
 

 
«This paper is financed by National Funds of the FCT – Portuguese 

Foundation for Science and Technology within the project 
«UIDB/03182/2020» 

 
 

 

“Modelling causality in nonstationary variances 

with an application to carbon markets” 

 

 
https://nipe.eeg.uminho.pt/  

 

2023 
 

#13 

WORKING PAPER 

  

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Susana Campos-Martins 

Cristina Amado 

https://nipe.eeg.uminho.pt/


Modelling causality in nonstationary variances with

an application to carbon markets∗

Susana Campos-Martins†
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Abstract
In this paper we propose a multivariate generalisation of the multiplicative decom-
position of the volatility within the class of conditional correlation GARCH models.
The GARCH variance equations are multiplicatively decomposed into a deterministic
nonstationary component describing the long-run movements in volatility and a
short-run dynamic component allowing for volatility spillover effects across markets
or assets. The conditional correlations are assumed to be time-invariant in its
simplest form or generalised into a flexible dynamic parameterisation. Parameters of
the model are estimated equation-by-equation by maximum likelihood applying the
maximisation by parts algorithm to the variance equations, and thereafter to the
structure of conditional correlations. An empirical application using carbon markets
data illustrates the usefulness of the model. Our results suggest that, after modelling
the variance equations accordingly, we find evidence that the transmission mechanism
of shocks persists which is supported by the presence of variance interactions robust
to nonstationarity.
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1 Introduction

The class of conditional correlation generalized autoregressive conditional heteroskedasticity

(CC-GARCH) models introduced by Bollerslev (1990) has become a useful tool for modelling

and forecasting (short-run) volatility and correlations between financial time series. In

these models, the conditional variances are usually driven only by own past squared

innovations and by own past conditional variances. As a result of international financial

integration, because of the presence of information transmission, such structure may be

insufficient to capture the time dependence in the data. In the presence of financial market

interdependence, interactions in volatility also play an important role to earn knowledge

on how information is transmitted across assets or markets. Empirical studies providing

evidence for volatility spillovers include Baillie and Bollerslev (1990), King and Wadhwani

(1990), Hamao, Masulis, and Ng (1990), Cifarelli and Paladino (2005) and Hong (2001),

among others.

In this context, several specification techniques have been employed in the literature

for examining volatility transmission mechanism spillovers. An interesting extension to

the constant CC-GARCH (CCC-GARCH) model of Bollerslev (1990) that builds on the

assumption of time-invariant correlations allowing dynamic volatility interactions in the

form of cross-market ARCH and GARCH effects was introduced by Jeantheau (1998) and

termed extended (E)CCC-GARCH model by He and Teräsvirta (2004). Other CC-GARCH

models allowing for a volatility transmission structure include the vector autoregressive

moving average (ARMA-)GARCH of Ling and McAleer (2003), the unrestricted ECCC-

GARCH model of Conrad and Karanasos (2010) that allows for volatility feedback of

either positive or negative sign and extensions thereafter on Karanasos, Paraskevopoulos,

Ali, Karoglou, and Yfanti (2014), Conrad and Karanasos (2015) and Karanasos, Ali,

Margaronis, and Nath (2018).

Yet evidence of volatility spillover effects can be due to neglected deterministic changes

in the unconditional variance of long return series. Ewing and Malik (2005) documented

that the statistical significance of volatility spillovers across assets or markets can be due

to an inaccurate measurement of persistence in volatility. They report that accounting for
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regime shifts in volatility reduces remarkably the transmission of conditional variances

and essentially removes the spillover effects. Therefore, ignoring variance nonstationarity,

a feature usually observed in long time series as the result of structural changes in the

unconditional variance, can lead to spurious volatility transmission as shown recently

through Monte Carlo simulations by Caporin and Malik (2020). Since volatility shifts are

often expected in long return series due to political, social or economic events, careful

modelling of changes in the unconditional variance is therefore needed prior to modelling

volatility spillover effects.

In this paper, we build on a generalisation of the multivariate multiplicative time-

varying GARCH model of Amado and Teräsvirta (2014) and Silvennoinen and Teräsvirta

(2021). The new model extends the family of conditional correlation GARCH models

along two dimensions: it accounts for potential nonstationarity in volatility and it allows

for interdependence in volatility. This is done by augmenting the conditional variance

equations multiplicatively by a time-dependent component and extend it to the vector

case where volatility interactions are allowed into the model. The structure of the

conditional correlation matrix is assumed to be either time independent or to vary over time.

Other multivariate generalisations of the time-varying GARCH model with multiplicative

decomposition exist in the literature, but although these models are adequate for accounting

nonstationarity in volatility, the ARCH and GARCH matrices are usually assumed to be

diagonal and therefore variance spillovers are excluded from the model. Earlier examples

include the local dynamic conditional correlation model by Feng (2006), the dynamic

conditional correlation with mixed data sampling (DCC-MIDAS) model by Colacito, Engle,

and Ghysels (2011) and the multiplicative DCC-GARCH model by Bauwens, Hafner, and

Pierret (2013), among others.

We further develop a coherent modelling strategy equation by equation based on

statistical inference. The algorithm is constructed to circumvent the curse of dimensionality

and avoiding estimating unnecessary parameters. Our modelling building approach

proceeds from specific-to-general and relies on statistical inference to the problem of

specifying the model. Therefore, testing the assumptions of constant unconditional

variance and no volatility spillovers is an important specification tool for building the
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model. As a misspecification test we propose a Lagrange Multiplier (LM) test for the

presence of volatility interactions under nonstationarity in variance. A regression-based

version of our test makes it straightforward to implement. Monte Carlo experiments show

that the test performs reasonably well in small samples.

An empirical example to carbon markets data demonstrates the practical usefulness

of the new model. The application shows how the specification yields useful information

on the volatility dynamics and volatility interaction between the return series. Our

model is applied to daily returns of carbon emissions futures and media-based climate

concerns index. The results of the specification strategy strongly support the presence

of smooth changes in the baseline volatility of processes and volatility transmission from

one to another series in both applications. Interestingly, our findings suggest that if the

nonstationary component of the variance was left unmodelled we would find no supporting

statistical evidence for causality in variance.

The remainder of this paper is organized as follows. In Section 2 we present the new

conditional correlation GARCH model with a detailed description of its variance and

correlation components. Sections 3 and 4 are devoted to the estimation of parameters

and to model specification, respectively. Section 5 introduces the LM test for volatility

interactions. Section 6 contains Monte Carlo experiments of the finite sample properties

of the test statistic. The empirical application to carbon markets data is provided in

Section 7. Section 8 concludes the paper. A separate file contains supplementary material

including another empirical example to four major spot exchange rates to illustrate the

usefulness of our procedure.

2 The model

The model considered in this work belongs to the class of multivariate conditional cor-

relation GARCH models introduced by Bollerslev (1990). The new model extends the

original model by introducing nonstationarity and cross-asset (or cross-market) conditional

heteroskedasticity in the conditional variance components and potentially time-varying

correlations described by parametric extensions of the constant conditional correlation
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matrix. The model is an extension of the nonstationary parameterization introduced by

Amado and Teräsvirta (2014) allowing for the presence of volatility transmission across

assets or markets where past information of squared returns of all components are useful

in predicting the variance process of any component. The proposed new class of models

shall be named as multiplicative time-varying extended conditional correlation GARCH

(MTV-ECC-GARCH) models. In order to present the model we introduce some notation.

Let the stochastic vector process for the m-dimensional vector of returns be defined as

yt = E(yt|Ft−1) + εt, t = 1, . . . , T, (1)

where Ft−1 = σ{εu : u < t} is the σ-field generated by past values of εt and, for simplicity,

the conditional expectation of the returns E(yt|Ft−1) = 0. Define the m-dimensional

vector of innovations {εt} to have the multiplicative decomposition

εt = StDtzt = Σ
1/2
t zt (2)

where St = diag(g
1/2
1t , . . . , g

1/2
mt ) is a diagonal matrix of positive-valued deterministic func-

tions of time and Dt = diag(h
1/2
1t , . . . , h

1/2
mt ) is a diagonal matrix of (weakly stationary)

conditional standard deviations. The vector of errors zt = (z1t, . . . , zmt)
′ form a sequence

of random variables with Ezt = 0 and a positive definite time-varying covariance matrix

cov(zt) = Pt, where Pt = [ρijt], such that ρiit = 1 and ρijt 6= 0, i, j = 1, . . . ,m. Assuming

nonsingularity of diag(Σt), we define the vector zt = D−1t φt = (φ1t/h
1/2
1t , . . . , φmt/h

1/2
mt )′,

where the elements of φt = (ε1t/g
1/2
1t , . . . , εmt/g

1/2
mt )′ are assumed to have a weakly stationary

vector GARCH representation augmented with cross-asset (or cross-market) conditional

heteroskedastic effects and conditional covariance matrix E(φtφ
′
t|Ft−1) = DtPtDt. Fur-

thermore, the vector of standardised errors ζt = P
−1/2
t zt ∼ iid(0, Im). From (2) it follows

that

E(εt|Ft−1) = 0 (3)

E(εtε
′
t|Ft−1) = StDtPtDtSt = Σt (4)
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where the conditional covariance matrix Σt = [σijt] of εt given the information set Ft−1 is

a positive-definite m×m matrix.

It follows that the univariate representation of the conditional covariance and variance

components are given by

σijt = ρijt(hitgit)
1/2(hjtgjt)

1/2, i 6= j (5)

and

σiit = hitgit, i = 1, . . . ,m (6)

respectively. In our approach we assume the variance process to be multiplicatively

decomposed into a long-term component git introducing nonstationarity and describing

the structural changes in the volatility clusters and a short-term component hit describing

conditional heteroskedasticity augmented with cross-asset (or cross-market) heteroskedastic

effects. As in Amado and Teräsvirta (2014) the diagonal elements of S2
t are defined as

follows

git = git(θg, t/T ) = δi0 +

ri∑
j=1

δijGij(γij, cij; t/T ), (7)

where δi0 > 0 is a fixed (known) constant, δij 6= 0, j = 1, . . . , ri, and γij > 0, i = 1, . . . ,m,

j = 1, . . . , ri, and ri = 1, . . . , R, such that R is a finite integer. To prevent exchangeability

of components in (7) further restrictions are needed on cij. The function Gij(γij, cij; t/T )

is the (generalised) logistic function

Gij(γij, cij; t/T ) = (1 + exp{−γij
kij∏
l=1

(t/T − cijl)})−1 (8)

where cij = (cij1, . . . , cijkij)
′ such that cij1 6 cij2 6 · · · 6 cijkij . Function (8) is by

construction continuous for γil <∞, i = 1, . . . ,m, and bounded between zero and unity.

The parameters cilj and γil determine the location and the speed of the transition between

volatility regimes. Under δi1 = ... = δiri = 0 or γi1 = ... = γiri = 0, i = 1, . . . ,m, in (7), the

unconditional variance of εt becomes constant, otherwise it is capable of describing smooth

changes in the amplitude of volatility clusters. In the simplest case, ri = 1 and kij = 1, the
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function git increases monotonically over time when δi1 > 0 and decreases monotonically

when δi1 < 0. The slope parameter γi1 in (8) controls the degree of smoothness of the

transition function: the larger γi1, the faster the transition between the extreme states.

As γi1 −→∞, structural breaks can be identified at the location ci11.

The diagonal components of D2
t are assumed to follow a weakly stationary augmented

GARCH(p, q) representation by rescaling the squared innovations with the deterministic

function git and are defined as

hit = hit(θg,θh) = ωi +

qi∑
k=1

m∑
j=1

αkijφ
2
j,t−k +

pi∑
k=1

βkihi,t−k, ωi > 0, αkij ≥ 0, βki ≥ 0, (9)

where φjt = εjt/g
1/2
jt , j = 1, . . . ,m. In this extension, the conditional variance of any

element of φt is allowed to depend on the past values of all elements.

For the correlation structure we employ the dynamic conditional correlation (DCC-)

GARCH model by Engle (2002) where the conditional correlations depend upon the past

standardized residuals as follows

qij,t = ρ̄ij(1− a− b) + azi,t−1zj,t−1 + bqij,t−1 (10)

where a is a positive scalar and b is a non-negative scalar such that a+ b < 1, ρ̄ij is the

unconditional correlation of the standardized innovations zi,t and zj,t, and the correlation

estimator

ρij,t =
qij,t√

qii,t
√
qjj,t

(11)

ensures positive definiteness and produces valid correlation coefficients. The model defined

in (1)−(11) shall be called the multiplicative time-varying extended dynamic conditional

correlation (MTV-EDCC-)GARCH(p, q) model. A special case is nested in this model.

When αkij = 0, i 6= j, k = 1, . . . , qi, the model excludes volatility interactions and the

resulting model shall be called MTV-DCC-GARCH model. If we further let St ≡ Im the

model collapses into the Dynamic Conditional Correlation (DCC-)GARCH(p, q) model of

Engle (2002).

In the simplest form the conditional correlations are assumed to be time-invariant, i.e.,
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Pt ≡ P and this version of the model will be called the multiplicative time-varying extended

constant conditional correlation (MTV-ECCC-)GARCH(p, q) model. If, additionally,

St ≡ Im, the model collapses into the ECCC-GARCH(p, q) model of Jeantheau (1998)

and He and Teräsvirta (2004). The constant conditional correlation (CCC-)GARCH(p, q)

model of Bollerslev (1990) is nested in the MTV-ECCC-GARCH(p, q) model when Pt ≡ P,

St ≡ Im and αkij = 0, i 6= j, k = 1, . . . , qi,

3 Estimation of parameters

In this section, we are interested in estimating the conditional variance of each component

of εt and the correlations of εt in Pt. Since maximum likelihood estimation is numerically

very difficult we shall apply maximization by parts by Song, Fan, and Kalbfleisch (2005) to

the problem of maximizing the log-likelihood of the model. Firstly, the variance component

is modelled according to the equation-by-equation strategy suggested by Francq and

Zaköıan (2016) and then, secondly, the correlation component is obtained conditionally on

the estimated variances.

We begin by introducing some notation. Let the vector of parameters be denoted by

θ = (θ′ϑ,θ
′
ρ)
′ where the parameter vector θϑ = (θg,θh) contains the parameters of the

conditional variances and the elements of θρ are the parameters of the correlation matrix.

The composition of θρ depends on the structure of the correlation matrix. Assuming

εt|Ft−1 ∼ N (0,Σt), the conditional log-likelihood function for observation t of the model

is defined as

`t(θ, εt) = −(m/2) ln(2π)− (1/2) ln |Σt| − (1/2)ε′tΣ
−1
t εt

= −(m/2) ln(2π)− (1/2) ln |StDtPtDtSt| − (1/2)ε′tS
−1
t D−1t P−1t D−1t S−1t εt

= −(m/2) ln(2π)− ln |StDt| − (1/2) ln |Pt| − (1/2)z′tP
−1
t zt

= −(m/2) ln(2π)− ln |St| − (1/2)ε̃′tS
−2
t ε̃t − ln |Dt| − (1/2)ε∗′t D−2t ε

∗
t

+ z′tzt − (1/2) ln |Pt| − (1/2)z′tP
−1
t zt (12)

where ε̃t = D−1t εt = (ε1t/{h1t(θg,θh)}1/2, . . . , εmt/{hmt(θg,θh)}1/2)′,
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ε∗t = S−1t εt = (ε1t/{g1t(θg)}1/2, . . . , εmt/{gmt(θg)}1/2)′ and

zt = D−1t S−1t εt = (ε1t/{h1t(θg,θh)g1t(θg)}1/2, . . . , εmt/{hmt(θg,θh)gmt(θg)}1/2)′.

Equation (12) implies the following decomposition of the log-likelihood function for

observation t :

`t(θϑ,θρ) = `Ut (θg) + `Vt (θg,θh) + `Ct (θg,θh,θρ) (13)

where `Ut (θg) =
∑m

i=1 `
U
it(θg) and `Uit(θg) = −(1/2){ln git(θg)+ε̃2it/git(θg)}. Furthermore,

`Vt (θg,θh) =
∑m

i=1 `
V
it(θg,θh) and `Vit(θg,θh) = −(1/2){lnhit(θg,θh) + ε∗2it /hit(θg,θh)}.

Finally,

`Ct (θg,θh,θρ) = −(1/2)
{

ln |Pt(θg,θh,θρ)| − z′tP
−1
t (θg,θh,θρ)zt − 2z′tzt

}
(14)

Similarly to the DCC-GARCH model, the model is naturally estimated with the

two-step modelling strategy. First, the augmented GARCH equations are estimated using

maximization by parts and thereafter the correlation matrix is estimated conditionally on

the GARCH estimates. The iterative algorithm proceeds as follows.

Step 1: Maximize

LUiT (θg) =
T∑
t=1

`Uit(θg) = −(1/2)
T∑
t=1

{ln git(θg) + ε̃2it/git(θg)} (15)

with respect to θg for each i, i = 1, . . . ,m, separately, assuming ε̃∗it = εit, that is,

setting hit(θg,θh) ≡ 1. Denote the estimator as θ̂
(1)
g . For identification reasons, the

parameters δ0i and γ0i are fixed, respectively, to δ̂0i and γ̂0i. This means that the

estimation algorithm is carried out without iterating δ0i and γ0i, i = 1, ,m, and

therefore the remaining parameters are estimated conditionally on those estimates.

Making use of θ̂
(1)
g , maximize

LViT (θ̂(1)g ,θh) =
T∑
t=1

`Vit (θ̂
(1)
g ,θh) = −(1/2)

T∑
t=1

{lnhit(θ̂(1)g ,θh) + ε∗2it /hit(θ̂
(1)
g ,θh)}

(16)

with respect to θh for each i, i = 1, . . . ,m, where ε∗it = εit/{git(θ̂(1)g )}1/2. Call the

resulting estimator as θ̂
(1)
h .
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Step 2: Maximize

LUiT (θg) =
T∑
t=1

`Uit(θg) = −(1/2)
T∑
t=1

{ln git(θg) + ε̃2it/git(θg)} (17)

with respect to θg where ε̃it = εit/{hit(θ̂(1)g , θ̂
(1)
h )}1/2 for each i, i = 1, . . . ,m. Denote

this estimator θ̂
(2)
g and maximize

LViT (θ̂(2)g ,θh) =
T∑
t=1

`Vit (θ̂
(2)
g ,θh) = −(1/2)

T∑
t=1

{lnhit(θ̂(2)g ,θh) + ε∗2it /hit(θ̂
(2)
g ,θh)}

(18)

with respect to θh, where ε∗it = εit/{git(θ̂(2)g )}1/2. This yields the estimator θ̂
(2)
h .

Iterate until convergence. Call the resulting estimators θ̂g and θ̂h.

After estimating the variance equations, estimate θρ given θ̂g and θ̂h by maximizing

LCiT (θρ) =
T∑
t=1

`Ct (θρ|θ̂g, θ̂h) = −(1/2)
{

ln |Pt(θρ)| − z′tP
−1
t (θρ)zt − 2z′tzt

}
(19)

where zt = (z1t, . . . , zmt) with zit = εit/{hit(θ̂g, θ̂h)git(θ̂g)}1/2, i = 1, . . . ,m.

Under mild regularity conditions, Silvennoinen and Teräsvirta (2021) established consis-

tency and asymptotic normality of the QMLE for the multivariate conditional correlation

GARCH models with extended GARCH equations with a multiplicative deterministic

component and time-varying correlations. Francq and Zaköıan (2016) showed strong

consistency and asymptotic normality of the equation-by-equation estimator for fairly

general conditional correlation GARCH models with variance interactions. Ling and

McAleer (2003) also proved the asymptotic properties of the constant conditional cor-

relation GARCH model without imposing any diagonality for the ARCH and GARCH

matrices. However, in both cases, stationarity is imposed to the conditional variances.

Extending their asymptotic results for the MTV-EDCC-GARCH model is a nontrivial

problem and beyond the scope of the present paper. For inference, we shall assume that

the asymptotic distribution of the equation-by-equation estimator is normal. It then

follows that
√
T (θ̂T − θ0)

d→ N (0, I−1T (θ0)). (20)
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where IT (θ0) is the population information matrix evaluated at the true parameter vector

θ = θ0.

4 Specific-to-general model selection

Our aim is to construct a coherent strategy for building MTV-ECC-GARCH models using

statistical inference. The model-building cycle is similar to the specific-to-general strategy

for nonlinear models of the conditional mean considered in, among others, Teräsvirta

(1998) and Teräsvirta, Tjøstheim, and Granger (2010). This implies starting with a

parsimonious model and proceeding to a more flexible variance model only if the statistical

misspecification tests indicate that the maintained model is inadequate. The strategy for

building MTV-ECC-GARCH models consists of specification, estimation and evaluation

stages of the model. The technique involves a sequential procedure for specifying the

parameterization of the deterministic component gt and determining the shape of the

transition function using a sequence of LM-type tests. In practice, the parametric structure

of this volatility component has to be determined from the data, which involves finding

the number of transitions ri in (7) and selecting the integer kij in (8) with the testing

procedure of Amado and Teräsvirta (2013). The modelling cycle for specifying the

MTV-ECC-GARCH model consists of the following stages:

1. Begin by modelling the conditional variance hit under the assumption that git ≡ 1

and αkij ≡ 0, k = 1, . . . , qi, j = 1, . . . ,m, i 6= j. This may be preceded by testing the

null hypothesis of no ARCH using the Engle (1982) LM test. In case of rejection, a

GARCH(1,1) model is estimated and tested against a MTV-GARCH model. The

number of functions git is determined thereafter equation by equation by sequential

testing. This is done as follows.

2. Test the hypothesis of constant unconditional variance HTV-VOL
01 : γi1 = 0 against

HTV-VOL
11 : γi1 > 0 in

git = 1 + δi1Gi1(γi1, ci1; t/T ) (21)

at the significance level α(1). The standard test statistic has a non-standard asymp-
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totic distribution because δi1 and ci1 are unidentified nuisance parameters when

HTV-VOL
01 is true. To circumvent this identification problem we follow Luukkonen,

Saikkonen, and Teräsvirta (1988) and approximate Gi1(γi1, ci1; t/T ) by its third-order

Taylor expansion around γi1 = 0. After reparameterizing, we obtain

git = ω∗i +
3∑
j=1

φij(t/T )j +R3(γi1, ci1; t/T ) (22)

where φij = γji1δ̃
∗
ij, with δ̃∗ij 6= 0, and R3(γi1, ci1; t/T ) is the remainder. Furthermore,

R3(γi1, ci1; t/T ) ≡ 0 under HTV-VOL
01 , so the remainder of the Taylor expansion does

not affect the asymptotic distribution theory. The new null hypothesis based on

this approximation becomes HTV-VOL,∗
01 : φi1 = φi2 = φi3 = 0. Under HTV-VOL,∗

01 , the

standard LM statistic has an asymptotic χ2−distribution with three degrees of

freedom. See Amado and Teräsvirta (2017) for details on how to compute the test

statistic. If HTV-VOL,∗
01 is rejected, for each equation select the order ki1 ≤ 3 in the

exponent of Gi1(γi1, ci1; t/T ) using a short sequence of tests within (22); for details

see Amado and Teräsvirta (2017). In case of failure to reject the null hypothesis of

constant unconditional variance estimate a standard GARCH model.

3. Next, if HTV-VOL
01 is rejected estimate git with a single transition function and test

HTV-VOL
02 : γi2 = 0 against HTV-VOL

12 : γi2 > 0 in

git = 1 + δi1Gi1(γi1, ci1; t/T ) + δi2Gi2(γi2, ci2; t/T ) (23)

at the significance level α(2) = τα(1), where τ ∈ (0, 1). In our application we set

τ = 0.5. The significance level is reduced at each stage by a factor τ in order to

favour parsimony. Again, model (23) is not identified under the null hypothesis.

To circumvent the problem we proceed as before and express the logistic func-

tion Gi2(γi2, ci2; t/T ) by a third-order Taylor approximation around γi2 = 0. After

rearranging terms we have

git = ω∗i + δi1G1(γi1, ci1; t/T ) +
3∑
j=1

ϕij(t/T )j +R3(γi2, ci2; t/T ) (24)
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where ϕij = γji2δ̃
∗
ij, δ̃

∗
ij 6= 0 and R3(γi2, ci2; t/T ) is the remainder. The new null

hypothesis based on this approximation becomes HTV-VOL,∗
02 : ϕi1 = ϕi2 = ϕi3 = 0.

Again, this hypothesis can be tested using a LM test. If the null hypothesis is

rejected, specify ki2 for the second transition and estimate git with two transition

functions.

4. More generally, when git has been estimated with ri−1 transition functions one tests

for another transition in git using the significance level α(ri) = τα(ri−1), ri = 2, 3, . . . .

Testing for additional transitions in git continues until the first non-rejection of the

null hypothesis. Proceed to the next step.

5. Next, test for the presence of causality in the variance (or volatility spillovers) by

testing whether the off-diagonal elements of the ARCH matrix are equal to zero,

that is, test HCausal-VOL
0i : αkij = 0, k = 1, . . . , qi, j = 1, . . . ,m and i 6= j; a full

description of this test is provided in Section 5. In case of rejection, the volatility hit

component is misspecified and therefore re-estimate the volatility model augmented

with cross-asset (or cross-market) conditional heteroskedasticity. In case of failure

to reject the null hypothesis of no variance interactions and constant unconditional

variance tentatively accept the standard GARCH as a specification for hit. If the

model passes the statistical tests, tentatively accept it. Otherwise, re-specify the

model equation by equation or consider another family of volatility models.

5 A test for causality in nonstationary variance

Understanding the transmission mechanism of financial shocks is crucial to identify the

origins of shocks on asset (or market) returns. When volatility transmission occurs, the

MTV-GARCH model is not yet sufficient to model the time dependence in the data as

the conditional variance is explained only by past series information. Testing the presence

of causality in variance (or cross-asset/cross-market conditional heteroskedasticity) with

multiplicative decomposition is therefore an important statistical tool to validate the

specification of the estimated model. In what follows we provide a brief description of the

13



testing procedure based on the LM test principle.

In order to consider the testing problem assume that the null model is the MTV-

GARCH model in which the GARCH component is, for notational convenience, of order

one, i.e., qi = pi = 1 and ri = 1. With this assumption the short-run dynamics of the

variance becomes:

hit = ωi +
m∑
j=1

αijφ
2
j,t−1 + βihi,t−1, ωi > 0, αij ≥ 0, j = 1, . . . ,m, βi ≥ 0. (25)

Assuming θϑi the volatility parameter vector for equation i be partitioned into θϑi =

(θ′g,θ
′
hi,θ

′
fi)
′, where θg = (θg1, . . . ,θgm)′ with θgi = (δi1, c

′
i1)
′1 and ci1 = (ci11, . . . , ci1ki)

′,

θhi = (ωi, αii, βi)
′ and θfi = {αij}, j = 1, . . . ,m and i 6= j, it is useful to define an

augmented version of the MTV-GARCH model by assuming that the conditional variance

component is additively misspecified as

σ2
it = {hit(θg,θhi) + fit(θfi)}git(θg) (26)

such that fit(θfi) = 0 if and only if θfi = 0m−1. In this setting, the null hypothesis of no

causality in variance (or no volatility spillovers) equals θfi = 0m−1. Equivalently, the null

hypothesis equals αij = 0, for all j = 1, . . . ,m and i 6= j. The quasi-likelihood function for

the volatility component for observation t, equation i, has the form

`it(θϑi) = −(1/2) ln 2π − (1/2){ln{hit(θg,θhi) + fit(θfi)}+ ln git(θg)} −

−(1/2)ε2it/{hit(θg,θhi) + fit(θfi)}git(θg)} (27)

To derive the LM test let st(θϑi) = ∂`it(θϑi)/∂θϑi be the score vector of (27) at each point

in time where

st(θϑi) = (
∂`it(θϑi)

∂θ′g
,
∂`it(θϑi)

∂θ′hi
,
∂`it(θϑi)

∂θ′fi
) (28)

1Note that parameters δi0 and γi1 are omitted since they are fixed from the first iteration.
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is the form of the partitioned score vector, and let

s(θϑi) = (1/T )
T∑
t=1

st(θϑi) (29)

be the average score where

s(θϑi) = (sg(θϑi)
′, sh(θϑi)

′, sf (θϑi)
′)′ (30)

with sg(θϑi) = (sg1(θϑi), . . . , sgm(θϑi))
′. The components of (30) are

sgi(θϑi) = (1/T )
T∑
t=1

∂`it(θϑi)

∂θgi
= (2T )−1

T∑
t=1

(z2it − 1)

(
1

git

∂git
∂θgi

+
1

fit + hit

∂hit
∂θgi

)
(31)

sgj(θϑi) = (1/T )
T∑
t=1

∂`it(θϑi)

∂θgj
= (2T )−1

T∑
t=1

(z2it − 1)
1

fit + hit

∂hit
∂θgj

(32)

sh(θϑi) = (1/T )
T∑
t=1

∂`it(θϑi)

∂θhi
= (2T )−1

T∑
t=1

(z2it − 1)
1

fit + hit

∂hit
∂θhi

(33)

sf (θϑi) = (1/T )
T∑
t=1

∂`it(θϑi)

∂θfi
= (2T )−1

T∑
t=1

(z2it − 1)
1

fit + hit

∂fit
∂θfi

(34)

for j = 1, . . . ,m, and i 6= j, where zit = εit/{(fit + hit)git}1/2 and

∂git
∂θgi

= (Gi(t/T ),g′ci(t/T ))′ (35)

∂hit
∂θgi

= −αiφ2
i,t−1

1

gi,t−1

∂gi,t−1
∂θgi

(36)

∂hit
∂θgj

= −αijφ2
j,t−1

1

gj,t−1

∂gj,t−1
∂θgj

(37)

∂hit
∂θhi

= vi,t−1 + βi
∂hi,t−1
∂θhi

(38)

∂hit
∂θfi

= φ2
−i,t−1 + βi

∂hi,t−1
∂θfi

(39)

with vit = (1, φ2
it, hit)

′, Gi(t/T ) ≡ Gi1(γi1, ci1; t/T ), gci(t/T ) = (gci1(t/T ), . . . , gciki (t/T ))′

with gcik(t/T ) =
∂git(t/T )

∂cik
= −γi1δi1Gi(t/T )(1−Gi(t/T ))

∏ki−1
l=1 (t/T −cil), k, l = 1, . . . , ki

and l 6= k and φ−i,t = {φjt}, j = 1, . . . ,m and i 6= j, and φit = εit/
√
git. In other words,

if φt = (φ1t, . . . , φmt)
′, φ−i,t contains all the elements but the ith element. Setting

ĥit = hit(θ̂g, θ̂hi,0) and ĝit = git(θ̂g) and evaluating the average score under H0i : αij = 0,
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for j = 1, . . . ,m, and i 6= j, yields

sgi(θ̂g, θ̂hi,0) = (2T )−1
T∑
t=1

(ẑ2it − 1)

(
1

ĝ0it

∂git
∂θgi
|H0i

+
1

ĥ0it

∂hit
∂θgi
|H0i

)
(40)

sgj(θ̂g, θ̂hi,0) = (2T )−1
T∑
t=1

(ẑ2it − 1)
1

ĥ0it

∂hit
∂θgj
|H0i

(41)

sh(θ̂g, θ̂hi,0) = (2T )−1
T∑
t=1

(ẑ2it − 1)
1

ĥ0it

∂hit
∂θhi
|H0i

(42)

sf (θ̂g, θ̂hi,0) = (2T )−1
T∑
t=1

(ẑ2it − 1)
1

ĥ0it

∂hit
∂θfi
|H0i

(43)

where ẑ2it = ε2it/ĥ
0
itĝ

0
it with ĥ0it and ĝ0it denoting, respectively, the conditional variance and

the deterministic component estimated under H0i. Under regularity conditions, Amado

and Teräsvirta (2013) showed that the maximum likelihood estimators by maximization by

parts lead to consistent and asymptotically normal estimates. It follows that θ̂g −→ θ0g and

θ̂hi −→ θ0hi in probability as T −→∞, where θ0g and θ0hi are the true parameter vectors of

θ̂g and θ̂hi, respectively. Analogously, the partial derivatives (35)−(39), evaluated at H0i,

simplify to

∂git
∂θgi
|H0i

= (Ĝit, ĝ
′
ci

(t/T ))′ (44)

∂hit
∂θgi
|H0i

= −α̂iφ̂2
i,t−1

1

ĝ0i,t−1

∂gi,t−1
∂θgi

|H0i
(45)

∂hit
∂θgj
|H0i

= 0

∂hit
∂θhi
|H0i

= v̂i,t−1 + β̂i
∂hi,t−1
∂θhi

|H0i
(46)

∂hit
∂θfi
|H0i

= φ̂2
−i,t−1 + β̂i

∂ĥi,t−1
∂θfi

|H0i
(47)

where v̂it = (1, φ̂2
it, ĥ

0
it)
′, Ĝi(t/T ) ≡ Ĝi1(γ̂i1, ĉi1; t/T ), ĝci(t/T ) = (ĝci1(t/T ), . . . , ĝciki (t/T ))′

with ĝcik(t/T ) =
∂ĝit(t/T )

∂cik
= −γ̂i1δ̂i1Ĝi(t/T )(1−Ĝi(t/T ))

∏ki−1
l=1 (t/T − ĉil), k, l = 1, . . . , ki

and l 6= k and φ̂−i,t = φ̂jt, j = 1, . . . ,m, i 6= j, and φ̂it = εit/
√
ĝ0it.

Let θ̂ϑi = (θ̂′g, θ̂
′
hi, θ̂

′
fi)
′ be the quasi-maximum likelihood estimator of θϑi. The average
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score evaluated at θ̂ϑi under the null hypothesis equals

s(θ̂ϑi) = (sg(θ̂ϑi)
′, sh(θ̂ϑi)

′, sf (θ̂ϑi)
′)′ = (0′,0′, sf (θ̂g, θ̂hi,0)′)′ (48)

where sf (θ̂g, θ̂hi,0) given in (43) is the relevant (nonzero) block in the LM test statistic.

Denoting the population information matrix by

Ii(θ0ϑi) = Es(θ0ϑi)s(θ0ϑi)
′ =


Ihh,i(θ0ϑi) Ihg,i(θ0ϑi) Ihf,i(θ0ϑi)

Igh,i(θ0ϑi) Igg,i(θ0ϑi) Igf,i(θ0ϑi)

Ifh,i(θ0ϑi) Ifg,i(θ0ϑi) Iff,i(θ0ϑi)

 (49)

where θ0ϑi is the true volatility parameter vector and s(θ0ϑi) is s(θϑi) evaluated at θ0ϑi, the

corresponding south-east block of the inverse of Ii(θ0ϑi) evaluated under the H0i equals

I−1ff (θ̂ϑi) = {Iff (θ̂ϑi)− If.(θ̂ϑi)[I..(θ̂ϑi)]−1I.f (θ̂ϑi)}−1 (50)

where

I..(θ̂ϑi) =

Îhh,i(θ̂ϑi) Îhg,i(θ̂ϑi)
Îgh,i(θ̂ϑi) Îgg,i(θ̂ϑi)

 (51)

and

If.(θ̂ϑi) =

[
Ifh,i(θ̂ϑi) Ifg,i(θ̂ϑi)

]
= I ′.f (θ̂ϑi) (52)

such that Ii(θ0ϑi) can be consistently estimated by

Ii(θ̂ϑi) = T−1
T∑
t=1

st(θ̂ϑi)st(θ̂ϑi)
′ (53)

as shown by Ling and McAleer (2003). We now state our main result. Theorem 1 presents

the univariate LM statistic for the misspecification test of no causality in variance.

Theorem 1 (Univariate test statistic). Consider the multiplicative variance decompo-

sition σiit = hitgit whose components are defined in (7)-(9). Under H0i : θfi = 0m−1, the
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LM statistic

LMi = T s′f (θ̂ϑi)I−1ff (θ̂ϑi)s
′
f (θ̂ϑi) (54)

where θ̂ϑi is a consistent estimator of θ0ϑi under H0i, is asymptotically χ2-distributed with

m− 1 degrees of freedom.

In practice, an asymptotically equivalent test to the LM test in Theorem 1 may be

carried out in a straightforward way using an auxiliary least squares regression as follows:

1. Estimate consistently the MTV-GARCH model by maximization by parts, save the

standardized residuals ẑ2it = ε2it/ĥ
0
itĝ

0
it, and compute the ”residual sum of squares”

SSR0i =
∑T

t=1(ẑ
2
it − 1)2.

2. Regress ẑ2it−1 on x̂hhit = ĥ−1it ∂hit/∂θhi|H0i
, x̂hgit +x̂ggit = ĥ−1it ∂hit/∂θgi|H0i

+ĝ−1it ∂git/∂θgi|H0i

and x̂hfit = ĥ−1it ∂hit/∂θfi|H0i
, and obtain the residual sum of squares SSR1i.

3. Compute the test statistic

ξLMnr,i = T
SSR0i − SSR1i

SSR0i

(55)

which has an asymptotic χ2 distribution with m− 1 degrees of freedom under the

null hypothesis.

To further examine whether the coefficients of the additive component in the augmented

version of equation (26) for each i = 1, . . . ,m, are jointly zero, we propose a multivariate

version of the LM-type test statistic (54)-(55). The extension of the univariate case to

the multivariate case is straightforward and the multivariate test statistic is presented in

Corollary 1.1.

Corollary 1.1 (Multivariate test statistic). Consider the multiplicative variance de-

composition σiit = hitgit whose components are defined in (7)-(9). Due to the block-

diagonality of the information matrix, under the null hypothesis H0 : θϑf = (θ′ϑf1, . . . ,θ
′
ϑfm)′ =

0m(m−1), the multivariate LM statistic defined by

ξLMnr =
m∑
i=1

ξLMnr,i (56)
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where ξLMnr,i is given by (55) for each i = 1, . . . ,m, has an asymptotic χ2 distribution

with dim(θϑf ) degrees of freedom.

The robust versions of the univariate and multivariate test statistics against nonnormal

innovations can be constructed using Procedure 4.1 in Wooldridge (1990). The robust

univariate test statistic can be computed as follows:

1. Estimate consistently the MTV-GARCH model by maximization by parts and save

the standardized residuals ẑ2it = ε2it/ĥ
0
itĝ

0
it.

2. Regress x̂hfit on x̂hhit and x̂hgit + x̂ggit , and save the vector of residuals r̂it.

3. Regress 1T on (ẑ2it − 1)r̂it and compute the sum of squared residuals SSRi.

4. Compute the robust test statistic

ξLMr,i = T − SSRi (57)

which, under H0i, is asymptotically χ2-distributed with m− 1 degrees of freedom.

Analogously to the nonrobust case, to obtain the robust multivariate test statistic,

repeat steps 1−4 and compute the χ2−distributed statistic with m(m − 1) degrees of

freedom as

ξLMr =
m∑
i=1

ξLMr,i, (58)

under the null hypothesis.

6 Monte Carlo experiment

In this section we study the finite sample properties of the test proposed in Section 5. This

is done by conducting a Monte Carlo experiment to study the empirical size and the power

of the test statistics. These properties are investigated for bivariate series at different

sample sizes T = 1000, 2500 and 5000 observations. We generated 5000 replications for

each data generating process (DGP) and discarded the first 1000 observations to avoid

any initialization effects.

19



The volatility component of the bivariate series is generated according to the multi-

plicative specification (1)−(9) assuming normal errors with p = q = 1 and m = 2. Under

H0i there is no causation in the second moment and the conditional variance component is

described by the MTV-GARCH model as in Amado and Teräsvirta (2013). Under the

alternative, causation in the conditional variance is introduced by letting αij 6= 0, for

all j = 1, . . . ,m and i 6= j to be non-negative. For the empirical size of the LM-type

statistic we generated bivariate series from the first-order MTV-CCC-GARCH model.

For the correlation component, we consider constant conditional correlations between

the two series in the model which varies throughout from moderate correlation (ρ = 0.5)

to high correlation (ρ = 0.85.) The size simulations are carried out for four different

MTV-CCC-GARCH DGPs whose parameter values can be found in Table 1. These DGPs

are intended to have different levels of persistence in volatility that goes from moderate

persistence to high persistence (αi + βi = 0.95, 0.90, i = 1, 2, in DGP3) and very high

persistence (αi + βi = 0.95, 0.99, i = 1, 2, in DGP1, DGP2 and DGP4). Finally, DGP2

and DGP4 are characterized by larger fluctuations in the long-term volatilities compared

to DGP1 and DGP3. The parameter values are chosen such that they resemble results

often found in fitting MTV-GARCH models to financial return series.

Results of the size simulations are presented graphically in Figure 1. The graphs show

for the univariate and multivariate test statistics the discrepancies in size (the actual size

minus the nominal size) against the nominal significance levels ranging from 0.1% to 10%.

Only the results of the robust test statistics are reported given their superiority compared

to the nonrobust test statistics. In each subgraph we present the size discrepancies of

the robust univariate and multivariate test statistics for DGP1 − DGP4 and each sample

size. One can visualize that the size distortions are, in general, small, decreasing with

the number of observations and increasing with the correlation. The difference between

the empirical rejection frequency and the nominal level appears to be larger for higher

time dependence in volatility. Results from additional simulated models, not reported for

the sake of saving space, further support this conclusion. There is also evidence that the

univariate robust test statistics outperform the multivariate robust ones for the sample

sizes considered.
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Table 1: DGPs for the bivariate first-order MTV-CCC-GARCH model for size simulations.
The total number of replications equals 5000.

Stationary component Nonstationary component Correlation

DGP1
h1t = 0.10 + 0.10φ21,t−1 + 0.85h1,t−1 g1t = 1.2− 0.05G1t(5, 0.25; t/T )

ρ12 = 0.50
h2t = 0.20 + 0.05φ22,t−1 + 0.94h2,t−1 g2t = 1.2 + 0.05G2t(10, 0.50; t/T )

DGP2
h1t = 0.10 + 0.10φ21,t−1 + 0.85h1,t−1 g1t = 1.0− 0.05G1t(5, 0.25; t/T )

ρ12 = 0.50
h2t = 0.20 + 0.05φ22,t−1 + 0.94h2,t−1 g2t = 2.5 + 0.05G2t(10, 0.50; t/T )

DGP3
h1t = 0.10 + 0.10φ21,t−1 + 0.85h1,t−1 g1t = 1.2− 0.05G1t(5, 0.25; t/T )

ρ12 = 0.85
h2t = 0.20 + 0.05φ22,t−1 + 0.85h2,t−1 g2t = 1.2 + 0.05G2t(10, 0.50; t/T )

DGP4
h1t = 0.10 + 0.10φ21,t−1 + 0.85h1,t−1 g1t = 1.2− 0.75G1t(5, 0.25; t/T )

ρ12 = 0.50
h2t = 0.20 + 0.05φ22,t−1 + 0.94h2,t−1 g2t = 1.2 + 1.50G2t(10, 0.50; t/T )

Next we examine the power properties of the univariate and multivariate test statistics

in finite sample. In order to discuss the performance of the testing procedure when

the true model allows for causality in the conditional variance we generate a bivariate

MTV-ECCC-GARCH model. The selected structures of the stationary and nonstationary

components of the conditional variance and the correlation are summarized in Table 2. In

what follows, we only report results of the power simulations for the robust version of the

test statistics. Since the robust tests have good size properties we simply report the power

curves instead of the size-adjusted rejection rates. As before we consider sample sizes of

1000, 2500 and 5000 observations and for every sample size and each DGP, 5000 Monte

Carlo replications are carried out. The causality in the conditional variance ranges from a

low level in time series 1 (α12 = 0.006) to moderate level in time series 2 (α21 = 0.05) for

DGP5. The remaining DGPs generates realizations with moderate levels of causality in

the conditional variance (α12 = α21 = 0.05). Volatility persistence ranges from moderate

in DGP6-DGP7 to high in DGP8 and very high in DGP5. Correlation coefficients can be

moderate as in DGP5−DGP6 (ρ12 = 0.50), very high as in DGP 7 (ρ12 = 0.90) or low as in

DGP8 (ρ12 = 0.30). The power curves are depicted in Figure 2. On each graph, the actual

rejection frequencies are plotted against the nominal significance levels 0.1%,0.2%,. . . ,10%.

As expected, the power of the tests is an increasing function of the number of observations

and levels of causality in the conditional variance (the power is relatively higher for series

2 in DGP5). The power seems to decrease when persistence in volatility is higher (as in
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Figure 1: Size discrepancies plots of the causality-in-variance test for the bidimensional
case. The size discrepancies of the robust LM tests are plotted against the nominal size.
Results are shown for the univariate robust (ui T) and multivariate robust (m T) test
statistics defined, respectively, in (57) and (58), i = 1, 2, for T = 2500, 5000.

DGP5 and DGP8) or when correlation is very high (as in DGP7).

7 Application: Causality in the volatility of carbon

markets

In this section, we shall consider an empirical example to illustrate the application of the

proposed model in Section 2 to real data. Our model is applied to daily returns of carbon

emissions futures and media-based climate concerns index2.

Carbon markets are the systems in which carbon credits are traded. To compensate for

2We also apply the test for causality in variance and the modelling strategy to exchange rate data.
The data employed are daily returns of four major spot exchange rates against the euro, among the most
traded currencies, from the Bank of England Database. The observation period starts in January 5, 1999
and ends in September 17, 2010, yielding a total of 2998 observations. Francq and Zaköıan (2012) studied
the volatility comovements of the bivariate returns of the daily U.S. dollar and the Japanese yen exchange
rates for the exact same period and three subperiods. Their results indicate that the volatility parameters
appear to suffer from structural changes from one subperiod to another. The evidence of nonstationarity
suggests that their constant conditional correlation asymmetric GARCH model may not be the most
appropriate for fitting the data. Results are available in the supplementary material.
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Table 2: DGPs for the bivariate first-order MTV-ECCC-GARCH model for power simula-
tions. The total number of replications equals 5000.

Stationary component Nonstationary component

DGP5
h1t = 0.10 + 0.05φ21,t−1 + 0.006φ22,t−1 + 0.85h1,t−1 g1t = 1.50− 0.05G1t(5, 0.25)

h2t = 0.10 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.85h2,t−1 g2t = 1.00 + 0.10G2t(10, 0.50)

DGP6
h1t = 0.05 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.80h1,t−1 g1t = 0.95 + 0.05G1t(5, 0.50)

h2t = 0.05 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.80h2,t−1 g2t = 1.05− 0.03G2t(5, 0.50)

DGP7
h1t = 0.05 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.80h1,t−1 g1t = 0.95 + 0.05G1t(5, 0.50)

h2t = 0.05 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.80h2,t−1 g2t = 1.05− 0.03G2t(5, 0.50)

DGP8
h1t = 0.05 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.85h1,t−1 g1t = 0.95 + 0.05G1t(5, 0.50)

h2t = 0.05 + 0.05φ21,t−1 + 0.05φ22,t−1 + 0.85h2,t−1 g2t = 1.05− 0.03G2t(5, 0.50)

Correlation

DGP5: ρ = 0.50, DGP6: ρ = 0.50, DGP7: ρ = 0.90, DGP8: ρ = 0.30

their greenhouse gas (GHG) emissions, larger emitting entities can purchase carbon credits

from those that remove or reduce emissions. One tradable carbon credit corresponds

to one tonne of carbon dioxide (CO2) or the equivalent amount of a different GHG

reduced, sequestered or avoided. When such credit is used, it becomes an offset and can

no longer be traded. There are two main types of carbon markets. Compliance markets

are established to adhere to regional, national, and/or international policy or regulatory

mandates. Voluntary carbon markets, both at the national and international levels, involve

the issuance, purchase, and sale of carbon credits on a voluntary basis. The European

Union (EU) emissions trading system (ETS) is the carbon compliance market where EU

emissions allowances, representing the right to emit one tonne of CO2 equivalent, are traded.

Operating since 2005, it constitutes a cornerstone of the EUs climate policy and a key tool

for cutting GHG emissions in the EU. Implemented in different phases, whose scope has

been limited in terms of sector coverage but increasingly ambitious, in 2021 which marked

the start of Phase 4, it covered around 40% of the EUs GHG emissions. Carbon futures

contracts are standardized agreements that allow participants in the EU ETS to buy or

sell allowances for a specific future trading period. These contracts specify the quantity of

allowances, the price per allowance, the delivery date and can be used for different purposes

such as hedging and speculation. For instance, companies with emission reduction targets
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Figure 2: Power curves of the causality-in-variance test for the bidimensional case. The
actual rejection frequency is plotted against the nominal size. Results are shown for the
univariate robust (ui T) and multivariate robust (m T) test statistics defined, respectively,
in (57) and (58), i = 1, 2, for T = 2500, 5000.

may use carbon futures to hedge against price volatility and secure future allowances at

a known cost. Traders and speculators can also participate in the market to profit from

price fluctuations. The price of carbon futures is influenced by various factors, including

the overall demand for allowances, the regulatory environment, the economic conditions,

and the success of emissions reduction efforts by participating entities. At the end of the

futures contracts specified period, the actual emissions data is compared to the number

of allowances surrendered by the participants. If a company has emitted less than its

allocated allowances, it can sell its surplus. Conversely, companies that have emitted more

than their allocated allowances must buy additional to cover the excess emissions. In this

work we use the daily price of carbon emissions futures (CEF) expiring in December 2023.

Surplus allowances can be purchased to cover future needs, creating a strong link between

spot and futures prices. The cost of storing allowances is small and the main difference

between a spot and a future emissions allowance is the opportunity cost of money paid

for the spot allowance (https://www.ecb.europa.eu/pub/economic-bulletin/focus/

2021/html/ecb.ebbox202106_05~ef8ce0bc70.en.html). The data covers the period
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starting on April 25th, 2005 until July 6th, 2023. A graph of the series is depicted in

Figure 3.
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Figure 3: The daily price of carbon emissions futures.

The first phase of the EU ETS spanned the years 2005-2007 and was characterized

by relatively unstable futures prices, collapsing to zero at the end of the phase, and

oversupply of allowances. The second phase, which occurred between 2008 and 2012,

coincided with the global financial crisis whose consequent reduced economic activity and

emissions resulted in a demand-supply imbalance. Albeit volatile during the crisis, futures

prices remained relatively low and stable for the rest of this period. The same effect is

visible in the first years of Phase 3, which started in 2013 and ended in 2020. The third

phase marked a progressive shift from free allowances, which were then attributed based

on decarbonisation efforts, toward auctions, the introduction of mechanisms to correct

for demand-supply imbalances and a reduction path for the EU-wide cap. Phase 3 was

also characterized by a steep increase in futures prices which started rising in around 2018.

The last phase, which started in 2021 and will last until 2030, is the most ambitious so

far. Since then, there have been no signs of stabilising futures prices which progressively

continued increasing and volatile. For this phase, the annual reduction path for the cap

is planned to be increased and the stabilising mechanisms strengthened. More stringent

climate policies and a possibly earlier end to the free allocation of emissions allowances

are amongst the drivers of this price increase. The daily price series is then transformed

into continuously compounded rates of return and multiplied by 100%. Figure 4 shows

the daily log-returns on the carbon emissions futures.

To avoid convergence issues in the estimation, we truncate extreme returns (100%)

to a maximum absolute value of 50%. We observe periods of increased volatility, where
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Figure 4: The daily log-returns on the carbon emissions futures.

the first phase of the EU ETS is the most prominent. Next, we test for the presence of

autocorrelation and ARCH effects. Both null hypotheses that there is no time dependence

in the first and second moments are rejected and we model them accordingly in two steps.

First we estimate a mean model with both an intercept and an autoregressive coefficient.

Then, we estimate the variance equations using an appropriate volatility model. More on

the modelling procedure shall be discussed below.

The importance of carbon markets is increasing for several reasons. One crucial factor is

their significance in achieving the Nationally Determined Contributions (NDCs) as outlined

in the Paris agreement. As a result, global interest in carbon markets is on the rise, with

approximately 83% of NDCs expressing a desire to utilize international market mechanisms

to reduce GHG emissions. Negotiations regarding the implementation of such mechanisms

have taken centre stage in meetings of the United Nations Framework Convention on

Climate Change and ongoing discussions are slated to continue in future climate summits.

Rising climate concerns as perceived by not only the media, but also the public, global

investors and policymakers can cause volatility in carbon markets. Volatility of climate

news drives comovements of volatilities of carbon-intensive asset prices. Campos-Martins

and Hendry (in Press) showed that unexpected increases in concerns about the energy

transition make oil and gas stock prices move globally. As a measure of concerns on carbon

markets, we use the U.S. daily media climate change concerns index constructed by Ardia,

Bluteau, Boudt, and Inghelbrecht (2022). We focus on the index specific to carbon markets

whose most common words are market, price, scheme, government, credit, euro, tonne,

carbon, year, permit. More generally, on any day, this index reflects both the percentage

of risk words and the degree of negativity of the news articles published on that day by a
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specific source. The resulting article - and source - specific indices are aggregated to reflect

the overall level of concerns and the fact that the impact of news does not tend to increase

with time. For more details, we refer to Ardia, Bluteau, Boudt, and Inghelbrecht (2022).

The index is available only through the end of August 2022. The 20-day average rolling

window of the concerns index on carbon credit markets (CCM) is displayed in Figure 5.

Concerns about carbon markets rise during climate summits, namely, COP12-Nairobi

2006, COP15-Copenhagen in 2009, COP21-Paris in 2015 and COP26-Glasgow in 2021.

Albeit not steadily, we observe an increase in carbon markets concerns over time.
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Figure 5: The daily media concerns index on carbon credit markets (20-day average rolling
window).

We model the conditional mean of climate concerns in the same way as the log-returns

on carbon futures. Having estimated both, we proceed to modelling the volatility equations.

Since we suspect the underlying variance process to be nonstationary, we first test the

null hypothesis of constant variance against a time-varying unconditional variance. The

test is performed using the R package tvgarch (Campos-Martins and Sucarrat, 2023). Test

results are summarised for the EU ETS carbon futures residuals and carbon markets

concerns residuals in Tables 3 and 4, respectively. Outcomes of both non-robust and robust

statistics are reported.

From the test results we conclude that both series show statistical evidence for time-

varying unconditional volatility as the robust misspecification tests for the carbon futures

and carbon markets residuals have p-values equal to 0.009 and 0.019, respectively. However,

the corresponding results for the non-robust test statistics do not indicate any misspecifi-

cation of the deterministic component for the EU ETS carbon future residuals whereas the

carbon markets concerns residuals show evidence of misspecification. The test sequence
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Table 3: Results from the sequential test of constant unconditional variance against a
time-varying GARCH model applied to the EU carbon emissions futures residuals.

LM non-robust test Test statistic p-value

H0i: φi3 = φi2 = φi1 = 0 6.236 0.101

H03i: φi3 = 0 0.397 0.529

H02i: φi2 = 0|φi3 = 0 3.775 0.052

H01i: φi1 = 0|φi3 = φi2 = 0 2.066 0.151

LM robust test Test statistic p-value

H0i: φi3 = φi2 = φi1 = 0 11.537 0.009

H03i: φi3 = 0 0.409 0.522

H02i: φi2 = 0|φi3 = 0 2.528 0.112

H01i: φi1 = 0|φi3 = φi2 = 0 9.513 0.002

Table 4: Results from the sequential test of time-varying unconditional variance against a
time-varying GARCH model applied to carbon markets concerns residuals.

LM non-robust test Test statistic p-value

H0i: φi3 = φi2 = φi1 = 0 16.036 0.001

H03i: φi3 = 0 0.209 0.648

H02i: φi2 = 0|φi3 = 0 3.709 0.054

H01i: φi1 = 0|φi3 = φi2 = 0 12.129 0.001

LM robust test Test statistic p-value

H0i: φi3 = φi2 = φi1 = 0 9.939 0.019

H03i: φi3 = 0 0.194 0.660

H02i: φi2 = 0|φi3 = 0 3.567 0.059

H01i: φi1 = 0|φi3 = φi2 = 0 5.604 0.018
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for specifying the shape of the deterministic function git points towards ki1 = 1 since H01i

is more strongly rejected as H03i and H02i, suggesting that one location parameter seems

to be the optimal number of thresholds for both series. Given the rejection of constant

unconditional variance, we estimate a MTV-GARCH model with one transition function

and one location of transition for each series. Graphs of the estimated long-term volatility

component git are depicted in Figures 6 and 7 for the carbon futures and carbon markets

concerns residuals, respectively. For illustration the estimated conditional variance of the

GARCH model is also plotted in both graphs.
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Figure 6: Estimated volatilities of the carbon futures residuals.
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Figure 7: Estimated volatilities of the carbon markets concerns residuals.

We expect the unconditional variance of carbon futures returns to change over time as

the design changes are introduced in the market. We also expect concerns about climate

policies becoming more stringent and a disorderly transition more likely to cause further

movements in the volatility of carbon futures returns. Therefore we apply the LM test of

causality in variance proposed in this paper to the bivariate series. The test outcomes are
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Table 5: Results from the univariate (�) and multivariate (↔) tests of causality in
variance under (mis-specified) constant unconditional variance.

CEF � CCM CCM � CEF CEF ↔ CCM

TR2 p-value TR2 p-value TR2 p-value

Non-robust 1.556 0.212 0.115 0.734 1.671 0.434

Robust 3.678 0.055 0.152 0.696 3.830 0.147

Table 6: Results from the univariate (�) and multivariate (↔) tests of causality in
variance under time-varying unconditional variance.

CEF � CCM CCM � CEF CEF ↔ CCM

TR2 p-value TR2 p-value TR2 p-value

Non-robust 1.079 0.299 2.837 0.092 3.916 0.141

Robust 0.906 0.341 0.024 0.877 0.930 0.628

available for both constant and time-varying unconditional variance. Results for either

the non-robust and robust tests can be found in Tables 5 and 6.

These results are not only informative in themselves but also have an important impli-

cation. The robust test statistics indicate that an unmodelled nonstationary component of

the variance could lead to spurious results, that is, under constant unconditional variance

we would find supporting statistical evidence that climate concerns do not cause volatility

of carbon futures. As the magnitude, direction and statistical significance of the causality

in variance may change during the different phases of the EU ETS, we run the tests

and estimate the volatility models shown above using a rolling window. Each covers

10 years of daily data for a total number of approximately 2500 observations in each

window. The first window covers the years 2005-2014, the second 2006-2015, and so on

and so forth until the last one corresponding to the years 2013-2022. In Table 7 and for

each window we summarise in the second and third columns the results from the tests of

constant unconditional variance, where the numbers shown indicate how many locations

of transition are necessary to model the long-term component of the variance, in the fifth

and six columns the results show if we find any statistical evidence of causality in the

variance of carbon futures had we wrongly assumed stationary volatility (1 means that

past squared values from another series causes volatility in the chosen series and 0 means

no causality in variance) and, finally in the eight and ninth columns, present the same

causality tests but having modelled nonstationarity in the variance accordingly. Each row
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Table 7: Results from the rolling window test of constant conditional variance and tests of
causality in variance.

MTV-GARCH GARCH-X MTV-GARCH-X
CEF CCM CEF CCM CEF CCM

2014 1 3 2014 0 1 2014 0 0
2015 1 3 2015 0 1 2015 0 0
2016 1 2 2016 0 1 2016 0 0
2017 0 2 2017 0 0 2017 0 0
2018 0 3 2018 0 0 2018 0 0
2019 1 1 2019 1 0 2019 1 0
2020 1 1 2020 0 0 2020 0 0
2021 0 1 2021 1 0 2021 1 0
2022 0 1 2022 1 0 2022 1 0
1 Notes: In the second and third columns are reported the number
of locations of transition necessary to model the long-term volatility
component in the MTV-GARCH. In the fifth, six, eight and ninth
columns the 1s mean that past squared values from another series
cause volatility in the chosen series and 0s mean no causality in
variance. Each row indicates the end year in the window.

indicates the end year in the window.

We also estimated the coefficients for the causal effects for different windows. The

estimation results for the most recent window of observations (2013-2022) are presented

below. All estimates were obtained using the R package tvgarch (Campos-Martins and

Sucarrat, 2023). Robust standard errors are reported in parentheses. It is worth noting

that for this subsample, the test of constant unconditional variance is only rejected for

CCM (but not for CEF); see second and third columns of Table 7. We also find that past

information from the CCM time series helps predict the variance of CEF, but not the

other way around (see fifth and sixth columns of Table 7), and this causality in variance

remains valid even after accounting for the nonstationary nature of the variance of CCM

(see eight column of Table 7).

σ̂2
CEF,t = 0.045

(0.065)
+ 0.121

(0.025)
ε2CEF,t−1 + 0.873

(0.024)
σ̂2
CEF,t−1 + 0.117

(0.054)

ε2CCM,t−1

ĝCCM,t−1

Log-likelihood: − 6023.104 n = 2462

σ̂2
CCM,t = ĥCCM,t × ĝCCM,t (59)
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where

ĥCCM,t = 0.522
(0.146)

+ 0.119
(0.028)

ε2CCM,t−1

ĝCCM,t−1
+ 0.360

(0.155)
ĥCCM,t−1

ĝCCM,t = 0.906
(−)
− 0.346

(0.052)
Ĝ1(5.183

(1.036)
; 0.801
(0.014)

; t/T ) (60)

Log-likelihood: − 3233.119 n = 2462.

The estimated constant conditional correlation between the two series of standardized

returns is 0.004, which is very close to zero. The estimated parameters and corresponding

robust standard errors of the correlation structure of the MTV-EDCC-GARCH model

are â = 0.031
(0.028)

and b̂ = 0.273
(0.850)

. The estimated dynamic conditional correlation (black) is

depicted in Figure 8 alongside the constant conditional correlation (blue), for comparison.

The low values of the estimated parameters in the DCC structure show low persistence

and correlations oscillating erratically around the MTV-ECCC-GARCH model. Also, the

conditional correlation of returns on carbon futures price and on the index of carbon

markets media concerns seems to have remained very low over time.
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Figure 8: The dynamic conditional correlation (black) of carbon emissions future returns
and changes in media concerns around carbon markets. The constant conditional correlation
(blue) is also depicted for comparison.

The magnitude of the statistically significant causal effects have also changed over

time as can be seen below. Changes in media concerns driven mostly by the coverage of

the discussions and negotiations during climate summits seem to have driven volatility

of carbon futures. The failure of COP25 in 2019 made it the longest COP in history at

the time, as it extended nearly 44 hours past its scheduled end. During the conference,

countries faced significant challenges in reaching agreements on crucial matters, including
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one of the top agenda items: providing guidance to ensure the integrity of international

carbon markets. Specifically, there were difficulties in establishing consistent and robust

accounting measures for emissions reductions transferred between nations. This effect of

changes in media-based concerns on the volatility of carbon markets has been increasing

over time as depicted in Figure 9.
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Figure 9: Causal effect of variance of media-based concerns on the variance of carbon
futures returns.

8 Concluding remarks

In this paper we introduce a new multivariate conditional correlation GARCH model

capable of describing the transmission mechanism of volatility spillovers across assets or

markets. Yet recent literature has found that unaccounted shifts in the unconditional

variance result in spurious volatility spillover effects and major estimation bias may

be associated with model misspecification. Therefore, we generalize the multivariate

time-varying GARCH model by Amado and Teräsvirta (2014) allowing for the presence

of volatility transmission across assets or markets. The model is able to capture both

short- and long-term movements of the volatility of returns by assuming a multiplicative

decomposition structure where the past information of squared returns of all components

are useful in predicting the variance process of any component.

As a misspecification test of the multivariate multiplicative time-varying GARCH

model, we propose a new LM test for the presence of short-term volatility interactions.

Specifically, we check the predictive power of past cross-asset (or cross-market) series

information in the conditional variance component equation-by-equation. Monte Carlo

simulations show that the robust test using auxiliary regressions has good size properties
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in finite samples although minor size distortions are observed in the multivariate version

of the test statistic. The test has also reasonable power and the power of the test is an

decreasing function with the persistence in volatility and correlation levels.

Our illustrative application using carbon emission futures and climate concerns suggests

that if the nonstationary component of the variance was left unmodelled we would find no

supporting statistical evidence for causality from past squared climate concerns returns in

the variance of carbon futures returns. Causal effects of media-based concerns on future

carbon markets are found to be statistically significant for most recent rolling periods.

For inference, we assume the estimators to be consistent and asymptotically normal.

Asymptotic properties are known for some models nested in the general model proposed

in this paper but they cannot be directly extended. We leave the asymptotic theory for

future work. Another challenge when modelling variances and correlations is to evaluate

how well the model reproduces the stylized facts of financial data and how good the model

is for making predictions. Further work on misspecification tests may be helpful to provide

some insight on this. After testing for modelling volatility transmissions among variables

in the model one may further test for asymmetric ARCH effects on conditional volatility

as another misspecification tool. Testing the adequacy of the correlation structure of a

fitted MTV-ECC-GARCH model may be also a pertinent hypothesis test to carry out.

These additional statistical tests can be developed in future extensions for model selection

tool.

Appendix

See supplementary material.
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Francq, C., and J.-M. Zaköıan (2016): “Estimating multivariate volatility models

equation by equation,” Journal of the Royal Statistical Society Series B (Statistical

Methodology), 78, 613–635.

Hamao, Y., R. W. Masulis, and V. Ng (1990): “Correlations in price changes and

volatility across international stock markets,” Review of Financial Studies, 3, 281–307.

He, C., and T. Teräsvirta (2004): “An extended constant conditional correlation

GARCH model and its fourth-moment structure,” Econometric Theory, 20, 904–926.

Hong, Y. (2001): “A test for volatility spillover with application to exchange rates,”

Journal of Econometrics, 103, 183224.

36

http://mpra.ub.uni-muenchen.de/1592


Jeantheau, T. (1998): “Strong consistency of estimators for multivariate ARCH models,”

Econometric Theory, 14, 70–86.

Karanasos, M., F. M. Ali, Z. Margaronis, and R. Nath (2018): “Modelling time

varying volatility spillovers and conditional correlations across commodity metal futures,”

International Review of Financial Analysis, 57, 246–256.

Karanasos, M., A. G. Paraskevopoulos, F. M. Ali, M. Karoglou, and

S. Yfanti (2014): “Modelling stock volatilities during financial crises: A time varying

coefficient approach,” Journal of Empirical Finance, 29, 113–128.

King, M. A., and S. Wadhwani (1990): “Transmission of volatility between stock

markets,” Review of Financial Studies, 3, 5–33.

Ling, S., and M. McAleer (2003): “Asymptotic theory for a vector ARMA-GARCH

model,” Econometric Theory, 19, 280–310.
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Abstract

This document contains supplementary material for the authors’ article entitled
”Modelling causality in nonstationary variances with an application to carbon
markets”. It consists of another empirical example to four major spot exchange
rates to illustrate the usefulness of our procedure.

1 Application: Modeling exchange rate co-movements

First, we apply the test for causality in variance and the modelling strategy to exchange
rate data. The data employed in the study are daily returns of four major spot exchange
rates against the euro, among the most traded currencies, from the Bank of England
Database. The return series are defined as 100 times the log-differences of the daily
exchange rates of the USD, the JPY, the GBP and the AUD against the euro. The
observation period starts in January 5, 1999 and ends in September 17, 2010, yielding a
total of 2998 observations. Francq and Zaköıan (2012) studied the volatility comovements
of the bivariate returns of the daily U.S. dollar and the Japanese yen exchange rates for
the exact same period and three subperiods. Their results indicate that the volatility
parameters appear to suffer from structural changes from one subperiod to another. The
evidence of nonstationarity suggests that their constant conditional correlation asymmetric
GARCH model may not be the most appropriate for fitting the data.

The graphs of the return series are depicted in Figure 1. At first, one may distinguish
two different regimes in the JPY, GBP and AUD returns. A period of larger volatility
at the beginning and the end of the sample period is observed in the series while for the
period in between the volatility descends to a lower level. Identifying volatility regimes by
visual inspection in the USD series is not so evident even though some extreme returns
are also observed in the first and fourth quartiles.

Descriptive statistics, including conventional and robust measures of kurtosis and
skewness, are reported in Table 1. The daily returns have approximately zero mean and
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Figure 1: Daily returns on the exchange rates of the U.S. dollar (USD), the Japanese yen
(JPY), the British pound (GBP) and the Australian dollar (AUD) with respect to the
euro from January 15, 1999 until September 17, 2010.

Table 1: Descriptive statistics

Min. Mean Max. Std. Dev. Ex. Kurtosis Rob. KR Skewness Rob. SK

USD −4.735 0.003 4.204 0.667 2.767 0.173 0.108 0.009
JPY −5.800 −0.006 5.396 0.814 3.949 0.121 −0.235 −0.043
GBP −2.657 0.005 3.461 0.515 3.986 0.172 0.463 0.004
AUD −6.370 −0.011 6.377 0.724 8.043 0.158 0.530 0.041

1 Notes: Robust KR denotes the robust centred coefficient for kurtosis proposed by Moors
(see Kim and White (2004)) and robust SK denotes the robust measure for skewness based on
quantiles proposed by Bowley (see Kim and White (2004)).

are characterized by leptokurtosis and negative skewness. However, the robust measure of
skewness is very close to zero suggesting that there is little skewness in the distribution of
the returns. The robust measure of kurtosis is considerably smaller than the conventional
measure, but it still suggests that there is excess kurtosis. This is clearly an indication
of departures from normality in the distribution of returns. Diagnostic tests for time
dependence and the Jarque-Bera test for normality are shown in Table 2. The corrected
portmanteau statistics for serial correlation up to order 5 is not statistically significant
suggesting that returns are serially independent but the Engle’s LM test (Engle (1982))
for ARCH effects up to order 5 provide clear evidence that the squared returns are time
dependent.

We first proceed with the modeling strategy described in Section 4 of the paper. After
fitting a first-order GARCH model to capture the heteroskedastic behavior of the exchange
rate returns, we apply the LM test for testing the null hypothesis of constant unconditional
variance against a smoothly changing baseline volatility. The test results are presented in
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Table 2: Results of the diagnostic tests for the daily returns

non-rob. Q(5) rob. Q(5) ARCH(5) JB

USD 3.751 3.185 39.71 962.1
(0.586) (0.671) (0.000) (0.000)

JPY 2.512 1.324 89.01 1976
(0.775) (0.932) (0.000) (0.000)

GBP 16.63 7.101 100.2 2092
(0.005) (0.213) (0.000) (0.000)

AUD 19.20 3.261 132.4 8222
(0.002) (0.660) (0.000) (0.000)

1 Notes: The table reports test statistics for the non-
robust (non-rob. Q(5)) and the corrected (rob. Q(5))
portmanteau test in the presence of ARCH effects pro-
posed by Francq and Zaköıan (2009) up to order 5, the
Engle’s LM test (Engle (1982)) for ARCH effects up to
order 5 (ARCH(5)) and the Jarque-Bera (JB) test. The
numbers in parentheses are p-values.

the upper panel of Table 3. Only the outcomes of the robust statistics and corresponding
p-values are reported. At each step of the testing sequence we halve the significance
level of the test (τ = 0.5). The null hypothesis of constant unconditional variance is
rejected at the 5% significance level for the GBP, but it fails to reject the null of parameter
constancy for the USD, JPY and AUD returns. However, there is evidence for rejection of
constant long-term volatility against a single transition for JPY and AUD when testing
with a second-order polynomial for the transition function as H02 is rejected at the 0.05
conventional level with p-values equal 0.038. The short test sequence for specifying the
shape of the deterministic function git for the GBP returns points towards ki1 = 2, as H02

is rejected more strongly than the other hypotheses H01 or H03.
After accounting for structural changes in the baseline volatility we test the hypothesis

of an additive misspecification in the conditional variance for the returns using the test for
causality in variance in Section 5 of the main paper. We apply the test to investigate the
presence of volatility transmission from one exchange rate to another. The test results for
the presence of short-term volatility interactions can be found in the middle panel of Table
3. They suggest that the volatility structure of the GBP returns is affected by, not only its
own past information (known as an ARCH effect), but also by the past squared innovations
of the remaining exchange rates (known as cross-market conditional heteroskedasticity
effect) since the p-values are well below the 5% level. There is also statistical evidence
that the volatility of the AUD returns is affected by the past squared innovations of the
JPY series as the p-value equals 0.008. For the volatility of the JPY returns we identify
insignificant volatility spillovers from past USD, GBP and AUD returns as the p-values
are above the 5% level.

In order to examine causality in variance between the USD returns and the other
exchange rates, we proceed to testing the presence of volatility spillovers under stationarity
using the multivariate tests proposed by Pedersen (2017) and Nakatani and Teräsvirta
(2009). The tests are based on the null hypothesis that there are no interactions between
the volatility processes so that the ARCH and GARCH matrices are assumed as diagonal.
The test statistics by Pedersen (2017) can be viewed as ”corrected” versions of the test
introduced by Nakatani and Teräsvirta (2009) when the true parameter vector is at the
boundary of the parameter space. Results from the test statistic using auxiliary regressions
proposed by Nakatani and Teräsvirta (2010) are reported in Table 4. Results from the
Wald, Quasi Likelihood Ratio (QLR), Directed Lagrange Multiplier (LMD) and standard
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Table 3: Results from the sequence of robust tests of constant unconditional variance
against a time-varying GARCH model and the test for causality in variance. Boldface
indicates rejection of the null hypothesis at the 5% significance level.

USD JPY GBP AUD
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

Single transition

LM0 1.732 0.785 7.693 0.103 9.839 0.043 6.822 0.146
LM03 0.123 0.725 0.726 0.394 0.660 0.417 0.052 0.820
LM02 1.330 0.249 4.323 0.038 7.131 0.008 4.303 0.038
LM01 0.313 0.855 1.960 0.375 2.003 0.367 1.775 0.412

Volatility interactions

USD 2.380 0.123 7.983 0.005 2.604 0.107
JPY − − 5.523 0.019 6.936 0.008
GBP − − 3.326 0.068 1.565 0.211
AUD − − 2.551 0.110 4.271 0.039

Double transition

LM0 − − 7.512 0.111 20.72 0.000 9.564 0.048
LM03 − − 2.447 0.118 8.816 0.003 1.393 0.238
LM02 − − 1.489 0.222 1.180 0.277 0.232 0.630
LM01 − − 2.184 0.336 6.892 0.032 8.009 0.018

1 Notes: The row headings LM01, LM02 and LM03 report to the short test sequence
of parameter constancy based on the first-order Taylor expansion of the transition
function with kij = 1, 2, 3, respectively; see Amado and Teräsvirta (2017) for more
details.
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Table 4: Results from the bivariate tests of volatility spillovers. Boldface indicates rejection
of the null hypothesis at the 5% significance level.

USD−JPY USD−GBP USD−AUD
Statistic p-value Statistic p-value Statistic p-value

Wald 3.152 0.398 29.11 0.023 23.24 0.040
QLR 3.529 0.372 43.22 0.006 28.56 0.023
LMD 3.311 0.387 36.81 0.011 26.84 0.028
LM 1.620 0.805 15.51 0.004 8.251 0.083
non-rob. TR2

ECCC 3.096 0.542 12.73 0.013 6.502 0.165
rob. TR2

ECCC 3.861 0.425 12.48 0.014 6.811 0.146

1 Notes: The table reports the test statistics and p-values for the Wald, QLR,
LMD and LM tests of Pedersen (2017) and the non-robust and robust TR2

ECCC

tests of Nakatani and Teräsvirta (2010). The null hypothesis of a diagonal
CCC-GARCH model is tested against the alternative of an ECCC-GARCH
model.

Lagrange Multiplier (LM) test statistics discussed in Pedersen (2017) are also reported.
The results suggest, based on the LM statistic, that there are no volatility spillovers
between the currency pairs USD−JPY and USD−AUD as the p-values are not significant
at any reasonable levels. This conclusion is in line with the findings of the test statistics
by Nakatani and Teräsvirta (2009). In contrast, based on the W, QLR and LMD tests, we
reject the null hypothesis of no volatility spillovers for the pair USD−AUD as the statistics
are all significant at the 5% level. The results also suggest strong causality in variance
between the pair USD−GBP since the diagonality of the ARCH and GARCH matrices is
strongly rejected by all test statistics at any reasonable levels.

To identify the direction for causality in variance we compute an equation-by-equation
version of the TR2

ECCC test statistics by Nakatani and Teräsvirta (2010) (for the sake of
saving space, these results are not reported). The LM tests suggest that the volatility from
past GBP returns to USD returns is statistically significant at the 5% level and information
coming to the market from past USD returns is also affecting the current volatility of the
GBP returns. For the pairwise USD−AUD the univariate test results fail to reject the
null hypothesis of no volatility spillovers in both directions. These results are consistent
with the findings by the multivariate tests of Nakatani and Teräsvirta (2010). After fitting
different GARCH models to the USD returns, we conclude that the best model is the
GARCH model with GBP returns as predictor based on the Bayesian information criterion
(BIC) of Schwarz (1978) and tentatively use it as the final model for the USD returns.

After modelling the variance equations to the data and before proceeding with estima-
tion of the correlations, we test the possibility of git being also misspecified. Specifically,
we check the necessity of an additional transition to capture the daily variation in the
long-term volatility of JPY, GBP and AUD returns. The results from these misspecification
tests are reported in the lower panel of Table 3. Fitting the MTV-ECCC-GARCH with
one transition and testing for an additional transition for the GBP and AUD returns
yields the p-values of 0.000 and 0.048 for the robust statistics, respectively. The short
test sequence points towards ki2 = 3 for the GBP returns as H03 is more strongly rejected
than the other hypotheses. For the AUD returns the test sequence suggests ki2 = 1. We
tentatively assume these specifications for the deterministic component for currencies GBP
and AUD.

Tables 5 and 6 report the estimation results for the volatility component of the
MTV-ECCC-GARCH model for the deterministic and conditional variance components,

5



Table 5: Parameter estimates of the deterministic component for the exchange rate returns.
Robust standard errors in parentheses.

δ̂0 δ̂1 γ̂1 ĉ11 ĉ12 δ̂2 γ̂2 ĉ21 ĉ22 ĉ23

JPY
0.275 0.862 4.623 0.215 0.766

(−) (0.146) (−) (0.013) (0.020)

GBP
5× 10−5 0.296 4.743 0.203 0.768 0.237 3.742 0.169 0.570 0.916

(−) (0.063) (−) (0.039) (0.007) (0.058) (−) (0.098) (0.102) (0.128)

AUD
5× 10−5 0.811 2.525 0.345 0.987 0.440 5.495 0.730

(−) (0.125) (−) (0.051) (0.048) (0.101) (−) (0.003)

Table 6: Parameter estimates of the conditional variance component for the exchange rate
returns. Robust standard errors in parentheses.

ω̂ α̂USD α̂JPY α̂GBP α̂AUD β̂ (4) (3) (2) (1)

USD
0.002 0.027 0.012 0.962 0.995 0.995 0.997 0.997
(0.001) (0.005) (0.006) (0.007)

JPY
0.034 0.067 0.899 0.966 0.966 0.966 0.997
(0.013) (0.016) (0.026)

GBP
0.038 0.033 0.015 0.045 0.004 0.883 0.922 0.935 0.974 0.995
(0.017) (0.020) (0.014) (0.013) (0.004) (0.039)

AUD
0.073 0.034 0.073 0.816 0.889 0.929 0.957 0.993
(0.061) (0.027) (0.034) (0.117)

1 Notes: The table reports persistence for the CCC-GARCH model (1),
the MTV-CCC-GARCH model (2), the MTV-ECCC-GARCH model with
one transition function (3) and the MTV-ECCC-GARCH model with two
transition functions (4).

respectively. By inspection of Table 5 the estimated values of the speed of transition
are moderate indicating that the transitions from one volatility state to another are
relatively smooth. The standard errors of the intercept and smoothness parameters are not
available because δij and cij, j = 1, ..., ri, are estimated conditionally on those parameters.
Interestingly, the proximity of the estimates of the location parameters in the first transition
function for the currencies JPY and GBP reveals a common long-term volatility pattern
between the two exchange rates. This dynamics can also be seen from Figure 2. The
baseline volatility starts decreasing in 2001 and remains low for a long period until the
end of 2007, when it starts increasing again towards its initial level. Our findings suggest
that the largest deterministic changes in the long-term volatility occur during recessions,
namely, in the dot-com bubble, the subprime crisis and subsequent global financial crisis.
A similar pattern is found for the AUD returns where the first transition is smoother
than the second one. In order to evaluate how the slow (low-frequency) movements in the
baseline volatility compare to the quick (high-frequency) movements obtained from an
augmented GARCH (henceforth GARCH-X) process, we add the estimated volatilities
from a GARCH(1, 1)-X model to each panel of Figure 2. It is interesting to see how the
baseline volatility follows the dynamics of the GARCH process as a smoothed conditional
mean.

For comparison, in Table 6 are also reported the persistence levels for different estimated
GARCH models, measured by the sum of the estimated ARCH and GARCH coefficients
for the augmented GARCH model and by the eigenvalues (in decreasing order) of A1 +B1,
where A1 and B1 are the ARCH and the GARCH matrices, respectively, for the extended
GARCH model. From right to left, we show the volatility persistence estimated from the
CCC-GARCH model, the MTV-CCC-GARCH model with one transition function, the
MTV-ECCC-GARCH model with one transition function, and finally the MTV-ECCC-
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Figure 2: Volatilities from estimated augmented GARCH(1, 1)-X models (grey) and the
estimated long-term volatilities defined by the git deterministic component (blue) for the
currency returns.
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Figure 3: The estimated constant conditional correlations (red), dynamic conditional
correlations (grey) and the time-varying unconditional correlations (blue).

GARCH model with two transition functions. The model presented in column (4) is the
final model fitted to the data. Interestingly, persistence decreases considerably by including
cross-market conditional heteroskedasticity as predictors and/or rescaling the innovation
series by the baseline volatility. Regarding the off-diagonal elements of the ARCH matrix,
i.e., the variance interactions, we find a (statistically significant) bidirectional volatility
transmission between the USD and GBP exchange rates.

After estimating the volatility component, we proceed with the estimation of the
correlation models. In order to save space we only report plots of the correlation paths for
each model. Panels in Figure 3 graph the estimated dynamic conditional correlations whose
structure is defined in Equations (10)-(11) of the paper and the estimated deterministic
unconditional correlations by Silvennoinen and Teräsvirta (2015) for bivariate models. For
comparison, we also plot the level of constant conditional correlations between currency
returns. The dynamic conditional correlations seem to fluctuate around the slower
movement of correlations defined by the time-varying unconditional correlations. In
general, the results show a downward trend in the correlations between exchange rate
returns meaning that the co-movements tend to become weaker over time. Most of the
transitions are gradual suggesting that these slow changes in co-movements are possibly
due to market conditions between the currencies.
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