
www.embedded-world.eu

Virtualization today, Virtualization tomorrow:
 Problems, Challenges, and Opportunities for Mixed-Criticality Systems

Sandro Pinto

Centro ALGORITMI / LASI, Universidade do Minho

Guimarães, Portugal

sandro.pinto@dei.uminho.pt

Abstract— There is an ongoing trend in several embedded

industries to consolidate multiple subsystems onto the same

hardware platform. For example, in the automotive industry,

network-connected infotainment starts to be deployed alongside

safety-critical control systems (e.g., steering, brake, ABS). To

guarantee the temporal and spatial isolation of these components

with different criticalities/safety integrity levels (ASIL), it is

nowadays common to rely on virtualization technology. However,

there is an erroneous belief that hypervisors are the new magic

bullet, working as transparent layers of software that provide

perfect guarantees and have no impact on the overall system. In

this paper, we provide a comprehensive picture of the state of

affairs concerning the use of virtualization in the context of the so-

called mixed-criticality systems. While sharing our experience on

the development of an open-source static partitioning hypervisor

(Bao) and implementing the hardware virtualization support of a

novel computer architecture (RISC-V), we will (i) cover the main

problems and limitations currently affecting existing hypervisor

solutions and (ii) discuss the (research) challenges and

opportunities lying ahead of us.

Keywords—Virtualization; hypervisor; mixed-criticality; static

partitioning; Arm; RISC-V; MCS.

I. INTRODUCTION

Virtualization is a technological enabler used on a broad set
of applications, i.e., from cloud computing and servers to
mobiles and embedded and mixed-criticality systems (MCS).
For cloud computing, virtualization provides advantages for
workload management, data protection, and cost and power
effectiveness [1]. For embedded and mixed-critical systems, the
industry has been leveraging virtualization to minimize size,
weight, power, and cost (SWaP-C), while guaranteeing temporal
and spatial isolation for certification (e.g., ISO26262) [2-4]. Due
to the proliferation of virtualization across multiple industries
and use cases, mainstream computing architectures such as Intel,
Arm, and more recently RISC-V, have introduced hardware
virtualization primitives in the ISA, i.e., Intel Virtualization
Technology, Arm Virtualization Extensions, and RISC-V
Hypervisor extension, respectively [5-8].

There are a plethora of hypervisor solutions leveraging
hardware virtualization support for MCS. Initially, there were
efforts to adapt well-established server-oriented hypervisors,
such as KVM [6] or Xen [9], to embedded architectures (mainly
Arm) with some degree of success. However, given the mixed-

criticality nature of the target systems, the straightforward
logical isolation has proven to be insufficient for the tight
embedded constraints and real-time requirements. Moreover,
these embedded hypervisors often depend on a large GPOS
(typically Linux) to boot and manage virtual machines (VMs),
or for services such as device emulation or virtual networks
[6],[9-10]. From a safety (and security) perspective, this
dependence bloats the system trusted computing base (TCB),
thus enlarging the overall attack surface and hampering
certification [3],[10-11].

The static partitioning hypervisor architecture is the zeitgeist
for MCSs [3],[11-12]. This architecture leverages hardware-
assisted virtualization technology to build a minimal software
layer that statically partitions platform resources and assigns
each one exclusively to a single VM instance. It assumes no
hardware resources need to be shared across guests. Each virtual
CPU is pinned to a single physical CPU; thus, there is no need
for a scheduler (and other complex semantic services), resulting
in a considerable decrease in size and complexity. Although
possibly hampering the efficient resource usage requirement,
static partitioning allows for stronger guarantees concerning
isolation, freedom from interference, and real-time. Quest-V
[12], Jailhouse [10], and Bao [3] are examples of hypervisors
implementing the pure static partitioning architecture.

Despite the strong CPU and memory isolation provided by
the static partitioning approach, this has proven to be not
enough, as micro-architectural resources such as last-level
caches, interconnects, and memory controllers remain shared
among partitions. The resulting contention leads to weak
temporal isolation, hurting performance, interrupt latency, and
predictability/determinism [3],[11],[13-14]. From another
perspective, the absence of strong temporal isolation guarantees
can also be leveraged by a malicious VM to implement DoS
attacks or to launch timing side-channel attacks [11],[15-16].

In this paper, we provide a comprehensive picture of the state
of affairs concerning the use of virtualization in the context of
the so-called MCS. Based on the experience consolidated
through the years, in particular with the development of an open-
source static partitioning hypervisor (Bao) and the
implementation of the hardware virtualization support for two
RISC-V cores, we cover the main problems and limitations
currently affecting existing hypervisor solutions and discuss the
(research) challenges and opportunities.

II. MIXED-CRITICALITY SYSTEMS AND VIRTUALIZATION

A. Mixed-Criticality System (MCS)

A mixed-criticality system (MCS) is an embedded and/or
real-time system that consolidates workloads with two or more
distinct criticality levels (e.g., safety-critical and non-safety-
critical). There are two conflicting trends in the design of such
systems. One is related to the safety guarantees in terms of real-
time, predictability, and freedom-from-interference. The other is
related to feature-richness and functionalities, which are
increasingly consolidated onto the same platform due to size,
weight, power, and cost (SWaP-C) constraints. For example, in
automotive systems, the network-connected infotainment is
often deployed alongside safety-critical control systems [2,3].

B. Virtualization Technology

Virtualization is a well-established technology that enables
the consolidation of multiple, unrelated software stacks onto the
same physical machine by partitioning and multiplexing
hardware resources (e.g., CPUs, memory, etc) between multiple
virtual machines (VMs). The software layer that implements
virtualization is called virtual machine monitor (VMM) or
hypervisor. The software executing in the VM is referred to as
guest, typically an operating system, thus guest OS.

C. Hardware-assisted Virtualization

Due to the proliferation of virtualization across multiple
industries and use cases, prominent players in the silicon
industry started to introduce hardware virtualization support in
mainstream computing architectures, i.e., Intel Virtualization
Technology, Arm Virtualization Extensions, and RISC-V
Hypervisor extension. Bellow, we overview the virtualization
support in Arm and RISC-V.

Arm Virtualization Extensions (VE). Arm has had hardware
virtualization support since version 7 of the ISA. The most
recent version of the architecture (Armv8/9-A) extends the
privileged architecture with a dedicated hypervisor privilege
mode (EL2) which sits between the secure firmware mode (EL3)
and the kernel/user modes (EL1/EL0). A hypervisor running at
EL2 has fine-grained control over which CPU resources are
directly accessible by guests (e.g., control registers). EL1/EL0
memory accesses are subject to a second stage of translation, in
control of the hypervisor. Arm VE support different page sizes:
4 KiB, 16 KiB, and 64 KiB. Arm also defines the System
Memory-Management Unit (SMMU), which extends memory
virtualization mechanisms from the CPU to the bus to restrict
VM-originated direct-memory accesses (DMAs). The
virtualization acceleration also spans to the interrupt controller,
i.e., the Generic Interrupt Controller (GIC). The GICv2 standard
has two main components: a central distributor and a per-core
interface. GICv2 provides virtualization support only on the
interface; the distributor, however, must be fully emulated. The
GICv3 and GICv4 provide support for the direct delivery of
hardware interrupts to VMs; however, this feature is only
available for inter-processor interrupts (IPIs) and message-
signaled interrupts (MSIs).

RISC-V Hypervisor Extension. The RISC-V privileged
architecture specification introduced hardware support for

virtualization through the Hypervisor extension. This extension
execution model follows an orthogonal design where the
supervisor mode (S-mode) is modified to a hypervisor-extended
supervisor mode (HS-mode). There are two new privileged
modes, i.e., virtual supervisor mode (VS-mode) and virtual user
mode (VU-mode). The Hypervisor extension also defines a
second stage of translation (G-stage in RISC-V lingo) to
virtualize the guest memory by translating guest-physical
addresses (GPA) into host-physical addresses (HPA). The HS-
mode operates like S-mode but with additional hypervisor
registers and instructions to control the VM execution and G-
stage translation. We have implemented the Hypervisor
extension in two RISC-V CPUs: Rocket [7] and CVA6 [8]. In
tandem with this extension, there are two specifications key to
virtualization: the Input/Output Memory-Management Unit
(IOMMU) and the Advanced Interrupt Architecture (AIA). The
IOMMU provides hardware virtualization support for
peripherals at the platform level, while the AIA (consisting of
APLIC + IMSIC) provides virtualization support for interrupts.
Notwithstanding, the AIA virtualization support is only
available through the IMSIC; it is still a topic of ongoing study
whether an APLIC should be allowed to directly delivery of
interrupts to VM.

D. Hypervisors for MCS

Over the past decade, many hypervisors have been designed
or retrofitted for MCS. Quest-V essentially pioneered the static
partitioning hypervisor architecture, but only has support for
x86. Other x86-only solutions include ACRN. ACRN was built
for MCS but still allows for more flexible configuration and
device sharing. Jailhouse is an open-source static partitioning
hypervisor developed by Siemens that relies on Linux to boot
and initialize the system. Xen is a widely-used hypervisor that
relies on a privileged VM, called Dom0, to manage non-
privileged VMs (DomUs) and interface with peripherals. Xen
Dom0-less is a novel approach that enables the deployment
without any Dom0, booting all guests directly from the
hypervisor and statically partitioning the system. seL4 is a
formally verified microkernel that can be used as a hypervisor in
combination with an user-level VMM (e.g., CAmkES VMM).
Xtratum is a hypervisor of particular interest in the aerospace but
lacks support for Armv8-A. Xvisor is an embedded hypervisor
that targets mainly soft real-time applications. The NOVA
microhypervisor follows a similar design to seL4, but is tailored
for virtualization. LTZVisor and VOSYS have leveraged
TrustZone to build mainly dual-guest systems; uRTZVisor
provides multi-guest support. There are also commercial
offerings such as LynxSecure, PikeOs, VXworks, Integrity,
Coqos or newcomers such as CLARE. Despite it tight
independence with Linux, KVM has also been considered for
embedded real-time use cases. We have developed Bao.

Bao Hypervisor. Bao [3] is an open-source static partitioning
hypervisor that implements the pure static partitioning
architecture, i.e., a minimal, thin layer of privileged software
that leverages the existing ISA virtualization primitives to
partition the hardware. Bao has no scheduler and does not rely
on external libraries or privileged VM (e.g., Linux), consisting
of a standalone component that depends only on standard
firmware to initialize the system and perform platform-specific

www.embedded-world.eu

tasks. Bao initially targeted Armv8-A. The mainline now
includes support for RISC-V, Armv7-A, and Armv8-R.

III. VIRTUALIZATION TODAY: PROBLEMS AND LIMITATIONS

Ideally, the “hypervisor” would just be a thin configuration
layer with no runtime overheads; however, this utopia is far from
reality. In this section, we discuss a few problems and limitations
of existing virtualization technologies and hypervisor solutions,
mainly driven by MCS requirements and use cases.

A. Performance Overhead

Virtualization has been connotated, for quite long time, to a
significant impact in terms of performance. This was mainly due
to the fact that mainstream computer architectures a decade ago
lacked hardware virtualization acceleration. Thus, back then,
existing hypervisor solutions (mainly for the cloud) resorted to
software-based techniques such as (i) dynamic binary
translation, (ii) shadow page tables, (iii) or paravirtualization, to
virtualize the system. With such software-centric techniques,
reported performance impact achieved up to ~350% in case of
paravirtualization (LMbench) [7].

With the introducing of the hardware virtualization support
in COTS processors, the performance impact reduced
significantly (depending also on the target microarchitecture).
Of course, this performance impact still depends on the design
of the hypervisor and on the different features. For example,
embedded hypervisors with scheduler to time multiplex virtual
CPUs in the same physical CPU have an extra overhead
comparing to static partitioning hypervisors. To support our
argument and corroborate what we have already reported in
previous works [3], we ran the MiBench (Automotive and
Industrial Control Suite) applicational benchmark, to collect the
execution time of Linux running directly atop the hardware and
Linux running in a VM atop Bao (Xilinx ZCU104). We ran the
experiments for the virtualization setup with different page sizes,
i.e., 2MiB and 4KiB.

For each benchmark, we collected the average absolute
execution time for the native execution. The first observation is
that Bao incurs a negligible performance penalty, i.e., less than
1% across all benchmarks when the page size is 2MiB. When
Bao is configured to use the 4KiB page size, the overhead can
reach up to 6%. Thus, for a virtualized system configured with a
single guest VM, there are two main possible sources of
overhead. The first source is the increase in TLB miss penalty
due to the second stage of translation. Second, the overhead of
trapping to the hypervisor and performing interrupt injection,
e.g., timer tick interrupt.

As a final takeaway, we can highlight that modern static
partitioning hypervisors such as Bao, do not incur meaningful
performance impacts due to (i) modern hardware virtualization
support, (ii) one-to-one mapping between virtual and physical
CPUs (i.e., no scheduler), and (iii) minimal traps. However, we
highlight the need for support for / make use of superpages (e.g.,
2 MiB) to minimize TLB misses and page-table walks.

B. Boot time

System boot time is key to several MCSs, in particular for
automotive. This is, however, an overlooked property in many
hypervisors, in particular the ones that are open-source.

To provide empirical evidence about the boot time, we
measured the hypervisor boot time and the full system boot time
with Bao, targeting a Xilinx ZCU104 platform (Zynq
UltraScale+). The platform boot flow starts by executing ROM
code in two co-processors, which load the first-stage bootloader
(FSBL) and start the main Cortex-A CPUs. These boot stages
setup the raw platform infrastructure (e.g., clocks, DRAM) and
load the Arm Trusted Firmware (TF-A) and U-boot. U-boot will
then load the hypervisor and the guest images. Bao boot guests
right after the initialization.

Figure 2 depicts the hypervisor boot time (top) and the
system cumulative time for each boot stage (down), i.e., FSBL
(fsbl), TF-A (atf), U-boot (uboot), and Bao (bao). The
hypervisor boot time is dependent on the VM and how it is
configured. We observed that the VM image size impacts the
hypervisor boot time. However, there are other factors at stake,
such as specific hypervisor features/drivers/modules (e.g.,
health monitoring), communication channels, scheduling
schemes, and others [17]. We measure boot time by varying the
size of the VM image and keeping other configuration
parameters (e.g., size of VM memory) intact. Thus, to
understand the overhead of the hypervisor in the context of the
complete boot flow, we also measure the full system boot time.
Here, we can confirm that the bulk of boot time is spent by U-
boot. From a macro perspective, the hypervisor adds an almost
constant offset to U-boot's boot time. This results are in line on
what was previously disclosed for other experts in the field, in
the context of commercial hypervisors [17].

Figure 2. Hypervisor boot time (top) and System boot time
(bottom) for a Bao-based system by VM image region size.

All in all, the major bottleneck for the VM boot time is
caused by the bootloader, not the hypervisors. We stress the need
for new boot mechanisms that speed up the boot process, in
particular for lightweight critical VMs.

C. Temporal Interference

Embedded virtualization has several proven benefits but still
some concerns while providing real-time and freedom-from-
interference guarantees. It is true that virtualization already
provides a reasonably high degree of time and space
encapsulation and isolation of VMs by time-multiplexing
resources such as the CPU, partitioning memory, and assigning
or emulating devices. Notwithstanding, partitioning and
multiplexing of micro-architectural shared system resources
were, until recently, neglected by most hypervisors. This led to
contention and a lack of truly temporal isolation, hurting
determinism by increasing jitter. Although AMP hypervisors
with VMs pinned to dedicated cores already remove part of this
contention when compared to single-core or symmetric
multiprocessing (SMP) implementations, systemwide resources
such as last-level caches (LLCs), memory controllers, and
interconnects remain shared and subject to contention. This is
aggravated as mechanisms such as cache replacement, cache
coherency, hardware prefetching, or memory controller
scheduling focus mainly on performance and bandwidth
maximization. There are existing techniques that address this
issue, which we highlight cache coloring and memory
bandwidth reservation [11],[13-14].

Figure 3 provides evidence about the impact on performance
due to interference on Arm (top) and RISC-V (bottom). These
graphs were borrowed from our previous works [3],[7]. The
system configuration and all the replicability information can be
found in [3] and [7]. Analyzing the figures, it is possible to draw
a few observations. First, when coloring is enabled (solo-col),
the performance overhead is aggravated. This is explained by
the reduced L2 cache size (due to colors), and that coloring
precludes the use of superpages, significantly increasing TLB
pressure (in line with results from Section III.A 4KiB page size,
but slightly aggravated due to reduced L2 cache size). Second,
in the interference scenario (interf), there is significant
performance degradation. Also, we can see that cache
partitioning through coloring can reduce interference; however,
it is not optimal, since it is still higher in the interf-col than the
solo-col scenario. This can be explained by the still not address
contention introduced downstream from LLC (e.g. write-back
buffer, MSHRs, interconnect, memory controller).

As conclusion, we can argue that multicore memory
hierarchy interference significantly affects guest performance.
Cache partitioning via page coloring helps, but is not the perfect
solution; despite fully eliminating inter-core conflict misses, it
does not fully mitigate interference. This is related to the fact
that there is also significant contention downstream in the
memory hierarchy, e.g., interconnects, memory controller, or
even in the internal LLC structures.

Figure 3. Bao hypervisor relative performance degradation/overhead for the MiBench Automotive and Industrial Control Suite
for different configuration scenarios: Armv8-A (top) [3] and RISC-V (bottom) [7].

www.embedded-world.eu

D. Interrupt Latency

In MCS, interrupt latency is a key requirement.
Notwithstanding, as aforementioned, the existing GIC (and
PLIC as well) virtualization support is not ideal for MCS:
hypervisors have to handle and inject all interrupts and must
actively manage list registers (GIC) when the number of pending
interrupts is larger than the physical list registers. To provide
empirical evidence about the interrupt latency in embedded /
static partitioning hypervisors, we resorted to the results from
our previous work on Bao [3]. Results translate the interrupt
latency for a bare-metal custom application that continuously
sets up the architectural timer to trigger an interrupt every ten
milliseconds. Since the instant at which the interrupt is triggered
is well-known, the interrupt latency is calculated as the
difference between the expected wall-clock time and the actual
instant it starts handling the interrupt.

Figure 4 depicts the Bao interrupt latency for different
configuration scenarios: (i) native execution of the custom
application (native); (ii) standalone hosted execution of the
custom application atop Bao (solo); (iii) standalone hosted
execution of the custom application with cache coloring enabled
(solo-col); (iv) standalone hosted execution of the custom
application with cache coloring enabled for VMs and hypervisor
(solo-hyp-col); (v) hosted execution of the custom application
atop Bao under the interference of other "stress" application
(interf); (vi) hosted execution of the custom application atop Bao
under the interference of other "stress" application with cache
coloring enabled (interf-col); and (vii) hosted execution of the
custom application atop Bao under the interference of other
"stress" application with cache coloring enabled for VMs and
hypervisor (interf-hyp-col).

When comparing native with the standalone hosted
execution, we observe a significant increase in both average
latency and standard deviation. This is due to the already
anticipated GIC virtualization overhead, i.e., the trap and mode
crossing costs and interrupt management/re-injection. It is also
visible that coloring, per se, does not significantly impact
average interrupt latency, but slightly increases the worst-case
latency. The results also confirm the expected adverse effects of
interference (interf) by cache and memory contention in
interrupt latency, especially in the worst case. Enabling coloring
under interference (interf-col) does not reduce the latency to the
values reported in the standalone hosted execution setup (solo).
This is due to the interference between guests and the hypervisor

itself, i.e., corroborated by the lastest bars, i.e. the interf-hyp-col
scenario.

Direct Interrupt Injection. Direct interrupt injection is a novel
technique implemented in Arm-based hypervisors to eliminate
the need for the hypervisor mediating interrupt injection. With
this technique, the hypervisor passes through the physical GIC
CPU interface and routes all interrupts directly to the VM while
still emulating the (shared) distributor. This allows physical
interrupts to be directly delivered to the VM with no hypervisor
intervention. This is not a major issue as hypervisors do not
directly manage devices. To communicate internally the
hypervisor leverages the SDEI to register an event with EL3
firmware during initialization, which will then map it to its own
dedicated secure IPIs. It can then trigger the event by issuing an
SMC, making the firmware will divert execution to a predefined
hypervisor handler. In one of our most recent works [11], we
provide empirical evidence about the effectiveness of the
technique in reducing interrupt latency to near to native values.

IV. VIRTUALIZATION TOMORROW: CHALLENGES AND

OPPORTUNITIES

In this section, we discuss a set of challenges and
opportunities for hypervisors targeting MCS.

A. Stronger and Holistic Isolation

Cache coloring does not fully mitigate the effects of
interference. Furthermore, coloring has inherent inefficiencies
such as (i) precluding the use of superpages and (ii) internal
memory fragmentation. To further improve determinism and
minimize coloring bottlenecks, there are other COTS-applicable
contention mitigation mechanisms, e.g., memory bandwidth
regulation (PMU-based CPU throttling) [14] and DRAM bank
coloring [13]. We also stress the importance of including support
for novel hardware extensions such as MPAM and call for
platform designers to include such facilities in their upcoming
designs targeting MCS. We also advocate for the RISC-V
community to specify similar hardware facilities.

Another overlooked topic related to interference is the general
lack of support in embedded and static partitioning hypervisors
for managing traffic from peripheral DMAs. We advocate that
SPH must provide contention mitigation mechanisms at the
platform level, e.g., (i) leveraging QoS hardware available on
the bus and (ii) controlling interference from DMA-capable
devices or accelerators. This is more problematic as platforms
become increasingly heterogenous (e.g., GPUs, TPUs, FPGA).
Furthermore, since IOMMU structures (e.g., TLBs) are still
shared between multiple DMA masters controlled by different
VMs, we hypothesize that bandwidth regulation techniques may
fall short while mitigating interference originating from these
structures.

B. “Near-native” Interrupt Latency

The impact on interrupt latency in Arm-based (MCS)
hypervisors is primarily due to inadequate hardware support in
GICv2/3. The GICv4 will introduce support for direct interrupt
injection to VMs; however, this feature is only implemented for
inter-processor interrupts (IPIs) and message-signaled interrupts
(MSIs). We stress the attention of Arm silicon makers and
designers to provide additional hardware support at the GIC

Figure 4. Bao Hypervisor interrupt latency for different
configuration scenarios [3].

level for direct interrupt injection. The same holds for RISC-V.
The PLIC does not provide any sort of support for interrupt
virtualization and the new AIA specification seems to be mainly
driven by high-performance computing (HPC) requirements
(where interrupt latency is not so critical such as in MCSs).

Besides the need for additional hardware support, we argue
system designers need to revisit the implementation of the
interrupt injection paths in (open-source) hypervisors for MCSs
[11]. Finally, Bao and Jailhouse implement the direct interrupt
injection technique; however, we must stress that using this
technique severely hinders the ability of the hypervisors to
manage devices or implement any functionality dependent on
interrupts. A plausible research direction would be a hybrid
approach, i.e., selectively enabling specific cores for critical
guests while providing the more complex functionality in cores
running non-critical guests.

C. Novel Architectures

Embedded hypervisors for MCS (in particular, static
partitioning hypervisors) should be as small and simple as
possible while providing the necessary partitioning mechanisms.
Ideally, it would be only a thin layer of software for configuring
hardware virtualization partitioning mechanisms at boot time.
However, several factors hinder this goal in Arm (and RISC-V)
processors, including the need to inject interrupts or emulate
firmware services such as PSCI. From a more realistic
perspective, pure static partitioning hypervisors such as Bao and
Jailhouse are often too strict, especially from a resource
utilization perspective. Also, there might be the need to share
devices or securely multiplex access to indivisible resources
(e.g., clocks).

A hybrid, more flexible approach is to have the system
resources statically partitioned while dynamically multiplexing
or emulating the resources in one of the partitions (e.g.,
scheduling multiple vCPUs in a single CPU). Guaranteeing
isolation and freedom from interference between these two
domains would still fit MCS requirements, while providing a
more adaptable interface. This is possible in a hypervisor such
as Xen with the use of privileged Dom0, but there is no clear
separation between partitioning and virtualization functions. In
this vein, we argue that these two concepts are often conflated
and implemented in a monolithic approach. Naturally,
microkernels such as the seL4 virtualization design, but with the
expected resulting impact on latency for VMs. All in all, we
advocate for novel architectures that combine both the flexibility
and robust fault encapsulation of microkernels with the
simplicity and minimalist latencies of static partitioning
hypervisors.

D. CHERI & Virtualization

The use of software capabilities to implement fine-grain
control access is not a new endeavor. Microkernels have been
using software capabilities as a mechanism to enforce security
for decades [16]. Notwithstanding, hardware capabilities just
recently started to raise some interest with the Capability
Hardware Enhanced RISC Instructions (CHERI) architecture.
CHERI extends conventional ISAs with a new type of hardware-
supported data, the architectural capability [18]. CHERI was
first implemented for the MIPS architecture but then spanned to
Arm (CHERI-ARM) and RISC-V (CHERI-RISC-V).

Significant effort has been made to understand and evaluate the
implications of CHERI on compatibility, performance, and
security for off-the-shelf software stacks. In particular,
CheriRTOS have demonstrated the applicability of the CHERI
architecture to deeply embedded systems. In 2019, the UK
government, partnering with key industry players (i.e., Arm,
Microsoft, and Google), decided to invest in the Digital Security
by Design (DSbD) program aiming at bringing CHERI from
prototype to mainstream (e.g., Arm Morello).

Despite the ongoing academic and industry-related efforts
built atop the CHERI technology, very little has been done on
the use of CHERI for virtualization. Recently, CAP-VMs [19]
introduced a new VM-like abstraction that leverages hardware
support for CHERI memory capabilities for secure isolation;
however, this targets cloud applications. From a research point
of view, it is still an open challenge to understand how CHERI
can be used and interact with embedded virtualization
environments targeting mixed-criticality systems. An interesting
path would be to design or extend an open-source embedded /
static partitioning hypervisor (e.g., Bao) to (i) compile as hybrid-
capability or pure-capability code and (ii) host CHERI-aware
VMs. This would provide a compelling common ground to start
investigating, for example, the trade-offs between the hybrid and
pure approaches in the context of MCSs.

E. Other Directions

The list discussed so far is not meant to be exhaustive. The
discussed topics are representative of a set of challenges and
opportunities existing in the hypervisor for MCSs, and we argue
that may be representative of the ones with more impact in the
overall field. Notwithstanding, there are other topics of relevant
importance, including (but not limited to): (i) support for
emerging virtualization processors based on dual-stage MPU
such as the new Armv8-R Cortex-R real-time processors (e.g.,
Cortex-R52) [20]; the need for strong security guarantees (e.g.,
timing side-channels, TEE support, control flow integrity, VM
introspection); (ii) the compliance of functional safety standards
(mostly in open-source embedded hypervisors); (iii) the
implementation of communication primitives, in particular
leveraging open standards such as VirtIO and OpenAMP; and
(iv) even the use of novel cost-effective formal verification
techniques [21-22] to very hypervisor and firmware (e.g., Arm
TF-A, RISC-V OpenSBI).

V. CONCLUSION

There is a common erroneous belief that hypervisors, per se,
are magic bullets that guarantee the safety certification of MCSs.
In this paper, we provided a comprehensive picture of the use of
virtualization in the context of mixed-criticality systems
(MCSs). While sharing evidence collected in more than a decade
of experience in the field, we highlighted the main problems and
limitations currently affecting existing hypervisor solutions and
(ii) discussed a set of open research and industrial challenges and
opportunities.

ACKNOWLEDGMENT

This work is supported by (i) FCT – Fundação para a Ciência
e Tecnologia within the R&D Units Project Scope
UIDB/00319/2020 and (ii) European Union’s Horizon Europe
research and innovation program under grant agreement No

www.embedded-world.eu

101070537, project CROSSCON (Cross-platform Open
Security Stack for Connected Devices).

REFERENCES

[1] Y. Xing and Y. Zhan, "Virtualization and Cloud Computing," Future
Wireless Networks and Information Systems, Lecture Notes in Electrical
Engineering, 2012.

[2] J. Cerrolaza et al., “Multi-Core Devices for Safety-Critical Systems: A
Survey,” ACM Computing Surveys, 2020.

[3] J. Martins et al., “Bao: A Lightweight Static Partitioning Hypervisor for
Modern Multi-Core Embedded Systems,” in Workshop on NG-RES,
2020.

[4] José Martins and Sandro Pinto, “Shedding Light on Static Partitioning
Hypervisors for Arm-based Mixed-Criticality Systems,” in Proc. Of
RTAS, 2023.

[5] R. Uhlig et al., "Intel virtualization technology," in Computer, 2005.

[6] C. Dall and J. Nieh, "KVM/ARM: the design and implementation of the
linux ARM hypervisor," in Proc. of ASPLOS, 2014.

[7] B. Sa et al., “A First Look at RISC-V Virtualization from an Embedded
Systems Perspective,” IEEE Transactions on Computers, 2021.

[8] B. Sa et al., “CVA6 RISC-V Virtualization: Architecture,
Microarchitecture, and Design Space Exploration,” arXiv:2302.02969,
2023.

[9] J. Hwang et al., "Xen on ARM: System Virtualization Using Xen
Hypervisor for ARM-Based Secure Mobile Phones," in IEEE Consumer
Communications and Networking Conference, 2008.

[10] R. Ramsauer et al., “Look Mum, no VM Exits!(Almost),” in Proc. of
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2017.

[11] José Martins and Sandro Pinto, “Shedding Light on Static Partitioning
Hypervisors for Arm-based Mixed-Criticality Systems,” in Proc. Of
RTAS, 2023.

[12] R. West et al., "A Virtualized Separation Kernel for Mixed-Criticality
Systems," ACM Transactions on Computing Systems, 34, 3, 2016.

[13] T. Kloda et al., “Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems,” in Proc. of Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019.

[14] H. Yun et al., “MemGuard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms,” in Proc. of Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2013.

[15] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of
Memory Service in Multi-Core Systems,” in Proc. of USENIX Security
Symposium, 2007.

[16] Q. Ge et al., “Time Protection: The Missing OS Abstraction,” in Proc. of
European Conference on Computer Systems (EuroSys), 2019.

[17] E. Hamelin et al., “Selection and evaluation of an embedded hypervisor:
application to an automotive platform”, in Proc. of European Congress on
Embedded Real Time Systems, 2020.

[18] R. Watson et al., "CHERI: A hybrid capability-system architecture for
scalable software compartmentalization," IEEE Symposium on Security
and Privacy, 2015.

[19] V. Sartakov et al., "CAP-VMs: Capability-Based Isolation and Sharing in
the Cloud," in Proc. of OSDI, 2022.

[20] P. Austin et al., “Best Practices for Armv8-R Cortex-R52+ Software
Consolidation,” White Paper, 2022.

[21] R. Gu et al., "CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels", in Proc. of OSDI, 2016.

[22] S. Li at al., "A Secure and Formally Verified Linux KVM Hypervisor," in
Proc. of IEEE Symposium on Security and Privacy (SP), 2021

