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Abstract

The assessment of the risk of occurrence of extreme phenomena is inherently linked to the theory

of extreme values. In the context of a time series, the analysis of its trajectory towards a greater or

lesser smoothness, i.e., presenting a lesser or greater propensity for oscillations, respectively, constitutes

another contribution in the assessment of the risk associated with extreme observations. For example,

a �nancial market index with successive oscillations between high and low values shows investors a

more unstable and uncertain behavior. This is the idea presented by Ferreira and Ferreira (2021) in

the implementation of a smoothness coe�cient to ascertain the smoothness of the trajectory of a time

series at large values. In stationary time series, the upper tail smoothness coe�cient is described by the

tail dependence coe�cient, a well-known concept �rst introduced by Sibuya (1960). This work focuses

on an inferential analysis of the upper tail smoothness coe�cient, based on subsampling techniques for

time series. In particular we propose an estimator with reduced bias. We also analyze the estimation

of con�dence intervals through a block bootstrap methodology and a test procedure to prior detect the

presence or absence of smoothness. An application to real data is also presented.

Keywords: extreme value theory; stationary sequences; Jackknife; block bootstrap; tail (in)dependence

1 Introduction

Extreme value theory (EVT) allows to evaluate a stochastic process at the tails (lower or upper). Several

risk measures are study within the scope of EVT, in particular, if we are dealing with phenomena with

heavier/lighter tails than the usual Gaussian model. The primary result in EVT states the possible

limiting laws of the maximum (minimum) of an independent and identically distributed (i.i.d.) sequence
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of random variables (r.v.) {X∗
i }i≥1 with marginal distribution function (d.f.) F . More precisely, under

a convenient linear normalization based on real constants an > 0 and bn, if

lim
n→∞

P (max(X∗
1 , ..., X

∗
n) ≤ anx+ bn) = lim

n→∞
Fn(anx+ bn) = G(x) ,

for all continuity points of a non-degenerate d.f.

G(x) = exp

{
−
(
1 + ξ

x− µG

σG

)−1/ξ
}

, 1 + ξ
x− µG

σG
> 0 ,

where G(x) = exp{− exp(−(x − µG)/σG)} if ξ = 0, we say that F belongs to the maximum domain

of attraction of G. This is usually called Generalized Extreme Value (GEV) d.f., where µG and σG

are, respectively, the location and the scale parameters, and ξ is the shape parameter called tail index.

Parameter ξ is of prime importance since it states the type of tail and the respective limit distribution:

(reversed) Weibull if ξ < 0 with light tails and �nite right end-point, Gumbel if ξ = 0 characterized by

an exponential-type tail and Fréchet if ξ > 0 corresponding to a heavy tail with in�nite right end-point.

A common assumption within statistics of extreme values is that F belongs to the max-domain of

attraction of some GEV. The three domains are quite characterized in literature and reference books

are for example, de Haan and Ferreira ([6], 2006) and Beirlant et al. ([1], 2004). For instance, Pareto-

type models are heavy-tailed and thus belong to the Fréchet max-domain of attraction with positive tail

index ξ, They are characterized by a regularly varying tail function at in�nity with index −1/ξ, i.e.,

1 − F (x) = x−1/ξLF (x), where LF (x) is such that L(tx)/L(t) → 1, as t → ∞, called a slowly varying

function at in�nity. On the other hand, we also have that 1−F (x−1) is regularly varying with index 1/ξ

and LF (x
−1) is slowly varying, both at zero.

Now if we move to the stationary context by dropping the independence requisite, we still have a

similar result, but another parameter arrives to measure time-dependence. Indeed, consider {Xi}i≥1 a

stationary sequence of r.v. with the same marginal d.f. F . Under dependence condition D(un) (Leadbet-

ter, [19] 1974), that basically limits the long-range dependence at large values, with un = anx + bn for

each x such that G(x) > 0 and if P (max(X1, ..., Xn) ≤ anx+ bn) converges for some x, then it converges

to H(x) ≡ Gθ(x). Parameter θ is the so-called extremal index. The location and scale parameters of

GEV H are a�ected by θ, but the shape parameter ξ remains equal, that is, H and G have the same type

of tail. Clustering of extreme values is a typical phenomenon of risk evaluated through the extremal index

related to the mean time permanency of values above a high threshold. However, it lacks information

about the tendency for more or less occurrence of oscillations around a high threshold.

Ferreira and Ferreira ([11], 2021) introduced an upper tail smoothness coe�cient, which allows dis-
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tinguishing between more oscillating and smoother trajectories of time series. Smoother time series

correspond to more concordant successive r.v., based on the concept of Joe ([18], 1997), i.e., considering

r.v. Y1, ..., Yd and W1, ...,Wd where margins Yi and Wi have the same d.f. Fi, i = 1, ..., d, we say that

Y1, ..., Yd are more concordant than W1, ...,Wd if P (Y1 ≤ x1, ..., Yd ≤ xd) ≥ P (W1 ≤ x1, ...,Wd ≤ xd) and

P (Y1 > x1, ..., Yd > xd) ≥ P (W1 > x1, ...,Wd > xd), for all x1, ..., xd ∈ (−∞,∞). Thus Y1, ..., Yd is more

likely to take jointly small values and large values.

Figure 1 illustrates time series with a more oscillating trajectory (left) and with a smoother sample

path (right). Thus, on the left plot we see various observations that go up (go down) followed in the next

time instant by an observation that goes down (go up) and so on, whilst on the right plot, we observe

several successive observations quite close in magnitude.

In evaluating extremal dependence between r.v. it is usual to take a convenient marginal transforma-

tion, like Fj(Xj), where Fj is the d.f. of Xj , and thus Fj(Xj) has standard uniform distribution provided

Fj is continuous. Considering oscillations around time-instant i relative to a high threshold u,

Oi,j = {Fi(Xi) ≤ u < Fj(Xj)}, j = i− 1, i+ 1

and exceedances of u around instant i,

Ei = {Fj(Xj) > u}, j = i− 1, i+ 1

the upper tail smoothness of {Xi}i≥1 is evaluated by comparing the number of oscillations with the

number of exceedances of threshold u. More precisely,

Sn,m = 1− lim
u↑1

E
(∑m

i=n

∑
j∈{i−1,i+1} 1Oi,j |

∑m
i=n 1{Fi(Xi)>u} > 0

)
2E

(∑m
i=n 1Ei |

∑m
i=n 1{Fi(Xi)>u} > 0

)
Sn,m is the upper tail smoothness coe�cient and provides the proportion of exceedances that are

oscillations, around each instant i ∈ [n,m], given that there is at least one exceedance. In more oscillating

trajectories, existing, at least, one exceedance of u, {Fj(Xj) > u} for some j between instants n and

m (n,m ∈ N), it is expected that the total number of oscillations will be closer to the total number

of exceedances. Coe�cient Sn,m ranges in [0, 1], where bounds 0 and 1 are achieved for, respectively,

independent and positive quadrant totally dependent r.v.. Moreover, if Y1, ..., Yd are more concordant

than r.v. W1, ...,Wd then S
(Y )
n,m ≥ S

(W )
n,m . Another interesting result is to express Sn,m as a function of the
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tail dependence coe�cients (TDC),

λ(j|i) = lim
u↑1

P (Fj(Xj) > u|Fi(Xi) > u).

We have that

Sn,m =

m∑
i=n

λ(i+ 1|i) + λ(i|i− 1)

2(m− n+ 1)
,

provided λ(j|i) exists for all n ≤ i ≤ m and j = i − 1, i + 1. The TDC is a well-known bivariate

tail dependence measure of literature, �rst introduced in Sibuya ([27], 1960), with many applications in

di�erent areas. See, e.g., Ferreira ([12]), Rupa R and Mujumdar ([26], 2018) and references therein.

If {Xi}i≥1 is stationary with common d.f. F , then λ(i+ 1|i) = λ(i|i− 1) = λ and thus

Sn,m ≡ S = λ = lim
u↑1

P (F (Xi+1) > u|F (Xi) > u) = 1− lim
u↑1

P (F (Xi) ≤ u < F (Xi+1))

P (F (Xi) > u)
. (1)

Therefore, under stationarity, the smoothness of the trajectory of a series in time [n,m], at large values,

only depends on lag-1 bivariate tail dependence.

It is easily seen that independent sequences have λ = 0. However, λ = 0 does not imply independence.

In this paper we address the estimation of the upper tail smoothness coe�cient under stationarity,

i.e., of S in (1) given by the TDC applied to lag-1 random pairs (F (Xi), F (Xi+1)) of a time series. We

consider the empirical counterpart of the last equality in (1) as in Ferreira and Ferreira ([11], 2021).

Based on a simulation study it is shown a non-negligible bias. We thus propose a reduced bias Jack-

knife estimator following the approach in Gomes et al. ([14], 2008). The TDC estimators developed

in literature and respective asymptotic properties such as normality, are analyzed by considering inde-

pendence between random pairs. This is not the case here since we must consider successive random

pairs (F (X1), F (X2)), (F (X2), F (X3)), .... Therefore, we are going to apply a block bootstrap method

in order to estimate con�dence intervals, while taking into account the dependency structure (see, e.g.,

Politis and Romano [25], 1994 and references therein). We also propose an hypotheses test to evaluate

the presence of upper tail smoothness in a time series, i.e., if coe�cient S > 0 or if, on the contrary, S

is null which indicates an oscillating behavior similar to an i.i.d. sequence.

The paper is organized as follows: Section 2 is devoted to the estimation methods of the upper tail

smoothness coe�cient. In particular we use Jackknife technique and present a reduced bias estimator.

In Section 3 we propose a test procedure to prior analyze the presence of upper tail smoothness against

no smooth at all, which will be fundamental on inference. The methods's performance will be evaluated

in Section 4 through simulation, where we include bootstrap con�dence intervals (CI) based on block
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Figure 1: Illustration of a time series with a more oscillating sample path (left) generated from independent
standard Gaussian and a time series with a smoother sample path (right) generated from an AR(1) with
Cauchy standard marginals and auto-correlation 0.9.

subsampling techniques. An application on �nancial data illustrates our proposal in Section 5 and after

we conclude (Section 6).

2 Estimation of the upper tail smoothness coe�cient

In this section we present an inference methodology to estimate the upper tail smoothness coe�cient S

in (1) for stationary time series {Xi}i≥1. Our approach is based on the empirical counterpart of (1),

given by

Ŝu = 1−
∑n−1

i=1 1{F̂ (Xi)≤u<F̂ (Xi+1)}∑n
i=1 1{F̂ (Xi)>u}

,

where F̂ denotes the empirical d.f. of F (see Ferreira and Ferreira, [11] 2021 and references therein).

Following the Generalized Jackknife methodology studied in Gomes et al. ([14], 2008), we are going to

propose a reduced bias estimator of S.

Consider X1;n ≤ X2:n ≤ ... ≤ Xn:n the order statistics (o.s.) of {Xi}i≥1. Replacing the threshold

u by F̂ (Xn−k:n), we obtain the upper tail smoothness estimator Ŝk as a function of the number k of

o.s. larger than the threshold, i.e.,

Ŝk = 1−
∑n−1

i=1 1{F̂ (Xi)≤1−k/n<F̂ (Xi+1)}

k
, (2)

where 1{·} denotes the indicator function. Observe that the last term of Ŝk corresponds to the number

of upcrossings of threshold F̂ (Xn−k:n) within the k exceedances of the same threshold.
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Gomes et al. (2008) stated that, for several dependent structures, such estimator presents a bias

that is a function of k with two dominant components, as long as k satis�es the intermediate sequence

condition,

k = kn → ∞, k = o(n), as n → ∞, (3)

More precisely, the bias is assumed to be

d1(S)(k/n) + d2(S)(1/k) + o(1/k) + o(k/n). (4)

According to Gray and Schucany ([15], 1972), taking three estimators with the same type of bias in (4),

e.g., Ŝk, Ŝ⌊δk⌋+1 and Ŝ⌊δ2k⌋+1, where ⌊δx⌋ denotes the integer part of x and δ ∈ (0, 1) is a tuning param-

eter, as suggested in Gomes et al. (2008), the Generalized Jackknife (GJ) class of unbiased estimators

corresponds to

Ŝ
GJ(δ)
k =

∣∣∣∣∣∣∣∣∣∣
Ŝ⌊δ2k⌋+1 Ŝ⌊δk⌋+1 Ŝk

δ2 δ 1

1/δ2 1/δ 1

∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣
1 1 1

δ2 δ 1

1/δ2 1/δ 1

∣∣∣∣∣∣∣∣∣∣
,

where |M | denotes the determinant of matrix M . The analysis in Gomes et al. (2008) led to the heuristic

choice δ = 1/4, from which we derive

ŜGJ
k ≡ Ŝ

GJ(1/4)
k = 5Ŝ⌊k/2⌋+1 − 2

(
Ŝ⌊k/4⌋+1 + Ŝk

)
. (5)

3 Asymptotic tail independence

In estimating very small values of S, the question of whether S is zero or not arises. A null smoothness

coe�cient tell us that the time series sample path is very oscillating, similar to an i.i.d. sequence corre-

sponding to the least concordant case. This is the scenario of asymptotic tail independence, which can

be ascertained prior to any inference. By asymptotic tail independence we mean dependence structures

for which the TDC λ in (1) is null and thus smoothness S = 0. In this section we present an hypotheses

test to evaluate this question.

It is straightforward that i.i.d. sequences have a null TDC but the opposite is not always true. The

well-known auto-regressive Gaussian time series with auto-correlation dependence coe�cient ρ has λ = 0

for all ρ ∈ (−1, 1). Such cases present a weak tail dependence that can be captured by the rate of

convergence of the bivariate upper tail towards zero, as the threshold gets higher and closer to the right
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end-point 1.

This feature was noticed by Ledford and Tawn ([20, 21], 1996/1997), who proposed the model:

P (F (X2) > 1− t|F (X1) > 1− t) = t1/η−1L(t), as, t ↓ 0, (6)

where η ∈ (0, 1] and L(t) is a slowly varying function at 0. In short, we call (6) the L&T model. If

η = 1 and L(t) converges to some positive constant c, then probability in (6) also converges to positive

c leading to asymptotic tail dependence, i.e., TDC λ = c > 0. The case 0 < η < 1 or L(t) → 0 as t ↓ 0,

corresponds to asymptotic tail independence and TDC λ = 0. Exact independence takes place under

η = 1/2 and L(t) = 1, positive association whenever 1/2 < η < 1 and negative association if 0 < η < 1/2.

Observe that we can generalize (6) to lag-m, for any positive integer m, i.e.,

P (F (X1+m) > 1− t|F (X1) > 1− t) = t1/ηm−1Lm(t), as, t ↓ 0,

where ηm ∈ (0, 1] and Lm(t) is a slowly varying function at 0, with η ≡ η1 and L(t) ≡ L1(t).

Inference on η has been studied in EVT's literature, e.g., Draisma et al. ([8], 2004), Chiapino et

al. ([3], 2019), and references therein, in the context of i.i.d. sequences of random vectors.

In the L&T model, considering T = min
(
(1− F (X1))

−1, (1− F (X2))
−1

)
, we have that

P
(
T > t−1) = P (F (X2) > 1− t, F (X1) > 1− t) = P (F (X2) > 1− t|F (X1) > 1− t)P (F (X1) > 1− t) = t1/ηL(t).

Therefore, the tail of T is regularly varying with index 1/η and so T belongs to the Fréchet max-domain

of attraction with tail index η. There are several estimators developed under this framework for the

tail index, like Hill ([16], 1975), Moments ([10], 1989), maximum likelihood (ML) of Smith ([28], 1987),

Pickands ([17], 1975), among others.

Considering T1:n ≤ ... ≤ Tn:n are the o.s. of Ti = min
(
(1− F (Xi))

−1, (1− F (Xi+1))
−1

)
, i = 1, ..., n,

the classic Hill estimator is de�ned by,

η̂k,n :=
1

k

k∑
i=1

log Tn−i+1:n − log Tn−k:n, (7)

Consistency is achieved whenever k ≡ kn is an intermediate sequence as in (3) and each choice of k

generates an estimate. If k is too large a high variance takes place but if it is too small the bias increases.

In practice, plotting the sample path of estimates help us in �nding a stable region for a plausible choice

of k.

Since our context implies dependence between r.v. T1 = min
(
(1− F (X1))

−1, (1− F (X2))
−1

)
, T2 =

min
(
(1− F (X2))

−1, (1− F (X3))
−1

)
,T3 = min

(
(1− F (X3))

−1, (1− F (X4))
−1

)
, ... we will resort to
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asymptotic results in Drees ([9], 2003) valid for a class of tail index estimators under a dependence

framework, which includes all the above mentioned ones. The package ExtremeRisks of software R ([22],

2020) allows estimating the asymptotic variance σ̂2 of the referred estimators under dependency, accord-

ing to the methods in Drees ([9], 2003). These will be here applied to test the hypotheses H0 : η = 1

vs. H1 : η < 1. If η̂ < 1 + z0.05σ̂, where z0.05 is the 5% quantile of the standard Gaussian d.f., we reject

H0 in favor of H1 and conclude that λ = 0, i.e., S = 0 and that the series is asymptotic tail independent

with large values resembling an i.i.d. behavior.

4 Simulation study

Based on simulation, we analyze the performance of the test procedure in Section 3 and of the upper tail

smoothness estimator (2) and the GJ estimator (5) in Section 2. We recall that the upper tail smoothness

coe�cient S is given by the TDC λ under stationarity, as stated in (1). We also estimate 95% CI through

block resampling bootstrap, in order to preserve serial dependence. We use the R package blocklength

([29], 2022) where the block length choice is based on an automatic selection method proposed by Politis

and White ([24], 2004) and corrected in Patton et al. ([23], 2009). We compute Normal, basic and

percentile bootstrap CI of Davison and Hinkley ([5], 1997; Chapter 5), available in R package boot.

In the following we present some models and respective TDC, in which we base the simulation study:

� 1st order max auto-regressive (MAR), Xi = max(ϕXi−1, ϵi), i ≥ 1, X0 = ϵ1/(1−ϕ), {ϵi} i.i.d. with

standard Fréchet marginal F (Davis and Resnick [4], 1989) and quantile function F−1, for which

λ = 2− lim
u↑1

1− P (F (X1) ≤ u, F (X2) ≤ u)

1− P (F (X1) ≤ u)
= 2− lim

u↑1

1− uP (ϵ2 ≤ F−1(u))

1− u
= 2− lim

u↑1

1− u2−ϕ

1− u
= ϕ

We take ϕ = 0.1 leading to S = 0.1.

� moving maxima Xi = maxj=1,...,d ajZi−j with {Zi} i.i.d. standard Fréchet (Frec) (Deheuvels [7],

1983), where d = 2 and parameters α0 = 1/6, α1 = 1/2, and α2 = 1/3, for which λ = 0.5, since

λ = 2− lim
u↑1

1− P (F (X1) ≤ u, F (X2) ≤ u)

1− P (F (X1) ≤ u)
= 2− lim

u↑1

1− P (max(a0Z1, a1Z0, a2Z−1, a0Z2, a1Z1, a2Z0) ≤ F−1(u))

1− u

= 2− lim
u↑1

1− P (a2Z−1 ≤ F−1(u))P (a0Z2 ≤ F−1(u))P (Z1 ≤ F−1(u)/(max(a0, a1)))P (Z0 ≤ F−1(u)/(max(a1, a2)))

1− u

In our case, max(a0, a1) = max(a10, a2) = a1 and since a0 + a1 + a2 = 1, we have

λ = 2− lim
u↑1

1− u1+a1

1− u
= 1− a1

and thus S = 1/2.
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� AR(1) with Uniform marginals (ARUnif), Xi = (1/r)Xi−1 + ϵi, r ≥ 2, X0 ∼ U(0, 1) independent

of {ϵi} i.i.d. having Uniform d.f. with support {0, 1/r..., (r − 1)/r}. This model was developed in

Chernick et al. ([2], 1991), from which it can be stated

lim
u↑1

P (F (X1) ≤ u|F (X2) > u) = 1− 1/r

Thus, by (1) we derive λ = 1/r. We take r = 3 which leads to S = 1/3.

� AR(1) with Cauchy standard marginals (ARCau), Xi = ρXi−1+ϵi, ρ > 0, {ϵi} i.i.d. having Cauchy

d.f. with mean 0 and scale 1− ρ and X0 is standard Cauchy. This model was studied in Chernick

et al. ([2], 1991) and based on Corollary 1.3 of this latter reference, we obtain

lim
u↑1

P (F (X2) ≤ u|F (X1) > u) = 1− ρ

and thus λ = ρ. We take ρ = 0.8 and so S = 0.8.

� AR(1) process, Xi = ϕXi−1 + ϵi, i ≥ 1, {ϵi} i.i.d. N(0, 1), X0 ⌢ N(0, 1/(1− ϕ2)), with parameter

ϕ = 0.5, where λ = 0, i.e., S = 0 (see, e.g., Frahm et al. [13] 2005).

� an i.i.d. sequence of Fréchet r.v. and thus λ = 0, i.e., S = 0.

We simulated 1000 replicas of each given model with size n = 1000.

We start by testing the null hypothesis of η = 1, i.e., λ > 0 against the alternative η < 1, i.e., λ = 0.

In order to estimate η by the Hill estimator in (7), we take the k = 100th upper o.s. of each ordered

sample and compute the acceptance proportion of λ = 0. The results in Table 1 are quite promising. At

the signi�cance level 5%, models AR and FrecInd with null TDC λ present an acceptance proportion of

this condition above 95% and the remaining models with λ > 0 present an acceptance proportion of a

null TDC below 5%, except the ARUnif with a slightly larger value (6.2%).

We computed the absolute bias (abias) and the root mean squared error (rmse) of the upper tail

smoothness estimators Ŝk in (2) and reduced-bias GJ ŜGJ
k in (5, plotted in Figures 2 and 3, respectively,

as functions of 1 < k < n on the x-axis. The full line corresponds to estimator in (2) and the dashed line

to the GJ estimator in (5).

It is evident that Ŝk presents lower biases for small values of k, i.e., for higher thresholds and an

increasingly sharp bias as the threshold decreases. As expected, the GJ estimator ŜGJ
k reduces the bias

showing a sample path with a quite long stable region, even for large values of k. Exception is made

for the ARUnif model were both estimators perform well and similar for k ≲ 350 but have an irregular

pattern in the remaining trajectory. Another exception is the AR model, in which, despite being smaller,
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ŜGJ
k still has a considerable bias, perhaps due to correlation ρ = 0.5 and therefore a non-negligible

dependence, despite a quasi-independence in the tail. Looking at the rmse, we still observe a decrease

within the GJ estimator ŜGJ
k for larger values of k. In the AR and ARUnif models, we continue to see

the same types of drawbacks already observed in their biases.

Table 1: Acceptance (%) of the hypothesis of λ = 0.

ARCau Frec ARUnif MAR AR FrecInd
0 4.5 6.2 0 96.4 1

Figure 4 presents block bootstrap 95% CI results for both estimators, Ŝk and ŜGJ
k , with k = 100, for

Normal, basic and percentile methods. Namely, the bars height correspond to the proportion of CI that

included the true value of S (coverage, on the left) and the coverage divided by the mean range width

(coverage/range, on the right).

We can see that again the AR model does not bene�t from the method. The percentile CI seems to

be the best choice.

5 Application

In this section we analyze the upper tail smoothness of daily EUR/USD exchange rate, {Rt}, obtained

from https://finance.yahoo.com/ in two time periods. The �rst period corresponds to years 2007-2009

and the second period to years 2020-2022. More precisely, we look at volatility by taking the absolute

value of successive log-returns, i.e., {| log(Rt/Rt−1)|}, with length 784. The data plots are represented,

respectively, in the left and right panels of Figure 5. At a �rst glance it is not so easy to infer the

degree of upper tail smoothness in each data set. We can see that in the earliest period the magnitude

of observations is higher than in the more recent data. However, the upper tail smoothness coe�cient

does not measure the magnitude of data, only the propensity for more or less oscillations in successive

observations. We shall see that the least oscillating dataset is in the �rst period.

Before estimating the upper tail smoothness coe�cient, we �rst apply the asymptotic tail indepen-

dence test described in Section 3. The test procedure is based on the L&T coe�cient η estimated by

the Hill method in (7). In Figure 6 we can see the sample path of estimates for each kth upper o.s. with

1 < k < n and respective 95% con�dence bands (dotted lines). In the �rst plot of period 2007-2009, it

is plausible to have η = 1, since it is included in the con�dence bands for several values of k, contrarily

to the second plot of period 2020-2022, where the con�dence bands exclude the value 1 for η. Thus we

conclude that the upper tail smoothness coe�cient S is positive in the earliest period and S = 0 in the

recent years 2020-2022.
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In Figure 7 are the estimates of Ŝk (black full line), ŜGJ
k (red full line) and respective 95% con�dence

bands (dashed lines). We used bootstrap percentile CI as it revealed an overall better performance in the

simulation study. The left panel corresponds to the �rst period 2007-2009. Our guess is that the upper

tail smoothness coe�cient is around 0.3 (horizontal line). As for the second period 2020-2022 in the right

panel, the plots seem to corroborate the test result of a null upper tail smoothness coe�cient. Recall

that in the simulation results, it was found that Ŝk presented better behavior for smaller values of k. The

plotted estimates of the second period data are close to zero for small k. As for the ŜGJ
k estimator, its

better performance in the simulation study was associated to higher values of k. The trajectory of this

estimator in the second period lower panel, although with some interruptions in which it moves away

from zero, it returns to zero for large values of k. Thus the exchange rate's volatility presents a smoother

upper tail behavior in the �rst period than in the second one where it is more oscillating and resembles

an i.i.d. sequence, meaning more instability.

6 Conclusion

Extreme value theory and extreme value statistics assume a very important role in the implementation of

adequate tools for risk assessment. The upper tail smoothness coe�cient discussed here is another such

example. By evaluating the degree of smoothness of a time series at large values, we can see whether

its behavior is typically more uncertain or not, which may help analysts' decision-making. It is a simple

measure and easy to implement. The proposal introduced here for a reduced bias estimator proved to be

promising in the study carried out and constitutes an important step in the inference. Motivated by this

work, we intend to deepen subsampling methodologies to proceed improving the smoothness estimation,

namely, in reducing the root mean squared error. The study of asymptotic properties of estimator (5)

making use of the theory of empirical tail processes for stationary time series is another way to proceed

with this work.
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Figure 2: Absolute bias (abias) of the upper tail smoothness estimator Ŝk in (2) (full line) and the GJ

estimator ŜGJ
k in (5) (dashed line), for 1 < k < n.
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Figure 3: Root mean squared error (rmse) of the upper tail smoothness estimator Ŝk in (2) (full line) and

the GJ upper tail smoothness estimator ŜGJ
k in (5) (dashed line), for 1 < k < n.
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Figure 4: Percentage of the estimated block bootstrap 95% CI that included the true value of S (coverage)
on the left and the rate given by the coverage over the mean intervals range width (coverage/range) on the
right.

Figure 5: Absolute log-returns of EUR/USD daily exchange rates in years 2007-2009 (left) and years 2020-
2022 (right).
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Figure 6: Estimates of η through Hill estimator (7), as function of 1 < k < n upper o.s. (full line). The upper
and lower dotted lines are, respectively, the upper and lower 95% con�dence bands, in periods 2007-2009
(left panel) and 2020-2022 (right panel).

Figure 7: Estimates of Ŝk (black full line), ŜGJ
k (red full line) and respective 95% con�dence bands (dashed

lines) based on bootstrap percentile CI, in periods 2007-2009 (left panel) and 2020-2022 (right panel).
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