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Abstract

The duration of extremes in time leads to a phenomenon known as clustering of high values, with

a strong impact on risk assessment. The extremal index is a measure developed within Extreme Value

Theory that quanti�es the degree of clustering of high values. In this work we will consider the cycles

estimator introduced in Ferreira & Ferreira (2018). A reduced bias estimator based on the Jackknife

methodology will be presented. The bootstrap technique will also be considered in the inference and will

allow to obtain con�dence intervals. The performance will be analyzed based on simulation. We found

our proposal e�ective in reducing bias and it compares favorably with some well-known methods. An

application of the methods to real data will also be presented.

1 Introduction

The �nancial and (re)insurance industry is undergoing major challenges due to catastrophic losses in-

creasingly demanding sophisticated risk management tools (Embrechts et al. [15], 1999). The climate

change is amplifying the intensity and increasing the frequency of some extreme events such as heavy

rains, �oods, hurricanes and strong storms (Lee et al. [35], 2023). The theory of extreme values (EVT)

allows us to infer about the possibility of observing values that are as extreme or more extreme than those

ever seen. EVT thus proves to be the appropriate tool to analyze and predict catastrophic phenomena.

Consider {X∗
n}n≥1 an independent and identically distributed (i.i.d.) sequence of random variables

(r.v.) with marginal distribution function (d.f.) F . The main result of EVT states the possible limit

family of d.f. for the univariate normalized maximum. We have that F belongs to the max-domain of
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attraction of G, if there exist real constants an > 0 and bn, such that,

lim
n→∞

P (max(X∗
1 , ..., X

∗
n) ≤ anx+ bn) = lim

n→∞
Fn(anx+ bn) = G(x) ,

for all continuity points of

G(x) = exp

{
−
(
1 + ξ

x− µG

σG

)−1/ξ
}

, 1 + ξ
x− µG

σG
> 0 ,

where G(x) = exp{− exp(−(x−µG)/σG)} if ξ = 0, and µG and σG are, respectively, the location and the

scale parameters. The shape parameter ξ is called tail index and it characterizes the tail of the survival

function: (reversed) Weibull (ξ < 0), Gumbel (ξ = 0) and Fréchet (ξ > 0). The (reversed) Weibull

max-domain corresponds to d.f. with light-tails and �nite right end-point, the Gumbel max-domain is

the one of exponential-type tails and the Fréchet max-domain corresponds to the heavy-tail d.f. with

in�nite right end-point. Function G is usually called the Generalized Extreme Value (GEV) d.f.. There

are a large number of results characterizing the max-domain of attractions. For a survey, see, e.g., de

Haan and Ferreira ([10], 2006) and Beirlant et al. ([2], 2004). In particular, if a d.f. U belongs to the

Fréchet max-domain of attraction with tail index ξ > 0, then 1 − U(x) = x−1/ξLU (x), i.e., if U(x) is

heavy-tailed then 1−U(x) is a regularly varying function at ∞ with index −1/ξ, where LU (x) is a slowly

varying function (L(tx)/L(t) → 1, as t → ∞). We can also state that 1 − U(x−1) and LU (x
−1) are,

respectively, regularly varying and slowly varying at zero.

The propensity for the occurrence of clusters of extreme values is a matter of concern, as the du-

ration of abnormally high values over time can exacerbate the extreme phenomenon and make it more

devastating (see, e.g., Faranda et al.[16], 2023). In EVT, the extremal index is a measure that assesses

the degree of clustering. This parameter is usually denoted by θ, varying in the range [0, 1], where, the

closer to zero, the greater the propensity for the occurrence of clusters of extreme values. The null case

θ = 0 is abnormal (see, e.g., Leadbetter et al. [34] 1983) and will not be considered. The extremal index

concept has already surpassed the borders of EVT, namely appearing in other areas such as Dynamical

Systems (Moloney et al. [38] 2019, Freitas et al. [21] 2021, among others).

Figure 1 plots the daily maximum nitrogen dioxide (NO2) concentration in micrograms per cubic

metre (ug/m3) in the station Aotizhongxin of Beijing in China, where we can see large values occurring

close together.

Along the paper, we will adopt notation Mi,j = max(Xi+1, .., Xj), i ≤ j − 1, with Mi,j = −∞ if

i > j − 1 and M0,j ≡ Mj .
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Let XXX = {Xn}n≥1 be a stationary sequence of r.v. with common marginal d.f. F . We say that XXX has

extremal index θ if for each τ > 0 there exists a sequence of normalized levels un, i.e., n(1−F (un)) → τ ,

as n → ∞, such that P (Mn ≤ un) → exp(−θτ). If θ = 1 then the tail behavior of XXX resembles

an i.i.d. sequence, where we have P (Mn ≤ un) → exp(−τ). On the other hand, θ < 1 leads to the

occurrence of clusters of extreme values and thus to the existence of extremal local dependence.

In the stationary case, it is considered the dependence condition D(un), that basically limits the

long-range dependence at large values. More precisely, XXX satis�es condition D(un) if for any integers

1 ≤ i1 < ... < iq < j1 < ... < jq′ ≤ n for which j1 − iq ≥ l, we have

∣∣∣P (
Mi1,iq ≤ un,Mj1,jq′ ≤ un

)
− P

(
Mi1,iq ≤ un

)
P
(
Mj1,jq′ ≤ un

)∣∣∣ ≤ αn,l, (1)

with αn,ln → 0, as n → ∞, for some sequence ln = o(n) and ln → ∞ (Leadbetter, [33] 1974). Therefore,

for su�ciently separated time points i and j and large threshold un, the threshold exceedances, Xi > un

and Xj > un are asymptotically independent.

If there exist normalizing real constants an > 0 and bn such that Fn(anx+ bn) → G(x), if XXX satis�es

D(un) with un = anx+ bn for each x such that G(x) > 0 and if P (Mn ≤ anx+ bn) converges for some x,

then P (Mn ≤ anx+bn) → H(x) ≡ Gθ(x). Now the location and scale parameters of the limiting GEV H

are a�ected by θ. More precisely, we have µH = µG+σG(θ
ξ−1)/ξ and σH = σGθ

ξ. The shape parameter

ξ remains untouchable meaning that H and G share the same max-domain of attraction. It is important

to remark that ignoring θ may lead to incorrect tail inferences, e.g., underestimation (overestimation)

of quantiles of F (H) if inference is based on H (F ) from sample block-maxima (sample observations).

Further details are found in, e.g., Beirlant et al. ([2], 2004).

Di�erent characterizations of the extremal index inspired several estimation methods. For instance,

under a suitable mixing condition, θ is the reciprocal of the limiting mean cluster size in the point process

of exceedance times of a large threshold un, (Hsing et al. [30], 1988). O'Brien ([41], 1987) characterizes θ

based on a conditional probability that quanti�es to what extent extremes cluster together. In Ferro and

Segers ([20], 2003), θ appears as a parameter of the limiting mixture d.f. of the interexceedance times of

a high threshold, under a suitable mixing condition. The majority of estimators developed under these

interpretations of θ are quite sensitive to the choice of the high threshold and the cluster identi�cation.

Estimation methods based on the relation between the two limiting GEV, H and G, of block-maxima

exposed above involves the delicate selection of block size.

Thus, we can state these two major groups of estimators. One is based on clusters identi�cation

where we have to choose a clustering parameter and high threshold un, working under a suitable mixing
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condition. Here we include, among others, the following estimators: Nandagopalan ([39]1990), Runs and

Blocks (Weissman & Novak, [53] 1998 and references there in), Intervals (only requiring the threshold;

Ferro & Segers, [20] 2003), K-gaps (Süveges & Davison, [52] 2010), censored/truncated (Hol¥sovský &

Fusek, [31, 32] 2020/22), cycles Estimator (Ferreira & Ferreira, [18] 2018). The second group is based on

block maxima, where we only choose the block length for maxima, and which includes the estimators of

Gomes ([24] 1993), Ancona-Navarrete & Tawn ([1] 2000), Northrop ([40] 2015) and Ferreira & Ferreira

([19] 2022).

In stationary models closely resembling an i.i.d. behavior at large values, i.e., having θ = 1, usually

estimators underestimate the value of θ. A discussion on this topic is promoted, e.g., in Ancona-Navarrete

& Tawn ([1] 2000). Here we propose a pre-test in order to �rst evaluate if θ < 1, since in inference it can

be di�cult to distinguish from the case θ = 1 corresponding to the upper boundary point of the domain

of θ values.

The asymptotic properties of the extremal index estimators allow approximations of the true con-

�dence intervals for �nite samples and the literature suggests that an exact con�dence region may be

better approximated by bootstrap resampling. See, e.g., Sebastião et al. ([47], 2013) and references

therein.

This paper focuses on the cycles estimator of θ introduced in Ferreira & Ferreira ([18] 2018). A

characterization of θ motivating this estimator is presented in Section 2. In Section 3 we introduce a

reduced bias estimator based on the Jackknife methodology. This will be particularly useful to overcome

the sensitivity of the cycles estimator to the threshold choice, as shall be illustrated in the simulation

study of Section 5. We also consider a bootstrap version of the cycles estimator and derive con�dence

intervals. Under a dependent setup we must implement block bootstrap techniques in order to preserve

the underlying dependence structure (see, e.g., Politis and Romano [44], 1994 and references therein).

In Section 4 we present a test that will allow us to infer the case θ < 1. We analyze the performance

of the methods through a simulation study in Section 5. An illustration on an environmental dataset is

presented in Section 6 and we conclude in Section 7.

2 Estimation of θ

The classical runs estimator is one of the most popular estimators of θ and is related to the O'Brien's

([41] 1987) limiting result,

θ = lim
n→∞

P (M1,rn ≤ un|X1 > un), (2)
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Figure 1: Daily maximum nitrogen dioxide (NO2) concentration in micrograms per cubic metre (ug/m3) in
the station Aotizhongxin of Beijing in China.

where rn = o(n). The runs estimator is just the empirical counterpart of (2):

θ̃(R) =

∑n−r+1
i=1 1{Xi>u,Xi+1≤u,...,Xi+r−1≤u}

Nu
, (3)

where 1{·} is the indicator function and Nu denotes the number of exceedances of a high threshold u in

the stationary sequence XXX (Hsing [29] 1993). We thus consider two di�erent groups of exceedances of

a threshold u as independent clusters if there are at least r − 1 consecutive observations between them

that are below u and r is the so called runs parameter.

In the work of Chernick et al. ([7] 1991) a similar O'Brien's result is stated, under a local mixing

condition denoted D(s)(un). This condition basically states that within a cluster, an exceedance of a high

threshold un is most likely to be followed by another exceedance within s− 1 consecutive observations,

under the validity of condition D(un) in (1).

Formally, condition D(s)(un) holds for XXX if D(un) also holds and if there exist s > 0 integer and

sequences of integers rn and ln such that rn → ∞, nαn,ln/rn → 0, ln/rn → 0 and

lim
n→∞

nP (X1 > un ≥ M1,s,Ms,rn > un) = 0 .

If D(s)(un) holds, then D(s∗)(un) also holds for all s∗ ≥s.
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Consider un(τ) such that, for τ > 0,

lim
n→∞

nP (X1 > un(τ)) = τ .

In Chernick et al. ([7] 1991, Corollary 1.3) it is established that if XXX satis�es D(s)(un), for some s > 0

and un = un(τ) for all τ > 0, the extremal index θ of XXX exists if and only if

lim
n→∞

P (M1,s ≤ un|X1 > un) = θ , (4)

for all τ > 0 .

Therefore the runs estimator (3) is also an empirical counterpart of (4) if we take the runs parameter

r = s. The Nandagopalan estimator corresponds to the case r = 2 and thus requires condition D(2)(un)

to hold (Nandagopalan, [39] 1990). Its mathematical expression is just the ratio between the number of

upcrossings (or downcrossings) and the number of exceedances of un. The simplicity of the Nadagopalan's

estimator makes it a quite attractive estimation procedure. However it requires conditionD(2)(un), which

may be an unrealistic assumption in applications.

The cycles estimator presented in Ferreira and Ferreira ([18] 2018) is based on the Nadagopalan's

estimator, but under the validation of a D(s)(un) for some positive s. This is not so restrictive and

other estimators also demand this condition (see, e.g., Süveges & Davison, [52] 2010 and Hol¥sovský

& Fusek, [31, 32] 2020/22). In the cycles estimator we generate the so called cycles process {Zn =

M(n−1)(s−1),n(s−1)}n≥1 from the stationary sequence XXX by taking the maximum of non overlapping

blocks of successive r.v. Xi, i = (n − 1)(s − 1) + 1, ..., n(s − 1), for each n ≥ 1. It is proved that the

stationary sequence {Zn} satyi�es D(2)(un) (Ferreira and Ferreira, [18] 2018, Proposition 2.3). Thus the

cycles estimator, denoted θ̃(C), corresponds to the ratio between the number of upcrossings of threshold

u within {Z1, ..., Z[n/(s−1)]}, denoted UZ
u , and the number of exceedances Nu of XXX, i.e.,

θ̃(C) =
UZ

u

Nu
. (5)

There are di�erent methods in literature to check the validity of a D(s)(un) condition. The diagnostic

plots of anti-D(s)(un) (Süveges, [51] 2007; Ferreira and Ferreira [18] 2018) are heuristic procedures. The

proposal in Cai ([5], 2022) lies on a stability check of the runs estimator. The method presented in

Fukutome et al. ([22, 23] 2014/2019) allows to select both s and un based on misspeci�cation tests

through the information matrix test (IMT) presented in Süveges and Davison ([52] 2010). The test is

applied to all combinations of pairs (u,K) in admissible ranges of thresholds u and parameter K which

is a runs parameter where exceedances lying closer together than K are considered to belong to the

6



same cluster and declustering is based on choosing only the largest exceedance of each cluster. The pairs

are tested for misspeci�cation of the model, and the selected pair corresponds to the largest number of

observations after declustering, within the pairs of low misspeci�cation (IMT < 0.05) and with a number

of exceedances above 80. We denote this automation procedure by Fukutome-Süveges-Davison, in short,

FSD. Based on the FSD automation procedure for a given selected pair (u,K), we will assume the validity

of condition D(K+1)(u) (see, e.g., Ferreira [17] 2018; Hol¥sovský & Fusek, [31, 32] 2020/22).

3 Jackknife Estimator

One of the purposes in applying the Jackknife methodology is the construction of estimators with lower

bias and mean square error than those presented by the initial one.

In order to apply the Jackknife resampling technique to the cycles estimator, we will closely follow

the methodology in Gomes et al. ([25], 2008) developed for the Nandagopalan's estimator. We recall that

the cycles estimator is based on the Nandagopalan's idea and has a similar formulation, although it is

more general and therefore can be applied to a greater diversity of processes.

Consider X1;n ≤ X2:n ≤ ... ≤ Xn:n the order statistics (o.s.) of the stationary sequence XXX. Replacing

the threshold u by the k-th upper o.s. in (5), we obtain the cycles estimator θ̃(C)(k) as a function of the

number k of o.s. larger than the threshold, i.e.,

θ̃(C)(k) =
UZ

k

k
, (6)

where UZ
k denotes the number of upcrossings of Xk:n within {Z1, ..., Z[n/(s−1)]}.

Gomes et al. (2008) assume that this type of estimators presents in its bias function mainly two

dominant components of orders k/n and 1/k. More precisely, if

k = kn → ∞, k = o(n), as n → ∞, (7)

then the bias is given by

d1(θ)(k/n) + d2(θ)(1/k) + o(1/k) + o(k/n).

The same authors veri�ed this assumption for i.i.d. and �rst order max auto-regressive Fréchet models

satisfying the D(2)(un) condition. In accordance with the Generalized Jackknife (GJ) methodology, given

the existence of two main terms of bias, we must consider three estimators of θ having the same type of

bias. Let us consider θ̂n
(1)
, θ̂n

(2)
and θ̂n

(3)
, such that

E(θ̂n
(i)

− θ) = d1(θ)ϕ
(i)
1 (n) + d2(θ)ϕ

(i)
2 (n) , i = 1, 2, 3 ,
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the second order GJ statistics is derived by θ̂n
(GJ)

:= det(m)/det(m1), where det denotes the determinant

of a matrix and matrices m and m1 are given by

m =


θ̂n

(1)
θ̂n

(2)
θ̂n

(3)

ϕ
(1)
1 ϕ

(2)
1 ϕ

(3)
1

ϕ
(1)
2 ϕ

(2)
2 ϕ

(3)
2

 and m1 =


1 1 1

ϕ
(1)
1 ϕ

(2)
1 ϕ

(3)
1

ϕ
(1)
2 ϕ

(2)
2 ϕ

(3)
2

 .

It is proved that a GJ statistic obtained as described is unbiased (Gray and Schucany, [27] 1972).

Considering levels k, ⌊δk⌋+ 1 and ⌊δ2k⌋+ 1, with ⌊x⌋ denoting the integer part of x and δ a tuning

parameter in (0, 1), according to Gomes et al. (2008) and after some calculations, we obtain the reduced-

bias GJ cycles estimator:

θ̃(CGJ)(k) =
(δ2 + 1)θ̃(C)(⌊δk⌋+ 1)− δ

(
θ̃(C)(⌊δ2k⌋+ 1) + θ̃(C)(k)

)
(1− δ)2

. (8)

4 Asymptotic tail independence

In i.i.d. sequences we have θ = 1. However, a unit extremal index doesn't imply independence. Stationary

Gaussian autorregressive processes are typical examples where θ = 1, despite their time dependence.

Observe that θ = 1 corresponds to a boundary value in the domain of θ. This is usually a critical issue

of the estimators performance of θ, as already discussed in Ancona-Navarrete ([1], 2000). Simulations of

Section 5 will also illustrate this feature. In order to overcome this drawback, we propose to analyze in

advance if θ < 1, at least, in the cases were estimates of θ are close to one. In the following we describe

our method.

In asymptotically tail independent sequences, the degree of dependence between exceedances of x

decreases as x approaches xF , and the sequence is becoming similar to an i.i.d. one at extremal levels.

In order to account this feature, Ledford and Tawn ([36, 37], 1996/1997) proposed the following model:

P (U2 > 1− t|U1 > 1− t) = t1/η−1L(t), as, t ↓ 0, (9)

where Ui = F (Xi)), i = 1, 2, are standard uniform (transformed) marginals, η ∈ (0, 1] and L(t) is a

slowly varying function at 0. We denote model (9) by L&T. If η = 1 and L(t) converges to some positive

constant c, then P (U2 > 1− t|U1 > 1− t) → c > 0 leading to asymptotic tail dependence associated with

θ < 1. On the other hand, if 0 < η < 1 or L(t) → 0 as t ↓ 0, we are in the asymptotic tail independent

case linked to θ = 1. Moreover, independence, positive association and negative association correspond,

respectively, to η = 1/2 and L(t) = 1, 1/2 < η < 1 and 0 < η < 1/2. In (9) we are analyzing tail
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(in)dependence at lag-1, but we can also consider lag-m, for m positive integer, i.e.,

P (U1+m > 1− t|U1 > 1− t) = t1/ηm−1Lm(t), as, t ↓ 0, (10)

with ηm ∈ (0, 1] and Lm(t) is a slowly varying function at 0 and where η ≡ η1 and L(t) ≡ L1(t).

Observe that, if XXX satis�es D(s)(un), for some s > 0 and has extremal index θ, then θ < 1 under

lag-m tail dependence for some m ∈ {1, ..., s− 1}, given (4).

There are di�erent proposals to estimate η, for example, in the works of Draisma et al. ([13], 2004)

and Chiapino et al. ([6], 2019), and references therein. However they all assume independence between

random pairs, which is not our case. Therefore, we pursue the estimation of η in another direction.

In the L&T model, η is always positive and can be read as the tail index of r.v. W = min(U1, U2),

since

P (W > 1− t) = P (U2 > 1− t, U1 > 1− t) = P (U2 > 1− t|U1 > 1− t)P (U1 > 1− t) = t1/ηL(t−1).

The tail index estimation is largely addressed in the literature of EVT. Some well-known estimators are

the Hill ([28], 1975), Moments ([12], 1989), maximum likelihood (ML) of Smith ([48], 1987), Pickands

([43], 1975), among others. They are de�ned from the k upper order statistics, where k ≡ kn is an

intermediate sequence as in (7). For instance, the Hill estimator is given by,

η̂k,n :=
1

k

k∑
i=1

logWn−i+1:n − logWn−k:n, (11)

where W1:n ≤ ... ≤ Wn:n are the o.s. of Wi = min(Ui−1, Ui), i = 1, ..., n. Observe that, for each value of

k, i.e., for each chosen threshold Wn−k:n, we obtain an estimate of the tail index. In practice, k must

be chosen not too high (large variance) neither too short (large bias). Asymptotic properties of a class

of tail index estimators under a dependence framework, which include Hill, Moments, ML and Pickands

estimators, were deduced in Drees ([14], 2003). In particular, in this later work we can �nd consistent

estimators, σ̂2, of the asymptotic variance of the tail index estimators, which can be used to test the

hypotheses H0 : η = 1 vs. H1 : η < 1. If we do not reject H0, i.e., if η̂ > 1 + z0.05σ̂, where z0.05 is the

5% quantile of the standard Gaussian d.f., then we accept θ < 1. On the other hand, if we reject H0, we

proceed on testing H0 : ηm = 1 vs. H1 : ηm < 1 until we do not reject H0 provided m ≤ s − 1, leading

to the acceptance of θ < 1. Otherwise, we cannot conclude about the value of θ.
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5 Simulation study

In this section we use simulation to analyze the performance of the cycles estimator (6) in comparison

with its reduced-bias GJ version in (8), where we take δ = 1/4, 1/2, 3/4. We also compare with the

well-known estimators of Ferro and Segers ([20], 2003) and Süveges and Davison ([52], 2010). We apply

the block-bootstrap method to the cycles estimator in order to derive con�dence intervals (CI). We recall

that in the context of time series, we must apply bootstrap resampling based on blocks to maintain the

process dependence structure. This is an important issue and several contributions on this topic are

found in literature. For a survey, see, e.g., Gomes and Neves ([26], 2015) and references therein. To this

end we need to choose an adequate block-length in order to perform block resampling. We consider the

automatic block-length selection method in Politis and White ([45], 2004) and Paton et al. ([42], 2009)

implemented in software R ([46], 2020), in package blocklength ([50], 2022). We derive bootstrap CI

corresponding to the normal, the basic and the percent methods presented in Davison and Hinkley ([9],

1997; Chapter 5) and available in R package boot. We also apply the FSD method described in Section

2 to validate condition D(s)(un) for some positive integer s, as required by the cycles estimator.

The models below are used in simulations:

� 1st order max auto-regressive (MAR), Xi = max(ϕXi−1, ϵi), i ≥ 1, X0 = ϵ1/(1−ϕ), {ϵi} i.i.d. with

standard Fréchet marginals and auto-regressive parameter ϕ = 0.5 (Davis and Resnick [8], 1989),

for which D(2)(un) holds and θ = 0.5;

� moving maxima Xi = maxj=0,...,d ajZi−j with {Zi} i.i.d. standard Fréchet (MMFrec) (Deheuvels

[11], 1983), where d = 8 and parameters αi = 1/5, i ∈ {1, 2, 3, 7, 8}, and αi = 0 otherwise, for which

D(5)(un) holds and θ = 0.2 (Ferreira and Ferreira [18] 2018);

� Markov chain (MC) with standard Gumbel marginals and bivariate logistic dependence, P (Xi ≤

x,Xi+1 ≤ y) = exp(−(x−1/α + y−1/α)α), with α = 0.5, having θ = 0.328 (Smith [49], 1992);

� ARCH(1) process, Xi = (β+αX2
i−1)

1/2ϵi, with i.i.d. Gaussian innovations {ϵi}, parameters α = 0.7

and β = 2 · 10−5, for which θ = 0.721 (Cai, [5] 2022);

� AR(1) with Cauchy standard marginals (ARCau), Xi = ρXi−1 + ϵi, {ϵi} i.i.d. having Cauchy

d.f. with mean 0 and scale 1 − |ρ| with ρ = −0.6, satisfying condition D(3)(un) and θ = 0.64

(Chernick et al. [7], 1991);

� AR(1) process, Xi = ϕXi−1 + ϵi, i ≥ 1, {ϵi} i.i.d. N(0, 1), X0 ⌢ N(0, 1/(1− ϕ2)), with parameter

ϕ = 0.5, where D(1)(un) holds and θ = 1;

� an i.i.d. sequence of Fréchet r.v. and thus θ = 1.
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At our knowledge, there is no theoretical analysis on condition D(s)(un) for the MC model (an empirical

essay was conducted in Ferreira and Ferreira [18] 2018). Cai ([5] 2022) proved that D(s)(un) condition

doesn't hold for any s in the ARCH model given above.

Our simulation study is based on 1000 replicas of each given model with size n = 1000. We computed

the absolute bias (abias) and the root mean squared error (rmse). The respective plots are in Figures 2

and 3. The AR model results are in Figure 4.

We can see that the GJ estimator reduces the bias and presents a more stable sample path of estimates

in a large number of thresholds, when compared to the cycles estimator (full line), more incisively if

δ = 1/4. Looking at the rmse, the GJ estimator still provides lower values in several cases, particularly

within δ = 1/4, yet not so expressive as in the bias. We can also note that the cases of θ = 1, i.e., the

model AR with Gaussian marginals and the i.i.d. Fréchet sequence, do not behave so well in estimates.

The cycles estimator shows an increasingly sharp bias and rmse, as well as the estimator of Süveges

and Davison. In the GJ method, both bias and rmse do not grow as sharply but still remain relevant.

Exception made for the i.i.d. Fréchet model where the GJ estimator with δ = 1/4 and the Ferro and

Segers one perform both well. We remark that θ = 1 corresponds to a boundary value of θ's domain,

which causes di�culties for inference in general. So, one possibility is to infer in advance if θ < 1.

We apply the test procedure described in Section 4, based on the L&T asymptotic tail (in)dependence

parameter η. In Table 1 we present the acceptance percentage of θ < 1, where in estimating η we consider

the 50th upper o.s. (i.e., k = 50 in (11)).

Table 1: Acceptance (%) of θ < 1.

MAR MMFrec MC ARCH ARCau AR FrecInd
94 1 97.9 64.1 0 23.9 0

The results are quite good for models MAR, MMFrec, MC and FrecInd. In the AR and ARCH

models they are also not bad, although they can be improved, e.g., using alternative estimators to Hill

or analyzing more adequate choices of the threshold involved in the estimation. For a survey on the tail

index estimation, see, e.g., Beirlant et al. ([3], 2012) and references therein.

In ARCau model, by its de�ning formula we have that a very large observation will be followed

by a very small one and vice versa, typical of negatively associated consecutive pairs. So if Xj > x,

then the values Xj+2, Xj+4, ... are most likely to exceed x, whilst Xj+1, Xj+3, ... are expected to fall

below. As remarked in Bortot and Tawn ([4], 1998), most consecutive pairs will have only one large

component which compromises the estimation of model (9). Indeed, we have obtained η̂ = 0.367 and

95% CI [0.265, 0.468] and thus, well far away from the expected value 1. The same authors suggest to

model the lag-2 probabilities, i.e., by taking m = 2 in (10). According to our proposal in Section 4, and
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since ARCau model satis�es condition D(3)(un), we proceed on testing H0 : ηm = 1 vs. H1 : ηm < 1, for

m = 2. Thus choosing the lag-2 in ARCau, we now obtain η̂2 = 0.865 with 95% CI [0.591, 1] and the

acceptance of θ < 1 is 82.6%, which are quite better results.

The bootstrap methodology can also be an alternative approach to conduct inference on the extremal

index, namely, in the construction of CI that better estimate θ in the case of assuming a value close

to or equal to 1. In order to evaluate this issue, we have also applied the block-bootstrap method as

described above. The absolute bias and rmse of bootstrap estimates of the cycles estimator, denoted

cycles-bootstrap, are plotted in Figure 5. Here we considered the threshold Xn−k:n with k = 100. We

can see that the cycles-bootstrap estimator decreases the bias, except in the AR model, but in the rmse

this only happens with models ARCau, MMFrec, MAR and AR. For the estimated bootstrap 95% CI,

we computed the proportion of intervals in the simulations that included the true value of θ (coverage)

and the coverage divided by the mean range width (coverage/range). See Figure 6. Observe that the

percentile CI has an overall better performance when compared to the Normal CI and basic CI. Observe

also that none of the three CI considered (Normal, basic and percentile) can capture the value θ = 1 in

the AR model. They also present a very low coverage in the independent FrecInd process where θ is 1

too. In the ARCH model the coverage does not reach 50%, which also reveals little accuracy in the case

of a high value of θ. These results reinforce the strategy proposed in this work of previously evaluating

if θ < 1.

6 Application

The analyzed data corresponds to the daily maximum of nitrogen dioxide (NO2) concentration in micro-

grams per cubic metre (ug/m3) in the station Aotizhongxin from the Beijing Municipal Environmental

Monitoring Center in China, in the period between March 1st 2013 and February 28th 2017. The data

is available from https://archive.ics.uci.edu/ml/index.php. The observations are plotted in Figure

7, where successive high values occur. See also the year 2017 represented in Figure (1).

We start by analyzing if θ < 1. We recall the testing procedure described in Section 4 based on

the L&T model, more precisely, based on coe�cient η estimated by (11). The estimates are plotted in

Figure 8, using 1 < k < n upper o.s. (full line) along with the upper and lower 95% con�dence bands

(dotted lines). We can see that η = 1 is a plausible value for a large number of upper o.s. (approximately

k = 270), and thus we infer that θ < 1. We now move on to the estimation of the extremal index. The

estimates can be seen in Figure 9. The black, red, blue and green lines are the cycles, GJ, Süveges and

Davison and Ferro and Segers estimates, respectively. The bootstrap 95% CI correspond to the blue

dashed lines (percentile), the orange dotted lines (Normal) and the brown dot-dashed lines (basic). Our
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guess is that possible values for θ range around 0.4, although the Süveges and Davison estimator points

towards 0.5.

7 Conclusion

In extreme values inference of time series, the extremal index θ assumes a relevant role. If omitted it

can lead to erroneous extrapolations, as is the case of extreme quantiles above the observed maximum.

In addition, it is also associated with the clustering e�ect of extreme values, measuring the tendency

of data for such behavior. Data series with a greater propensity for the appearance of clusters of high

values exhibit a duration of extremes in time, which can worsen the damage, in the case, for example, of

�nancial losses or natural catastrophes (see, e.g., Cai [5] 2022 and references therein). The importance

of the extremal index is also attested by the various scienti�c contributions that appear in the literature

(Ancona-Navarrete and Tawn [1] 2000, Beirlant et al. [2] 2004, Ferreira and Ferreira [18] 2018, Ferro and

Segers [20] 2003, Nandagopalan [39] 1990, Northrop [40], Süveges and Davidson [52] 2010, among others).

This work is based on an existing estimator, on which Jackknife and bootstrap resampling techniques

were applied for bias reduction and interval estimation. Both methods contributed to a noticeable reduc-

tion in bias and some decrease in rmse was also recorded. However, the critical situation of estimating

the boundary case θ = 1 of its domain was not properly resolved, even with the use of bootstrap interval

estimation. A test was proposed to evaluate if it is plausible to have θ < 1 with promising results. This

is a topic that deserves a deeper analysis and that we intend to improve. Given the potential revealed

by the resampling methods and the progressive computational advances, re�nements of the described

methods and new applications extended to other estimators will follow.
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Figure 2: Absolute bias (abias) of the cycles estimator θ̃(C)(k) in (6) (full line), the GJ cycles estimator
θ̃(CGJ)(k) in (8) with δ = 1/4 (dotted line), δ = 1/2 (dashed line), δ = 3/4 (dashed-dotted line), the Ferro
and Segers estimator (full green line) and the Süveges and Davison estimator (full red line), 1 < k < n,
for models: max auto-regressive (MAR), moving maxima (MMFrec), Markov chain (MC), ARCH(1), auto-
regressive Cauchy (ARCau) and i.i.d. Fréchet (FrecInd).
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Figure 3: Root mean squared error (rmse) of the cycles estimator θ̃(C)(k) in (6) (full line), the GJ cycles
estimator θ̃(CGJ)(k) in (8) with δ = 1/4 (dotted line), δ = 1/2 (dashed line), δ = 3/4 (dashed-dotted
line), the Ferro and Segers estimator (full green line) and the Süveges and Davison estimator (full red line),
1 < k < n, for models: max auto-regressive (MAR), moving maxima (MMFrec), Markov chain (MC),
ARCH(1), auto-regressive Cauchy (ARCau) and i.i.d. Fréchet (FrecInd).

19



0 200 400 600 800 1000

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

k

a
b

ia
s

AR

0 200 400 600 800 1000

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

k

r
m

s
e

AR

Figure 4: Absolute bias (left) and root mean squared error (right) of the cycles estimator θ̃(C)(k) in (6) (full
line), the GJ cycles estimator θ̃(CGJ)(k) in (8) with δ = 1/4 (dotted line), δ = 1/2 (dashed line), δ = 3/4
(dashed-dotted line), the Ferro and Segers estimator (full green line) and the Süveges and Davison estimator
(full red line), for 1 < k < n in the AR(1) Gaussian model.
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estimators, using threshold Xn−k:n with k = 100, for models: max auto-regressive (MAR), moving maxima
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