
D
yn

am
ic

En
d-

to
-E

nd
R

el
ia

bl
e

C
au

sa
lD

el
iv

er
y

M
id

dl
ew

ar
e

fo
r

G
eo

-R
ep

lic
at

ed
Se

rv
ic

es
2
0
2
3
 G
eo
rg
es

Yo
un
es

U
M
in
ho

|

Departamento de Informática

Georges Younes

Dynamic End-to-End Reliable Causal
Delivery Middleware for Geo-Replicated
Services

Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

June 2023

Universidade do Minho

Escola de Engenharia

Departamento de Informática

Georges Younes

Dynamic End-to-End Reliable Causal
Delivery Middleware for Geo-Replicated
Services

Tese de Doutoramento
Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

Trabalho realizado sob a orientação de
Carlos Baquero
e de
Ali Shoker

June 2023

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositoriUM da Universidade

do Minho.

Licença concedida aos utilizadores deste trabalho

Creative Commons Atribuição 4.0 Internacional

CC BY 4.0

?iiTb,ff+`2�iBp2+QKKQMbXQ`;fHB+2Mb2bf#vf9Xyf/22/XTi

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.0) [1].

ii

https://creativecommons.org/licenses/by/4.0/deed.pt
https://creativecommons.org/licenses/by/4.0/deed.pt
https://github.com/joaomlourenco/novathesis

Acknowledgements

I would like to express my gratitude to my advisors Carlos Baquero and Ali Shoker, for supporting my work

with great advise, patience and encouragement. Also a special thanks to Professor Paulo Sérgio Almeida

for his constant support and guidance and to Vitor Enes for being a great colleague and friend, both heavily

involved in this work. To all of them, thank you for the continuous support and encouragement throughout

this work and for the counseling provided. I learned a lot. Without their guidance and dedication this

thesis would not have been possible.

Thanks to my all of my colleagues and friends at the HASLab laboratory, for the great work environment

created. Finally, a special thanks to my friends and my family, for all the love and support given, and for

always having confidence in me.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

,
(Place) (Date)

(Georges Younes)

iv

Braga 2 of June 2023

“You cannot teach a man anything; you can only

help him discover it in himself.” (Galileo)

v

Resumo

Causalidade Dinâmica Extremo a Extremo em Replicação Geo-
gráfica

O crescimento da dependência de serviços baseados na Internet, durante as últimas duas décadas,

causou um aumento na adoção de sistemas geo-replicados. O desenho deste sistemas é enquadrado à

luz do teorema CAP. Neste contexto os modelos de coerência relaxada – Eventual Consistency – permi-

tem reduzir o tempo de resposta para com os utilizadores finais e, assim, aumentar a disponibilidade dos

sistemas e obter interações mais rápidas. O advento de novas técnicas de convergência como Conflict-

free Replicated Data Types, amplamente adotados na indústria de geo-replicação como seja no Facebook,

PayPal, Microsoft, SoundCloud, entre outros, permitiu também um maior enquadramento formal destas

técnicas. Em particular, o modelo de coerência causal, provou ser o modelo mais forte para sistemas

sempre disponíveis. Assim torna-se relevante revisitar as técnicas de comunicação causal em grupo,

e associado middleware de transmissão, pois sendo que muitos destes sistemas foram originalmente

construídas à perto de três décadas, precisam de ser adequados ao contexto actual de utilização. Esta

tese principia pela análise de novas abstrações para a garantia de propriedades end-to-end no registo e

entrega causal. Prossegue com a observação de anomalias e ineficiências resultantes de implementa-

ções multi-threaded de entrega causal, e com a identificação de uma primeira abordagem para garantir

causalidade entres os dois extremos do sistema. Após a identificação de problemas na escalabilidade nas

implementações que se baseiam em vectores versão ou relógios lógicos, é proposta uma nova solução

baseada na manipulação de grafos de dependências e numa eficiente manutenção e simplificação dos

mesmos, recorrendo à observação de propriedades de estabilidade. É também proposta uma nova API

aos utilizadores do middleware de comunicação. A avaliação das soluções propostas foi feita com base

num sistema programado em Erlang e foi feita a sua avaliação de desempenho e aplicação a quatro casos

de estudo.

Palavras-chave: Coerência causal, Entrega causal, Replicação geográfica

vi

Abstract

Dynamic End-to-End Reliable Causal Delivery Middleware for
Geo-Replicated Services

The reliance on Internet-based services during the past two decades caused a leap in geo-replicated

systems, as a means to target clients across the globe, in the light of the CAP theorem. Therefore,

relaxed consistency models got a lot of attention to reduce the response time to end users, and thus

boost the availability of the systems at the cost of delayed – Eventual Consistency–. Together with the

advent of new convergence techniques like Conflict-free Replicated Data Types—widely adopted in the geo-

replication industry like Facebook, PayPal, Microsoft, SoundCloud, etc., this lead to the reliance on more

useful tradeoff consistency models like the causal consistency model, proven to be strongest model for

available systems. Intuitively, this suggested another visit to revise the causality techniques, broadcast

middleware, and abstractions, originally built three decades earlier for a different set of digital services,

i.e., applications, capabilities, and usage. The research in this thesis analyzes the end to end workflow of

causality-based services, leading to the identification of new problems and shortcoming in state of the art

causality techniques and abstractions, and proposing novel corresponding ones. First, this work discovers

that, given that many applications are today multi-threaded, handling causality while overlooking this fact

will lead into semantic pitfalls in some classes of applications. A corresponding technique is proposed

in this thesis to apply end-to-end time-stamping at the application level instead of the causal middleware.

Second, this thesis points out a scalability problem in state of the art causal broadcast middlewares

that rely on vector clocks for timestamping. This thesis proposes the first graph-based abstraction for

timestamping which is proven to be one order of magnitude more scalable and efficient than its state of

the art counterpart. Third, this work identifies existing redundancy in the time-stamping methods used

in both causal middleware and application logic, and thus proposes a slightly modified, but effective, API

that reduces the bandwidth metadata overhead by half. The API includes the notion of causal stability

that makes garbage collection fast and easy. Fourth, this thesis introduces the first technique for dynamic

causality middleware, crucial in elastic services, leading to guaranteed causal delivery under dynamic

membership. These contributions are then implemented in a comprehensive well-engineered codebase

in Erlang. To demonstrate its usefulness and feasibility, this work has been applied to four practical

use-cases and projects during the course of this thesis.

vii

Keywords: Causal Consistency, Causal Delivery, Geo-Replication

viii

Contents

List of Figures xiii

List of Algorithms xv

1 Introduction 1

1.1 Problem statement and objectives . 2

1.2 Main contributions and results . 3

1.2.1 Tagged Causal Delivery (Broadcast) . 3

1.2.2 Graph-based Tagged Causal Delivery middleware 3

1.2.3 Causal Stability . 3

1.2.4 Dynamic Tagged Causal Delivery middleware 4

1.3 Outline . 5

2 State of The Art 6

2.1 Geo-replication . 6

2.2 (Geo-)replication properties and trade-offs . 7

2.2.1 FLP . 8

2.2.2 Consistency in data storage systems 8

2.3 Consistency models . 11

2.3.1 Data-centric consistency models . 11

2.3.2 Client-centric consistency models . 14

2.4 Causality tracking and broadcast . 16

2.4.1 Causality tracking primitives . 16

2.4.2 Causal Broadcast . 22

2.4.3 Scalability solutions for Causal Multicast 25

2.5 Weakly-consistent data stores . 29

2.5.1 Causally Consistency Data Stores . 30

ix

3 Tagged Causal Broadcast 37

3.1 Introduction . 37

3.2 Classical Causal Delivery . 38

3.3 Defining an End-To-End Happens-Before . 40

3.4 The need for happens-before by applications . 40

3.4.1 The Stock Trading Example . 41

3.4.2 Implementing Conflict-free Replicated Data Types 42

3.5 Happens-Before as a Middleware Service . 43

3.5.1 Two-Level Tagging using Current Middleware 43

3.5.2 Exact Tagging by the Middleware . 44

3.6 Pitfalls in Exposing Middleware Timestamps . 44

3.7 Tagged Causal Delivery . 45

3.7.1 Lessons Learned and a General Solution 45

3.8 Explicit Causality versus Explicit Grouping . 47

4 Middleware 49

4.1 Introduction . 49

4.2 API and Architecture . 49

4.2.1 Architecture . 50

4.2.2 API . 51

4.3 Vector-Clock-based algorithm for tagged causal delivery 52

4.3.1 Client process . 52

4.3.2 Middleware process . 53

4.4 Causal DAG . 54

4.4.1 Reducing the causal information overhead 55

4.4.2 Reducing delivery time . 56

4.4.3 Causal dependency graph: notations and functionality 56

4.5 Graph-based Algorithm for tagged causal delivery 57

4.5.1 Client Process . 58

4.5.2 Middleware Process . 59

5 Tagged causal delivery and Causal Stability 62

5.1 Causal Stability . 62

5.1.1 Causal Stability in the vector clock-based algorithm for TCD 63

5.1.2 Causal Stability in the graph-based algorithm for TC 64

5.2 Causal Stability for VV-based Algorithm . 66

5.2.1 Client process . 66

5.2.2 Middleware process . 66

x

5.3 Causal Stability for graph-based TCB Algorithm 69

5.3.1 Client Process . 69

5.3.2 Middleware Process . 70

5.4 Phantom Dots: An Optimisation for Active/Passive Node 74

5.4.1 Client Process . 74

5.4.2 Middleware Process . 75

6 Dynamic Membership 77

6.1 Causal Stability in Dynamic Membership . 77

6.1.1 Causal Stability and Join Requests . 77

6.1.2 Causal Stability and Leave Requests 78

6.2 Algorithm . 79

6.2.1 System Startup . 79

6.2.2 Joining Nodes . 83

6.2.3 Leaving Nodes . 85

6.2.4 Updating Group Membership . 86

7 Causality Checker 87

7.1 Causal Check Algorithm . 88

7.1.1 +�mb�H+?2+F() . 90

7.1.2 ?�M/H2b2M/2`/Qi() . 90

7.1.3 ?�M/H2/2HBp2`2/() . 91

7.1.4 ?�M/H2bi�#H2() . 91

7.1.5 ?�M/H2T22`/Qi() . 91

8 Evaluation 93

8.1 Configuring the experiments . 93

8.1.1 Send interval . 93

8.1.2 Network latency . 94

8.1.3 Simulating slow links . 95

8.2 Deploying environment . 96

8.2.1 Architecture . 96

8.2.2 Docker . 97

8.2.3 Kubernetes . 97

8.3 Comparing experiments . 97

8.3.1 Memory Metadata . 98

8.4 Broadcast Experiments . 100

xi

8.4.1 Experiment1: Classical end-to-end vector-based VV vs our end-to-end graph-

based TCB . 100

8.4.2 Experiment2: Classical vector-based VV vs graph-based 101

8.4.3 Experiment3: Constant amount of work for vector-based VV vs graph-based 103

8.4.4 Causal Stability . 103

8.4.5 Causal Delivery . 105

8.4.6 Slow Links . 107

9 Use Cases 109

9.1 ASPAS . 109

9.1.1 Data Types for backup and recovery 110

9.2 Lasp . 111

9.3 AntidoteDB . 113

9.4 Redis with relaxed consistency . 113

9.5 Minidote . 115

9.6 Software, libraries and artifacts . 117

10 Conclusions and Future Perspectives 118

10.1 Future Work . 119

Bibliography 120

xii

List of Figures

1 A Geo-replicated system. 7

2 The CAP trade-offs. 9

3 Example for linearizibility . 12

4 Example of Sequential Consistency . 13

5 Example of Causal consistency . 14

6 Example of Monotonic Reads . 15

7 Example of Monotonic Writes . 15

8 Example of Read Your Writes . 16

9 Diagram showing a distributed execution using Lamport’s Happens-before 17

10 Diagram showing a distributed execution using Lamport clocks 18

11 Diagram showing a distributed execution using Causal Histories 19

12 Diagram showing a distributed execution using vector clocks 20

13 Diagram showing a distributed execution using version vectors 21

14 Diagram showing a distributed execution using the CBCAST algorithm 24

15 Trading example from Cheriton and Skeen’s paper 41

16 Add-Wins Set Example . 42

17 Difference between internal tagging and end-to-end tagging. 46

18 Tagged causal delivery architecture . 50

19 Graphical representation of causal delivery using a delivery queue and a causal DAG . . 54

20 Stages of a dot in causal DAG (without causal stability) 60

21 Flowchart showing how the algorithm works upon receiving a new message (without causal

stability) . 61

22 Stages of a dot in causal DAG (with causal stability) 64

23 Graphical representation of causal delivery using a delivery queue and a causal DAG (with

causal stability) . 65

xiii

24 Evolution of the causal DAG (with causal stability) 73

25 Evolution of a new node joining process . 83

26 Evolution of an existing node leaving process . 85

27 Full mesh topology with a slow link between 0 and 1. 95

28 Experiment 1: transmission and memory, without stability. 101

29 Experiment 1: Memory and Non-causal Stability latency, with stability. 102

30 Experiment 2: transmission and memory metadata, without stability. 103

31 Experiment 3: transmission and memory, without stability. 104

32 Experiment 2 and 3: Median memory metadata, with stability. 104

33 Experiment 2 and 3: non-causal stability latency, with stability. 105

34 Experiment 2: non-causal delivery latency. 106

35 Experiment 3: non-causal delivery latency. 106

36 Experiment 2: non-causal delivery latency on slow link. 107

37 Experiment 3: non-causal delivery latency on slow link. 108

38 ASPAS architecture. 109

39 TQHQ; based Add-Wins Set with Clone functionality 111

40 Lasp runtime system. 112

41 Lasp pure op-based CRDTs. 112

42 Concrete Resettable Counter Implementation . 113

43 The general architecture of our multi-master proposed solution. 114

44 High-level architecture of Minidote. 116

xiv

List of Algorithms

1 CBCAST algorithm using Vector clocks on process 8 2 I 24

2 Vector-based tagged causal delivery algorithm without causal stability at client process for

node 8 2 I . 53

3 Vector-based tagged causal delivery algorithm without causal stability at middleware pro-

cess for node 8 2 I . 54

4 Graph-based tagged causal delivery algorithm without causal stability at client process for

node 8 2 I . 58

5 Graph-based tagged causal delivery algorithm without causal stability at middleware pro-

cess for node 8 2 I . 59

6 Vector-based tagged causal delivery algorithm with causal stability at client process for

node 8 2 I . 66

7 Vector-based tagged causal delivery algorithm with causal stability at middleware process

for node 8 2 I . 67

8 Graph-based tagged causal delivery algorithm with causal stability at client process for

node 8 2 I . 69

9 Graph-based tagged causal delivery algorithm with causal stability at middleware process

for node 8 2 I . 70

10 Graph-based tagged causal delivery algorithm with causal stability and phantommessages

at client process for node 8 2 I . 75

11 Graph-based tagged causal delivery algorithm with causal stability and phantommessages

at middleware process for node 8 2 I . 76

12 Dynamic tcb client process for node 8 2 I . 80

13 Dynamic tcb middleware process for node 8 2 I 81

14 Causal check algorithm . 89

xv

xvi

R

Introduction

From social network platforms to entertainment services, storage and backup, collaborative tools and

many more, online services are continuously increasing in scale and in demand. More and more users

access these services around the world expecting a reliable service and a good, fast user experience. For

system designers, this means ensuring a correct, uninterrupted operation, with fast response time. This

technically translates to high availability which implies tolerance to both network and replica failures, as

well as low latency of user requests.

A common approach to address the above challenges is to use geo-replication, where full or partial

replicas are located in different regions to provide fast access to nearby users. On one hand, this allows

the possibility of switching to other replicas when a certain replica crashes. On the other hand, distributed

services provide a minimal degree of performance such as being highly-responsive to client requests.

Reaching this quality of service can become a challenge, especially over large geographical areas and

under large numbers of requests. Geo-replication allows distributing the data and placing it in the proximity

of clients, often using relaxed consistency models. This decreases the access delays, resulting from

the transmission of requests and responses between servers and clients. In addition to this, replication

reduces the load of client requests by allowing different replicas to share that load and divide the work

among them.

Data consistency is the main challenge that has to be faced when dealing with geo-replication. Ensur-

ing that all replicas have a consistent state is expected by users, but it comes at the price of delaying the

system and serving the users. Users also expect high-responsiveness and thus cannot always accept the

high latency of ensuring data consistency.

To solve this, distributed systems offer a wide range of consistency models and tradeoffs between

consistency and availability to choose from. Strong consistency models prioritize consistency over avail-

ability, while weak consistency models offer less guarantees for consistency and offer higher availability.

Causal consistency [2] is the strongest achievable consistency that does not sacrifice availability under

network partitions [3]. It is an attractive model for distributed systems and data stores as it guarantees

data consistency that reflects causality between events.

1

CHAPTER 1. INTRODUCTION

This thesis identifies three main problems for ensuring correct, efficient, and dynamic causal deliv-

ery. We summarize these problems in the following section with hints on the proposed solutions. We

then present the main contributions in the following Section 1.2. Both, problems and contributions, are

then presented in detail in the different chapters of this thesis according to the organization described in

Section 1.3.

1.1 Problem statement and objectives

Tracking causality and guaranteeing that causal dependencies are satisfied has taken a large interest in

distributed systems and still does. It has also led to many contributions by distributed systems researchers

and engineers such as causal delivery middleware, causality tracking data structures and mechanisms,

garbage collection for causality metadata and so on.

End-to-end potential causality. Traditional causal delivery middleware [4] provide a delivery order in

each process that is consistent with causality. This means that messages are guaranteed to be delivered

at every process in an order respecting (consistent with) the causality between the messages. As for con-

current messages that are not causally related, the order of delivery is arbitrary and dictated only by their

arrival at different processes. While such traditional causal delivery middleware guarantee causality, they

do not provide the application with knowledge about concurrency between events. Given two messages

<1 and <2 delivered in that sequence to some process, no information is provided to the application

whether<1 causally preceded<2 or if they were originated independently (concurrently) of each other.

In this thesis, we show that providing such knowledge to the application is necessary for a class of appli-

cations that require knowledge of concurrency in order to apply arbitration rules [5]. Ad hoc arbitration of

concurrent messages does not influence causality but that might lead to anomalies and break constraints

set by the application.

Causal stability. Causal stability concerns knowledge about the end-to-end happens-before regarding

future deliveries at each client process, namely whether concurrent messages (to a given message) can

still be delivered. The concept itself is not new, and it has been used many times, but hidden in applica-

tions, without being properly recognized as such. This has lead to successive ad-hoc re-implementations,

sometimes overly complex. As an example, causal stability is hidden inside the difficult to understand

implementation of Replicated Growable Arrays (RGAs) [6], while not being recognized as a building block.

We propose this concept is important enough to be recognized, advertised, and provided by the middle-

ware as a building block, to avoid “reinventing the wheel”. For this we follow the causal stability concept,

coined as such in a paper that defines pure operation-based CRDTs [7].

Dynamicity and node churn. Traditionally when nodes in group membership leave or join the group,

the system blocks until the remaining nodes are aware of the new change in the membership and ready

2

1.2. MAIN CONTRIBUTIONS AND RESULTS

to resume the distributed computation. This may not be problematic in some scenarios were node churn

is rare. However, in highly dynamic scenarios where nodes join and leave regularly and often, this could

have a high cost on the responsiveness and availability of the service.

1.2 Main contributions and results

Over the course of this thesis, we have made several contributions to the state-of-the-art of distributed

data stores to address the aforementioned problems and challenges. Our main four contributions can be

summarized by the following.

1.2.1 Tagged Causal Delivery (Broadcast)

In particular, we define a novel definition of end-to-end happens-before that focuses on application (client)

level visibility for tracking causal dependencies. This definition was motivated by the lack of an end-to-end

happens-before definition that has lead to incorrect behaviour and anomalies in a class of applications

as we explain in Chapter 3. We also show the pitfalls of trying to achieve end-to-end happens-before that

distributed systems practitioners could fall in. And finally, we develop a Tagged Causal Delivery middleware

that characterizes end-to-end happens-before, showing the correct architecture, API and algorithm for both

a VV-based version and our graph-based TCB version.

1.2.2 Graph-based Tagged Causal Delivery middleware

A lot of implementation of traditional causal middleware use version vectors, delivery queues and other

data structures that are not best suited for the partial order of causality. There have been works that

improved the efficiency vector clocks to reduce the metadata sent on the network, and other works that

try to optimise the causal delivery mechanisms. However, we argue that a causal delivery middleware

should be viewed as a standalone service where all its components work together to provide an efficient

and scalable service in a holistic fashion. We then present the correct API, architecture and algorithm

of such middleware. We implement also, in addition to our graph-based TCB, an optimized end-to-end

mechanism, E2E VV-based in order to have a fair evaluation that compares the performance of both. In

the evaluation, we show how our TCB performs better than the optimized VV-based algorithm in terms of

transmission of meta data, size of meta data in memory and non-causal delivery and stability latency.

1.2.3 Causal Stability

Our work throughout the thesis focuses around the importance on causal stability in the Tagged Causal

Delivery middleware. We show how using causal stability allows designing and implementing correct

causal middleware for applications like CRDTs, where knowledge about concurrency between events is

available to the application and the causality order characterizes the end-to-end happens before. Moreover,

3

CHAPTER 1. INTRODUCTION

we show how causal stability allows the safe garbage collection of causality meta data. We also implement

the causal stability mechanism for the VV-based version, which is completely different than that of the

graph-based version, in order to compare the performance of both algorithms when the causal stability

mechanism is running. Again, we notice that our TCB performs and scales better than the VV-based

algorithm for causal stability.

Some other smaller contributions were made throughout the thesis, such as phantom messages, a

feature to keep causal stability working even when the majority of peers are passive. We explain this in

detail in Section 5.4. We also design and implement our own causality checker tool as shown in Chapter 7.

This causal checker serves as a verification tool for causal delivery and stability.

1.2.4 Dynamic Tagged Causal Delivery middleware

In this thesis, we introduce, to our knowledge, the first dynamic causal middleware were new nodes

can join and existing nodes can leave safely, without blocking the system. We also extend the TCD (or

TCB) middleware, through causal stability, to provide a version of the algorithm suited for unreliable and

dynamic environments. Our causal checker also verifies the correctness of causal delivery and stability

when different nodes join and leave concurrently.

Publications. Part of the work described in this thesis was published or is under submission in several

peer-reviewed conferences and journals:

• ASPAS: As Secure as Possible Available Systems. Published at IFIP DAIS’21. Best Paper Award at

IFIP DisCoTec 2021.

• Integration Challenges of Pure Operation-based CRDTs in Redis. Published at EuroSys PAPOC

workshop, 2016.

• Compact Resettable Counter through Causal Stability. Published at EuroSys PAPOC workshop,

2017.

• Pure Operation-Based Replicated Data Types. Journal under re-submission.

• The Pitfalls in Achieving Tagged Causal Stability. Presented at EuroSys PAPOC workshop, 2018.

• Tagged Causal Delivery: Efficient End-to-End Causal Middleware for Replicated Systems at Scale.

Under submission.

• Graph-based Causal Middleware for Dynamic and Unreliable Networks. To be submitted.

4

1.3. OUTLINE

1.3 Outline

The rest of this thesis is organized as follows:

• Chapter 2 gives a brief presentation on the required background and an overview of the state of

the art literature relevant to the rest of the thesis;

• Chapter 3 presents Tagged Causal Delivery that characterizes end-to-end happens-before, the prob-

lems and pitfalls of achieving it incorrectly and the correct architecture and implementation of TCB;

• Chapter 4 presents our graph-based TCB middleware, its architecture, API and algorithm, with a

detailed explanation of the dependency dots and causal DAG;

• Chapter 5 presents and motivates Causal Stability and how to implement it in both vector-based

and graph-based algorithms;

• Chapter 6 presents the Dynamic version of our TCB algorithm;

• Chapter 7 presents our own causal checker that verifies a correct delivery and stability respecting

the causality of events;

• Chapter 8 presents the empirical evaluation comparing our TCB to a vector-based causal delivery

middleware;

• Chapter 9 presents use cases where our contributions were implemented in existing software and

data stores;

• Chapter 10 is the conclusion of the thesis with some remarks about future work directions.

5

k

State of The Art

The work in this thesis is related to three main areas, namely, geo-replication, consistency models, and

causality tracking and reordering. Consequently, we present in this chapter the state of the art in the three

areas in order to provide an adequate background to understad the work described in the following chap-

ters. I start with geo-replication, its importance nowadays, considering the high number of users and the

large amount of data used in distributed services, and the challenges that geo-replication introduces for

system designers and engineers. I discuss the properties of such systems and their trade-offs when they

arise. I then narrow the focus to consistency in replicated storage systems, visiting notable theorems like

CAP, PACELEC, CAC and TV. I then visit the different consistency models that range on a spectrum from

Strong consistency to weak consistency. I focus mostly on causal consistency being the strongest con-

sistency model for higher availability, scalability and fault-tolerance. Nest, I explore the different solutions

used for causality tracking and ordering and show the different data versioning and timestamping tech-

niques that have been used to guarantee causal consistency. Finally, I touch upon different mechanisms,

solutions and architectures used in building weakly consistency and causally consistent key-value stores.

I conlcude this chapter with a state of the art analysis and discussion, showing some of the motivations

of my work.

2.1 Geo-replication

Although geo-replication (in Figure 1) solves many distributed systems problems, it generates new ones

that have to be dealt with. Data consistency, or more precisely maintaining data/state consistency among

replicas, is the burden brought by geo-replication. The challenge here becomes designing systems that

guarantee high availability and low latency without sacrificing data consistency which was proven to be a

hopeless endeavor due to the need of some form of synchronization [8–10]. What differentiates a system

design from another are the tradeoffs and properties of such designs. Although consistency and availability

are usually the most desired ones, other properties such as latency, throughput, and partition-tolerance,

could not be overlooked due to their importance, that often comes from the semantics of the higher level

applications. Some of these properties are achievable together while others are inherently antagonistic.

6

2.2. (GEO-)REPLICATION PROPERTIES AND TRADE-OFFS

Figure 1: A Geo-replicated system.

The system properties are defined to satisfy its design goals, and whenever conflicts between these design

goals are encountered, an array of trade-offs arises.

2.2 (Geo-)replication properties and trade-offs

A geo-replicated system is a variant of distributed system whose properties can broadly follow the classical

Safety properties and Liveness properties [11]. Safety properties address the correctness of an algorithm

which informally translates to ”nothing bad will ever happen” while liveness properties translates to ”some-

thing good will eventually happen”. The categorization of distributed system properties as safety or liveness

properties is helpful as the trade-offs between its properties are in some sense safety-liveness trade-offs.

This is intuitively correct as the stricter (safer) the property the more complex the underlying protocols

need to be and this negatively influences the performance (liveness) of the system.

In the following, I start with presenting the FLP impossibility result [12], which specifies that either the

liveness or the safety of consensus of replicas must be sacrificed if those replicas are prone to failure in

an asynchronous setting. I then narrow down the context from general setting State-Machine Replication

(SMR) towards trade-offs in storage systems where operations are restricted to read and write operations.

In this vein, I start with the CAP theorem [9, 10] and then the PACELC, considered as its extension [8]. I

then visit the CAC and TV (throughput vs visibility trade-offs) theorems which focus on causal consistency,

as a more specific form of consistency.

7

CHAPTER 2. STATE OF THE ART

2.2.1 FLP

The FLP addresses the trade-off between safety and liveness by proving the impossibility of a deterministic

algorithm solving consensus in an asynchronous system even under a single crash fault. The main idea

is that in an asynchronous system, messages delays can be arbitrarily long which makes a slow replica

indistinguishable from a one that crashed. On one hand, if the replica was falsely suspected of crashing by

the other replicas, who would proceed with the execution, this leads to disagreement and thus breaking

the safety property of consensus. On the other, if the replica was considered slow and it has actually

crashed, the other replicas will wait indefinitely and thus breaking the liveness property.

The FLP impossibility results plays an important role in the understanding of replicated systems be-

cause consensus plays an important role in state machine replication [3]. The use of state machine

replication (SMR) is widespread because it can replicate the state of any deterministic system to become

a universal solution for many applications. However, this generality is not needed in all modern services

(e.g., social networks) where relaxing the restrictions of strong semantics to benefit form other trade-offs.

One example is storage services which support read and write operations. Such services are easier to im-

plement than a general state machine because read and write are very simple operations. By relaxing the

requirements on semantics, we can achieve fault-tolerance in storage services even in an asynchronous

setting.

2.2.2 Consistency in data storage systems

2.2.2.1 CAP

In order to implement replicated storage system with consistency, communication between replicas is

necessary. When network partitions happen, some replicas become isolated from others. Two scenar-

ios may arise here: either all replicas continue serving the client requests without coordination among

them, and thus breaking consistency, or replicas wait for the communication to recover, thus violating

availability. This trade-off between consistency and availability is in fact a trade-off between safety and

liveness as strong consistency is a typical safety property and availability, a typical liveness property. This

was popularized by the CAP theorem [9, 10], with the catch-phrase: given Consistency, Availability and

Partition-Tolerance, one must choose two of the three (see Figure 2).

Although the CAP theorem implies that there are three combinations, choosing partition-tolerance is

inevitable in a geo-replicated system as they are part of failures and crashes that will most likely happen.

Therefore, the common design choices are between CP systems (consistent) and AP systems (available).

Both AP and CP systems are useful in specific scenarios. For instance, most traditional database man-

agement systems are CP (ACID systems) and offer strong consistency guarantees (Isolation in ACID) but

sacrifice availability under network partitions. AP systems (BASE systems) such as distributed key-value

stores remain available even under partitions by relaxing their consistency guarantees.

8

2.2. (GEO-)REPLICATION PROPERTIES AND TRADE-OFFS

Figure 2: The CAP trade-offs.

2.2.2.2 PACELC

PACELC [8] can be seen an extended version of the CAP theorem or even a refinement. While CAP ad-

dresses the trade-off between consistency and availability when network partitions arise, PACELEC adds

to that even in the absence of partitions, there exists a trade-off between consistency and latency. In

fact, most geo-replicated services have to provide a minimal degree of performance such as being highly-

responsive to client requests. The degree coordination required between replicas to ensure consistency

may increase the latency of serving these client requests. If we consider for instance systems that guar-

antee strong consistency, the coordination required between replicas could result in latency in the order

of hundreds of milliseconds. On the other hand, weaker consistency guarantees do not require such co-

ordination and allows for lower latency and thus could serve client requests faster. In the next sections,

I touch upon two theorems for such weaker models, namely, CAC and TV, discussing their consistency

guarantees and trade-offs.

2.2.2.3 CAC

Causal consistency [2] is a weaker consistency model than strong consistency but it provides intuitive

semantics for many applications as it guarantees that causal relationships between operations are re-

spected. A formal specification on causal consistency is introduced in Subsection 2.3.1.3. The importance

of causal consistency is that it is the strongest achievable consistency that does not sacrifice availability

under network partitions [3]. This consistency model seems to be the best suited when dealing with the

9

CHAPTER 2. STATE OF THE ART

consistency-availability trade-off. Formally, weaker consistency models can provide high availability dur-

ing network partitions where replicas do not need to coordinate. However, such consistency models are

not useful in practice as replicas can diverge. To address this, Mahajan et al. define convergence as a

property to model this usefulness.

Convergence captures the coordination between replicas and could either be synchronous or asyn-

chronous depending on the required consistency guarantees. For strong guarantees such linearizability,

a stronger version of convergence is needed where replicas must synchronously coordinate and agree on

a total order of operations. For weaker consistency models, such as eventual consistency, a weaker ver-

sion of convergence is needed. In this case, replicas can coordinate asynchronously, and are allowed to

diverge temporarily before converging to the same state when updates stop. This property of convergence

is about replicas reaching the same state. The state must reflect all the updates from all replicas and in

the case of causal consistency respect the causality between about updates. Since the order is a partial

order, replicas may diverge temporarily under the convergence property.

Causal+ consistency. As mentioned earlier, causal consistency guarantees a consistent ordering of

all causally related events, leaving the freedom for concurrent operations to be applied in different orders

on different replicas. Causal+ (or convergent causal) consistency [13] dictates, in addition to causal

consistency, that all replicas eventually and independently reach (converge to) the same state. In fact,

operations or more accurately writes that are not causally related (concurrent) may generate conflicting

results at different replicas without breaking causality. Causal+ strengthens causal consistency with strong

convergence, which dictates that all replicas that have applied the same operations will have equivalent

states.

2.2.2.4 Throughput versus Visibility (TV) latency

Although causal consistency seems like a sweet-spot solution for the availability-consistency trade-off, it

also allows new trade-offs to surface. The one we discuss here is a trade-off between throughput and

visibility [14, 15]. This tradeoff discusses the balance between the granularity of causality metadata

propagation versus the visibility latency of the causal dependencies at the receiver. My thesis tackles this

tradeoff to optimize both throughput and Visibility latency.

Although interesting, causal consistency protocols need to rely on generating and propagating meta-

data to track causal dependencies between updates, and thus guarantee that a causal order is respected

across all replicas. Different techniques and tracking mechanisms were developed to ensure causality

which we discuss in more details in Section 2.4. What these techniques all have in common is propagat-

ing metadata that encodes the causal relations between updates.

Propagating causal meta-data requires more bandwidth and thus has a cost on throughput. On the

other hand without this metadata causality would not be guaranteed. The amount of metadata sent and

its granularity is what we look to fine-tune in this throughput vs visibility trade-off. Fine-grained metadata

10

2.3. CONSISTENCY MODELS

allows to track dependencies among individual objects and each replica may apply the received update as

soon as those dependencies are satisfied. The visibility latency per update is minimized here because only

the dependencies of that objected are considered. However, fine-grained metadata is large that decreases

throughput. On the other hand, tracking dependencies for groups of objects, or coarse-grained metadata,

reduces the size of metadata required and thus improves throughput, but at the cost of increasing the

visibility latency that could result from false dependencies.

2.2.2.5 A final note on Sticky versus non-sticky availability

Sometimes it is necessary to distinguish between sticky versus non-sticky, a.k.a, high availability, when

we talk about consistency models and the trade-offs [16]. The system provides sticky availability when

clients are assumed to stick to the same replica. Non-sticky (high availability) is when a client is permitted

to switch from one replica to another.

To understand why this matter, consider the case of the CAC result. We mentioned that causal con-

sistency is the strongest achievable consistency without sacrificing availability. This statement is correct

for sticky availability [16], but does not hold for high availability. In the system model of CAC, availability

is sticky availability because there was no distinction between clients and server replicas and so a client is

always connected to the same replica. This is common in peer to peer systems, for instance, where the

same replica is at the same time a client and a server. However, in a general case, clients are separate

entities and may switch connections from one system replica to another.

I will differentiate between high-availability and sticky availability when visiting the consistency models

in the following.

2.3 Consistency models

There are many consistency models proposed to guarantee data consistency in a replicated system.

Consistency models are often classified as data-centric or client-centric. In the former, data consistency is

observed at replicas, whereas the latter deals with consistency from a client perspective (often call session

guarantee). Although the focus of this thesis is on data-centric models, I opt to overview the client-centric

model for the sake of completeness and better understanding when I consider consistency while referring

to application semantics. I also try to discuss these consistency models in light of the tradeoffs presented

earlier.

2.3.1 Data-centric consistency models

In this section, I overview four main data-centric models starting with the stronger through the weaker

consistency ones.

11

CHAPTER 2. STATE OF THE ART

P1 •, (G)0 // P1 •, (G)0 //

P2 •, (G)1 // P2 •, (G)1 //

P3 •'(G)0 •'(G)1 // P3 •'(G)1 •'(G)0 //

P4 •'(G)0 •'(G)1 // P4 •'(G)1 •'(G)0 //

Figure 3: Example for linearizibility

2.3.1.1 Linearizability

Linearizability [17] (also called Atomic Consistency, Immediate Consistency, External Consistency or

Strong consistency) is a data-centric consistency model. It has the strongest consistency guarantees.

Linearizability guarantees for single operations on single objects that is consistent with the real time of

the operations. Informally, under linearizability, writes should appear instantaneous and atomic. All reads

that are invoked (in real time) after a certain read or write operation on an object should return that value

or the value of a later write. There are costs with linearizability: availability (both high and sticky) in face

of failures (like network partitions) and performance. The latter can be also seen even in tightly coupled

systems such as multi-processors: for performance reasons, variables across threads in different CPU

cores are not guaranteed linearizability, since it would slow down the CPU [18].

To better understand linearizability, consider the sequence of operations in Figure 3. In the left figure,

%1 first performs a write operation on G with value 0. Later (in real time), Process %2 performs a write

operation and sets the value of G to 1. Both %3 and %4 read value 0 then 1 which is consistent with the

sequence of operations across replicas in real time. We see an example of a linearizable execution. In

the right figure, we see a violation of linearizability even though %3 and %4 observe the same sequence

because the real time order of write operations at %1 and %2 is violated.

2.3.1.2 Sequential Consistency

Sequential consistency is a data-centric consistency model. It is a strong safety guarantee for distributed

systems. It is weaker than Linearizability as it does not respect real time constraints. However, writes are

totally ordered according to logical time across all replicas. Informally, sequential consistency implies that

the result of any execution is the same as if the read and write operations by all processes were executed

in some sequential order and the operations of each individual process appear in this sequence in the

order specified by its program [19]. Sequential consistency is not suitable for availability (neither high nor

sticky) under partitions.

In the left diagram of Figure 4, %1 first performs a write operation on G with value 0. Later (in real

12

2.3. CONSISTENCY MODELS

P1 •, (G)0 // P1 •, (G)0 //

P2 •, (G)1 // P2 •, (G)1 //

P3 •'(G)1 •'(G)0 // P3 •'(G)1 •'(G)0 //

P4 •'(G)1 •'(G)0 // P4 •'(G)0 •'(G)1 //

Figure 4: Example of Sequential Consistency

time), Process %2 performs a write operation and sets the value of G to 1. Both %3 and %4 read value 1

then 0. Write operation of process %2 appears to have taken place before that of %1. We see an example

of a sequentially consistent execution. In the right diagram of Figure 4 we see a violation of sequential

consistency as not all processes see the same interleaving of write operations. At %3 it seems that G had

value 1 then later a while at %4, G reads 0 and later 1.

2.3.1.3 Causal consistency

The Causal Consistency model is the core consistency model targeted in my thesis. Causal consistency

[20] is a data-centric consistency model. It ensures that causally-related operations to appear in the same

order on all processes but does not guarantee any specific order for causally-independent (concurrent)

operations. Causal consistency is a very interesting consistency model in the consistency spectrum.

On one hand it is the strongest consistency that can be achieved without compromising availability [3,

21] under partitions, while still performing better than other consistency models such as linearizability or

sequential consistency. On the other hand it seems that capturing causal relationships (cause and effects)

is an important as it reflects physical reality and the way we experience it: we always see the effects after

their causes.

It is important to note that when talking about causality here, potential causality is what is often referred

to. The reason is that it is not always known if a certain operation was the real cause of another or if it just

happened-before it. Causal consistency is sticky available: if a network partition occurs, every node can

make progress, so long as clients never change which server they talk to. We discuss capturing causality

in more details in the following section.

In the left diagram of Figure 5,, 2(G)1 potentially depending on, 1(G)0 because 1 may result from
a computation involving the value read by '2(G)0. The two writes are causally related, so all processes
must see them in the same order. However we see a different order at %3 and %4. This figure shows

a violation of causal consistency. In the right diagram of Figure 5, we see a correct execution of causal

consistency. On %2 the read ('2(G)0) is not there before the write, so,1(G)0 and,2(G)1 are now

13

CHAPTER 2. STATE OF THE ART

P1 •,1 (G)0 // P1 •,1 (G)0 //

P2 •'2 (G)0 •,2 (G)1 // P2 •,2 (G)1 //

P3 •'3 (G)1 •'3 (G)0 // P3 •'3 (G)1 •'3 (G)0 //

P4 •'4 (G)0 •'4 (G)1 // P4 •'4 (G)0 •'4 (G)1 //

Figure 5: Example of Causal consistency

concurrent writes. A causally-consistent store does not require concurrent writes to be globally ordered

and there for causal order has not been violated.

2.3.1.4 Eventual Consistency

Eventual Consistency [22] is a data-centric consistency model. It is what most databases offer as the

weakest consistency level. It states that if writes to the database stop, eventually (i.e., after some unspec-

ified time) the replicated state will be consistent, returning the same value to every process. Implicitly,

there is the assumption that data aims to be stored, ruling out vacuous implementations which returned

the same value forever. This consistency model can be thought simply as convergence guarantee, without

any time guarantee.

2.3.2 Client-centric consistency models

In this section, I shed light on three well-known client-centric consistency models that provide application

session guarantees: Monotonic Reads, Monotonic Writes, and Read Your Writes.

2.3.2.1 Monotonic Reads

Monotonic reads is a client-centric consistency model also called session guarantees. It ensures that if a

process reads the value of a data item G , any successive read operation on G by that process will always

return that same value or a more recent one. Monotonic reads only applies to reads invoked by the same

process and does not apply to operations performed by different processes. Monotonic reads can be

totally available: even during a network partition, all nodes can make progress.

We see in Figure 6 an example of a process % with two different local copies !1 and !2. The read

operations ('(G1),'(G2)) are carried out by the same process % . The,((G8) operations are a set

of write operations on G and not necessarily by % only that return G8. Process % first performs a read

operation on G at !1, returning the value of G1 (at that time). This value results from the write operations in

,((G1) performed at !1. Later, % performs a read operation on G at !2, shown as '(G2). To guarantee

14

2.3. CONSISTENCY MODELS

L1 •,((G1) // •'(G1) // L1 •,((G1) // •'(G1) //

L2 •,((G1;G2) •'(G2) // L2 •,((G2) •'(G2) //

Figure 6: Example of Monotonic Reads

L1 •, (G1) // L1 •, (G1) //

L2 •,((G1) •, (G2) // L2 •, (G2) //

Figure 7: Example of Monotonic Writes

monotonic-read consistency, all operations in,((G1) should have been propagated to !2 before the

second read operation takes place. In the left diagram, we see that,((G1;G2) took place meaning all
operation that happened at !1 before '(G1) have been propagated at !2 before '(G2) and therefore the
reads are monotonic. In the right diagram„ no guarantees are given that the set,((G2) also contains
all operations contained in,((G1). Thus, monotonic-reads consistency is not guaranteed.

2.3.2.2 Monotonic Writes

Monotonic writes is a client-centric consistency model also called session guarantees. It ensures that if

a process performs two write operations F1, then F2 on an item G , then all processes will observe F1

before F2. Monotonic writes only applies to writes invoked by the same process and does not apply to

operations performed by different processes. Monotonic writes can be totally available: even during a

network partition, all nodes can make progress.

We see herein Figure 7 an example of a process % with two different local copies !1 and !2. The

write operations performed by a single process % at two different local copies of the same data store.

Process % performs a write operation on G at local copy !1, presented as the operation, (G1). Later, %
performs another write operation on G , but this time at !2, shown as, (G2). To ensure monotonic-write
consistency, the previous write operation at !1 must have been propagated to !2. In the left diagram, op-

eration, (G1) at !2 takes place before, (G2) and therefore writes are monotonic. In the right diagram,
monotonic-write consistency is not guaranteed as the propagation of, (G1) to copy !2 is missing.

2.3.2.3 Read Your Writes

Read your writes, also known as read my writes, is a client-centric consistency model also called session

guarantees. It requires that if the effect of a write operation by a process on data item G will always be

seen by a successive read operation on G by the same process. Note that read your writes does not apply

to operations performed by different processes. There is no guarantee, for instance, that if a process %

15

CHAPTER 2. STATE OF THE ART

L1 •, (G1) // L1 •, (G1) //

L2 •,((G1;G2) •'(G2) // L2 •,((G2) •'(G2) //

Figure 8: Example of Read Your Writes

writes a value successfully, that a process & will subsequently observe that write. Read your writes is

sticky available: if a network partition occurs, every node can make progress, so long as clients never

change which server they talk to.

In Figure 8, Process % performed a write operation, (G1) and later a read operation at a different
local copy. Read-your-writes consistency guarantees that the effects of the write operation can be seen

by the succeeding read operation. In the left diagram, this is expressed by,((G1;G2), which states

that, (G1) is part of,((G2). However, in the right diagram,, (G1) has been left out of,((G2),
meaning that the effects of the previous write operation by process % have not been propagated to !2.

2.4 Causality tracking and broadcast

Being at the core of this thesis, causality tracking techniques and broadcast are reviewed in this section.

I address broadcast/multicast algorithms that are used to guarantee casual delivery. I also list key com-

paction techniques that were used to reduce the metadata needed for guaranteeing causality. Prior to that,

I start by introducing key abstractions for causality tracking techniques. In particular, I start with physical

clocks, explaining why we cannot rely on them in geo-replicated systems. Then, I introduce the notion

of logical clocks and causality tracking that was introduced by Lamport [23], establishing the foundation

for the subsequent mechanisms and theory [23–28]. I conclude this section with a small discussion on

single-object and multi-object logical clocks.

2.4.1 Causality tracking primitives

2.4.1.1 Physical Clocks

The ability of timestamping events is crucial in a system to makes sense of the ordering of events. In

most applications, some constraints on the order of events must be respected, and thus being able to

timestamp those events is important in order to maintain these constraints. A simple way to address

this is to rely on physical clocks as they are already present in computing machines and can be used to

provide timestamps systems events. When we have a single machine, creating a timeline of events is easy

to achieve, even with multiple processes or threads. The reason for this is the fact that all these events

will be timestamped by the same physical clock providing a single source and a global view of time.

16

2.4. CAUSALITY TRACKING AND BROADCAST

P1 •01 •

##

02 //

P2 •11 •12 //

Figure 9: Diagram showing a distributed execution using Lamport’s Happens-before

However, in the case of a distributed system, we cannot rely on physical clocks as a solution. This

is because different machines have different physical clocks that are prone to diverge, and consequently

there will be no guarantees that the timestamps provided by these clocks will give a correct ordering and

consistent data versions at all replicas. In other terms, there is no global clock to provide a global view

of time anymore. To mitigate the skew between these clocks it is required that these clocks periodically

use some synchronization mechanism such as NTP, Coordinated Universal Time UTC, etc. However,

this synchronization does not guarantee perfect synchronization as the quality depends on factors such

as network load, or the NTP server could be offline, etc. Another issue is that even perfect physical

timestamps would provide a total order of events and thus would not capture concurrency between events

which could be needed for some applications. Some systems like Cassandra [29] workaround this by

tagging each version of an object with a physical timestamp and use a last-writer-wins (LWW) policy as a

tie-breaker when clocks are equal.

2.4.1.2 Happens-Before relation

Lamport introduced the happens-before relation to capture time between events logically, without the

reliance on physical clocks. The happens-before relation characterizes the notion of causality or more

accurately potential causality. It translates to the ability or possibility of one event to have influenced

another event in its future. Formally, the happens-before relation can be described as follows. Given two

events 4 and 40, we say that 4 happens-before 40 denoted by 4 ! 40 if one of the following conditions

holds true:

• 4 and 40 are two events on the same process ?8 where 4 occurs before 40;

• 4 is the send event of a message< from process ?8 and 40 the receive event of< by process ? 9 ;

• There exists and event 400 such that 4 ! 400 and 400 ! 40.

Not all events are causally related by the happens-before relation. Such events are called concurrent

events and are denoted by 4 k 40 which is equivalent to 4 9 40 and 40 9 4.

In Figure 9, we see two processes %1 and %2. We notice that 01 ! 02 and 11 ! 12 since 01

occurred before 02 on %1 and 11 before 12 on %2. This is captured by the first condition. Also 02! 12

as 02 is the send event of a message from %1 and 12 its relative receive event on %2 captured by the

second condition. Finally, 01 ! 12 captured by the transitivity in condition 3. Events 01 and 11 are

concurrent or 01 k 11.

17

CHAPTER 2. STATE OF THE ART

P1 •01((⇠1=1) •
)(<=2

##

02((⇠1=2) //

P2 •11((⇠2=1) •
12((⇠2=3)

//

Figure 10: Diagram showing a distributed execution using Lamport clocks

2.4.1.3 Lamport Clocks

Lamport clocks [27] are scalar logical clocks that increase monotonically and used to enforce causal or-

dering. Each process ?8 maintains a scalar clock (⇠8 which is basically a non-negative monotonically

increasing integer counter that starts with (⇠8 := 0. The algorithm used to maintain this clocks is pre-

sented as follows. Considering an event 4 at ?8 and (⇠8 set to 0:

• If event 4 is an internal event (excluding send and receive events), increment the value of (⇠8 by

1, (⇠8 := (⇠8 + 1;

• If event 4 is a send event, increment the value of (⇠8 by 1, (⇠8 := (⇠8 + 1 and send the new

)(< := (⇠8 along with the message<;

• If event 4 is a receive event of message< with)(<, set (⇠8 :=<0G ((⇠8,)(<) + 1.

As scalar clocks are integers, the order on timestamps is the total order relation (<) among integers.

For each process ?8 , if event 4 occurs before event 40 then we have)(4 <)(04 because the value of (⇠8
is strictly increasing. If 4 was the send event of message< and 40 the receive event of the corresponding

message, then also we have)(4 <)(04 because based on the third rule)(04 is greater than)(4 at

least by 1. Finally, knowing that < is transitive we get that if 4 ! 40 then)(4 <)(04 . However, the

converse is not true, i.e.,)(4 <)(04 does not necessarily mean that 4 ! 40. The problem here is that

the happens-before relation is a partial order while the scalar timestamps are totally ordered. This does

not allow the distinction of concurrent events.

In Figure 10, we see two processes %1 and %2. We notice that at %1, 01 ! 02 and therefore

)(01 = 1 < 2 =)(02. Similar observations at %2 where11! 12 and therefore)(11 = 1 < 3 =)(12.

Also 02 ! 12 and therefore)(02 = 2 < 3 = <0G (1, 2) + 1 =)(12. However, even though

)(11 = 1 < 2 =)(02 it does not mean that 11! 02 because in fact 11 k 02.

2.4.1.4 Causal Histories

Causal Histories [28] are a simple intuitive way to capture causality. Every event has a unique identifier,

and the causal history of an event the set of identifiers of events in its causal past. Every process in the

system assign a unique identifier for every event, e.g. process/node name and a local increasing counter.

Locally, a process % assigns for a new event the identifier ?8 + 1 where 8 was the last value of the local

18

2.4. CAUSALITY TRACKING AND BROADCAST

P1 •{a1} •

##

{01,a2} //

P2 •{b1} •{01,02,11,b2}

Figure 11: Diagram showing a distributed execution using Causal Histories

increasing counter (starting from 0 initially). When a process % sends a message, a new id is assigned

for the send event and the causal history at % until that message is sent along with it. Upon receiving the

message at process & , a new id is assigned for the receive event and the causal history at & is merged

with the casual history in the message. The crucial point is that identifiers have to be globally unique to

correctly represent causality. The partial order of causality can be precisely tracked by comparing these

sets under set inclusion. In this case, an event 4 happens-before 40 (4 ! 40) is equivalent to the Causal

History of 4 being included in the Causal History of 40 (�4 � 04). In the same logic, 4 k 40 if and only

if �4 � 04 and �
0
4 �4 . Marking the last local event added to the history (marked in bold) allows for

a simpler test: 40(4 ! 40) if and only if 4 2 � 04 . Causal Histories correctly track causality relations, but
have a major drawback: they grow linearly with the number of writes.

In Figure 11, we see two processes %1 and %2. We notice that the second event at %1 is assigned the

id 02 and has as causal history 01,a2. The causal history 01,a2 is sent with message to be received

at %2. On receiving, %2 assigns the id 12 with causal history 01,02,11, b2 = 01,02 [11 [12. We can
clearly notice that 01! 12 since 01 2 01,02,11,12 = �12.

2.4.1.5 Vector Clocks

While causal histories can capture causality, they have a drawback: their size grows linearly with the

number of events and therefore are not very compact. Vector Clocks [30, 31] address this problem by

offering a more compact representation of causal histories. As we observed earlier, if a causal history H

includes an event 4 occurring at process ? then it also includes all events occurring at ? and that precede

4. Thus it suffices to store the latest event from every process and consequently reduce the size of these

causal histories to the number of processes.

For instance, the causal history � = 01,02,11,12 can be represented as 0 ! 2,1 ! 2 or simply

the vector [2, 2]. In causal histories, 4 ! 40 iff �4 � 04 , which informally means that every event in

�4 is also in � 04 and there is at least one event in �
0
4 which is not in �4 . In terms of vector clocks, this

translates to checking if every entry+⇠4 [8] +⇠04 [8] and there exists at least one entry 9 < 8 for which
+⇠4 [8] < +⇠04 [8],or more compactly: 4 ! 40 iff +⇠4 < +⇠04 .

Furthermore, Lamport clocks or scalar clocks that 4 ! 40 means)(4 <)(04 but the converse is

not true. This does not allow us to capture concurrency because timestamps are totally ordered. Vector

Clocks do not face this problem as the order is a partial order and we can distinguish causally related

events from concurrent ones. And by that we get the following:

19

CHAPTER 2. STATE OF THE ART

P1 •01[1,0] •

##

02[2,0] //

P2 •11[0,1] •
12[2,2]

//

Figure 12: Diagram showing a distributed execution using vector clocks

• +⇠4 < +⇠04 iff 4 ! 40

• 4 k 40 iff +⇠4 ⇥ +⇠40 ^+⇠40 ⇥ +⇠4

The Vector clock mechanism works as follows. Each process ?8 maintains a local vector clock +⇠8 ,

a vector of = scalars, where each entry is initially set to +⇠8 [:] := 0. Considering an event 4 at ?8 :

• If event 4 is an internal event (excluding send and receive events), increment the value of +⇠8 [8]
by 1, +⇠8 [8] := +⇠8 [8] + 1;

• If event 4 is a send event, increment the value of +⇠8 [8] by 1, +⇠8 [8] := +⇠8 [8] + 1 and send

the new)(< := +⇠8 along with the message<;

• If event 4 is a receive event of message< with)(<, set every entry in+⇠8 to pair-wise maximum

of +⇠8 and)(< as in +⇠8 := <0G (+⇠8 [:],)(< [:]),8: |1 < : < =, and then increment the

local entry by one +⇠8 [8] := +⇠8 [8] + 1.

In Figure 12, we see two processes %1 and %2. We notice that at %1, 01 ! 02 and also)(01 =

[1, 0] < [2, 0] =)(02. Similar observations at %2 where 11! 12 and also)(11 = [0, 1] < [2, 2] =
)(12. Also 02 ! 12 and also)(02 = [2, 0] < [2, 2] =)(12. Now when we try to compare 11 and

02, we notice that)(11)(02 and)(02)(11 which means that 11 k 02.

2.4.1.6 Version Vectors

Parker et al. [26] introduced versions vectors as a causality tracking mechanism that share the same

structure as vector clocks, whereas the update differs. The reason is that the main purpose of using

version vectors is to detect inconsistencies among replicas. Basically each replica has a version vector

that tracks the last updates known from other replicas as well as from itself. Version Vectors do not need

to keep track of every event in the distributed computation, but exclusively updates that alter the replica

state. Two main operations are relevant in this case, the update of replicas state and the synchronization

between two replicas leading to a convergent state. Therefore the mechanism of maintaining version

vectors is different than the ones of vector clocks. Considering a system of n replicas, version vectors are

updates as follows:

• When a replica A8 is updated, it increments the local entry of its++8 [8] by 1,++8 [8] := ++8 [8] +1;

20

2.4. CAUSALITY TRACKING AND BROADCAST

R1 •01[1,0,0] �

��

[1,0,0] //

R2 •11[0,1,0] •
12[1,2,0] �

��

[1,2,0] //

R3 �[0,0,0] �[0,0,0] �[1,2,0]
//

Figure 13: Diagram showing a distributed execution using version vectors

• When replica A8 synchronizes with a replica A 9 , both versions vectors are updated such as ++8 =

++9 :=<0G (++8 [:],++9 [:]),8: |1 < : < =

In Figure 13, we see three replicas '1, '2 and '3. The • represents replica updates that we want to

causally track whereas � is used to denote events that are not considered for causality tracking as they

do not alter the state of a replica. Replica '1 suffers an update 01 and concurrently to that '2 suffers

another update 11. When a message with the update 01 from '1 reaches '2, two concurrent updates

are detected. A new update 12 merging the two updates 01 and 11 is created at '2 leading to a new

state. When the state of '2 is propagated to '3, no concurrent updates are detected and therefore no

new version is created and ++'2 = ++'3 = [1, 2, 0].

2.4.1.7 Matrix Clocks

Matrix clocks are also a type of logical clocks that give the local node a global view of what every node

in the system knows about other nodes. They are seen as extensions of vector clocks, a vector of vector

clocks. When a message< from process 8 is timestamped with a vector clock, it provides information on

how many messages where seen by 8 from every node prior to send message<. When the same happens

using a Matrix clock as a timestamp, the information encoded provides the knowledge that process 8 has

of what every node : has seen from others until the message< was sent. Formally, time is represented

by =⇥= matrices of non-negative integers, where = is the number of nodes or processes in the distributed
computation. A process ?8 maintains"⇠8

� 011 .. 01=
..
0=1 .. 0==

�

• "⇠8 [8, 8] denotes the local logical clock of ?8 and tracks the progress of the computation at process
?8

• "⇠8 [8, 9] denotes the latest knowledge that process ?8 has about the local logical clock,"⇠9 [9, 9],
of process ? 9

• "⇠8 [9,:] represents the knowledge that process ?8 has about the latest knowledge that ? 9 has
about the local logical clock,"⇠: [:,:], of ?:

• The entire matrix "⇠8 denotes ?8 ’s local view of the global logical time.

21

CHAPTER 2. STATE OF THE ART

To update ts clocks, process ?8 uses the following rules:

• If event 4 is an internal event (excluding send and receive events), increment the value of"⇠8 [8, 8]
by 1,"⇠8 [8, 8] := "⇠8 [8, 8] + 1;

• If event 4 is a send event from ?8 to ? 9 , increment the values of "⇠8 [8, 8] and "⇠8 [8, 9] by 1,
"⇠8 [8, 8] := "⇠8 [8, 8] + 1 and"⇠8 [8, 9] := "⇠8 [8, 9] + 1 and send the new)(< := "⇠8 along

with the message<;

• If event 4 is a receive event of message< from ? 9 on ?8 with)(<, update"⇠8 as follows: 8:, ; |1
:, ; =,"⇠8 [8,:] := K�t("⇠8 [8,:],)(< [9,:]) and"⇠8 [:, ;] := K�t("⇠8 [:, ;],)(< [:, ;])
and finally "⇠8 [8, 8] := "⇠8 [8, 8] + 1.

2.4.2 Causal Broadcast

Causal broadcast is a main group communication delivery technique used in causality middlewares. It

makes use of the aforementioned causality primitives to provide a causal ordering of events between

a group of processes, following some algorithms. The point of a causal broadcast [24] algorithm is to

provide rules on how to use timing primitives, mainly logical clocks, to correctly order events, following the

happens-before relation, also known as potential causality, among processes in a group communication

environment.

In group communication, we consider a number of processes forming a group, where these processes

communicate with each other through the sending and receiving of messages. A group could be a closed,

where a process should be part of the group to be able to send a message to the group, or an open where

this constraint does not need to be satisfied. Another thing to consider in a group is if the group is static,

where the membership of that group is fixed, or if it is dynamic, where new processes can join and existing

ones can leave.

In this section, I will consider closed, static groups for simplicity, and to be able to focus on the causal

ordering aspect of the communication. To focus on the ordering, I also assume that the communication

is reliable, meaning:

• No message is delivered more than once

• No message is delivered unless it was broadcast

• If ?8 and ? 9 are correct, then every message broadcast by ?8 is eventually delivered by ? 9

• If one correct process delivers a message<, every correct process eventually delivers<

Remark. Message delivery is different from message receiving. We use the term receive to note that

a message is received at a certain process via the communication layer, while delivering a message is

22

2.4. CAUSALITY TRACKING AND BROADCAST

meant to describe that an already received message can be delivered to the application layer to be used

or executed. This differentiation is important when discussing the ordering of events.

2.4.2.1 Causal ordering specifications

In a broadcast event, a process ?8 sends a message < to all other processes in the system. An event

4 = 120BC (<) causally comes ahead another event 4 = 120BC (<0) if at least one of following condition
is true:

• 4 and 40 have been produced by the same process ?8 and 120BC (<) happens before 120BC (<0)

• 4 and 40 have been produced by different processes ?8 and ? 9 respectively and the delivery of

message< precedes 40 at ? 9

• 9<00|120BC (<) ! 120BC (<00) ^ 120BC (<00) ! 120BC (<0)

The safety guarantee states that: Given two broadcast messages< and<0 such that 120BC (<) !
120BC (<0) then each process have to deliver< before<0 (34;8E4A (<) ! 34;8E4A (<0)). The liveness
guarantee states that: eventually every message will be delivered. Consequently, if 2 messages< and

<0 are such that 120BC (<) k 120BC (<0) then< and<0 can be delivered in different order on the other

processes.

2.4.2.2 Causal Broadcast (CBCAST) algorithm

Algorithm 1 presents an example of a causal broadcast (CBCAST) implementation. The algorithm assumes

the following:

• Each process step takes a finite time to occur

• Message transfer delays are unpredictable but finite

• Communication channels are reliable

• Computation is failure free

23

CHAPTER 2. STATE OF THE ART

P1 •

⇢⇢

��

0[1,0,0] ·[1,1,0] ·[1,1,1] ⌦))·[1,2,1] ·[1,2,2] //

P2 ·[1,0,0] •

DD

⇢⇢

1 [1,1,0] ·[1,1,1] •

55

⇢⇢

3 [1,2,1] ·[1,2,2] //

P3 ·[1,0,0] •

DD

;;

2 [1,0,1] ·[1,1,1] ·[1,2,1] •

II

CC

4 [1,2,2]
//

Figure 14: Diagram showing a distributed execution using the CBCAST algorithm

�G:P_Ah>J R, CBCAST algorithm using Vector clocks on process 8 2 I
R state:

k +⇠8 : I õ! N, local vector clock

j proc BMBi8 ()
9 +⇠8 := { 9 7! 0| 9 2 I}
8 proc +#+�bi8 (<)
e +⇠8 [8] := +⇠8 [8] + 1

d for 9 2 I, 9 < 8 do
3 B4=3 9

8 (<,+⇠8)
N on `2+2Bp298 (<,)(<)

Ry if)(< [9] = +⇠8 [9] + 1 ^ 8: < 9,)(< [:] +⇠8 [:]
RR +⇠8 [9] := +⇠8 [9] + 1

Rk /2HBp2`(<)
Rj else

R9 2M[m2m2(<,)(<)

I explain the CBCAST algorithm through presenting the following example execution:

In the example of Figure 14, we notice three processes %1, %2 and %3 participating in a distributed

computation and using the CBCAST algorithm to causally order events. First, %1 broadcasts a with

+⇠%1 = [1, 0, 0], and we noticed that it was delivered upon being received at %2 and %3 as it satisfies the
condition in algorithm 1 line 10. Events 1 and 2 are concurrent and that is reflected in their timestamps

([1, 1, 0] k [1, 0, 1]) and therefore they can be delivered in different order without breaking causality. 3
with timestamp [1, 2, 1] is causally in the future of events 0, 1 and 2. It was delivered by %3 and then

the event 4 with timestamp [1, 2, 2] is broadcast to %1 and %2. Clearly 3 ! 4 as [1, 2, 1] [1, 2, 2]
and therefore 3 must be delivered before 4 on all processes. However, because some message delay,

4 is received on %1 before 3 . When 4 is received on %1 it cannot be delivered as it breaks the causality

conditions in algorithm 1 line 10. We notice the ⌦ symbol to denote not delivering 4 and delaying its

delivery until after delivering message 3 .

24

2.4. CAUSALITY TRACKING AND BROADCAST

2.4.3 Scalability solutions for Causal Multicast

Causal multicast provides an advantageous basis for scalable communication. However, a single com-

munication round uses messages that should carry some kind of causal history and the amount of such

information depends on the system size. As a result, in order to multicast messages to as many servers

as possible, some mechanisms should be devised to reduce the overall size of that causal history. Here

I discuss some scalability solutions for causal multicast, and present the advantages and drawbacks of

each of them.

2.4.3.1 First generation

The first generation of causal multicast protocols used to record causal dependencies among events in

way similar to Lamport clocks [23]. However, instead of adding a logical clock value to the new messages

being transmitted, those protocols preferred to re-transmiting the causally precedent messages. This

means that when sending a new message, the sender also sends previously received messages as the

causal history. When receiving the message, the receiver process checks the causal history of the new

message, and proceeds to deliver each of these messages if it has not delivered it yet, and in the same

order they were sent. Once all those are delivered, the new message can be delivered.

Causal order is trivially ensured in first generation protocols since the messages included in the causal

dependencies of a new multicast message are ordered appropriately on send, and delivered in the same

order if needed on receive. Another advantage in this group of protocols is the non-blocking behaviour

on delivery. As all messages on which the new multicast messages are sent, the receiver doesn’t need

to wait for other messages to deliver the current one. Blocking and waiting for dependencies to arrive is

not needed here. However, preserving causal order and benefiting from the non-blocking behaviour that

results from the inclusion of precedent messages comes at a price: the size of meta data for each message

could be very large when the message sending rate and number of processes in the group increase. This

major drawback affects scalability and explains the reason why this approach is abandoned for other

approaches that we visit next.

The first causal multicast protocol was introduced by the CBCAST protocol [24] by Birman and Joseph

in 1987. (The implementation is however different from the one described in Algorithm 1.) Birman’s

implementation had the advantages and drawbacks we discussed above. Some subsequent designs built

on top of CBCAST were later introduced with a few modifications. Instead of sending the entire message

for the causal predecessors in the causal dependencies, these protocols included only logical identifiers

of the precedent messages. Psync’s conversations [32] introduced a first solution of this kind in 1989.

A similar solution was developed by Ladin et al. [33], called lazy replication in 1992. Obviously,

the size of meta data consisting of the logical identifiers of causal predecessors is reduced compared to

sending the entirety of messages (including their contents). This definitely addresses the drawback of the

first generation protocols, but on the other hand leads to the loss of the non-blocking feature. At delivery,

if one of the predecessors was not already delivered at the receiving process, the new multicast message

25

CHAPTER 2. STATE OF THE ART

cannot be delivered and therefore delivery must be blocked temporarily until all predecessors have been

delivered. These new identifier-based blocking solutions were generalised with the introduction of vector

clocks that we address next.

2.4.3.2 Second generation exploiting vector clocks

The second wave of causal multicast protocols targeted the bandwidth utilization issue of causal histories

through using vector clocks in different ways. In 1991, Birman et al. [24] developed the first vector-clock-

based protocols which turned out to be efficient and more scalable than the previous generations ones

(Schiper et al. [34] and Raynal et al. [35] presented similar approaches for point-to-point communication).

This kind of causal multicast protocol is the most adopted in GCSs (group communication systems) such

as Isis [24], Transis [36], Spread [37], JGroups [38], etc.

As presented in subsection 2.4.1.5, the use of vector clocks makes it easier to track causal depen-

dencies among multicast messages without the need to include the causally precedent messages in each

multicast. This reduces the metadata needed to track causality and provides a more compact size that

improves scalability.

Nevertheless, the use of vector clocks in these protocols comes at a price: since the contents of the

causal dependencies are not sent along, the non-blocking benefits of the first generation protocols are

lost. For instance, when a message is dropped or when the propagation delays lead to the reception of a

message<2 before the reception of one of its causal predecessors<1 at process ?, the process ? has

to delay the delivery of <2 until <1 (and every other missing predecessors of <2) is re-sent, received

and delivered. Another drawback is that, even though the size has been reduced, a vector clock’s size

increases linearly with the number of processes, and logarithmically with the values held in each entry. As

multicast services are usually run for a long time, vector clocks will hold long integers. Moreover, when the

number of processes is large, the number of entries becomes large. In a system of = processes, where

each vector entry has 1 bits of size, the size of a vector clock will be of (= ⇥ 1/8) bytes. If we consider a
large system of 200 processes and 32-bit entries, there is an 800 bytes of meta data per message. This

is a non-negligible communication overhead for a scalable service. However, replicated services using

vector clocks rarely consist of such a large number of replicas or when needed they could use sharding

[39] to partition the data among a small subset of processes so replication factor stays relatively small.

Bounded Version Vectors. Bounded Version Vectors was proposed by Almeida et al. [40] in 2004

as a mechanism to bound the size of vector entries in version vectors in point-to-point communication.

The mechanism combines the transmission of version vectors as well as some historical meta data that

will be used, at each node, to prune the history maintained in every version vector component. Due to

this, the values of version vector entries can be bounded and re-used (for a system of # nodes, the upper

bound can be set to # 2).

Dynamic membership. Another challenge in vector clocks is when considering dynamic member-

ships. When new processes join or existing ones leave, this leading to a change in system’s membership,

26

2.4. CAUSALITY TRACKING AND BROADCAST

and thus vector clocks need to be adjusted to reflect the changes. This adjustment of vector clocks is

usually hard to do without blocking the communication temporarily, which affects the availability of the sys-

tems especially when membership changes occur frequently. To the contrary, temporary re-initialization of

clocks could have some positive consequences by limiting the unbounded growth of vector clocks though

bounding the size of the entries. Therefore, vector clocks should be readjusted for dynamic memberships.

In 2008, Almeida et al. proposed and elegant solution [41] called ITCs (Interval Tree Clocks). ITCs allow

the reconfiguration of clocks using local information in dynamic systems.

With this, I introduce in next section the compaction approach which present similar compaction

approaches of vector clocks.

2.4.3.3 Vector compaction approach

The vector compaction approach aims to improve system’s scalability by minimize the size of vector

clocks. The main idea here is to compact the vector size by reducing the amount of information sent

to only the necessary and sufficient information needed. This is done by sending only the entries that

have changed since the last sent message. I will discuss two different mechanisms: the general causal

communication approach (using point-to-point communication) described in [42], and a more specific but

simpler approach for multicast-based approach described in [24].

The general approach [42] is often used in point-to-point communication. Every process ? main-

tains, along with its local vector clock +⇠? , two additional vector clocks, !*? and !(? . !*? is the last

update vector clock such that !*? [@] holds the value of+⇠? [?] when ? last updated its entry+⇠? [@].
!(? is the last sent vector clock such that !(? [@] holds the value of +⇠? [?] when ? sent its last mes-

sage to @. When ? decides to send a message to @ it only needs to propagate the sequence of pairs

hA ,+⇠? [A]i that have been updated since the last message and such that !(? [@] < !*? [A], A < @.
For the multicast-based approach [24], the optimization is more trivial. As every process will

receive every message, a process ? will not need to maintain the !(? vector clock since all its entries

will have the value +⇠? [?] � 1. As for the last update vector clock, an !*? [@] entry will hold the value
+⇠? [?] when the last message from @ was delivered at ?. Note that, instead of maintaining such !*? ,

? only needs to keep the value of its+⇠? when it multicast its last message which we call !"? , and only

propagate the entries where !"? [A] < +⇠? [A] for A < ?.
This multicast-based compaction technique is mostly advantageous when not all members have the

same sending rate and most of them are passive and hardly send any messages. This would allow the

active processes that are sending messages to compact their vector clocks a lot compared to the original

full size of the vector clocks. Consider a group membership of = processes, where 1 is the number of bits

needed to hold a sequence number (the value of a vector clock entry), < is the number of bits needed

for a process identifier and : is the number of entries needed to be propagated at every multicast. This

compaction technique would be considered useful when : < = ⇥ 1 is satisfied. <+1
=⇥1 is the full size of a

non-compacted vector clock, and<+1 is the size of a single compacted entry that needs to be propagated.

27

CHAPTER 2. STATE OF THE ART

Chandra et al. have proven in [43] that the above expression holds in most systems. Moreover,

the performance analysis in [43] (where only systems with less than 100 processes are considered)

shows that this technique does not only improve scalability but also saves on bandwidth even for systems

with a not so large membership. The price to pay for this technique is that it requires maintaining an

additional copy of the vector clock. Nevertheless, the price is minimal and negligible knowing that the

same amount of memory is needed when appending the whole vector clock to the message in the non-

compaction approach. In addition to that, the computing overhead for managing the compacted vector

clocks depends on the sending rate of processes in the group and is not considered a big cost compared

to the benefits, especially in the multicast-based approach.

Other related works. As already mentioned, the first solution was presented by Birman et al. [24]

and Stephenson [44]. More solutions have built upon of this early one. Inspired by [24], Singhal and

Khemkalyani proposed a more general solution in[42]. It was later refined and formalized by Prakash et

al [45] and Kshemkalyani and Singhal [46]. Chandra et al. [43] evaluated the the degree of compaction

of these solutions showing that in an optimal scenario the size of a vector clock can be reduced to 8%

of its original size. Pomares Hernandez et al. [47] proposed the propagation of the compacted infor-

mation through light control messages (LCMs) which showed to improve scalability in their performance

evaluation. Finally, Mostefaoui and Raynal [48] used the particular case of multiple groups with mutual

processes to propose another solution. It is a cheaper solution than the one in [24, 44], but sometimes

requires synchronization messages. This method is seen as the precursor of the interconnection approach

that we present next.

2.4.3.4 Scaling out approaches

The interconnection approach [49, 50] proposes an interesting solution to scale causal mutlicast-based

systems. In such scenario, there exist multiple subgroups where each have an internal causal multicast

protocol. The different subgroups do not have to use the same internal causal multicast service. At least

one process in each subgroup is also an interconnection server (IS). Every IS runs an interconnection pro-

tocol that allows the different IS of the existing subgroups to deliver the messages delivered in the internal

subgroups. Informally, an IS ensures that the messages multicast in its local subgroup are delivered in all

other subgroups and analogously, all the messages multicast in remote subgroups are delivered in their

local subgroups.

The fact that a process of a subgroup is an IS is transparent to the subgroup, and does not interfere with

the internal multicast. Causal separators [51] isolate each subgroup as a different causal zone and provide

the basis to implement such protocols. Rodrigues and Verissimo [52] proved that forwarding causal

history to other subgroups is not needed. In fact, it only suffices that the interconnection protocol uses an

independent causal multicast protocol between the interconnection servers [53], or a FIFO transmission

of messages [54], when the interconnected servers are paired. This would guarantee a causal order when

only two processes are involved.

28

2.5. WEAKLY-CONSISTENT DATA STORES

As every subgroup in this approach could be considered as its own causal zone, the scope of causal

history needed to be propagated is limited to the subgroup itself. This allows keeping the causal history

smaller and relative to the size of the subgroup instead of depending on the overall size of the system

and therefore improves the scalability of causal multicast systems using this approach. In a generic

scenario where only a single causal multicast protocol is used among all processes, every message is

multicast to all other processes through point-to-point communication. Using the knowledge of the topology

of the underlying network, the interconnection approach reduced the number of packets needed to be

sent as the interconnection protocol requires only a single message to be communicated to other IS

for every multicast. Therefore the interconnection approach improves the performance by reducing the

communication overhead of the system. Finally, this approach helps with dynamic memberships. As every

subgroup has its internal causal multicast protocol, it is not affected with the global system membership.

This becomes increasingly important in environment with high churn [55], where the interconnection

approach can ensure a good level of scalability.

On the negative side, as an interconnection server requires a short forwarding step, some authors

(e.g., [47]) argue that this could introduce a delay that might not be affordable by all kinds of applications.

For instance, media stream applications might require specific, more flexible causal multicast protocols

that can tolerate message losses in order to meet real-time constraints [56–58]. Although not specific to

interconnected subgroups, the convoy phenomenon which could arise in any kind of overlapping groups,

can introduce delays that generate a bursty propagation behaviour. This was reported by Kalantar and

Birman in [59]. When message propagation between IS due to temporary message loss or some delay in

causal delivery, some subsequent messages get blocked. Therefore, if messages need to cross multiple

subgroups in order to get delivered, the delay of the propagation generates further delays for all servers

of that path, leading to the convoy phenomenon.

A combination of using the previously visited first generation protocols that include precedent mes-

sages, and having small subgroups where the causal history of each multicast would be relatively small,

could solve this problem that in commonly caused by the loss of precedent messages.

2.5 Weakly-consistent data stores

In the previous sections of this chapter, we presented the different trade-offs faced by system designers

and architects when designing distributed systems. Defining these trade-offs is an important step in the

complex process of system design as it allows the system designer to prioritize some properties and make

the correct compromises that would be more relevant and suitable for the type of systems they are de-

signing and the class of applications can use them. As we are interested in this thesis with highly-available

data stores, we focused on trade-offs and consistency models that suit most this class of applications,

namely causal+ consistency, the strongest achievable consistency that remains available under network

29

CHAPTER 2. STATE OF THE ART

partitions, and that combines both causal consistency and strong convergence. Maintaining causal re-

lationships among events is an expected behavior for most applications and reflects a behavior aligned

with our perception of reality. In addition, as we are interested in data stores, data convergence is an

important property as users expect that the replicas converge to equivalent states despite if messages

are concurrent or not and no matter what happens under the hood. We also visited the different mecha-

nisms and protocols used in the literature to track and guarantee a causal order of events and messages

across replicas. But all these properties, trade-offs, algorithms and protocols are as useful as the systems

they help design and the range of applications they serve. In this section, we address some techniques

used in designing and optimizing causally consistent data-stores and review the most known systems that

advanced the literature and made an impact in the complex world of distributed systems.

2.5.1 Causally Consistency Data Stores

We will briefly describe some of the most well known causally consistent systems in the literature.

2.5.1.1 COPS

In [13] Lloyd et al. present COPS and its variant COPS-GT as causally consistent geo-replicated data

stores. COPS stands for Clusters of Order Preserving Systems and uses causal+ consistency to preserve

a causal order and a convergent state across its datacenters (DC). COPS-GT also provides get transactions

(GT) to the client. The implementation of COPS a small number of clusters, where each is contained in

a datacenter. Each datacenter holds a copy of the whole data partitioning the keyset into N linearizable

partitions. Each datacenter serves requests locally and then replicates to other DCs asynchronously in the

background. The inter-DC replication is causally consistent. Each update is assigned a Lamport clock as

a unique version number, and a list of explicit causal dependencies is used as its causal history. Clients

are in charge of maintaining their causal history, which is called a context. When a client reads a new

object or a newer value of an existing object, they add the object version to its context. When a client wants

to update an object, they look at its context which holds a list of dependencies that would consist of the

causal history of the new update. To reduce the overhead of causal metadata, COPS offers optimizations by

sending less metadata using a transitive reduction on the causal dependencies and sending the “nearest

dependencies”. After that, the client sends a message containing the object’s key, the new value and

the nearest dependencies to the local server. The server has all the dependencies as the client keeps a

session with it and so the server can immediately apply the update, tag it, and return the new timestamp to

the client which replaces the value of its context with it. The replication protocol for remote updates follows

similar steps. However, as some dependencies might not have been delivered at the remote server, every

new update received is blocked at the remote server until all its causal dependencies are delivered. And

only after that check the update becomes visible. For concurrent updates, COPS uses a Last Writer Wins

(LWW) strategy which is a simple approach but one that is prone to data loss and errors. Also note that

client can have different contexts for the same server connection. And as dependencies are tracked per

30

2.5. WEAKLY-CONSISTENT DATA STORES

client context, independent operations can have less common dependencies which as a result reduces

the time for remote updates to be visible (visibility latency). Moreover, COPS offers a garbage collection

mechanism to reduce the local causal metadata that becomes obsolete.

2.5.1.2 Eiger

Eiger [60] is a scalable, geo-replicated storage system which could be seen as a successor of COPS.

It supports causal+ consistency but uses a column family data model (popularized by Cassandra [17])

instead of a key-value model as most systems. It supports both read-only and write-only transactions and

uses operations instead of data versions as dependencies. Write transactions are achieved with a modified

two-phase commit protocol that functions differently depending if it is running on the DC that accepted

the operation initially or in a remote DC.

2.5.1.3 Orbe

Orbe [61] offers causal-consistency by using data versions as dependencies like COPS, but instead of

Lamport clocks it uses version vectors that are encoded in a sparse matrix. It has an extension to the

protocol that allows for read transactions that added physical timestamps to the dependency matrix. It

does not support partial replication or concurrent writes with a multi-value API. Client sessions are also

bound to the DC they are running. It also suffers from the same problem as COPS and Eiger regarding

data replication, since it needs to apply updates in causal order, thus potentially blocking replication until

dependencies arrive. Similarly to COPS, Orbe [61] ensure a causal consistency by using data versions

as dependencies. However, instead of using Lamport clocks, it uses a protocol based on dependency

matrices (DM). Each datacenter is divided into N partitions, and fully replicated at M different datacenters.

Clients only contacts servers in the same datacenters (sticky availability) and are in charge of maintaining

causal metadata to track dependencies in the session. A client stores the nearest dependencies of its

session in a # ⇥ " matrix. To read an object the client send a get request with the key of the object.

The server looks up the object and return the latest value, an update timestamp and the source replica

index. When the client receives the reply, if the entry pointed by the replica index has a smaller value

than the returned timestamp, it overwrites that position with the newer value. To update an object, a

client sends the key, the new value and its dependency matrix to the local server responsible for the

partition in question. Before tagging the update clock time, the server has to increment its local clock,

guaranteeing that the assigned value is unique. After storing both the objects value and metadata in an

atomic, non-blocking manner, the server replies with the updates clock and its index. Similarly to COPS,

the client resets its causal history (dependency matrix) to default values, only saving the returned clock at

the given index. Note that the matrix sent by the client in the update request is used for inter-DC replication.

For inter-DC replication, each partition in a datacenter communicates updates with its replicas in remote

datacenters. The partition forward the updates in their creation order along with the saved metadata

comprising the key, value, creation clock, dependency matrix and replica index. Each partition maintains

31

CHAPTER 2. STATE OF THE ART

their own version vectors with one entry per replica. To check if remote updates can be safely applied,

the receiving server compares the dependency matrix of this updates with their version vector. To be able

to safely apply the update, the server must do the following checks: For the same partition, the server

checks the corresponding row in the matrix, which has a vector format. If the server’s version vector is

larger or equal than the vector (row) of the matrix, the server can proceed to the next step. For other

partitions, every time there is a value different from the default one in the partition column, it means

that the operation depends on other elements that the current datacenter may not store. So, the server

contacts the respective partition, making an explicit dependency check. If all checks pass, the update can

safely be made visible and the corresponding version vector’s entry is updated.

2.5.1.4 GentleRain

GentleRain [62] is a causally consistent geo-replicated data store that could be considered as the succes-

sor to the Orbe system and by the same authors. The main difference with Orbe is that it uses scalar

timestamps derived from loosely synchronized physical clocks and only keeps a single scalar to track de-

pendencies and enforce casual consistency. This also means that the timestamps have a fixed size that is

not affected by the number of objects or replicas. This reduces the storage and communication overhead

but also increases the update visibility latency. Each datacenter is divided into N partitions, and fully repli-

cated at M different datacenters. The data store is a multiversion one, so older versions of an object are

kept when the object is updated, until they can be deleted by the garbage collecting mechanism. Clients

maintain two timestamps each: a dependency time (DT) which holds the highest update timestamp for

all object accessed by the client session, and a global stable time (GST) that will be used to decide the

visibility of remote updates. Servers maintain three timestamps each: a version vector (VV), a local stable

time (LST) and a global stable time (GST). The VV is a vector of M timestamps, one entry per datacenter.

The LST of a server is the smallest update timestamp (minimum entry value in its VV). The GST of a server

is the lower bound on minimum LST of all partitions in the same datacenter. To read an object, a client

sends a get request to the local server including the key of the object to read and its GST. The server

updates its GST if it was smaller than the client’s. The server fetched the latest version of the object for

that key if it was created at the local datacenter, otherwise its update timestamp has to be no greater than

the server’s GST. The server returns the fetched value, the update timestamp and the server’s GST. The

client updates its GST if the server’s one was larger and sets its DT to the returned update timestamp if

the latter was larger. To update an object, a client sends a put request to the local server including the

object’s key and new value and its DT. The server must guarantee that the update has a larger timestamp

than the client dependency time which may result in blocking the operation until its physical clock time is

larger. This new update timestamp replaces the current datacenter’s entry in the server’s VV. The server

returns the update timestamp to the client to update its DT. For inter-DC replication, the receiving server

updates the remote datacenter’s entry of its VV with the update’s timestamp. The update is visible only

when its timestamp is lower than the server’s GST. The GST calculation happens periodically inside every

32

2.5. WEAKLY-CONSISTENT DATA STORES

DC and is computed by as the minimum of all partitions’ LSTs. As this computation happens periodically

and it would be costly to partitions broadcast their LSTs, GentleRain uses a tree structure to disseminate

the LSTs (from leaves to root) and then re-disseminate the GST back (from root to leaves) more efficiently.

GentleRain uses GST to decide when certain objects are safe to be visible and to garbage collect metadata.

Therefore, clock skew resulting from the use of physical timestamps should be kept to a minimum since

it affects GST.

2.5.1.5 Cure

Cure [63] is a distributed causally consistent key-value store. Although this is not the focus of this chapter

or thesis in general, Cure was the first system to allow causally consistent transactions for both object

reads and updates. Prior systems used to allow either one or the other. Each datacenter is divided into N

non-overlapping partitions, and fully replicated at D different datacenters. The causal dependencies are

maintains through the use of vector timestamps with one entry per datacenter and derived from loosely

synchronized physical clocks. Each partition maintains two vector clocks. The first (PVC) tracks remote

updates received from the replicated partitions at remote DCs. The second maintains the latest globally

stable snapshot (GSS) known to the partition. PVCs hold the values of commit timestamps derived from

physical clocks. They are updated when a local or remote update is received. The GSS is calculated by

the partitions at a datacenter by exchanging their PVCs and computing the lower bound minimum. When

a client wants to start a transaction, it must first contact a coordinator of local datacenter to obtain a

transaction identifier. The coordinator in a local datacenter is any partition participating in the transaction

and it is responsible for committing the client transaction. This transaction identifier is to guarantee the

client future reads during the transaction only include objects having version with a lower timestamp

that the transaction identifier. As for the client writes, they are buffered locally until the commit phase.

During the commit phase, the client sends the buffered writes to the coordinator. The coordinator then

contacts all the source replicas of objects included in the transaction. Each of the contacted replicas

send their physical clocks back to the coordinator which chooses the maximum as the commit timestamp

and propagates it back to inform the replicas. The transaction effects will be visible t the client since

the dependencies are locally satisfied. After a successful commit, the updates are propagated to remote

replicas asynchronously. Inter-DC replication is a pair-wise process. The receiving server updates the

sender’s DC entry in its PVC to the update timestamp. Partitions in the same DC exchange timestamps

to calculate a GSS. Remote updates with timestamps lower or equal than the GSS can be made visible.

2.5.1.6 ChainReaction

ChainReaction [64] is a geo-distributed key-value datastore that, as the name hints, uses (a variant of) the

chain replication [65] technique to provide causal+ consistency using minimal metadata. A datacenter

consists of data servers and client proxies. Data servers serve read and write operations for a number of

data items. Client proxies receive the requests from end users or client applications and forward them to

33

CHAPTER 2. STATE OF THE ART

the appropriate data server. Data servers are organized in a DHT ring fashion and use consistent hashing

to partition data items. Also every data item is replicated on R consecutive servers, forming a replication

chain. The head of chain receives write requests, the updates are propagated down until reaching the

tail. If the tail has received an update then it is safe to assume that every server in the chain has received

it too. To track causal history, clients maintain a table, where every entry is per object accessed by that

client. Each of these entries contain the object’s key, its version’s timestamp and the chain index which is

an index to the node in the chain that last processed and replied to a request of this object. When a client

sends a read request, any node between the head of the chain and the node at the chain index can server

the request without waiting for a remote update. When a client sends an update request, it sends the

object’s key, new value and a compression of the metadata of all objects accessed since the last update.

The client proxy forwards the request to the head of the chain. The head of the chain increments its

replica’s entry in the timestamp and assigns it to the new object’s version. The update is then propagated

down the chain. The update is k-stable when it is replicated on k nodes in the chain and then return to

the client the object version and the index of the last receiving node in the chain. The update continues

to be propagated down the chain until reaching the tail. When it does, the update is DC-Write-Stable for

that replica. Updates are delayed until every object it depends on is DC-Write-Stable, preventing clients

from reading inconsistent versions. Moreover, DC-Write-Stable updates need not to be kept in the client’s

table. An update is globally stable when it is DC-Write-Stable on all chain replicas in remote DCs. For

inter-DC replication on the update timestamp is needed and remote-proxies are the responsible entities

of exchanging theses updates across DCs. When a remote update arrives, the receiving remote-proxy

compares the updates timestamp to its own. The latter makes sure that the entry value of the sending DC

is one greater than its own and equal or higher values for all other entries in its timestamp vector. This

means that the dependencies are stable locally and the update can be applied. Otherwise, the update is

delayed until the conditions are met.

2.5.1.7 Saturn

Saturn [66] is not a data store itself but was designed as a metadata service for existing geo-replicated

systems. Te main idea behind Saturn is to efficiently provide causal consistency to systems that do not

guarantee it by design. In Saturn, there is a separation between handling the updates themselves and

their corresponding metadata. Saturn makes sure that, for every update, the metadata is propagated

to the different datacenters so that delivery happens in order that respects causality. It uses physical

scalar timestamps to track causality and a tree structure and FIFO channels to propagate them across

datacenters. The metadata used to tag updates is called a label. Labels are generated by gears associated

to every storage server. A label sink is a component that collects all labels in a DC and is responsible

of propagating them to other DCs in an order respecting causality. Remote proxies are responsible of

applying remote updates in a causal order. Before being able to send requests, a client has to attach

to a datacenter and provide the latest label it has observed. As a result its causal past is visible to the

34

2.5. WEAKLY-CONSISTENT DATA STORES

datacenter and thus can safely interact without breaking causality. To read an object, the client sends a

request with its key. The gear receiving the request, the value of the object and the label associated with it

and returns them to the client. If the returned label is more recent, the client updates its label. To update

an object, the client sends the key, new value and its label. The gear receiving the request, creates a

new label and stores it along with the new value in the server’s persistent storage. Both update data and

metadata are sent to the label sink for inter-DC replication and the new label is returned to the client to

replace the old label. The propagation of data and metadata to remote DCs happen separately. Labels are

sent following a tree topology through serializers while data is sent in any order. Remote updates can only

become visible when their labels arrive. As the the labels sent are scalar, concurrent operations cannot be

differentiated from causally related ones in the serialization process. The choice of the serialization then

can impact the latency experienced by clients and remote updates visibility latencies when labels (false

dependencies) are delivered prematurely. The label dissemination tree and serializers are optimized to

minimize such latencies by choosing the best serializations and sometimes delaying label arrivals.

2.5.1.8 Occult

Occult [67], which stands for Observable Causal Consistency Using Lossy Timestamps, is causally con-

sistent geo-replicated data store that aims to solve the problem of slowdown cascades. Each replica is

located in a datacenter with full copy of the data, sharded on different physical hosts. The system uses

asynchronous mater-slave replication instead of multi-master replication. Writes happen on master shards

and are then replicated asynchronously but in order to the slave shards in remote DCs. Clients read from

their local replica and write to the master shard. Causal consistency is enforced through the use of shard-

stamps and causal timestamps. Every shard has a shardstamp representing the number of writes it has

accepted. A causal timestamp is a vector of shardstamps having one entry per shard. Causal timestamps

are used to encode the last state of the data store observed by a client and also to capture the causal

dependencies of writes. A client usually reads from their local replica but can contact any replica for load

balancing purposes. A client sends a read request with the object’s key. The receiving server replies

with the object’s value and its causal timestamp and the shard’s shardstamp. The client compares the

received shardstamp to the shard’s entry in its causal timestamp. If the client’s entry is at least equal to

the shardstamp, then the version is consistent. If the replica contacted by the client was the master, the

check will succeed. The check may fail however if the replica was a slave due to replication delays. In the

case of a failed check, the client can retry again or contact the master. When the check succeeds, the

client updates its causal timestamp to reflect the dependencies in the returned timestamp. For an update,

a client sends a request to the master replica including the object’s key, new value, and the client’s times-

tamp. The master uses the client’s timestamp to derive the update timestamp by assigning it shardstamp

in the replica’s entry and returns the shardstamp to the client. The client uses the returned shardstamp

to update its causal timestamp. Before returning to the client, the master starts the replica processes by

sending the updates to the slaves with their associated timestamps and the master’s shardstamps by their

35

CHAPTER 2. STATE OF THE ART

replicated order. The slaves apply the updates and update their shardstamps to the master’s shardstamp.

As the number of partitions tends to be very large, Occult uses three kinds of optimizations to compress

the timestamp size: structural compression, temporal compression and isolating datacenters. This lead

to compact timestamps but also increases the amount of false dependencies leading to higher visibility

latency for updates.

2.5.1.9 Kronos

Kronos [68] is a centralized service that uses a dependency graph to encode relationships between events

and provide a time ordering for distributed applications. Despite it not being a causally consistent data

store, we mention it here for its use of a graph data structure to track dependencies between events. The

nodes in the graph represent events and the edges define the causal relationships between them. An

identifier of an event is called a reference. A client contacts Kronos to get a reference to an event. After

gathering a set of references, a client can contact the service with the set as input to get a sequence

of those references. This sequence represents an order of the events that does not violate causality.

As concurrent operations can be applied in different order without affecting causality, Kronos can return

different results for different clients even for the same set of references. A client can create an event

and receive its reference. This adds a node with that reference to graph. The client can then use the

references of created events to assign them an order. There are two ways to order events: must and

prefer. A must relationship encodes a causal ordering between two events. A prefer ordering is used

to assign relationships between concurrent events. In an assign call, all must conditions are applied or

the operation is aborted. For prefer events, the operation is not aborted in case of consistencies, but the

ordering is discarded. As Kronos is not a geo-replicated solution, there are no remotes updates to be

propagated. This leads to a simple design. However, one of the weaknesses of Kronos is that if a client

does not receive a certain reference that depends on another already sent to server, the resulting ordering

will create an inconsistency at the client state. The client must have all the references to get a global

ordering.

36

j

Tagged Causal Broadcast

3.1 Introduction

In an ideal world, distributed services are able to guarantee strong consistency for data, high availability

for reads and writes, and manage to stay operational under failures and partitions. Unfortunately, this

was proven to be impossible in what is known as the CAP theorem [9, 10]. As there is no “one-size-

fits-all” solution, a range of consistency models exist, providing different guaranties and making different

trade-offs, each suitable to some classes of applications and services.

Causal consistency [69] is the strongest consistency model achievable providing availability under

network partitions [21, 70]. Under causal consistency, systems can aim for high availability while providing

a rich set of session guaranties [71].

Traditional causal delivery middleware [4] provides a delivery order in each process that is consistent

with causality, i.e., delivering messages at each process in some order which does not contradict causality.

However, it does not provide client applications with knowledge about concurrency under the partial order

of causality. Given two messages<1 and<2 delivered in that sequence to some process, no information

is provided to the application whether<1 causally preceded<2 or if they were originated independently

of each other.

In this thesis, we argue that providing such knowledge to the application is a mandatory feature for

several classes of applications that require knowledge of concurrency in order to apply arbitration rules [5].

An example is an application that given two concurrent bids will arbitrate to consider only the higher bid.

Since current implementations of causal delivery middleware lack this feature, they are only suitable for

a more limited class of applications where this knowledge is not needed, and thus cannot be used as

a general abstraction. We also show that trying to overcome this limitation, using current middleware,

often leads to solutions that are inefficient in terms of metadata size and/or delivery delays due to false

dependencies.

We make a case for a Tagged Causal Delivery (TCD) middleware, which delivers messages together

with causality tags (e.g. logical clocks) that characterize the end-to-end happens-before, defined according

to client-visible events in the client process order, and ignoring purely internal middleware events (such

37

CHAPTER 3. TAGGED CAUSAL BROADCAST

as receiving a message and queuing it for later deliver). We contrast this with previous definitions which

can leak internal middleware events, such as the one in [4].

We present both traditional and modern application examples that require the end-to-end happens-

before. First, we revisit the well known critique of CATOCS (Causally and Totally Ordered Communication

Support) paper [72] and show that in their stock trading example, if the ordering is exposed to the applica-

tion, it would be possible to overcome the anomaly. This means that their diagnose that neither causal nor

total multicast would work is valid only for current middleware, but not for TCD. As for modern applications

targeting high availability, we consider the case of Conflict-free Replicated Data Types (CRDTs) [73]. We

argue that to efficiently implement operation-based CRDTs causal delivery is necessary, but not sufficient,

as the partial order of operation invocations is needed for the data-type semantics [7].

Together with the ability to compare causality tags in events, TCD provides information about causal

stability. We clarify this concept and its importance at the API level, contrast it with classic message

stability [4] (which is a purely implementation concern), and argue that it has been reimplemented in

several applications (unknowingly).

We then focus on the implementation aspects. Achieving TCD should be easy by extending current

causal delivery middleware. One could think that it would be a matter of simply exposing to the client API

the causality tags (e.g., vector-clocks) that already exist in causal delivery middleware implementations.

Surprisingly, we came across several pitfalls in doing so, which we describe in Section 3.5, as well as how to

overcome them. These pitfalls originate from the models of possible interactions between the middleware

and the client process, together with the current design goal of simply not contradicting causality, which

would lead to an incorrect characterization of causality if internal tags were naively exposed.

Finally, we address explicit causality [14], and the tagging by the client application of each individual

message with its predecessors. We argue that, although more powerful, explicit causality should (and can

always) be left as a last resort, making TCD together with the more “static” choice of delivery groups as

the way to achieve cross-object causal consistency among selected groups of objects.

3.2 Classical Causal Delivery

Causality ordering is about ensuring that effects are observable only after their causes. In a group commu-

nication context, causal delivery guarantees that a message is delivered only after all causally preceding

messages. For instance, consider the following scenario where a group of friends communicate using

some kind of distributed chat service:

- Ross sends to the group: “I won’t be able to join, I have to give a late lecture”

- Rachel: “Oh, too bad!”

- Then Ross replies: “Lecture canceled, joining soon!”

38

3.2. CLASSICAL CAUSAL DELIVERY

- Phoebe: “Great news!!”

If causality in not preserved (only some weaker delivery semantics such as FIFO), Joey, who is reading

the conversation, could see the following:

- Ross sends to the group: “I won’t be able to join, I have to give a late lecture”

- Phoebe: “Great news!!”

- Then Ross replies: “Lecture canceled, joining soon!”

- Rachel: “Oh, too bad!”

Joey then might feel confused on why Rachel and Phoebe are not happy with Ross being able to join

their gathering. This, however, would not have happened if the chat service used a causal delivery service.

Causal delivery was introduced by Birman [24] and Schiper [34], and made popular by the ISIS toolkit.

It was further developed in [4], where Birman specifies a potential causality relation (!), similarly to the

happens-before relation introduced by Lamport [23], but allowing for each process ? a partial-order (
?!),

as the transitive closure of:

1. if 9? · 4 ?! 40, then 4 ! 40;

2. 8< · b2M/(<) ! `2+2Bp2(<)

It distinguishes the receipt of a message (`2+2Bp2) from its subsequent delivery (/2HBp2`) when causal
dependencies are satisfied, and makes

?!, which intends to reflect the dependence of events at process

?, respect `2+2Bp2? (<) ?! /2HBp2`? (<). A causal delivery middleware ensures delivery order, at each

process, for causally related messages, by making them respect potential causality. For any processes

?,@, A , if two sends are related by potential causality, i.e., b2M/@ (<1) ! b2M/A (<2) the causal de-

livery service guarantees that /2HBp2`? (<1)
?! /2HBp2`? (<2) at every process ? where they are both

delivered. Two immediate remarks can be made about this classic specification:

• it defines a partial order over all system events (a “system happens-before”), including internal

events from the middleware (such as `2+2Bp2), which are not visible to the client;

• it defines delivery guaranties provided to the client using this relation, therefore leaking internal

events to the specification.

39

CHAPTER 3. TAGGED CAUSAL BROADCAST

3.3 Defining an End-To-End Happens-Before

In practice, without going for an “explicit causality approach” (as we discuss below) which would allow

an arbitrary
?!, the more simple approach for a general purpose middleware is to consider each process

as sequential, with all events from each process being related in a total order, as the classic Lamport

happens-before does. However, if internal middleware events, such as `2+2Bp2, leak and are included in
this total order, then the resulting potential causality will over-order events relevant to the client, leading

to unnecessary delayed deliveries. ISIS does not have this problem, and effectively relates deliveries to

subsequent sends, as desired, using vector-clocks [31], having a
?! which is almost, but not, a total

order. However, not having delivery guarantees defined exclusively over events visible to the client, but

also in terms of internal middleware events, one cannot rely on this system-wide happens-before towards

exposing it to clients.

A specification of causal delivery guaranties should only involve client-visible events. And the way to

obtain a simple specification, not requiring explicitly client tagging of each message is precisely assuming

a total order over client-visible events at each client process. This is the approach in the classic definition

of causal memory [69], on which further work on causal consistency is based. There, client-visible events

are a write or a read from memory; each client process is assumed to be sequential, having a total

order of write and read events; and the causality order is defined as the transitive closure of the union of

per-process order and a writes-into order relating writes to reads which see them.

By analogy, for causal delivery: client-visible events are sends and deliveries, and each b2M/8 (<)
should be related to each /2HBp2` 9 (<). Together with a total-order at each process over these operations
(but ignoring any internal middleware event), an end-to-end happens-before (!) causality order is obtained

as the transitive closure of:

1. 88, 9,< · b2M/8 (<) ! /2HBp2` 9 (<)

2. 88 · 48 ! 408 if 48 is before 4
0
8 at process 8

This is the definition that is intuitively desired. But we draw the attention to the fact that current

causal delivery middleware does not care about providing it to the client application, because it only

needs to enforce some unspecified delivery order which does not contradict it. And as we discuss later in

Section 3.6, trying to make it available by exposing internal tags (e.g., vector-clocks) of current middleware

does not work, leading typically to an over-ordering. We now argue that having this end-to-end happens-

before available to the client is essential to satisfy many classes of applications.

3.4 The need for happens-before by applications

In 1993, Cheriton and Skeen wrote a paper on the limitations of causally and totally ordered communi-

cation support (CATOCS) [72]. In that paper, the authors address some limitations, present applications

40

3.4. THE NEED FOR HAPPENS-BEFORE BY APPLICATIONS

Theoretic
Pricing

Option
Pricing

User
Monitor

Option price 25.5
PR

Theoretical price 26.75
hR

Option price 26
Pk

Theoretical price 26.25

hk

Option price 26.5
Pj

Theoretical price 27
hj

tt **

** --

tt **

''
))

tt **

** --

Figure 15: Trading example from Cheriton and Skeen’s paper

that motivate the use of CATOCS and show how CATOCS fails to satisfy the expected requirements of

those applications. The reason why CATOCS fails to do that is based on the end-to-end argument [74]:

CATOCS tries to solve a semantic problem at the communication level. Instead they propose a state-level

solution that, as they argue, renders the use of CATOCS irrelevant. In this section, we revisit some of their

concerns regarding the limitations of CATOCS, namely current causal delivery middleware, in providing a

solution that preserves the end-to-end semantics. First we revisit their example of a stock trading applica-

tion; then we address the use of causal delivery middleware to support modern applications, namely in

the implementation of Conflict-free Replicated Data Types [73].

3.4.1 The Stock Trading Example

We begin by explaining the trading application example of Figure 15. One server multicasts the price of an

option. Another server calculates the theoretical price based on the received option price. For a correct

behavior of the application, a theoretical price only makes sense in relation to the option price from which

it is derived. It only makes sense to report it after that option price (which causal delivery ensures), but it

is rendered obsolete if the option price has changed, and should be ignored in such case.

In their example, if the option server multicasts a new option price (Pj = 26.5), this multicast will be

concurrent to a theoretical price (hk = 26.25) multicast which has been derived from a previous option

price (Pk = 26). Given that they are concurrent, hk can be delivered to the user monitor after Pj, but

in this case it should be ignored. However, the application has no way to know if they are concurrent

and should ignore hk, or if it is derived from the current option price (as it was the case for the first two

messages delivered to the user monitor) and should report it. The authors conclude that neither causal

nor total order delivery can avoid the anomaly.

We observe that delivery respecting causality (i.e., end-to-end happens-before of client-visible events) is

useful, but not enough in itself. This causal order is preserved by CATOCS, but information about causal

41

CHAPTER 3. TAGGED CAUSAL BROADCAST

P {} •

��

(�//,0,C%1)

��

{0} •{} •
(�//,0,C%2)

��

(�//,0,C%2)

))

{0} •{0}
//

Q {} •{0} •
(`Kp,0,C&1)

CC

(`Kp,0,C&1)

''

{} •{0} •{0} //

R {} •{0} •

(`Kp,0,CA1)

99

(`Kp,0,C'1)

22

{} •{} •{0}
//

Figure 16: Add-Wins Set Example

concurrency is also needed for this application, something that CATOCS does not provide. But having

causal delivery plus information about end-to-end happens-before is sufficient to overcome the problem.

The anomaly described in the trading application example could similarly happen in other applications,

where the semantics require knowledge about the causal relationship between events.

3.4.2 Implementing Conflict-free Replicated Data Types

A recent trend for building highly-available data stores, is to use well-defined data abstractions that provide

conflict resolution by design through considering the application semantics. In particular, Conflict-free

Replicated Data Types [73] (CRDTs) are recently getting a lot of attention and adoption by the industry

mostly in building scalable, highly-available data stores [75–77] and collaborative editing software [78,

79]. CRDTs ensure data convergence once all executed operations are delivered by all replicas, provided

that operations are carefully designed to resolve possible conflicts deterministically and in a semantically

sound manner. Operation-based CRDTs [7] are data abstractions in which each replica propagates locally

executed operations to other replicas. Supporting applications that exhibit causal semantics, an op-based

CRDT assumes the presence of a Causal Delivery middleware to ensure causal delivery of operations.

Despite this, the CRDT still requires causality metadata, e.g., timestamps, in order to reconcile conflicts

caused by concurrent operations.

To better illustrate how such a data type works, we consider the case of the operation-based Add-Wins

Set (AWSet). A set by nature is not commutative as concurrent (�//,0) and (`Kp,0) do not commute
(i.e. being delivered to the application in different orders leads to different states). To guarantee state

convergence, the AWSet resolves this ambiguity by providing Add-Wins semantics, where an (�//,0)
would “win over” a concurrent (`Kp,0). In order for this to work, the application requires the knowledge
of the happens-before relation between operations. When operations are delivered, they are added to the

state with the causality metadata. Using this metadata, a query issued by a user is able to return a state

consistent with the end-to-end semantics.

In Figure 16, we present an example of an AWSet replicated at 3 processes %,&,'. A causal delivery

middleware ensures the causal delivery of the operations (here, (�//,0) and (`Kp,0)) respecting their
causal order of delivery. For each operation issued by a process (e.g. process %), additional causality

information (here C%1, C%2) are added based on what was delivered at that process. (�//,0, C%1) happened

42

3.5. HAPPENS-BEFORE AS A MIDDLEWARE SERVICE

before (`Kp,0, C&1) as it shown in the figure, and as causal delivery is guaranteed by the middleware

we show a correct evolution of the state from element 0 being in the set ({0}) to 0 removed from the set

({}). The more interesting case is when (�//,0, C%2) was issued at % concurrently with (`Kp,0, C'1) at
'. At process & , (�//,0, C%2) was delivered leading to 0 being added to the set. Then, (`Kp,0, C'1)
was delivered, however, not leading to the removal of 0 from the set as expected from the Add-Wins

semantics of the set. Preserving the end-to-end semantics was possible here, because the knowledge

that (�//,0, C%2) was concurrent with (`Kp,0, C'1) was exposed to the application at& through C%2 and

C'1. If this knowledge (C%2 and C'1) was not exposed, the Add-Wins semantics would have been violated

leading to an inconsistent state ({} at % , {} at & and {0} at ').

3.5 Happens-Before as a Middleware Service

In the previous section, we showed that the end-to-end happens-before relation is crucial to the semantics

of many applications, and should be provided. In this section we argue that this information should be

exposed by the causal delivery middleware itself. We observe that current implementations of operation-

based CRDTs solve this problem by explicitly generating causality tags, manipulating them and embedding

them in messages. We explain that while this solves the problem, it presents a duplication of effort and

could lead to unnecessary delay on message delivery.

3.5.1 Two-Level Tagging using Current Middleware

In this section, we describe a way to satisfy the requirements of applications mentioned in the previous

section, using traditional causal delivery middleware, as well as its drawbacks that motivates the need for

more suited middleware.

Currently, the implementors of such applications tend to rely on off-the-shelf causal delivery middle-

ware to obtain an exactly-once delivery respecting happens-before. However, the happens-before informa-

tion, which is needed by the application, is not exposed in the causal delivery middleware API. This makes

the implementors explicitly add timestamping information (e.g., vector-clocks or globally-unique tags) to

the messages and application state in order to track the happens-before relation. This means additional

state and more information in the message payload, which is a waste and a duplication of effort, consid-

ering that the causal-delivery middleware is already tracking happens-before, but not exposing it to the

client application.

Besides this duplication of effort and the overhead in terms of additional causality metadata, another

problem arises. As the tags provided by the application are opaque to the middleware, it could happen

that two operations that are concurrent and, therefore, tagged as concurrent by the application, could be

ordered (causal delivery timestamps) as one in the future of the other by the middleware. The reason

for this is that operations are tagged at the middleware level depending on their incidental arrival and

pre-delivery processing, not necessarily reflecting the (end-to-end) delivery order as seen by clients.

43

CHAPTER 3. TAGGED CAUSAL BROADCAST

As we discuss in Section 3.6, in current middleware, one operation >0 could be waiting in a queue

at some process ?8 to be tagged by the middleware while another operation >1 , concurrent to it, is being

processed by the middleware at ? 9 . Process ? 9 could tag >1 and multicast it to other processes, namely

?8 , that delivers it to the application. When ?8 processes >0 it will tag it as in the future of >1 when in

fact the operations are concurrent. This would not affect the semantics of the application because the

application would “know” that >0 and >1 are concurrent based on the application-level tags. However,

this would add an unnecessary delay due to the over-ordering dictated by the middleware: at all other

destinations, the middleware would have to wait for the delivery of >1 before delivering >0.

3.5.2 Exact Tagging by the Middleware

The above discussion and observations makes us conclude that it will be useful to make end-to-end

happens-before information available from the causal delivery middleware itself. Not only it spares pro-

grammers from constant reimplementation efforts, avoids duplication of roles and metadata between the

application and middleware, and can also sometimes even remove unnecessary delays caused by over-

ordering that happen in current middleware. But to obtain a correct characterization, some care must to

taken, as we discuss in Section 3.6.

3.6 Pitfalls in Exposing Middleware Timestamps

To avoid the effort of implementing TCD from scratch, one can think of adapting current causal delivery

middleware to provide the TCD API. At first glance, it might seem trivial to implement a causal delivery that

characterizes the end-to-end happens-before, by using any traditional causal delivery middleware service

and exposing to the client application the timestamps (e.g. vector-clocks) that are used internally to ensure

causal delivery. However, when considering concrete implementations, some unexpected problems arise.

We show how naively exposing the timestamps would lead to an incorrect characterization of causality, in

either of the two typical interaction models between middleware and client code: callback-based and with

independent threads/processes.

Callback-based In an event-driven architecture with a single process, the application code runs as

callbacks invoked from the middleware code when messages need to be delivered to the application

logic to be processed, e.g., /2HBp2`(<, C) for message< tagged by C timestamp. To avoid reentrancy

problems, when a send is invoked inside the deliver callback, the send simply adds the message to a

queue, to be handled by middleware code when the callback finishes. It can happen that the middleware

has a set of messages ready to be delivered, and invokes the deliver callback for each one, before handling

sends which have been enqueued. If the middleware creates timestamps for messages to be sent only

upon dequeuing them, then a message will be tagged as causally in the future of all messages that were

delivered after the send action by client code and before dequeuing occurred. This means that some

44

3.7. TAGGED CAUSAL DELIVERY

messages that are actually concurrent are tagged as causally related, making timestamps reflect a larger

relation than happens-before, over-ordering some events. While this does not break causal delivery, as

it is consistent with end-to-end happens-before, it means that these timestamps cannot be exposed as

precisely characterizing end-to-end happens-before.

Independent threads/processes/actors In other architectures we have two independent processes:

a client process and a middleware process. Here, in addition to the queue of messages to be sent, as

above, we will typically also have a queue of messages ready to be delivered. The middleware tags and

enqueues messages to the deliver queue, while the client dequeues and processes them. When doing a

send, the client enqueues a message to the send queue. This message will be tagged by the middleware

process as in the future of other messages not yet delivered by the client (namely, those that are still

in the delivery queue but have already been handled by the middleware process), when they are in fact

concurrent. Note that what defines the end-to-end happens-before is the order of send and deliver events

as observed by each client process; other events, e.g., when a message was enqueued or dequeued by

the middleware process, are irrelevant (i.e., internal middleware events, but invisible to the API).

3.7 Tagged Causal Delivery

To correctly characterize and end-to-end happens-before, a message being sent must be tagged reflecting

the causal knowledge according to all delivery events at the application, up to the send event (at the

application). Therefore, a Tagged Causal Delivery middleware provides in its API a i+#+�bi callback

method that multicasts a message to all other processes and a i+/2HBp2` callback method that delivers
a message to the application with some causality tag. We do not address the implementation of i+#+�bi
and i+/2HBp2` in this section but we discuss it in subsection 3.7.1. However, we reserve this section

to present causal stability and extend the TCD middleware’s API with a i+bi�#H2 that provides causal

stability information.

3.7.1 Lessons Learned and a General Solution

Exposing current middleware tags towards achieving TCD does not work in general, as they do not charac-

terize the end-to-end happens-before. The general reason for that is the unspecified behavior in terms of

the relation between client-visible events (send and deliver) and all other internal middleware events. This

should not be surprising, after some thought, as current middleware was designed with the only constraint

of delivering in some order consistent with end-to-end happens-before.

There is, however, a simple solution which allows adapting any middleware using internal tags that

describe a partial-order (e.g., vector-clocks) between client-events. It works whether the middleware is

callback-based assuming a single process, or involves interactions between a client process and at least

45

CHAPTER 3. TAGGED CAUSAL BROADCAST

(a) Internal tag (b) End-to-end tag

Figure 17: Difference between internal tagging and end-to-end tagging.

one more process. The key insight is that timestamp generation must be made by middleware functions

which operate on metadata stored inside some (opaque) middleware object given to the client and stored

at the client process. Then:

Figure 17a shows an example of howmessages are tagged in traditional causal broadcast middleware.

The middleware is responsible of tagging the messages upon their arrival. We call it internal tagging as the

tagging is dictated by the internal communication layer. In this figure, we notice that in the case where 3�

(respectively 3⌫) which is the broadcast and reception of message<B6� at ⌫ (respectively<B6⌫ at �)

happens-before 2⌫ (respectively 2�) which is the internal tagging of message<B6⌫ (respectively<B6�),

then<B6� (respectively<B6⌫) will be tagged as happens-before<B6⌫ (respectively<B6�). While this

does not break the causal order provided it has two flaws:

• correctness: From the application perspective,<B6� and<B6⌫ are concurrent. This concurrency

is not preserved and therefore and end-to-end causal order is not provided. This is important for a

class of application where there is priority/order between concurrent messages.

• efficiency: As both messages are in fact concurrent, one could be delivered independently of the

delivery of the other. However, as they were tagged as one happens-before the other, this over-

ordering could lead to an extra delay in the delivery mechanism.

The general problem stems form trying to solve an application-level problem (semantics, end-to-end) at

the communication-level. This renders traditional causal broadcast middleware not suitable for a class of

application that, for a correct behavior as expected by the user, requires the preservation of this end-to-end

happens-before semantics.

Conserving the end-to-end semantics is important for a class of applications where there is prior-

ity/order between concurrent messages, and therefore not conserving this order leads to breaking the

semantics of the application. In fact two “ingredients” are necessary to be provided by a causal broadcast

middleware to fill this gap. The first is providing a way to tag every message at the application (client)

46

3.8. EXPLICIT CAUSALITY VERSUS EXPLICIT GROUPING

based on what was seen (delivered) by that application. The second is delivering all messages with that

tag and providing a way to compare those tags as causally related or concurrent.

We should note that exposing current middleware tags towards achieving tagged causal delivery does

not work in general, as they do not characterize the end-to-end happens-before. The general reason for

that is the unspecified behavior in terms of the relation between client-visible events (send and deliver)

and all other internal middleware events. This should not be surprising, after some thought, as current

middleware was designed with the only constraint of delivering in some order consistent with end-to-end

happens-before.

A simple solution is to allow adapting any middleware using internal tags that describe a partial-order

(e.g., vector-clocks) between client-events. The key insight is that timestamp generation must be made by

middleware functions which operate on metadata stored inside some (opaque) middleware object given to

the client and stored at the client process. In Figure 17b, the end-to-end happens-before order is preserved.

The reason is that messages are being tagged at the application level (steps 1�, 1⌫) independently of the

order of their arrival at respective nodes. This follows the next mechanism:

• Each time a send is invoked by the client, a timestamp should be immediately generated as part

of the (atomic from the client perspective) send event, using the middleware object at the client. If

the message is then added to a queue, it has already been tagged.

• Each time a deliver event happens at the client process, the timestamp metadata at the middleware

object should be immediately updated, before the client action (e.g., a callback) runs. This means

that if the client action invokes a send, it will be considered in the causal future (i.e., as resulting

from) that delivered message, but not in the future of some ready-to-be-delivered messages that

are still in some middleware queue.

3.8 Explicit Causality versus Explicit Grouping

In [72], the authors focus primarily on the limitations of CATOCS and mention that a more suited solution

that does not violate the end-to-end argument would be a state-level solution. Although the mentioned

solution is not covered in detail it seems to be one that provides an “explicit causality ordering” in contrast

to the “potential causality” order provided by traditional middleware and by our TCD proposal.

Explicit causality [14] is an interesting approach that provides application-specified causal dependen-

cies. Instead of considering all delivered messages at a process as dependencies of the next message

to be sent by that process, the application specifies the explicit dependencies (“actual causes”) of the

current message.

The advantage is a considerable reduction in the causal dependencies that are enforced by the system

at the cost of requiring the application to provide accurate information on the dependencies to enforce.

In practice this requirement can be hard to achieve, placing a burden on application programmers. A

47

CHAPTER 3. TAGGED CAUSAL BROADCAST

benign example, where this is achievable, is to consider in a discussion forum with multiple threads of

topic conversations (e.g., Reddit1) only the causal dependencies inside each given topic, as opposed to

the whole forum. The limitation is that possible causal connections between topics can be lost, in contrast

to the far more encompassing potential-causality that would track them.

A middle-ground between potential causality (assuming a total order per process) versus explicitly

listing actual causal dependencies, can be obtained by a partitioning into groups of related objects and

using TCD to enforce end-to-end happens-before within each group. In the discussion forum example,

each topic could be contained in its own group or packed together with other topics in a shared group

according to some desired application policy. Explicit grouping is not as versatile, but it is simpler and

enough to cover many cases; explicit causality can be left as a last-resort, when everything else fails.

1?iiTb,ffrrrX`2//BiX+QK

48

9

Middleware

4.1 Introduction

In chapter 3, we made a case for Tagged causal delivery which provides an end-to-end happens-before and

preserves concurrency information as part of the causal metadata. This chapter is the complementary

of the previous one and addresses the implementation of a new class of middleware that provide Tagged

causal delivery and stability. Our aim was to develop a generic middleware that could replace current

implementations that provide the classical causal delivery, which did not address the problems mentioned

in chapter 3, and therefore be more suitable for a wider range of applications. In our development of the

middleware, different contributions were made and that we present incrementally in this chapter in order to

reduce the complexity of the content and offer an easier outline that maximizes the reader’s understanding.

In section 4.2 we present the architecture of the system, the internal processes it comprises, what

every process does, and how they communicate with each other. We then describe the API of both the

system in general so the reader can get the gist of what it is supposed to do. In section 4.3 we start with

the most basic implementation of a causal delivery middleware that offers tagged causal delivery using

state of the art techniques and data structures such as version vectors and delivery queues. Then, in

section 4.4 we start explaining the causal directed acyclic graph (DAG) and dependency dots, one of the

main contributions that aims to improve the performance of our algorithm, explain how it works compared

to the previous presented techniques in section 2.4, and present a better, simple implementation which

uses the dependency dots and the causal DAG in section 4.5.

4.2 API and Architecture

In this section, we present a middleware service providing end-to-end happens-before delivery, an efficient

tagging and causal delivery protocol. We start by presenting the communication pattern between client

and middleware processes in subsection 4.2.1 and then the API of our system in subsection 4.2.2.

49

CHAPTER 4. MIDDLEWARE

4.2.1 Architecture

tcbcast
queue

delivery /
stability
queue

TACS
Middleware
process

Causal
Delivery

Causal
Stability

Storage

End-to-End
Tagging
Mngnt

TACS
Client
process

tcbcast
queue

delivery /
stability
queue

TACS
Middleware
process

Causal
Delivery

Causal
Stability

Storage

End-to-End
Tagging
Mngnt

TACS
Client
process

tcbcast
queue

delivery /
stability
queue

TACS
Middleware
process

Causal
Delivery

Causal
Stability

Storage

End-to-End
Tagging
Mngnt

TACS
Client
process

Figure 18: Tagged causal delivery architecture

In Figure 18, we present the architecture of our system, the processes that run on every node (replica)

in our system in order for the tagged causal delivery algorithm to function correctly as well as the com-

munication pattern between the different processes, both intra- and inter-nodes. In every node, runs a

client process and a middleware process. The client is a client library that the application using the tagged

causal delivery service uses to communicate with the middleware process. The middleware process is

the one responsible with most of the work required in ensuring a tagged causal delivery and stability.

All requests to query or mutate the state of data objects arrive from the application at the client process.

The query requests are trivial: query requests are not broadcast, and do not mutate the state at the client

or middleware processes. Therefore, we will only focus on update requests issued by a user and received

at the client process. Upon arrival, the client process prepares the request (or message) before being

broadcast by the middleware process to every node in the group. The prepare, basically tags the message

by a globally-unique identifier and the local context, then enqueues (calls 2M[m2m22<8 (3>C8, 2CGC8,<B6))
the prepared message in a FIFO queue, called i+#+�bi queue as shown in Figure 18. Every update

message has a globally-unique identifier. The local context at the client process is a set of globally-unique

Ids that represent the last messages delivered at the client process. The local context represents the

causal dependencies of a new update and it is the task of the client process to keep this local context and

50

4.2. API AND ARCHITECTURE

manage the end-to-end tagging.

The middleware process, on the other hand, handles the receiving, delivery and stability of updates

both from its client process as well as from its peer nodes. There are multiple mechanisms involved in

the management of correct and reliable transmission of messages, causal delivery as well as causal

stability. We keep those for later sections. The middleware process dequeues the local messages

from the tcbcast queue, updates the local data structures as needed (that we discuss later) and then

broadcasts the message to all other peers. The middleware also receives messages from peers through

`2+2Bp2 9,8 (3>C 9 , 2CGC 9 ,<B6), updates the local data structures as needed, and checks the delivery/sta-
bility of received messages. When a message is ready to be delivered (state is .Go), it is enqueued in

another FIFO queue called delivery/stability queue as shown in Figure 18. Similarly to delivery, when a

message is locally marked as causally stable (state is .Go and bstr is {0}#), the stable messages
are enqueued in the same queue used for delivery. When the client process dequeues messages from

the delivery/stability queue, through /2[m2m2<28 (), it checks (by pattern matching) if it should deliver a
new message or stabilize an already delivered message. In the former case, the i+/2HBp2`8 () callback is
invoked, in the latter i+bi�#H28 . Upon delivering a message, the client process updates its local context
to reflect the changes in causal dependencies.

4.2.2 API

To correctly characterize and end-to-end happens-before, a Tagged Causal Delivery middleware must

provide two main functionalities:

• a message being sent must be tagged reflecting the causal knowledge according to all delivery

events at the application (client process).

• a message must be delivered, by the middleware to the application, with its tag that carries causality

information, making it comparable (using end-to-end happens-before) to other messages.

Therefore, TRCB provides in its API, the following callbacks:

• i+#+�bi: (tagged causal broadcast) broadcast a message to every process in the group member-
ship. The client process will be responsible for tagging the message to be sent with the causal

predecessors known (delivered) by the client process.

• i+/2HBp2`: (tagged causal delivery) delivers a message to the application with the tag. For in-

stance, in the case of pure operation-based AW-Set (0, i+/2HBp2` would add the operation (033, 4,
and respective timestamp C) to the state (0. It uses the existence of comparable timestamps for

operations to update the state, based on the semantics of AW-Set.

• i+bi�#H2: (tagged causal stability) We postpone explaining this callback to the next chapter.

51

CHAPTER 4. MIDDLEWARE

4.3 Vector-Clock-based algorithm for tagged causal delivery

A vector clock is a mechanism to determine the causal relation between events. In a group with N peers,

each of these has a version vector with N entries. Initially every position in the vector starts at 0 and

increments by 1 each time an event happens in the peer corresponding to that entry. The events that

trigger an update of a node’s version vector can either be the broadcast or delivery of a message. When

sending, the peer increments its entry in the local version vector before copying it to the message. Upon

receiving a message, the peer compares the message’s version vector with its own. A message can only

be delivered if all the events that caused it have also been delivered. For example, peer i can only deliver

a message m from j with version vector +< if:

+< [9] = +8 [9] + 1 ^+< [:] +8 [:] |8: < 9

When this condition is not met, the message is queued in a data structure called message queue, until

it can be delivered later on when this condition is met. The components for this version include vector

clocks are used here as timestamps to characterize causality between events, a queue that stores the

messages that cannot be delivered yet, as well as the previous condition presented above to check causal

delivery of a message.

We extend current causal middleware to provide tagged causal delivery and we show that in the next

subsections 4.3.1 for the client process and 4.3.2 for the middleware process.

4.3.1 Client process

The algorithm for the client process can be seen in Algorithm 2. The Client keeps locally as its state

a version vector +8 , with length equal to the group size (number of participants or nodes). Initially every

position of this vector starts at 0 and is incremented upon a send or delivery.

An application uses the client library (process) to broadcast an update or any kind of message by

calling tcbcast. For peer i the +8 [8] entry of its version vector is incremented. The tcbdeliver callback is
called and the payload along with the process’ updated version vector are enqueued using 2M[m2m22<8 (the

superscript 2< denotes the direction from client to middleware) to tcbcast and sent to the Middleware

process.

/2[m2m2<28 is a another FIFO queue storing messages that are tagged by the middleware process

as ready to be delivered by the client process. The sender’s entry in +8 is incremented before calling the

tcdeliver callback.

52

4.3. VECTOR-CLOCK-BASED ALGORITHM FOR TAGGED CAUSAL DELIVERY

�G:P_Ah>J k, Vector-based tagged causal delivery algorithm without causal stability at

client process for node 8 2 I
R state:

k +8 : I! N f /2HBp2`2/ p2`bBQM p2+iQ` f

j proc BMBi8 ()
9 +8 := { 9 7! 0| 9 2 I}

8 proc i+#+�bi8 (<B6)
e +8 := +8 [8] + 1

d i+/2HBp2`8 (8,+8 ,<B6)
3 2M[m2m22<8 (msg,+8 ,<B6)

N on /2[m2m2<2
8 (9,+<,<B6)

Ry +8 [9] := +< [9]
RR i+/2HBp2`8 (9,+<,<B6)

Rk fun i+/2HBp2`8 (9,+<,<B6)
f /2HBp2`v +�HH#�+F f

4.3.2 Middleware process

The algorithm for the Middleware process is shown in Algorithm 3. Each peer i has a version vector

'8 for received messages, a version vector +8 for delivered messages and a delivery queue ⇡&8 . The

version vectors '8 and +8 have, respectively, the id of the last received and delivered message. Initially,

their entries are initialized to 0 and delivery queue ⇡&8 is set to empty ().

/2[m2m22<8 dequeues the local updates from the client process, updates +8 to reflect the delivered

message and broadcasts a message containing the tag msg to denote its type, the replica id 8, its version

vector + as sent by the client process, and its payload<B6.

When a message from j is received at i the'8 [9] entry is incremented and when amessage is delivered
the+8 [9] entry is incremented. If a received message cannot be immediately delivered then it is enqueued
to ⇡&8 to be later delivered after all its causal predecessors have also been delivered. On the other hand,

when a received message is delivered, ⇡&8 is traversed until there are no more messages that can be

delivered at the moment. This is because upon a message delivery, other messages that were queued

could be ready to be delivered due to one of their causal predecessors being received and delivered.

Removing an element from the middle of a vector can hinder performance since all the elements after

it have to be shifted to the left. Instead of this, while looping through the queue to check delivery, if a

message cannot be delivered then it is individually shifted left to the right place, otherwise it is enqueued

to tcdeliver. When the end of ⇡&8 is reached and at least one delivery was made then it is again traversed

from the beginning because other messages might be deliverable. If at the end no deliveries were made

then⇡&8 is truncated, since the first messages on this queue were considered received but not deliverable,

and they were shifted to the left while traversing, leaving unused positions in the end of the vector.

53

CHAPTER 4. MIDDLEWARE

�G:P_Ah>J j, Vector-based tagged causal delivery algorithm without causal stability at
middleware process for node 8 2 I
R state:
k +8 : I! N f /2HBp2`2/ p2`bBQM p2+iQ` f
j '8 : I! N f `2+2Bp2/ p2`bBQM p2+iQ` f
9 ⇡&8 : f /2HBp2`v [m2m2 f

8 on BMBi8 ()
e +8 := { 9 7! 0| 9 2 I}
d '8 := { 9 7! 0| 9 2 I}
3 ⇡&8 := ;
N on /2[m2m22<8 (hmsg,+ ,<i)

Ry +8 [8] := +8 [8] + 1
RR #`Q�/+�bi8 (hmsg, 8,+ ,<i)

Rk on `2+2Bp298 (h 9,+<,<i)
Rj if '8 [9] < +< [9] then
R9 '8 [9] := '8 [9] + 1
R8 if +< [9] = +8 [9] + 1 ^+< [:] +8 [:] |8: < 9 then
Re 2M[m2m2<2

8 (hdlv, 9,+<,<i)
Rd /2HBp2`8 ()
R3 else
RN ⇡&8 := ⇡&8 + (9,+<,<)

ky proc /2HBp2`8 ()
kR 5 A>< := 0
kk C> := 0
kj while true do
k9 if 5 A>< � ;4=(⇡&8) then
k8 if C> >= 5 A>< then
ke 1A40:
kd CAD=20C4 (⇡&, C>)
k3 if ;4=(⇡&8) = 0 then
kN 1A40:
jy 5 A>< := 0
jR C> := 0
jk else
jj (9, E, E<) = ⇡& [5 A><]
j9 if E< [9] = +8 [9] + 1 ^+< [:] +8 [:] |8: < 9 then
j8 +8 [9] = +8 [9] + 1
je 2M[m2m2<2

8 (hdlv, 9,+<,<i)
jd else
j3 ⇡& [5 A><] := ⇡& [C>]
jN C> := C> + 1
9y 5 A>< := 5 A>< + 1

4.4 Causal DAG

In the section we revisit the use of data structures and algorithms used in the classical causal delivery

implementations and propose different ones that we consider more suitable and efficient for representing

causality. In the following we explain why we moved to using “dependency dots” instead of vector clocks

and then propose a causality Directed Acyclic Graph to hold the causal metadata as well as replace the

traditional message queue.

A1 C1

C2

A2B2

SLT

B1

Xn

Xn

Xn

RCV

DLV

A2 B1 C2 A2 B1 C0 A0 B2 C0

A0 B1 C0

B1

110

101

101

101

101

111
depends

on

111 bitstring

Figure 19: Graphical representation of causal delivery using a delivery queue and a causal DAG

54

4.4. CAUSAL DAG

4.4.1 Reducing the causal information overhead

In the initial implementation, we used vector clocks to track causal information between operations. This

information is coupled with each operation to allow the delivery of the operations in an order respecting

causality of events. Vector clocks have been used widely to track causality and achieve causal delivery in a

group communication environment. However, as their size grows linearly with the number of participants in

the group, they become less efficient in large scale settings. To support large scale group communication

services, reducing the causal information overhead imposed by the use of vector clocks is a problem to

be solved.

We tackled this problem by implementing “dependency dots” (see Figure 19). Those “dependency

dots” are similar to some approaches used to compact the size of vector clocks [4, 45, 46]. We also applied

the transitive reduction on those dependency dots that allowed reducing the size even more. While similar

ideas exist in the literature, we present the implementation of the protocol using this alternative and how

the transitive reduction can be applied, which is not tackled previously.

Themain idea here is intuitive. A vector clock has one slot per peer representing the number of updates

seen (delivered) from the peer. This is a very compact information to represent causality. However in large

scale settings two things happen: the number of slots needed increases which makes the vector clocks

large in size, and most often only some of the nodes (at least at any point in time) are the ones making

updates. What this means is that a whole vector clock for every update when only a few slots need to be

updated seems like a lot of redundant information that could be trimmed down to compact the size of the

vectors and reduce the causality information overhead.

A dot is represented as §BI ⇥N and is used as a unique identifier for a message. When a message

<1 represented by the dot 3 causally happens-before another message<2 represented by the dot 30 it

means that 30 causally depends on 3 and therefore we call 3 a causal dependency of 30. A dot can have

more than one dependency dot, a set of dependency dots to characterize causality. At most the size of this

set of dependency dots is equal to the number of participants, thus making the size of our “dependency

dots” equal to the size of a vector clock only in the worst case scenario. But in general it small as a

node only needs to send a number of dots equal to the number of updates delivered since its last send.

Obviously, many updates could be delivered at a node between two consecutive sends, however, these

updates are not necessarily concurrent and therefore there exists some dependency between them. This

information can be reduced to only keep the most recent dots in the set of dependencies and it’s called a

transitive reduction on the dependency graph. For example, looking at Figure 19, we can see that⇠2 could

have in its set of dependencies {�1,⌫1,�2,⇠1}. By applying a transitive reduction on this subgraph, we
only need to keep {�2,⇠1} because ⇠2 directly depends on only �2 and ⇠1 but transitively on �1 and

⌫1. So having �2 in ⇠1’s dependency dots is enough to mean �1, ⌫1, and �2. Now, the size is of our

dependency dots that a node need to send in a message is reduced even more to be equal to the number

of concurrent updates delivered at that node since its last sent message.

55

CHAPTER 4. MIDDLEWARE

4.4.2 Reducing delivery time

Due to communication delays that usually happen in distributed settings, some received messages might

not be ready to be delivered if they fail to satisfy the causal delivery conditions. Only when the messages

and updates that causally precede them are delivered, they are are ready to be delivered. State of the

art blocking causal delivery implementations tend to store in a delivery queue until they can be delivered

again. Intuitively, whenever a new message is delivered, it could lead to the delivery of other messages

that are in the queue itself. The same is true for every new message that gets delivered in the queue,

triggering other messages to be delivered. This would lead to multiple loops of the whole queue where

the causal delivery check is tested against every vector clock, slot by slot resulting in unnecessary delays,

especially when the queue grows a lot.

Queues by design are more suitable for sequential ordering of events and are therefore a bad design

choice to represent partially ordered messages. Causal order is a partial order, an update can causally

depend on one or more updates, the causal dependence relation is non reflexive, meaning that we cannot

have two updates 0 and 1 where 0 ! 1 ^ 1 ! 0. A DAG, or directed acyclic graph is a more

suitable data structure to represent causal dependencies. This fits great with the use of “dependency

dots” mentioned before to track causal relations in the system. Each message is tagged/timestamped

by a globally unique identifier that we call dot. A dot is a couple (83, 2CA) where 83 2 I is the replica

identifier and 2CA 2 N is a monotonically increasing counter. At each replica, the causal order between

messages/events is captured using a DAG stored and updated by the middleware process. Each vertex in

the DAG represents a message/event and each directed edge represents the causal dependency between

those messages/events. This makes it faster to track dependencies of each message which is not possible

with queues, resulting in less delays in the delivery as only the undelivered successors of a message need

to be checked and not the whole queue. Therefore faster a delivery mechanism which may not be very

significant in a normal scenario, but is very significant when the number of undelivered messages grows

due to a partition or message loss. The system therefore could recover faster in such scenarios.

4.4.3 Causal dependency graph: notations and functionality

Definitions and notations of data structures used in the causal dependency graph:

§BI ⇥N, message unique identifier that we call a dot;

DS B stage ⇥ bits ⇥ pred ⇥ succ ⇥ pyld, data (record fields) associated with a dot in the

dependency graph;

#Bi : I õ! N, map from node id to bit mask;

G B §õ!DS, a DAG representing dependencies between dots;

Every dot in the dependency graph is associated with a value with the following record fields:

stage B {slt, rcv, dlv, stb}, message stage as slot (empty), received, delivered and stabilized respec-

tively;

56

4.5. GRAPH-BASED ALGORITHM FOR TAGGED CAUSAL DELIVERY

bits B {0, 1}# bit string where each bit position represents a member id used for checking delivery

and stability;

pred B P(§) set of predecessors (ids of messages on which the delivery of this message depends);
succ B P(§) set of successors (ids of messages whose delivery depends on the delivery of this mes-

sage);

pyld B message payload;

Each replica has a globally unique identifier 83 2 I, such as 83B are comparable and can be totally

ordered. Every replica 8 in the group has knowledge of the full membership which is stored in hashmap

#Bi that maps each replica 83 to value equals 2?>B (83) where ?>B (83) is the index of 83 in the ordered list

of ids. For instance, if the list of ordered replica ids is !8BC B (0,1, 2) |!8BC [0] = 0..., then #Bi(0) B 20.

For convenience, we implement the DAG abstraction as a hashmap that we call G, that maps each

dot to some data structure we callDS. TheDS data structure is composed of 5 attributes. The stage

attribute which is an 4=D<(slt, rcv, dlv, stb) encodes the stage of the message/events represented by the
dot. The stage takes one of the constant values slt, rcv, dlv, stb. slt encodes a placeholder for a dot that

has not been received, but is listed as a dependency of another received dot. rcv encodes a received dot

that has not been delivered yet. dlv/stb encodes a dot that is ready to be delivered/stable by the client

process. The bits attribute is one of the most useful as it encodes lots of information on just one bit

string of size # . This bit string encodes information used for delivery and for stability depending on the

value of stage. When a dot’s stage is rcv, then bits encodes the bit positions of every not delivered

predecessor. Initially, the value of bits is 1 for the position of every not delivered yet predecessor, and 0

for the others. When bits is 0, the dot is ready to be delivered. Similarly, when the value of stage is dlv,

bits encodes causal stability. Initially, the value of bits is 1 for every peer. The bit position of a certain

peer (j) becomes 0 (at i), when a message coming from j and is in the future of this dot is delivered at i.

When bits is 0, the dot is ready to be stable and stage becomes stb. The attributes pred and succ

encode respectively the set of dots representing the predecessors and the successors of the current dot.

For instance, if we consider 3 dots 308 , 3
1
9 and 3

2
: such that 3

0
8 has dependency 3

1
9 and 3

1
9 has dependency

32: , 3
0
8 would have pred set to {319 }, 319 would have pred set to {32:} and succ set to {3

0
8 }, and 32: its

pred set to {319 }. Note that in this chapter, although we mention causal stability during the explanation
of the causal DAG, we do not tackle causal stability until the next chapter.

4.5 Graph-based Algorithm for tagged causal delivery

We started by presenting the vector based version of our tagged causal delivery algorithm, and then explain-

ing how we can use dependency dots and the causal dependency graph to capture causal dependencies

between updates and ensure causal delivery. Now we merge both into a graph-based algorithm providing

tagged casual delivery that we explain below.

57

CHAPTER 4. MIDDLEWARE

4.5.1 Client Process

�G:P_Ah>J 9, Graph-based tagged causal delivery algorithm without causal stability at

client process for node 8 2 I
R state:

k 38 2 D
j 2CGC8 2 C

9 proc BMBi8 ()
8 38 := (8, 0)
e 2CGC8 := ;

d proc i+#+�bi8 (<B6)
3 i+/2HBp2`8 (38 , 2CGC8 ,<B6)
N 2M[m2m22<8 (msg,38 , 2CGC8 ,<B6)

Ry 38 := (8,38 .1 + 1)
RR 2CGC8 := 3

Rk on /2[m2m2<2
8 (dlv,3, 2CGC,<B6)

Rj 2CGC8 := {3} [2CGC8 \ 2CGC
R9 i+/2HBp2`8 (3, 2CGC,<B6)

R8 fun i+/2HBp2`8 (3, 2CGC,<B6)
f /2HBp2`v +�HH#�+F f

We start by Algorithm 4 which describes the client process. The client process at node 8 stores the

dot 3>C8 as the id to be used for the next update, and the context 2CGC8 which holds the set of dots of

the last concurrently delivered messages (after the transitive reduction) which would be the immediate

predecessors of the next broadcast message.

BMBi8 () initializes the state with an initial dot 3>C08 (8, 0) and an empty context 2CGC08 .

On i+#+�bi8 (<B6), the update is delivered locally by invoking the i+/2HBp2`8 () callback. The client
process prepares a message using the dot saved in the state, gets C8 and the message payload and

enqueues the prepared message by calling 2M[m2m22<8 (3>C8, 2CGC8,<B6) to be dequeued and broadcast
at the middleware process. Now, the local dot is incremented and the local context 2CGC8 is updated by

adding the last delivered dot, namely 3>C8 .

/2[m2m2<28 (deliver,3>C, 2CGC,<B6) checks the arrival of any messages originating at other peers

and marked as ready to be delivered by the middleware process. Whenever this queue has a message

ready, if the message then the callback i+/2HBp2`8 (3>C, 2CGC,<B6) is invoked to deliver the message to
the application. Also the context C8 is updated by removing any dot in C8 that already exists in C9 of the
message to be delivered, and adding {3>C 9 }. This is what makes the context at each client process hold
only the immediate predecessor without any transitive predecessors.

58

4.5. GRAPH-BASED ALGORITHM FOR TAGGED CAUSAL DELIVERY

�G:P_Ah>J 8, Graph-based tagged causal delivery algorithm without causal stability at
middleware process for node 8 2 I
R inputs:
k #Bi : I! N f #Bi K�bF ;Bp2M MQ/2 B/ f
j state:
9 ⌧8 : D õ!M f K2bb�;2 ;`�T? f
8 +8 : I! N f /2HBp2`2/ p2`bBQM p2+iQ` f

e on BMBi8 ()
d ⌧8 := ;
3 +8 := { 9 7! 0| 9 2 I}
N on /2[m2m22<8 (hmsg,3, %,<i)

Ry #`Q�/+�bi8 (hmsg,3, %,<i)
RR +8 [3 .0] := 3 .1

Rk on `2+2Bp28 (hmsg,3, %,<i)
Rj if +8 [3 .0] < 3 .1 ^ ¬(⌧8 [3] .bi�;2 = rcv) then
R9 % 0 = {? 2 % |? .1 > +8 [? .0]}
R8 for ? in % 0 do
Re if ? 8 /QK(⌧8) then
Rd ⌧8 [?] := {bi�;2 : slt, bm++ : ;}
R3 ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
RN 1 =

Õ#Bi(? .0)
ky (= if 3 2 /QK(⌧8) then ⌧8 [3] .bm++
kR else ;
kk ⌧8 [3] := {bi�;2 : rcv, #Bib : 1
kj T`2/ : % 0, bm++ : (,Kb; :<}
k9 if 1 = 0 then
k8 /2HBp2`8 (3)
ke proc /2HBp2`8 (3)
kd 2M[m2m2<8 (hdlv,3,⌧8 [3] .T`2/,⌧8 [3] .Kb;i)
k3 (9,=) = 3
kN +8 [9] := =
jy ⌧8 [3] := ⌧8 [3]{bi�;2 : dlv,
jR #Bib : ⇠(#Bi(8) | #Bi(9))}
jk for B in ⌧8 [3] .bm++ do
jj ⌧8 [B] .#Bib := ⌧8 [B] .#Bib & ⇠#Bi(9)
j9 if ⌧8 [B] .#Bib = 0 then
j8 /2HBp2`8 (B)

4.5.2 Middleware Process

We move now to the middleware process described in Algorithm 5. The middleware process of node 8

stores a data structure called G8 which represents the immediate dependency graph, and holds causality
metadata needed to ensure a correct delivery as well as the payload of the messages. Although, G8 is
a dependency graph, it is implemented as a hashmap that maps the globally-unique identifier of each

message D to its relative DS data structure that holds the metadata and payload.

BMBi8 () initializes both the dependency graph G8 and+8 , a version vector of delivered messages (used
for simplicity).

On /2[m2m22<8 (hmsg,3, %,<i), The message is broadcast to all peers in the group, +8 is updated

as the message is local and can be delivered. There is no need to add an entry in the dependency graph

for this update because the +8 holds that information.

59

CHAPTER 4. MIDDLEWARE

D

Dot received
Dot removed

from the
graph

local VV
updated

D
Dot

updated

Add Dot to
graph as

RCV

Dot

exists

SLT RCV

delivery

Figure 20: Stages of a dot in causal DAG (without causal stability)

In Figure 20, we show the different stages of a dot in our causal DAG without causal stability (at this

point). A dot representing a single unique message can have three different stages: slt, rcv and dlv. When

a dot in the causal DAG has a stage as slt it means that this dot has not been received yet. However, due to

message delays and reordering, a dot that causally depends on it has arrived before it and this add was in

its set of predecessors. Therefore we create a “slot” version of this dot only for it to exist as a predecessor

for the arriving dot. A dot in a slt stage, becomes rcv upon its arrival or receipt by the middleware process.

A dot does not have to go through the slt stage and could be directly be created and added as rcv upon

its arrival. When all the predecessors of a dot have been delivered, the dot itself becomes ready to be

delivered. Technically, upon delivery the dot is removed from the graph and therefore does not exists

anymore in the graph with a stage dlv. We left that only to illustrate the stage at which the dot becomes

delivered. In the next chapter, when we introduce causal stability, the dlv (as well as stb) is used in the

graph.

60

4.5. GRAPH-BASED ALGORITHM FOR TAGGED CAUSAL DELIVERY

dot received

Update dot info 
(lines 14-23)

check delivery 
(lines 24-25)

YES ignore

NO NO (stage is SLT)

Dot in Graph?

Already
delivered? Stage is RCV?YES

YESNO

Figure 21: Flowchart showing how the algorithm works upon receiving a new message (without causal
stability)

In Figure 21, the flowchart shows that upon receiving a dot, 4 possibilities exists. If the dot has been

received before and therefore already added to the graph then it’s a duplicate messages and can be

discarded with no additional action. This is the same case for when a dot is already delivered. And as

seen in the algorithm, the version vector is used to check if a dot has been already delivered and in that

case no action is taken. In the case where a dot has not been received or delivered before, it either does

not exists in the graph and should be added or it was created as a slt and needs to be updated.

On `2+2Bp28 (hmsg,3, %,<i), the message is received from a certain peer. The algorithm checks

if this message has been received and waiting to be delivered or has been already delivered before to

discard it. Otherwise, it adds it to the graph, and updates the DAG as needed. First, it checks if all its

predecessors (that have not been delivered already) exist and creates “slot” placeholders otherwise. Then

it adds the received dot 3 to the set of successors of all its predecessors. In the bitstring of the dot, it sets

to 1 the corresponding bit of every predecessor that is not delivered yet. In the case where the dot 3 is a

slt, it updates it and keeps the information it has about it’s successor. After adding and updating the dot

and its predecessors accordingly, it checks if it can be delivered.

/2HBp2`8 (3) delivers the dot 3 to the client process, updates the graph by removing the current dot

entry and updating its successors and predecessors, and increments the +8 correspondingly. When a

dot is delivered, the bitstring of all its successors is updated by setting to 0 the corresponding bit of the

(provenance of the) delivered dot. Then it tries to deliver all successors of 3 that could have been made

ready to be delivered.

61

8

Tagged causal delivery and Causal Stability

In this section, we introduce causal stability, explain its definition and how it differs from other stability

related concept in distributed systems. We then explain how the implementation of causal stability works in

both the vector-based and graph-based versions. Then we show a new version of the tagged causal delivery

algorithms extended to provide causal stability, also in both vector-based and graph-based versions.

5.1 Causal Stability

Stability is one of the most overloaded terms in distributed systems. Examples are stable storage, for

durable storage which survives process failure in a crash-recover model, or self stabilization [80] to refer to

reaching some global predicate within a finite number of steps. For causal delivery middleware, Birman [4]

defined message stability to mean that it is known that a message has been received at all intended nodes

(and : -stability to mean that it has been received by : nodes). This concept is relevant for implementation

purposes, namely for garbage collecting messages in a fault-tolerant system, as it allows a message to be

discarded when it been delivered locally and it has become stable.

A different concept is causal stability, named as such in a paper that defines pure operation-based

CRDTs [7], which make use of causal delivery. Causal stability concerns knowledge about the end-to-end

happens-before regarding future deliveries at each client process.

Definition 1 (Causal Stability). A causal timestamp C , and corresponding message, is causally stable at

node 8 when all messages subsequently delivered at 8 will have causal timestamp C 0 > C , according to the

end-to-end happens-before.

This implies that no message with a timestamp C 0 concurrent with C can be delivered at 8 once C is

causally stable at 8. For a message to be causally stable at some node, not only is it needed to have

been received everywhere, but also that it has been delivered everywhere, and that no further concurrent

messages may be delivered at that node. Therefore, causal stability is a stronger notion, implying classic

message stability. We notice that, depending on how knowledge is piggybacked, middleware can infer

that some message has been received everywhere, therefore being stable, even if itself or other causally

62

5.1. CAUSAL STABILITY

concurrent messages have not yet been delivered. This notion differs from classic message stability in

two fundamental ways:

• it is a per-node property (a message may be causally stable at node 8 but not at node 9), while a

message is stable if (it is known that) it was received everywhere;

• it is about message deliveries, therefore, a client-visible concept, relevant for the client API, while

message stability is essentially an implementation aspect about internal middleware events.

So, even if there are some similarities, causal stability is a different concept, and we consider it

important to use a different name, to avoid confusion with classic message stability. In fact, we have

already observed this confusion many times, namely in discussions about implementing causal stability.

The concept itself is not new, and it has been used many times, but hidden in applications, without being

properly recognized (because it has not been clearly identified). This has lead to successive ad-hoc re-

implementations, sometimes overly complex. As an example, causal stability is hidden inside the difficult

to understand implementation of Replicated Growable Arrays (RGAs) [6], while not being recognized as

a building block. We argue that this concept is important enough to be recognized and provided by the

middleware.

The TCDmiddleware can offer causal stability information through extending its API with a i+bi�#H28 (g)
event, which informs the client application that message with timestamp g is now causally stable locally.

Node 8 can check this by verifying if a message with timestamp C > g has already been delivered at 8

from every other node 9 in the set of nodes I. More formally, if /2HBp2`8 () represents the set of mes-
sage timestamps that have been delivered at node 8 and b`+(C) denotes the node that sent the message
corresponding to C :

i+bi�#H28 (g) if 89 2 I \ {8} · 9C 2 /2HBp2`8 () · b`+(C) = 9 ^ g < C .

One possible implementation of causal stability would be similar to the RGA tombstone deletion al-

gorithm [6]. Essentially, each node only needs to keep the last causality timestamp delivered from each

origin.

5.1.1 Causal Stability in the vector clock-based algorithm for TCD

Each node 8 keeps a map !8 (from node identifiers to vector clocks) with the last vector clock, delivered lo-

cally, from each other node. This allows defining a function HQr for the greatest lower bound on messages

issued at 9 and delivered to all nodes:

HQr(!, 9) ⌘ KBM({!(:) (9) |: 2 I}).

This allows knowing at node 8 that, e.g., if HQr(!8, 9) = 4, then all nodes have delivered at least message

number 4 from node 9 . Using this function we can now define a causal stability oracle. A timestamp g is

63

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

causally stable at node 8 if

g (b`+(g)) HQr(!8, b`+(g)) .
This ensures at 8 that message g was already delivered at all nodes and that each node issued a

message after delivering g , that is already delivered at 8. Since any messages concurrent to g from any

node : must have been issued prior to g being delivery at : then, due to causal delivery, they must have

also been delivered at node 8.

5.1.2 Causal Stability in the graph-based algorithm for TC

In the graph-based implementation there is no need for keeping an extra matrix or other data structure for

stability. In fact, the bit string used for checking causal delivery of a dot can be used for checking causal

stability once the dot is marked as DLV. Every bit position in the bit string represents one of the peers

in the membership. When the bit string reflects that every peer have delivered this dot it can become

stable at that node. Using bit strings is efficient as it requires minimal space in memory, and the bitwise

operations are not costly in time complexity.

Whenever a message from node 9 is delivered at 8, we know that it has also been delivered at 9 as

well as all its predecessors. Therefore, all the bit position of node 9 can be updated in the bit strings of

that dot and every predecessor, immediate and transitive.

Marking a dot a stable by the middleware happens in an order respecting causal order, meaning that

older dots get stabilized before their successors and so on. Whenever a dot is marked as stable, the client

is notified to invoke the i+bi�#H2 callback and then the client informs the middleware that this dot has

been stabilized and it is safe to be removed from the graph.

D
Dot removed

from the
graph

SLT RCV DLV STB

stability
D

D

Dot received

local VV
updated

D
Dot

updated

Add Dot to
graph as

RCV

Dot

exists

delivery

Figure 22: Stages of a dot in causal DAG (with causal stability)

In Figure 22, we tackle again the different stages of a dot in our causal DAG but now with causal

stability. As we explained previously the different stages, we now add one more stage for causal stability

64

5.1. CAUSAL STABILITY

that we call stb. Moreover, we mentioned in the previous version without stability a dot does not stay in the

graph with stage dlv. Here however, a dot stays in the graph after being delivered and the bitstring is used

to compute when a dot is causally stable. Basically, whenever a dot is delivered, the algorithm updates

the botstring of all its predecessors by setting to 0 the bit corresponding to the actor/node from which

the delivered dot was sent originally. For instance, when a dot ⇡5 which represents the 5th message

sent from node ⇡ is delivered all its predecessors of ⇡5 in the causal DAG at the receiving node update

their bitstring values by setting the bit corresponding to node ⇡ to 0. When the bitstring value of delivered

dot (stage dlv) is 0, it can be stabilized and its stage becomes stb. After a dot is stb it is ready to be

stabilized by the client process. When the client process dequeues the stabilize message of a certain dot,

the middleware can safely delete the stable dot from the causal DAG.

A1 C1

C2

A2B2

SLT

B1

Xn

Xn

Xn

Xn

RCV

DLV

STB

A2 B1 C2 A2 B1 C0 A0 B2 C0

A0 B1 C0
B1

A2 B1 C2

A0 B2 C0

A2 B1 C2

Min

A0 B1 C0=
][010

110

100

011

010

depends
on

111
delivery/stability

bitstring

Figure 23: Graphical representation of causal delivery using a delivery queue and a causal DAG (with
causal stability)

Figure 22 is also similar to Figure 20 from the previous chapter. Here we add to the previous ex-

planation, the part related to causal stability. When using version vectors to represent and track causal

dependency among messages, causal stability can be calculated by caculating the greatest lower bound

of the version vectors in the stabilty matrix seen in Figure 22. The stability matrix holds at each entry/row

the last delivered version vector of the node corresponding to that row. In the figure, the first row corre-

sponds to node �, the second row to node ⌫ and the third to node⇠. The greatest lower bound allows to

compute a stable version vector (SVV). The calculation of the SVV and causal stability in general is local

to the node and not global, meaning that a message can be stable at � but not necessarily stable at ⌫.

At each node, when the SVV is computed, we know that it is less or equal to every last version vector

delivered from every node. This means that any message that will be delivered after the SVV is computed

at that node will be greater than the SVV. A message can be stabilized at a node if its version vector is

less than the SVV at that node. As for the causal DAG-based version, the bitstring functionality changes

whenever a dot is delivered to be used for stability. In the previous version where we did not use causal

stability, the bitstrinng was only used to check if a dot is ready to be delivered when the bitrsting is equal

65

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

to 0. Now that causal stability is used, the bitstring is used to check delivery when the stage is rcv and

once delivered used similarly to check causal stability when the stage of the dot is dlv.

5.2 Causal Stability for VV-based Algorithm

5.2.1 Client process

The algorithm for the client process can be seen in Algorithm 6. The algorithm is very similar to the

previous version without stability presented earlier in Algorithm 2 with some incremental changes for

causal stability. Therefore, we will only address the changes without repeating the previous explanation.

We notice that /2[m2m2<28 is not only for dequeuing messages to be delivered. Instead it expects a

type based on which it can either result in delivering a message stabilizing a message. If it is a delivery,

the sender’s entry on +8 is incremented before invoking the tcdeliver callback. Otherwise, if it is a stable

message the tcstable callback is invoked.

�G:P_Ah>J e, Vector-based tagged causal delivery algorithm with causal stability at client

process for node 8 2 I
R state:

k +8 : I! N f /2HBp2`2/ p2`bBQM p2+iQ` f

j proc BMBi8 ()
9 +8 := { 9 7! 0| 9 2 I}

8 proc i+#+�bi8 (<B6)
e +8 := +8 [8] + 1

d i+/2HBp2`8 (8,+8 ,<B6)
3 2M[m2m22<8 (msg,+8 ,<B6)

N on /2[m2m2<2
8 (C~?4, 8,+<,<B6)

Ry if C~?4 = dlv

RR +8 [9] := +< [9]
Rk i+/2HBp2`8 (9,+<,<B6)
Rj else if C~?4 = stb

R9 i+bi�#H28 (9,+<,<B6)
R8 fun i+/2HBp2`8 (9,+<,<B6)

f /2HBp2`v +�HH#�+F f

Re fun i+bi�#H28 (9,+<,<B6)
f bi�#BHBx�iBQM +�HH#�+F f

5.2.2 Middleware process

The algorithm for the Middleware process is shown in Algorithm 7. Also, this algorithm shares parts in

common with its previous version without causal stability, presented in Algorithm 3. In this subsection,

66

5.2. CAUSAL STABILITY FOR VV-BASED ALGORITHM

we will only explain the new notations, data structures, functions and procedures that have not been

explained previously.

�G:P_Ah>J d, Vector-based tagged causal delivery algorithm with causal stability at mid-
dleware process for node 8 2 I
R state:
k +8 : I! N f /2HBp2`2/ oo f
j '8 : I! N f `2+2Bp2/ oo f
9 ⇡&8 : f /2HBp2`v [m2m2 f
8 "8 : I! +8 f bi�#BHBiv K�i`Bt f
e (+8 : I! N f bi�#H2 oo f
d ("0?8 : D õ!M f K�T Q7 bi�#H2 /Qib f
3 2CA8 : N f +QmMi2` f

N on BMBi8 ()
Ry +8 := { 9 7! 0| 9 2 I}
RR '8 := { 9 7! 0| 9 2 I}
Rk ⇡&8 := ;
Rj "8 := { 9 7! +8 | 9 2 I}
R9 (+8 := { 9 7! 0| 9 2 I}
R8 ("0?8 := ;
Re "8=8 := { 9 7! 0| 9 2 I}
Rd 2CA8 := 0

R3 on /2[m2m22<8 (hmsg,+ ,<i)
RN +8 [8] := +8 [8] + 1
ky mT/�i2bi�#BHBiv8 (8,+ ,<)
kR #`Q�/+�bi8 (hmsg, 8,+ ,<i)
kk on `2+2Bp28 (h 9,+<,<i)
kj if '8 [9] < +< [9] then
k9 '8 [9] := '8 [9] + 1
k8 if +< [9] = +8 [9] + 1
ke ^(+< [:] +8 [:] |8: < 9) then
kd 2M[m2m2<8 (hdlv, 9,+<,<i)
k3 mT/�i2bi�#BHBiv8 (9,+<,<)
kN /2HBp2`8 ()
jy else
jR ⇡&8 := ⇡&8 + (9,+<,<)
jk proc mT/�i2bi�#BHBiv8 (9,+<,<)
jj "8 [8] := +8
j9 if 8 < 9 then
j8 "8 [9] := +<
je 2CA8 := ⇠CA8 + 1
jd ("0?8 [(9,+< [9])] := (+<,<, 2CA8)
j3 if 9 2 "8=8 then
jN #4F(+ = +�H+mH�i2ao(9)
9y if #4F(+ < (+8 then
9R (C01;4⇡>CB = #4F(+ � (+8
9k bi�#BHBx28 ((C01;4⇡>CB)
9j (+8 := #4F(+

99 proc /2HBp2`8 ()
98 5 A>< := 0
9e C> := 0
9d while true do
93 if 5 A>< � ;4=(⇡&8) then
9N if C> >= 5 A>< then
8y 1A40:
8R CAD=20C4 (⇡&, C>)
8k if ;4=(⇡&8) = 0 then
8j 1A40:
89 5 A>< := 0
88 C> := 0
8e else
8d (9, E, E<) = ⇡& [5 A><]
83 if E< [9] = +8 [9] + 1 ^+< [:] +8 [:] |8: < 9 then
8N +8 [9] = +8 [9] + 1
ey 2M[m2m2<8 (hdlv, 9,+<,<i)
eR mT/�i2bi�#BHBiv8 (9,+<,<)
ek else
ej ⇡& [5 A><] := ⇡& [C>]
e9 C> := C> + 1
e8 5 A>< := 5 A>< + 1

ee proc bi�#BHBx28 ((⇡)
ed ! = {("0?8 [3] |3 2 (⇡}
e3 (= B>AC (!, |G,~ |G .2 < ~.2)
eN for (E,<, 2) 2 (do
dy 2M[m2m2<2

8 (hstb, E,<i)
dR ("0?8 := (⇡ C� ("0?8
dk fn +�H+mH�i2ao(9)
dj =4F(+ := (+8
d9 for 2>; = 0..= do
d8 if"8=8 [2>;] = 9 then
de <8= := "8 [0] [2>;]
dd <8=A>F := 0
d3 for A>F = 1..= do
dN if" [A>F] [2>;] < <8= then
3y <8= := "8 [A>F] [2>;]
3R <8=A>F := A>F
3k =4F(+ [2>;] :=<8=
3j "8=8 [2>;] :=<8=A>F
39 return =4F(+

For determining causal stability, the middleware has a stability matrix"8 , a stable version vector (+8 ,

a map of stable dots ("0?8 , a vector"8=8 and a counter 2CA8 . For a group with N peers, each middleware

67

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

has a # ⇥ # matrix"8 , where row j is the version vector of the last delivered message from node j. (+8
is a vector with N entries, where each position is the minimum of the same column in the matrix"8 . With

the minimum of each column it is possible to know what is stable (from the perspective of i that has "8)

by comparing the message’s version vector with these minimums. The "8=8 is vector where each entry

is the row with minimum of the corresponding column of"8=8 . Delivered but not yet stable message are

saved in the ("0?8 . The 2CA8 field is an integer that is used to order stable messages before enqueuing

them to the Client. When a message<9 is delivered, row "8 [9] is updated with its version vector, and

it is also added to the map ("0?8 . Calculating the (+8 vector every time "8 is updated can become

costly, specially when dealing with large groups. To overcome this problem the"8=8 vector was created,

by checking if the sender’s id is in it. If it is not, then the minimums of the columns are the same and

(+8 has not changed. Otherwise, it means that the row where the minimum was has changed, and so

the could the minimum have also changed. Therefore, for each entry k on "8=8 where "8=8 [:] is the
same as the sender’s id, the column k of "8 is traversed to check for the minimum and a row with that

minimum. Then every entry in the current (+8 with the sender’s id is updated and if the new vector is

not the same as the previous, it means that there are new stable messages. The entries that are different

when comparing these stable vectors are the new stable messages. For example, for a group with 4

peers, if the previous and new (+8 vector were, respectively, [15, 9, 10, 12] and [16, 9, 10, 13], then

the message with id 16 from peer 0 and the message with id 13 from peer 3 became stable. By having

the rows with the minimums instead of calculating them at each update reduces overhead and time on

calculations.

68

5.3. CAUSAL STABILITY FOR GRAPH-BASED TCB ALGORITHM

5.3 Causal Stability for graph-based TCB Algorithm

5.3.1 Client Process

�G:P_Ah>J 3, Graph-based tagged causal delivery algorithm with causal stability at client

process for node 8 2 I
R state:

k 38 2 D
j 2CGC8 2 C

9 proc BMBi8 ()
8 38 := (8, 0)
e 2CGC8 := ;

d proc i+#+�bi8 (<B6)
3 i+/2HBp2`8 (38 , 2CGC8 ,<B6)
N 2M[m2m22<8 (msg,38 , 2CGC8 ,<B6)

Ry 38 := (8,38 .1 + 1)
RR 2CGC8 := 3

Rk on /2[m2m2<2
8 (C~?4,3, 2CGC,<B6)

Rj if C~?4 = dlv

R9 2CGC8 := {3} [2CGC8 \ 2CGC
R8 i+/2HBp2`8 (3, 2CGC,<B6)
Re else if C~?4 = stb

Rd i+bi�#H28 (3, 2CGC,<B6)
R3 2M[m2m22<8 (stb,3)

RN fun i+/2HBp2`8 (3, 2CGC,<B6)
f /2HBp2`v +�HH#�+F f

ky fun i+bi�#H28 (3, 2CGC,<B6)
f bi�#BHBx�iBQM +�HH#�+F f

The algorithm for the client process can be seen in Algorithm 8. The algorithm is very similar to the

previous version without stability presented earlier in Algorithm 4 with some incremental changes for

causal stability. Therefore, we will only address the changes without repeating the previous explanation.

/2[m2m2<28 (C~?4,3>C, 2CGC,<B6) checks the arrival of any messages at the delivery/stability queue.
Whenever this queue has a message ready, if the message is a delivery message then the callback

i+/2HBp2`8 (3>C, 2CGC,<B6) is invoked to deliver the message to the application. Also the context C8
is updated by removing any dot in C8 that already exists in C9 of the message to be delivered, and adding
{3>C 9 }. This is what makes the context at each client process hold only the immediate predecessor

without any transitive predecessors. In the case where the message dequeued is a stability message,

i+bi�#H28 (3>C, 2CGC,<B6) callback is invoked and the 3>C is stabilized at the application. Here the con-
text is not updated. Finally, a message is enqueued back to the middleware process signaling that the dot

has been stabilized and it can be deleted form the graph safely.

69

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

5.3.2 Middleware Process

�G:P_Ah>J N, Graph-based tagged causal delivery algorithm with causal stability at mid-
dleware process for node 8 2 I
R inputs:
k #Bi : I! N f #Bi K�bF ;Bp2M MQ/2 B/ f
j state:
9 ⌧8 : D õ!M f K2bb�;2 ;`�T? f
8 +8 : I! N f /2HBp2`2/ p2`bBQM p2+iQ` f

e on BMBi8 ()
d ⌧8 := ;
3 +8 := { 9 7! 0| 9 2 I}
N on /2[m2m2<8 (hmsg,3, %,<i)

Ry #`Q�/+�bi8 (hmsg,3, %,<i)
RR +8 [3 .0] := 3 .1
Rk % 0 = {? 2 % |¬ bi�#H28 (?)}
Rj for ? in % 0 do
R9 ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
R8 ⌧8 [3] := {bi�;2 : dlv, #Bib : ⇠#Bi(8),
Re T`2/ : % 0, bm++ : ;,Kb; :<}
Rd mT/�i2bi�#BHBiv8 (⇠#Bi(8),3)
R3 on `2+2Bp28 (hmsg,3, %,<i)
RN if +8 [3 .0] < 3 .1 ^ ¬(⌧8 [3] .bi�;2 = rcv) then
ky % 0 = {? 2 % |¬ bi�#H28 (?)}
kR for ? in % 0 do
kk if ? 8 /QK(⌧8) then
kj ⌧8 [?] := {bi�;2 : slt, bm++ : ;}
k9 ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
k8 1 =

Õ{#Bi(? .0) |? 2 % 0 ^⌧8 [?] < dlv}
ke (= if 3 2 /QK(⌧8) then ⌧8 [3] .bm++
kd else ;
k3 ⌧8 [3] := {bi�;2 : rcv, #Bib : 1
kN T`2/ : % 0, bm++ : (,Kb; :<}
jy if 1 = 0 then
jR /2HBp2`8 (3)
jk on /2[m2m28 (hstb,3i)
jj /2H2i2bi�#H28 (3)

j9 fn bi�#H28 (3)
j8 3 .1 +8 [3 .0] ^ (3 8 /QK(⌧8) _⌧8 [3] .bi�;2 = stb)
je proc /2HBp2`8 (3)
jd 2M[m2m2<8 (hdlv,3,⌧8 [3] .T`2/,⌧8 [3] .Kb;i)
j3 (9,=) = 3
jN +8 [9] := =
9y ⌧8 [3] := ⌧8 [3]{bi�;2 : dlv,
9R #Bib : ⇠(#Bi(8) | #Bi(9))}
9k mT/�i2bi�#BHBiv8 (⇠#Bi(9),3)
9j for B in ⌧8 [3] .bm++ do
99 ⌧8 [B] .#Bib := ⌧8 [B] .#Bib & ⇠#Bi(9)
98 if ⌧8 [B] .#Bib = 0 then
9e /2HBp2`8 (B)
9d proc mT/�i2bi�#BHBiv8 (1,3)
93 for ? in ⌧8 [3] .T`2/ do
9N if ⌧8 [?] .bi�;2 < stb then
8y 1 0 = ⌧8 [?] .#Bib & 1
8R if 1 0 < ⌧8 [?] .#Bib then
8k ⌧8 [?] .#Bib := 1 0
8j if 1 0 = 0 then
89 bi�#BHBx28 (?)
88 else
8e mT/�i2bi�#BHBiv8 (1, ?)
8d proc bi�#BHBx28 (3)
83 % = ⌧8 [3] .T`2/
8N for ? in % do
ey if ⌧8 [?] .bi�;2 < stb then
eR bi�#BHBx28 (?)
ek ⌧8 [3] .bi�;2 := stb
ej 2M[m2m2<8 (hstb,3, %,⌧8 [3] .Kb;i)
e9 proc /2H2i2bi�#H28 (3)
e8 for B in ⌧8 [3] .bm++ do
ee ⌧8 [B] .T`2/ := ⌧8 [B] .T`2/ \ {3}
ed ⌧8 := 3 C�⌧8

The algorithm for the Middleware process is shown in Algorithm 9. Also, this algorithm shares

parts in common with its previous version without causal stability, presented in Algorithm 5. In this

subsection, we will only explain the new notations, data structures, functions and procedures that have not

been explained previously. As mentioned before, the causal relations between messages are maintained

through a graph, specifically a Directed Acyclic Graph or DAG. The middleware has as state a version

vector +8 and a DAG ⌧8 .

The number of entries on +8 is the same as the number of peers in the group and each of them

represent the cntr field from the dot of the last delivered message from the peer corresponding to that

70

5.3. CAUSAL STABILITY FOR GRAPH-BASED TCB ALGORITHM

position. Initially, +8 starts with 0 in all positions and an empty ⌧8 . A node in ⌧8 represents a message

and has five parameters: stage, bits, pred, succ and msg.

The stage is an enum of the node’s current state and can either be as a slot SLT, received RCV,

delivered DLV or stable STB. A SLT node is a message that has not yet been received but it is a predecessor

of another received message that has added it to the graph to serve as a placeholder. A node marked as

RCV means that the message has been received but not delivered; if it is marked as DLV then it has been

delivered but it is not stable and only it is considered as such when it has stage STB.

Every node has a bits field that is a string of bits with the same size as the number of peers in the group.

Depending on the node’s stage these bits are used either to determine if a message can be delivered or

considered stable. If a bit is 1 while the node has stage RCV it means that a causal predecessor from

the peer in that position has not been delivered. When a predecessor is delivered, the bit position of

the sender in their successors are set to 0. Only when all the bits of a node are 0 can the message be

delivered. Otherwise, when a message is marked as DLV this string is used to determine causal stability.

After delivery, the bit field starts with all elements as 1 (except the local and sender peers positions) and

the delivery of a message successor to the node sets a bit to 0 in the respective position of the sender

peer. The bits of peer i and the sender peer are 0 after delivery because the node’s message already is

in the past of the their next message. Besides these, a node also has a pred and succ field. These are,

respectively, the dots of the message’s causal predecessors and successors. Furthermore, the msg is the

message that a peer sent.

When the Client process calls tcbcast, a message m is enqueued to tcbcast, along with a dot d and a

list of predecessor P as a context. The Middleware then calls the 34@D4D4<8 callback and dequeues from

tcbcast. First the message is sent to be broadcast with the broadcast callback. Then the peer’s entry

on +8 is updated with the cntr of the message’s dot. After this the message’s predecessors that are not

stable are calculated. As shown in the stable function of the algorithm, a message is stable if it has been

delivered (its sender’s entry on +8 is equal or less than the cntr from its dot) and either its stage on the

graph is STB or it has already been removed from the graph. The message’s dot is then added to the

succ field of its predecessors that are not stable. After that the message with stage DLV, with the i bit as

0 and all the others as 1 is added to⌧8 , calling in the end D?30C4BC018;8C~8 .

If the Middleware receives a message from a peer in the group A4248E48 is called. A message can

only be considered as received if the cntr field on its dot is greater than the sender’s entry on +8 and if

its stage on the DAG is not received. With this only messages that are not in ⌧8 or have a placeholder

node with stage SLT can be added to the graph. Then this function calculates from the predecessors P of

the message the ones that are not stable. The received message’s dot is added to its predecessors’ succ

field and if a predecessor has not yet been received then a node with stage SLT is added to the graph as

a placeholder. A bit string with entry 0 as a delivered predecessor (or not a predecessor at all) from that

peer or 1 as a predecessor that has not been delivered is created. In the algorithm, (is the list of the

successors’ dots of the received message.

In case the message’s node previously had stage SLT then the list remains the same as the succ field,

71

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

otherwise (is an empty list. The message’s fields are updated and added to the graph (if not already

there) and if bit has all its bits as 0 then the message can be delivered. Upon delivery, the Middleware

sends the message to the Client, its dot and the predecessors’ dots through the tcbdelivery queue. The

node’s stage is updated to DLV marking the message as delivered and the bit string is used for calculating

stability. The sender’s and the i entries are set to 0 while the remaining are set to 1. Then the stability

of the node is updated. After that the bit in the bit string in sender’s position of all the node’s successors

is set to 0 and if the successor’s bit field has all the bits to 0 then its message can be delivered. This

means that a delivery can cause other deliveries and 34;8E4A8 is called recursively to traverse the graph

and ensure that.

When a message is broadcast or delivered, the stability of its predecessors is updated. Starting from

the node, the graph is traversed in the direction of its predecessors and setting recursively the bit in the

sender’s position to 0. This indicates that a message ahead of the node has been delivered. If that node’s

bit mask already had the bit in that position as 0 then the recursive call stops. Otherwise, if the bit field only

has bits 0 then the message is considered stable because of the previous delivery and stabilize is called.

If not, updatestability is called to each predecessor of the node. Upon calling stabilize on a message, its

predecessors are also marked as stable stabilize is called on them and these are sent to the Client as

stable first.

If the Middleware dequeues a stable dot from the Client it means that a message was acknowledged as

stable. Therefore it can be removed from the graph by calling delestable. This function removes the stable

dot from the pred field of its successors in the graph and its node is also removed from the graph.

72

5.3. CAUSAL STABILITY FOR GRAPH-BASED TCB ALGORITHM

A1 C1

C2

A2B2

B1

010

110

100

011

010

A1 C1

C2

A2B2

B1

000

110

100

011

000

000 101

A1 C1

C2

A2B2

B1

101

110

100

011

011

101
A1 C1

C2

A2B2

B1

101

110

000

011

011

001
A1 C1

C2

A2B2

B1

101

110

110

011

011

001

A1 C1

C2

A2B2

B1

101

110

110

010

010

000
A1 C1

C2

A2B2

B1

101

110

110

010

010

A1 C1

C2

A2B2

B1

B1

010

110

100

011

010

A1 C1

C2

A2B2
101

110

110

010

010

1 2 3

4

7 8

5 6

9

Figure 24: Evolution of the causal DAG (with causal stability)

We show in Figure 24 an example illustrating the evolution of the causal DAG. We start at the first

quadrant, with previously shown example. Dot ⌫1 is received at the node with the current causal DAG. We

can see that a ⌫1 placeholder exists with the stage slt because ⌫2 was received before ⌫1 and therefore

has created this placeholder for its dependency ⌫1. Also, the bitstrings for the dots having stage rcv are

used for checking delivery (�2, ⌫2, ⇠2) and for checking stability for the dots having the stage dlv (�1

and ⇠1). In every bitstring the most significant bit corresponds to node �, the second to node ⌫ and

the least significant to node ⇠. An consequently we can see that dot ⌫2 for example having stage rcv is

waiting for the delivery of a message from node ⌫ because its bitstring holds the value 010 indicating that.

Same for⇠2 waiting for�2 to be delivered which is reflected in its bitstring 100 reflecting that a message

from node � needs to be delivered. Similarly for dots having stage dlv, the dot �1 having bitstring 011

means that �1 can be stabilized when a causally succeding dot from node ⌫ and another from node ⇠

need to be delivered first. At the second quadrant, when ⌫1 is received it is added to the graph. Having

73

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

no dependencies, it can be delivered immediately and allows the delivery of its successors �2 and ⌫2 to

be delivered as well. At quadrant 4 we notice that the bitstrings of the delivered dots �2 and ⌫2 now are

updated for checking causal stability. In quadrant 5, the delivery of�2 triggers the delivery of its successor

⇠2. And the bitstring of ⌫1 changes from 101 to 001 due to the delivery of a causally succeeding dot from

node �, �2. In quadrant 6, ⇠2 is delivered and its delivery updates the bitstring values of ⌫2, �2 and

⌫1 setting to 0 the least significant bit corresponding to⇠. Now that ⌫1 is delivered and has a bitstring of

value 0, it is stabilized as seen in quadrant 8. When the client receives the stable message of ⌫1 it asks

the middleware process to delete ⌫1 from the DAG and update it correspondingly.

5.4 Phantom Dots: An Optimisation for Active/Passive Node

In the previous sections we presented a new version of the algorithm that uses causal stability. As explained

causal stability uses the causality information sent in messages as metadata to infer what message can

become causally stable and therefore compact the causal graph. This improves the performance of our

middleware by reducing the memory needed to store the causal graphs and the time needed to traverse

and update the causal DAG. As this knowledge is inferred from messages sent, the rate and number of

messages sent affects the the speed at which dot in the causal DAG become causally stable. Moreover,

causal stability is done locally and therefore it needs information from all the nodes in the group. All

this means that when nodes become less active, slow or completely passive, causal stability is slow and

therefore the performance of our system drops. In the case where it’s a small group of node and most

of them are active at least at some point then the performance is not affected too much. However, when

the number of nodes grows most of the nodes are readers and only a few are senders. If a node is not

sending and only receiving, then stability cannot advance because that node is not sending the metadata

information about what it has delivered to other nodes, which required for causal stability. In this section

we address this problem by adding the option of explicitly send the metadata required for causal stability.

We call those messages phantom messages as they are not added to the causal DAG and do not really

affect the original algorithm. We present the algorithms at both the client process and middleware process

for this version.

5.4.1 Client Process

We start from the algorithm seen in Algorithm 10 and extend it to include sending, receiving and updat-

ing the causal graph based on the knowledge propagated using the phantom dots. At the client process,

the algorithm is mostly the same as the previous version with causal stability presented earlier in Algo-

rithm 8. One additional procedure bi�#S?�MiQK8 () is added which would get the current client state
comprised of the current dot and the context and enqueue it on the communication queue from the client

to the middleware. This procedure basically allows the application to send causality information to the

74

5.4. PHANTOM DOTS: AN OPTIMISATION FOR ACTIVE/PASSIVE NODE

middleware process without any other payload to update the stability information in the causal dependency

graph.

�G:P_Ah>J Ry, Graph-based tagged causal delivery algorithm with causal stability and

phantom messages at client process for node 8 2 I
R state:

k 38 2 D
j 2CGC8 2 C

9 proc BMBi8 ()
8 38 := (8, 0)
e 2CGC8 := ;

d proc i+#+�bi8 (<B6)
f /2HBp2`f�TTHv i?2 Kb; f

3 i+/2HBp2`8 (38 , 2CGC8 ,<B6)
N 2M[m2m22<8 (msg,38 , 2CGC8 ,<B6)

Ry 38 := (8,38 .1 + 1)
RR 2CGC8 := 3

Rk proc bi�#S?�MiQK8 ()
Rj 2M[m2m22<8 (phantom,38 , 2CGC8)

R9 on /2[m2m2<2
8 (3, 2CGC,<B6)

R8 2CGC8 := {3} [2CGC8 \ 2CGC
Re i+/2HBp2`8 (3, 2CGC,<B6)

Rd on /2[m2m2<2
8 (3, 2CGC)

R3 i+bi�#H28 (3 9 , 2CGC 9 ,<B6)
RN 2M[m2m22<8 (stb,38)

ky fun i+/2HBp2`8 (3, 2CGC,<B6)
f /2HBp2`v +�HH#�+F f

kR fun i+bi�#H28 (3, 2CGC)
f bi�#BHBx�iBQM +�HH#�+F f

5.4.2 Middleware Process

Similarly, the algorithm for the Middleware process is shown in Algorithm 11. Also, this algorithm

shares most parts in common with its previous version with causal stability, presented in Algorithm 9.

In this subsection, we will only focus on functions and procedures that have been added for the phantom

dots and causal stability updates. The main change done here is adding /2[m2m28 (hphantom,3, %i) to
handle receiving a phantom dot request and update the local causal stability information based on the

metadata in (3, %). As this was not part of the algorithm in the previous version, we created the procedure

+?2+Fbi�#BHBiv8 (3, %) that takes the information sent and updates the causal stability information in dot
3 and all its predecessors as well as mark dots as causally stable dots when it is the case. To avoid

redundancy of checking and updating stability in our algorithm, some changes were made in the part of

75

CHAPTER 5. TAGGED CAUSAL DELIVERY AND CAUSAL STABILITY

our algorithm which is common with the previous version. For example, calling +?2+Fbi�#BHBiv8 (3, %) at
line 30, as well as updating mT/�i2bi�#BHBiv8 (3, %) and bi�#BHBx28 (3) accordingly.

�G:P_Ah>J RR, Graph-based tagged causal delivery algorithm with causal stability and
phantom messages at middleware process for node 8 2 I
R inputs:
k #Bi : I! N f #Bi K�bF ;Bp2M MQ/2 B/ f
j state:
9 ⌧8 : D õ!M f K2bb�;2 ;`�T? f
8 +8 : I! N f /2HBp2`2/ p2`bBQM p2+iQ` f

e on BMBi8 ()
d ⌧8 := ;
3 +8 := { 9 7! 0| 9 2 I}
N on /2[m2m2<8 (hmsg,3, %,<i)

Ry #`Q�/+�bi8 (hmsg,3, %,<i)
RR +8 [3 .0] := 3 .1
Rk % 0 = {? 2 % |¬ bi�#H28 (?)}
Rj for ? in % 0 do
R9 ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
R8 ⌧8 [3] := {bi�;2 : dlv, #Bib : ⇠0,
Re T`2/ : % 0, bm++ : ;,Kb; :<}
Rd mT/�i2bi�#BHBiv8 (⇠#Bi(8),3)
R3 on `2+2Bp28 (hmsg,3, %,<i)
RN if +8 [3 .0] < 3 .1 ^ ¬(⌧8 [3] .bi�;2 = rcv) then
ky % 0 = {? 2 % |¬ bi�#H28 (?)}
kR for ? in % 0 do
kk if ? 8 /QK(⌧8) then
kj ⌧8 [?] := {bi�;2 : slt, bm++ : ;}
k9 ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
k8 1 =

Õ{#Bi(? .0) |? 2 % 0 ^⌧8 [?] < dlv}
ke (= if 3 2 /QK(⌧8) then ⌧8 [3] .bm++
kd else ;
k3 ⌧8 [3] := {bi�;2 : rcv, #Bib : 1
kN T`2/ : % 0, bm++ : (,Kb; :<}
jy +?2+Fbi�#BHBiv8 (3, % 0)
jR if 1 = 0 then
jk /2HBp2`8 (3)
jj on /2[m2m28 (hphantom,3, %i)
j9 +?2+Fbi�#BHBiv8 (3, %)
j8 on /2[m2m28 (hstb,3i)
je /2H2i2bi�#H28 (3)

jd proc /2HBp2`8 (3)
j3 2M[m2m2<8 (hdlv,3,⌧8 [3] .Kb;i)
jN (9,=) = 3
9y +8 [9] := =
9R ⌧8 [3] := ⌧8 [3]{bi�;2 : dlv,
9k #Bib : ⇠#Bi(8)}
9j mT/�i2bi�#BHBiv8 (⇠#Bi(9),3)
99 for B in ⌧8 [3] .bm++ do
98 ⌧8 [B] .#Bib := ⌧8 [B] .#Bib & ⇠#Bi(9)
9e if ⌧8 [B] .#Bib = 0 then
9d /2HBp2`8 (B)
93 fn bi�#H28 (3)
9N 3 .1 +8 [3 .0] ^ (3 8 /QK(⌧8) _⌧8 [3] .bi�;2 = stb)
8y proc +?2+Fbi�#BHBiv8 (3, %)
8R if 3 .1 = 1 ++8 [3 .0] then
8k for ? 2 % do
8j mT/�i2bi�#BHBiv8 (⇠#Bi(3 .0), ?)
89 proc mT/�i2bi�#BHBiv8 (1,3)
88 if ⌧8 [3] .bi�;2 = dlv then
8e 1 0 = ⌧8 [3] .#Bib & 1
8d if 1 0 < ⌧8 [3] .#Bib then
83 ⌧8 [3] .#Bib := 1 0
8N if 1 0 = 0 then
ey bi�#BHBx28 (3)
eR else
ek for ? in ⌧8 [3] .T`2/ do
ej mT/�i2bi�#BHBiv8 (1, ?)
e9 proc bi�#BHBx28 (3)
e8 for ? in ⌧8 [3] .T`2/ do
ee if ⌧8 [?] .bi�;2 < stb then
ed bi�#BHBx28 (?)
e3 ⌧8 [3] .bi�;2 := stb
eN 2M[m2m2<8 (hstb,3i)
dy proc /2H2i2bi�#H28 (3)
dR for B in ⌧8 [3] .bm++ do
dk ⌧8 [B] .T`2/ := ⌧8 [B] .T`2/ \ {3}
dj ⌧8 := 3 C�⌧8

76

e

Dynamic Membership

In the previous chapters, we discussed our Tagged Causal Delivery Algorithms considering static mem-

bership. This means that in our system model so far, the group membership of our system is a fixed-sized

set of all the nodes in the system. However, realistic use cases require distributed systems to allow new

nodes to join, and existing nodes to leave. Obviously, the correctness of the system and its computation

should not be affected. In this chapter, we explain how we extended our protocol to support dynamic

environments, where new nodes can join, and existing nodes can leave, all maintaining the correctness

of tagged causal delivery and stability.

6.1 Causal Stability in Dynamic Membership

In the previous chapters, we explained what causal stability is and how it provides the system when an

operation or a message is stable at a certain node or multiple nodes. We use causal stability in the

same fashion to extend our system from a static group membership to dynamic group membership. This

allows the existing nodes in the system to continue working normally without blocking whenever a new

node join or an existing one leaves. Therefore causal stability allows us to provide a non-blocking dynamic

membership to our Tagged Causal Delivery middleware.

We consider every join request and every leave request as every other operation in the system. It has

a dot as an identifier, it is issued by a node in the group membership and it is added to the causal DAG.

Certainly, there some conditions that apply specifically to join or leave operations in addition to that, as

they are special operations than the rest. We explain in this section the logic behind using causal stability

to ensure the non-blocking join and leave operations. We defer the detailed explanation of the dynamic

version of our algorithm to Section 6.2.

6.1.1 Causal Stability and Join Requests

Our system model requires that every node in the group membership has the knowledge of the full group

membership. This is mainly needed for causal stability to work correctly. When a new node joins, the group

77

CHAPTER 6. DYNAMIC MEMBERSHIP

membership will eventually change and all the existing nodes need to know about the new membership.

In addition to that, the joining node needs to have a correct and up-to-date state before starting to send

and receive messages for the existing peers. One way to do that is to block the system until the new node

joins, receives the the updates needed to have a correct state and inform every existing node of the new

node. This might not seem costly if joins are rare. However, in dynamic systems, many nodes might be

joining or leaving continuously which makes blocking the system very costly. Causal Stability allows new

nodes to join without blocking the existing nodes from continuing their distributed computation or sending

and receiving requests.

Every new node that wants to join the group send a request to an existing node in the group member-

ship along with its unique ID. The contacted node handles this request and is responsible of making sure

that the new node becomes a member of the group safely. Upon receiving the request, the contacted

node assigns a dot (of his own) to the join request, its context containing the causal dependencies and

adds it to its local causal DAG as delivered. It also updates its membership locally to include the new node.

Next, it collects the application data needed as well as causality related meta data that causally precedes

the join request and sends it back to the new joining node to initialize its state. The new node initializes its

state and spawns a middleware process. Until this point the new node cannot safely send or broadcast

any messages to the group, and it only receives messages from the contacted node. Now the contacted

node broadcasts the join request as any normal operation to every node in the membership. It also keeps

forwarding for the new node, all the previous messages it has received and that were concurrent to the

join request. It keeps forwarding so the new node can receive all the messages and stay up-to-date. When

the other nodes deliver the join request, they update their membership to include the new node which

will starts receiving the broadcasts. Until this point, the new node only receives the messages but cannot

send or broadcast yet. When the join request is stable at the contacted node, the latter knows that every

node in the group membership has delivered the join request and therefore all the new broadcasts will

also be received by the new node. Thus, there is no need to forward messages anymore. Only then the

new node is included in the membership at all nodes, and receives every message. It also can safely start

to send or broadcast messages yet. Causal stability allows new nodes to safely join the group without

blocking the system or breaking causal consistency.

6.1.2 Causal Stability and Leave Requests

The logic is similar when an existing node decides to leave the group membership, with a few changes.

When a node of the group decided to leave the group, it broadcasts to all membership a leave request.

The leave request is also added to the local DAG at every node as normal message. Every node that

delivers the leave request stops sending messages to the leaving node. The leave request is also added

and delivered locally at the leaving node. The leaving node cannot yet leave safely. When the leave request

is causally stable at the leaving node, the latter knows that all the other nodes have delivered the leave

request and can safely exit the group membership. As for the other nodes, each of them can only delete

78

6.2. ALGORITHM

the meta data related to the to the leaving node and from their membership when the leave request is

causally stable for them locally. The reason is that until the leave request is causally stable locally, a node

can still receive messages concurrent to the leave request, and that require the meta data including the

leaving node. Causal stability allows existing nodes to safely leave the group without blocking the system

or breaking causal consistency.

6.2 Algorithm

In this section, we present the dynamic version of our Tagged Causal Delivery middleware in Algorithm 12

for the client process, and Algorithm 13 for the middleware process. We start by extending the latest

algorithms presented previously in Algorithms 10 and 11.

6.2.1 System Startup

At the client process, we add a boolean called B4=3BC0CDB8 . If B4=3BC0CDB8 is set to 1, the node can

broadcast messages i+#+�bi8 (). Otherwise, it can only receive messages as it is temporarily the case for
new joining nodes. In fact, the system can be bootstrapped with a number of nodes in the same group

membership. Those nodes are initialized using BMBi8 (() where ((= active). They can send and receive
messages to every node in the group and have a middleware process that is responsible of managing

causal meta data such as the causal DAG and ensuring Tagged Causal Delivery. As for new joining nodes,

they are initialized with ((= inactive) and can only spawn a middleware process (line 42 in Algorithm 12)

and start broadcasting messages (line 34 in Algorithm 12) when the join request is stable at the contacted

node.

At the middleware process, �8 , a list of joining nodes is added to the state. When contacted by a

new new joining node, the contacted node 8 stores the former’s ID in �8 . It is used by contacted nodes to

keep temporarily forwarding messages to joining nodes (lines 25, 54-55, 103-104 in Algorithm 13). Also,

BMBi8 (⌫,⌧,+ , �) takes 4 arguments. This is needed for when new joining nodes spawn a middleware

process and need to initialize it with meta data transfered by the contacted node (line 19 in Algorithm 13

and 40, 42 in Algorithm 12).

79

CHAPTER 6. DYNAMIC MEMBERSHIP

�G:P_Ah>J Rk, Dynamic tcb client process for node 8 2 I
R state:
k 38 2 D
j 2CGC8 2 C
9 B4=3BC0CDB8 2 {0, 1}
8 proc BMBi8 (()
e 38 := (8, 0)
d 2CGC8 := ;
3 B4=3BC0CDB8 = 0
N if ((= active) then

Ry C = {{8 7! 1}, ;, { 9 7! 0| 9 2 I}, []}
RR bT�rM(Middleware, C) B4=3BC0CDB8 = 1

Rk proc i+#+�bi8 (<B6)
Rj if B4=3BC0CDB8 then
R9 i+/2HBp2`8 (38 , 2CGC8 ,<B6)
R8 2M[m2m22<8 (msg,38 , 2CGC8 ,<B6)
Re 2CGC8 := 38
Rd 38 := (8,38 .1 + 1)
R3 proc bi�#S?�MiQK8 ()
RN 2M[m2m22<8 (phantom,38 , 2CGC8)
ky proc H2�p28 ()
kR 2M[m2m22<8 (leave,38 , 2CGC8)
kk 2CGC8 := 38
kj 38 := (8,38 .1 + 1)
k9 on /2[m2m2<2

8 (deliver,3, C~?4, 2CGC,<B6)
k8 2CGC8 := {3} [2CGC8 \ 2CGC
ke i+/2HBp2`8 (3, 2CGC,<B6)
kd on /2[m2m2<2

8 (stable,3, C~?4, 2CGC,<B6)
k3 i+bi�#H28 (3, 2CGC)
kN 2M[m2m22<8 (stable,3)
jy if<B6 = 8 then
jR if C~?4 = leave then
jk 2tBi8 ()
jj else if C~?4 = join then
j9 B4=3BC0CDB8 = 1

Uj8V on /2[m2m2<2
8 (join,D83)

UjeV ⇡0C0 := 64C⇡0C0()
UjdV 2M[m2m22<8 (join,38 , 2CGC8 ,D83,⇡0C0)
Uj3V 2CGC8 := 38
UjNV 38 := (8,38 .1 + 1)
U9yV on `2+2Bp28 (joinInit,⌫,⌧,+ , � ,⇡)
U9RV B4C⇡0C0(⇡)
U9kV bT�rM(Middleware, {⌫,⌧,+ , � })
U9jV fn i+/2HBp2`8 (3, 2CGC,<B6)

f /2HBp2`v +�HH#�+F f

U99V fn i+bi�#H28 (3, 2CGC)
f bi�#BHBx�iBQM +�HH#�+F f

80

6.2. ALGORITHM

�G:P_Ah>J Rj, Dynamic tcb middleware process for node 8 2 I
URV state:
UkV #Bi8 : I õ! N, bit mask given node id
UjV ⌧8 : D õ!M, message graph
U9V +8 : I õ! N, delivered version vector
U8V �8 : I⇤, list of ids

UeV on BMBi8 (⌫,⌧,+ , �)
UdV #Bi8 := ⌫
U3V ⌧8 := ⌧
UNV +8 := +

URyV �8 := �

URRV on /2[m2m22<8 (hmsg,3, %,<i)
URkV HQ+�H8 (hmsg,3, %,<i)
URjV on /2[m2m22<8 (hstable,3i)
UR9V /2H2i2bi�#H28 (3)
UR8V on /2[m2m22<8 (hjoin,3, %, 9,⇡0C0i)
UReV HQ+�H8 (hjoin,3, %, 9i)
URdV ++ = ;2M2`�i2pp8 (3)
UR3V {?0BC, 2>=2} = 7BHi2`8 (3)
URNV B4=38 9 (joinInit, #Bi8 , ?0BC,++ , [],⇡0C0)
UkyV for : 2 /QK(#Bi8),: < 9 do
UkRV B4=38: (h 9>8=,3, %, 9i)
UkkV for {3 0 in 2>=2 |⌧8 [3 0] .bi�;2 < slt} do
UkjV < = ⌧8 [3 0] .Kb;
Uk9V B4=38 9 (h⌧8 [3 0] .ivT2,3 0,⌧8 [3 0] .T`2/,<i)
Uk8V �8 := �8 + [9]
UkeV on /2[m2m22<8 (hleave,3, %i)
UkdV HQ+�H8 (hmsg,3, %,3 .0i)
Uk3V proc HQ+�H8 (hC~?4,3, %,<i)
UkNV if C~?4 < join then
UjyV #`Q�/+�bi8 (hC~?4,3, %,<i)
UjRV +8 [3 .0] := 3 .1
UjkV % 0 = {? 2 % |¬ bi�#H28 (?)}
UjjV for ? in % 0 do
Uj9V ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
Uj8V ⌧8 [3] := {bi�;2 : dlv, #Bib : ⇠0, ivT2 : C~?4
UjeV T`2/ : % 0, bm++ : ;,Kb; :<}
UjdV 1 = ⇠#Bi8 (8)
Uj3V if C~?4 = join then
UjNV mT/�i2K2K#2`b?BT8 (C~?4, 9)
U9yV 1 = ⇠(#Bi8 (8) | #Bi8 (<))
U9RV mT/�i2bi�#BHBiv8 (1,3)

U9kV on `2+2Bp28 (hC~?4,3, %,<i)
U9jV if +8 [3 .0] < 3 .1 ^ ¬(⌧8 [3] .bi�;2 = rcv) then
U99V % 0 = {? 2 % |¬ bi�#H28 (?)}
U98V for ? in % 0 do
U9eV if ? 8 /QK(⌧8) then
U9dV ⌧8 [?] := {bi�;2 : slt, bm++ : ;}
U93V ⌧8 [?] .bm++ := ⌧8 [?] .bm++ [{3}
U9NV 1 =

Õ{#Bi8 (? .0) |? 2 % 0 ^⌧8 [?] < dlv}
U8yV (= if 3 2 /QK(⌧8) then ⌧8 [3] .bm++
U8RV else ;
U8kV ⌧8 [3] := {bi�;2 : rcv, #Bib : 1, ivT2 : C~?4
U8jV T`2/ : % 0, bm++ : (,Kb; :<}
U89V for 9 2 �8 do
U88V b2M/8 9 (hC~?4,3, %,<i)
U8eV if 1 = 0 then
U8dV /2HBp2`8 (3)
U83V +?2+Fbi�#BHBiv8 (3, % 0)
U8NV on `2+2Bp28 (hphantom,3, %i)
UeyV +?2+Fbi�#BHBiv8 (3, %)
UeRV on `2+2Bp28 (hjoin, 9i)
UekV if 9 8 /QK(#Bi8) then
UejV 2M[m2m2<2

8 (hjoin, 9i)
Ue9V fn bi�#H28 (3)
Ue8V 3 .1 +8 [3 .0] ^ (3 8 /QK(⌧8) _⌧8 [3] .bi�;2 = stb)
UeeV proc /2HBp2`8 (3)
UedV C~?4 = ⌧8 [3] .ivT2
Ue3V 2M[m2m2<2

8 (hdeliver,3, C~?4,⌧8 [3] .Kb;i)
UeNV (9,=) = 3
UdyV +8 [9] := =
UdRV ⌧8 [3] := ⌧8 [3]{bi�;2 : dlv,
UdkV #Bib : ⇠#Bi8 (8)}
UdjV 1 = ⇠#Bi8 (9)
Ud9V if C~?4 = join then
Ud8V < = ⌧8 [3] .Kb;
UdeV mT/�i2K2K#2`b?BT8 (C~?4,<)
UddV 1 = ⇠(#Bi8 (9) | #Bi8 (<))
Ud3V mT/�i2bi�#BHBiv8 (1,3)
UdNV for B in ⌧8 [3] .bm++ do
U3yV ⌧8 [B] .#Bib := ⌧8 [B] .#Bib & ⇠#Bi8 (9)
U3RV if ⌧8 [B] .#Bib = 0 then
U3kV /2HBp2`8 (B)

81

CHAPTER 6. DYNAMIC MEMBERSHIP

U3jV proc +?2+Fbi�#BHBiv8 (3, %)
U39V if 3 .1 = 1 ++8 [3 .0] then
U38V for ? 2 % do
U3eV mT/�i2bi�#BHBiv8 (⇠#Bi8 (3 .0), ?)
U3dV proc mT/�i2bi�#BHBiv8 (1,3)
U33V if ⌧8 [3] .bi�;2 = dlv then
U3NV 1 0 = ⌧8 [3] .#Bib & 1
UNyV if 1 0 < ⌧8 [3] .#Bib then
UNRV ⌧8 [3] .#Bib := 1 0
UNkV if 1 0 = 0 then
UNjV bi�#BHBx28 (3)
UN9V else
UN8V for ? in ⌧8 [3] .T`2/ do
UNeV mT/�i2bi�#BHBiv8 (1, ?)
UNdV proc bi�#BHBx28 (3)
UN3V for ? in ⌧8 [3] .T`2/ do
UNNV if ⌧8 [?] .bi�;2 < stb then

URyyV bi�#BHBx28 (?)
URyRV ⌧8 [3] .bi�;2 := stb
URykV C~?4 = ⌧8 [3] .ivT2
URyjV if C~?4 = join ^ 3 .0 = 8 then
URy9V �8 := i�BH(�8)
URy8V 2M[m2m2<2

8 (hstable,3, C~?4,⌧8 [3] .Kb;i)

URyeV proc /2H2i2bi�#H28 (3)
URydV for B in ⌧8 [3] .bm++ do
URy3V ⌧8 [B] .T`2/ := ⌧8 [B] .T`2/ \ {3}
URyNV ⌧8 := 3 C�⌧8

URRyV if ⌧8 [3] .ivT2 = leave ^ 3 .0 < 8 then
URRRV mT/�i2K2K#2`b?BT8 (;40E4,3 .0)
URRkV proc mT/�i2K2K#2`b?BT8 (C~?4, 9)
URRjV � = if C~?4 = join then
URR9V bQ`i(/QK(#Bi8) [{ 9})
URR8V else if C~?4 = leave then
URReV bQ`i(/QK(#Bi8) \ { 9})
URRdV #Bi8 := {: ! 2TQb(:,�) |: 2 � }
URR3V for 3 2 ⌧8 |⌧8 [3] .bi�;2 2 {rcv, dlv} do
URRNV 5 =if ⌧8 [3] .bi�;2 = rcv then 0 else 1
URkyV ⌧8 [3] .#Bib := b?B7i8 (C~?4,⌧8 [3] .#Bib, 2TQb(9,�) , 5)
URkRV fn b?B7i8 (C~?4,1, ?, 5)
URkkV if C~?4 = join then
URkjV ((((1 � ?) ⌧ 1) | 5) ⌧ (?)) | (1 & (2? � 1))
URk9V else if C~?4 = leave then
URk8V ((1 � (? + 1)) ⌧ ?) | (1 & (2? � 1))

82

6.2. ALGORITHM

6.2.2 Joining Nodes

Client

Middleware

Client

Middleware

Client

Middleware

New Nodejoin request

Client

Middleware

Client

Middleware

Client

Middleware

New Node
1

2

• prepare initial
data transfer

• add join to
causal DAG

• locally update
membership

transfer
initial data

3

send join
message

spawn
middleware

process
4A

4B

5A

peers add join
to causal DAG

forward
concurrent

messages to
new node

5B

5B

Client

Middleware

Client

Middleware

Client

Middleware

Client

forward
messages
concurrent
and in the

future of the
join request to

new node

6A
Middleware

• join request
delivered at peer

• peer updates
membership

• peer starts sending
to new node

6B

Client

Middleware

Client

Middleware Client

Middleware

Client

Middleware

the joining node
receives from every

peer that delivers the
join request 7

• join
request is
stable at
contacted
node

• forwarding
messages
stops

8

• join request is
stable at new
joining node

• new node is part
of the group
membership

9

Figure 25: Evolution of a new node joining process

To join the group, a new node sends a join request and its unique ID to an existing node. The contacted

node receives the join request (line 61 in Algorithm 13). It checks if the new node is part of the membership

and if not enqueues the request to its client process (line 62, 63).

The client process (line 35) receiving the join request, prepares the application data/state to be

transfered (line 36), enqueues a new request to the middleware process with a dot, a context and the

application state (line 37), and finally updates its local dot and context (lines 38-39).

The middleware process (line 15) dequeue the request. It starts by adding the the join request to its

local causal DAG (line 16). In HQ+�H8 the dot representing the join request is added locally as delivered

at the contacted node (lines 28-41) as any other message. Notice, however, that for join requests, the

contacted node updates its local membership to include the new node (lines 38-40). At line 18, the

contacted node filters all causality meta data in the causal DAG in two parts: ?0BC that includes all dots

83

CHAPTER 6. DYNAMIC MEMBERSHIP

causally preceding the join request, and 2>=2 that includes the dots concurrent to it. Now the contacted

node can transfer the initial state to joining node (line 19). It sends the join request to the membership

(lines 20-21), and forwards the concurrent messages to the joining node (lines 22-24).

When the middleware process at other nodes (excluding the contacted node) deliver the join request, they

also update their group membership to include the new node (lines 74-77). The new node now can start

receiving messages from them too.

When the join request is causally stable at the contacted node 8 (line 103), the latter can remove the new

node from �8 (line 104), and stops forwarding messages received from peers to the new node (as it used

to do in lines 54-55). The initial state transfered to the new node was the same as the contacted node.

Then all messages received by the contacted node were also forwarded to the joining node. This means

that whenever a message is delivered or becomes stable at the contacted node, it also becomes stable at

the joining node. When the join request becomes stable at the joining node (same time as at the contacted

node), the middleware process informs the client process. The client process checks that the join request

(line 33) is causally stable locally (line 30), and sets its B4=3BC0CDB8 to 1 (line 34). Now the new node is

part of the new group membership, and can safely send and receive messages to the group.

84

6.2. ALGORITHM

6.2.3 Leaving Nodes

Client

Middleware

Client

Middleware Client

Middleware

Client

Middleware
broadcast
leave
request to
group

2

• prepare
leave
request

• add leave
request to
causal DAG

1

Client

Middleware

Client

Middleware Client

Middleware

Client

Middleware

peers add
received
leave
request to
causal DAG

peers add
received
leave
request to
causal DAG

3A

3B

3C

peers
deliver
leave
request

4A

4B

4C
peers
deliver
leave
request

Client

Middleware

Client

Middleware Client

Middleware

Client

Middleware

5A
5B

5C

leave request
is locally
stable at peer

leave request
is locally
stable at peer

leave request
is stable at
leaving node

5D

Client

Middleware

Client

Middleware Client

Middleware

Client

Middleware

6A
6B

6C

leaving node
removed from
membership

leaving node
removed from
membership

node
leaves
group

6D

Figure 26: Evolution of an existing node leaving process

To leave the group, an existing node prepares a leave request, tagged with a dot and context and enqueues

it to the middleware process (lines 20-23 in Algorithm 12). When the leave request is dequeued at the

middleware process (lines 26-27), the latter creates a dot for it in its causal DAG as delivered (lines 28-41).

The leave request is also broadcast to the group (lines 29-30).

At every node, the leave request is added to the local causal DAG as any other message, waiting to

be delivered, stable and them removed. For each of these nodes, when the leave request is stabilized

and deleted from the causal DAG, the middleware process updates it membership by removing meta data

related to the leaving node (lines 110-111).

85

CHAPTER 6. DYNAMIC MEMBERSHIP

As for the leaving node, it can leave the group when the leave request is locally stable (lines 30-32 in

Algorithm 12). The leaving node does not have to wait more than that to leave. It does not need to receive

any messages form its peers or send any messages later than the leave request. The other peers do not

expect to receive any messages from a leaving node. However, they cannot remove meta data related to

the leaving node, as it could affect the causal stability computation related to messages concurrent to the

leave request. This is the reason the other nodes have to wait for the leave request to become causally

stable before the membership update.

6.2.4 Updating Group Membership

In this section we explain how updating the meta data such the causal DAG and the bitmask #Bi8 , to reflect
the changes in group membership. We focus on the procedure mT/�i2K2K#2`b?BT8 () (lines 112-120)
and the function b?B7i8 () (lines 121-125) in Algorithm 13.

mT/�i2K2K#2`b?BT8 () takes two arguments, C~?4 and 9 . C~?4 has for value join for updating the
membership by adding a new node, or leave for removing an existing node from the groups membership.

9 is the globally unique identifier (GUID) assigned to the corresponding node. We use the IP address and

port to generate a globally unique ID, but any mechanism that generates GUIDs can be used instead.

Those IDs are also comparable. The bitmask #Bi8 , as explained earlier in previous chapters, is map from
GUIDs to an integer (a power of two). The GUIDs are sorted in lexicographic order. The value associated to

a GUID in the bitmask is 2?>B , where ?>B is the position of the GUID in lexicographic order. For instance,

three IDs�, ⌫ and⇠ will have the values 20 = 1, 21 = 2, and 22 = 4 respectively. Notice that as the values

are powers of two integers, they represent unique bits in a bitstring (001, 010, 100). This is very useful

for representing causal delivery or causal stability for every dot. The bitstring is a very memory efficient

representation to mark the set of nodes that have causally delivered or stabilized a dot. In our example

1 or its equivalent bitstring (001) represent the node �, 2 or 010 represent ⌫, 6 or 110 represent � and

⌫, and so on. Every dot in the causal DAG stores a bitstring, which is used to represent/compute causal

delivery or causal stability. Therefore, when the group membership changes, the bitmask #Bi8 needs to
be updated as well as every bitstring in the causal DAG. For adding new nodes, the GUIDs represented by

/QK(#Bi8) need to be sorted again including the GUID 9 of the joining node (lines 113-114). Similarly for
removing nodes, /QK(#Bi8) is sorted excluding the existing GUID 9 of the leaving node (lines 115-116).
Then, every bitstring in the causal DAG is shifted accordingly (lines 118-120). b?B7i8 () is responsible of
updating every bitstring by shifting the bits and adding a new bit for the joining node without affecting the

values of the existing bits (lines 122-123), or to remove the bit corresponding to the leaving node (lines

124-125).

86

d

Causality Checker

Due to the complexity of the algorithms so far, we developed our own verification tool that we called

Causality Checker. This Causality Checker is a standalone service that verifies that the different versions

of our Tagged Causal Delivery Algorithm, ensures causal delivery and causal stability. The Causality

Checker also gives insight to the developer to what might be the problem when the verification fails by

printing the failed step and the state of the corresponding nodes. It makes it easier to for developers and

implementors to add changes and updates to their algorithms, test them, debug them and finally verify

their correctness.

The tool works by reading the serialized events logged by the middleware in test mode. The serial-

ized events are a sequence of Send (broadcast), Deliver and Stable events from every peer in the group

membership. The order of events in a sequence follow the same order they were logged in by the peers

in runtime. Every sequence corresponds for the serialized events at one peer. Every entry in a sequence

is a dot and its meta data (3, E0;). The meta data E0; stores the type of event (3 .BC064) which takes as
value (⇢#⇡ , ⇡!+ or ()⌫ for send, deliver and stable events respectively.

The causality checker verifies if these dot sequences respect the following rules:

• A Send with a dot only appears in the sender’s sequence

• A Deliver with a dot appears in every peer sequence except the sender’s

• A Stable with a dot appears in both the sender and the receiving peer sequences

The logged sequences are passed to the causality checker which implements a backtracking algorithm

designed to verify causal order by looping through them. The causal history of each dot is built while

iterating over these sequences. Version vectors are used to represent causality. Each dot is associated

with a version vector that represents its causal dependencies. A version vector is associated for every peer

to represent causal delivery. While looping through the sequences, the peer version vectors are updated

and the dot version vectors are computed accordingly. A causal delivery check is a comparison between

the version vectors of a peer and the dot being delivered in the sequence. A causal stability check is

a comparison between the version vector associated with the dot being stabilized and the peer’s causal

87

CHAPTER 7. CAUSALITY CHECKER

stability matrix where the dot is being stabilized. While looping through the sequence of peer 8 in order,

checking the correctness of an event 48 at peer 8 might require branching to another sequence 9 and verify

other events 4 9 , then backtrack to 48 at 8 and so on.

7.1 Causal Check Algorithm

We explain in this section the causal check algorithm presented in Algorithm 14. We start by explaining

the causal data structures used in it global state:

⌧ : D õ!M, represents the causal DAG %++ : I õ! o where o : I õ! N, maps peers to their

version vectors ⇡++ : D õ! o, maps a dot to its equivalent version vector %"�) : I õ! Jt where

Jt : I õ! o, maps peers to stability matrices �#⇡ : I õ! N, maps peers to a sequence index

• ⌧ : a causal DAG that stores every dot 3 and its corresponding E0; . The dot is stored in the causal

DAG when its Send event is handled by the algorithm.

• %++ : a map associating a peer id to its corresponding local version vector. The version vector at

each peer represent the causal delivery meta data at that peer.

• ⇡⇡+ : a map associating a dot to its equivalent version vector. This version vector is computed

when when the Send event of that dot is handled by the algorithm.

• %"�) : a map associating a peer id to its corresponding causal stability matrix. The matrix is

used, at each peer, to verify the correctness of a Stable event of a dot at that peer.

• �#⇡ : a vector of counters marking, for each peer, the last position in its dot sequence handled by

the causality checker;

As we explain in details in the following subsections, to verify causal delivery and stability while iterating

over the peer sequences recursively, the following rules are set:

• When a Send event happens at a peer 8, the dot associated with event must have it’s ID (3 .0),

which represents the peer that created to send event in the runtime, equal to 8.

• A dot associated with a Send event is delivered immediately at the sender when the send event is

handled by the algorithm.

• A dot’s version vector is only calculated when it appears in the sender’s sequence through a Send.

• The same dot cannot appear more than once in the sender’s sequence.

• In a Deliver event, the peer’s and dot’s version vectors are compared. If the causal delivery check

passes, the peer’s version vector is updated.

88

7.1. CAUSAL CHECK ALGORITHM

�G:P_Ah>J R9, Causal check algorithm
URV state:
UkV ⌧ : D õ!M, represents the causal DAG
UjV %++ : I õ! o where o : I õ! N, maps peers to their

version vectors
U9V ⇡++ : D õ! o, maps a dot to its equivalent version

vector
U8V %"�) : I õ! Jt where Jt : I õ! o, maps peers to

stability matrices
UeV �#⇡ : I õ! N, maps peers to a sequence index

UdV proc BMBi()
U3V ⌧ := ;
UNV EE := {8 7! 0|8 2 I}

URyV %++ := {8 7! EE |8 2 I}
URRV ⇡++ := ;
URkV %"�) := {8 7! %++ |8 2 I}
URjV �#⇡ := EE

UR9V fn +�mb�H+?2+F(B4@)
UR8V for i = 0 to H2M(B4@) do
UReV B4@8 := B4@ [8]
URdV for j = �#⇡ [8] to H2M(B4@8) do
UR3V (3, E0;) := B4@8 [9]
URNV switch E0; .BC064 do
UkyV case (⇢#⇡ do
UkRV if 3 .0 = 8 then
UkkV ?�M/H2b2M/2`/Qi(3, E0;)
UkjV else
Uk9V return 4AA>A
Uk8V case ⇡!+ do
UkeV if 3 8 ⌧ then
UkdV ?�M/H2T22`/Qi(3, B4@)
Uk3V ?�M/H2/2HBp2`2/(3, 8)
UkNV case ()⌫ do
UjyV ?�M/H2bi�#H2(3, %"�) [8])
UjRV �#⇡ [8] := �#⇡ [8] + 1

UjkV fn ?�M/H2bi�#H2(3,")
UjjV EE3 := ⇡++ [3]
Uj9V for EE in" do
Uj8V if EE3 < EE then
UjeV return 4AA>A

UjdV fn ?�M/H2b2M/2`/Qi(3, E0;)
Uj3V if 3 8 ⌧ then
UjNV %++ [3 .0] [3 .0] := %++ [3 .0] [3 .0] + 1
U9yV ⌧ [3] := E0;
U9RV ⇡++ [3] := %++ [3 .0]
U9kV %"�) [3 .0] [3 .0] := %++ [3 .0]
U9jV else
U99V return 4AA>A

U98V fn ?�M/H2T22`/Qi(3>C, B4@)
U9eV B4@8 := B4@ [3>C .0]
U9dV for j = �#⇡ [3>C .0] to H2M(B4@8) do
U93V (3, E0;) := B4@8 [9]
U9NV switch E0; .BC064 do
U8yV case (⇢#⇡ do
U8RV if 3 .0 = 3>C .0 then
U8kV ?�M/H2b2M/2`/Qi(3)
U8jV if 3 = 3>C then
U89V �#⇡ [3>C .0] := �#⇡ [3>C .0] + 1
U88V return
U8eV else
U8dV return 4AA>A
U83V case ⇡!+ do
U8NV if 3 8 ⌧ then
UeyV ?�M/H2T22`/Qi(3, B4@)
UeRV ?�M/H2/2HBp2`2/(3,3>C .0)
UekV case ()⌫ do
UejV ?�M/H2bi�#H2(3, %"�) [3>C .0])
Ue9V �#⇡ [3>C .0] := �#⇡ [3>C .0] + 1

Ue8V fn ?�M/H2/2HBp2`2/(3, 8)
UeeV EE3 := ⇡++ [3]
UedV EE? := %++ [8]
Ue3V if EE? [3 .0] = EE3 [3 .0] + 1 ^ EE? [9] � EE3 [9] |89 <

3 .0, 9 2 I then
UeNV %++ [8] [3 .0] := %++ [8] [3 .0] + 1
UdyV %"�) [8] [3 .0] := EE3
UdRV %"�) [8] [8] := %++ [8]
UdkV else
UdjV return 4AA>A

89

CHAPTER 7. CAUSALITY CHECKER

• For every Send and Deliver events, the peer’s version matrix is updated.

• When a Stable event is handled, the peer’s version matrix rows are compared with the dot’s version

vector to check causal stability.

• If any of the checks fail, an error is returned with separate logs for each peer containing the meta

data and the even at which the causal check. The causal check succeeds when the algorithm goes

through all the sequences without failing.

7.1.1 +�mb�H+?2+F()
The +�mb�H+?2+F function takes as argument B4@ which stores the local sequence of events B4@8 for

every peer 8. It starts by iterating through every peer’s sequence (lines 15-16) and handling the events

incrementally (line 17). The �#⇡ (8) stores an index to the last handled event for the sequence (B4@ [8])
corresponding to the peer 8. Every dot and its meta data, containing the event type (E0; .BC064), are

retrieved from the sequence(line 18). For Send events (lines 20-24), the function checks if the dot’s ID

(3 .0) is equal to the sender’s id (8) that is trying to handle the send event (line 21). If the check passes,

?�M/H2b2M/2`/Qi() is called to handle the send event and update the corresponding data structures for
dot 3 and peer 8 (line 22). After that �#⇡ [8] is incremented (line 31) and the loop moves to the next

entry in B4@ [8]. If the check fails, however, the algorithm return an error (line 24). For Deliver events

(lines 25-28), the function checks if the dot to be delivered at 8 is already in the global causal DAG⌧ (line

26). ⌧ stores all dots form all peers. A dot is stored in ⌧ at the Send event associated with it. When

a dot 3 is not in ⌧ , and a Deliver event is associated with it at some peer 8, this means that the Send

event associated with it have not been handled yet by the algorithm. The algorithm then looks for the dot’s

sender ID (3 .0), and calls ?�M/H2T22`/Qi() (line 27). The function ?�M/H2T22`/Qi() goes through the
sequence associated with that dot, B4@ [3 .0]. Until the Send event of dot 3 is handled. Then the algorithm
backtracks to the first sequence and handles the Deliver event of 3 .0 at 8. A branching can lead to more

branchings by calling ?�M/H2T22`/Qi() for other peers, and then backtracks to the first call. If the 3

was in⌧ , then the algorithm handles the Deliver event of 3 by calling ?�M/H2/2HBp2`2/() (line 28). For
Stable events (lines 29-30), no previous checks are needed and ?�M/H2bi�#H2() is called to check causal
stability for the dot 3 at 8 (line 30). At the end of each iteration in B4@ [8], the corresponding index �#⇡ [8]
is incremented.

7.1.2 ?�M/H2b2M/2`/Qi()
This function takes as arguments a dot 3 and its meta data E0; . It is responsible of handling Send events.

A dot 3 is added to the causal DAG⌧ for the first time when this function is called. The function checks if

the dot to be handled is in⌧ (line 38). If it was an error is returned and the test fails (line 44). If it was not

in ⌧ , it adds it with the corresponding E0; (line 40). The function in this case also updates the sender’s

90

7.1. CAUSAL CHECK ALGORITHM

peer version vector %++ [3 .0] (line 39). It increments by 1 the entry corresponding to the sender in

that version vector, %++ [3 .0] [3 .0]. The dot 3 becomes associated with the incremented version vector

%++ [3 .0] and stored in ⇡++ [3]. This version vector can be used later for checking causal delivery of
this dot at other peers. Finally, The peer’s entry (%"�) [3 .0] [3 .0]) in the in the causal stability Matrix
associated to that peer (%"�) [3 .0]) is updated (line 42).

7.1.3 ?�M/H2/2HBp2`2/()
This function takes as arguments a dot 3 to be delivered and 8, the peer where it is being delivered at. It

is responsible of handling Deliver events by checks if the dot 3 can be causally delivered at 8. EE3 stores

the version vector associated with the dot 3 in ⇡++ [3]. EE? stores the local version vector associated

with peer 8 in %++ [8]. The two version vectors EE3 and EE? will be used to check if 3 can be delivered

at 8 (line 68). The condition requires that 1) every entry in EE? [9] to be more recent or as recent as

its corresponding entry in EE3 [9] and 2) that for the entry 3 .0, EE3 [3 .0] has delivered one more event

than EE? [3 .0]. If this condition fails, then the dot 3 can not be delivered at 8 and the causal check fails

returning error (line 73). Otherwise, the peer 8’s version vector %++ [8] [3 .0] is incremented by one at

the entry 3 .0 to mark the delivery (line 69). Finally the causal stability matrix corresponding to peer 8,

%"�) [8] is updated. %"�) [8] [3 .0], the vector (row) in %"�) [8] corresponding to the dot sender
3 .0 takes the value EE3 (line 70). %"�) [8] [8], the vector (row) in %"�) [8] corresponding to the peer
delivering the dot 3 takes the updated value of local version vector %++ [8] (line 71).

7.1.4 ?�M/H2bi�#H2()
This function takes as arguments a dot 3 to be stabilized and the causal stability matrix" used to check

causal stability. It is responsible of handling Stable events. EE3 stores the version vector associated with

the dot 3 in ⇡++ [3] (line 33). Then for every row EE in " , the version vector EE3 corresponding to the

dot 3 must be less recent than EE (line 34-35). Which means that every peer has delivered at least one

event more recent to the event correspond to the dot 3 . If the test fails for one EE , the function returns an

error.

7.1.5 ?�M/H2T22`/Qi()
This function takes as arguments a 3>C and the sequences for all peers B4@. This function handles

branching to a different sequence when the causal checker tries to handle a Deliver event for a 3>C that is

not in the causal DAG⌧ yet. This requires the algorithm to jump or branch to the 3>C sender’s sequence

B4@ [3>C .0] and handle the Send event corresponding to it. Only then, it can backtrack to the previous

sequence (line 53-55) and handle the Deliver event there. These branches/jumps to the dot’s sender

can occur multiple times (lines 58-60). But if N is the number of peers then the maximum number of

jumps is # � 1. The function mainly has the same functionality of function +�mb�H+?2+F(), except that it

91

CHAPTER 7. CAUSALITY CHECKER

does it for one sequence per branching, and until it handles the Send event of the 3>C from the previous

sequence (line 53-55).

92

3

Evaluation

This chapter focuses on the evaluation of the graph based and version vector middleware implementations.

The purpose of the experiments is to check how the graph implementation compares against the version

vector approach, namely in scaling with the number of nodes and with the number of pending messages

to be delivered, for different degrees of concurrency, given by the number of direct predecessors of a

message. The configuration of the experiments is detailed in Section 8.1.

Most of the experiments were executed in a real distributed system by deploying the middlewares

with Docker and Kubernetes. This deployment is further explained in Section 8.2. Some relevant metrics

for comparing the middleware and evaluating the experiments results will be introduced on Section 8.3.

Finally, the experiments will be presented in Section 8.4. Here, each experiment details its purpose and

the configuration parameters that were used.

8.1 Configuring the experiments

Regarding the execution of experiments, the objective was to simulate different broadcast scenarios. In

an ideal situation, a peer message would arrive instantaneously to its destination. But in a real group

communication, there’s a latency that does not allow this to happen. Therefore, some parameters were

specifically added to the configuration file to be used during the evaluation.

8.1.1 Send interval

A peer’s send interval can either be a fixed value or a sample from a Poisson distribution. After calculating

the time until the next send, the peer will use this interval as a timeout for delivering messages. During

this time the peer delivers messages (if there are any) and when it ends a send occurs.

With a fixed interval, the peers send messages at the same rate, but this time can also be calculated

using a Poisson distribution, which is a model for a series of discrete events where the average time

between events is known, but the exact timing of events is random [81]. In other words, knowing the

average interval of sends we can calculate the time when the next message should be sent.

93

CHAPTER 8. EVALUATION

To use a Poisson distribution, an average time between events, which in this case are broadcasts,

is needed. According to [82], to determine these intervals, a random value U between 0 and 1 from

a uniform distribution has to be generated. This number is a value from the y-axis and to locate the

corresponding time value on the x-axis, the inverse of the exponential function is used:

) =
�;=*
_

The _ is the average rate of events, and because the average time interval is passed through the

configuration file, it has to be transformed into the equivalent rate. Since the period is the reciprocal of

the frequency, _ can be calculated for an average interval A by using _ = 1
� .

Using a Poisson distribution can sometimes return samples much higher than the desired average. To

avoid these, the calculated value from this distribution is truncated at a maximum of 4 times the average

from the configuration file.

8.1.2 Network latency

The reason for simulating network latency is to add more control over the experiments executed when

simulating the delay a message has when travelling over a network. The network latency can either be a

fixed value or a fixed value plus another component calculated through a Weibull distribution.

The network latency is simulated by adding to the sender’s clock a value in microseconds calculated

through the network latency parameters.

If the configuration file only has the baseline, then the network latency is a fixed value for all the links

in the group. However, to specify a different fixed latency between the peers, a path to a matrix can be set

through the configuration file. This is an # ⇥ # matrix, where N is the group size, the row is the sender

and the column is the receiver. For example, the latency of the link from peer 3 to peer 2 is on row 3 and

column 2 of this matrix. In this file the matrix is represented as N rows, each with N integers separated

by commas. At least one of these previous parameters is mandatory.

To use a baseline value plus another from aWeibull distribution, both scale and shape parameters have

to be specified. A Weibull distribution is a continuous probability distribution and has two parameters: scale

and shape. This is also used as a model to characterise end-to-end network delay measurements [83].

This baseline, as the previous one, is passed through the same fields.

The network latency calculation using the Weibull distribution was based from [83–85]. To achieve

three standard deviations from the baseline, using B⌘0?4 = 2 and a B20;4 = 0.15 had to be used. The

mean of a Weibull distribution [86] can be calculated by using the gamma function �, as _ ⇥ �(1 + 1
:),

where _ and k are, respectively, the scale and shape parameters. The latency is calculated with this

distribution as follows:

� = ⌫ ⇥ (1 +, (_,:))

94

8.1. CONFIGURING THE EXPERIMENTS

A and B are the calculated latency and baseline value, whereas, (_,:) is a sample from the Weibull

distribution. Using the previous expression to calculate the mean of a Weibull distribution, for a scale

_ = 0.15 and shape : = 2, this is ⇡ 0.1329. By using the preceding expression we have:

� = 1.1329 ⇥ ⌫

With this we can calculate the needed baseline value for a given average latency. For example, if we

wanted an average network latency A of 5 seconds, the baseline value B to use together with the Weibull

distribution to achieve it would be 4.4135. However, sometimes the calculated delay might be very large

which in turn could affect the results. Therefore, the calculated value is truncated at a maximum given by

⌫ ⇥ (1 + 3 ⇥ _).

8.1.3 Simulating slow links

Regarding the network latency between peers, the experiments can be divided into symmetric and asym-

metric network topologies. In the first, every link between the peers has the same latency. For the

asymmetric scenario there’s a link with a higher network latency that further delays the arrival of mes-

sages. For the experiments the slow link is always between peer 0 and 1. This slow link scenario aims

to test the middleware’s robustness to transient network partitions. However, for the experiments a fixed

value is used for the delay in the slow link, as to avoid having large fluctuations in the calculated latency

and have more control over the buffered messages by the peers between runs.

Network partitions occur when groups of nodes have difficulties communicating with other nodes

outside of their group. This happens either because of higher latencies or unavailable peers. These

partitions affect information availability because messages take longer to arrive at their destination, and

other messages that depend on them cannot be delivered and have to be buffered until then. This causes

a buildup of received messages waiting to be delivered at the middleware. Imagine a group with 5 peers

on a full mesh topology, where everyone has a network latency of 1 second between them, except the link

between 0 and 1 that has a latency of 20 seconds as show on Figure 27.

Peer 0

Peer 1

Peer 2Peer 3

Peer 4

1 s 1 s

1 s

1 s

1 s1 s

1 s 20 s

1 s 1 s

Figure 27: Full mesh topology with a slow link between 0 and 1.

95

CHAPTER 8. EVALUATION

Messages are broadcast from the peers that have as dependencies messages from other peers. Since

they are part of the slow link, messages between 0 and 1 take a longer time to arrive at the their destination.

At peer 0 or 1, messages with a dependency from 1 or 0 have to wait because it takes longer for that

dependency to arrive and be delivered.

8.2 Deploying environment

This section details the on deployment of the experiments. First, it explains what type of architecture was

used for the deployment in order to simulate a network with multiple peers interacting with each other.

After this, an introduction to Docker, some of its advantages and how it fits on the experiments will be

given. Then the last part of deploying the experiments with Kubernetes will also be explained.

8.2.1 Architecture

For the deployment architecture, an Erlang program was written so that the middleware is used for broad-

casting messages. Through configurations parameters this program spawns multiples nodes and each

of these is either a master or a worker. Each deployment only has one master node but there can be

multiple workers. A worker node locally spawns peers that broadcast messages with peers spawned by

other worker nodes (depending on the configuration).

The master is the first node to be deployed by Kubernetes and after it the workers start. After it finishes

setting up, it waits for all the workers to connect to it. The purpose of the master is to receive information

from the workers, namely port numbers and IP addresses of the peers they spawn and, after the run has

ended, their logged information.

Upon receiving all the necessary information to establish connections between the peers in the nodes,

the master processes these addresses and sends them over to the workers, so they can have a view of the

network layout. Furthermore, the master also assigns a globally unique id to each worker node and to the

peers they spawn. With this information the peers spawned by the workers can start their middlewares,

connect to each other and begin sending and delivering messages.

In this scenario, the worker nodes run a local logging service where their peers log the events to. The

difference from before is that when they finish broadcasting, the causal check cannot be executed locally,

since only a subset of all logs is available.

To overcome this, when the peers stop executing, their worker node sends the logged information to

the master. Only after this will the master have a complete view of the logging events at each peer and

the post-processor is then executed, checking also the delivery and stability order of messages. From this

results the JSON file with the information collected during the experiments from the peers at every node.

96

8.3. COMPARING EXPERIMENTS

8.2.2 Docker

Docker [87] is a tool that allows packaging applications in containers, including their dependencies, by

using OS-level virtualization. These containers run applications isolated from the host system they’re on

and are designed to make it easy and fast to provide a consistent experience as software is replicated

and moved between environments. Containers are similar to virtual machines, but instead of creating a

complete virtual operating system, they only replicate the components configured to them which leads to

an important boost on performance. A Docker image can be shared by different operating systems and

the software inside of it can also be executed, as long as the host has Docker installed.

For the deployment of the experiences, a Docker image was created from a container that has Erlang

installed and the software for spawning the peers. Since images can easily be shared, the master and

worker nodes both result from them. The master and worker nodes execute this image and because an

Erlang environment was configured in the container, there is no need for them to have it installed.

8.2.3 Kubernetes

The other component for deploying the experiments is Kubernetes [88], which is a tool for automating

software deployment. Kubernetes provides a framework for running code on clusters and also manage

its execution. From running a Docker image on Kubernetes, a pod is created.

Kubernetes was used to deploy the broadcast experiment image on a cluster hosted on Emulab [89]

and the pods will be the master and worker nodes.

The Emulab nodes where Kubernetes deploys the images runs on different machines and these nodes

have a delay between them of around 1 millisecond. Because the clocks are not fully synchronized, the

latencies used during the experiments were high enough so that a 1millisecond difference would not affect

the results.

For every experiment the same type of node with the same hardware was used. The deployments ran

on machines with 8 CPU cores. Because there were limitations on the number of available nodes, each

pod was limited to only using 4 cores. Furthermore, each pod spawned a single local peer and by using

this configuration, by having 64 Emulab nodes it was possible to run experiments with groups of up to 128

peers.

8.3 Comparing experiments

Non-causal latency is used to compare the results of the experiments. Any causal delivery mechanism

has an algorithm induced message delay. For example, this happens when a message is received by a

process before all its predecessors have also been delivered. So that the algorithm can maintain causal

delivery order of messages, this delay is necessary and is known as causal latency [90]. Furthermore,

97

CHAPTER 8. EVALUATION

this latency is not the algorithm’s fault because outside factors can delay the receiving of a message, e.g.,

network latency.

Some algorithms will delay delivery without knowledge that there is a causally prior message to deliver

that has not yet been received. Rather the algorithm delays delivery based on lack of knowledge that

such message does not exist. That is, the delay on the delivery of messages even though all their causal

predecessors have already been delivered. This is known as non-causal latency [90]. The optimum causal

delivery algorithm would have no non-causal latency.

During the experiments, when a received message can be immediately delivered it might trigger other

deliveries. The time between a receive and the triggered delivery of a message is the non-causal latency

of this message. Therefore, for both middleware implementations, when this occurs, the elapsed time

between the receive of the last causal predecessor and the delivery of its successors is measured and sent

to the log service. The lower this non-causal latency is the lower the delay induced in delivering messages

due to the algorithm.

The time for the messages to become causally stable is another metric to compare both approaches.

Like for non-causal latency, the time, after the receive that made it possible, that it takes for a message

to be deemed stable is another useful measurement. This stability time for the messages at every peer is

also sent to the logging service.

8.3.1 Memory Metadata

The memory allocated during the experiments is calculated by counting the words required for the algo-

rithm being used by the middleware (either graph based and version vectors). A word is a fixed-sized piece

of data and also serves as a unit. A word is 8 Bytes for 64-bit Erlang, and this is what we used for mea-

suring the memory metadata. Since both middleware implementations require different data structures,

the method for counting their allocated words differ. The purpose of this metric is to have an idea and

compare the memory required by the two algorithms. Further below are the methods used for counting

the words in each middleware version. It is noteworthy to mention that for this metric the size of the

message’s payload was ignored and only considered the necessary words for tracking causality.

8.3.1.1 Graph based

For the graph based implementation each message is tagged with a pair (id, ctr) called dot, where id is

the sender’s globally unique identifier and ctr is a monotonically increasing counter. Besides this, each

message also has a list context of dots that represent its immediate causal predecessors. For the graph

based algorithm, it was considered that the id and ctr each represent one word. Therefore, each dot is

two words.

In this approach, a directed acyclic graph is used for tracking the causal dependency between mes-

sages. Each message is a node in this graph, all outgoing edges of this node are successors of that

message and every incoming edges are predecessors. In Erlang, we used a map to represent the graph,

98

8.3. COMPARING EXPERIMENTS

where each entry is a dot, mapped to a data structure representing the causality information. Namely, a

set of dots for the predecessors, a set of dots for the successors, a bitstring for causal stability and an

enum for the stage to mark if it is received, delivered, etc.

The number of words in this middleware implementations is the result of the following sum for every

node in the graph:

• 2 words for the dot

• 2 words for each predecessor

• 2 words for each successor

• 1 word for the stage

• 1 word for the bitstring

8.3.1.2 Version vectors

In the version vector implementation of the middleware, each message has a vector with same length as

the number of peers in the network. Each position is considered to be one word. Therefore, a version

vector of length N requires N words. Just like in the previous graph based approach, the size for the

message’s payload is ignored.

Each middleware has two version vectors to track, respectively, the received and delivered messages:

R and V. Therefore, if N is the number of peers in the network, these version vectors require 2# words in

total. Furthermore, there is the matrix that tracks causal stability. In this matrix, row8 is the version vector

of the last message sent by peer8 . In this case, the number of words for this matrix is # 2.

This implementation approach also has a queue DQ for received messages that could not be delivered

because of causal dependencies. Each element in this queue is a message that has a payload, version

vector and the sender’s globally unique identifier id. Since the size of the payload is ignored, only the

version vector and id are taken into account. As already mentioned, a version vector requires N words,

considering a system of N peers. On the other hand, the id is only an integer. Therefore, it is considered

that this id is one word.

The last data structure in this implementation were counting words is required to measure the size is

the stability map SMap. This object maps a pair of ids (the sender’s and message’s) to a stable message.

The pair of ids used here is similar to the dot from the graph based approach. Therefore, it is considered

that it requires two words. The stable message has the message’s payload and version vector. Since

the payload is ignored, only the N words from the version vector are considered. For the SMap with K

elements and N peers, the word number is (2 + #).
In summary, for the version vector middleware implementation, the number of words, for a group with

N peers and K stable messages, is the sum of the following calculations:

99

CHAPTER 8. EVALUATION

• N words from the received messages version vector

• N words from the delivered messages version vector

• # 2 words from the stability version matrix

• (2 + #) words from the stable messages map

8.4 Broadcast Experiments

This section focuses on comparing results of the experiments using a graph based and version vector

approach to deliver messages in a causal order and determine causal stability. Between runs either

the number of peers in the group or send interval of peers are updated in order to further demonstrate

the behaviour of the middleware implementation. Each subsection details the configurations used while

running the experiment.

8.4.1 Experiment1: Classical end-to-end vector-based VV vs our

end-to-end graph-based TCB

For this experiment the peers are in a full mesh topology where all the links have the same network latency.

The purpose of this is to see how the middleware implementations behave when we modify send intervals

and gradually increase the group size. The effect on performance due to calculating causal stability is also

measured by doing runs with and without having to calculate it.

The following experiment was done with the same send interval for every peer and the interval between

broadcasts is calculated following a Poisson distribution, and each peer sends 100 messages. The send

intervals chosen for the peers in this experiment were, in milliseconds: 10, 100 and 1000. Moreover, the

network latency is calculated via the Weibull distribution, as to make the peers more desynchronized from

each other. Runs were executed for groups with 4, 8, 16, 32, 64 and 128 peers. The network latency

chosen for the links in the runs of this experiments was 10 milliseconds.

In this experiment we compare a version vector based approach where the application uses an addi-

tional version vector to be able to provide an end-to-end happens-before against our E2E TCB approach.

We call it classical E2E VV. In this version, we use a classical VV-based causal delivery algorithm using

version vectors and a delivery queue for causal delivery. Plus, the application uses an additional version

vector to provide an end-to-end happens-before.; This is what we called previously a duplication of effort.

Our aim in this experiment is to show the overhead in terms of transmission on the network and the

amount of causality metadata stored in memory between both approaches.

In Figure 28a, we can clearly see that the number of causal predecessors considered as dependencies

in the graph approach is smaller than the size of version vectors needed in the classical E2E VV-based

approach. At 128 nodes, the number of predecessors needed is at worst 80 for the E2E TCB approach

100

8.4. BROADCAST EXPERIMENTS

● ●
●

●

●

●

4 8 16 32 64 128

0

50

100

150

200

250

N
et

wo
rk

 M
et

ad
at

a
(in

 e
nt

rie
s)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Classical E2E VV SI:10ms
Classical E2E VV SI:100ms
Classical E2E VV SI:1000ms

(a) Median transmission entries.

● ● ● ● ● ●

4 8 16 32 64 128

0

100000

200000

300000

400000

500000

M
em

or
y

M
et

ad
at

a
(B

yt
es

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Classical E2E VV SI:10ms
Classical E2E VV SI:100ms
Classical E2E VV SI:1000ms

(b) Median memory metadata.

Figure 28: Experiment 1: transmission and memory, without stability.

to provide end-to-end happens-before. However, in the classical E2E VV-based approach, we need twice

the size of nodes which is 256 entries.

The size of those vectors also affects the size of metadata needed to be stored locally to ensure causal

delivery (and stability as we show later). In Figure 28b, we only show the causality metadata stored in

memory when stability is not being calculated. Meaning, less data structures are used to store causality

metadata. Those data structures will use the dependencies in case of the E2E TCB approach, and the

version vectors for the classical E2E VV approach. Therefore, the size of metadata stored in memory will

be affected as we see in Figure 28b. In the case of the vector-based approach the data stored can get to

more than 500KB for 128 nodes, where it is negligible for the E2E TCB approach.

When stability is calculated, we notice in Figure 29a that the memory size grows a lot for the classical

E2E VV approach and reaches more than 40MB for 128 peers. This is due to the larger size of version

vectors for this experiment, the additional data structures used for stability such as the stability matrix and

the stable map. The size of metadata in memory for the E2E TCB approach also increases compared to

the experiment without stability in Figure 28b, but remains significantly smaller than the classical E2E VV

approach.

In Figure 29b we can see that the E2E TCB approach takes significantly less time (2-3 milliseconds

for 128 peers) for non causal stability compared to the classical E2E VV approach (above 10 milliseconds

for 128 peers).

8.4.2 Experiment2: Classical vector-based VV vs graph-based

For this experiment the peers are in a full mesh topology where all the links have the same network latency.

The purpose of this is to see how the middleware implementations behave when we modify send interval

101

CHAPTER 8. EVALUATION

● ● ● ●
●

●

4 8 16 32 64 128

0e+00

1e+07

2e+07

3e+07

4e+07

M
em

or
y

M
et

ad
at

a
(B

yt
es

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Classical E2E VV SI:10ms
Classical E2E VV SI:100ms
Classical E2E VV SI:1000ms

(a) Median memory metadata.

● ● ●
●

●

●

4 8 16 32 64 128

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

N
on
−c

au
sa

l S
ta

bi
lit

y
La

te
nc

y
(m

ic
ro

se
co

nd
s)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Classical E2E VV SI:10ms
Classical E2E VV SI:100ms
Classical E2E VV SI:1000ms

(b) Median Non-causal Stability latency (in microsec-
onds).

Figure 29: Experiment 1: Memory and Non-causal Stability latency, with stability.

and gradually increase the group size. The effect on performance due to calculating causal stability is also

measured by doing runs with and without having to calculate it.

The following experiment was done with the same send interval for every peer and the interval be-

tween broadcasts is calculated following a Poisson distribution, and each peer sends 100 messages. The

send intervals chosen for the links in the runs of this experiments were, in milliseconds: 10, 100 and

1000. Moreover, the network latency is calculated via the Weibull distribution, as to make the peers more

desynchronized from each other. Runs were executed for groups with 4, 8, 16, 32, 64 and 128 peers.

The network latency chosen for the links in the runs of this experiments is 10 milliseconds.

In this experiment, we compare our E2E TCB approach against a correct implementation of the end-to-

end vector-based approach. This way we can show the performance between an efficient implementation

of the VV-based causal middleware against our graph-based implementation in terms transmission over-

head on the network and memory size for causality metadata.

In Figure 30a, we see similar results to the previous experiment. However, the size for the optimized

E2E VV-based approach here is half of the one seen previously in the classical E2E. The E2E TCB approach

provides an end-to-end happens-before with less causal dependencies transmitted on the network. At 128

nodes, the number of predecessors needed is at worst 80 for E2E TCB to provide end-to-end happens-

before. However, in Optimized E2E VV, we need twice the size of nodes which is 128 entries.

As the size of version vectors is reduced to half, compared to the previous experiment, we see that

reflected in the memory size. Figure 30b. In the case of the Optimzed E2E VV approach the data stored

can get to more than 250KB for 128 nodes, where it is negligible for the E2E TCB approach.

102

8.4. BROADCAST EXPERIMENTS

●
●

●

●

●

●

4 8 16 32 64 128

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Ne
tw

or
k

M
et

ad
at

a
(in

 e
nt

rie
s)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(a) Median transmission entries, without stability.

● ● ● ● ● ●

4 8 16 32 64 128

0

50000

100000

150000

200000

250000

M
em

or
y

M
et

ad
at

a
(B

yt
es

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(b) Median memory metadata, without stability.

Figure 30: Experiment 2: transmission and memory metadata, without stability.

8.4.3 Experiment3: Constant amount of work for vector-based VV vs

graph-based

Another experiment performed over a symmetric topology was adjusting the send interval to the group size

so that the number of messages sent by all peers, per second, was constant. The motivation behind this

is to see what would happen if a service’s workload became more and more distributed by adding peers

and dividing the work between them. Having 64 peers with a send interval of 500 milliseconds generates

(on average) the same amount of messages as 128 broadcasting every second. The network latency with

a Weibull distribution was set to 31 milliseconds for all group sizes. For groups with 4, 8, 16, 32, 64 and

128 peers, the send intervals were, respectively, 31, 63, 125, 250, 500 and 1000 milliseconds.

The same results from the previous experiment are shown in this experiment as well. Our graph-based

algorithm scales better in terms of causality metadata transmitted on the network as shown in Figure 31a

and in terms of causality metadata stored in memory as in Figure 31b.

8.4.4 Causal Stability

In this section, we revisit experiments 2 and 3 from earlier, but we focus here on causal stability. In the

previous experiments shown earlier, causal stability was not calculated. Here, we show how calculating

causal stability affects the size of metadata stored in memory. We also show the non-causal stability time

required by each of the two algorithm.

We first start with showing for each of the two previous experiments how the metadata size in memory

is affected when the algorithm are running with causal stability on.

For Experiment 2, we see in Figure 32a that the memory size is half the one in Figure 28b (from

103

CHAPTER 8. EVALUATION

●
●

●

●

●

●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

●

●

●

●

●

●

Ne
tw

or
k

M
et

ad
at

a
(in

 e
nt

rie
s)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(a) Median transmission entries.

● ● ● ● ● ●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

50000

100000

150000

200000

250000

● ●
●

●

●

●

M
em

or
y

M
et

ad
at

a
(B

yt
es

)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(b) Median memory metadata.

Figure 31: Experiment 3: transmission and memory, without stability.

● ● ● ●

●

●

4 8 16 32 64 128

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

M
em

or
y

M
et

ad
at

a
(B

yt
es

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(a) Experiment 2: Median memory metadata.

● ● ● ● ● ●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

● ● ● ●

●

●

M
em

or
y

M
et

ad
at

a
(B

yt
es

)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(b) Experiment 3: Median memory metadata.

Figure 32: Experiment 2 and 3: Median memory metadata, with stability.

previously) due to the version vectors being half the size. The optimized E2E VV-based algorithm imple-

ments the correct end-to-end happens-before and does not not require a duplication of effort and metadata

sent over the network. Also, similarly to the previous results, the E2E TCB algorithm has a memory size

significantly smaller (more than 20 MB for 128 peers) than the E2E VV-based algorithm (less than 2.5 MB

for 128 peers).

For Experiment 3, we see in Figure 32a that the memory size gets significantly larger for the E2E

VV-based approach when the group size is larger than than 32 peers. It reaches around 7MB for 128

peers. However, it almost negligible for the E2E TCB approach.

104

8.4. BROADCAST EXPERIMENTS

The reason for this is that for causal stability, the E2E VV-based algorithm stores a matrix of # 2,

where # is the group size. This Matrix is used to calculate the stable version vector that denotes which

messages can become stable. Also, the E2E VV-based algorithm stores a StableMap for the messages

that are stable in order to stabilize them in causal order. For TCB, the causal DAG stores a bitstring (one

word) for every dot representing a message to compute stability.

● ● ● ●

● ●

4 8 16 32 64 128

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

St
ab

ilit
y

La
te

nc
y

(m
icr

os
ec

on
ds

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(a) Experiment 2: Median non-causal stability la-
tency (microseconds)

● ● ●
●

●

●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

● ●
●

●

●

●

St
ab

ilit
y

La
te

nc
y

(in
 m

icr
os

ec
on

ds
)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(b) Experiment 3: Median non-causal stability la-
tency (microseconds).

Figure 33: Experiment 2 and 3: non-causal stability latency, with stability.

In Figures 33a and 33b we can see that the TCB algorithm takes significantly less time (2-3 millisec-

onds for 128 peers) for non-causal stability compared to the vector-based approach (above 10milliseconds

for 128 peers). Even though the delays are not very large, we can clearly notice how the the non-causal

latency for stability grows much faster for the VV algorithm, which makes TCB a more scalable algorithm

for larger groups.

8.4.5 Causal Delivery

In this section, we revisit Experiments 2 and 3 from earlier, but we focus here on causal delivery. Specifi-

cally, the non-causal delivery latency of each of the algorithms. We start by Experiment 2 for both cases

where stability is and is not being calculated. We then do the same for Experiment 3.

For Experiment 2, we see in Figure 34a that the non-causal delivery latency values are lower for the

optimized E2E VV-based algorithm than for the E2E TCB algorithm. However, the results for both algo-

rithms are close and in the order of 40 microseconds for 128 peers, which could be considered negligible.

We notice a similar conclusion for Experiment 2 when the causal stability mechanism is running. In Fig-

ure 34b, the non-causal delivery latency values are also lower for the optimized E2E VV-based algorithm

than for the E2E TCB algorithm. The difference is bigger here: at 128 peers, the latency for VV is around

105

CHAPTER 8. EVALUATION

● ●
●

●

●

●

4 8 16 32 64 128

0

10

20

30

40

De
liv

er
y

La
te

nc
y

(m
icr

os
ec

on
ds

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(a) Median non-causal delivery latency (microsec-
onds), without stability.

●

●

●

●

●

●

4 8 16 32 64 128

0

50

100

150

200

250

De
liv

er
y

La
te

nc
y

(m
icr

os
ec

on
ds

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(b) Median non-causal delivery latency (microsec-
onds), with stability.

Figure 34: Experiment 2: non-causal delivery latency.

25-50 microseconds and the latency for TCB ranges between 50 and 270 microseconds. The results are

still in the order of microseconds.

●
●

●

●

●

●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

10

20

30

40

●
●

●

●

●

●

De
liv

er
y

La
te

nc
y

(in
 m

icr
os

ec
on

ds
)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(a) Median non-causal delivery latency (microsec-
onds), without stability.

●

●

●

●

●

●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

10

20

30

40

50

60

70

●
●

●

●

●

●

De
liv

er
y

La
te

nc
y

(in
 m

icr
os

ec
on

ds
)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(b) Median non-causal delivery latency (microsec-
onds), with stability.

Figure 35: Experiment 3: non-causal delivery latency.

For Experiment 3, we see in Figure 35a that the non-causal delivery latency values are lower for

the optimized E2E VV-based algorithm than for the E2E TCB algorithm. However, the results for both

algorithms are close and in the order of 40 microseconds for 128 peers, which could be considered

negligible. We also notice the same behaviour for Experiment 3 when the causal stability mechanism

106

8.4. BROADCAST EXPERIMENTS

is running. In Figure 35b, the non-causal delivery latency values are also lower for the optimized E2E

VV-based algorithm than for the E2E TCB algorithm. The difference is a bit bigger here: at 128 peers, the

latency for VV is around 25 microseconds and the latency for TCB around 75 microseconds. The results

are still in the order of microseconds.

The reason for this is that when no delays happen, messages normally arrive in causal order. This

means that not many messages are being queued due to missing causal dependencies. Moreover, in this

simple scenario messages arrive mostly in causal order and the experiment did not run for a long time

like it usually is the case for systems used in production and in real scenarios. The algorithm for TCB is

more complex than the algorithm for VV, and therefore more work is being done in the former. This is

why we notice a higher non-causal latency in a simple scenario.

8.4.6 Slow Links

In the previous subsection 8.4.5, we showed results for non-causal delivery latency in simple scenarios that

were not very interesting. Worst case scenarios were delays and partitions occur, similiarly to real world

scenarios are more interesting to test the performance of the two algorithms. The aim of this experiment

is to see how the TCB and VV middleware implementations perform when simulating a network partition

by adding a slow link. We simulated a slow link for experiments 2 and 3, and only the median results of

the peers with the slow link are presented since the other peers are not affected by it and their results

are very similar to the ones from the experiments where no slow links were added. Each peer sends 100

messages, with an average send interval of 10, 100 and 1000<B milliseconds between broadcasts. The

slow link is 10 times slower than the network latency.

● ● ● ● ● ●

4 8 16 32 64 128

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

De
liv

er
y

La
te

nc
y

(m
icr

os
ec

on
ds

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(a) Median non-causal delivery latency (microsec-
onds) on slow link, without stability.

● ● ● ● ● ●

4 8 16 32 64 128

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

De
liv

er
y

La
te

nc
y

(m
icr

os
ec

on
ds

)

Number of Nodes

● E2E TCB SI:10ms
E2E TCB SI:100ms
E2E TCB SI:1000ms
Optimized E2E VV SI:10ms
Optimized E2E VV SI:100ms
Optimized E2E VV SI:1000ms

(b) Median non-causal delivery latency (microsec-
onds) on slow link, with stability.

Figure 36: Experiment 2: non-causal delivery latency on slow link.

107

CHAPTER 8. EVALUATION

For Experiment 2, we see in Figure 36a that when a slow link is added, the non-causal delivery latency

values are now higher for the optimized E2E VV-based algorithm than for the E2E TCB algorithm. And,

the results are in the order of 10-12 milliseconds for 128 peers for the VV-based algorithm. We notice

higher latency values for Experiment 2 when the causal stability mechanism is running. In Figure 36b,

the non-causal delivery latency values are also higher for the optimized E2E VV-based algorithm than for

the E2E TCB algorithm. And the difference is bigger here: at 128 peers, the latency for VV is around 1.7

seconds while the latency for TCB is around 50 milliseconds at most. This clearly shows how the results

shifted from the ones presented in subsection 8.4.5, where no slow links were added.

● ● ● ● ●

●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

● ● ● ● ●

●

De
liv

er
y

La
te

nc
y

(in
 m

icr
os

ec
on

ds
)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(a) Median non-causal delivery latency (microsec-
onds) on slow link, without stability.

● ● ● ● ●
●

4 (31ms) 8 (63ms) 16 (125ms) 32 (250ms) 64 (500ms) 128 (1000ms)

0

500000

1000000

1500000

2000000

● ● ● ● ●

●

De
liv

er
y

La
te

nc
y

(in
 m

icr
os

ec
on

ds
)

Number of Nodes (Send Interval in ms)

●

●

E2E TCB
Optimized E2E VV

(b) Median non-causal delivery latency (microsec-
onds) on slow link, with stability.

Figure 37: Experiment 3: non-causal delivery latency on slow link.

Similarly to the results in Experiment 2 above, we notice that TCB performs and scales better than

VV for Experiment 3 in terms of non-causal delivery latency when a slow link is added. Figure 37a shows

that the non-causal delivery latency for VV is around 11 milliseconds for 128 peers, while it is only around

6 milliseconds for TCB for the same group size. When the causal stability mechanism is running in both

versions, the TCB performs a lot better and the gap between both algorithm becomes bigger. For instance

for 128 peers, the non-causal delivery latency for TCB is around 70 milliseconds which a lot smaller than

2.2 seconds for VV for the same group size.

108

N

Use Cases

This chapter focuses on showing how the work done during this thesis was used in existing software, data

stores and other research as well.

9.1 ASPAS

As Secure as Possible Available Systems [91] (ASPAS) is a Byzantine resilient AP system. It follows an

optimistic approach to maintain a single round-trip response time, and allows the detection of Byzantine

replicas in the background, i.e., off the critical path of clients requests. My contribution to this work was in

using causal stability and operation-based CRDTs to calculate the common partially-ordered log (TQHQ;)
of operations and produce a certificate for BFT under EC.

Figure 38: ASPAS architecture.

109

CHAPTER 9. USE CASES

9.1.1 Data Types for backup and recovery

The possibility to guarantee Byzantine Fault Tolerant reads in the system without forfeiting system’s avail-

ability is based on the ability to provide certificates for operations by the BFT cluster. For that to work

correctly we provide a mechanism that allows the system to rebuild “safe” states i.e. free of operations

initiated by byzantine nodes. We present below two versions of such mechanism: a naive one using

“undo” and “redo”, and a more elegant, generic, and safe alternative that we adopt, using the “clone”

functionality.

9.1.1.1 Undo and Redo functionality

This mechanism is made possible through the use of Undo and Redo functionality for the Data Types in

use. For every instance of a data type, the received operations that mutate the state of that instance are

stored in a partially-ordered log, TQHQ;. This allows updating the state of the data types at the application
servers without delaying it with the byzantine fault tolerance protocol running in the BFT cluster. The

BFT cluster protocol, running in parallel to the updates on the application server, provides information on

which operations are safe and which ones were initiated by a byzantine node. The information provided is

through the version vectors that act as a timestamp for each operation. In addition to the TQHQ; logging

all the operations of an instance, each data type supports an undo (redo respectively) functionality, that

given the TQHQ;, an unsafe (safe respectively) timestamp and the state of the instance, undoes (redoes

respectively) the effect of that operation from the TQHQ;. The undo and redo functionality allows to rebuild
the state of a data type, from the original TQHQ;, allowing to filter unsafe operations and redoing the safe
ones. However, this functionality is data type specific and requires extra care in specifying the “undo” for

every new data type. We opt for a more elegant and generic approach using the “clone” functionality, that

we explain next.

9.1.1.2 Data Types with clone functionality

A more efficient way to provide byzantine fault tolerant state convergence would be by a using the clone

functionality. This functionality is equivalent to the undo/redo functionality, but it provides a simpler, more

generic and elegant approach, independently of the data type used. In this version, the state of each data

type is specified as a TQHQ; mapping timestamps (version vectors) to the relative operation (as in Pure

op-based CRDTs [7]). This means that the TQHQ; used “outside” the data type in undo/redo version is

not needed anymore. The clone functionality receives two timestamps and the old safe state as input: a

lower bound C as the last safe version vector (bottom ? by default), and the upper bound C 0 as the new

safe version vector calculated by the BFT cluster and B, the previously calculated safe state of the data

type (by default the state is the initial empty state the data type). Instead of redoing all the operations

as previously, the clone functionality “clones” the state of the current data type by copying all operations

having timestamps C 00 such that C C 00 C 0 (as per the Lamport’s happens-before relation). As all

110

9.2. LASP

data types in this versions have a TQHQ; as their state, the clone functionality is generic for all of them.

However, we illustrate this with an example of the Set data type.

⌃ =) õ! $ f08 = {}
2772+i(>, C, B) = B [{(C,>)}

(with > = either [�//, E] or [`Kp, E])
+HQM2(C, C 0, B, B0) = B0 [{(C 00,>) 2 B |C C 00 C 0}

2p�H(`/, B) = {E | (C, [�//, E]) 2 B ^
ö(C 0, [`Kp, E]) 2 B · C < C 0}

Figure 39: TQHQ; based Add-Wins Set with Clone functionality

Add-Wins Set Figure 39 presents the specs of the Add-Wins Set with the clone functionality. The state

of the AWSet is a TQHQ; mapping timestamps C 2) to operations > 2 $ = {[�//, E], [`Kp, E]}. 2772+i
updates the state by adding the timestamped operation (C,>) to the TQHQ;. Finally, +HQM2 creates a new
state (TQHQ;) by copying all timestamped operations between C and C 0 and merges it with the previously
calculated safe state B0. As the application server guarantees causal consistency, all replicas have seen

the same operations between the previously calculated lower bound and the upper bound version vector

provided by the BFT cluster in the same causal order. It is trivial to note that cloning the state, through

copying operations having timestamps between the two provided bounds, preserves the convergence and

thus provides a byzantine consistent state among all replicas.

Remark on the Counter Data Type In this approach, the state TQHQ;-based Counter increases with
the number of operations (BM+, /2+). This is an overhead in terms of space when compared to an integer
state. We do not address this here, but compaction techniques for a TQHQ;-based Counter has been

proposed in [92] to solve this problem.

9.2 Lasp

Another contribution done during my Ph.D. was participating in the Google Summer of Code’16 program

where I saw an interesting opportunity to improve upon existing software and contribute to the open source

community. I submitted a proposal to implement the operation-based CRDTs framework in Lasp [93], a

programming model for building correct distributed applications. The proposal was accepted and the work

was rewarded with a certificate from Google. The code is now public and available on GitHub (Section 9.6).

I also had the opportunity to present the work in a poster session at INESC TEC, Porto for “HASLAB OPEN

DAY 2016”.

111

CHAPTER 9. USE CASES

Lasp Runtime System

Figure 40: Lasp runtime system.

Operation-based replication

Pure Op-based architecture

Figure 41: Lasp pure op-based CRDTs.

112

9.3. ANTIDOTEDB

⌃ = N ⇥ P()) f0 = (0, {})
T`2T�`2(>, (=, B)) = > (with > either BM+ or `2b2i)

2772+i(BM+, C, (=, B)) = (=, B [{C})
2772+i(`2b2i, C, (=, B)) = (0, B \ {C 0 2 B |C 0 < C})

bi�#BHBx2(C, (=, B)) = (= + 1, B \ {C})
2p�H(p�Hm2, (=, B)) = = + |B |

Figure 42: Concrete Resettable Counter Implementation

I improved the design of the reliable causal broadcast middleware implemented for Lasp. This mid-

dleware is an essential component of the op-based platform and, for that reason, improving it is a main

contribution that would lead to optimizing the op-based platform. The current implementation of this

middleware presents a more scalable and dynamic version.

9.3 AntidoteDB

As part of the Syncfree project [94], a FP7 EU project on large-scale replicated computation without

synchronization. One of the major results of this project has been the geo-replicated highly available data

store Antidote [95]. A central component of this data store is a library for conflict-free replicated data

types. As a contribution to this project, I was responsible of replacing the initial implementation of CRDTs

with a new optimized version. I improved the design of existing data types (add-wins set, remove-wins set,

pn-counter) and adapted the design of further op-based types such as maps and flags for Antidote. I have

also been contributing to Antidote under the EU project Lightkone [96] by implementing a mechanism

that allows compressing operations before sending to other replicas. The code is available on GitHub

(Section 9.6) in Erlang with unit and property-based tests.

Moreover, while working on the map data type in Antidote, I tackled the problem of embedding coun-

ters inside maps that led to a paper entitled “Compact Resettable Counter through Causal Stability” [92]

that was submitted to PAPOC/EUROSYS’17. In that paper, I presented the problem, proposed a new de-

sign for a counter that solves it and showed how causal stability could be used to garbage collect meta-data

and lead to more compact state.

9.4 Redis with relaxed consistency

The popularity of Redis [76] stems from its speed, rich semantics, and stability. It was primarily designed

and generally used in a single server deployment model. A single Redis instance is a remote centralized

solution, and not a distributed system. However, Redis provides distributed solutions known as Redis

113

CHAPTER 9. USE CASES

Figure 43: The general architecture of our multi-master proposed solution.

Sentinel and Redis Cluster which allow using multiple instances, asynchronous master-slave replication,

and automatic fail over process.

We contributed in implementing pure op-based CRDTs to build a multi-master replication feature in

Redis [76], the famous in-memory cache system. We choose Redis because: (1) it helps us demonstrate

how to integrate pure op-based CRDTs in an existing popular system; (2) we contribute with the community

in building a crucial multi-master feature that is currently missing in Redis. Our experience reveals that

implementing pure op-based CRDTs for many data types is straightforward, whereas integrating them in

an existing system is somehow challenging if the aim is to preserve the legacy API and code-base intact.

The code is available on GitHub (Section 9.6) in C.

For the implementation of the multi-master replication feature using pure op-based CRDTs, we inte-

grated three layers into Redis Server’s code. We present below the three layers, shown in Figure 43, with

a brief description of each layer.

Request handler The handler layer is the intermediate layer between Redis Client API and the TRCB

and CRDT layers. Every client request is redirected by the original Redis Client API to this layer. Then,

this layer prepares a client object containing the operation and arguments (if any), serializes it and ships

it to the TRCB layer for dissemination.

Tagged Reliable Causal Broadcast The second layer (TRCB) is used to broadcast client requests

(operations and arguments) to all nodes in the cluster. This layer tags the client objects received from

the handler with a timestamp needed to guarantee causal delivery at each node. Also, the TRCB is

implemented in a way to guarantee exactly-once delivery of each client object to each node in the cluster.

CRDT layer The CRDT layer is where we implement the pure op-based CRDTs and their related struc-

tures, such as the POLog (Partially-Ordered Log), a map where the key is a timestamp and the value is the

114

9.5. MINIDOTE

operation and arguments, following the designs and specifications in [7]. In addition to that, we perform

a two-phase POLog compaction to make CRDTs even more efficient. The first phase removes obsolete

and redundant information from the POLog in a way that does not affect the result of the queries, keeping

only relevant of operations. The second one is by using causal stability information from the middleware

to discard the timestamps of causally stable operations and move them from the POLog to the Redis data

types.

Challenges We had to figure out solutions for the challenges we faced. The challenges are in terms of

architecture design, preserving original API with minor changes, reusability of Redis code, configurability

of the system, choice of messaging pattern and implementation of causal stability. A more detailed version

of this work is published in [97].

9.5 Minidote

Minidote [98] is a lightweight, replicated key-CRDT store. The anticipated use cases for Minidote are those

where the managed data fits well into the memory of each node in the cluster. The data is automatically

replicated on each node, while concurrent updates are resolved using CRDTs. Minidote provides causal

consistency with atomic batch-reads and batch-updates.

Compared to Antidote, Minidote includes the following simplifications, which makes it more lightweight

and therefore allow it to run well on less powerful devices:

1. There is no sharding of data onto multiple machines within a data center. Each replication site only

consists of a single machine.

2. There is (currently) no support for interactive transactions.

Figure 44 sketches the high-level architecture of Minidote . The components drawn with dashed lines

are reusable components that are shared with Antidote.

My contribution was in replacing the inter-dc replication service used in Antidote with a different causal

broadcast service provided by Camus. Camus is a CAusal MUlticast Service, that provides different back-

ends to guarantee a reliable dissemination and delivery respecting causal order at all replicas using the

service. The back-end used in Minidote is an implementation of tagged casual broadcast (TCB) protocol. In

short, TCB guarantees that messages will be delivered respecting the end-to-end happens-before relation

as seen by the application. Moreover, it uses smaller size timestamps than vector clocks to encode the

causality between messages, a causal graph to store the dependencies between messages and an efficient

algorithm for causal delivery and stability. The code is available on GitHub (Section 9.6) in Erlang with

unit and property-based tests.

The minidote_server process, at every Minidote instance, stores locally in its state a dot, i.e. a pair

of (=>34�3, 2>D=C4A), which serves as a unique identifier for a message to be broadcast, and a context,

115

CHAPTER 9. USE CASES

Figure 44: High-level architecture of Minidote.

i.e. a set of dots, which stores the ids/dots of the most recently delivered messages. The context serves

as the causal dependency of the next message to be broadcast.

To explain the integration of TCB in Minidote, we explain below the API of Camus:

• tcbcast(Msg, State): broadcasts a message to every process in the group membership. The client

process (here minidote_server) will be responsible for tagging the message to be sent with a new

dot and the causal context.

• tcdeliver(Msg, Timestamp, State): delivers a message to the application with the tag. The client

process or application (here: minidote_server) also implements message delivery. For instance,

in the case of an operation-based AW-Set (0, C234;8E4A would add the operation (033, 4, and

respective timestamp C 0) to the state (0.

• tcstable(Msg, Timestamp, State): stabilizes a delivered message.

The minidote_server process also needs to handle messages coming from the TCB service in the

format camus, Opaque. Upon receiving such a message, the function camus:handle(Opaque, State) is

called, where State comprises the local dot and context. The TCB process will update the state and return it

along with the type of message (34;8E4A , BC01;4), and the payload. The minidote_server process updates

the state and based on the type of message calls C234;8E4A or C2BC01;4.

Minidote does not fully benefit from all the features of the TCB protocol. The reason is that Minidote

uses Antidote’s classical operation-based CRDTs as data types which use random unique tokens as a

unique identifier and do not provide meta data information on the provenance of the operations. This

116

9.6. SOFTWARE, LIBRARIES AND ARTIFACTS

means that currently Minidote does its own causal tagging of operations (using random tokens) to be used

for comparing operations, and the dot and context tagging provided by TCB to provide causal delivery

order. An improved implementation should to use the dot and context as the only tag to provide end-

to-end causal delivery, without a need of duplication of effort (tagging) and extra metadata. With such

modifications to the CRDTs, Minidote could benefit from an efficient garbage collection of CRDT metadata

that is provided by causal stability and that is not possible with the current CRDT library. Finally, the

current version works in the scope of static systems and therefore does not allow nodes to join and leave.

As the anticipated use cases for Minidote are targeting deployments closer to the edge, nodes are likely

to join and leave more frequently as with Antidote’s data center deployment. We therefore plan to extend

the current version to cover the scope of dynamic systems by extending the API of Minidote to deal with

joining, leaving, state-transfer and using the dynamic version of TCB.

9.6 Software, libraries and artifacts

• ?iiTb,ff;Bi?m#X+QKf;vQmM2bf+�Kmb, Erlang implementation of different causal delivery

and stability middleware inluding: Classical VV-based, Classical E2E VV-based, Optimised E2E VV-

based, E2E TCB algorithm, Dynamic E2E TCB.

• ?iiTb,ff;Bi?m#X+QKf;vQmM2bf+�Kmbn2tT, Erlang implementation for deployment, orches-
tration and evaluation of Camus using docker and kubernetes.

• ?iiTb,ff;Bi?m#X+QKf;vQmM2bfKBMB/Qi2, Erlang implementation of Miniodte, a lightweight
CRDT data store using TCB as causal delivery middleware.

• ?iiTb,ff;Bi?m#X+QKf�MiB/Qi2."f�MiB/Qi2n+`/i, Erlang implementation of Op-based
Conflict-free Replicated Data Types (CRDTs) in Erlang.

• ?iiTb,ff;Bi?m#X+QKf;vQmM2bf_*", Erlang implementation of reliable causal broadcast.

• ?iiTb,ff;Bi?m#X+QKfH�bT@H�M;fivT2b, Prototype implementation of Conflict-free Repli-

cated Data Types (CRDTs) in Erlang.

• ?iiTb,ff;Bi?m#X+QKfH�bT@H�M;fBb?BF�r�, Erlang implementation of tagged reliable causal
broadcast over partisan/hyparview.

• ?iiTb,ff;Bi?m#X+QKf?�bH�#f1*fi`22fK�bi2`fiQTB+Rf`2/Bb, PoC: Implementation
of multimaster replication in Redis).

117

https://github.com/gyounes/camus
https://github.com/gyounes/camus_exp
https://github.com/gyounes/minidote
https://github.com/AntidoteDB/antidote_crdt
https://github.com/gyounes/RCB
https://github.com/lasp-lang/types
https://github.com/lasp-lang/ishikawa
https://github.com/haslab/EC/tree/master/topic1/redis

Ry

Conclusions and Future Perspectives

The work in this thesis leveraged the importance of giving another thought to causal consistency techniques

designed for systems of an old era, back three decades. My work revisited the end to end causal delivery

stack from the application to the causal middleware API, including its internal logic. This lead to novel

class Dynamic End-to-End Reliable Causal Delivery Middleware for Geo-Replicated Services, tailored for

modern causality systems.

My research started by analyzing the causality requirements in modern applications that are com-

plex and multi-threaded. I explained how distributed systems practitioners could try to achieve end-to-end

happens-before incorrectly by identifying the pitfalls in trying to achieve that. This work affirms the im-

portance of going to fundamentals while designing complex systems before engineering them. To this

end, I introduced Tagged Causal Delivery (Broadcast) that ensure an end-to-end happens-before. Tagged

Causal Delivery redefines the happens-before relation to reflect application level dependencies and provide

knowledge about the causal relations and concurrency between operations to the application.

On the other hand, studying the interaction between applications and the underlying causal broadcast

middlewares was helpful to inspire new functionalities that makes consistency at the application semantics

correct and efficient. For this, I introduced a new causal broadcast architecture and API that grants the

application layer access to causality information for timestamping as well as for garbage collection, using

causal stability. I have shown that these newmiddleware functionalities reduce the bandwidth andmemory

overhead significantly without compromising latency. Nevertheless, systems in which causal stability is not

required may not take advantage of this optimization, while paying a little cost in causal delivery. Indeed,

the delivery latency overhead in my work is negligible overhead (less than millisecond) over classical

systems, while improving the causal stability one order of magnitude.

One more aspect addressed in the work was the internal abstractions used in causal middlwares. I

have shown that the classical causal broadcast algorithms, based on version clocks, are not efficient in

memory and stability as the number of replicas increase. This lead to the introduction of dependency dots

and a causal DAG as data structures to represent the causal dependencies and metadata. I designed and

implemented an efficient graph-based Tagged Causal Delivery middleware. In the experiments, I showed

how the Tagged Causal Delivery middleware scales better that an optimized E2E VV-based algorithm in

118

10.1. FUTURE WORK

terms of transmission of meta data on the network, size of metadata in memory and the non-causal

stability latency. I also showed that the algorithm is more resilient in case of unreliable networks, where

delays and partitions occur.

Dynamic membership was another focus in my thesis, inspired by the advent of elastic systems,

enabled through virtualization techniques. I introduced the first causal delivery middleware that tolerates

dynamic membership while maintaining the causal consistency guarantees. I showed how the new graph-

based TCB stability allows for the system operation in a high churn dynamic environment and in a non-

blocking fashion.

During the course of my thesis, I applied these concepts to many use cases presented in the last

chapter. The work was part of the EU H2020 projects, LightKone and Syncfree, as well as other national

projects. Part of the work was also funded through the Google Summer Code grant. All these works

obviously consumed significant time of my thesis time; however, this paid off in two main ways (in addition

to the funding support). The first is digging in the engineering of the middleware which helped in realizing

the theoretical pifalls as well as resulting in a well structured and reliable TCB codebase in Erlang. The

second benefit was increasing the impact of my work through other works, like Lasp and Antidote, that

have seen high adoption in the industry.

10.1 Future Work

One direction would be extending our current middleware. More work can be done on batching operations

that would improve the performance in terms of non-causal latency and stability. Also, work on causal

stability required the delivery of operations to the entire system. It would be interesting to study the

usefulness and technique of partial stability in a quorum-based fashion, e.g., K-stability, where the system

is causality stable considering quorum of K replicas out of the total membership. Making our causal

middleware more adaptive by allowing it to dynamically pick the optimal send rates to be used based

on the network delays. An important part to work on is to improve the mechanism used in the TCB

middleware to compare operations at the client; the mechanism used now is still slower than comparing

two version vectors. Finally, we would like to work on finding solutions for node migration, persistence

and mostly extend the middleware to allow partial replication.

Another direction would be extending and improving the existing pure operation-based CRDTs design

and implementation. This novel CRDTs library and the current middleware could be used together to

develop a highly-available and scalable data store that could offer interesting trade-offs. Moreover, it

would be also interesting to work on new CRDTs like sequences that could be used for collaborative

editing, without the need to synchronise often.

119

Bibliography

[1] João M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021.

url: ?iiTb,ff;Bi?m#X+QKfDQ�QKHQm`2M+QfMQp�i?2bBbf`�rfK�bi2`fi2KTH�i2X
T/7 (cit. on p. ii).

[2] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. “From session causality to causal consistency”.

In: 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2004. Pro-

ceedings. 2004, pp. 152–158. doi: RyXRRyNf1JS.SXkyy9XRkdR99y (cit. on pp. 1, 9).

[3] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. “Consistency, Availability, and Convergence”. In:

(May 2012) (cit. on pp. 1, 8, 9, 13).

[4] Kenneth Birman, André Schiper, and Pat Stephenson. “Lightweight Causal and Atomic Group Mul-

ticast”. In: ACM Trans. Comput. Syst. 9.3 (Aug. 1991), pp. 272–314. issn: 0734-2071. doi: Ry
XRR98fRk3dj3XRk3d9k. url: ?iiT,ff/QBX�+KXQ`;fRyXRR98fRk3dj3XRk3d9k (cit. on

pp. 2, 37–39, 55, 62).

[5] Sebastian Burckhardt. “Principles of Eventual Consistency”. In: Found. Trends Program. Lang. 1.1-

2 (Oct. 2014), pp. 1–150. issn: 2325-1107. doi: RyXR8eRfk8yyyyyyRR. url: ?iiT,ff/tX
/QBXQ`;fRyXR8eRfk8yyyyyyRR (cit. on pp. 2, 37).

[6] Hyun-Gul Roh et al. “Replicated Abstract Data Types: Building Blocks for Collaborative Applica-

tions”. In: J. Parallel Distrib. Comput. 71.3 (Mar. 2011), pp. 354–368. issn: 0743-7315. doi:

RyXRyRefDXDT/+XkyRyXRkXyye. url: ?iiT,ff/tX/QBXQ`;fRyXRyRefDXDT/+XkyRyXR
kXyye (cit. on pp. 2, 63).

[7] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. “Making Operation-Based CRDTs Operation-

Based”. In: Proceedings of the 14th IFIP WG 6.1 International Conference on Distributed Ap-

plications and Interoperable Systems - Volume 8460. Berlin, Heidelberg: Springer-Verlag, 2014,

pp. 126–140. isbn: 978-3-662-43351-5. doi: Ry X Ryyd f Nd3 @ j @ eek @ 9jj8k @ k n RR. url:
?iiTb,ff/QBXQ`;fRyXRyydfNd3@j@eek@9jj8k@knRR (cit. on pp. 2, 38, 42, 62, 110,

115).

120

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1109/EMPDP.2004.1271440
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
http://doi.acm.org/10.1145/128738.128742
https://doi.org/10.1561/2500000011
http://dx.doi.org/10.1561/2500000011
http://dx.doi.org/10.1561/2500000011
https://doi.org/10.1016/j.jpdc.2010.12.006
http://dx.doi.org/10.1016/j.jpdc.2010.12.006
http://dx.doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1007/978-3-662-43352-2_11
https://doi.org/10.1007/978-3-662-43352-2_11

BIBLIOGRAPHY

[8] Daniel Abadi. “Consistency tradeoffs in modern distributed database system design: CAP is only

part of the story”. In: Computer 45.2 (2012), pp. 37–42 (cit. on pp. 6, 7, 9).

[9] Eric A. Brewer. “Towards Robust Distributed Systems (Abstract)”. In: Proceedings of the Nineteenth

Annual ACM Symposium on Principles of Distributed Computing. PODC ’00. Portland, Oregon, USA:

Association for Computing Machinery, 2000, p. 7. isbn: 1581131836. doi: RyXRR98fj9j9ddXj
9j8yk. url: ?iiTb,ff/QBXQ`;fRyXRR98fj9j9ddXj9j8yk (cit. on pp. 6–8, 37).

[10] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-Tolerant Web Services”. In: SIGACT News 33.2 (June 2002), pp. 51–59. issn: 0163-5700.

doi: RyXRR98f8e9838X8e9eyR. url: ?iiTb,ff/QBXQ`;fRyXRR98f8e9838X8e9eyR (cit.

on pp. 6–8, 37).

[11] L. Lamport. “Proving the Correctness of Multiprocess Programs”. In: IEEE Transactions on Software

Engineering SE-3.2 (1977), pp. 125–143. doi: RyXRRyNfha1XRNddXkkNNy9 (cit. on p. 7).

[12] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Distributed Consen-

sus with One Faulty Process”. In: J. ACM 32.2 (Apr. 1985), pp. 374–382. issn: 0004-5411. doi:

RyXRR98fjR9NXkR9RkR. url: ?iiTb,ff/QBXQ`;fRyXRR98fjR9NXkR9RkR (cit. on p. 7).

[13] Wyatt Lloyd et al. “Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with

COPS”. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.

SOSP ’11. Cascais, Portugal: Association for Computing Machinery, 2011, pp. 401–416. isbn:

9781450309776. doi: RyXRR98fky9j88eXky9j8Nj. url: ?iiTb,ff/QBXQ`;fRyXRR98fk
y9j88eXky9j8Nj (cit. on pp. 10, 30).

[14] Peter Bailis et al. “The potential dangers of causal consistency and an explicit solution”. In: Pro-

ceedings of the Third ACM Symposium on Cloud Computing. ACM. 2012, p. 22 (cit. on pp. 10,

38, 47).

[15] Manuel Bravo, Luı�s Rodrigues, and Peter Van Roy. “Towards a Scalable, Distributed Metadata

Service for Causal Consistency under Partial Geo-Replication”. In: Proceedings of the Doctoral

Symposium of the 16th International Middleware Conference. Middleware Doct Symposium ’15.

Vancouver, BC, Canada: Association for Computing Machinery, 2015. isbn: 9781450337281. doi:

RyXRR98fk39jNeeXk39jNdR. url: ?iiTb,ff/QBXQ`;fRyXRR98fk39jNeeXk39jNdR
(cit. on p. 10).

[16] Peter Bailis et al. “Highly Available Transactions: Virtues and Limitations”. In: Proc. VLDB Endow.

7.3 (Nov. 2013), pp. 181–192. issn: 2150-8097. doi: RyXR9dd3fkdjkkjkXkdjkkjd. url:
?iiTb,ff/QBXQ`;fRyXR9dd3fkdjkkjkXkdjkkjd (cit. on p. 11).

[17] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: a correctness condition for concurrent

objects”. In: ACM Transactions on Programming Languages and Systems 12 (1990), pp. 463–492

(cit. on pp. 12, 31).

121

https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2843966.2843971
https://doi.org/10.1145/2843966.2843971
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2732232.2732237

BIBLIOGRAPHY

[18] George V. Neville-Neil. “Time is an Illusion Lunchtime Doubly So”. In: Commun. ACM 59.1 (Dec.

2015), pp. 50–55. issn: 0001-0782. doi: RyXRR98fk3R9jje. url: ?iiTb,ff/QBXQ`;fRyXR
R98fk3R9jje (cit. on p. 12).

[19] Lamport. “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Pro-

grams”. In: IEEE Transactions on Computers C-28.9 (1979), pp. 690–691. doi: RyXRRyNfh*XR
NdNXRed89jN (cit. on p. 12).

[20] Mustaque Ahamad et al. “Causal Memory: Definitions, Implementation, and Programming”. In:

Distrib. Comput. 9.1 (Mar. 1995), pp. 37–49. issn: 0178-2770. doi: RyXRyydf"6yRd39k9R.
url: ?iiTb,ff/QBXQ`;fRyXRyydf"6yRd39k9R (cit. on p. 13).

[21] Hagit Attiya, Faith Ellen, and Adam Morrison. “Limitations of Highly-Available Eventually-Consistent

Data Stores”. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing.

PODC ’15. Donostia-San Sebastián, Spain: Association for Computing Machinery, 2015, pp. 385–

394. isbn: 9781450336178. doi: RyXRR98fkdedj3eXkded9RN. url: ?iiTb,ff/QBXQ`;fR
yXRR98fkdedj3eXkded9RN (cit. on pp. 13, 37).

[22] Werner Vogels. “Eventually Consistent”. In: Commun. ACM 52.1 (Jan. 2009), pp. 40–44. issn:

0001-0782. doi: RyXRR98fR9j89RdXR9j89jk. url: ?iiTb,ff/QBXQ`;fRyXRR98fR9j89R
dXR9j89jk (cit. on p. 14).

[23] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In: Commun.

ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782. doi: RyXRR98fj8N898Xj8N8ej. url:
?iiTb,ff/QBXQ`;fRyXRR98fj8N898Xj8N8ej (cit. on pp. 16, 25, 39).

[24] Kenneth P. Birman and Thomas A. Joseph. “Reliable Communication in the Presence of Failures”.

In: ACM Trans. Comput. Syst. 5.1 (Jan. 1987), pp. 47–76. issn: 0734-2071. doi: RyXRR98fdj8
RXd9d3. url: ?iiTb,ff/QBXQ`;fRyXRR98fdj8RXd9d3 (cit. on pp. 16, 22, 25–28, 39).

[25] Bernadette Charron-Bost. “Concerning the Size of Logical Clocks in Distributed Systems”. In: Inf.

Process. Lett. 39.1 (July 1991), pp. 11–16. issn: 0020-0190. doi: RyXRyRefyyky@yRNyUNRVN
yy88@J. url: ?iiTb,ff/QBXQ`;fRyXRyRefyyky@yRNyUNRVNyy88@J (cit. on p. 16).

[26] D. S. Parker et al. “Detection of Mutual Inconsistency in Distributed Systems”. In: IEEE Trans. Softw.

Eng. 9.3 (May 1983), pp. 240–247. issn: 0098-5589. doi: RyXRRyNfha1XRN3jXkjedjj. url:
?iiTb,ff/QBXQ`;fRyXRRyNfha1XRN3jXkjedjj (cit. on pp. 16, 20).

[27] Michel Raynal and Mukesh Singhal. “Logical Time: Capturing Causality in Distributed Systems”.

In: Computer 29.2 (Feb. 1996), pp. 49–56. issn: 0018-9162. doi: RyXRRyNfkX93839e. url:
?iiTb,ff/QBXQ`;fRyXRRyNfkX93839e (cit. on pp. 16, 18).

122

https://doi.org/10.1145/2814336
https://doi.org/10.1145/2814336
https://doi.org/10.1145/2814336
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2767386.2767419
https://doi.org/10.1145/2767386.2767419
https://doi.org/10.1145/2767386.2767419
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1109/TSE.1983.236733
https://doi.org/10.1109/TSE.1983.236733
https://doi.org/10.1109/2.485846
https://doi.org/10.1109/2.485846

BIBLIOGRAPHY

[28] Reinhard Schwarz and Friedemann Mattern. “Detecting Causal Relationships in Distributed Com-

putations: In Search of the Holy Grail”. In: Distrib. Comput. 7.3 (Mar. 1994), pp. 149–174. issn:

0178-2770. doi: RyXRyydf"6ykkdd38N. url: ?iiTb,ff/QBXQ`;fRyXRyydf"6ykkdd38N
(cit. on pp. 16, 18).

[29] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured Storage System”.

In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010), pp. 35–40. issn: 0163-5980. doi: RyXRR98fRdd
jNRkXRddjNkk. url: ?iiTb,ff/QBXQ`;fRyXRR98fRddjNRkXRddjNkk (cit. on p. 17).

[30] C. J. Fidge. “Timestamps in message-passing systems that preserve the partial ordering”. In: Pro-

ceedings of the 11th Australian Computer Science Conference 10.1 (1988), pp. 56–66. url: ?iiT,
ffbFvXb+Bi2+?X[miX2/mX�mf�7B/;2+fSm#HB+�iBQMbf7B/;233�XT/7 (cit. on p. 19).

[31] Friedemann Mattern. “Virtual Time and Global States of Distributed Systems”. In: PARALLEL AND

DISTRIBUTED ALGORITHMS. North-Holland, 1988, pp. 215–226 (cit. on pp. 19, 40).

[32] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. “Preserving and Using Context

Information in Interprocess Communication”. In: ACM Trans. Comput. Syst. 7.3 (Aug. 1989),

pp. 217–246. issn: 0734-2071. doi: RyXRR98fe8yyyXe8yyR. url: ?iiT,ff/QBX�+KXQ`;fR
yXRR98fe8yyyXe8yyR (cit. on p. 25).

[33] Rivka Ladin et al. “Providing High Availability Using Lazy Replication”. In: ACM Trans. Comput.

Syst. 10.4 (Nov. 1992), pp. 360–391. issn: 0734-2071. doi: RyXRR98fRj33djXRj33dd. url:
?iiT,ff/QBX�+KXQ`;fRyXRR98fRj33djXRj33dd (cit. on p. 25).

[34] André Schiper, Jorge Eggli, and Alain Sandoz. “A New Algorithm to Implement Causal Order-

ing”. In: Proceedings of the 3rd International Workshop on Distributed Algorithms. London, UK,

UK: Springer-Verlag, 1989, pp. 219–232. isbn: 3-540-51687-5. url: ?iiT,ff/HX�+KXQ`;f
+Bi�iBQMX+7K\B/4e98N9eXed8yRy (cit. on pp. 26, 39).

[35] Michel Raynal, André Schiper, and Sam Toueg. “The Causal Ordering Abstraction and a Simple

Way to Implement It”. In: Inf. Process. Lett. 39.6 (Oct. 1991), pp. 343–350. issn: 0020-0190. doi:

RyXRyRefyyky@yRNyUNRVNyyy3@e. url: ?iiT,ff/tX/QBXQ`;fRyXRyRefyyky@yRNyUN
RVNyyy3@e (cit. on p. 26).

[36] Yair Amir et al. “Transis: A Communication Subsystem for High Availability”. In: Proceedings of

the 22nd International Symposium on Fault Tolerant Computing. Boston, Massachusetts: IEEE

Computer Society Press, 1992, pp. 76–84 (cit. on p. 26).

[37] Yair Amir and Jonathan Stanton. “The Spread Wide Area Group Communication System”. In: 2007

(cit. on p. 26).

[38] JGroups. a toolkit for reliable multicast communication. 2002. url: ?iiT,ffrrrXD;`QmTbXQ`;
(cit. on p. 26).

123

https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
https://doi.org/10.1145/65000.65001
http://doi.acm.org/10.1145/65000.65001
http://doi.acm.org/10.1145/65000.65001
https://doi.org/10.1145/138873.138877
http://doi.acm.org/10.1145/138873.138877
http://dl.acm.org/citation.cfm?id=645946.675010
http://dl.acm.org/citation.cfm?id=645946.675010
https://doi.org/10.1016/0020-0190(91)90008-6
http://dx.doi.org/10.1016/0020-0190(91)90008-6
http://dx.doi.org/10.1016/0020-0190(91)90008-6
http://www.jgroups.org

BIBLIOGRAPHY

[39] Michael Stonebraker University and Michael Stonebraker. “The Case for Shared Nothing”. In:

Database Engineering 9 (1986), pp. 4–9 (cit. on p. 26).

[40] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. “Bounded Version Vectors”. In:

Distributed Computing. Ed. by Rachid Guerraoui. Berlin, Heidelberg: Springer Berlin Heidelberg,

2004, pp. 102–116. isbn: 978-3-540-30186-8 (cit. on p. 26).

[41] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. “Interval Tree Clocks”. In: Proceedings of

the 12th International Conference on Principles of Distributed Systems. OPODIS ’08. Luxor, Egypt:

Springer-Verlag, 2008, pp. 259–274. isbn: 9783540922209. doi: RyXRyydfNd3@j@89y@Nkk
kR@enR3. url: ?iiTb,ff/QBXQ`;fRyXRyydfNd3@j@89y@NkkkR@enR3 (cit. on p. 27).

[42] Mukesh Singhal and Ajay Kshemkalyani. “An Efficient Implementation of Vector Clocks”. In: Inf.

Process. Lett. 43.1 (Aug. 1992), pp. 47–52. issn: 0020-0190. doi: RyXRyRefyyky@yRNyUNk
VNyyk3@h. url: ?iiT,ff/tX/QBXQ`;fRyXRyRefyyky@yRNyUNkVNyyk3@h (cit. on pp. 27,

28).

[43] Punit Chandra, Pranav Gambhire, and Ajay Kshemkalyani. “Performance of the Optimal Causal

Multicast Algorithm: A Statistical Analysis”. In: Parallel and Distributed Systems, IEEE Transactions

on 15 (Feb. 2004), pp. 40–52. doi: RyXRRyNfhS.aXkyy9XRke9d39 (cit. on p. 28).

[44] Pat Stephenson and Kenneth Birman. “Fast Causal Multicast”. In: SIGOPS Oper. Syst. Rev. 25.2

(Apr. 1991), pp. 75–79. issn: 0163-5980. doi: RyXRR98fRkkRkyXRkkRkd. url: ?iiT,ff/QBX
�+KXQ`;fRyXRR98fRkkRkyXRkkRkd (cit. on p. 28).

[45] Ravi Prakash, Michel Raynal, and Mukesh Singhal. “An Adaptive Causal Ordering Algorithm Suited

to Mobile Computing Environments”. In: J. Parallel Distrib. Comput. 41.2 (Mar. 1997), pp. 190–

204. issn: 0743-7315. doi: RyXRyyefDT/+XRNNeXRjyy. url: ?iiT,ff/tX/QBXQ`;fRyXRy
yefDT/+XRNNeXRjyy (cit. on pp. 28, 55).

[46] Ajay D. Kshemkalyani and Mukesh Singhal. “Necessary and Sufficient Conditions on Information

for Causal Message Ordering and Their Optimal Implementation”. In: Distrib. Comput. 11.2 (Apr.

1998), pp. 91–111. issn: 0178-2770. doi: RyXRyydfbyy99eyy8yy99. url: ?iiT,ff/tX/QBX
Q`;fRyXRyydfbyy99eyy8yy99 (cit. on pp. 28, 55).

[47] Saul Pomares Hernandez et al. “Causal Broadcast Protocol for Very Large Group Communication

Systems.” In: Jan. 2001, pp. 175–188 (cit. on pp. 28, 29).

[48] Hein Meling et al. “Jgroup/ARM: a distributed object group platform with autonomous replication

management”. In: Software: Practice and Experience 38.9 (2008), pp. 885–923. doi: RyXRyyk
fbT2X38j. eprint: ?iiTb,ffQMHBM2HB#`�`vXrBH2vX+QKf/QBfT/7fRyXRyykfbT2X3
8j. url: ?iiTb,ffQMHBM2HB#`�`vXrBH2vX+QKf/QBf�#bfRyXRyykfbT2X38j (cit. on

p. 28).

124

https://doi.org/10.1007/978-3-540-92221-6_18
https://doi.org/10.1007/978-3-540-92221-6_18
https://doi.org/10.1007/978-3-540-92221-6_18
https://doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1016/0020-0190(92)90028-T
http://dx.doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1109/TPDS.2004.1264784
https://doi.org/10.1145/122120.122127
http://doi.acm.org/10.1145/122120.122127
http://doi.acm.org/10.1145/122120.122127
https://doi.org/10.1006/jpdc.1996.1300
http://dx.doi.org/10.1006/jpdc.1996.1300
http://dx.doi.org/10.1006/jpdc.1996.1300
https://doi.org/10.1007/s004460050044
http://dx.doi.org/10.1007/s004460050044
http://dx.doi.org/10.1007/s004460050044
https://doi.org/10.1002/spe.853
https://doi.org/10.1002/spe.853
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.853
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.853
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.853

BIBLIOGRAPHY

[49] Antonio Fernández, Ernesto Jiménez, and Vicent Cholvi. “On the Interconnection of Causal Mem-

ory Systems”. In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Dis-

tributed Computing. PODC ’00. Portland, Oregon, USA: Association for Computing Machinery,

2000, pp. 163–170. isbn: 1581131836. doi: RyXRR98fj9j9ddXj9j89y. url: ?iiTb,ff
/QBXQ`;fRyXRR98fj9j9ddXj9j89y (cit. on p. 28).

[50] A. Álvarez et al. “On the interconnection of message passing systems”. In: Information Processing

Letters 105.6 (2008), pp. 249–254. issn: 0020-0190. doi: ?iiTb,ff/QBXQ`;fRyXRyRe
fDXBTHXkyydXyNXyye. url: ?iiTb,ffrrrXb+B2M+2/B`2+iX+QKfb+B2M+2f�`iB+H2f
TBBfayykyyRNyydyykdyy (cit. on p. 28).

[51] L. E. T. Rodrigues and P. Verissimo. “Causal Separators for Large-Scale Multicast Communication”.

In: Proceedings of the 15th International Conference on Distributed Computing Systems. ICDCS

’95. USA: IEEE Computer Society, 1995, p. 83 (cit. on p. 28).

[52] Luis Rodrigues and Paulo Verissimo. Causal Separators and Topological Timestamping: An Ap-

proach to Support Causal Multicast in Large-Scale Systems. Tech. rep. 1995 (cit. on p. 28).

[53] Roberto Baldoni, Roy Friedman, and Robbert van Renesse. “The Hierarchical Daisy Architecture for

Causal Delivery”. In: Proceedings of the 17th International Conference on Distributed Computing

Systems (ICDCS ’97). ICDCS ’97. USA: IEEE Computer Society, 1997, p. 570. isbn: 0818678135

(cit. on p. 28).

[54] S. Johnson, F. Jahanian, and J. Shah. “The inter-group router approach to scalable group com-

position”. In: Proceedings. 19th IEEE International Conference on Distributed Computing Systems

(Cat. No.99CB37003). 1999, pp. 4–14. doi: RyXRRyNfA*.*aXRNNNXdde8yy (cit. on p. 28).

[55] A. Mostefaoui et al. “From static distributed systems to dynamic systems”. In: 24th IEEE Sympo-

sium on Reliable Distributed Systems (SRDS’05). 2005, pp. 109–118. doi: RyXRRyNf_1G.AaXk
yy8XRN (cit. on p. 29).

[56] R. Baldoni et al. Broadcast with Time and Causality Constraints for Multimedia Applications. Tech.

rep. Proc. of the 22nd. EUROMICRO Conference (cit. on p. 29).

[57] Abderrahim Benslimane and Abdelhafid Abouaissa. “Dynamical Grouping Model for Distributed

Real Time Causal Ordering”. In: Comput. Commun. 25.3 (Feb. 2002), pp. 288–302. issn: 0140-

3664. doi: RyXRyRefayR9y@jee9UyRVyyjeR@N. url: ?iiTb,ff/QBXQ`;fRyXRyRefayR9
y@jee9UyRVyyjeR@N (cit. on p. 29).

[58] Raj Yavatkar and K Lakshman. “Communication support for distributed collaborative applications”.

In: Multimedia Systems 2.2 (1994), pp. 74–88. issn: 1432-1882. doi: RyXRyydf"6yRkd9R3k.
url: ?iiTb,ff/QBXQ`;fRyXRyydf"6yRkd9R3k (cit. on p. 29).

125

https://doi.org/10.1145/343477.343540
https://doi.org/10.1145/343477.343540
https://doi.org/10.1145/343477.343540
https://doi.org/https://doi.org/10.1016/j.ipl.2007.09.006
https://doi.org/https://doi.org/10.1016/j.ipl.2007.09.006
https://www.sciencedirect.com/science/article/pii/S0020019007002700
https://www.sciencedirect.com/science/article/pii/S0020019007002700
https://doi.org/10.1109/ICDCS.1999.776500
https://doi.org/10.1109/RELDIS.2005.19
https://doi.org/10.1109/RELDIS.2005.19
https://doi.org/10.1016/S0140-3664(01)00361-9
https://doi.org/10.1016/S0140-3664(01)00361-9
https://doi.org/10.1016/S0140-3664(01)00361-9
https://doi.org/10.1007/BF01274182
https://doi.org/10.1007/BF01274182

BIBLIOGRAPHY

[59] M.H. Kalantar and K.P. Birman. “Causally ordered multicast: the conservative approach”. In: Pro-

ceedings. 19th IEEE International Conference on Distributed Computing Systems (Cat. No.99CB37003).

1999, pp. 36–44. doi: RyXRRyNfA*.*aXRNNNXdde8y9 (cit. on p. 29).

[60] Wyatt Lloyd et al. “Stronger Semantics for Low-Latency Geo-Replicated Storage”. In: Proceedings

of the 10th USENIX Conference on Networked Systems Design and Implementation. nsdi’13. Lom-

bard, IL: USENIX Association, 2013, pp. 313–328 (cit. on p. 31).

[61] Jiaqing Du et al. “Orbe: Scalable Causal Consistency Using Dependency Matrices and Physical

Clocks”. In: Proceedings of the 4th Annual Symposium on Cloud Computing. SOCC ’13. Santa

Clara, California: Association for Computing Machinery, 2013. isbn: 9781450324281. doi: RyXR
R98fk8kjeReXk8kjek3. url: ?iiTb,ff/QBXQ`;fRyXRR98fk8kjeReXk8kjek3 (cit. on

p. 31).

[62] Jiaqing Du et al. “GentleRain: Cheap and Scalable Causal Consistency with Physical Clocks”. In:

Proceedings of the ACM Symposium on Cloud Computing. SOCC ’14. Seattle, WA, USA: Association

for Computing Machinery, 2014, pp. 1–13. isbn: 9781450332521. doi: RyXRR98fkedyNdNXk
edyN3j. url: ?iiTb,ff/QBXQ`;fRyXRR98fkedyNdNXkedyN3j (cit. on p. 32).

[63] Deepthi Devaki Akkoorath et al. “Cure: Strong Semantics Meets High Availability and Low Latency”.

In: 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS). 2016,

pp. 405–414. doi: RyXRRyNfA*.*aXkyReXN3 (cit. on p. 33).

[64] Sérgio Almeida, João Leitão, and Luı�s Rodrigues. “ChainReaction: A Causal+ Consistent Data-

store Based on Chain Replication”. In: Proceedings of the 8th ACM European Conference on

Computer Systems. EuroSys ’13. Prague, Czech Republic: Association for Computing Machinery,

2013, pp. 85–98. isbn: 9781450319942. doi: RyXRR98fk9e8j8RXk9e8jeR. url: ?iiTb,
ff/QBXQ`;fRyXRR98fk9e8j8RXk9e8jeR (cit. on p. 33).

[65] Robbert van Renesse and Fred B. Schneider. “Chain Replication for Supporting High Throughput

and Availability”. In: Proceedings of the 6th Conference on Symposium on Operating Systems

Design & Implementation - Volume 6. OSDI’04. San Francisco, CA: USENIX Association, 2004,

p. 7 (cit. on p. 33).

[66] Manuel Bravo, Luı�s Rodrigues, and Peter Van Roy. “Saturn: A Distributed Metadata Service for

Causal Consistency”. In: Proceedings of the Twelfth European Conference on Computer Systems.

EuroSys ’17. Belgrade, Serbia: ACM, 2017, pp. 111–126. isbn: 978-1-4503-4938-3. doi: RyXRR9
8fjye9RdeXjye9kRy. url: ?iiT,ff/QBX�+KXQ`;fRyXRR98fjye9RdeXjye9kRy (cit. on

p. 34).

[67] Syed Akbar Mehdi et al. “I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No

Slowdown Cascades”. In: Proceedings of the 14th USENIX Conference on Networked Systems

Design and Implementation. NSDI’17. Boston, MA, USA: USENIX Association, 2017, pp. 453–

468. isbn: 9781931971379 (cit. on p. 35).

126

https://doi.org/10.1109/ICDCS.1999.776504
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1109/ICDCS.2016.98
https://doi.org/10.1145/2465351.2465361
https://doi.org/10.1145/2465351.2465361
https://doi.org/10.1145/2465351.2465361
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1145/3064176.3064210
http://doi.acm.org/10.1145/3064176.3064210

BIBLIOGRAPHY

[68] Robert Escriva et al. “Kronos: The Design and Implementation of an Event Ordering Service”. In:

Proceedings of the Ninth European Conference on Computer Systems. EuroSys ’14. Amsterdam,

The Netherlands: Association for Computing Machinery, 2014. isbn: 9781450327046. doi: RyXR
R98fk8NkdN3Xk8Nk3kk. url: ?iiTb,ff/QBXQ`;fRyXRR98fk8NkdN3Xk8Nk3kk (cit. on

p. 36).

[69] Mustaque Ahamad et al. “Causal memory: Definitions, implementation and programming”. In: IEEE

Transactions on Parallel and Distributed Systems 1 (1990), pp. 6–16 (cit. on pp. 37, 40).

[70] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, et al. “Consistency, availability, and convergence”. In:

University of Texas at Austin Tech Report 11 (2011) (cit. on p. 37).

[71] Douglas B. Terry et al. “Session Guarantees for Weakly Consistent Replicated Data”. In: Proceedings

of the Third International Conference on Parallel and Distributed Information Systems. PDIS ’94.

Washington, DC, USA: IEEE Computer Society, 1994, pp. 140–149. isbn: 0-8186-6400-2. url:

?iiT,ff/HX�+KXQ`;f+Bi�iBQMX+7K\B/4e98dNkXee3jyk (cit. on p. 37).

[72] David R Cheriton and Dale Skeen. Understanding the limitations of causally and totally ordered

communication. Vol. 27. 5. ACM, 1994 (cit. on pp. 38, 40, 47).

[73] Marc Shapiro et al. “Conflict-free Replicated Data Types”. In: Proceedings of the 13th International

Conference on Stabilization, Safety, and Security of Distributed Systems. SSS’11. Grenoble, France:

Springer-Verlag, 2011, pp. 386–400. isbn: 978-3-642-24549-7. url: ?iiT,ff/HX�+KXQ`;f
+Bi�iBQMX+7K\B/4ky8yeRjXky8ye9k (cit. on pp. 38, 41, 42).

[74] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-end Arguments in System Design”. In: ACM

Trans. Comput. Syst. 2.4 (Nov. 1984), pp. 277–288. issn: 0734-2071. doi: RyXRR98fj8d9yR
Xj8d9yk. url: ?iiT,ff/QBX�+KXQ`;fRyXRR98fj8d9yRXj8d9yk (cit. on p. 41).

[75] Microsoft Azure. Multi-master at global scale with Azure Cosmos DB. 2018. url: ?iiTb,ff/Q+bX
KB+`QbQ7iX+QKf2M@mbf�xm`2f+QbKQb@/#fKmHiB@`2;BQM@r`Bi2`b (cit. on p. 42).

[76] Redis Labs. Under the Hood: Redis CRDTs. 2017? url: ?iiTb,ff`2/BbH�#bX+QKf/Q+bf
�+iBp2@�+iBp2@r?Bi2T�T2`f (cit. on pp. 42, 113, 114).

[77] Basho. Riak KV Concepts: Data Types. url: ?iiT,ff/Q+bX#�b?QX+QKf`B�FfFpfkXkXj
fH2�`Mf+QM+2Tibf+`/ibf (cit. on p. 42).

[78] Atom Editor. Code together in real time with Teletype for Atom. 2017. url: ?iiT,ff#HQ;X�iQKX
BQfkyRdfRRfR8f+Q/2@iQ;2i?2`@BM@`2�H@iBK2@rBi?@i2H2ivT2@7Q`@�iQKX?iKH
(cit. on p. 42).

[79] Protocol Labs. Decentralized Real-Time Collaborative Documents - Conflict-free editing in the browser

using js-ipfs and CRDTs. 2017. url: ?iiTb,ffBT7bXBQf#HQ;fjy@Db@BT7b@+`/ibXK/
(cit. on p. 42).

127

https://doi.org/10.1145/2592798.2592822
https://doi.org/10.1145/2592798.2592822
https://doi.org/10.1145/2592798.2592822
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/357401.357402
https://doi.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
https://docs.microsoft.com/en-us/azure/cosmos-db/multi-region-writers
https://docs.microsoft.com/en-us/azure/cosmos-db/multi-region-writers
https://redislabs.com/docs/active-active-whitepaper/
https://redislabs.com/docs/active-active-whitepaper/
http://docs.basho.com/riak/kv/2.2.3/learn/concepts/crdts/
http://docs.basho.com/riak/kv/2.2.3/learn/concepts/crdts/
http://blog.atom.io/2017/11/15/code-together-in-real-time-with-teletype-for-atom.html
http://blog.atom.io/2017/11/15/code-together-in-real-time-with-teletype-for-atom.html
https://ipfs.io/blog/30-js-ipfs-crdts.md

BIBLIOGRAPHY

[80] Edsger W. Dijkstra. “Self-stabilizing Systems in Spite of Distributed Control”. In: Commun. ACM

17.11 (Nov. 1974), pp. 643–644. issn: 0001-0782. doi: Ry X RR98 f jeRRdN X jeRkyk. url:
?iiT,ff/QBX�+KXQ`;fRyXRR98fjeRRdNXjeRkyk (cit. on p. 62).

[81] The Poisson Distribution and Poisson Process Explained. https://towardsdatascience.com/the-

poisson-distribution-and-poisson-process-explained-4e2cb17d459 (cit. on p. 93).

[82] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms.

USA: Addison Wesley Longman Publishing Co., Inc., 1997. isbn: 0201896834 (cit. on p. 94).

[83] Jose A. Hernandez Gutierrez and Iain Phillips. Weibull mixture model to characterise end-to-end

Internet delay at coarse time-scales. Jan. 2006. url: ?iiTb,ff?/HX?�M/H2XM2ifkRj9fkRkR
(cit. on p. 94).

[84] T. Holleczek, V. Venus, and S. Naegele-Jackson. “Statistical Analysis of IP Delay Measurements as

a Basis for Network Alert Systems”. In: 2009 IEEE International Conference on Communications

(2009). doi: RyXRRyNfB++XkyyNX8RNN93d (cit. on p. 94).

[85] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. “Flow updating: Fault-tolerant aggregation

for dynamic networks”. In: Journal of Parallel and Distributed Computing 78 (2015), pp. 53–64.

doi: RyXRyRefDXDT/+XkyR8XykXyyj (cit. on p. 94).

[86] Weibull Distribution. https://en.wikipedia.org/wiki/Weibull_distribution (cit. on p. 94).

[87] Dirk Merkel. “Docker: lightweight linux containers for consistent development and deployment”. In:

Linux journal 2014.239 (2014), p. 2 (cit. on p. 97).

[88] Kubernetes Manual. TH2�b2Tmii?2m`H. [Online; accessed 04-Dec-2017]. 2017 (cit. on p. 97).

[89] Brian White et al. “An Integrated Experimental Environment for Distributed Systems and Networks”.

In: Boston, MA, Dec. 2002, pp. 255–270 (cit. on p. 97).

[90] Paul A. S. Ward. “Algorithms for Causal Message Ordering in Distributed Systems”. In: 2007 (cit.

on pp. 97, 98).

[91] Houssam Yactine, Ali Shoker, and Georges Younes. “ASPAS: As Secure as Possible Available Sys-

tems”. In: Distributed Applications and Interoperable Systems. Ed. by Miguel Matos and Fabíola

Greve. Cham: Springer International Publishing, 2021, pp. 57–73. isbn: 978-3-030-78198-9 (cit.

on p. 109).

[92] Georges Younes, Paulo Sérgio Almeida, and Carlos Baquero. “Compact Resettable Counters through

Causal Stability”. In: Proceedings of the 3rd International Workshop on Principles and Practice of

Consistency for Distributed Data. PaPoC ’17. Belgrade, Serbia: Association for Computing Machin-

ery, 2017. isbn: 9781450349338. doi: RyXRR98fjye933NXjye93Nk. url: ?iiTb,ff/QBX
Q`;fRyXRR98fjye933NXjye93Nk (cit. on pp. 111, 113).

128

https://doi.org/10.1145/361179.361202
http://doi.acm.org/10.1145/361179.361202
https://hdl.handle.net/2134/2121
https://doi.org/10.1109/icc.2009.5199487
https://doi.org/10.1016/j.jpdc.2015.02.003
please%20put%20the%20url
https://doi.org/10.1145/3064889.3064892
https://doi.org/10.1145/3064889.3064892
https://doi.org/10.1145/3064889.3064892

BIBLIOGRAPHY

[93] Christopher Meiklejohn and Peter Van Roy. “Lasp: A Language for Distributed, Coordination-Free

Programming”. In: Proceedings of the 17th International Symposium on Principles and Practice

of Declarative Programming. PPDP ’15. Siena, Italy: Association for Computing Machinery, 2015,

pp. 184–195. isbn: 9781450335164. doi: RyXRR98fkdNy99NXkdNy8k8. url: ?iiTb,ff/QBX
Q`;fRyXRR98fkdNy99NXkdNy8k8 (cit. on p. 111).

[94] Large-scale computation without synchronisation. ?iiTb , f f bvM+7`22 X HBTe X 7` (cit. on

p. 113).

[95] Antidotedb. ?iiT,ffbvM+7`22X;Bi?m#XBQf�MiB/Qi2f (cit. on p. 113).

[96] Ali Shoker et al. “Lightkone: Towards general purpose computations on the edge”. In: White Paper

published on http://www. lightkone. eu 40 (2016) (cit. on p. 113).

[97] Georges Younes et al. “Integration Challenges of Pure Operation-Based CRDTs in Redis”. In: First

Workshop on Programming Models and Languages for Distributed Computing. PMLDC ’16. Rome,

Italy: Association for Computing Machinery, 2016. isbn: 9781450347754. doi: RyXRR98fkN8d
jRNXkN8djd8. url: ?iiTb,ff/QBXQ`;fRyXRR98fkN8djRNXkN8djd8 (cit. on p. 115).

[98] Minidote. ?iiTb,ff;Bi?m#X+QKfGB;?iEQM2fJBMB/Qi2 (cit. on p. 115).

1bi2 /Q+mK2MiQ 7QB ;2`�/Q +QK Q T`Q+2bb�/Q` UT/7fs2fGm�VG�h1s2 Q KQ/2HQ LPo�i?2bBb UpeXNXyV (R)X

(R) CQ½Q JX GQm`2MÏQX h?2 LPo�i?2bBb G�h1s h2KTH�i2 lb2`Ƕb J�Mm�HX LPo� lMBp2`bBiv GBb#QMX kykRX l_G, ?iiTb,ff;Bi?m#X+QKfDQ�QKHQm`2M+QfMQp�i?2bBbf`�rfK�bi2`fi2KTH�i2XT/7 U+BiX QM TX RkNVX

129

https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2790449.2790525
https://syncfree.lip6.fr
http://syncfree.github.io/antidote/
https://doi.org/10.1145/2957319.2957375
https://doi.org/10.1145/2957319.2957375
https://doi.org/10.1145/2957319.2957375
https://github.com/LightKone/Minidote
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Primeiras Páginas
	Capa
	Folha de Rosto
	Copyright
	Acknowledgements
	Statement
	Quote
	Resumo
	Abstract
	Contents
	List of Figures
	List of Algorithms

	1 Introduction
	1.1 Problem statement and objectives
	1.2 Main contributions and results
	1.2.1 Tagged Causal Delivery (Broadcast)
	1.2.2 Graph-based Tagged Causal Delivery middleware
	1.2.3 Causal Stability
	1.2.4 Dynamic Tagged Causal Delivery middleware

	1.3 Outline

	2 State of The Art
	2.1 Geo-replication
	2.2 (Geo-)replication properties and trade-offs
	2.2.1 FLP
	2.2.2 Consistency in data storage systems

	2.3 Consistency models
	2.3.1 Data-centric consistency models
	2.3.2 Client-centric consistency models

	2.4 Causality tracking and broadcast
	2.4.1 Causality tracking primitives
	2.4.2 Causal Broadcast
	2.4.3 Scalability solutions for Causal Multicast

	2.5 Weakly-consistent data stores
	2.5.1 Causally Consistency Data Stores

	3 Tagged Causal Broadcast
	3.1 Introduction
	3.2 Classical Causal Delivery
	3.3 Defining an End-To-End Happens-Before
	3.4 The need for happens-before by applications
	3.4.1 The Stock Trading Example
	3.4.2 Implementing Conflict-free Replicated Data Types

	3.5 Happens-Before as a Middleware Service
	3.5.1 Two-Level Tagging using Current Middleware
	3.5.2 Exact Tagging by the Middleware

	3.6 Pitfalls in Exposing Middleware Timestamps
	3.7 Tagged Causal Delivery
	3.7.1 Lessons Learned and a General Solution

	3.8 Explicit Causality versus Explicit Grouping

	4 Middleware
	4.1 Introduction
	4.2 API and Architecture
	4.2.1 Architecture
	4.2.2 API

	4.3 Vector-Clock-based algorithm for tagged causal delivery
	4.3.1 Client process
	4.3.2 Middleware process

	4.4 Causal DAG
	4.4.1 Reducing the causal information overhead
	4.4.2 Reducing delivery time
	4.4.3 Causal dependency graph: notations and functionality

	4.5 Graph-based Algorithm for tagged causal delivery
	4.5.1 Client Process
	4.5.2 Middleware Process

	5 Tagged causal delivery and Causal Stability
	5.1 Causal Stability
	5.1.1 Causal Stability in the vector clock-based algorithm for TCD
	5.1.2 Causal Stability in the graph-based algorithm for TC

	5.2 Causal Stability for VV-based Algorithm
	5.2.1 Client process
	5.2.2 Middleware process

	5.3 Causal Stability for graph-based TCB Algorithm
	5.3.1 Client Process
	5.3.2 Middleware Process

	5.4 Phantom Dots: An Optimisation for Active/Passive Node
	5.4.1 Client Process
	5.4.2 Middleware Process

	6 Dynamic Membership
	6.1 Causal Stability in Dynamic Membership
	6.1.1 Causal Stability and Join Requests
	6.1.2 Causal Stability and Leave Requests

	6.2 Algorithm
	6.2.1 System Startup
	6.2.2 Joining Nodes
	6.2.3 Leaving Nodes
	6.2.4 Updating Group Membership

	7 Causality Checker
	7.1 Causal Check Algorithm
	7.1.1 causalcheck()
	7.1.2 handlesenderdot()
	7.1.3 handledelivered()
	7.1.4 handlestable()
	7.1.5 handlepeerdot()

	8 Evaluation
	8.1 Configuring the experiments
	8.1.1 Send interval
	8.1.2 Network latency
	8.1.3 Simulating slow links

	8.2 Deploying environment
	8.2.1 Architecture
	8.2.2 Docker
	8.2.3 Kubernetes

	8.3 Comparing experiments
	8.3.1 Memory Metadata

	8.4 Broadcast Experiments
	8.4.1 Experiment1: Classical end-to-end vector-based VV vs our end-to-end graph-based TCB
	8.4.2 Experiment2: Classical vector-based VV vs graph-based
	8.4.3 Experiment3: Constant amount of work for vector-based VV vs graph-based
	8.4.4 Causal Stability
	8.4.5 Causal Delivery
	8.4.6 Slow Links

	9 Use Cases
	9.1 ASPAS
	9.1.1 Data Types for backup and recovery

	9.2 Lasp
	9.3 AntidoteDB
	9.4 Redis with relaxed consistency
	9.5 Minidote
	9.6 Software, libraries and artifacts

	10 Conclusions and Future Perspectives
	10.1 Future Work

	Bibliography
	Contra Capa
	Contra Capa

