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A B S T R A C T   

The use of numerical models to anticipate the effects of floods and storms in coastal regions is essential to 
mitigate the damages of these natural disasters. However, local studies require high spatial and temporal res
olution numerical models, limiting their use due to the involved high computational costs. This constraint be
comes even more critical when these models are used for real-time monitoring and warning systems. Therefore, 
the objective of this paper was to reduce the computational time of coastal morphodynamic models simulations 
by implementing a deep learning emulator. The emulator performance was evaluated using different scenarios 
run with the XBeach software, which considered different grid resolutions and the effects of a storm event in the 
morphodynamic patterns around a breakwater and a groin. The morphodynamic simulation time was reduced by 
23%, and it was identified that the major restriction to reducing the computational cost was the hydrodynamic 
numerical model simulation.   

1. Introduction 

Forecasting the impacts of extreme events, such as droughts, floods, 
and storms, is fundamental to identify threatened areas and to allow 
early actions to increase resilience and reduce the eventual related 
damages. Anticipating extreme events becomes even more relevant in 
low-lying coastal areas, which present high risks due to the combination 
of meteo-oceanic events, climate trends and human activities. In open 
ocean coastal areas, cities and other settlements are more vulnerable to 
coastal flooding, whilst pluvial floods are one of the major threats in 
deltas and estuaries (Pörtner et al., 2022). Moreover, these areas shelter 
approximately 11% of the global population, which lives within 10 m 
above mean sea level (Haasnoot et al., 2021; Pörtner et al., 2022; 
Vousdoukas et al., 2020). 

To anticipate and mitigate extreme events impacts, the imple
mentation of forecasting systems must be addressed. These systems are 
usually implemented based on numerical models, such as XBeach and 
Delft3D (D3D) (Deltares, 2018; Roelvink et al., 2009), which had 
demonstrated to be accurate in predicting hydro-morphodynamic 
(HMD) variables under extreme events scenarios (Ferreira et al., 2019; 
Iglesias et al., 2022; Simmons and Splinter, 2022; Vousdoukas et al., 
2012). 

However, these numerical models demand considerable simulation 
computational time, mainly when applied to high spatial and/or tem
poral resolution domains and when different modules are used in a 
forecast simulation (e.g., hydrodynamics, waves, winds, sediments, and 
morphology). However, the use of high-resolution models is crucial to 
correctly simulate hydrodynamic and morphodynamic patterns at 
coastal stretches. Moreover, real-time monitoring and warning systems 
require computationally efficient numerical models to optimize the 
prediction of future trends and to allow a faster response by competent 
authorities. To improve the computing efficiency of numerical models 
like XBeach, Rautenbach et al. (2022) compared the performance of the 
software in hydrodynamics and wave dynamics simulations using a CPU 
and a GPU, finding that even a desktop grade GPU can compete with the 
computational efficiency of high-performance computing CPU facilities. 
However, there are still few studies about the computational efficiency 
of HMD numerical models and ways to improve it. 

An alternative to reduce the computational costs of HMD numerical 
models is the use of emulators, which are based on the application of 
statistical techniques that surrogate the numerical model. These are 
artificial intelligence-derived methods, namely machine learning (ML) 
and deep learning (DL), which implementation for surrogating mor
phodynamic numerical models had been approached by other authors. 
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Poelhekke et al. (2016) developed a XBeach emulator to predict hazards 
at Faro beach, Anderson et al. (2021) used several numerical models and 
a Gaussian Process Regression (GPR) emulator to predict wave runup 
and overwash depths and Gharagozlou et al. (2022) developed a 
GPR-based emulator for post-storm subaerial beach and dune profile 
shapes. However, such works developed emulators for specific punctual 
locations within the domain. Hence, this work intends to fill this gap 
solving the emulators constraint in morphodynamic variables fore
casting at full 2DH domains. 

In a previous work of the authors, a DL model with convolutional 
layers, was implemented using simulation results obtained with D3D 
software (Weber de Melo et al. (2022). The developed technique used 
images of a D3D numerical model hydrodynamic variables as input and 
was able to forecast the long-term morphodynamic evolution of an 
intertidal shoal estuary, demonstrating that it was possible to reduce the 
total simulation time by surrogating the morphodynamic module of the 
numerical model for an emulator. However, short-term morphody
namics in beaches are more complex than long-term estuarine mor
phodynamics. Estuarine morphodynamics main drivers are the water 
currents, which varies according to tides and freshwater flows. On the 
contrary, beach morphodynamics results from the complex interactions 
between winds, non-linear waves processes, tides, water currents and 
return flows, and the processes involved in coastal morphodynamics are 
dominated by complex onshore and offshore transport. Thus, the nu
merical model selected in Weber de Melo et al. (2022) is not well-suited 
to model sand beaches bar behaviour because the processes of dune 
erosion and offshore sediment transport by the return flow are not 
included in the numerical code. On the other hand, XBeach software has 
all necessary processes to model bar behaviour (Trouw et al., 2012). 
These authors also note that the default values for wave-related bed load 
and suspended load factors in D3D are too high and, this way, the 
physics of the model are likely flawed. 

In this context, this paper has the objective to improve the DL model 
architecture by Weber de Melo et al. (2022) and test if this improved 
architecture could reproduce the morphodynamic results of an experi
ment run with the XBeach model considering an extreme event scenario. 
The objective is to demonstrate if the new emulator, that successfully 
surrogated the D3D morphodynamic module for an estuarine environ
ment, could also be applied to XBeach simulations of non-linear wave 
dominated coastal stretches. Two simulation sets were used to evaluate 
the XBeach emulator. The first set used a simplified linear bathymetry to 
assess if a change in the up-sampling operation in the neural network 
could reduce the error in the validation dataset and to determine the 
total simulation time reduction. The second simulation set tested if the 
emulator could reproduce the morphological evolution of a more com
plex coastal stretch involving a sandy beach with different coastal 
defence structures, including a submerged breakwater and a groin. 

2. Methodology 

The methodology applied in this study was adapted and improved 
from the previous work of Weber de Melo et al. (2022), which designed 
and implemented an HMD numerical model emulator to forecast the 
long-term morphological evolution of an estuarine area. However, as an 
already mentioned in the introduction, the processes that affect the 
morphodynamics in estuaries are different from those that occur in 
coastal areas. In the first case, the main morphological evolution driver 
is the water currents generated by river flows and tides. In the second 
case, the waves, tides and winds are the main drivers that affect the 
coastal morphological evolution. Due to the complexity of the 
morphological processes in coastal regions and the need to introduce 
other non-linear variables besides the water current, this work devel
oped a new methodology to reduce the computational costs of a XBeach 
model to emulate the short-term morphological evolution of coastal 
stretches. 

2.1. XBeach model 

XBeach is an open-source numerical model that simulates HMD 
processes in sandy coastal areas by solving 2DH equations for wave 
propagation, flow, sediment transport and bottom changes (Roelvink 
et al., 2009). This software solves the shallow water equation for 
low-frequency waves and average flows considering the depth-averaged 
generalized lagrangian mean formulation (Roelvink et al., 2009). The 
sediment transport equation was solved accordingly to the 
Van-Thiel-Van Rijn formulation (van Rijn, 2007; van Thiel de Vries, 
2009). 

XBeach-based methodologies had already been demonstrated to be 
capable of achieving reliable results, having been applied to study the 
uncertainties in run-up predictions on natural beaches (e.g., Rutten 
et al., 2021), to predict extreme offshore directed sediment transport 
(Suzuki and Cox, 2021) and to model the morphological response of a 
sandy barrier island during hurricane conditions (Smallegan et al., 
2016). However, XBeach simulations require intensive computational 
resources, mainly when the domain has a high spatial resolution, 
restraining its application in real-time early warning forecasting and 
decision support systems (Ferreira et al., 2019; Gharagozlou et al., 2022; 
Poelhekke et al., 2016). 

In this study, two different simulation sets were defined to evaluate 
and optimize the performance of the emulator. The spatial domain of the 
first set was a simplified beach with a linear bathymetry (Fig. 1a). The 
focus of this first set was to assess the up-sampling operation in the ar
chitecture of the emulator to reduce the error in the forecasts. In the 
second set, the capacity of the emulator in reproducing the morphody
namics was evaluated in a more complex geometrical domain involving 
two different coastal defence structures, a submerged breakwater 
(Fig. 1b) and a groin (Fig. 1c). 

2.1.1. Coastal domains characteristics 
Three different coastal domains were defined to analyse the perfor

mance of the emulator (Fig. 1). The first domain consists of a beach with 
a 2 km cross shore width and 4 km alongshore length discretized with a 
100 × 200 grid with 20 m cells size resolution. The bathymetry varied 
from 0 m to − 20 m and the topography from 0 m to 10 m. The topo- 
bathymetry is homogeneous in the north-south direction. In the west- 
east direction, it varied linearly (Fig. 1a). 

The second and third domains used a 335 × 375 grid with 5 m cells 
size resolution, resulting in a coastal domain of 1.68 km cross-shore 
width and 1.88 km alongshore length. The bathymetry varied between 
0 m and − 12 m at the offshore boundary, and the topography from 0 m 
to 2 m at the inland boundary (Fig. 1b and c). 

2.1.2. Numerical models initial and boundary conditions 
The XBeach simulations run in the surfbeat mode, in which the short- 

wave motion is solved using the wave action equation (Roelvink et al., 
2009). For the first set of simulations that used the linear bathymetry, 
the initial water level was assumed equal to 1.6 m at the offshore 
boundary and 1.3 m at the landward boundary, while in the second set 
of simulations, which included domains with coastal defence structures, 
the initial water level was assumed equal to the mean sea level (0 m 
MSL). 

The Joint North Sea Wave Project (JONSWAP) spectral wave model 
was selected to force the models to represent the occurrence of an 
extreme event. The significant wave height used in simulation set 1 was 
6 m, intending to simulate a highly energetic storm to force intense 
morphological changes during the simulation. The significant wave 
height (Hs) was 3 m for the simulation set 2, which is a representative 
value, based on the historical wave measurements, of a typical storm in 
Portugal (C.A. Oliveira et al., 2020). For this geographical location, the 
average peak periods (Tp) vary between 5 s and 12 s and the mean Hs 
usually varies between 1.5 m and 2 m, but values between 3 and 6 m are 
recurrent (Vieira et al., 2020; Viitak et al., 2021). 
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The hydrodynamic simulation period was 6 h for both simulation 
sets, although the sediment transport and morphology modules started 
with half hour lag in the simulation set 1 and with one-day lag in 
simulation set 2 to avoid numerical inconsistencies. Additionally, a 
morphological acceleration factor (MORFAC) of 20 was adopted in 
simulation set 2 to represent the morphological evolution along 5 days. 
Furthermore, the adopted critical avalanching slope above water was 
0.15 and underwater was 1. The summary of the boundary conditions 
used for each simulation set are presented in Table 1, where the mainang 
parameter is the main wave angle in the nautical convention, s is the 
directional spreading coefficient, gammajsp is the peak enhancement 
factor and fnyq is the highest frequency of the JONSWAP spectrum. 

2.1.3. Simulation scenarios 
As already briefly explained in the introduction, each simulation set 

was elaborated to accomplish different objectives. The first set had the 
goal to study up-sampling operation to improve the performance of the 
emulator. The second set assessed the capacity of the DL model to 
emulate more complex coastal environments under the influence of 
coastal defence structures and assessed different combinations of inputs 
and outputs during the training of the network. Scenarios 1 to 4 in 

Fig. 1. Topo-bathymetry considered for each XBeach domains: a) Linear topo-bathymetry domain; b) Breakwater domain; c) Groin domain.  

Table 1 
Domain characteristics and boundary conditions of simulation sets.  

Simulation 
set 

1 2 

Objective Evaluate up-sampling operation 
and simulation computational 
time 

Evaluate the emulator 
performance with different 
scenarios 

Domain 2 km × 4 km grid with 20 m 
resolution 

1.68 km × 1.88 km grid with 
5 m resolution 

Bathymetry Linear bathymetry Simplified typical northern 
Portugal coastal bathymetry 

Morfac 1 20 
Boundary conditions (JONSWAP wave model) 
Hs (m) 6 3 
Tp (s) 15 15 
mainang (◦) 300 315 
s 20 20 
gammajsp 3.3 3.3 
fnyq (Hz) 1 1 

With these conditions, the total simulation time was 28 min for the first domain, 
65 min for the groin domain and 67 min for the breakwater domain, using a 6 
cores processor with a 2.2 GHz base frequency. 
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simulation set 2 assessed the capacity of the emulator in reproducing 
different morphodynamic variables, the current timestep bed level 
change (CTBLC) or the cumulative erosion and sedimentation (CES). 
Scenarios 5 to 8 were defined to evaluate the possibility of implementing 
a single emulator for different domains. The models were trained using 
the data of both domains, but its performance was assessed considering 
the results of each domain individually. 

The characteristics of the scenarios are synthesized in Table 2. The 
simulation set 1 presents the up-sampling functions that were tested. 
ConvT refers to the transpose convolution layer, followed by the acti
vation function that was used in that layer. At the simulation set 2, the 
acronyms refer to the training and testing conditions. The first acronym 
refers to the domains of the data used to train the network. BW is for 
breakwater; G is for groin and BWG for both domains. The second 
acronym refers to the XBeach variable used as output by the emulator 
(CES or CTBLC). The third acronym, presented in scenarios 5 to 8, refers 
to the domain wherein results were used to assess the performance of the 
emulator. This last acronym was only necessary to differentiate the 
validating conditions of the models that were trained with the data of 
both domains; hence, it was not necessary in scenarios 1 to 4. 

Additionally, the sensitivity of the emulator to the numerical model 
grid resolution was assessed. For this test, the set 1 was selected using 
the same model domain and the same topo-bathymetry but with two 
different grid resolutions: 20 m × 20 m grid resolution (original domain) 
and 40 m × 40 m grid resolution (a quarter of the original resolution). 
These models, which will receive the acronyms OR, for the highest 
resolution domain, and LR, for the lowest resolution domain, were used 
to assess if the emulator could learn using the coarser resolution hy
drodynamic input to predict the morphodynamic output of the finer 
domain without losing accuracy. 

2.2. Implementation of the morphodynamic emulator 

The DL model was implemented in the Tensor Flow framework 
(Abadi et al., 2016), in Python programming language version 3.9.7 
using a Spyder environment version 5.2.2. Details about the imple
mentation of the emulator are presented in the following sub-sections. 

2.2.1. Input and output images processing 
The DL network used the Generalized Lagrangian Mean velocity 

(GLMV) magnitude and the bottom shear stress (BSS) as inputs. The 
output in simulation set 1 was CTBLC. In simulation set 2, the CES result 
was additionally used. To generate the image datasets with these vari
ables, a Python script was programmed to ensure that all the images 
presented the same resolution and colour scale characteristics. The axes 
of the images were turned off and the margins were set to 0 to ensure 
that all the pixels of the images coincided with the numerical model 
domain. 

The netcdf4 library (Whitaker et al., 2020) was used to read the 
XBeach results and the Matplotlib library was used to plot the results 
(Hunter, 2007). The images were created with the imshow function and 
were exported with 300 dpi, resulting in a resolution of 452 × 900 pixels 

for simulation set 1 and 540 × 600 pixels for simulation set 2. The im
ages were plotted in grayscale, and the limit values of the colour scales 
were determined using a programmed routine that iterated through all 
the variables’ datasets to find the maximum and minimum values for 
each variable at all run time steps. Brighter tones indicate positive 
values (sedimentation) while darker tones indicate negative values 
(erosion) or zero, in the case of GLMV and BSS. Examples of these images 
are presented in Fig. 2. 

The exporting loop was divided into 3 parts: firstly, it read the results 
of the ith time step and created an image with the pre-defined config
urations. Secondly, it updated the image name according to the 
respective time step, to avoid overwriting the results. Thirdly, the image 
was exported to a folder in which all the images were stored according to 
each variable. It resulted in 54 and 150 images per variable for the 
simulation set 1 and 2, respectively. The scenario that evaluated the 
emulator with different input and output grid resolutions used 109 im
ages per variable, maintaining the same training/test ratio. This increase 
in the number of images was necessary to reduce the emulator mean 
error. 

For the simulation set 1, only the results of the CTBLC were used to 
evaluate the performance of the model. For the set 2, the CES results 
were also used to train the network and to evaluate if the emulator could 
properly forecast the morphological evolution of the domains. The in
puts were the same in this second case, the unique difference was the 
output variable used for training the network. 

2.2.2. Network architecture 
A U-net and a recursively deconvolutional branched network are the 

basis for the emulator architecture, in which each branch mapped the 
image features of one specific resolution (Ronneberger et al., 2015; 
Santhanam et al., 2016). This configuration, which was also used (by 
Weber de Melo et al. (2022), is presented in Fig. 3. The hyperparameters, 
namely the activation functions, number of filters, kernel size, strides 
and dilation rate of the convolutional layers remained the same. 

The DL model was implemented using the Functional API of the 
TensorFlow framework, due to the complexity of the chosen architec
ture. The network initially mapped the features of the input data and 
reduced the footprint of the data using convolutional operations with 
strides set to 2, to half the resolution of the layer inputs. After each stride 
convolution, a concatenation layer merged the layers’ outputs. After 
that, up-sampling layers restored the original resolution of the input 
data, and 3 other convolutions were performed. The activation function 
was the ReLU in all convolutional layers except for the last, which used a 
hyperbolic tangent function (tanh). 

Besides, a deconvolution layer, also known as transposed convolu
tion (Dumoulin and Visin, 2016), replaced the up-sampling operation 
(green arrows in Fig. 3). This change increases the number of trainable 
parameters in the architecture of the network, allowing the improve
ment of the emulator performance. The ReLU and tanh activation 
functions were assessed during this step. 

The main difference between these two operations is how they in
crease the resolution of the images. The up-sampling layer increases the 
number and/or columns of the input data. The values of the new ele
ments will depend on the interpolation method of the layer. The 
deconvolutions, on the other hand, consists of a convolution with a filter 
derived from the transposition and inversion of the tensor resulting from 
the original convolution filter (Aggarwal, 2018). This type of layer 
presents the same properties, parameters and hyperparameters of a 
convolution layer, however, the output has more dimensions than the 
input. 

In the last two layers, a ReLU operation with a maximum value equal 
to 1 limited the values of the output image between 0 and 1, and a 
rescaling operation set the output values in a 0–255 scale, which is the 
same scale as the output images. 

Table 2 
Testing conditions of the DL models. In simulation set 1, the up-sampling layer 
was evaluated whilst simulation set 2 assessed different combinations of inputs 
and outputs.  

Simulation set 1 2 

Scenarios 1 Up-sampling layer BW - CES 
2 ConvT, ReLU BW - CTBLC 
3 ConvT, tanh G - CES 
4 – G - CTBLC 
5 – BWG - CES - BW 
6 – BWG - CTBLC - BW 
7 – BWG - CES -G 
8 – BWG - CTBLC - G  
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2.2.3. Training and validation 
The networks were trained using the RMSprop optimizer with a 

learning rate of 0.005 and a limit of 300 epochs. Early stopping was 
configured to interrupt the training if the performance of the emulator 
stabilized after 15 consecutive epochs. The loss function was the mean 
squared error (MSE), and the root mean squared error (RMSE) was used 

to monitor the training progress. 80% of the images were used for 
training and 20% for validating the model. 

Each training epoch lasted approximately 20 s for simulation set 1 
and 35 s for set 2. The training was performed in a CPU Intel Core i7- 
8750H 2.20 GHz, 16 Gb RAM and a graphics card Nvidia GeForce 
GTX 1060 with 6 Gb, using parallel computing aided by the CUDA 

Fig. 2. Examples of images of the hydrodynamic model results used as input (GLMV and BSS) and of the morphodynamic model results used as output (CTBLC and 
CES) by the deep learning model. The bound values used to plot the images are in the grayscale colour bar above each image. The DL models used the first two 
variables as input and at least one of the last two variables as output. 
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toolkit v. 11.2 (Harish and Narayanan, 2007). 
The model architecture with the best performance obtained with the 

simulation set 1 was used in the simulation set 2 scenarios. For scenarios 
1 to 4 the models were trained for each domain and for each output 
variable (CES and CTBLC), resulting in 4 emulators. In scenarios 5 to 8, 
the models were trained using the data of both domains at once, 
resulting in two emulators. These last scenarios verified the possibility of 
using only one model to predict the morphological evolution of different 
domains. Additionally, in this second case, the models would be capable 
of identifying the domain according to the input data. 

2.2.4. Performance analysis 
To compare the results of the numerical models and the results of the 

emulator, the root mean squared error (RMSE) of the model in the 
validation dataset was computed for each time step: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Em − Nm)

2

√

(1)  

where n is the number of grid points, Em is the result of the emulator and 
Nm is the result of the numerical model. Also. the mean error was 
determined to identify the location of the highest errors in the domain: 

ME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑n

i=1
(Em − Nm)

√

(2)  

where m is the number of time steps of the validation dataset. 
Besides, the kernel-density estimation (KDE) of the errors in the 

domains was computed, considering all the time steps. The KDE method 
estimates the probability density function of a non-parametric dataset 
(Chen, 2017). This last metric is relevant to successfully analyse the 
error distribution in all the domains to identify areas in which the 
emulator performance is better. 

3. Results and discussion 

3.1. Simulation set 1 

Simulation set 1 had the objective of evaluating the influence of the 
up-sampling operation in the architecture of the emulator. The RMSE in 
scenario 1 was 0.0241 mm, 0.0247 mm, and 0.0183 mm for scenarios 1, 
2 and 3, respectively. 

All the models could achieve reasonable results, however, the use of 
the tanh activation function in the transposed convolution layer (Sce
nario 3) resulted in the emulator with the best performance. It probably 
occurred due to the increase in the number of trainable parameters in 
the network, granting a better approximation to the numerical model 
results. Additionally, it did not meaningfully affect the computational 
time required by the emulator to process the validation dataset. 
Therefore, the architecture used in scenario 3 was used to evaluate the 
computational performance in simulation set 2 scenarios. 

3.2. Computational performance 

The DL models needed 5 s to generate the morphodynamics results 
referred to the whole dataset (training and validation). However, it is 
also necessary to run the hydrodynamic module of the numerical model 
to generate the input data required by the emulator. 

Therefore, to correctly estimate the computational time required for 
the DL model, it was necessary to run the numerical model with the 
sediment transport and morphology modules deactivated. This com
parison was conducted using the simulation set 1 model, due to its 
simplified bathymetry and, consequently, hydrodynamics patterns. This 
model run a 6 h simulation, with morfac set to 0 and with the sediment 
transport and morphology modules deactivated. 

With both morphodynamics modules activated, 28 min were neces
sary to run the simulation. With only the hydrodynamics module acti
vated, the simulation took 23 min. Additionally, 15 s were necessary to 

Fig. 3. DL model architecture. The rectangles represent the resolution of the image in each network layer. The numbers above each layer are the number of filters, 
and each coloured arrow represents one different operation performed in the network. 

W. Weber de Melo et al.                                                                                                                                                                                                                      



Environmental Modelling and Software 165 (2023) 105729

7

generate 108 input images (54 per variable), and 5 s to run the DL model 
with this data, representing a reduction of 23% in the total time 
necessary to forecast the morphodynamic evolution of the domain, 
considering the predictions for the whole simulation period. Therefore, 
the main limiter to reduce the morphodynamics forecast computational 
time is the hydrodynamic simulation. 

The emulator that used different input and output resolutions had 
the best performance gain. The hydrodynamic simulation lasted 3.3 min, 
resulting in a time reduction of 87% to generate the morphodynamics 
results. As the major restriction to reduce the computational time was 
the hydrodynamic simulation, reducing the grid resolution to train the 
emulator could represent a significant performance gain. 

Additionally, it must be highlighted that it would be necessary to 
update the numerical model bathymetry before generating the hydro
dynamics results of the next forecast window. The bathymetry variation 
directly affects the hydrodynamics variables, consequently, update it 
during this type of simulation is of utmost importance to correctly 
forecast the HMD variables and reduce the uncertainties of the results. 

Looking forward to optimizing the generation of the hydrodynamics 
results, three approaches could be considered. Firstly, the XBeach 
simulation time presents a high dependence on the wave velocities that 
must satisfy the CFL condition (Courant et al., 1928; Roelvink et al., 
2009; Schneider et al., 2013). The simplest method to ensure this con
dition and maintain the grid resolution is to set the smallest time step for 
the entire simulation, which is determined according to the highest 
wave speed (Gnedin et al., 2018). Although, this approach could in
crease the total simulation time, especially if the objective of the model 
is to simulate extreme events, which would result in higher wave ve
locities and demand a reduction in the simulation time step to satisfy the 
CFL condition. 

Alternatively, the reduction of the grid resolution would allow 
higher time steps, reducing the total simulation time and satisfying the 
CFL condition. However, the focus of this methodology was to reduce 
the computational costs of high-resolution numerical models during 
short-term events, hence, this hypothesis was not considered in this 
work. 

The last option would be to optimize the input image generation 
loop. In this study, a loop was used to generate the images of each 
variable. In each step of the loop, the image referring to the ith time step 
was created and exported. To reduce this time, a single loop for all 
variables was performed, which partially reduced the redundancy in the 
code, instead of using one loop for each variable, optimizing this pro
cess. In despite of that, the total time required to generate the hydro
dynamics images was 15 s. Hence, an optimization in this process would 
not significantly reduce the total time required. 

Additionally, an important result achieved, if compared with previ
ous works, is the reduction in the number of images necessary to train 
the emulator. In Weber de Melo et al. (Weber de Melo et al., 2022), 1095 
images were generated to train and test the emulator, whereas herein 
only 162 images were needed in the simulation set 1 to achieve good 
results. This demonstrate that using AI models do not necessarily require 
a huge database for training and testing, which agrees with data-centric 
AI concepts that affirms that the quality of the data is far more important 
than its quantity (Sambasivan et al., 2021). The XBeach database 
required 20.61 Mb of disk space, while the D3D needed 137.1 Mb, 
representing a reduction of 85% in the disk space usage. The emulator 
with different input/output resolutions needed 40.8 Mb, representing 
70% less disk space. 

3.3. Influence of the grid resolution 

The difference between the emulators trained with inputs of different 
resolution and the numerical model output for the test dataset are pre
sented in Fig. 4. The mean error of both emulators was negligible, but 
the mean error of the LR emulator was one order higher than the OR 
emulator. The maximum error occurred in the OR emulator results was 

21 cm and in the LR emulator was 26 cm. These values are considerably 
higher than the mean error, however they are restricted to specific areas 
of the domain, particularly near the domain boundaries, which normally 
fall out of the region of interest when using numerical modelling 
approaches. 

Fig. 5 shows the RMSE of the OR and LR emulators in the test dataset. 
It can be observed that the performance of both models is remarkably 
similar in all points and the maximum mean error was below 5 cm in the 
OR model and below 8 cm in the LR. Besides, both error curves follow a 
similar pattern, having the same behaviour at timesteps 14 and 17, for 
example. 

3.4. Simulation set 2 

Fig. 6 presents a comparison between the output in the last time step 
of the XBeach model with the results obtained with the emulator using 
the CES images (scenarios 1 and 3). The emulator could reproduce the 
main patterns of the morphological evolution of the domains with a 
remarkable resemblance. The erosion and accretion bars can be 
observed in the southern area of the beach in both images, as well as a 
larger accretion area around the coordinate (300, 300). This pattern 
results from the 315◦ wave angle of the wave spectrum applied at the 
boundaries of the XBeach model, which created this accretion spot up
stream of the structures. However, the emulator underestimated the 

Fig. 4. Comparison between emulators using inputs with different 
grid resolution. 

Fig. 5. Emulators RMSE in the test dataset.  
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accretion area near this coordinate, which is evident due to the thinner 
blue bar in the breakwater domain and the reduced quantity of purple 
pixels in the groin domain. 

This result demonstrates that the use of CES as output instead of 
CTBLC did not significantly affect the performance of the emulator. The 
emulator accurately simulated the main morphodynamic patterns of 
both study areas, independently of the selected domain. 

Comparing the results of both selected coastal structures, the output 
of the breakwater emulator is more similar to the numerical model result 
than the output of the groin emulator. This could be related with the 
uniformity of the breakwater influence along the beach when compared 
to the groin. The groin breaks the linearity of the erosion/accretion bars, 
creating an area with a more complex morphodynamic pattern. Hence, 
more training images would be necessary to improve the precision of the 
groin emulator. 

Additionally, the emulator underestimated the erosion that occurred 
near the groin, in the centre of the domain. It can be observed that the 
numerical model simulated a larger erosion area in the north-south di
rection, whilst this pattern was not accurately forecasted by the 
emulator, mainly at the north of the breakwater. In the case of the 
breakwater emulator, it underestimated the accretion that occurred in 

the east face. 
The performance of the emulator could be improved by increasing 

the size and variability of the training dataset variables. The use of more 
images would give more information about the output pattern expected 
in that area of the domain, increasing its performance. Moreover, the 
error in the areas wherein the morphodynamic variation is more uni
form was lower than the error in areas with higher variability, namely 
near the breakwater and the groin. However, it must be stressed that the 
emulator could still identify that the morphological change in the groin 
was zero, probably because this pattern was more common in all 
training time steps. 

To assess the error variance of the emulators in all the validation 
timesteps, the RMSE was computed between the DL model output and 
the numerical model result for each pixel of the image. The mean value 
of the RMSE was then determined by dividing the RMSE for the vali
dation time steps. Fig. 7 presents these results, separated by the output 
variable used to train the DL models. 

The results demonstrated that the models trained in only one domain 
had a better performance than the models trained in both domains. It 
probably befell because the input variables values were affected by the 
groin and the breakwater only in the area around these interventions. In 
the other parts of the domain, the input values were more resemblant 
due to the boundary conditions being the same. Hence, the network 
could learn the CES patterns for both domains, having similar errors as 
demonstrated in Fig. 7 – a. 

In Fig. 7 – b, the error of scenarios 6 and 8 was quite different when 
compared to the models trained with CES data. It probably happened 
because the CTBLC patterns are more similar between the domains, 
given that these results show only the areas in which the bed level was 
altered in the last time step. This fact could explain why the performance 

Fig. 6. Comparison between the CES simulated by the XBeach model and the 
emulator in the last simulation time step. a) Breakwater domain; b) 
Groin domain. 

Fig. 7. Models mean RMSE at each validating time step. a) Error (m) of the 
models trained in CES data; b) Errors (mm) of the models trained in 
CTBLC data. 
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of scenario 8 was closer to scenarios 2 and 4, a different pattern when 
analyzing the CES results. Despite that, the performance of the models 
was better when the training conditions were from only one domain. It 
probably occurred owing to a possible ambiguity in the input and output 
data since most of the pixel values in the input images were not affected 
by the domain. 

Besides, the BWG emulator had to decide which domain to prioritize 
during the training, resulting in a better adjustment to the groin domain 
instead of the breakwater. This could explain why the error in scenario 8 
was lower than the error in scenario 6. However, the performance in 
scenario 8 overcame scenario 4 between time steps 15 and 23, indicating 
that the DL model parameters were more suitable for those inputs. This 
would allow the use of ensemble techniques (Biolchi et al., 2022; Iglesias 
et al., 2022) to create a unique and more robust model that could merge 
individual models trained in specific conditions, allowing the model to 
select a determined input-output path according to the available data. 

Fig. 8 presents the mean error obtained in the simulation set 2 

scenarios. This result allows to identify the average location of the major 
errors in the numerical model domains. The whiter colors represent 
areas where the error was near 0, red colors represent the emulator 
underestimation and blue colors represent overestimation. Scenarios 2, 
3 and 5 had an average overestimation of the numerical model results, 
whilst the other scenarios presented an average underestimation. 

Fig. 8 – a shows that, in all scenarios, the DL models underestimated 
the values of an erosion area that occurred near the coordinates (280, 
350). This probably occurred owing to the proximity to the boundary of 
the numerical model, resulting in a higher uncertainty for that area. 
Moreover, the model also underestimated the accretion area at co
ordinates (300, 300). Despite that, all the models had a reasonable 
agreement between the numerical model results and the data model 
outputs. 

It can be observed in Fig. 8 – b that the highest errors in scenarios 2 
and 6 occurred near the beach, where the sediment transport is more 
intense, although is in this same area where the lowest errors in sce
narios 4 and 8 are found. This demonstrates that the DL model trained in 
both domains (scenarios 6 and 8) adjusted its parameters to better 
represent only one domain, which was the one with lower errors. This 
same behaviour can be observed in scenarios 5 and 7, in which the error 
in scenario 7 was much lower than the error in scenario 5. 

Lastly, the error distribution was plotted (Fig. 9), which allows for 
assessing the variability of the errors, considering all the time steps of 

Fig. 8. Mean error of the DL models in the domains. Red colors represent 
emulator underestimation and blue colors overestimation. White colors indicate 
a perfect agreement between the numerical model and the emulator. a) Error of 
the models (m) in forecasting the CES; b) Error of the models (mm) in fore
casting CTBLC. 

Fig. 9. DL model error distribution. a) Distribution of the CEM errors; b) Dis
tribution of the CTBLC errors. 

W. Weber de Melo et al.                                                                                                                                                                                                                      



Environmental Modelling and Software 165 (2023) 105729

10

the validation dataset. The peak values in the distributions are approx
imately the mean errors presented in Fig. 8. The models trained in single 
domain data had a lower variability in the errors, regardless of the 
output variable. Additionally, the emulators presented acceptable re
sults for all the domain areas, which is indicated by the error low 
variability. 

Therefore, DL emulators could successfully surrogate morphological 
modules of numerical modelling tools as the XBeach without significant 
changes in the result. The errors achieved by the DL models represented 
1.1% of the maximum CES values and 0.6% of the maximum CTBLC 
values, reinforcing the similarity between the results of the emulator and 
the XBeach models. 

3.5. Future of HMD modelling 

The capacity of the emulator in reproducing the main morphody
namic patterns of coastal beaches and the reduction of computational 
resources requirements demonstrate the potential of data-driven 
models, staring to modify the logic behind environmental modelling. 
Numerical models can achieve reliable results by solving deterministic 
equations, although these equations simplify some aspects of the reality. 
For instance, the bottom friction coefficient is usually simplified to a 
uniform value for all the computational domain, although it is known 
that this coefficient varies according to the characteristics of the sedi
ments, bottom structure, depth and vegetation. These details can be 
inserted into numerical models, but the efforts in their implementation 
would sharply rose. 

Data-driven models, conversely, intrinsically consider all the domain 
features, as it will be reflected in the training data. It is also important to 
stress that the data characteristics determines the validation interval in 
which data models can be applied. For example, for the implementation 
of a model to predict extreme events effects it is not expected that a data 
model trained in average conditions will have satisfactory performance, 
as well as a numerical model calibrated in average conditions will not 
either. In this context, a change of paradigm may be interesting for 
future modelling methodologies. Instead of creating more complex 
models that can consider all sources of uncertainty, efforts could be 
directed to improve the quality, variability, and frequency of data, 
thereby reducing the uncertainties of forecasts to the characteristics of 
the training data and to the errors in the measurements. 

Regarding the computational resources required for modelling, the 
use of parallel computing and high-performance computers would 
reduce the simulation computational time. However, these types of 
machines, and their necessary infrastructure, have high associated costs, 
limiting the application of real time forecasting platforms to those who 
can afford them. Therefore, the development of methodologies that does 
not depend on super computers is a promising path to guarantee a wider 
application of early warning systems. 

4. Conclusions 

This study applied an emulator to a hydrodynamic coastal numerical 
model using a deep learning approach implemented in Python and the 
Tensor Flow framework. Images of the hydrodynamic variables, bed 
shear stress and GLM velocity, simulated with a XBeach model, were 
used as input of the DL models that forecasted the morphological evo
lution for three different domains. 

In simulation set 1, a DL architecture based on the previous work of 
Weber de Melo et al. (2022) had a satisfactory performance for the 
XBeach models, demonstrating the suitability of the purposed method
ology to reduce the computational time of morphodynamic numerical 
models. There is no reason to think that the developed emulator cannot 
be used with other hydro-morphodynamic software appropriate to 
simulate coastal stretches. 

Additionally, the performance of the emulator was improved by the 
replacement of the up-sampling operation in the neural network 

architecture by transposed convolutions. This procedure increased the 
number of trainable parameters in the network, allowing the reduction 
of the error between the numerical model results and the DL model 
outputs without significantly affecting the computational time required 
by the emulator to forecast the validation dataset. Furthermore, the tanh 
activation function resulted in a lower error when compared to the ReLU 
activation function. 

Regarding simulation set 2, it was demonstrated that the emulator 
could reproduce the numerical model morphodynamic results in coastal 
domains under the influence of a submerged breakwater or a groin. The 
errors obtained were two orders lower than the maximum and minimum 
values of the output variables. 

Furthermore, the emulator accurately reproduced both CES and 
CTBLC results, indicating that the DL model can be easily adapted to 
forecast any variable of interest if there is enough data to train the 
network. To determine the size of the training dataset, it is necessary to 
assess the results in the validation dataset. The use of few data can result 
in models that can barely forecast the main patterns of the output var
iable, whilst the use of excessive data can drastically increase the time 
required for training the network. It is recommended that the training 
data includes enough variability to correctly represent the application 
range of the emulator. Moreover, the image database used in this paper 
requires 85% less disk space than in Weber de Melo et al. (2022), 
demonstrating that the methodology can achieve reliable results with 
fewer data. 

It can be also concluded that it is possible to train one emulator with 
data from different domains, however, some precautions are necessary, 
namely identifying the possibility of a domain prioritization by the DL 
model. The errors increased in three of the scenarios in which the em
ulators were trained with both datasets (scenarios 5, 6 and 7) when 
compared to the emulators trained with a single one. Scenario 8 model 
results overcame scenario 4 in several time steps, although its error was 
slightly worse in the others time steps. 

Regarding the computational costs of the emulator, it was achieved a 
time reduction of 23% in simulating the morphodynamic evolution 
using numerical models with the same input and output grid resolution, 
whilst a time reduction of 87% was obtained using the emulator with 
low grid resolution inputs. The main time-consuming task in this 
methodology was the generation of hydrodynamics results by the nu
merical model, which limited the improvement of the proposed meth
odology. Hence, the performance gain with the emulator application 
would be higher for long-term hydrodynamic simulations due to the 
lower wave velocities magnitudes, which allows simulations with higher 
time steps. Although the error in the LR emulator had slightly increased, 
its results were still similar to the numerical model. Additionally, the use 
of images as input and output allows the potential application of this 
methodology to any other numerical model, as mentioned before. 

Reducing the total computational time required for simulating the 
short-term morphological evolution of a coastal area can be important to 
facilitate the application of XBeach models to real-time early warning 
and forecasting systems. This would allow to optimize the response of 
the authorities during extreme events, and to increase the resilience of 
coastal communities. 

Finally, this study demonstrated that the use of deep learning tech
niques can reduce the computational costs of numerical models, 
allowing their implementation in real-time forecasting and warning 
systems. The emulators accurately reproduced the CES and CTBLC re
sults obtained with the XBeach software, which is one of the most 
advanced coastal morphodynamics simulation model available, 
achieving an error two orders lower than the morphodynamics variables 
range values. 

Software and data availability 

- Name of the Software: XBeach version 1.23. 
Developers: Deltares/XBeach Open-Source Community; First year 
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available: 2009; Cost: Free; Software availability: :https://download.de 
ltares.nl/en/download/xbeach-open-source/; Program size: 330.97 MB. 

- The deep learning-based emulator used for surrogating the XBeach 
morphodynamic module was implemented in Python language (version 
3.9) based on TensorFlow library. The authors used a Windows 11 Home 
OS environment, CPU Intel(R) Core (TM) i7-8750H 2.20 GHz, RAM 16 
GB, GPU Nvidia GeForce GTX 1060. 

The architecture of the model is available at:http://www.hydrosh 
are.org/resource/b4ae97df748842a1800816b32a3d640 b. 
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