aliticas Ecanamicas Universidade do Minho
Universidade do Minho Mprasara Escola de Ciéncias

Departamento de Matematica

A Two-step Quaternionic Root-finding Method

M. Irene Falcao®* Fernando Miranda®® Ricardo Severino®¢ M. Joana Soares’
@ CMAT - Centre of Mathematics, University of Minho, Portugal
b NIPE - Economic Policies Research Unit, University of Minho, Portugal
¢ Department of Mathematics, University of Minho, Portugal
Information Abstract
Keywords: In this paper we present a new method for determin-
Quaternions - Zeros - Weierstrass method ing simultaneously all the simple roots of a quaternionic

polynomial. The proposed algorithm is a two-step itera-
tive Weierstrass-like method and has cubic order of con-
vergence. We also illustrate a variation of the method
which combines the new scheme with a recently pro-
posed deflation procedure for the case of polynomials
with spherical roots.

Original publication:

Lecture Notes in Computer Science, vol. 14104
pp. 708-721, 2023

DOI: 10.1007/978-3-031-37105-9_47
https://link.springer.com

1 Introduction
In this paper we focus on the problem of approximating the zeros of polynomials of the form
P(z) =ana™ + Un_12" 4+ a1z + ag, an #0, (1)

where the coefficients a; are quaternions.

Newton-like methods, based on quaternion arithmetic, have been considered in the past [6, 7, 14] to obtain
approximations to the zeros of special functions. One important issue in the framework of Newton or any similar
derivative-based method is related to the notions of regularity of a quaternionic function and its derivatives,
which in turn restrict the application of this class of methods to a certain class of quaternionic functions (see
[6] for details).

One of the most frequently used methods for simultaneous approximation of all simple polynomial zeros is
the Weierstrass method [22], also known in the literature as the Durand-Kerner method [3] or Dochev method
[2]. This is a free-derivative method relying on the factorization of the polynomial which makes its extension
to the quaternion setting possible. Such generalization was derived in [5], where it was also proved that, as in
the classical case, the method has quadratic order of convergence for the simple roots of a polynomial.

More recently [9], an approach combining a deflation procedure with the Weierstrass method allowed to
obtain approximations also to the non-isolated zeros of P. In this work, we suggest an improvement of the
quaternionic Weierstrass method, by using a two-step strategy and prove that this new procedure has cubic
order of convergence. We also illustrate, by examples, that this new method can be combined with the
aforementioned deflation process to obtain the isolated and non-isolated zeros of P.
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2 A Two-step Quaternionic Root-finding Method

The paper is organized as follows: in Sect. 2 we recall some results concerning the ring of quaternionic
polynomials, fundamental throughout the paper. Section 3 contains the main result of the paper: a two-step
Weierstrass method which we prove to have, under certain assumptions, cubic order of convergence. In Sect. 4
we illustrate the performance of the method by considering some examples and computing the corresponding
computational order of convergence. We also apply, in Examples 3 and 4, the technique described in [9], to
obtain successfully both the isolated and non-isolated zeros of the polynomial under consideration. The paper
ends with some remarks and conclusions.

2 Basic Definitions and Results

We start by first recalling some aspects of the algebra of quaternions H needed for this work; for more details
on this algebra, we refer to [13, 15, 23]. Here we will adopt the following notation: a quaternion x is an
element of the noncommutative division algebra H of the form = = x¢ + z1i + x2j + 23k, z; € R, where the
imaginary units i, j, k satisfy the multiplication rules

i=j2=kK>=-1, ij=—ji=k.
In analogy with the complex case, we define the real part of z, Re(z) := =g, the conjugate of z, Z :=
2o —ir) —jro —kx3 and the norm of z, |z| := /2% = v/Zz. Any quaternion = # 0 is invertible and its inverse
is given by 27! = ﬁ

On H, the relation ¢ ~ ¢ if Req = Req and |q| = |¢'|, is an equivalence relation and, as usual,
[q] :={¢ € H: q ~ ¢'} denotes the equivalence class of g.

In this work we consider polynomials P of the form (1), i.e., polynomials whose coefficients ay are quater-
nions located only on the left-hand side of the powers; similar results could be derived by considering the
coefficients on the right.

The set of polynomials of the form (1), with the addition and multiplication defined as in the commutative
case, is a ring, usually denoted by H][z]| and called the ring of (left) one-sided polynomials.

We introduce now some definitions and results concerning HJx], which will play an important role in the
sequel (see [11, 15] for other details). We mainly follow the notions and notations of [5, 9].

A quaternion ¢ is a zero or a root of P, if P(q) = 0, being the evaluation of P at ¢ defined as P(q) :=
anq™ 4 an_1¢"" 1+ -+ a1qg+ag. We use the notation Zp to represent the set of all the zeros of P. A zero ¢
is called an isolated zero of P, if [¢] contains no other zeros of P, otherwise the zero is called a spherical zero
of P; in this last case all the elements of [g] are zeros of P (we point out that [¢], ¢ € H\ R, can be identified
with the three-dimensional sphere in the hyperplane {(zg,z,y, 2) € R* : 19 = g}, with center (go,0,0,0) and
radius \/q3 + ¢ + 43 ).

The conjugate of P, denoted by P, is obtained by conjugating the coefficients of P; the characteristic
polynomial of a quaternion ¢ is the real polynomial

Vo(z) = (z — q)(x — ) = 2° — 2Re(q) x + |q/*. (2)

Concerning the zero-structure and the factorization of polynomials in H[z] we recall the following results
(see e.g. [1, 11, 15, 18] for the proofs) essential for next section.

Result 1. Consider the factorization of a polynomial P € H|[z] in the form P(x) = L(z)R(z) with L, R € H]z].
1. If g € H is a zero of the right factor R, then q is a zero of the product P.

2. When q is a zero of P which is not a zero of R, we have

where G := R(q)qR(q)™" is a zero of L;
3. If L € R[z], then
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Result 2. Let P be a monic polynomial of degree n (n > 1) in H[z]. Then,

1. P admits a factorization into linear factors

P(z) = (x —xn)(x —2p1) - (x — 21), ()
being the quaternions x1, ... ,x, called factor terms of P;
2. Zp C U}, [xi] and each of the equivalence classes [x;];i = 1,...,n, contains (at least) a zero of P;

3 IfP(z) = (x — yn)(@ — yn—1) -~ (x — y1) is another factorization of P into linear factors, then there
exists a permutation w of (1,2,...,n) and h; € H such that y.;) = hixihi_l;i =1,...,n.

Result 3. Let P be a monic polynomial of degree n in Hx] with n isolated roots and let (5) be one of its
factorizations.

1. The equivalence classes of the factor terms x1,...,x, in (5) are distinct;

2. Consider the polynomials
i—1
R, .= H(J’J — i‘j).
j=1
The relation between the roots (1,...,(, and the factor terms z1,...,x, of P is the following:

G = Ri(wi) xi (Ri(xi))_l and x; = Ri(¢) G (Ri(Ci))_la (6)

fori=1,...,n.

3 A Two-Step Weierstrass Method

From now on, we assume, for simplicity, that the polynomial P in (1) is monic, i.e., a,, = 1.
In the classical case, i.e., when the coefficients of P are complex, the popular Weierstrass method can be
written as
27; :Zi_Wi(Zi); 1= 1,...,717

where the so-called Weierstrass correction W; is the rational function

P(z)

[1-2)

J=1
J#i

For simplicity, we use Z; and z; to denote, respectively, the k + 1 and the k iterates of the method. If all
the zeros of P are simple,! and we start with sufficiently close approximations to the roots, this method has
quadratic order of convergence [2].

In [5] the authors of this paper extended the Weierstrass method in its sequential version to quaternionic
context, by considering the scheme

I
—_

5=z — Pilzi) (Qilz) 'y i

where P;(z) = L;(x)P(x)R;(x), with

L= 1] ¢-5). R@=[[-3) )
=i+

j=i+1 =1

1The zeros are all simple if they are all distinct and isolated.
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and (cf. (2))
i—1 n
Qi(x) =[] v ) ] ¥ (@)
j=1 j=i+1
They also showed that, under certain conditions, the method converges quadratically to the factor terms z; of
P.

One can find in the literature several simultaneous methods based on the Weierstrass corrections with
higher order of convergence (see e.g. [20]), which usually depend on the derivatives of the polynomial. If we
are looking for a higher order free derivative method, the use of multi-step methods can be a solution. The
well-known two-step Newton method [21],

P Zi
Yi = 2y — P’((zi))

5. P(y:)
=Y T Py

which has a fourth order convergence (see also [16]), can be easily adapted to quaternionic context by replacing
first % by W;(x). In the complex case there are more competitive methods available (see e.g. [19]), but
on the contrary, to the best of our knowledge, the quaternionic method that we are going to introduce, based
on this strategy, is the one with the highest order of convergence.

Next theorem contains the main result of the paper.

Theorem 1. Let P be a monic polynomial of degree n in H[x] with n isolated distinct roots and, for i =

1,....,n k=0,1,2,..., let

K3

—1
k k k), (k k), (k
yf ) = zf ) _p! )(zg )) (QE )(zi( )))

(8)
(k+1) _ (k) k), )y (o®) ) "
2 =y = PP P (M M)
where P (z) = (.cg’“ (z) P(z)RP (x)) with
£§k)(x) = H (m—zj(k)), (9)
j=i+1
i—1
’RZ(.k) (z) == (x — zEk—H)) (10)
i=1 '
and
i—1 n
oM (z) =[] v w0 (@) J] ¥.m(@). (11)
j=1 7 j=it1

(0)

If the initial approximations z; ~ are sufficiently close to the factor terms x; in a factorization of P in the form

(5), then the sequences {zgk)} converge to x; with cubic order of convergence.

Proof. The proof is an adaptation of the proof in [5], now for the case where each iteration involves two steps.
In order to make the document complete, we have included all details.
For simplicity of notation, we write the scheme (8) in the form

yi =z — Pilz) (Qi(z:)) "

Z =y — Pilys) (Qi(yi) ™"

omitting all the superscripts corresponding to the iteration number.
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Assume that z; are approximations to x; with errors ¢;, i.e.,
g i=x — 2z, 1=1,...,m, (12)

and denote by € the maximum error, i.e., £ := max; |g;|. We assume that ¢ is small enough, i.e., that z;
are sufficiently good approximations to x;. Since, in each iteration, the first step corresponds to the classical
quaternionic Weierstrass method, we known that

I -
g =T — Y, t=1,...,n,

are such that
¢’ = max|g;| = O(&?). (13)
K2

We now prove, by complete induction on %, that the second step iterates Z; are approximations to x; with
errors &; such that
E~i = 0(53).

Base case: We need to prove that &; = O(&?).
Observe that the polynomial P can be written, by the use of (12), as
n—1

(T — j+1 H (z — Zn—j+1 = En*jJrl)(x — Y - 5/1)

||z:

(H T —zn_jy1) + E1(x ))(x—m—f’l),

where &) (z) designates a remainder polynomial consisting of a sum of n — 1 terms of the form
—(z—zp)(@—2n—1) ... (r—zj—1)gj(® — zj41) ... (x — 22), J=2,...,m,

with terms consisting of products involving at least two €;'s. We may assume that we are working in a bounded
domain D of H (a sufficiently large disk containing all z;) and therefore, we have

&1 (a) = O(e), Ya € D. (14)

Taking into account the definition (7) of the polynomial £1, P can be written as

P(z) = (Z1(2) + 6(2)) (@ = 11 = 1) = La(@) (@ — yn — &) + i (@) (@ — y1 — €)).

If we multiply P on the left by £; and evaluate the resulting polynomial at the point x = y;, we obtain,
recalling the results (3) and (4) in Result 1 and the definition (11) of Qy,

(£1P) (1) = =1 Qi) — (£161) (),
where 2; = ]21(¢}) !, Using now (14) we can write
(L1P)(y1) = —€1 Q1 (1) + O(eeh).

Since we are assuming that the equivalence classes [x;] are distinct then, for sufficiently small ¢, |Q1(y1)| is

bounded away from zero and so, by multiplying both sides of the above equality on the right by (Ql(yl))_l,
we obtain

(L1P) (1) (Qi(y1)) ™ = —€} + O(ee)),

which means by (8), that
71 =91 = (L1P) (21) (Quly)) ™ + O(ee)).
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Finally, we may conclude from (13) that the next approximation to

- -1
Z1=y1 — (L1P) (1) (Q1(wn))
is such that
& =z — % = O(ee)) = O(?).
Induction Step: We now prove that %; approximates x; with an error O(£%), assuming that, for j = 1,...,i—1,
z; are O(®) approximations to ;.

Define the polynomials
n 1—1
Li(w)= [] @-2;) and Ri(x)=]](x-z)
=i+ j

=it+1 j=1

L@ =[] @=-z-5)= ][] @—2)+&@) = L)+ &)
j=i+1 j=i+1
and
i—1 i—1
Ri(x) = [[(x -2 —&) = [[(= — %) + &i(x) = Ri(z) + &(2),
j=1 j=1

where & and &, are remainder polynomials defined similarly to &7, with the appropriate modifications. Since

&; is a sum of terms, all of which involve at least the product by a &; (j € {¢ +1,...,n}), we conclude
that &(a) = O(g). On the other hand &; is a sum of terms involving at least the product by an &; (j €
{1,...,4—1}), which means that we can write, using the induction hypothesis,

&(a) = O(%), Ya e D.
Therefore the polynomial P can be written as
P(x) = Li(@)(x — 2:) Ri(w) = (Lilw) + &) (3 — yi — ) (Ri(w) + & ().

Multiplying both sides of the last equality on the left by £; and on the right by R; and evaluating at x = y;,
we obtain

(LPR) (i) = (LLRRix =y = ) i) + (LRRiw =y = D) (1)
+ (LZi(w = i — NER) () + (Litsi (0 =y — £DER:) (),
where we made use of the result that, since R;R; is a real polynomial, it commutes with any other polynomial.

Observing that £,£;R;R; is the real polynomial Q;, using again the results (3) and (4) in Result 1 and having
in mind the form of the remainder polynomials &; and &;, we can write

(LiPR;) (i) = —€:Qi(ys) — (LiRRi&) (9i)e; + O(£°)
= —;Qi(ys) + Oee) + O(%), (15)
where §j; = ly; (/). Since |Q;(y;)| is bounded away from zero, multiplying (15) on the right by (Q;(z;)) "
leads to
(LiPR:) (i) (Qi(wi)) ™! = —ei + O(es}) + O(e®)
or, equivalently, recalling the definition of the errors ¢},
(LPRy) () (i)™ = yi — s + O(°).

This proves that )
Zi = yi — (LiPRy) (y:) (Qilwi))
is an O(g3) approximation to z;. O
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Remark 1. The use of the Weierstrass method in its sequential version is essential to reach the cubic order of
convergence, as a careful analysis of the proof reveals; for more details see [5, Remark 3]. This is the reason
why the final order of convergence of this quaternionic two-step method is three instead of four, as in the
complex case.

Remark 2. We point out that, for each Z;, the scheme performs four polynomial evaluation per iteration,
which corresponds to the number of evaluations required by two iterations of the one-step Weierstrass method.
However the number of operations involved in each iteration is substantially less, since the demanding process
of constructing the polynomials P; and Q; is done just one time per iteration. Details on evaluation schemes
of polynomials with quaternion floating point coefficients from the complexity and stability point of view can
be obtained in [4].

As in the case of the classical quaternionic Weierstrass method, the iterative scheme (8) can produce, not
only the factor terms, but also the roots of the polynomial. Using the relations (6) between the roots and
factor terms of a polynomial and the arguments of the proof of the classical case [5, Theorem 6], the following
result can be easily obtained.

Theorem 2. Let P be a monic polynomial of degree n in H[z| with n isolated distinct roots and let {sz)}
be the sequences defined by the two-step Weierstrass iterative scheme (8)—(11) under the assumptions of

Theorem 1. Finally, let {{i(k)} be the sequences defined by

X . -1
(D= RV D (ROEH)) k=012, (16)
where ng) are the polynomials given by (10). Then, {Cik)}, cey {(,,(Lk)} converge to the roots of P with cubic
order of convergence.

Remark 3. Observe that the polynomials R; in (16) used to obtain the roots are the same polynomials
presented in (8) to obtain the factor terms.

4 Numerical Examples

We illustrate the performance of the two-step quaternionic Weierstrass method (8)-(11) by considering several
examples.

For the first two experiments we have used the Mathematica add-on application QuaternionAnalysis
[17] specially designed for symbolic manipulation of quaternion valued functions together with the collection
of functions QPolynomial [8, 10] for solving polynomial problems in HJ[z].

To evaluate the quality of the approximations produced by the numerical scheme, all the examples were
constructed so that the exact solution ¢ is known. In this way, the error £(*) in each iteration k is computed as

e® = max{|¢; — 2P|},
1

where zi(k) is given by (8). To obtain estimates for p, the local order of convergence of the method, we used

the following computational estimate (see e.g. [12] for details)

k) ._ log g(®)

We point out that, in some cases, we had to take advantages of the fact that the Mathematica system allows
to carry out the numerical computations using arbitrary precision arithmetic.

Example 1. Consider the polynomial
P(z) = 2%+ (3 + 31+ 3j + 5k)2? + (=3 +1i— 3j + 17k)z + 2 — 161 — 6 + 8k.
This polynomial was constructed, with the help of (6), so that its factor terms and roots are, respectively,

r1=—-2—-j—k, 20=-1-2i-3j—4k and 23=-i+j
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Table 1: Results for Example 1

QWM 2QWM
k (k) o) k (k) o)
8 7.6 x 1072 —— 4 1.9 x 1071 ——
9 1.9x 1073 2.44 5 1.3 x 1073 4.08
10 7.1x 1077 2.26 6 6.1 x 10710 3.17
11 3.9 x 10714 2.18 7 6.0 x 1072 3.06
12 7.7 x 10729 2.09 8 1.5 x 1078 3.01

Table 2: Results for Example 2

QWM 2QWM
k c(k) p(k') k e(k) p(k)
18 9.1 x 1073 —— 11 2.5 x 1071 ——
19 1.9 x 1074 1.82 12 1.6 x 1072 3.06
20 5.4 x 1078 1.95 13 6.1 x 107° 2.90
21 5.5 x 10716 1.96 14 1.3x 10716 3.05
22 1.3 x 10729 2.03 15 2.2 x 10748 3.00
and
(1=-2-j—k, @:-1-%1-%j-%k and g},:%ﬁ%j ;—?;k.

Starting with the initial approximation z(®) = (1,2,1+i+]j), we reached the precision 10716 after 12 iterations
of the quaternionic Weierstrass method (QWM) and just 7 iterations of the two-step quaternionic Weierstrass
method (2QWM). Table 1 contains the results concerning the computational order of convergence for both
methods. These results agree, as expected, with the conclusions of Theorem 1 (P fulfills its assumptions).

Example 2. We consider now the polynomial borrowed from [5]:
P(x)=(z+2)(z+1+k)(z—2)(x—1)(z—2+j)(z—1+1i),
whose roots are
G=1-1i, G=1 (3=—1— 33+ 35j — 22k,
=2 G = —1hi — 15K =2 2i—3j+ 2k

We used as initial approximation z(?) = (%, % —J, %+i—j+k, %—l—i—j, —%, —1—2i) and reached the precision

1016 after 22 iterations of the quaternionic Weierstrass method and 15 iterations of the two-step quaternionic
Weierstrass method. The details about this example are presented in Table 2.

Example 3. Our next example concerns a polynomial P with a spherical zero, i.e., P does not fulfill the
assumptions of Theorem 1.
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Table 3: QWM and 2QMW for Example 3

Roots Type Error (QWM) | Error(2QWM)

1—j | lIsolated | 2.5x 10716 2.4 % 10712

—i+k | Isolated 2.0 x 10715 3.6 x 10713
[4] Spherical | 7.7 x 1079 4.5x 1078

Table 4: Modified QWM and 2QWM for Example 3

Roots Method Type Error k
1—j Weierstrass Isolated 7.4 %1077 11
—-i+k Weierstrass Isolated 2.3 x 10718 11
1—3j 2 step Weierstrass Isolated 1.6 x 10716 6
—-i+k 2 step Weierstrass Isolated 2.0 x 10716
[i] Deflation Spherical 0 -

Recently, we have proposed a deflation algorithm [9] to be used together with the quaternionic Weierstrass
method which allows to obtain quadratic order of convergence for isolated and spherical roots without requiring
higher order precision. The same technique can be used now for the two-step method. The first part of the
method concerns the determination of the spherical roots, while the second one consists of applying the
Weierstrass method to a deflate polynomial.

In this example we revisit the first example of [9], where the polynomial

Pl)=a*+(-14+i)2°+ 2-i+j+k2®+(-1+i)z+1-i+j+k,

was considered. This polynomial has the isolated zeros —i+ k and 1 — j and the sphere of zeros, [1i].

The numerical computations have been performed, as in the aforementioned work, in the Matlab system
with double floating point arithmetic.

Starting with the initial guess 2(®) = (1,—2,0.5i,1 + i), we obtained the results presented in Table 3,
without using the deflate strategy. The results of Table 3 can be easily explained if we take into account that
in the proof of Theorem 1 we assume that |Q;(y;)| is bounded away from zero, which is not the case when we
have two factor terms “almost” in the same equivalence class. If arbitrary precision arithmetic is not available,
the faster the method, the more quickly this effect is expected to be observed.

Applying now the Weierstrass algorithm to a 2nd degree deflate polynomial with the initial approximation
2(0) = (1,14 1), we obtain, after 11 iterations of QWM and 6 iterations of the 2QWM, the results presented
in Table 4.

Example 4. Consider now the 9th degree polynomial
Q(z) = P(z)(2* +4)(z° + ),

where P is the polynomial of Example 3. Apart from the same two isolated roots —i+k, 1 —j and the spherical
zero [i], this polynomial has also 1 as isolated zero and [2i] and [3i] as spherical zeros.

The one- and two-step Weierstrass algorithm applied to the 3rd degree polynomial, obtained by the deflation
procedure, with the initial approximation z(9) = (—=1,2,1 4+ i), produce, after 12 iterations of QWM and 9
iterations of the 2QWM, the results presented in Table 5.
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Table 5: Modified QWM and 2QWM for Example 4

Roots Method Type Error k
1.000 — 1.000j Weierstrass Isolated 3.3 x 10715 12
—1.000i + 1.000k Weierstrass Isolated 1.7 x 10715 12
1.000 Weierstrass Isolated 2.7 x 10715 12

1.000 — 1.000j 2 step Weierstrass Isolated 3.4x1071° 9
—1.000i + 1.000k 2 step Weierstrass Isolated 1.7 x 10715 9
1.000 2 step Weierstrass Isolated 3.0 x 10715 9

[i] Deflation Spherical 1.1 x1071° -

[2i] Deflation Spherical 1.4 x 10715 -

[3i] Deflation Spherical 1.9 x 10715 -

5 Conclusions

We have derived a two-step method based on the Weierstrass method for computing the roots of a quaternionic
polynomial and have proved its cubic order of convergence, under the assumptions that all the roots are isolated
and distinct (and the initial guesses are sufficiently “good”). A modified version of the two-step method was
also considered allowing to overcome the issues associated to spherical roots.

We hope it is possible to modify the scheme in order to improve its efficiency, in particular, in what concerns
the number of evaluation required in each iteration. We intend to focus on this aspect in the near future.
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