
Environmental Modelling and Software 165 (2023) 105729

Available online 17 May 2023
1364-8152/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Coastal morphodynamic emulator for early warning short-term forecasts

Willian Weber de Melo a,*, José Pinho a, Isabel Iglesias b

a Centre of Territory, Environment and Construction (CTAC), School of Engineering, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
b Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton
de Matos, Matosinhos, 4450-208, Portugal

A R T I C L E I N F O

Handling Editor: Daniel P Ames

Original content: Deep learning model for
XBeach morphodynamic emulation (Original
data)

Keywords:
Numerical model emulator
XBeach
Deep learning
Tensorflow
Morphodynamics
Hydrodynamics

A B S T R A C T

The use of numerical models to anticipate the effects of floods and storms in coastal regions is essential to
mitigate the damages of these natural disasters. However, local studies require high spatial and temporal res-
olution numerical models, limiting their use due to the involved high computational costs. This constraint be-
comes even more critical when these models are used for real-time monitoring and warning systems. Therefore,
the objective of this paper was to reduce the computational time of coastal morphodynamic models simulations
by implementing a deep learning emulator. The emulator performance was evaluated using different scenarios
run with the XBeach software, which considered different grid resolutions and the effects of a storm event in the
morphodynamic patterns around a breakwater and a groin. The morphodynamic simulation time was reduced by
23%, and it was identified that the major restriction to reducing the computational cost was the hydrodynamic
numerical model simulation.

1. Introduction

Forecasting the impacts of extreme events, such as droughts, floods,
and storms, is fundamental to identify threatened areas and to allow
early actions to increase resilience and reduce the eventual related
damages. Anticipating extreme events becomes even more relevant in
low-lying coastal areas, which present high risks due to the combination
of meteo-oceanic events, climate trends and human activities. In open
ocean coastal areas, cities and other settlements are more vulnerable to
coastal flooding, whilst pluvial floods are one of the major threats in
deltas and estuaries (Pörtner et al., 2022). Moreover, these areas shelter
approximately 11% of the global population, which lives within 10 m
above mean sea level (Haasnoot et al., 2021; Pörtner et al., 2022;
Vousdoukas et al., 2020).

To anticipate and mitigate extreme events impacts, the imple-
mentation of forecasting systems must be addressed. These systems are
usually implemented based on numerical models, such as XBeach and
Delft3D (D3D) (Deltares, 2018; Roelvink et al., 2009), which had
demonstrated to be accurate in predicting hydro-morphodynamic
(HMD) variables under extreme events scenarios (Ferreira et al., 2019;
Iglesias et al., 2022; Simmons and Splinter, 2022; Vousdoukas et al.,
2012).

However, these numerical models demand considerable simulation
computational time, mainly when applied to high spatial and/or tem-
poral resolution domains and when different modules are used in a
forecast simulation (e.g., hydrodynamics, waves, winds, sediments, and
morphology). However, the use of high-resolution models is crucial to
correctly simulate hydrodynamic and morphodynamic patterns at
coastal stretches. Moreover, real-time monitoring and warning systems
require computationally efficient numerical models to optimize the
prediction of future trends and to allow a faster response by competent
authorities. To improve the computing efficiency of numerical models
like XBeach, Rautenbach et al. (2022) compared the performance of the
software in hydrodynamics and wave dynamics simulations using a CPU
and a GPU, finding that even a desktop grade GPU can compete with the
computational efficiency of high-performance computing CPU facilities.
However, there are still few studies about the computational efficiency
of HMD numerical models and ways to improve it.

An alternative to reduce the computational costs of HMD numerical
models is the use of emulators, which are based on the application of
statistical techniques that surrogate the numerical model. These are
artificial intelligence-derived methods, namely machine learning (ML)
and deep learning (DL), which implementation for surrogating mor-
phodynamic numerical models had been approached by other authors.

* Corresponding author.
E-mail address: id9257@alunos.uminho.pt (W. Weber de Melo).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2023.105729
Received 2 May 2023; Accepted 16 May 2023

https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/
https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/
https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/
https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/
mailto:id9257@alunos.uminho.pt
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2023.105729
https://doi.org/10.1016/j.envsoft.2023.105729
https://doi.org/10.1016/j.envsoft.2023.105729
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2023.105729&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 165 (2023) 105729

2

Poelhekke et al. (2016) developed a XBeach emulator to predict hazards
at Faro beach, Anderson et al. (2021) used several numerical models and
a Gaussian Process Regression (GPR) emulator to predict wave runup
and overwash depths and Gharagozlou et al. (2022) developed a
GPR-based emulator for post-storm subaerial beach and dune profile
shapes. However, such works developed emulators for specific punctual
locations within the domain. Hence, this work intends to fill this gap
solving the emulators constraint in morphodynamic variables fore-
casting at full 2DH domains.

In a previous work of the authors, a DL model with convolutional
layers, was implemented using simulation results obtained with D3D
software (Weber de Melo et al. (2022). The developed technique used
images of a D3D numerical model hydrodynamic variables as input and
was able to forecast the long-term morphodynamic evolution of an
intertidal shoal estuary, demonstrating that it was possible to reduce the
total simulation time by surrogating the morphodynamic module of the
numerical model for an emulator. However, short-term morphody-
namics in beaches are more complex than long-term estuarine mor-
phodynamics. Estuarine morphodynamics main drivers are the water
currents, which varies according to tides and freshwater flows. On the
contrary, beach morphodynamics results from the complex interactions
between winds, non-linear waves processes, tides, water currents and
return flows, and the processes involved in coastal morphodynamics are
dominated by complex onshore and offshore transport. Thus, the nu-
merical model selected in Weber de Melo et al. (2022) is not well-suited
to model sand beaches bar behaviour because the processes of dune
erosion and offshore sediment transport by the return flow are not
included in the numerical code. On the other hand, XBeach software has
all necessary processes to model bar behaviour (Trouw et al., 2012).
These authors also note that the default values for wave-related bed load
and suspended load factors in D3D are too high and, this way, the
physics of the model are likely flawed.

In this context, this paper has the objective to improve the DL model
architecture by Weber de Melo et al. (2022) and test if this improved
architecture could reproduce the morphodynamic results of an experi-
ment run with the XBeach model considering an extreme event scenario.
The objective is to demonstrate if the new emulator, that successfully
surrogated the D3D morphodynamic module for an estuarine environ-
ment, could also be applied to XBeach simulations of non-linear wave
dominated coastal stretches. Two simulation sets were used to evaluate
the XBeach emulator. The first set used a simplified linear bathymetry to
assess if a change in the up-sampling operation in the neural network
could reduce the error in the validation dataset and to determine the
total simulation time reduction. The second simulation set tested if the
emulator could reproduce the morphological evolution of a more com-
plex coastal stretch involving a sandy beach with different coastal
defence structures, including a submerged breakwater and a groin.

2. Methodology

The methodology applied in this study was adapted and improved
from the previous work of Weber de Melo et al. (2022), which designed
and implemented an HMD numerical model emulator to forecast the
long-term morphological evolution of an estuarine area. However, as an
already mentioned in the introduction, the processes that affect the
morphodynamics in estuaries are different from those that occur in
coastal areas. In the first case, the main morphological evolution driver
is the water currents generated by river flows and tides. In the second
case, the waves, tides and winds are the main drivers that affect the
coastal morphological evolution. Due to the complexity of the
morphological processes in coastal regions and the need to introduce
other non-linear variables besides the water current, this work devel-
oped a new methodology to reduce the computational costs of a XBeach
model to emulate the short-term morphological evolution of coastal
stretches.

2.1. XBeach model

XBeach is an open-source numerical model that simulates HMD
processes in sandy coastal areas by solving 2DH equations for wave
propagation, flow, sediment transport and bottom changes (Roelvink
et al., 2009). This software solves the shallow water equation for
low-frequency waves and average flows considering the depth-averaged
generalized lagrangian mean formulation (Roelvink et al., 2009). The
sediment transport equation was solved accordingly to the
Van-Thiel-Van Rijn formulation (van Rijn, 2007; van Thiel de Vries,
2009).

XBeach-based methodologies had already been demonstrated to be
capable of achieving reliable results, having been applied to study the
uncertainties in run-up predictions on natural beaches (e.g., Rutten
et al., 2021), to predict extreme offshore directed sediment transport
(Suzuki and Cox, 2021) and to model the morphological response of a
sandy barrier island during hurricane conditions (Smallegan et al.,
2016). However, XBeach simulations require intensive computational
resources, mainly when the domain has a high spatial resolution,
restraining its application in real-time early warning forecasting and
decision support systems (Ferreira et al., 2019; Gharagozlou et al., 2022;
Poelhekke et al., 2016).

In this study, two different simulation sets were defined to evaluate
and optimize the performance of the emulator. The spatial domain of the
first set was a simplified beach with a linear bathymetry (Fig. 1a). The
focus of this first set was to assess the up-sampling operation in the ar-
chitecture of the emulator to reduce the error in the forecasts. In the
second set, the capacity of the emulator in reproducing the morphody-
namics was evaluated in a more complex geometrical domain involving
two different coastal defence structures, a submerged breakwater
(Fig. 1b) and a groin (Fig. 1c).

2.1.1. Coastal domains characteristics
Three different coastal domains were defined to analyse the perfor-

mance of the emulator (Fig. 1). The first domain consists of a beach with
a 2 km cross shore width and 4 km alongshore length discretized with a
100 × 200 grid with 20 m cells size resolution. The bathymetry varied
from 0 m to − 20 m and the topography from 0 m to 10 m. The topo-
bathymetry is homogeneous in the north-south direction. In the west-
east direction, it varied linearly (Fig. 1a).

The second and third domains used a 335 × 375 grid with 5 m cells
size resolution, resulting in a coastal domain of 1.68 km cross-shore
width and 1.88 km alongshore length. The bathymetry varied between
0 m and − 12 m at the offshore boundary, and the topography from 0 m
to 2 m at the inland boundary (Fig. 1b and c).

2.1.2. Numerical models initial and boundary conditions
The XBeach simulations run in the surfbeat mode, in which the short-

wave motion is solved using the wave action equation (Roelvink et al.,
2009). For the first set of simulations that used the linear bathymetry,
the initial water level was assumed equal to 1.6 m at the offshore
boundary and 1.3 m at the landward boundary, while in the second set
of simulations, which included domains with coastal defence structures,
the initial water level was assumed equal to the mean sea level (0 m
MSL).

The Joint North Sea Wave Project (JONSWAP) spectral wave model
was selected to force the models to represent the occurrence of an
extreme event. The significant wave height used in simulation set 1 was
6 m, intending to simulate a highly energetic storm to force intense
morphological changes during the simulation. The significant wave
height (Hs) was 3 m for the simulation set 2, which is a representative
value, based on the historical wave measurements, of a typical storm in
Portugal (C.A. Oliveira et al., 2020). For this geographical location, the
average peak periods (Tp) vary between 5 s and 12 s and the mean Hs
usually varies between 1.5 m and 2 m, but values between 3 and 6 m are
recurrent (Vieira et al., 2020; Viitak et al., 2021).

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

3

The hydrodynamic simulation period was 6 h for both simulation
sets, although the sediment transport and morphology modules started
with half hour lag in the simulation set 1 and with one-day lag in
simulation set 2 to avoid numerical inconsistencies. Additionally, a
morphological acceleration factor (MORFAC) of 20 was adopted in
simulation set 2 to represent the morphological evolution along 5 days.
Furthermore, the adopted critical avalanching slope above water was
0.15 and underwater was 1. The summary of the boundary conditions
used for each simulation set are presented in Table 1, where the mainang
parameter is the main wave angle in the nautical convention, s is the
directional spreading coefficient, gammajsp is the peak enhancement
factor and fnyq is the highest frequency of the JONSWAP spectrum.

2.1.3. Simulation scenarios
As already briefly explained in the introduction, each simulation set

was elaborated to accomplish different objectives. The first set had the
goal to study up-sampling operation to improve the performance of the
emulator. The second set assessed the capacity of the DL model to
emulate more complex coastal environments under the influence of
coastal defence structures and assessed different combinations of inputs
and outputs during the training of the network. Scenarios 1 to 4 in

Fig. 1. Topo-bathymetry considered for each XBeach domains: a) Linear topo-bathymetry domain; b) Breakwater domain; c) Groin domain.

Table 1
Domain characteristics and boundary conditions of simulation sets.

Simulation
set

1 2

Objective Evaluate up-sampling operation
and simulation computational
time

Evaluate the emulator
performance with different
scenarios

Domain 2 km × 4 km grid with 20 m
resolution

1.68 km × 1.88 km grid with
5 m resolution

Bathymetry Linear bathymetry Simplified typical northern
Portugal coastal bathymetry

Morfac 1 20
Boundary conditions (JONSWAP wave model)
Hs (m) 6 3
Tp (s) 15 15
mainang (◦) 300 315
s 20 20
gammajsp 3.3 3.3
fnyq (Hz) 1 1

With these conditions, the total simulation time was 28 min for the first domain,
65 min for the groin domain and 67 min for the breakwater domain, using a 6
cores processor with a 2.2 GHz base frequency.

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

4

simulation set 2 assessed the capacity of the emulator in reproducing
different morphodynamic variables, the current timestep bed level
change (CTBLC) or the cumulative erosion and sedimentation (CES).
Scenarios 5 to 8 were defined to evaluate the possibility of implementing
a single emulator for different domains. The models were trained using
the data of both domains, but its performance was assessed considering
the results of each domain individually.

The characteristics of the scenarios are synthesized in Table 2. The
simulation set 1 presents the up-sampling functions that were tested.
ConvT refers to the transpose convolution layer, followed by the acti-
vation function that was used in that layer. At the simulation set 2, the
acronyms refer to the training and testing conditions. The first acronym
refers to the domains of the data used to train the network. BW is for
breakwater; G is for groin and BWG for both domains. The second
acronym refers to the XBeach variable used as output by the emulator
(CES or CTBLC). The third acronym, presented in scenarios 5 to 8, refers
to the domain wherein results were used to assess the performance of the
emulator. This last acronym was only necessary to differentiate the
validating conditions of the models that were trained with the data of
both domains; hence, it was not necessary in scenarios 1 to 4.

Additionally, the sensitivity of the emulator to the numerical model
grid resolution was assessed. For this test, the set 1 was selected using
the same model domain and the same topo-bathymetry but with two
different grid resolutions: 20 m × 20 m grid resolution (original domain)
and 40 m × 40 m grid resolution (a quarter of the original resolution).
These models, which will receive the acronyms OR, for the highest
resolution domain, and LR, for the lowest resolution domain, were used
to assess if the emulator could learn using the coarser resolution hy-
drodynamic input to predict the morphodynamic output of the finer
domain without losing accuracy.

2.2. Implementation of the morphodynamic emulator

The DL model was implemented in the Tensor Flow framework
(Abadi et al., 2016), in Python programming language version 3.9.7
using a Spyder environment version 5.2.2. Details about the imple-
mentation of the emulator are presented in the following sub-sections.

2.2.1. Input and output images processing
The DL network used the Generalized Lagrangian Mean velocity

(GLMV) magnitude and the bottom shear stress (BSS) as inputs. The
output in simulation set 1 was CTBLC. In simulation set 2, the CES result
was additionally used. To generate the image datasets with these vari-
ables, a Python script was programmed to ensure that all the images
presented the same resolution and colour scale characteristics. The axes
of the images were turned off and the margins were set to 0 to ensure
that all the pixels of the images coincided with the numerical model
domain.

The netcdf4 library (Whitaker et al., 2020) was used to read the
XBeach results and the Matplotlib library was used to plot the results
(Hunter, 2007). The images were created with the imshow function and
were exported with 300 dpi, resulting in a resolution of 452 × 900 pixels

for simulation set 1 and 540 × 600 pixels for simulation set 2. The im-
ages were plotted in grayscale, and the limit values of the colour scales
were determined using a programmed routine that iterated through all
the variables’ datasets to find the maximum and minimum values for
each variable at all run time steps. Brighter tones indicate positive
values (sedimentation) while darker tones indicate negative values
(erosion) or zero, in the case of GLMV and BSS. Examples of these images
are presented in Fig. 2.

The exporting loop was divided into 3 parts: firstly, it read the results
of the ith time step and created an image with the pre-defined config-
urations. Secondly, it updated the image name according to the
respective time step, to avoid overwriting the results. Thirdly, the image
was exported to a folder in which all the images were stored according to
each variable. It resulted in 54 and 150 images per variable for the
simulation set 1 and 2, respectively. The scenario that evaluated the
emulator with different input and output grid resolutions used 109 im-
ages per variable, maintaining the same training/test ratio. This increase
in the number of images was necessary to reduce the emulator mean
error.

For the simulation set 1, only the results of the CTBLC were used to
evaluate the performance of the model. For the set 2, the CES results
were also used to train the network and to evaluate if the emulator could
properly forecast the morphological evolution of the domains. The in-
puts were the same in this second case, the unique difference was the
output variable used for training the network.

2.2.2. Network architecture
A U-net and a recursively deconvolutional branched network are the

basis for the emulator architecture, in which each branch mapped the
image features of one specific resolution (Ronneberger et al., 2015;
Santhanam et al., 2016). This configuration, which was also used (by
Weber de Melo et al. (2022), is presented in Fig. 3. The hyperparameters,
namely the activation functions, number of filters, kernel size, strides
and dilation rate of the convolutional layers remained the same.

The DL model was implemented using the Functional API of the
TensorFlow framework, due to the complexity of the chosen architec-
ture. The network initially mapped the features of the input data and
reduced the footprint of the data using convolutional operations with
strides set to 2, to half the resolution of the layer inputs. After each stride
convolution, a concatenation layer merged the layers’ outputs. After
that, up-sampling layers restored the original resolution of the input
data, and 3 other convolutions were performed. The activation function
was the ReLU in all convolutional layers except for the last, which used a
hyperbolic tangent function (tanh).

Besides, a deconvolution layer, also known as transposed convolu-
tion (Dumoulin and Visin, 2016), replaced the up-sampling operation
(green arrows in Fig. 3). This change increases the number of trainable
parameters in the architecture of the network, allowing the improve-
ment of the emulator performance. The ReLU and tanh activation
functions were assessed during this step.

The main difference between these two operations is how they in-
crease the resolution of the images. The up-sampling layer increases the
number and/or columns of the input data. The values of the new ele-
ments will depend on the interpolation method of the layer. The
deconvolutions, on the other hand, consists of a convolution with a filter
derived from the transposition and inversion of the tensor resulting from
the original convolution filter (Aggarwal, 2018). This type of layer
presents the same properties, parameters and hyperparameters of a
convolution layer, however, the output has more dimensions than the
input.

In the last two layers, a ReLU operation with a maximum value equal
to 1 limited the values of the output image between 0 and 1, and a
rescaling operation set the output values in a 0–255 scale, which is the
same scale as the output images.

Table 2
Testing conditions of the DL models. In simulation set 1, the up-sampling layer
was evaluated whilst simulation set 2 assessed different combinations of inputs
and outputs.

Simulation set 1 2

Scenarios 1 Up-sampling layer BW - CES
2 ConvT, ReLU BW - CTBLC
3 ConvT, tanh G - CES
4 – G - CTBLC
5 – BWG - CES - BW
6 – BWG - CTBLC - BW
7 – BWG - CES -G
8 – BWG - CTBLC - G

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

5

2.2.3. Training and validation
The networks were trained using the RMSprop optimizer with a

learning rate of 0.005 and a limit of 300 epochs. Early stopping was
configured to interrupt the training if the performance of the emulator
stabilized after 15 consecutive epochs. The loss function was the mean
squared error (MSE), and the root mean squared error (RMSE) was used

to monitor the training progress. 80% of the images were used for
training and 20% for validating the model.

Each training epoch lasted approximately 20 s for simulation set 1
and 35 s for set 2. The training was performed in a CPU Intel Core i7-
8750H 2.20 GHz, 16 Gb RAM and a graphics card Nvidia GeForce
GTX 1060 with 6 Gb, using parallel computing aided by the CUDA

Fig. 2. Examples of images of the hydrodynamic model results used as input (GLMV and BSS) and of the morphodynamic model results used as output (CTBLC and
CES) by the deep learning model. The bound values used to plot the images are in the grayscale colour bar above each image. The DL models used the first two
variables as input and at least one of the last two variables as output.

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

6

toolkit v. 11.2 (Harish and Narayanan, 2007).
The model architecture with the best performance obtained with the

simulation set 1 was used in the simulation set 2 scenarios. For scenarios
1 to 4 the models were trained for each domain and for each output
variable (CES and CTBLC), resulting in 4 emulators. In scenarios 5 to 8,
the models were trained using the data of both domains at once,
resulting in two emulators. These last scenarios verified the possibility of
using only one model to predict the morphological evolution of different
domains. Additionally, in this second case, the models would be capable
of identifying the domain according to the input data.

2.2.4. Performance analysis
To compare the results of the numerical models and the results of the

emulator, the root mean squared error (RMSE) of the model in the
validation dataset was computed for each time step:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Em − Nm)

2

√

(1)

where n is the number of grid points, Em is the result of the emulator and
Nm is the result of the numerical model. Also. the mean error was
determined to identify the location of the highest errors in the domain:

ME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑n

i=1
(Em − Nm)

√

(2)

where m is the number of time steps of the validation dataset.
Besides, the kernel-density estimation (KDE) of the errors in the

domains was computed, considering all the time steps. The KDE method
estimates the probability density function of a non-parametric dataset
(Chen, 2017). This last metric is relevant to successfully analyse the
error distribution in all the domains to identify areas in which the
emulator performance is better.

3. Results and discussion

3.1. Simulation set 1

Simulation set 1 had the objective of evaluating the influence of the
up-sampling operation in the architecture of the emulator. The RMSE in
scenario 1 was 0.0241 mm, 0.0247 mm, and 0.0183 mm for scenarios 1,
2 and 3, respectively.

All the models could achieve reasonable results, however, the use of
the tanh activation function in the transposed convolution layer (Sce-
nario 3) resulted in the emulator with the best performance. It probably
occurred due to the increase in the number of trainable parameters in
the network, granting a better approximation to the numerical model
results. Additionally, it did not meaningfully affect the computational
time required by the emulator to process the validation dataset.
Therefore, the architecture used in scenario 3 was used to evaluate the
computational performance in simulation set 2 scenarios.

3.2. Computational performance

The DL models needed 5 s to generate the morphodynamics results
referred to the whole dataset (training and validation). However, it is
also necessary to run the hydrodynamic module of the numerical model
to generate the input data required by the emulator.

Therefore, to correctly estimate the computational time required for
the DL model, it was necessary to run the numerical model with the
sediment transport and morphology modules deactivated. This com-
parison was conducted using the simulation set 1 model, due to its
simplified bathymetry and, consequently, hydrodynamics patterns. This
model run a 6 h simulation, with morfac set to 0 and with the sediment
transport and morphology modules deactivated.

With both morphodynamics modules activated, 28 min were neces-
sary to run the simulation. With only the hydrodynamics module acti-
vated, the simulation took 23 min. Additionally, 15 s were necessary to

Fig. 3. DL model architecture. The rectangles represent the resolution of the image in each network layer. The numbers above each layer are the number of filters,
and each coloured arrow represents one different operation performed in the network.

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

7

generate 108 input images (54 per variable), and 5 s to run the DL model
with this data, representing a reduction of 23% in the total time
necessary to forecast the morphodynamic evolution of the domain,
considering the predictions for the whole simulation period. Therefore,
the main limiter to reduce the morphodynamics forecast computational
time is the hydrodynamic simulation.

The emulator that used different input and output resolutions had
the best performance gain. The hydrodynamic simulation lasted 3.3 min,
resulting in a time reduction of 87% to generate the morphodynamics
results. As the major restriction to reduce the computational time was
the hydrodynamic simulation, reducing the grid resolution to train the
emulator could represent a significant performance gain.

Additionally, it must be highlighted that it would be necessary to
update the numerical model bathymetry before generating the hydro-
dynamics results of the next forecast window. The bathymetry variation
directly affects the hydrodynamics variables, consequently, update it
during this type of simulation is of utmost importance to correctly
forecast the HMD variables and reduce the uncertainties of the results.

Looking forward to optimizing the generation of the hydrodynamics
results, three approaches could be considered. Firstly, the XBeach
simulation time presents a high dependence on the wave velocities that
must satisfy the CFL condition (Courant et al., 1928; Roelvink et al.,
2009; Schneider et al., 2013). The simplest method to ensure this con-
dition and maintain the grid resolution is to set the smallest time step for
the entire simulation, which is determined according to the highest
wave speed (Gnedin et al., 2018). Although, this approach could in-
crease the total simulation time, especially if the objective of the model
is to simulate extreme events, which would result in higher wave ve-
locities and demand a reduction in the simulation time step to satisfy the
CFL condition.

Alternatively, the reduction of the grid resolution would allow
higher time steps, reducing the total simulation time and satisfying the
CFL condition. However, the focus of this methodology was to reduce
the computational costs of high-resolution numerical models during
short-term events, hence, this hypothesis was not considered in this
work.

The last option would be to optimize the input image generation
loop. In this study, a loop was used to generate the images of each
variable. In each step of the loop, the image referring to the ith time step
was created and exported. To reduce this time, a single loop for all
variables was performed, which partially reduced the redundancy in the
code, instead of using one loop for each variable, optimizing this pro-
cess. In despite of that, the total time required to generate the hydro-
dynamics images was 15 s. Hence, an optimization in this process would
not significantly reduce the total time required.

Additionally, an important result achieved, if compared with previ-
ous works, is the reduction in the number of images necessary to train
the emulator. In Weber de Melo et al. (Weber de Melo et al., 2022), 1095
images were generated to train and test the emulator, whereas herein
only 162 images were needed in the simulation set 1 to achieve good
results. This demonstrate that using AI models do not necessarily require
a huge database for training and testing, which agrees with data-centric
AI concepts that affirms that the quality of the data is far more important
than its quantity (Sambasivan et al., 2021). The XBeach database
required 20.61 Mb of disk space, while the D3D needed 137.1 Mb,
representing a reduction of 85% in the disk space usage. The emulator
with different input/output resolutions needed 40.8 Mb, representing
70% less disk space.

3.3. Influence of the grid resolution

The difference between the emulators trained with inputs of different
resolution and the numerical model output for the test dataset are pre-
sented in Fig. 4. The mean error of both emulators was negligible, but
the mean error of the LR emulator was one order higher than the OR
emulator. The maximum error occurred in the OR emulator results was

21 cm and in the LR emulator was 26 cm. These values are considerably
higher than the mean error, however they are restricted to specific areas
of the domain, particularly near the domain boundaries, which normally
fall out of the region of interest when using numerical modelling
approaches.

Fig. 5 shows the RMSE of the OR and LR emulators in the test dataset.
It can be observed that the performance of both models is remarkably
similar in all points and the maximum mean error was below 5 cm in the
OR model and below 8 cm in the LR. Besides, both error curves follow a
similar pattern, having the same behaviour at timesteps 14 and 17, for
example.

3.4. Simulation set 2

Fig. 6 presents a comparison between the output in the last time step
of the XBeach model with the results obtained with the emulator using
the CES images (scenarios 1 and 3). The emulator could reproduce the
main patterns of the morphological evolution of the domains with a
remarkable resemblance. The erosion and accretion bars can be
observed in the southern area of the beach in both images, as well as a
larger accretion area around the coordinate (300, 300). This pattern
results from the 315◦ wave angle of the wave spectrum applied at the
boundaries of the XBeach model, which created this accretion spot up-
stream of the structures. However, the emulator underestimated the

Fig. 4. Comparison between emulators using inputs with different
grid resolution.

Fig. 5. Emulators RMSE in the test dataset.

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

8

accretion area near this coordinate, which is evident due to the thinner
blue bar in the breakwater domain and the reduced quantity of purple
pixels in the groin domain.

This result demonstrates that the use of CES as output instead of
CTBLC did not significantly affect the performance of the emulator. The
emulator accurately simulated the main morphodynamic patterns of
both study areas, independently of the selected domain.

Comparing the results of both selected coastal structures, the output
of the breakwater emulator is more similar to the numerical model result
than the output of the groin emulator. This could be related with the
uniformity of the breakwater influence along the beach when compared
to the groin. The groin breaks the linearity of the erosion/accretion bars,
creating an area with a more complex morphodynamic pattern. Hence,
more training images would be necessary to improve the precision of the
groin emulator.

Additionally, the emulator underestimated the erosion that occurred
near the groin, in the centre of the domain. It can be observed that the
numerical model simulated a larger erosion area in the north-south di-
rection, whilst this pattern was not accurately forecasted by the
emulator, mainly at the north of the breakwater. In the case of the
breakwater emulator, it underestimated the accretion that occurred in

the east face.
The performance of the emulator could be improved by increasing

the size and variability of the training dataset variables. The use of more
images would give more information about the output pattern expected
in that area of the domain, increasing its performance. Moreover, the
error in the areas wherein the morphodynamic variation is more uni-
form was lower than the error in areas with higher variability, namely
near the breakwater and the groin. However, it must be stressed that the
emulator could still identify that the morphological change in the groin
was zero, probably because this pattern was more common in all
training time steps.

To assess the error variance of the emulators in all the validation
timesteps, the RMSE was computed between the DL model output and
the numerical model result for each pixel of the image. The mean value
of the RMSE was then determined by dividing the RMSE for the vali-
dation time steps. Fig. 7 presents these results, separated by the output
variable used to train the DL models.

The results demonstrated that the models trained in only one domain
had a better performance than the models trained in both domains. It
probably befell because the input variables values were affected by the
groin and the breakwater only in the area around these interventions. In
the other parts of the domain, the input values were more resemblant
due to the boundary conditions being the same. Hence, the network
could learn the CES patterns for both domains, having similar errors as
demonstrated in Fig. 7 – a.

In Fig. 7 – b, the error of scenarios 6 and 8 was quite different when
compared to the models trained with CES data. It probably happened
because the CTBLC patterns are more similar between the domains,
given that these results show only the areas in which the bed level was
altered in the last time step. This fact could explain why the performance

Fig. 6. Comparison between the CES simulated by the XBeach model and the
emulator in the last simulation time step. a) Breakwater domain; b)
Groin domain.

Fig. 7. Models mean RMSE at each validating time step. a) Error (m) of the
models trained in CES data; b) Errors (mm) of the models trained in
CTBLC data.

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

9

of scenario 8 was closer to scenarios 2 and 4, a different pattern when
analyzing the CES results. Despite that, the performance of the models
was better when the training conditions were from only one domain. It
probably occurred owing to a possible ambiguity in the input and output
data since most of the pixel values in the input images were not affected
by the domain.

Besides, the BWG emulator had to decide which domain to prioritize
during the training, resulting in a better adjustment to the groin domain
instead of the breakwater. This could explain why the error in scenario 8
was lower than the error in scenario 6. However, the performance in
scenario 8 overcame scenario 4 between time steps 15 and 23, indicating
that the DL model parameters were more suitable for those inputs. This
would allow the use of ensemble techniques (Biolchi et al., 2022; Iglesias
et al., 2022) to create a unique and more robust model that could merge
individual models trained in specific conditions, allowing the model to
select a determined input-output path according to the available data.

Fig. 8 presents the mean error obtained in the simulation set 2

scenarios. This result allows to identify the average location of the major
errors in the numerical model domains. The whiter colors represent
areas where the error was near 0, red colors represent the emulator
underestimation and blue colors represent overestimation. Scenarios 2,
3 and 5 had an average overestimation of the numerical model results,
whilst the other scenarios presented an average underestimation.

Fig. 8 – a shows that, in all scenarios, the DL models underestimated
the values of an erosion area that occurred near the coordinates (280,
350). This probably occurred owing to the proximity to the boundary of
the numerical model, resulting in a higher uncertainty for that area.
Moreover, the model also underestimated the accretion area at co-
ordinates (300, 300). Despite that, all the models had a reasonable
agreement between the numerical model results and the data model
outputs.

It can be observed in Fig. 8 – b that the highest errors in scenarios 2
and 6 occurred near the beach, where the sediment transport is more
intense, although is in this same area where the lowest errors in sce-
narios 4 and 8 are found. This demonstrates that the DL model trained in
both domains (scenarios 6 and 8) adjusted its parameters to better
represent only one domain, which was the one with lower errors. This
same behaviour can be observed in scenarios 5 and 7, in which the error
in scenario 7 was much lower than the error in scenario 5.

Lastly, the error distribution was plotted (Fig. 9), which allows for
assessing the variability of the errors, considering all the time steps of

Fig. 8. Mean error of the DL models in the domains. Red colors represent
emulator underestimation and blue colors overestimation. White colors indicate
a perfect agreement between the numerical model and the emulator. a) Error of
the models (m) in forecasting the CES; b) Error of the models (mm) in fore-
casting CTBLC.

Fig. 9. DL model error distribution. a) Distribution of the CEM errors; b) Dis-
tribution of the CTBLC errors.

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

10

the validation dataset. The peak values in the distributions are approx-
imately the mean errors presented in Fig. 8. The models trained in single
domain data had a lower variability in the errors, regardless of the
output variable. Additionally, the emulators presented acceptable re-
sults for all the domain areas, which is indicated by the error low
variability.

Therefore, DL emulators could successfully surrogate morphological
modules of numerical modelling tools as the XBeach without significant
changes in the result. The errors achieved by the DL models represented
1.1% of the maximum CES values and 0.6% of the maximum CTBLC
values, reinforcing the similarity between the results of the emulator and
the XBeach models.

3.5. Future of HMD modelling

The capacity of the emulator in reproducing the main morphody-
namic patterns of coastal beaches and the reduction of computational
resources requirements demonstrate the potential of data-driven
models, staring to modify the logic behind environmental modelling.
Numerical models can achieve reliable results by solving deterministic
equations, although these equations simplify some aspects of the reality.
For instance, the bottom friction coefficient is usually simplified to a
uniform value for all the computational domain, although it is known
that this coefficient varies according to the characteristics of the sedi-
ments, bottom structure, depth and vegetation. These details can be
inserted into numerical models, but the efforts in their implementation
would sharply rose.

Data-driven models, conversely, intrinsically consider all the domain
features, as it will be reflected in the training data. It is also important to
stress that the data characteristics determines the validation interval in
which data models can be applied. For example, for the implementation
of a model to predict extreme events effects it is not expected that a data
model trained in average conditions will have satisfactory performance,
as well as a numerical model calibrated in average conditions will not
either. In this context, a change of paradigm may be interesting for
future modelling methodologies. Instead of creating more complex
models that can consider all sources of uncertainty, efforts could be
directed to improve the quality, variability, and frequency of data,
thereby reducing the uncertainties of forecasts to the characteristics of
the training data and to the errors in the measurements.

Regarding the computational resources required for modelling, the
use of parallel computing and high-performance computers would
reduce the simulation computational time. However, these types of
machines, and their necessary infrastructure, have high associated costs,
limiting the application of real time forecasting platforms to those who
can afford them. Therefore, the development of methodologies that does
not depend on super computers is a promising path to guarantee a wider
application of early warning systems.

4. Conclusions

This study applied an emulator to a hydrodynamic coastal numerical
model using a deep learning approach implemented in Python and the
Tensor Flow framework. Images of the hydrodynamic variables, bed
shear stress and GLM velocity, simulated with a XBeach model, were
used as input of the DL models that forecasted the morphological evo-
lution for three different domains.

In simulation set 1, a DL architecture based on the previous work of
Weber de Melo et al. (2022) had a satisfactory performance for the
XBeach models, demonstrating the suitability of the purposed method-
ology to reduce the computational time of morphodynamic numerical
models. There is no reason to think that the developed emulator cannot
be used with other hydro-morphodynamic software appropriate to
simulate coastal stretches.

Additionally, the performance of the emulator was improved by the
replacement of the up-sampling operation in the neural network

architecture by transposed convolutions. This procedure increased the
number of trainable parameters in the network, allowing the reduction
of the error between the numerical model results and the DL model
outputs without significantly affecting the computational time required
by the emulator to forecast the validation dataset. Furthermore, the tanh
activation function resulted in a lower error when compared to the ReLU
activation function.

Regarding simulation set 2, it was demonstrated that the emulator
could reproduce the numerical model morphodynamic results in coastal
domains under the influence of a submerged breakwater or a groin. The
errors obtained were two orders lower than the maximum and minimum
values of the output variables.

Furthermore, the emulator accurately reproduced both CES and
CTBLC results, indicating that the DL model can be easily adapted to
forecast any variable of interest if there is enough data to train the
network. To determine the size of the training dataset, it is necessary to
assess the results in the validation dataset. The use of few data can result
in models that can barely forecast the main patterns of the output var-
iable, whilst the use of excessive data can drastically increase the time
required for training the network. It is recommended that the training
data includes enough variability to correctly represent the application
range of the emulator. Moreover, the image database used in this paper
requires 85% less disk space than in Weber de Melo et al. (2022),
demonstrating that the methodology can achieve reliable results with
fewer data.

It can be also concluded that it is possible to train one emulator with
data from different domains, however, some precautions are necessary,
namely identifying the possibility of a domain prioritization by the DL
model. The errors increased in three of the scenarios in which the em-
ulators were trained with both datasets (scenarios 5, 6 and 7) when
compared to the emulators trained with a single one. Scenario 8 model
results overcame scenario 4 in several time steps, although its error was
slightly worse in the others time steps.

Regarding the computational costs of the emulator, it was achieved a
time reduction of 23% in simulating the morphodynamic evolution
using numerical models with the same input and output grid resolution,
whilst a time reduction of 87% was obtained using the emulator with
low grid resolution inputs. The main time-consuming task in this
methodology was the generation of hydrodynamics results by the nu-
merical model, which limited the improvement of the proposed meth-
odology. Hence, the performance gain with the emulator application
would be higher for long-term hydrodynamic simulations due to the
lower wave velocities magnitudes, which allows simulations with higher
time steps. Although the error in the LR emulator had slightly increased,
its results were still similar to the numerical model. Additionally, the use
of images as input and output allows the potential application of this
methodology to any other numerical model, as mentioned before.

Reducing the total computational time required for simulating the
short-term morphological evolution of a coastal area can be important to
facilitate the application of XBeach models to real-time early warning
and forecasting systems. This would allow to optimize the response of
the authorities during extreme events, and to increase the resilience of
coastal communities.

Finally, this study demonstrated that the use of deep learning tech-
niques can reduce the computational costs of numerical models,
allowing their implementation in real-time forecasting and warning
systems. The emulators accurately reproduced the CES and CTBLC re-
sults obtained with the XBeach software, which is one of the most
advanced coastal morphodynamics simulation model available,
achieving an error two orders lower than the morphodynamics variables
range values.

Software and data availability

- Name of the Software: XBeach version 1.23.
Developers: Deltares/XBeach Open-Source Community; First year

W. Weber de Melo et al.

Environmental Modelling and Software 165 (2023) 105729

11

available: 2009; Cost: Free; Software availability: :https://download.de
ltares.nl/en/download/xbeach-open-source/; Program size: 330.97 MB.

- The deep learning-based emulator used for surrogating the XBeach
morphodynamic module was implemented in Python language (version
3.9) based on TensorFlow library. The authors used a Windows 11 Home
OS environment, CPU Intel(R) Core (TM) i7-8750H 2.20 GHz, RAM 16
GB, GPU Nvidia GeForce GTX 1060.

The architecture of the model is available at:http://www.hydrosh
are.org/resource/b4ae97df748842a1800816b32a3d640 b.

Author contributions

W.M., J.P. and I.I. designed the research; W.M. performed the
research; W.M., J.P. and I.I. analyzed the data; W.M. and J.P. imple-
mented the models; J.P. and I⋅I proofread the article.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.
Deep learning model for XBeach morphodynamic emulation

(Original data) (HydroShare)

Acknowledgements

This research was supported by the Doctoral Grant SFRH/BD/
151383/2021 financed by the Portuguese Foundation for Science and
Technology (FCT), and with funds from the Ministry of Science, Tech-
nology and Higher Education, under the MIT Portugal Program. I.
Iglesias also acknowledge the FCT financing through the CEEC program
(2022.07420. CEECIND).

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., et al., 2016. TensorFlow:
large-scale machine learning on heterogeneous distributed systems. http://arxiv.
org/abs/1603.04467.

Aggarwal, C.C., 2018. Neural networks and deep learning. In: Artificial Intelligence.
Springer International Publishing. https://doi.org/10.1007/978-3-319-94463-0.

Anderson, D.L., Ruggiero, P., Mendez, F.J., Barnard, P.L., Erikson, L.H., O’Neill, A.C.,
Merrifield, M., Rueda, A., Cagigal, L., Marra, J., 2021. Projecting climate dependent
coastal flood risk with a hybrid statistical dynamical model. Earth’s Future 9 (12).
https://doi.org/10.1029/2021EF002285.

Biolchi, L.G., Unguendoli, S., Bressan, L., Giambastiani, B.M.S., Valentini, A., 2022.
Ensemble technique application to an XBeach-based coastal early warning system for
the northwest adriatic sea (Emilia-Romagna region, Italy). Coast. Eng. 173 https://
doi.org/10.1016/j.coastaleng.2022.104081.

Chen, Y.-C., 2017. A tutorial on kernel density estimation and recent advances. Biostat.
Epidemiol. 1 (1), 161–187. https://doi.org/10.1080/24709360.2017.1396742.

Courant, R., Friedrichs, K., Lewy, H., 1928. Über die partiellen Differenzengleichungen
der mathematischen Physik. Math. Ann. 100 (1), 32–74. https://doi.org/10.1007/
BF01448839.

Deltares, 2018. Delft3D-Flow: Simulation of Multi-Dimensional Hydrodynamic Flows
and Transport Phenomena, Including Sediments - User Manual.

Dumoulin, V., Visin, F., 2016. A Guide to Convolution Arithmetic for Deep Learning. htt
p://arxiv.org/abs/1603.07285.

Ferreira, Ó., Plomaritis, T.A., Costas, S., 2019. Effectiveness assessment of risk reduction
measures at coastal areas using a decision support system: findings from Emma
storm. Sci. Total Environ. 657, 124–135. https://doi.org/10.1016/j.
scitotenv.2018.11.478.

Gharagozlou, A., Anderson, D.L., Gorski, J.F., Dietrich, J.C., 2022. Emulator for eroded
beach and dune profiles due to storms. J. Geophys. Res.: Earth Surf. 127 (8) https://
doi.org/10.1029/2022JF006620.

Gnedin, N.Y., Semenov, V.A., Kravtsov, A.v., 2018. Enforcing the
Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping
schemes. J. Comput. Phys. 359, 93–105. https://doi.org/10.1016/j.jcp.2018.01.008.

Haasnoot, M., Winter, G., Brown, S., Dawson, R.J., Ward, P.J., Eilander, D., 2021. Long-
term sea-level rise necessitates a commitment to adaptation: a first order assessment.
Clim. Risk Manag. 34 https://doi.org/10.1016/j.crm.2021.100355.

Harish, P., Narayanan, P.J., 2007. Accelerating large graph algorithms on the GPU using
CUDA. High. Perform. Comput. HiPC 2007 4873 LNCS, 197–208. https://doi.org/
10.1007/978-3-540-77220-0_21. Springer Berlin Heidelberg.

Hunter, J.D., 2007. Matplotlib: a 2D graphics environment. Computing in Science \&
Engineering 9 (3), 90–95. https://doi.org/10.1109/MCSE.2007.55.

Iglesias, I., Pinho, J.L., Avilez-Valente, P., Melo, W., Bio, A., Gomes, A., Vieira, J.,
Bastos, L., Veloso-Gomes, F., 2022. Improving estuarine hydrodynamic forecasts
through numerical model ensembles. Frontiers in Marine Science 9. https://doi.org/
10.3389/fmars.2022.812255.

Oliveira, T.C.A., Cagnin, E., Silva, P.A., 2020. Wind-waves in the coast of mainland
Portugal induced by post-tropical storms. Ocean Engineering 217. https://doi.org/
10.1016/j.oceaneng.2020.108020.

Poelhekke, L., Jäger, W.S., van Dongeren, A., Plomaritis, T.A., McCall, R., Ferreira, Ó.,
2016. Predicting coastal hazards for sandy coasts with a Bayesian Network. Coastal
Engineering 118, 21–34. https://doi.org/10.1016/j.coastaleng.2016.08.011.

Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A.,
Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B., 2022. IPCC,
2022: climate change 2022: impacts, adaptation and vulnerability. Contribution of
working group II to the sixth assessment report of the intergovernmental panel on
climate change. https://doi.org/10.1017/9781009325844.

Rautenbach, C., Trenham, C., Benn, D., Hoeke, R., Bosserelle, C., 2022. Computing
efficiency of XBeach hydro- and wave dynamics on Graphics Processing Units
(GPUs). Environmental Modelling & Software 157, 105532. https://doi.org/
10.1016/j.envsoft.2022.105532.

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R.,
Lescinski, J., 2009. Modelling storm impacts on beaches, dunes and barrier islands.
Coastal Engineering 56 (11–12), 1133–1152. https://doi.org/10.1016/j.
coastaleng.2009.08.006.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for
biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M.,
Frangi, A.F. (Eds.), Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351.
Springer International Publishing, pp. 234–241. https://doi.org/10.1007/978-3-
319-24574-4_28. Issue Cvd.

Rutten, J., Torres-Freyermuth, A., Puleo, J.A., 2021. Uncertainty in runup predictions on
natural beaches using XBeach nonhydrostatic. Coastal Engineering 166 (February),
103869. https://doi.org/10.1016/j.coastaleng.2021.103869.

Sambasivan, N., Kapania, S., Highfll, H., 2021. Everyone wants to do the model work, not
the data work: data cascades in high-stakes ai. In: Conference on Human Factors in
Computing Systems - Proceedings. https://doi.org/10.1145/3411764.3445518.

Santhanam, V., Morariu, V.I., Davis, L.S., 2016. Generalized deep image to image
regression. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017-Janua, pp. 5395–5405. https://doi.org/10.1109/
CVPR.2017.573.

Schneider, K., Kolomenskiy, D., Deriaz, E., 2013. Is the CFL condition sufficient? Some
remarks. In: The Courant–Friedrichs–Lewy (CFL) Condition, pp. 139–146. https://
doi.org/10.1007/978-0-8176-8394-8_9. Birkhäuser Boston.

Simmons, J.A., Splinter, K.D., 2022. A multi-model ensemble approach to coastal storm
erosion prediction. Environmental Modelling and Software 150. https://doi.org/
10.1016/j.envsoft.2022.105356.

Smallegan, S.M., Irish, J.L., Van Dongeren, A.R., Den Bieman, J.P., 2016. Morphological
response of a sandy barrier island with a buried seawall during Hurricane Sandy.
Coastal Engineering 110, 102–110. https://doi.org/10.1016/j.
coastaleng.2016.01.005.

Suzuki, T., Cox, D.T., 2021. Evaluating XBeach performance for extreme offshore-
directed sediment transport events on a dissipative beach. Coastal Engineering
Journal 63 (4), 517–531. https://doi.org/10.1080/21664250.2021.1976452.

Trouw, K.J.M., Zimmermann, N., Mathys, M., Delgado, R., Roelvink, D., 2012. Numerical
modelling of hydrodynamics and sediment transport in the surf zone: a sensitivity
study with different types of numerical models. Coastal Engineering Proceedings 1
(33), 23. https://doi.org/10.9753/icce.v33.sediment.23.

van Rijn, L.C., 2007. Unified view of sediment transport by currents and waves. I:
initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic
Engineering 133 (6), 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)
133:6(649).

van Thiel de Vries, J.S.M., 2009. Dune Erosion during Storm Surges. Faculty of Civil
Engineering and Geosciences - TU Delft.

Vieira, B.F.V., Pinho, J.L.S., Barros, J.A.O., Antunes do Carmo, J.S., 2020.
Hydrodynamics and morphodynamics performance assessment of three coastal
protection structures. Journal of Marine Science and Engineering 8 (3). https://doi.
org/10.3390/jmse8030175.

Viitak, M., Avilez-Valente, P., Bio, A., Bastos, L., Iglesias, I., 2021. Evaluating wind
datasets for wave hindcasting in the NW Iberian Peninsula coast. Journal of
Operational Oceanography 14 (2), 152–165. https://doi.org/10.1080/
1755876X.2020.1738121.

Vousdoukas, M.I., Ferreira, Ó., Almeida, L.P., Pacheco, A., 2012. Toward reliable storm-
hazard forecasts: XBeach calibration and its potential application in an operational
early-warning system. Ocean Dynamics 62 (7), 1001–1015. https://doi.org/
10.1007/s10236-012-0544-6.

W. Weber de Melo et al.

https://download.deltares.nl/en/download/xbeach-open-source/
https://download.deltares.nl/en/download/xbeach-open-source/
http://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640%20b
http://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640%20b
https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/
https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1029/2021EF002285
https://doi.org/10.1016/j.coastaleng.2022.104081
https://doi.org/10.1016/j.coastaleng.2022.104081
https://doi.org/10.1080/24709360.2017.1396742
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
http://refhub.elsevier.com/S1364-8152(23)00115-9/sref7
http://refhub.elsevier.com/S1364-8152(23)00115-9/sref7
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://doi.org/10.1016/j.scitotenv.2018.11.478
https://doi.org/10.1016/j.scitotenv.2018.11.478
https://doi.org/10.1029/2022JF006620
https://doi.org/10.1029/2022JF006620
https://doi.org/10.1016/j.jcp.2018.01.008
https://doi.org/10.1016/j.crm.2021.100355
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3389/fmars.2022.812255
https://doi.org/10.3389/fmars.2022.812255
https://doi.org/10.1016/j.oceaneng.2020.108020
https://doi.org/10.1016/j.oceaneng.2020.108020
https://doi.org/10.1016/j.coastaleng.2016.08.011
https://doi.org/10.1017/9781009325844
https://doi.org/10.1016/j.envsoft.2022.105532
https://doi.org/10.1016/j.envsoft.2022.105532
https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.coastaleng.2021.103869
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1109/CVPR.2017.573
https://doi.org/10.1109/CVPR.2017.573
https://doi.org/10.1007/978-0-8176-8394-8_9
https://doi.org/10.1007/978-0-8176-8394-8_9
https://doi.org/10.1016/j.envsoft.2022.105356
https://doi.org/10.1016/j.envsoft.2022.105356
https://doi.org/10.1016/j.coastaleng.2016.01.005
https://doi.org/10.1016/j.coastaleng.2016.01.005
https://doi.org/10.1080/21664250.2021.1976452
https://doi.org/10.9753/icce.v33.sediment.23
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649)
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649)
http://refhub.elsevier.com/S1364-8152(23)00115-9/sref31
http://refhub.elsevier.com/S1364-8152(23)00115-9/sref31
https://doi.org/10.3390/jmse8030175
https://doi.org/10.3390/jmse8030175
https://doi.org/10.1080/1755876X.2020.1738121
https://doi.org/10.1080/1755876X.2020.1738121
https://doi.org/10.1007/s10236-012-0544-6
https://doi.org/10.1007/s10236-012-0544-6

Environmental Modelling and Software 165 (2023) 105729

12

Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L., Plomaritis, T.A., Athanasiou, P.,
Luijendijk, A., Feyen, L., 2020. Sandy coastlines under threat of erosion. Nature
Climate Change. https://doi.org/10.1038/s41558-020-0697-0 (in press) (March).

Weber de Melo, W., Pinho, J., Iglesias, I., 2022. Emulating the estuarine morphology
evolution using a deep convolutional neural network emulator based on
hydrodynamic results of a numerical model. Journal of Hydroinformatics. https://
doi.org/10.2166/hydro.2022.068.

Whitaker, J., Khrulev, C., Huard, D., Paulik, C., Hoyer, S., Pastewaka, L., Mohr, A.,
Marquardt, C., Counwenberg, B., Taves, M., Cuntz, M., Roet, S., Whitaker, J.,
Brett, M., Bohnet, M., Hetland, R., Korenčiak, M., Andrew, Barnam, Hamman, J.,
et al., 2020. Unidata/netcdf4-python: Version 1.5.5 Release. https://doi.org/
10.5281/zenodo.4308773.

W. Weber de Melo et al.

https://doi.org/10.1038/s41558-020-0697-0
https://doi.org/10.2166/hydro.2022.068
https://doi.org/10.2166/hydro.2022.068
https://doi.org/10.5281/zenodo.4308773
https://doi.org/10.5281/zenodo.4308773

	Coastal morphodynamic emulator for early warning short-term forecasts
	1 Introduction
	2 Methodology
	2.1 XBeach model
	2.1.1 Coastal domains characteristics
	2.1.2 Numerical models initial and boundary conditions
	2.1.3 Simulation scenarios

	2.2 Implementation of the morphodynamic emulator
	2.2.1 Input and output images processing
	2.2.2 Network architecture
	2.2.3 Training and validation
	2.2.4 Performance analysis

	3 Results and discussion
	3.1 Simulation set 1
	3.2 Computational performance
	3.3 Influence of the grid resolution
	3.4 Simulation set 2
	3.5 Future of HMD modelling

	4 Conclusions
	Software and data availability
	Author contributions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

