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Abstract— There is an ongoing trend in several embedded 

industries to consolidate multiple subsystems onto the same 

hardware platform. For example, in the automotive industry, 

network-connected infotainment starts to be deployed alongside 

safety-critical control systems (e.g., steering, brake, ABS). To 

guarantee the temporal and spatial isolation of these components 

with different criticalities/safety integrity levels (ASIL), it is 

nowadays common to rely on virtualization technology. However, 

there is an erroneous belief that hypervisors are the new magic 

bullet, working as transparent layers of software that provide 

perfect guarantees and have no impact on the overall system.  In 

this paper, we provide a comprehensive picture of the state of 

affairs concerning the use of virtualization in the context of the so-

called mixed-criticality systems. While sharing our experience on 

the development of an open-source static partitioning hypervisor 

(Bao) and implementing the hardware virtualization support of a 

novel computer architecture (RISC-V), we will (i) cover the main 

problems and limitations currently affecting existing hypervisor 

solutions and (ii) discuss the (research) challenges and 

opportunities lying ahead of us.  

Keywords—Virtualization; hypervisor; mixed-criticality; static 

partitioning; Arm; RISC-V; MCS. 

I.  INTRODUCTION 

Virtualization is a technological enabler used on a broad set 
of applications, i.e., from cloud computing and servers to 
mobiles and embedded and mixed-criticality systems (MCS). 
For cloud computing, virtualization provides advantages for 
workload management, data protection, and cost and power 
effectiveness [1]. For embedded and mixed-critical systems, the 
industry has been leveraging virtualization to minimize size, 
weight, power, and cost (SWaP-C), while guaranteeing temporal 
and spatial isolation for certification (e.g., ISO26262) [2-4]. Due 
to the proliferation of virtualization across multiple industries 
and use cases, mainstream computing architectures such as Intel, 
Arm, and more recently RISC-V, have introduced hardware 
virtualization primitives in the ISA, i.e., Intel Virtualization 
Technology, Arm Virtualization Extensions, and RISC-V 
Hypervisor extension, respectively [5-8].  

There are a plethora of hypervisor solutions leveraging 
hardware virtualization support for MCS. Initially, there were 
efforts to adapt well-established server-oriented hypervisors, 
such as KVM [6] or Xen [9], to embedded architectures (mainly 
Arm) with some degree of success. However, given the mixed-

criticality nature of the target systems, the straightforward 
logical isolation has proven to be insufficient for the tight 
embedded constraints and real-time requirements. Moreover, 
these embedded hypervisors often depend on a large GPOS 
(typically Linux) to boot and manage virtual machines (VMs), 
or for services such as device emulation or virtual networks 
[6],[9-10]. From a safety (and security) perspective, this 
dependence bloats the system trusted computing base (TCB), 
thus enlarging the overall attack surface and hampering 
certification [3],[10-11].  

The static partitioning hypervisor architecture is the zeitgeist 
for MCSs [3],[11-12]. This architecture leverages hardware-
assisted virtualization technology to build a minimal software 
layer that statically partitions platform resources and assigns 
each one exclusively to a single VM instance. It assumes no 
hardware resources need to be shared across guests. Each virtual 
CPU is pinned to a single physical CPU; thus, there is no need 
for a scheduler (and other complex semantic services), resulting 
in a considerable decrease in size and complexity. Although 
possibly hampering the efficient resource usage requirement, 
static partitioning allows for stronger guarantees concerning 
isolation, freedom from interference, and real-time. Quest-V 
[12], Jailhouse [10], and Bao [3] are examples of hypervisors 
implementing the pure static partitioning architecture. 

Despite the strong CPU and memory isolation provided by 
the static partitioning approach, this has proven to be not 
enough, as micro-architectural resources such as last-level 
caches, interconnects, and memory controllers remain shared 
among partitions. The resulting contention leads to weak 
temporal isolation, hurting performance, interrupt latency, and 
predictability/determinism [3],[11],[13-14]. From another 
perspective, the absence of strong temporal isolation guarantees 
can also be leveraged by a malicious VM to implement DoS 
attacks or to launch timing side-channel attacks [11],[15-16]. 

In this paper, we provide a comprehensive picture of the state 
of affairs concerning the use of virtualization in the context of 
the so-called MCS. Based on the experience consolidated 
through the years, in particular with the development of an open-
source static partitioning hypervisor (Bao) and the 
implementation of the hardware virtualization support for two 
RISC-V cores, we cover the main problems and limitations 
currently affecting existing hypervisor solutions and discuss the 
(research) challenges and opportunities. 



 

II. MIXED-CRITICALITY SYSTEMS AND VIRTUALIZATION 

A. Mixed-Criticality System (MCS) 

A mixed-criticality system (MCS) is an embedded and/or 
real-time system that consolidates workloads with two or more 
distinct criticality levels (e.g., safety-critical and non-safety-
critical). There are two conflicting trends in the design of such 
systems. One is related to the safety guarantees in terms of real-
time, predictability, and freedom-from-interference. The other is 
related to feature-richness and functionalities, which are 
increasingly consolidated onto the same platform due to size, 
weight, power, and cost (SWaP-C) constraints. For example, in 
automotive systems, the network-connected infotainment is 
often deployed alongside safety-critical control systems [2,3]. 

B. Virtualization Technology 

Virtualization is a well-established technology that enables 
the consolidation of multiple, unrelated software stacks onto the 
same physical machine by partitioning and multiplexing 
hardware resources (e.g., CPUs, memory, etc) between multiple 
virtual machines (VMs). The software layer that implements 
virtualization is called virtual machine monitor (VMM) or 
hypervisor. The software executing in the VM is referred to as 
guest, typically an operating system, thus guest OS.  

C. Hardware-assisted Virtualization 

Due to the proliferation of virtualization across multiple 
industries and use cases, prominent players in the silicon 
industry started to introduce hardware virtualization support in 
mainstream computing architectures, i.e., Intel Virtualization 
Technology, Arm Virtualization Extensions, and RISC-V 
Hypervisor extension. Bellow, we overview the virtualization 
support in Arm and RISC-V. 

Arm Virtualization Extensions (VE). Arm has had hardware 
virtualization support since version 7 of the ISA. The most 
recent version of the architecture (Armv8/9-A) extends the 
privileged architecture with a dedicated hypervisor privilege 
mode (EL2) which sits between the secure firmware mode (EL3) 
and the kernel/user modes (EL1/EL0). A hypervisor running at 
EL2 has fine-grained control over which CPU resources are 
directly accessible by guests (e.g., control registers). EL1/EL0 
memory accesses are subject to a second stage of translation, in 
control of the hypervisor. Arm VE support different page sizes: 
4 KiB, 16 KiB, and 64 KiB. Arm also defines the System 
Memory-Management Unit (SMMU), which extends memory 
virtualization mechanisms from the CPU to the bus to restrict 
VM-originated direct-memory accesses (DMAs). The 
virtualization acceleration also spans to the interrupt controller, 
i.e., the Generic Interrupt Controller (GIC). The GICv2 standard 
has two main components: a central distributor and a per-core 
interface. GICv2 provides virtualization support only on the 
interface; the distributor, however, must be fully emulated. The 
GICv3 and GICv4 provide support for the direct delivery of 
hardware interrupts to VMs; however, this feature is only 
available for inter-processor interrupts (IPIs) and message-
signaled interrupts (MSIs). 

RISC-V Hypervisor Extension. The RISC-V privileged 
architecture specification introduced hardware support for 

virtualization through the Hypervisor extension. This extension 
execution model follows an orthogonal design where the 
supervisor mode (S-mode) is modified to a hypervisor-extended 
supervisor mode (HS-mode). There are two new privileged 
modes, i.e., virtual supervisor mode (VS-mode) and virtual user 
mode (VU-mode). The Hypervisor extension also defines a 
second stage of translation (G-stage in RISC-V lingo) to 
virtualize the guest memory by translating guest-physical 
addresses (GPA) into host-physical addresses (HPA). The HS-
mode operates like S-mode but with additional hypervisor 
registers and instructions to control the VM execution and G-
stage translation. We have implemented the Hypervisor 
extension in two RISC-V CPUs: Rocket [7] and CVA6 [8]. In 
tandem with this extension, there are two specifications key to 
virtualization: the Input/Output Memory-Management Unit 
(IOMMU) and the Advanced Interrupt Architecture (AIA). The 
IOMMU provides hardware virtualization support for 
peripherals at the platform level, while the AIA (consisting of 
APLIC + IMSIC) provides virtualization support for interrupts. 
Notwithstanding, the AIA virtualization support is only 
available through the IMSIC; it is still a topic of ongoing study 
whether an APLIC should be allowed to directly delivery of 
interrupts to VM.  

D. Hypervisors for MCS 

Over the past decade, many hypervisors have been designed 
or retrofitted for MCS. Quest-V essentially pioneered the static 
partitioning hypervisor architecture, but only has support for 
x86. Other x86-only solutions include ACRN. ACRN was built 
for MCS but still allows for more flexible configuration and 
device sharing. Jailhouse is an open-source static partitioning 
hypervisor developed by Siemens that relies on Linux to boot 
and initialize the system. Xen is a widely-used hypervisor that 
relies on a privileged VM, called Dom0, to manage non-
privileged VMs (DomUs) and interface with peripherals. Xen 
Dom0-less is a novel approach that enables the deployment 
without any Dom0, booting all guests directly from the 
hypervisor and statically partitioning the system. seL4 is a 
formally verified microkernel that can be used as a hypervisor in 
combination with an user-level VMM (e.g., CAmkES VMM). 
Xtratum is a hypervisor of particular interest in the aerospace but 
lacks support for Armv8-A. Xvisor is an embedded hypervisor 
that targets mainly soft real-time applications. The NOVA 
microhypervisor follows a similar design to seL4, but is tailored 
for virtualization. LTZVisor and VOSYS have leveraged 
TrustZone to build mainly dual-guest systems; uRTZVisor 
provides multi-guest support. There are also commercial 
offerings such as LynxSecure, PikeOs, VXworks, Integrity, 
Coqos or newcomers such as CLARE. Despite it tight 
independence with Linux, KVM has also been considered for 
embedded real-time use cases. We have developed Bao.  

Bao Hypervisor. Bao [3] is an open-source static partitioning 
hypervisor that implements the pure static partitioning 
architecture, i.e., a minimal, thin layer of privileged software 
that leverages the existing ISA virtualization primitives to 
partition the hardware. Bao has no scheduler and does not rely 
on external libraries or privileged VM (e.g., Linux), consisting 
of a standalone component that depends only on standard 
firmware to initialize the system and perform platform-specific 
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tasks. Bao initially targeted Armv8-A. The mainline now 
includes support for RISC-V, Armv7-A, and Armv8-R. 

III. VIRTUALIZATION TODAY: PROBLEMS AND LIMITATIONS 

Ideally, the “hypervisor” would just be a thin configuration 
layer with no runtime overheads; however, this utopia is far from 
reality. In this section, we discuss a few problems and limitations 
of existing virtualization technologies and hypervisor solutions, 
mainly driven by MCS requirements and use cases. 

A. Performance Overhead 

Virtualization has been connotated, for quite long time, to a 
significant impact in terms of performance. This was mainly due 
to the fact that mainstream computer architectures a decade ago 
lacked hardware virtualization acceleration. Thus, back then, 
existing hypervisor solutions (mainly for the cloud) resorted to 
software-based techniques such as (i) dynamic binary 
translation, (ii) shadow page tables, (iii) or paravirtualization, to 
virtualize the system. With such software-centric techniques, 
reported performance impact achieved up to ~350% in case of 
paravirtualization (LMbench) [7]. 

With the introducing of the hardware virtualization support 
in COTS processors, the performance impact reduced 
significantly (depending also on the target microarchitecture). 
Of course, this performance impact still depends on the design 
of the hypervisor and on the different features. For example, 
embedded hypervisors with scheduler to time multiplex virtual 
CPUs in the same physical CPU have an extra overhead 
comparing to static partitioning hypervisors. To support our 
argument and corroborate what we have already reported in 
previous works [3], we ran the MiBench (Automotive and 
Industrial Control Suite) applicational benchmark, to collect the 
execution time of Linux running directly atop the hardware and 
Linux running in a VM atop Bao (Xilinx ZCU104). We ran the 
experiments for the virtualization setup with different page sizes, 
i.e., 2MiB and 4KiB.  

For each benchmark, we collected the average absolute 
execution time for the native execution. The first observation is 
that Bao incurs a negligible performance penalty, i.e., less than 
1% across all benchmarks when the page size is 2MiB. When 
Bao is configured to use the 4KiB page size, the overhead can 
reach up to 6%. Thus, for a virtualized system configured with a 
single guest VM, there are two main possible sources of 
overhead. The first source is the increase in TLB miss penalty 
due to the second stage of translation. Second, the overhead of 
trapping to the hypervisor and performing interrupt injection, 
e.g., timer tick interrupt. 

As a final takeaway, we can highlight that modern static 
partitioning hypervisors such as Bao, do not incur meaningful 
performance impacts due to (i) modern hardware virtualization 
support, (ii) one-to-one mapping between virtual and physical 
CPUs (i.e., no scheduler), and (iii) minimal traps. However, we 
highlight the need for support for / make use of superpages (e.g., 
2 MiB) to minimize TLB misses and page-table walks. 

B. Boot time 

System boot time is key to several MCSs, in particular for 
automotive. This is, however, an overlooked property in many 
hypervisors, in particular the ones that are open-source.  

To provide empirical evidence about the boot time, we 
measured the hypervisor boot time and the full system boot time 
with Bao, targeting a Xilinx ZCU104 platform (Zynq 
UltraScale+). The platform boot flow starts by executing ROM 
code in two co-processors, which load the first-stage bootloader 
(FSBL) and start the main Cortex-A CPUs. These boot stages 
setup the raw platform infrastructure (e.g., clocks, DRAM) and 
load the Arm Trusted Firmware (TF-A) and U-boot. U-boot will 
then load the hypervisor and the guest images. Bao boot guests 
right after the initialization.  

Figure 2 depicts the hypervisor boot time (top) and the 
system cumulative time for each boot stage (down), i.e., FSBL 
(fsbl), TF-A (atf), U-boot (uboot), and Bao (bao). The 
hypervisor boot time is dependent on the VM and how it is 
configured. We observed that the VM image size impacts the 
hypervisor boot time. However, there are other factors at stake, 
such as specific hypervisor features/drivers/modules (e.g., 
health monitoring), communication channels, scheduling 
schemes, and others [17]. We measure boot time by varying the 
size of the VM image and keeping other configuration 
parameters (e.g., size of VM memory) intact. Thus, to 
understand the overhead of the hypervisor in the context of the 
complete boot flow, we also measure the full system boot time. 
Here, we can confirm that the bulk of boot time is spent by U-
boot. From a macro perspective, the hypervisor adds an almost 
constant offset to U-boot's boot time. This results are in line on 
what was previously disclosed for other experts in the field, in 
the context of commercial hypervisors [17]. 

 

 

Figure 2. Hypervisor boot time (top) and System boot time 
(bottom) for a Bao-based system by VM image region size. 



All in all, the major bottleneck for the VM boot time is 
caused by the bootloader, not the hypervisors. We stress the need 
for new boot mechanisms that speed up the boot process, in 
particular for lightweight critical VMs. 

C. Temporal Interference 

Embedded virtualization has several proven benefits but still 
some concerns while providing real-time and freedom-from-
interference guarantees. It is true that virtualization already 
provides a reasonably high degree of time and space 
encapsulation and isolation of VMs by time-multiplexing 
resources such as the CPU, partitioning memory, and assigning 
or emulating devices. Notwithstanding, partitioning and 
multiplexing of micro-architectural shared system resources 
were, until recently, neglected by most hypervisors. This led to 
contention and a lack of truly temporal isolation, hurting 
determinism by increasing jitter. Although AMP hypervisors 
with VMs pinned to dedicated cores already remove part of this 
contention when compared to single-core or symmetric 
multiprocessing (SMP) implementations, systemwide resources 
such as last-level caches (LLCs), memory controllers, and 
interconnects remain shared and subject to contention. This is 
aggravated as mechanisms such as cache replacement, cache 
coherency, hardware prefetching, or memory controller 
scheduling focus mainly on performance and bandwidth 
maximization. There are existing techniques that address this 
issue, which we highlight cache coloring and memory 
bandwidth reservation [11],[13-14]. 

Figure 3 provides evidence about the impact on performance 
due to interference on Arm (top) and RISC-V (bottom). These 
graphs were borrowed from our previous works [3],[7]. The 
system configuration and all the replicability information can be 
found in [3] and [7]. Analyzing the figures, it is possible to draw 
a few observations. First, when coloring is enabled (solo-col), 
the performance overhead is aggravated. This is explained by 
the reduced L2 cache size (due to colors), and that coloring 
precludes the use of superpages, significantly increasing TLB 
pressure (in line with results from Section III.A 4KiB page size, 
but slightly aggravated due to reduced L2 cache size). Second, 
in the interference scenario (interf), there is significant 
performance degradation. Also, we can see that cache 
partitioning through coloring can reduce interference; however, 
it is not optimal, since it is still higher in the interf-col than the 
solo-col scenario. This can be explained by the still not address 
contention introduced downstream from LLC (e.g. write-back 
buffer, MSHRs, interconnect, memory controller).    

As conclusion, we can argue that multicore memory 
hierarchy interference significantly affects guest performance. 
Cache partitioning via page coloring helps, but is not the perfect 
solution; despite fully eliminating inter-core conflict misses, it 
does not fully mitigate interference. This is related to the fact 
that there is also significant contention downstream in the 
memory hierarchy, e.g., interconnects, memory controller, or 
even in the internal LLC structures. 

 

 

Figure 3. Bao hypervisor relative performance degradation/overhead for the MiBench Automotive and Industrial Control Suite 
for different configuration scenarios: Armv8-A (top) [3] and RISC-V (bottom) [7]. 
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D. Interrupt Latency  

In MCS, interrupt latency is a key requirement. 
Notwithstanding, as aforementioned, the existing GIC (and 
PLIC as well) virtualization support is not ideal for MCS: 
hypervisors have to handle and inject all interrupts and must 
actively manage list registers (GIC) when the number of pending 
interrupts is larger than the physical list registers. To provide 
empirical evidence about the interrupt latency in embedded / 
static partitioning hypervisors, we resorted to the results from 
our previous work on Bao [3]. Results translate the interrupt 
latency for a bare-metal custom application that continuously 
sets up the architectural timer to trigger an interrupt every ten 
milliseconds. Since the instant at which the interrupt is triggered 
is well-known, the interrupt latency is calculated as the 
difference between the expected wall-clock time and the actual 
instant it starts handling the interrupt.   

Figure 4 depicts the Bao interrupt latency for different 
configuration scenarios: (i) native execution of the custom 
application (native); (ii) standalone hosted execution of the 
custom application atop Bao (solo); (iii) standalone hosted 
execution of the custom application with cache coloring enabled 
(solo-col); (iv) standalone hosted execution of the custom 
application with cache coloring enabled for VMs and hypervisor 
(solo-hyp-col); (v) hosted execution of the custom application 
atop Bao under the interference of other "stress" application 
(interf); (vi) hosted execution of the custom application atop Bao 
under the interference of other "stress" application with cache 
coloring enabled (interf-col); and (vii) hosted execution of the 
custom application atop Bao under the interference of other 
"stress" application with cache coloring enabled for VMs and 
hypervisor (interf-hyp-col).  

When comparing native with the standalone hosted 
execution, we observe a significant increase in both average 
latency and standard deviation. This is due to the already 
anticipated GIC virtualization overhead, i.e., the trap and mode 
crossing costs and interrupt management/re-injection. It is also 
visible that coloring, per se, does not significantly impact 
average interrupt latency, but slightly increases the worst-case 
latency. The results also confirm the expected adverse effects of 
interference (interf) by cache and memory contention in 
interrupt latency, especially in the worst case. Enabling coloring 
under interference (interf-col) does not reduce the latency to the 
values reported in the standalone hosted execution setup (solo). 
This is due to the interference between guests and the hypervisor 

itself, i.e., corroborated by the lastest bars, i.e. the interf-hyp-col 
scenario. 

Direct Interrupt Injection. Direct interrupt injection is a novel 
technique implemented in Arm-based hypervisors to eliminate 
the need for the hypervisor mediating interrupt injection. With 
this technique, the hypervisor passes through the physical GIC 
CPU interface and routes all interrupts directly to the VM while 
still emulating the (shared) distributor. This allows physical 
interrupts to be directly delivered to the VM with no hypervisor 
intervention. This is not a major issue as hypervisors do not 
directly manage devices. To communicate internally the 
hypervisor leverages the SDEI to register an event with EL3 
firmware during initialization, which will then map it to its own 
dedicated secure IPIs. It can then trigger the event by issuing an 
SMC, making the firmware will divert execution to a predefined 
hypervisor handler. In one of our most recent works [11], we 
provide empirical evidence about the effectiveness of the 
technique in reducing interrupt latency to near to native values. 

IV. VIRTUALIZATION TOMORROW: CHALLENGES AND 

OPPORTUNITIES 

In this section, we discuss a set of challenges and 
opportunities for hypervisors targeting MCS. 

A. Stronger and Holistic Isolation 

Cache coloring does not fully mitigate the effects of 
interference. Furthermore, coloring has inherent inefficiencies 
such as (i) precluding the use of superpages and (ii) internal 
memory fragmentation. To further improve determinism and 
minimize coloring bottlenecks, there are other COTS-applicable 
contention mitigation mechanisms, e.g., memory bandwidth 
regulation (PMU-based CPU throttling) [14] and DRAM bank 
coloring [13]. We also stress the importance of including support 
for novel hardware extensions such as MPAM and call for 
platform designers to include such facilities in their upcoming 
designs targeting MCS. We also advocate for the RISC-V 
community to specify similar hardware facilities.  

Another overlooked topic related to interference is the general 
lack of support in embedded and static partitioning hypervisors 
for managing traffic from peripheral DMAs. We advocate that 
SPH must provide contention mitigation mechanisms at the 
platform level, e.g., (i) leveraging QoS hardware available on 
the bus and (ii) controlling interference from DMA-capable 
devices or accelerators. This is more problematic as platforms 
become increasingly heterogenous (e.g., GPUs, TPUs, FPGA). 
Furthermore, since IOMMU structures (e.g., TLBs) are still 
shared between multiple DMA masters controlled by different 
VMs, we hypothesize that bandwidth regulation techniques may 
fall short while mitigating interference originating from these 
structures. 

B. “Near-native” Interrupt Latency 

The impact on interrupt latency in Arm-based (MCS) 
hypervisors is primarily due to inadequate hardware support in 
GICv2/3. The GICv4 will introduce support for direct interrupt 
injection to VMs; however, this feature is only implemented for 
inter-processor interrupts (IPIs) and message-signaled interrupts 
(MSIs). We stress the attention of Arm silicon makers and 
designers to provide additional hardware support at the GIC 

Figure 4. Bao Hypervisor interrupt latency for different 
configuration scenarios [3]. 



level for direct interrupt injection. The same holds for RISC-V. 
The PLIC does not provide any sort of support for interrupt 
virtualization and the new AIA specification seems to be mainly 
driven by high-performance computing (HPC) requirements 
(where interrupt latency is not so critical such as in MCSs). 

Besides the need for additional hardware support, we argue 
system designers need to revisit the implementation of the 
interrupt injection paths in (open-source) hypervisors for MCSs 
[11]. Finally, Bao and Jailhouse implement the direct interrupt 
injection technique; however, we must stress that using this 
technique severely hinders the ability of the hypervisors to 
manage devices or implement any functionality dependent on 
interrupts. A plausible research direction would be a hybrid 
approach, i.e., selectively enabling specific cores for critical 
guests while providing the more complex functionality in cores 
running non-critical guests. 

C. Novel Architectures 

Embedded hypervisors for MCS (in particular, static 
partitioning hypervisors) should be as small and simple as 
possible while providing the necessary partitioning mechanisms. 
Ideally, it would be only a thin layer of software for configuring 
hardware virtualization partitioning mechanisms at boot time. 
However, several factors hinder this goal in Arm (and RISC-V) 
processors, including the need to inject interrupts or emulate 
firmware services such as PSCI. From a more realistic 
perspective, pure static partitioning hypervisors such as Bao and 
Jailhouse are often too strict, especially from a resource 
utilization perspective. Also, there might be the need to share 
devices or securely multiplex access to indivisible resources 
(e.g., clocks). 

A hybrid, more flexible approach is to have the system 
resources statically partitioned while dynamically multiplexing 
or emulating the resources in one of the partitions (e.g., 
scheduling multiple vCPUs in a single CPU). Guaranteeing 
isolation and freedom from interference between these two 
domains would still fit MCS requirements, while providing a 
more adaptable interface. This is possible in a hypervisor such 
as Xen with the use of privileged Dom0, but there is no clear 
separation between partitioning and virtualization functions. In 
this vein, we argue that these two concepts are often conflated 
and implemented in a monolithic approach. Naturally, 
microkernels such as the seL4 virtualization design, but with the 
expected resulting impact on latency for VMs. All in all, we 
advocate for novel architectures that combine both the flexibility 
and robust fault encapsulation of microkernels with the 
simplicity and minimalist latencies of static partitioning 
hypervisors. 

D. CHERI & Virtualization 

The use of software capabilities to implement fine-grain 
control access is not a new endeavor. Microkernels have been 
using software capabilities as a mechanism to enforce security 
for decades [16]. Notwithstanding, hardware capabilities just 
recently started to raise some interest with the Capability 
Hardware Enhanced RISC Instructions (CHERI) architecture. 
CHERI extends conventional ISAs with a new type of hardware-
supported data, the architectural capability [18]. CHERI was 
first implemented for the MIPS architecture but then spanned to 
Arm (CHERI-ARM) and RISC-V (CHERI-RISC-V). 

Significant effort has been made to understand and evaluate the 
implications of CHERI on compatibility, performance, and 
security for off-the-shelf software stacks. In particular, 
CheriRTOS have demonstrated the applicability of the CHERI 
architecture to deeply embedded systems. In 2019, the UK 
government, partnering with key industry players (i.e., Arm, 
Microsoft, and Google), decided to invest in the Digital Security 
by Design (DSbD) program aiming at bringing CHERI from 
prototype to mainstream (e.g., Arm Morello). 

Despite the ongoing academic and industry-related efforts 
built atop the CHERI technology, very little has been done on 
the use of CHERI for virtualization. Recently, CAP-VMs [19] 
introduced a new VM-like abstraction that leverages hardware 
support for CHERI memory capabilities for secure isolation; 
however, this targets cloud applications. From a research point 
of view, it is still an open challenge to understand how CHERI 
can be used and interact with embedded virtualization 
environments targeting mixed-criticality systems. An interesting 
path would be to design or extend an open-source embedded / 
static partitioning hypervisor (e.g., Bao) to (i) compile as hybrid-
capability or pure-capability code and (ii) host CHERI-aware 
VMs. This would provide a compelling common ground to start 
investigating, for example, the trade-offs between the hybrid and 
pure approaches in the context of MCSs.  

E. Other Directions 

The list discussed so far is not meant to be exhaustive. The 
discussed topics are representative of a set of challenges and 
opportunities existing in the hypervisor for MCSs, and we argue 
that may be representative of the ones with more impact in the 
overall field. Notwithstanding, there are other topics of relevant 
importance, including (but not limited to): (i) support for 
emerging virtualization processors based on dual-stage MPU 
such as the new Armv8-R Cortex-R real-time processors (e.g., 
Cortex-R52) [20]; the need for strong security guarantees (e.g., 
timing side-channels, TEE support, control flow integrity, VM 
introspection); (ii) the compliance of functional safety standards 
(mostly in open-source embedded hypervisors); (iii) the 
implementation of communication primitives, in particular 
leveraging open standards such as VirtIO and OpenAMP; and 
(iv) even the use of novel cost-effective formal verification 
techniques [21-22] to very hypervisor and firmware (e.g., Arm 
TF-A, RISC-V OpenSBI).  

V. CONCLUSION 

There is a common erroneous belief that hypervisors, per se, 
are magic bullets that guarantee the safety certification of MCSs. 
In this paper, we provided a comprehensive picture of the use of 
virtualization in the context of mixed-criticality systems 
(MCSs). While sharing evidence collected in more than a decade 
of experience in the field, we highlighted the main problems and 
limitations currently affecting existing hypervisor solutions and 
(ii) discussed a set of open research and industrial challenges and 
opportunities.  
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