Figure 18. Results obtained for the stability analysis in the ramp scenario: (a) Displacement of the 

ZMP with respect to the geometric center of the support polygon; (b) Stability margin. 
 

In the testbed environment, the terrain topology causes higher locomotion instability when 

compared to the ramp scenario. The distance between the ZMP and the polygon’s center in each time 

step is portrayed in Fig. 19(a). Despite the augmentation of torso’s instability regarding the roll 

orientation, the implementation of the enhanced posture control reduces drastically the variance of the 

distance between the ZMP and the polygon’s center. The fact that the torso’s position is adjusted to the 

(a)

(b)
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terrain topology affects the force distribution of each foot, which supports the results observed. 

Similarly to the ramp environment, the posture control decreases the interquartile range of the stability 

margin and the median quantity increases. From the two parameters examined, there is a strong 

improvement in the hexapod robot’s stability. 

 

 
Figure 19. Results obtained for the stability analysis in the testbed scenario: (a) Displacement of 

the ZMP with respect to the geometric center of the support polygon; (b) Stability margin. 

 

6. Concluding remarks 

This work presents a control approach for the torso’s height and posture of the hexapod ATHENA. The 

proposed method takes advantage of the system’s kinematic model to estimate the ground plane formed 

by the limbs in the stance phase. Through the evaluation of the plane’s norm vector, the relative pitch 

and roll slopes between the ground and the torso are determined for each gait cycle. The control strategy 

adjusts the torso’s orientation through the adjustment of the limbs’ trajectory in the stance phase, 

regarding the obtained angular displacement.  Besides, the torso’s height is controlled during the swing 

and stance phases, in order to avoid its collision with the ground. The proposed method considers the 

hexapod’s standing posture as a reference to adjust the foothold positions of each limb. The method’s 

feasibility is assessed through several computational simulations performed in the Gazebo software, in 

which the normal and tangential contact forces are evaluated using Newton’s impact law and 

Coulomb’s friction law, respectively.  

The computational simulations performed in this study are divided into three different cases. In 

(a)

(b)
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the first studies, the control parameters for the height, pitch and roll adjustments are studied in a 10-

degree ramp and an irregular terrain, respectively. The selected inclinations of the environments are 

representative and aim at assessing the control strategy in scenarios with an intermediate level of 

difficulty in terms of the hexapod’s posture changes. For each case, the value of the control parameters 

is within the range {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Since the goal is to achieve optimal locomotion in terms 

of the torso’s posture and stability, the main body’s relative height and angular velocities are calculated. 

In the ramp environment, the variation kz causes a significant reduction of the height and posture 

oscillations, which means that there is an improvement in terms of the torso’s posture. Although the 

variation of kα did not have a strong influence on the height stability, when kα=0.6 takes place, the 

torso’s angular velocities achieve their minimum variation. Thus, the hexapod robot achieved an 

optimal orientation for the terrain inclination. Regarding the studies performed for kβ, it can be 

concluded that the interquartile ranges and median values obtained similar results for all configurations. 

Therefore, the roll variation does not have a significant influence on the hexapod’s behavior. The same 

analysis was performed for the testbed environment. In this scenario, the slope variation and the ground 

irregularities required a more accurate adjustment of the torso’s posture to avoid collisions with the 

ground. By gathering the obtained results, the adjustment of kz is of paramount importance for the 

locomotion stability, regardless of the angular velocity displacement. Regarding the torso orientation, 

the adjustment of kα increased the variation of the angular velocities, which can be influenced by a 

higher adjustment of the hexapod’s angular position with the terrain topology. Additionally, the 

implementation of kβ=0.4 showed a more significant role in the torso stability than in the ramp 

environment. 

Overall, the final computational simulations performed assessed the control methodology 

considering the optimal values for the control parameters. In the ramp scenario, the control is set to kz 

= 0.8, kα = 0.6, and kβ = 0.0. By comparing the results against the value obtained with a simple control, 

both the height and the posture stability have a significant improvement, which means that the torso 

posture is completely adjusted for the 10-degree ramp.  In the irregular terrain, the selected control 

corresponds to kz = 0.6, kα = 0.4, and kβ = 0.4. In comparison with the ramp, the portrayed results for 

the testbed scenario provided different responses. Despite the stability improvement in terms of height 

stability, the variation of the angular velocities increased when compared with a simple control. The 

increase in the angular velocity is caused by the fact that the estimated pitch and roll angles between 

the torso and ground are different in each gait cycle, and thus the hexapod’s orientation is variable. 

Additionally, traversed distance with a simple control was smaller because the foothold positions were 

not properly adjusted to the terrain topology, and the torso collided with the ground. Thus, the proposed 

control strategy is considered effective for both tested environments. From examination of the ZMP 

coordinates, the implementation of the designed control methodology has a positive influence in terms 

of the hexapod robot’s stability. The adjustment of the feet coordinates with the ground’s inclination 

improves the force distribution along the supporting limbs, which reduces the displacement between 

the ZMP and the support polygon’s geometric center. The results obtained for the ZMP stability margin 

also corroborate the conclusion mentioned above.  

The presented work is part of ongoing study, hence future stages of this research are defined. The 

proposed methodology will be implemented in the physical prototype of ATHENA, to compare results 

obtained in real-world conditions with the data gathered by computational simulations. The 

parametrization of the control system will be analyzed by optimization algorithms, such as Multi-

Objective or the Global Optimization methodologies. Despite the problem of implementing the 

optimized model in real-world conditions, the usage of Reinforcement Learning for selection of the 

control parameters kz, kα, and kβ is also considered, in order to obtain a generalized selection model of 

the control parameters. A further study concerning the ground plane estimation is also considered, for 
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a higher accuracy of the hexapod’s performance in irregular surfaces.  
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