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In Silico Identification of Protein Targets Associated to the Insecticide Activity of 

Natural Products 

Resumo 

O crescimento rápido e exponencial da população mundial, bem como a necessidade de uma 

rede alimentar segura, conduziu inevitavelmente a um acréscimo da utilização de inseticidas, 

dado o papel crucial que estes desempenham na proteção das culturas agrícolas, protegendo-

as contra os danos provocados por insetos e assim, garantindo uma produção segura de 

alimento.  Apesar de todos os seus benefícios, os inseticidas convencionais estão associados a 

vários efeitos adversos, entre os quais a poluição ambiental, os danos provocados a espécies 

não-alvo e a resistência, que tem aumentado e afetado extensamente o controlo efetivo das 

populações de insetos.  

A identificação de alvos proteicos associados à atividade inseticida de compostos naturais é 

determinante para o desenvolvimento de novos inseticidas viáveis e capazes de ultrapassar as 

problemáticas atuais. Nesta dissertação, desafiámo-nos a identificar tais alvos proteicos 

recorrendo a métodos in silico. Numa primeira seção, forneceu-se uma visão abrangente dos 

inseticidas - a sua importância e necessidade crescente, os inseticidas mais utilizados e os seus 

efeitos adversos, quais os principais alvos conhecidos para a atividade inseticida (moléculas que 

perturbam o sistema nervoso do inseto, reguladores de crescimento, endotoxinas, entre 

outros), a problemática da resistência a inseticidas e ainda algumas soluções alternativas para 

os inseticidas convencionais. 

O estudo recorreu a métodos de inverted virtual screening para a identificação de possíveis alvos 

inseticidas para o eugenol e 11 dos seus derivados. Os resultados mostraram que estes 

compostos têm uma maior afinidade de ligação para as odorant binding proteins e 

acetilcolinesterases. Em paralelo, este estudo permitiu o desenvolvimento de uma base de 

dados de estruturas tridimensionais de alvos mais comuns para moléculas com atividade 

insecticida, que poderá vir a ser usada no futuro para a identificação e otimização de novas 

moléculas com atividade insecticida. 

Palavras-Chave: inseticidas; controlo de pragas; sustentabilidade ambiental; carbamatos; 

organofosfatos; neonicotinóides; organoclorados; controle biológico; resistência; biopesticidas; 

molecular docking; virtual screening; inverted virtual screening.  
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In Silico Identification of Protein Targets Associated to the Insecticide Activity of Natural 

Products 

Abstract 

The increasing demand for food security and the rapidly growing population have led to an 

increased demand for insecticides. Insecticides play a crucial role in protecting crops from insect 

damage and ensuring food security. However, conventional insecticides have several adverse 

effects, including environmental pollution and harm to non-target species. Moreover, resistance 

to insecticides has become a major problem, making it difficult to control insect populations 

effectively. In this context, there is a need for new and innovative insecticides that are effective 

and environmentally friendly. 

The identification of protein targets associated with the insecticide activity of natural 

compounds is crucial in the development of new insecticides. In this study, we aimed to identify 

such protein targets using in silico methods. The first section of this thesis provided a 

comprehensive overview of insecticides, including their significance and growing demand, the 

most commonly used insecticides, and their associated adverse effects. The section also delved 

into the major known targets for insecticidal activity, including molecules that disrupt the 

insect's nervous system, growth regulators, endotoxins, and others. The issue of insecticide 

resistance and alternative solutions for conventional insecticides was also highlighted. 

The study leverages inverted virtual screening techniques to identify potential insecticidal 

targets for eugenol and 11 of its derivatives. The results show that eugenol derivatives have a 

higher binding affinity for odorant binding proteins and acetylcholinesterases. This project 

presents a straightforward approach for the application of in silico methods in identifying 

possible targets for new insecticides. In addition, this project enabled the development of a 

database of tridimensional structures of protein targets of molecules with insecticide activity 

that can be used in the future for the development or optimization of new insecticide 

compounds.   

Keywords: insecticides; pest management; environmental sustainability; carbamates; 

organophosphates; neonicotinoids; organochlorines; biological control; resistance; 

biopesticides; molecular docking; virtual screening; inverted virtual screening. 
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1. Insecticides: an overview 

 

The definition of insecticide is any toxic substance that is used to eradicate and control 

insect populations (these include ovicides and larvicides for eggs and larvae, 

respectively). Such compounds are primarily used to control pests that infest cultivated 

plants, or to eliminate disease-carrying insects in specific areas. The earliest 

documented insecticide compounds were substances such as sulfur, heavy metals, salts, 

and even plant extracts (e.g., Chrysanthemum cinerariifolium formerly known as 

Dalmatian pyrethrum) [1–4]. The use of elemental and/or natural compounds for pest 

control started at the very dawn of agriculture and has continued, in some cases, to be 

used to the present day. The first record of insecticide usage dates ≈ 4500 years ago by 

Sumerian people, who used sulfur compounds in order to kill insects and mites. 

Additionally, ≈3200 years ago, the Chinese were using mercury and arsenical 

compounds to control body lice [5]. Botanical preparations are also amongst the first 

recorded pest controllers. For instance, the discovery of C. cinerariifolium insecticidal 

activity may have been accidental. A book about these common flowers tells us the story 

of a German woman of Dubrovnik who picked the flowers for their beauty, and after 

they withered, she noticed that dead insects had gathered around the plant’s remnants, 

suggesting a possible connection between C. cinerariifolium and its ability to kill insects 

[4]. These flowers, formerly classified as pyrethrum flowers, contain up to 1.5% of a 

substance named pyrethrin, which is an active insecticidal compound [3]. This ingredient 

was used as an insecticide in ancient China and in the Middle Ages in Persia, and it was 

brought to Europe shortly after by Armenian traders, being sold as “Persian Dust” 

(around ≈200 years ago). This powder was produced from dried flowers of 

Chrysanthemum roseum, and the major constituents of these dried extracts were 

pyrethrin I and II, which compose some of today’s household sprays [6]. 

 

In the 19th century, a vast variety of chemicals started to be used against crops’ 

infestations. A farmer discovered that Paris green, a paint pigment (copper 

acetoarsenite), had supposedly insecticidal properties when discarding remaining paint 
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onto a potato plantation that was infested with the CPB (Colorado potato beetle) [7]. 

This substance was widely used in many countries of the world until the mid-20th 

century. In order to control the malaria vector, Paris green would be sprayed on the 

surface of breeding places, working as a larvicide [8]. Around the same time period, 

borax was also reported as an insecticide when used as a coating material for crop seeds 

such as corn [9].  

 

During the late 1800s and early 1900s, scientists developed the first synthetic organic 

chemicals that served as insecticides. These modern synthetic insecticides were made 

in the form of organochloride compounds. Although benzene hexachloride (BHC) and 

dichlorodiphenyltrichloroethane (DDT) were synthesized in the 1800s, it was not until 

later that their insecticidal properties were fully discovered and utilized [10]. Michael 

Faraday, an English scientist, first produced BHC in 1825, while Othmar Ziedler, an 

Austrian chemist, synthesized DDT in the same year. However, it was not until Bender 

and Müller, respectively, in 1933 and 1939, that the insecticidal properties of BHC and 

DDT were first demonstrated [11]. This was probably the most significant development 

in the history of pest control and resulted in Müller being awarded the Nobel Prize in 

1948 [12]. This chemical agent was designed to eliminate insects, weed, rodents, fungi, 

and other human annoyance trouble, but its adverse effects spread to every ecosystem 

it came into contact with. In fact, it still impacts the environment and human health to 

the present day, due to its long residual efficacy and accumulation throughout the food 

chain [13]. A milestone in environmental science is the publication of the book Silent 

Spring by Rachel Carson [14] that exposes the effects of the indiscriminate use of 

pesticides such as DDT; this book was considered one of the greatest science books of 

all time. Regarding human health, DDT is the cause of various ailments, including various 

types of cancer, acute and persistent injuries to the nervous system, lung damage, injury 

to reproductive organs, and dysfunction of the immune and endocrine systems, and it 

has also been linked to numerous birth defects [13]. DDT quickly lost its popularity as 

the USA, Japan, and Western Europe banned the production and application of the 

substance (in the Stockholm Convention, 2001), classifying it as a priority pollutant. 

However, it is continuing to be illegally used in third-world countries [15]. 
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Shortly thereafter, at the beginning of the 20th century, researchers began exploring 

modifications to natural pyrethrins’ structure. In 1949, Schechter and LaForge 

discovered allethrin, the first pyrethroid compound, which improved the effectiveness 

of insecticides over time [16]. These compounds were divided into two types, Type I and 

Type II, based on their chemical structure. The discovery of allethrin, which belongs to 

the Type I pyrethroid compound group, renewed interest in pyrethrins as insecticides 

[17]. It also inspired chemists worldwide to investigate modifications to the pyrethroid 

alcohol and acid moieties, and eventually to the essential ester function [16]. These 

derivatives proved to be significantly more effective, cost-effective, and stable than their 

natural pyrethrin counterparts [18]. Despite the fact these synthetic compounds lose 

their activity rather quickly when exposed to ultraviolet light, this photodegradation 

property of pyrethroids [19] helped to prevent their accumulation in the environment, 

and, therefore, this class of insecticides still finds wide application in plant protection. 

 

In more recent years, we have seen the appearance of new insecticides, such as 

neonicotinoids, a class of neuro-active insecticides that are chemically similar to 

nicotine; they act by systematically moving in the plant tissues and protecting all parts 

of the plant. Reportedly, their discovery is connected to the Shell and Bayer companies, 

which started their development in the 1980s and 1990s, respectively [20]. However, 

imidacloprid was the very first neonicotinoid that appeared on the insecticide market. 

It was registered as “Hachikusan” in Japan in 1993 [3]. Nowadays, it is possible to find a 

large number of represented neonicotinoids, such as acetamiprid, clothianidin, 

dinotefuran, imidacloprid, nitenpyram, nithiazine, thiacloprid, and thiamethoxam [21]. 

They quickly gained popularity, and neonicotinoids such as imidacloprid have been the 

most widely used insecticides in the world, from 1999 to at least 2018 [22]. In 2016, 

imidacloprid was banned alongside clothianidin, thiamethoxam, acetamiprid, and 

thiacloprid by the French government, and the EFSA (The European Food Safety 

Authority) concluded, in February 2018, that the most used neonicotinoid insecticides 

represent a risk to wild bees and honeybees [23]. 
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Currently, besides neonicotinoids (especially imidacloprid), the other two most used 

insecticides are organophosphates (more specifically chlorpyrifos) and carbamates 

(more specifically carbaryl). Organophosphate insecticides correspond to roughly half of 

all insecticides used worldwide, with chlorpyrifos being the most widely used (approved 

to be used on more than 50 different crops) [24]. Regarding carbamate insecticides, 

there are ≈50 chemicals that belong to this family and are used as fungicides, herbicides, 

and nematicides, in addition to being used as insecticides [25,26]. Carbaryl, a white 

crystalline solid, was the first carbamate to be commercialized, and to this day, it is more 

widely used than all the other carbamates combined [24]. 

 

2. Insecticides: importance and increasing demand 

 

From ancient times to the present day, the use of pesticides such as insecticides has 

become an essential and strictly necessary agricultural component in order to assure 

crop yields and minimize post-harvest losses [27]. With a continuously increasing 

population, in addition to deteriorating environmental conditions (based on irrefutable 

and growing evidence of climate change coupled to increasing levels of pollution), the 

task of achieving long-term development without causing environmental harm has 

never been greater. Feeding a population of more than 9 billion people by 2050 will 

require food production to grow by 70 to 100%, making agriculture one of the most 

pressing challenges for sustainable development [28]. Due to its significant role in 

deforestation [29] and widespread land usage that includes 70% of grasslands, 50% of 

savannas, and 45% of temperate forests [28], it's becoming increasingly important to 

restrict crop cultivation areas while simultaneously boosting productivity to meet 

growing demand. Additionally, the changing of dietary habits of expanding middle 

classes has driven the need for higher quality products through the control of various 

insect pests [30]. Furthermore, insects are often hosts of devastating diseases. Vector-

borne diseases are among the major causes of illness and death worldwide, particularly 

in tropical and subtropical regions; therefore, vector control, through the use of 

insecticides, is highly important for the prevention and control of infectious diseases 
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such as malaria, dengue, and filariasis [31]. Available approaches to control pest insects 

range from (natural or chemical) insecticide usage to cultural practices (e.g., crop 

rotation), genetically modified plants (e.g., increasing host plant resistance), biological 

control (e.g., the release of sterilized pests to disrupt reproduction), physical and 

mechanical control, and microbial control [32]. Sometimes, multiple approaches are 

needed in order to address certain infestation problems; however, for many pest control 

complications, insecticides have and continue to provide farmers and public health 

workers with the tools and means to predictably, quickly, and effectively address a 

specific pest problem [30]. Insecticides are often an easy and reliable solution, which 

results in an increasing demand for the compounds. Nonetheless, their toxicology 

should be thoroughly studied before being applied in order to prevent any more 

environmental residual and prolonged damage. 

 

3. Prominent insecticides and their adverse effects 

 

Environmental contamination is the main problem associated with these poisonous 

compounds, and they may be harmful to other organisms, including humans, rather 

than just exclusively killing insects. Many insecticides are short-lived and decompose 

quickly or are fully metabolized by the animals that ingest them, but some are persistent 

and, when administrated in higher quantities, could be devastating for ecosystems, as 

they travel across the food chain. When insecticides are applied to crops, much of it 

reaches the soil and consequently contaminates groundwater reserves from direct 

application or, in worst case scenarios, as runoff from treated areas. Furthermore, when 

poorly used, insecticides could create some levels of resistance amongst an insect 

population. They could also eliminate the natural predators that once held them back. 

The nonspecific nature of the currently used broad spectrum of chemicals makes them 

more likely to have such unintended effects on the abundance of both harmful and 

beneficial insects. In the following table (Table 1), the top ten most used insecticides in 

the world at the moment are listed. This table includes their structural and chemical 

description. Additionally, their adverse effects are also indicated. 
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Table 1. Structural and chemical composition, as well as corresponding adverse effects, of the ten 
currently most used insecticides in world. 

 

(No)Insecticide Chemical Formula Chemical Structure Adverse Effects 

(1) Imidacloprid 

(neonicotinoid) 
C9H10ClN5O2 

 

The residues of this substance can make their way into 

the food chain and affect both the reproductive 

capacity of lab rats and that of their offspring. It is a 

chemical that disrupts endocrine and steroidogenesis 

[33]. 

(2) Chlorpyrifos 

(organophosphate) 
C9H11Cl3NO3PS 

 

The laboratory rats that were exposed showed a 

decrease in body weight and an increase in the relative 

weights of their liver and kidney. The damage to their 

liver was significant, and there was a notable increase 

in total protein and uric acid levels. Additionally, there 

was an increase in oxidative stress observed in the 

exposed rats [34,35]. 

(3) Carbaryl 

(carbamate) 
C12H11NO2 

 

The toxicity observed is a result of cholinesterase 

inhibition. When pigs were exposed to this substance 

for an extended period, it caused a progressive 

neuromyopathy that resulted in structural damage, 

which cannot be reversed acutely with atropine. 

Similarly, in lab rats, there was a significant reduction 

in their overall weight. Moreover, there was a notable 

decrease in the number of germ cells, spermatocytes, 

spermatids, and Leydig cells. Additionally, the 

testosterone levels significantly declined, while the 

levels of LH and FSH increased significantly [36,37]. 

(4) Acephate 

(Organophosphate) 
C4H10NO3PS 

 

The highest doses administered to lab rats inhibited 

the activity of acetylcholinesterase in the brain and 

skeletal muscles. In the same group, there was a 

decrease in the number of implantations and live 

fetuses, along with an increase in the number of early 

resorptions observed. Furthermore, there was a 

decrease in sperm motility and count in the exposed 

rats. Dose-dependent histologic changes, including 

the degeneration of muscle fibers, were also observed 

[38]. 

(5) Dimethoate 

(Organophosphate) 
C5H12NO3PS2 

 

This substance, like other organophosphates, is known 

to inhibit acetylcholinesterase (AChE) activity, leading 

to severe nerve damage. In plants, its effects are 

reflected in reduced photosynthesis and growth, while 

in birds, the activity of brain enzymes is inhibited, 

resulting in sublethal effects. Aquatic organisms are 

expected to be highly affected by direct exposure, 

leading to changes in their swimming behavior [39]. 

(6) Thiamethoxam  

(Neonicotinoid) 
C8H10ClN5O3S 

 

In cockerels, exposure to thiamethoxam (TMX) at sub-

lethal levels resulted in a dose-dependent reduction in 

key hematological parameters, including total 
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(E isomer) 

 
(Z isomer) 

erythrocyte count, hemoglobin, packed cell volume, 

and total leukocyte count. The biochemistry of the 

birds was also impacted, with significant alterations in 

total proteins, albumin, and globulin. The study 

indicated that TMX caused substantial changes in the 

hematological profile and liver and kidney function of 

the birds. In addition, TMX increased oxidative 

damage to lipids and DNA in these organs, while 

reducing the antioxidant activities in liver and kidney 

cells, leading to oxidative stress [40,41]. 

(7) Malathion  

(Organophosphate) 
C10H19O6PS2 

 

Malathion (MAL) was found to have adverse effects on 

frog oocyte maturation, resulting in reduced levels of 

Emi2, a critical factor for oocyte maturation. In 

addition, embryos fertilized under the influence of 

MAL showed a higher rate of abnormal division, 

leading to embryo death during early embryogenesis. 

The toxicity mechanisms of MAL include inhibition of 

acetylcholinesterase, oxidative stress, DNA damage, 

and apoptotic cell damage. Its toxic effects on the 

central nervous system are well documented, but it 

also affects the liver, kidney, testis, ovaries, lung, 

pancreas, and blood. MAL is considered a genotoxic 

and carcinogenic chemical compound and evidence 

shows adverse effects associated with prenatal, and 

postnatal exposure in both animals and humans. 

These findings are supported by various studies 

[42,43]. 

(8) Zeta-cypermethrin  

(Pyrethroid) 
C22H19Cl2NO3 

 

In common guppies (Leporinus reticulatus), exposure 

to various doses of zeta-cypermethrin resulted in the 

lifting of the epithelial layer from gill lamellae and 

necrosis. Other observed histopathological effects 

included exudation, hyperplasia, and shortening of 

secondary lamellae. Additionally, in vitro experiments 

showed that zeta-cypermethrin caused DNA damage 

in human peripheral lymphocytes, indicating its 

genotoxic properties [44,45]. 

(9) Bifenthrin  

(Pyrethroid) 
C23H22ClF3O2 

 

The hepatic function of tadpoles is negatively affected 

by cis-bifenthrin. Aquatic species are highly 

susceptible to the acute lethal toxicity of bifenthrin. 

Bifenthrin also has sublethal toxic effects on non-

target organisms, such as developmental toxicity, 

neurobehavioral toxicity, oxidative damage, immune 

toxicity, and endocrine-disrupting effects [46,47]. 

(10) λ-cyhalothrin 

(Pyrethroid) 
C23H19ClF3NO3 

 

Previously conducted research has indicated that 

synthetic pyrethroids, such as λ-cyhalothrin (LCT), 

have high levels of aquatic toxicity. Exposure of 

zebrafish to synthetic pyrethroids, including LCT, 

resulted in a dose-dependent increase in mortality, 

higher malformation rates, and lower hatching rates. 

This exposure to LCT led to a significant decrease in 

thyroid hormone triiodothyronine (T3) levels, 
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indicating potential developmental toxicity by 

disrupting endocrine signaling at concentrations 

present in the environment. In other studies, 

administration of LCT to laboratory rats led to 

decreased functional sperm parameters, enzymatic 

and non-enzymatic antioxidant levels, and the 

presence of irregular seminiferous tubules containing 

only Sertoli cells [48,49]. 

 

4. Major known targets for insecticidal activity 

To fully comprehend how an insecticide works, it is necessary to have knowledge about 

its particular target(s) within an organism. Typically, this is a crucial protein or enzyme. 

Consequently, insecticides are usually classified based on their structure and mode of 

action. Most insecticides act on (1) the insect’s nervous systems, (2) metabolic targets, 

and (3) growth regulators and others.  

 

4.1. Molecules disrupting insect’s nervous system 

 

The primary target observed for most insecticides is the peripheral nervous system (PNS) 

and central nervous system (CNS).  

 

Organochlorines are a type of insecticide that is made up of organic compounds that 

contain one or more covalently bonded chlorine atoms. The most well-known type of 

organochlorine is chlorinated hydrocarbons, which include DDT, chlordane, lindane, and 

endosulfan [50]. Through an imbalance of sodium and potassium ions, these insecticides 

disrupt nerve impulse transmission. Furthermore, some organochlorines act on GABA 

receptors, preventing ions from entering neurons and resulting in a hyperexcitable state 

characterized by tremors and convulsions [51]. Other insecticides that target GABA 

receptors include antibiotic insecticides and pyrethroids.  

 

Antibiotic insecticides, also known as microbial insecticides, are derived from bacteria or 

fungi and are effective against tough greenhouse pests such as spider mites and leaf 

miners. These insecticides block neurotransmitters at the neuromuscular junction, 
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impairing the insects’ ability to feed and lay eggs and ultimately leading to their death 

[52–54]. Spinosyns are a very special type of microbial insecticides with a complex 

structure that includes a large macrocyclic lactone ring, a tetra-hydrogen ring, and a 

dihydropyranone group, as well as oxygen and nitrogen atoms and a sugar moiety [55]. 

These compounds are extremely specific and can effectively target a wide variety of pests, 

including caterpillars, lepidopteran larvae, leaf miners, thrips, and termites [56]. 

 

On the other hand, pyrethroids (Table 1, molecules 8–10) are made up of a cyclopropane 

or cyclohexane ring with a carboxylic acid group attached to it and two aryl or heteroaryl 

groups that may contain halogen or other substituents [57]. This structure enables the 

molecule to bind to the sodium channel in the nerve cell membrane of insects, causing a 

sodium/potassium imbalance that causes the insect to become hyperexcitable. Tremors, 

incoordination, hyperactivity, and, finally, paralysis are symptoms [58]. Pyrethroids are 

typically classified into two types: type I and type II. Type I pyrethroids have an alfa-cyano 

group attached to the cyclopropane or cyclohexane ring, whereas type II pyrethroids have 

a beta-cyano group attached to the same ring, making them more potent and persisting 

in the environment for longer [57]. They, like others, are extremely toxic to fish, in 

addition to being effective against most agricultural pests [58]. 

 

Both neonicotinoids and formamidines are new classes of insecticides that are applied at 

low dosages and are extremely effective. 

 

Neonicotinoids (Table 1, molecules 1 and 6), named for their chemical similarity to 

nicotine, consist of a heterocyclic ring structure to which a nitro group and a cyan group 

are attached. Neonicotinoids act as an activator of nicotinic acetylcholine receptors 

(nAChRs) in the nervous system of insects, leading to overstimulation and paralysis. Their 

high affinity for insect nAChRs and longer half-life compared to nicotine make them highly 

effective insecticides. One of the most significant advantages of neonicotinoids is their 

high selectivity in toxicity, meaning that they have a minimal impact on non-target 

organisms such as birds and mammals. However, their use has been the subject of 

controversy due to their potential impact on pollinators such as bees [59]. 
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Formamidines are a type of pesticide that works by blocking the monoamine oxidase 

enzyme, which is responsible for the breakdown of neurotransmitters in insects, and 

formamidines create a buildup of these molecules by blocking it. This causes infected 

insects to become dormant, eventually leading to death. Some of the most often used 

formamidine compounds in pesticides are chlordimeform, amitraz, and thiacloprid. 

Formamidines have various advantages over conventional insecticides, including low 

mammalian toxicity and the fact that they do not last long in the environment. These 

chemicals are commonly used to manage pests that have evolved resistance to other 

pesticide classes, such as organophosphates and carbamates [60]. 

 

Organophosphates (Table 1, molecules 2, 4, 5, and 7) and carbamates (Table 1, molecule 

3) both block AChE and produce acetylcholine buildup at NMJs, resulting in the fast 

twitching of voluntary muscles and paralysis [61]. They share a similar chemical structure, 

but with some key differences—both contain a central phosphorus or carbamate 

functional group, respectively, that is important for their insecticidal properties.  

 

Organophosphates contain a phosphorus atom that is typically bonded to two oxygen 

atoms (forming a carbonyl group). This carbon-oxygen double bond is essential for 

organophosphates’ ability to inhibit AChE activity. Malathion, chlorpyrifos, and parathion 

are examples of organophosphate insecticides [61]. 

 

Carbamates, on the other hand, have a carbamate functional group consisting of a 

nitrogen atom bonded to both a carbonyl group and an oxygen atom. Like 

organophosphates, carbamates inhibit the activity of AChE but in a slightly different 

way—instead of forming a covalent bond with the enzyme like organophosphates do, 

carbamates form a reversible bond with AChE. Examples of carbamates include carbaryl, 

methyl and aldicarb [62]. 

 

Botanical preparations remain a popular choice as insecticides, with some even serving 

as the basis for synthetic insecticides such as pyrethroids (derived from pyrethrum) and 
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neonicotinoids (inspired by the use of tobacco for crop protection). One such compound 

is limonene, a terpene found in the essential oils of citrus fruits, rosemary, and 

peppermint. Limonene targets the sensory nerves of the peripheral nervous system and 

can effectively control fleas, lice, mites, and ticks. Furthermore, it has low toxicity to 

warm-blooded animals and only minor toxicity to fish. However, botanical preparations 

may require more frequent application than synthetic insecticides. Despite this, they can 

be a viable option for integrated pest management programs that prioritize non-chemical 

control methods. Figure 1 illustrates the main targets and classes of insecticides that 

disrupt the insect nervous system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the main targets and classes of insecticides that disrupt the 
insect nervous system. The diagram illustrates the common molecular targets, including (a) voltage-
dependent sodium channels, (b) acetylcholinesterase, (c) GABA receptors, and (d) nicotinic 
acetylcholine receptors. The main classes of insecticides that act on these targets are also represented 
and include pyrethroids, DDT, organophosphates, carbamates, organochlorines, and neonicotinoids. 
These insecticides cause paralysis and the death of the insect by disrupting its nervous system. 
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4.2. Metabolic targets 

Other substances used as insecticides work as endotoxins and as highly toxic molecules; 

they interfere with the normal function of insect’s metabolisms. For instance, 

organosulfur compounds act as ovicides, eliminating the pest in the egg stage. They 

usually carry low toxicity to other organisms [63].  

 

Dinitrophenols act by uncoupling or inhibiting oxidative phosphorylation, preventing the 

creation of the essential adenosine triphosphate (ATP) [64].  

 

Organotins work similarly to dinitrophenol, attacking and inhibiting the same binding 

sites, preventing ATP formation. They are extensively used against mites on fruit trees, 

and they were formerly used as an antifouling agent and molluscicide, being highly toxic 

to aquatic life [65].  

 

Pyrazoles act by inhibiting the NADH-CoQ reductase site of mitochondrial electron 

transport, which disrupts ATP formation [66]. 

 

Pyridazinones interrupt mitochondrial electron transport at site one and are mainly used 

as a miticide. However, like most others, they showcase toxicity to aquatic arthropods 

and fish [67,68].  

 

Botanical preparations can also work as endotoxins and, depending on the type, can have 

various effects. Rotenone is a naturally occurring compound found in the roots, stems, 

and leaves of certain plants, including the Derris and Lonchocarpus species; acts as a 

respiratory enzyme inhibitor, and is used as a piscicide that kills fish at doses that are non-

toxic to fish food organisms [69]. Neem is a tree that is native to India. The leaves, bark 

and seeds of the neem tree contain compounds with medicinal properties that are used 

as insecticides since they reduce feeding and disrupt moulting by inhibiting biosynthesis 

or metabolism of ecdysone, the moulting hormone [70]. It is commonly used against moth 

and butterfly larvae. 
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Fumigants act by releasing gas into the air, which penetrates the treated space and targets 

the metabolism of pests. These agrochemicals’ effect on metabolism can vary depending 

on the specific chemical and the target organism. However, in general, fumigants disrupt 

key metabolic pathways in target organisms, such as energy production, DNA synthesis, 

and protein synthesis, leading to cell death. Additionally, some fumigants can react with 

cellular components, such as proteins and DNA, causing structural damage that impairs 

metabolic function. Methyl bromide, phosphine, sulfuryl fluoride, and ethylene oxide 

constitute some commonly used fumigants [71]. 

 

Inorganic compounds can also be used as insecticides. Their mode of action is dependent 

on the type of inorganic compound. Typical examples include uncoupling oxidative 

phosphorylation (arsenicals), inhibition of enzymes involved in energy production, and 

acting as desiccants. For each pest group, there is a different compound to be applied 

according to its efficacy; for example, for mites, sulfur should be used, and for 

cockroaches, boric acid [72]. 

 

4.3. Growth regulators and others 

Biochemicals, which are classified as biorational compounds, have low toxicity to non-

targeted species [73] and consist of various substances such as hormones; enzymes; 

pheromones; growth regulators; and microbials such as viruses, bacteria, fungi, 

protozoa, and nematodes. They act as either attractants, growth regulators, or 

endotoxins and can also function as attractants to specific species [74,75]. As an 

example, benzoylureas act as insect growth regulators by interfering with chitin 

synthesis [76].  

 

Quinazolines have been shown to affect the larval stages of many insects by hindering 

the production of chitin in the exoskeleton, which can lead to the breaking of the cuticle 

or death due to lack of food in the affected larvae [77,78].  
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There is also another set of compounds classified as synergists/activators, which inhibit 

cytochrome P450-dependent polysubstrate monooxygenases (PSMOs), preventing the 

degradation of toxicants and enhancing the activity of insecticides when used alongside 

them; synergists and activators are not themselves considered toxic or insecticidal. 

Examples include piperonyl butoxide (PBO) and N-octyl bicy-cloheptene dicarboximide 

(MGK-264) [79–81]. 

  

Figure 2 shows the major known targets for insecticidal activity. 

Figure 2. Major known targets for insecticidal activity. 

 

5. The problem of resistance 

 

As a serious threat to human health and agriculture, insect pests can be controlled using 

insecticides; however, during this ongoing war, insects evolved and found ways to 

retaliate through the development of multiple resistances. Insects have short life cycles 

and produce numerous offspring, enabling them to adapt rapidly to stressful situations, 

such as exposure to insecticides. Their adaptability is due to their high potential for 
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genetic variation, allowing for the evolution of traits that promote resistance. When an 

insect pest that is infesting a cultivation becomes resistant, farmers tend to increase the 

insecticide’s usage in quantity and on a larger scale. However, they must be replaced by 

other types of insect control as soon as possible, right when pest control diminishes [81]. 

The development of insect resistance can be attributed to three primary factors: genetics, 

biological and ecological factors, and operational practices. Genetics encompasses 

various elements, such as the frequency, number, and dominance of resistance alleles; 

penetrance, expressivity, and interactions of resistance alleles; past genetic selection 

through exposure to other chemicals; and the extent of integration of a resistant genome 

with fitness factors. Biological and ecological factors include biotic and generation 

turnover, offspring per generation, monogamy or polygamy, parthenogenesis, 

behavioral, isolation, mobility, migration, monophagy or polyphagy, fortuitous survival, 

and refugia. Lastly, operational practices encompass factors such as the chemical nature 

of the pesticide, interaction with previously used chemicals, persistence of residues, 

formulations, application threshold, selection threshold, life stages targeted, mode of 

application, space-limited selection, and alternating selection [82-86]. 

 

Typically, when an insect is exposed to an insecticide, the compound can rapidly 

penetrate the insect’s integument through various routes, such as contact, inhalation, or 

ingestion [87], ultimately reaching the intended target area. This could be a vital enzyme, 

nerve tissue, or receptor protein. After binding successfully, and when it reaches certain 

threshold concentrations, they cause a wide variety of symptoms, resulting in the insect’s 

death [88]. Resistance can be acquired at any step of the insecticide’s pathway. Thus, the 

rate of absorption could be lowered through acquiring higher levels of impermeability, 

while modifications could appear on target sites where the insecticide’s molecules no 

longer bind. In addition, the appearance of new or more enzymes to help break down the 

toxic compound is another way organisms can adapt to insecticides. When an organism 

is exposed to an insecticide, it may initially have low levels of the enzymes needed to 

break down the compound. However, over time, the organism may adapt and produce 

more of these enzymes, which can help to reduce the toxicity of the insecticide. This 

adaptation can be seen as an evolutionary response to the selective pressure of the 
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insecticide, and it can lead to the emergence of resistant populations [89]. There is also a 

phenomenon called cross-resistance, where, when an arthropod develops a certain 

degree of resistance in relation to a compound, it is most likely that the same individual 

would be resistant to similarly acting insecticides [90]. For instance, there is the possibility 

that previous selection with insecticides can confer resistance to relatively new 

insecticides through cross-resistance [91]. One example of this is the diamondback moth, 

a common pest of cabbage and other cruciferous vegetables. Diamondback moths have 

become resistant to many insecticides over time, due in part to the extensive use of 

insecticides in agriculture. In one study, diamondback moths that had been exposed to 

pyrethroid insecticides were found to be cross-resistant to the newer neonicotinoid 

insecticides, even though the neonicotinoids had not been used extensively in the area. 

This suggests that the use of pyrethroids had selected for moths that were already 

resistant to neonicotinoids or that the two types of insecticides share similar mechanisms 

of action that contribute to cross-resistance [82]. 

 

Target-site resistance occurs when a specific insecticide’s site of action is modified within 

resistant insects, resulting in the molecules no longer binding effectively to those same 

sites [92]. This is often seen in important pest species with mutations at the nicotinic 

acetylcholine receptor (nAChR), which can lead to insensitivity to neonicotinoids [93]. 

Another form of resistance is altered target-site resistance, which happens when the site 

where the toxin usually binds becomes modified to reduce the insecticide’s effects. 

Insects achieve resistance through the modification of the target protein, resulting in a 

reduction in the binding of the insecticide and decreased effectiveness of the compound 

[94,95]. 

 

Metabolic resistance is the most common type of resistance and is characterized by a 

large set of enzymes that are used to breakdown the insecticide, normally used as a way 

for the insect to detoxify foreign materials. Resistant strains may possess higher levels or 

more effective forms of these enzymes [92].  
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The three main enzyme systems are esterases, mono-oxygenases, and glutathione 

S-transferases, and while metabolic resistance is important for all four insecticide classes 

(organophosphates, carbamates, pyrethroids, and neonicotinoids), different enzymes 

affect each class differently [96].  

 

For example, multiple cytochrome P450s, which can structurally metabolize diverse 

substrates, are also known to play an important role in several biosynthetic pathways. 

These enzymes are involved in xenobiotic (insecticides and plant toxins) detoxification, 

hence promoting the development of insecticide resistance and insects’ adaptation to 

their hostplants [97].  

 

Another type of resistance is behavioral [98]. As simple as it may seem, there are various 

reports of insects who stop feeding when they detect certain insecticides, even leaving 

the area where the toxic compound is abundant [99,100]. The capability of some insects 

to recognize danger and act accordingly is notable. Some may move to the underside of 

a sprayed leaf, move deeper into the crop’s canopy, or fly away from the contaminated 

area [100–102].  

 

Cuticular resistance is traduced by the permeability level of the insect’s integument in 

relation to the toxic compound. The cuticle is the first and major barrier that protects the 

insect from penetration of external compounds. A reduced penetration of toxic 

compounds culminates in a reduced uptake of noxious chemicals; hence, modifications in 

the insect’s cuticle (such as in thickness) prevent or slow the absorption/penetration of 

insecticides [103].  

 

Lastly, there is another physical resistance mechanism whereby the rate of excretion is 

increased. The excretion process can occur via reflex vomiting of the insecticide and/or 

defecation of the insecticide, with or without entry into the hemocoel. If the toxic 

compound is not able to enter hemocoel, the insecticide passes directly through the gut 

being excreted during defecation; if it does enter, however, the insecticide must be 
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moved back into the lumen of the gut via filtration and efflux by the Malpighian tubules 

[104].  

 

For circumventing the described resistance problems, it is highly advised to employ a 

synergistic approach combining alternative options for conventional frequently used 

insecticides. 

 

6. Alternatives for conventional Insecticides 

 

Prolonged usage of synthetic insecticides has caused environmental damage, health 

problems, and biodiversity problems (such as loss of species diversity). Synthetic 

pesticides have also harmed farmers in the export trade, especially in the horticultural 

sector. Both farmers and exporters in developing countries have lost market and profits 

if banned insecticides were detected above the established tolerable level by law [83].  

 

Some of the most rustic and/or outdated solutions for this expanding problem include 

cultural practices such as the implementation of physical or mechanical barriers (e.g., 

aluminum foil mulches, see-through nets, temperature/relative humidity manipulation, 

physical shock and electric discharges, etc.), crop rotations and intercropping (increasing 

crop diversity), alternative seeding patterns, and companion planting (companion plants 

which improve crop’s performance or work as a lure/repellent for insect pests) [84–86]. 

 

Genetically modified plants have long been considered a potential solution to the 

challenge of feeding a growing population while minimizing the negative impacts on the 

environment. One promising approach has been to develop plants with intrinsic insect 

resistance, which can help to reduce the use of chemical pesticides and ultimately 

decrease carbon dioxide emissions. To achieve this goal, researchers in plant resistance 

need to utilize advanced technologies such as genotyping by sequencing and high-

throughput phenotyping. These tools allow for the identification, mapping, and tracking 
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of important resistance genes in plants, which are essential for the development of new, 

improved crop varieties [87]. 

 

Additionally, besides engineered pest-resistant crops, genetic pest management includes 

genetic control of the pest itself. This is focused on sterility resulting from hybrid crosses 

between different species or different genetic strains that result from the action of 

mutagenic ionizing radiation. Presumably, this might be used to induce dominant lethal 

mutations in insects, which, when released into the wild, could sterilize female insects 

[88,89]. 

 

Microbial control is another promising method that involves using insect pathogens to 

manage pest populations. This approach identifies and utilizes host-virus associations, 

including various microbial agents, such as fungi, protozoa, bacteria, and nematodes. 

However, only a few of these entomopathogens have been developed into effective 

biocontrol agents, and developing new microbial agents requires rigorous testing to 

determine their efficacy and safety [90,91]. 

 

Nowadays, most studies focus on the exploitation of natural products since they offer 

several advantages over synthetic insecticides. One of the advantages of botanical 

insecticides is their efficacy against a broad range of insect pests. This is due to their 

diverse modes of action, which can include disrupting the insect’s nervous system, 

interfering with its metabolism, or causing physical damage to its outer shell. Another 

advantage is their biodegradability, which means they break down naturally and do not 

persist in the environment. 

 

Botanical insecticides are also known for their low toxicity to non-target organisms, 

including humans, pets, and beneficial insects such as bees and butterflies. This makes 

them a safer option for pest control in areas where non-target organisms may be present 

[68]. 
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One example of a botanical insecticide is eugenol, which is derived from clove oil. Eugenol 

has shown efficacy against a variety of insect pests, including aphids, mites, and 

whiteflies. It works by disrupting the insect’s nervous system, causing paralysis and death. 

Other examples of botanical insecticides include pyrethrins, which are derived from 

chrysanthemum flowers and are effective against a range of insects such as mosquitoes, 

flies, and moths. Another example is rotenone, which is extracted from the roots of 

several tropical plants and has been used for insect control for centuries. Table 2 compiles 

the biochemical sites of action of the most prominent natural insecticides [105]. 

 

Table 2. Biochemical sites of action of natural insecticides [105]. 

Common Name Class of Insecticide Targeted System Mode of Action 

Abamectin Avermectin Nervous system Chloride channel activator 

Azadirachtin Botanical from neem oil 

Growth and  

development/ metabolic 

processes 

Prothoracicotropic 

hormone (PTTH) inhibitor;  

phagostimulant disruptor 

Bacillus thuringiensis Microbial Metabolic processes 
Insect midgut membrane  

disruptor 

Cinnamaldehyde Botanical Energy production 

Exact mode of action not 

well understood; possibly 

interference with glucose 

uptake or utilization 

Decalesides I and II 
Botanical  

(natural trisaccharides) 
Nervous system 

Inhibition of sodium 

pump 

Emamectin benzoate Avermectin 
GABA-gated chloride 

channels 
Chloride channel activators 

Pyrethrins I and II Botanical (pyrethrum) Nervous system Sodium channel modulator 

Rotenone Botanical 
Mitochondrial electron 

transport system 

Electron transport 

inhibitor—site 1 

Ryanodine Botanical 
Calcium channels 

(ryanodine receptor) 
Activation 
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Spinosad Spinosyn Nervous system 
Nicotinic acetylcholine  

receptor agonist (mimic) 

 

In addition to their efficacy and safety, botanical insecticides offer a high accessibility of 

source materials, as many of the plants from which they are derived can be easily grown 

and harvested. This makes them a sustainable option for pest control, particularly in 

developing countries, where access to synthetic insecticides may be limited [105]. 

 

7. Conclusions 

 

The development of insecticides has played a critical role in modern agriculture by 

providing effective control of pests, thereby ensuring food security and improving crop 

yields. As the world’s population continues to grow, it is imperative that agriculture 

remains productive and sustainable. However, the increasing resistance of pests to 

existing insecticides, as well as concerns over their environmental impact, highlights the 

need for continued research and innovation in this field. To meet this challenge, future 

insecticide development is likely to focus on several key areas, including eco-friendly 

alternatives such as biopesticides and insect growth regulators, effective resistance 

management strategies, precision agriculture technologies that minimize the use of 

insecticides, combination products that target multiple modes of action, and the 

discovery of novel modes of action that will lead to the development of more effective 

and safer insecticides. 

 

By addressing these areas, we can ensure that the future of insecticide development will 

not only maintain effective pest control but also promote sustainable agriculture and 

minimize negative impacts on the environment. Ultimately, this will help secure the long-

term productivity of agriculture and the well-being of our planet and its inhabitants. 
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B. COMPUTATIONAL METHODS 
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1. Computer-aided drug design 

 

Computer-aided drug design (CADD) combines a number of chemical-molecular and 

quantum approaches to aid in the design, discovery, and optimization of new drugs. 

Some common techniques used in CADD include molecular dynamics simulations, which 

simulate the movement of atoms in a molecule, and docking simulations, which predict 

how a drug molecule will bind to a target protein. CADD can also be used in conjunction 

with experimental methods such as high-throughput screening to identify new drug 

candidates. Overall, CADD can significantly speed up and optimize the drug discovery 

process (reducing the time and cost of the process by up to 30%), making it an important 

tool in the pharmaceutical industry [106]. 

These techniques have been broadly divided in two groups: Structure-Based Drug Design 

(SBDD) and Ligand-Based Drug Design (LBDD). Structure-based drug design relies on the 

three-dimensional structure of the target protein, obtained through X-ray 

crystallography or NMR spectroscopy. These methods are very useful to characterize the 

binding site, to elucidate the molecular mechanism of action of active molecules and to 

evaluate the kinetics and thermodynamics of ligand-target recognition. SBDD’s most 

notable examples include docking and molecular dynamics (MD) [107]. Ligand-based 

drug design is based on the information of the chemical structures of a set of ligands 

with known biological activity. One of the main goals of these methods is identifying 

bioactive compounds or improving the activity of active molecules. Typical examples of 

ligand-based methods are similarity searching and QSAR modeling [108]. 
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Table 3. Common SBDD and LBDD methods. 

 

 

Both SBDD and LBDD can be used to identify new drug candidates and optimize their 

properties. However, SBDD is more focused on finding new compounds that bind to a 

specific target protein, while LBDD is more focused on finding new compounds that have 

similar activity to known drugs [106]. 
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Figure 3. Traditional workflow of SBDD and LBDD [109]. 

 

The CADD project performed in the present work integrates a Structure-Based 

approach. The workflow used is described in figure 4. 
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Figure 4. Workflow for the CADD project performed in the present work. 

 

2. Protein-ligand interactions 

 

2.1. Physicochemical Mechanisms of Binding 

 

The success of in silico methods in drug development depends, in part, on our 

understanding of the physical-chemical fundamentals involved during the binding 

process between molecules. 

Proteins are dynamic macromolecules that perform a wide variety of essential processes 

dependent on their interaction with other molecules or ions, known as ligands. 

Protein-ligand interactions have a high degree of affinity and specificity, so even though 

a particular protein is surrounded by several potential ligands, often it will only establish 
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a bond with one, in a specific area of the protein known as the binding site. The protein 

binding site is determined by the arrangement of its amino acids, which configures its 

shape and chemical reactivity. 

A non-covalent interaction (dipole-dipole interactions, hydrogen bonds, electrostatic 

interactions, among others) is often established between a ligand and a protein, which 

is naturally weak and reversible. This often means that several interactions occur 

simultaneously so that the complex formed between the protein and the ligand is stable. 

To describe a protein-ligand interaction, we use binding kinetics, which essentially 

considers the speed at which the binding reaction occurs, and is represented by the 

following equation: 

 

∆𝑮𝑩𝒊𝒏𝒅𝒊𝒏𝒈 

𝑷 + 𝑳         ⇋             𝑷𝑳 

Equation 1. General equation for protein-ligand association reactions, where P represents the Protein, 
L represents the Ligand, and PL represents the complex formed between the two species. 

 

 

 

 

 

 

 

 

 

Figure 5. Representation of the protein-ligand binding process. 

 

 P          L             COMPLEX (PL) 
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However, the protein and the ligand are not the only components of the binding system, 

since the solvent (usually water in the liquid or buffer solution) also plays a crucial role. 

So, in the target-ligand binding, attention must be paid to the thermodynamics of the 

Protein-Ligand-Solvent system, and it must be taken into account that the association 

between the two molecules results from interactions and energy exchanges between P, 

L and also the solvent molecules. 

The Protein-Ligand binding is a thermodynamic process, occurring only when the change 

in Gibbs free energy (∆G) of the system is negative. The absolute value of ∆G also 

determines the strength of the binding, that is, the affinity of a particular ligand with the 

target, which translates into the stability of the formed complex. Despite the solvent 

having a great influence on binding, its contribution to the process is extremely difficult 

to calculate, so its effect is largely ignored, with an approximation of the binding energy 

being calculated using equation 2: 

 

∆𝑮𝒃𝒊𝒏𝒅𝒊𝒏𝒈 = ∆𝑮𝒄𝒐𝒎𝒑𝒍𝒆𝒙 − ∆𝑮𝒑𝒓𝒐𝒕𝒆𝒊𝒏 − ∆𝑮𝒍𝒊𝒈𝒂𝒏𝒅 

Equation 2. Calculation of Gibbs Free Energy for the formation of the protein-ligand complex. 

 

The standard molar Gibbs binding energy can be determined from the experimentally 

calculated binding constant (𝑲𝒃𝒊𝒏𝒅𝒊𝒏𝒈) through the following equation: 

 

∆𝑮𝑩𝒊𝒏𝒅𝒊𝒏𝒈
𝟎 = −𝑹𝑻𝒍𝒏∆𝑲𝒃𝒊𝒏𝒅𝒊𝒏𝒈 

Equation 3. Mathematical relationship between the binding constant and the standard molar Gibbs 
binding energy for the protein-ligand complex. 

 

This thermodynamic property can be decomposed into its enthalpy (∆𝑯𝒃𝒊𝒏𝒅𝒊𝒏𝒈 
𝟎 ) and 

entropy (∆𝑺𝒃𝒊𝒏𝒅𝒊𝒏𝒈
𝟎 ) components. In this way: 

 

∆𝑮𝒃𝒊𝒏𝒅𝒊𝒏𝒈
𝟎 = ∆𝑯𝒃𝒊𝒏𝒅𝒊𝒏𝒈

𝟎 − 𝑻∆𝑺𝒃𝒊𝒏𝒅𝒊𝒏𝒈
𝟎  
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Equation 4. Mathematical relationship between standard molar enthalpy (∆H°), entropy and Gibbs 
energy of binding at constant temperature (T). 

 

The enthalpic and entropic contributions of protein binding are difficult to calculate, 

therefore, to reduce the computational time of calculation, these contributions are 

often simplified in computational algorithms. Enthalpy (H) is a thermodynamic property 

of a system, defined as the sum of its internal energy plus the product of its volume and 

the external pressure. 

Entropy (S) is the quantification of heat change entering the system at constant 

temperature in a reversible process, divided by temperature. 

In a protein-ligand binding process, enthalpy has a large energetic contribution. Almost 

always, a non-covalent interaction (London dispersion interactions, hydrogen bonds, 

electrostatic interactions) is established between a ligand and a protein, which can be 

defined as a chemical interaction capable of stabilizing the conformation of interacting 

molecules. The binding enthalpy (∆𝐻𝑏𝑖𝑛𝑑𝑖𝑛𝑔
0 ) is, in a simplified manner, the sum of all 

energy changes resulting from the formation of non-covalent interactions, and its 

contribution may or may not be favorable for the binding process. The protein-ligand 

association enthalpy implies the replacement of the initial interaction between the 

protein and water molecules at the binding site and the interaction between the free 

ligand and the surrounding water molecules with the interaction of the ligand with the 

protein and the complex with the new environment formed around it. From an enthalpic 

point of view, favorable protein-ligand binding occurs when protein-ligand interactions 

are dominant. Otherwise, spontaneous binding of this type may be driven by entropy 

(hydrophobic binding processes). 

The entropy of protein-ligand binding (∆𝑆𝑏𝑖𝑛𝑑𝑖𝑛𝑔
0 ) is the sum of two components: the 

internal component (∆𝑆𝑏𝑖𝑛𝑑𝑖𝑛𝑔
𝑖𝑛𝑡 )  and the solvent reorganization component (∆𝑆𝑏𝑖𝑛𝑑𝑖𝑛𝑔

𝑠𝑜𝑙 ). 

The first component is almost always negative due to the reduction in particle number 

during the binding process and is also responsible for changes in the conformational 

freedom of both the ligand and protein. The entropy of the solvent changes after binding 

due to the reorganization of its molecules, which can cause it to be released. 



 

 

 

49 

The enthalpy, entropy, and change in Gibbs energy resulting from both contributions 

drive the thermodynamic process of ligand binding to protein, and the concepts 

explained are used in CADD for the prediction of binding strength and affinity. 

 

2.2. Protein-Ligand Binding Models 

 

The mechanics of protein-ligand binding are described through several models, 

including the Lock-and-Key, Induced Fit, and Conformational Selection models. The 

selection of a specific model has an impact on the choice of docking protocol and the 

accuracy of the resulting predictions. In this context, it is imperative to provide a brief 

overview of these models. 

The Lock-and-Key model is a classic explanation of enzyme-substrate interaction, first 

introduced by Emil Fischer in 1894. It suggests that enzymes act like a lock and the 

substrate acts as a key, where the shape of the active site on the enzyme fits precisely 

with the substrate, allowing it to bind and undergo a chemical reaction. This model helps 

explain the specificity of enzymes, as only the correctly shaped substrate can fit into the 

active site, allowing it to participate in a reaction [110,111]. 

 

While the Lock-and-Key model is still widely taught, it has been modified over time to 

the “Induced Fit” model. In this model (introduced by Daniel Koshland in 1958), the 

active site of an enzyme is flexible and can change shape slightly upon substrate binding, 

resulting in a tighter fit and a more efficient reaction. The Induced Fit model takes into 

account the dynamic nature of enzyme-substrate interactions and provides a more 

accurate description of the process compared to the Lock-and-Key model [110,111]. 

 

The Conformational Selection model is another explanation of enzyme-substrate 

interaction, which suggests that enzymes exist in a range of conformations and that the 

substrate selects the appropriate conformation for interaction. In this model, the 
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enzyme does not change its shape upon substrate binding, but rather the substrate 

selects the conformation of the enzyme that is most favorable for interaction. This 

model emphasizes the role of the substrate in determining the interaction with the 

enzyme, rather than the active site of the enzyme dictating the interaction as described 

in the Lock-and-Key and Induced Fit models. 

 

The Conformational Selection model suggests that the enzyme exists in an ensemble of 

conformations and that the substrate selectively binds to a particular conformation that 

is best suited for the reaction to occur. This model helps explain the observation that 

enzymes can bind to multiple substrates with different structures, as the correct 

conformation of the enzyme is selected for each substrate. 

It is important to note that the Conformational Selection model is not mutually exclusive 

with the Induced Fit model and both models can contribute to the overall understanding 

of enzyme-substrate interactions [111,112]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Mechanism of protein-ligand binding reactions [113]. 
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3. Molecular docking 

 

During the past three decades, Molecular Docking (MlD) has been indispensable in 

structure-based drug development due to its accuracy in predicting the best binding 

pose between two molecules. Depending on the nature of these molecules, MlD can be 

categorized as Protein-Protein or Protein-Ligand Docking. We will be focusing on 

Protein-Ligand Docking which goal is to predict and rank the preferred position, 

orientation, and conformation of a given ligand in relation to a known 3D structural 

target protein, when the two bind to form a stable complex [114]. 

 

The area on the protein where the ligand may bind, also referred as the active center or 

the binding area of the complex, may or may not be known. When the binding site’s 

location is known, the program allows the user to easily limit the binding region to a 

specific section of the protein. However, in the absence of this information, as a last 

resort, a blind docking can be performed. Blind docking scans the entire target surface 

to explore putative binding pockets [115] 

 

Molecular docking programs must run quickly as they are designed to be applied to vast 

databases. This involves a simplification of the search algorithms (SA) and the scoring 

functions (SF). Nevertheless, the trade-off between accuracy and speed must be 

conserved. Therefore, several combinations of known SF and SA should be evaluated to 

discover the best potential procedure for the situation at hands. A binding center and 

search space for the algorithm must also be defined. It is important to remember that 

the best-scored pose must coincide with a real binding conformation, which means that 

if experimental data exists, this pose must match to what is observed [116]. Hence, a 

docking protocol is a combination of a search algorithm, a scoring function, and a 

defined binding center [117]. Following that, these terms will be thoroughly discussed. 
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3.1. Definition 

 

During the past three decades, Molecular Docking (MlD) has been indispensable in 

structure-based drug development due to its accuracy in predicting the best binding 

pose between two molecules. Depending on the nature of these molecules, MlD can be 

categorized as Protein-Protein or Protein-Ligand Docking. We will be focusing on 

Protein-Ligand Docking which goal is to predict and rank the preferred position, 

orientation, and conformation of a given ligand in relation to a known 3D structural 

target protein, when the two bind to form a stable complex [114]. 

The area on the protein where the ligand may bind, also referred as the active center or 

the binding area of the complex, may or may not be known. When the binding site’s 

location is known, the program allows the user to easily limit the binding region to a 

specific section of the protein. However, in the absence of this information, as a last 

resort, a blind docking can be performed. Blind docking scans the entire target surface 

to explore putative binding pockets [115] 

Molecular docking programs must run quickly as they are designed to be applied to vast 

databases. This involves a simplification of the search algorithms (SA) and the scoring 

functions (SF). Nevertheless, the trade-off between accuracy and speed must be 

conserved. Therefore, several combinations of known SF and SA should be evaluated to 

discover the best potential procedure for the situation at hands. A binding center and 

search space for the algorithm must also be defined. It is important to remember that 

the best-scored pose must coincide with a real binding conformation, which means that 

if experimental data exists, this pose must match to what is observed [116]. Hence, a 

docking protocol is a combination of a search algorithm, a scoring function, and a 

defined binding center [117]. Following that, these terms will be thoroughly discussed. 

 

3.2. Search Algorithms 
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Search Algorithms are used to generate several poses for the protein-ligand complex 

within a conformational space that results from both systems’ degrees of freedom and 

from the spatial arrangement of the interaction between them two.  This search results 

in a space too large to be accurate in an acceptable time span – as told before, the 

several existing SA employ certain approximations and simplifications to reduce 

computational time without compromising on accuracy [115,118]. 

These algorithms are classified as Rigid-Body, Flexible-Ligand, and Flexible-Protein, 

depending on the number of degrees of freedom considered for each molecule in the 

complex, i.e., how much flexibility is considered during the Docking experiment 

[115,118]. 

 

3.2.1.  Rigid Body Search Algorithms 

These were widely used in the early stages of Protein-Ligand docking investigations and 

are still used in certain Protein-Protein docking research today. They represent the 

simplest and quickest algorithms – these approaches only analyze geometrical 

complementarities between the two molecules of the complex and only explore the six 

degrees of freedom (rotational and translational space), neglecting flexibility. Both the 

receptor and the ligand are taken into account, which means they’re fairly restrictive 

[115,117]. 

 

3.2.2. Flexible-Ligand Algorithms 

Flexible-Ligand Algorithms are currently the most extensively used ones. These perceive 

the protein to have a stiff body and the ligand to be completely flexible. They investigate 

the complex's six translational and rotational degrees of freedom, as well as the ligand's 

conformational degrees of freedom. Because these methods are more computationally 

intensive, they rely on a number of approximations to ensure that they can be used 

efficiently. Systematic methods, random or stochastic methods, and molecular 

simulation methods, are the three categories [115]. 
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a) Systematic methods are split into three categories: conformational search 

methods, fragmentation methods, and database approaches. They attempt to 

investigate all conformational degrees of freedom of the ligand [115]. 

 

Figure 7. Systematic SA performs a systematic study of all available degrees of freedom. Each angle 
corresponds to an accepted or rejected value in the energy environment. 

- Conformational search methods systematically explore all rotatable bonds by 

360º in modest, predetermined steps to create all conceivable conformations. With a 

greater number of rotatable bonds, a greater number of conformations are formed, 

with the ultimate outcome being unachievable with present computational capacity. 

As a result, multiple constraints on the ligand bonds are used to minimize the number 

of conformers formed [115,119]. This number, N, can be calculated using the following 

equation: 

NTC = ∏
360

θi

N

i
 

Equation 5. Number of total conformers resulting from the application of a fixed increment to all 
routable bonds, to generate all possible conformations. 

 

- Fragmentation search methods divide the ligand into numerous pieces that are 

subsequently docked into the binding site and covalently bonded to reconstruct the 

original ligand. Instead, the ligand can be separated into a core fragment that is docked 

initially, followed by the other fragments in a process known as "incremental 

construction" or "anchor and grow technique". 
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- Database search methods rely on pre-generated conformational ensemble 

databases to add flexibility to the docking process while taking intra and 

intermolecular distances into account. The algorithm uses the databases to generate a 

given number of variant compounds of the desired ligand and perform rigid docking on 

these molecules [115,119] 

b) Random or stochastic algorithms explore the ligand conformational space by 

making random changes to its conformation, which are then accepted or rejected by a 

predetermined probability function. Yet, by doing so, the chances of the final solution 

being locked in a local minimum are significantly reduced, and the chances of finding a 

desirable global minimum are greatly increased [120]. Random algorithms are used in 

six types of docking methods: Monte Carlo, Genetic Algorithms, Tabu Search, Particle 

Swarm Optimization, Differential Evolutionary Algorithms, and Evolutionary Gaussian 

Algorithms [115,119]. 

- Monte Carlo methods dock the ligand into the binding site utilizing a large 

number of random translations and rotations, reducing the likelihood of being caught 

in a local minimum. These approaches employ basic energy minimization functions 

that do not require any derivative information and are highly effective at stepping 

energy barriers, allowing for a good sample of the conformational space. A Boltzmann 

probability function is used to assess the produced conformations [115,119]. 

- Genetic algorithms (GA) are based on genetics and the theory of biological 

evolution. It starts with an initial population of several ligand poses (chromosomes) 

generated randomly. Each pose is represented by an individual. Each individual is 

defined by a set of genes, which describe the ligand conformation and its translation 

and orientation in relation to the protein. The full set of these variables is called the 

genotype and the atomic coordinates of the ligand are the phenotype. Through various 

generations, or cycles, genetic operators such as mutations, crossovers and migrations 

are applied to random individuals of the population to explore the conformational 

space. At the end of each generation, at random, individuals are evaluated with 

conformations with negative evolution being excluded. The process continues until the 

population satisfies a predefined fitness function. Various programs use these 
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algorithms including GOLD and AutoDock which were used in this work. Differential 

Evolutionary algorithms are derived from GA methods [115,119]. 

- Tabu Search algorithms move from one pose to another, imposing several 

restrictions to make sure that previous poses are not revisited. The Root Mean Square 

Deviation (RMSD) of a new conformation is calculated in relation to a “tabu list” 

featuring the visited poses and used to accept or reject the new conformation 

[115,119]. 

- Particle Swarm Optimization is a simpler and faster process than GA. Many 

molecular docking studies showed that the conventional algorithms can give 

satisfactory results, even when the protein is considered as a rigid entity, (lock and key 

model of molecular recognition). However, many proteins undergo a range of 

structural changes upon ligand binding. These range from a local rearrangement of 

side chains near the binding site to less common backbone movements (induced fit 

model). In order to address this issue, specialized search algorithms were developed to 

account for the partial flexibility of the protein [115,119]. 

A few examples of docking programs using systematic and stochastic methods are listed 

in the table below. 

Table 4. Docking programs using systematic and stochastic methods. 

 

 

 

 

 

 

 

SYSTEMATIC METHODS STOCHASTIC METHODS 

Glide 

FlexX 

Dock 

Superflex-Dock 

FRED 

GOLD 

DockVision 

PLANTS 

AutoDock 

PSI-DOCK 
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3.2.3.  Flexible-protein algorithms 

 

Although traditional algorithms produced good results even when the protein was 

regarded a rigid entity, specific search algorithms were created to account for a protein's 

partial flexibility. These can overcome the modifications that proteins go through 

following ligand binding, which can range from local side chain rearrangement near the 

binding site to less typical backbone movements (induced fit model) [115]. 

 

3.3. Scoring Functions 

 

Scoring functions are quick approximation mathematical approaches for predicting the 

strength of interaction (or binding affinity) between two or more molecules, outlining 

the correct poses from the incorrect ones [119]. Because many physical phenomena 

involved in molecular recognition are not taken into account, accuracy might be 

compromised. Therefore, an accurate scoring function would ideally perform equally 

well on all four tasks:  

 scoring power - the capacity to provide scores that are linearly related to 

experimental data on binding affinity. 

 ranking power - the capacity to appropriately rank a given set of ligands that 

bind to a common target protein based on their binding affinities when their binding 

postures are known. 

 docking power - the capacity to identify a ligand's natural binding pose as the 

one with the highest score while screening a vast number of produced decoy poses. 

 screening power - the capacity to choose genuine binders to a certain target 

protein from a pool of random molecules. 

The present number of scoring functions is huge and constantly growing. They can be 

grouped in four main classes: force-field scoring functions, empirical scoring functions, 

knowledge-based potentials, and consensus scoring [115]. 
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3.3.1. Force-field or Physics-based Scoring Functions 

Force-field or physics-based scoring functions are based on molecular mechanics force 

fields such as AMBER ([115].They compute binding energy by adding the contributions 

of bonded interactions (bond stretching, angle bending, and torsion angles) and non-

bonded interactions (van der Waals and electrostatic interactions) within the protein-

ligand complex, which accounts for the contribution of enthalpy to energy [119]. 

 

The force field was created to model the enthalpy gas-phase contributions to structure 

and energetics. As a result, essential factors for the ligand-receptor interaction, such as 

solvation and entropic parameters, were omitted. This is remedied by the insertion of 

solvation approaches like GBSA and PBSA that account for desolvation energies, and a 

torsional entropy term assesses the conformational entropy lost during the binding 

process. 

 

The disadvantage of this scoring function is that it needs the usage of cut-off distances 

to address non-bonded interactions. These are selected randomly, which compromises 

the binding process's appropriate treatment of long-term impacts [119]. 

 

3.3.2. Empirical Scoring Functions 

 

Empirical scoring functions quantify a protein-ligand complex's binding affinity by adding 

up several energy components involved in protein-ligand binding, such as hydrogen 

bonds, hydrophobic effects, protein-ligand clashes, and so on. Each element is 

multiplied by a coefficient derived from a series of linear regression calculations 

performed on a training set of protein-ligand complexes with known binding affinities. 

𝑆𝑐𝑜𝑟𝑒 =  ∑𝑤𝑖
𝑖

Δ𝐺𝑖 

Equation 6. General Empirical based scoring function. 
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Because of their simplified treatment of the energy components, empirical scoring 

functions are substantially faster in binding score computations than force-field or 

physics-based scoring systems. The accuracy of empirical scoring functions, on the other 

hand, is directly connected to the quality and coverage of the protein-ligand training set 

used to create the model. ChemScore, GlideScore, and ChemPLP are examples of 

empirical scoring functions [119]. 

3.3.3. Knowledge-based Scoring Functions 

 

Instead of replicating binding affinities, knowledge-based scoring functions use 

statistical approaches to recreate experimental data. These functions employ statistic 

potentials to forecast the likelihood of occurrence of common interactions, such as 

various atom-atom pair connections, based on empirically observed structures. This 

technique believes that if an interatomic distance is greater than the average, it signifies 

a favorable interaction [119]. 

The benefit of knowledge-based scoring functions is their computational simplicity, 

needing just knowledge of a limited range of protein-ligand complex structures, which 

has grown in number over time. It is also as quick as empirical scoring functions. The key 

issue is that their parametrization is constrained by the known sets of complicated 

structures utilized to create the method [119]. 

𝑆𝑐𝑜𝑟𝑒 =  ∑𝑢𝑖𝑗(𝑟)

𝑁

𝑖,𝑗

 

Equation 7. General Knowledge based scoring. 

 

3.3.4. Consensus Scoring 
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Consensus scoring functions combine information from many scoring functions to 

increase the likelihood of finding the correct solution. Each scoring function may predict 

the pose but not the binding affinity since the terminology utilized to describe this 

interaction are insufficient. Several studies have shown that employing consensus 

scoring functions can increase performance by correcting for the shortcomings of each 

scoring function, allowing for a reduction in the number of false positives [119]. 

 

Figure 8. Scoring functions in docking and their respective equations. 

 

 

3.4. Software Used 

 

3.4.1. AutoDock Vina 

 

Trott and Olson created AutoDock Vina, in 2009, at the Scripps Research Facility in 

California. This program maintains some of the original ideas from AutoDock 4 (another 
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software that was not employed in this project), but its conceptually different, showing 

to be faster and more accurate [118,121] 

 

Vina employs an Iterated Local Search Global Optimizer, which repeats two processes - 

mutation and local optimization - and each step is either approved or rejected. The 

Broyden-Fletcher-Goldfarb-Shanno (BFSG) approach is used for local optimization, 

which applies both the value of the scoring function and its derivative to its arguments 

(position, orientation, and torsion values for rotatable bonds). The number of steps in 

the run is determined by the difficulty of the search issue, and the runs may be done on 

multithreading and multicore Central Processing Unit (CPUs) [121]. 

 

It uses a mixed empirical and KBSF scoring function, which can be expressed as: 

 

c =  ∑ftitj(rij)
i<j

  

Equation 8. AutoDock Vina scoring function. 

 
In equation 8, ti and tj are the types assigned to atoms i  and j  respectively. The score 

value (c) represents the free energy of binding between a ligand and a protein, and can 

be decomposed in an intramolecular (𝑐𝑖𝑛𝑡𝑟𝑎) and an intermolecular (𝑐𝑖𝑛𝑡𝑒𝑟) [118,121]: 

𝑐 = 𝑐𝑖𝑛𝑡𝑟𝑎 + 𝑐𝑖𝑛𝑡𝑒𝑟 

Equation 9. Decomposition of the Autodock Vina scoring function. 

 

The score is determined by considering the interactions between atoms of the protein 

and the ligand, with a specific type assigned to each atom. Pairwise potentials (ftitj) 

between the different atom types are defined and used in the calculation of the score, 

considering all pairs of moving atoms, excluding those separated by three consecutive 

covalent bonds. The goal of the search algorithm used by Vina is to find the global 
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minimum of the score, which corresponds to the most energetically favorable 

conformation of the ligand-protein complex. The standard molar Gibbs energy of 

association (∆𝑎𝐺𝑘
0) is then estimated from the intermolecular scoring function (𝑐𝑖𝑛𝑡𝑒𝑟𝑘) 

[118,121]: 

 

∆𝑎𝐺𝑘
0  ≈ 𝑔(𝑐𝑖𝑛𝑡𝑒𝑟𝑘) ⇔ ∆𝑎𝐺𝑘 

0 ≈ 𝑔(𝑐𝑘 − 𝑐𝑖𝑛𝑡𝑒𝑟𝑘) 

 

Equation 10. Estimation of the standard molar Gibbs energy of association, for the lowest-scoring 
conformation obtained with the Autodock Vina search algorithm. 

 

3.4.2. GOLD 

 

In 1997, a collaborative project between the University of Sheffield, the GlaxoSmithKline 

and the Cambridge Crystallographic Data Center resulted in one of the most cited 

docking programs in the literature today, GOLD (or Genetic Optimization for Ligand 

Docking). This software generates ligand poses using a genetic algorithm and offers four 

score systems to choose from, namely, The Astex Statistical Potential (ASP), ChemPLP, 

CHEMSCORE, and GOLDSCORE. The docking method is configured using the Hermes 

graphical user interface [118,122]. 

a) The Astex Statistical Potential is an atom-atom potential derived from a protein-

ligand complex database. It creates statistical potentials based on information from 

existing ligand-protein structures on the frequency of interaction between ligand 

and protein atoms. ASP differs from other statistical potentials in that it employs a 

reference state that runs how the raw distribution of data is turned into potentials. 

If there are no interactions between the atoms, the reference state is the predicted 

number of contacts [123]. 

b) ChemPLP is an empirical scoring function that uses the Piecewise Linear Potential to 

represent the steric complementarity between the protein and the ligand (PLP). The 

PLP scoring function defines two piecewise functions: plp for repulsive/attractive 

interactions and rep for completely repulsive interactions. 
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fplp = ∑ plp(pr,
p∈Pprot−lig−plp

pA,pB,pC,pD,pE,pF,)

+ ∑ rep(pr,
p∈Pprot−lig−rep

pA,pB,pC,pD,pE,pF,) 

 

Equation 11. Piecewise Linear Potential scoring function. 

 

This equation is the current version of GOLD’s default scoring function, where 

Pprot−lig−plp and Pprot−lig−rep represents sets of protein-ligand atom pairs that are 

utilized to evaluate each function and pr denotes the distance between a ligand and a 

protein atom. The parameters pA to pF depend on the interaction potential chosen 

[124]. 

ChemPLP (present below in equation 2.4.4 - 5) makes use of several CHEMSCORE scoring 

function terms; amongst them, the distance and angle-dependent factors associated 

with hydrogen and metal binding and the Tripos force field and heavy-atom collision 

used to calculate intraligand interactions. 

 

   fCHEMPLP = fplp + fhb + fhb−ch + fhb−CHO + fmet + fmet−coord + fmet−ch

+ fmet−coord−ch + fclash + ftors + csite 

 

Equation 12. ChemPLP scoring function. 

 

In this equation, fplp represents the piece linear potential, fhb for the hydrogen bonds, 

fmet represents the metal interactions, fclash represents the ligand clash potential, ftors 

represents the ligand torsional potential and csite represents a quadratic potential that 

guides the calculations to the binding site [124]. 

 

c) CHEMSCORE is an empirical scoring function comprised of 82 protein complexes 

with empirically established binding affinities. Through equation 13, it calculates the 

free standard molar Gibbs energy of association. 
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           𝐶ℎ𝑒𝑚𝑆𝑐𝑜𝑟𝑒 ≈  ∆𝑎𝐺
0 𝐶ℎ𝑒𝑚𝑆𝑐𝑜𝑟𝑒 =  ∆𝑎𝐺𝑟𝑒𝑓

0 + ∆𝑎𝐺
0(𝐿) + ∆𝑎𝐺

0(𝑃𝐿) 

 
Equation 13.  General decomposition of the CHEMSCORE scoring function. 
 

In equation 13 ∆𝑎𝐺𝑟𝑒𝑓
0  is a reference value, ∆𝑎𝐺

0(𝐿) is the component is the component 

connected with the conformational rearrangement of the ligand upon binding and 

∆𝑎𝐺
0(𝑃𝐿) is the component related with the protein-ligand interactions.  

The ligand conformation rearrangement component of CHEMSCORE, ∆𝑎𝐺
0(𝐿), 

represented in equation 14, is thought to be entirely energetic. It indicates the energy 

cost associated with the ligand’s use of a non-optimized shape in the PL complex in order 

to maximize its interactions with the protein target [125]. 

 

           ∆𝑎𝑆
0(𝐿) ≈ 0 ⇒  ∆𝑎𝐺

0(𝐿) ≈  ∆𝑎𝐸(𝐿) ⟺  ∆𝑎𝐺
0(𝐿) =  𝐸𝑃𝐿(𝐿) − 𝐸(𝐿)  

 

Equation 14. The ligand conformation rearrangement component of CHEMSCORE scoring function. 

 

In the preceding equation, ∆𝑎𝑆
0(𝐿) represents the ligand conformation rearrangement 

entropy, ∆𝑎𝐸(𝐿) the ligand conformation rearrangement energy, 𝐸𝑃𝐿(𝐿) the energy of 

the ligand in the geometry adopted upon binding with the protein, and 𝐸(𝐿) the energy 

of the ligand in its optimized geometry [125]. 

 

In contrast, the protein-ligand component ∆𝑎𝐺
0(𝑃𝐿) is determined using the following 

equation:  

 

                    ∆𝑎𝐺
0(𝑃𝐿)

=  ∆𝐴𝐺ℎ𝑏𝑜𝑛𝑑
0 (𝑃𝐿) + ∆𝑎𝐺𝑀𝑎

0 (𝑃𝐿) + ∆𝑎𝐺𝑙𝑖𝑝𝑜
0 (𝑃𝐿) + ∆𝑎𝑆𝑟𝑜𝑡

0 (𝑃𝐿)

+ 𝐸𝑐𝑙𝑎𝑠ℎ(𝑃𝐿) + 𝐸𝑐𝑜𝑣(𝑃𝐿) 

 

Equation 15. Decomposition of the protein-ligand component of CHEMSCORE scoring function.  

 

There are entropic-energetic, pure entropic, and pure energetic variables in this 

equation. The hydrogen-bond ∆𝐴𝐺ℎ𝑏𝑜𝑛𝑑
0 (𝑃𝐿) the metal-acceptor ∆𝑎𝐺𝑀𝑎

0 (𝑃𝐿) and the 
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lipophilic ∆𝑎𝐺𝑙𝑖𝑝𝑜
0 (𝑃𝐿) are the entropic-energetic terms, and they can be calculated 

using equation 16 (see below). The rotameter term that is pure entropic is  ∆𝑎𝑆𝑟𝑜𝑡
0 (𝑃𝐿). 

The clash 𝐸𝑐𝑙𝑎𝑠ℎ(𝑃𝐿) and the covalent 𝐸𝑐𝑜𝑣(𝑃𝐿) energies are the pure energetic 

expressions [125]. 

 

             ∆𝑎𝐺𝑋
0(𝑃𝐿) =  ∆𝑎𝐺𝑋,𝑜𝑝𝑡

0 (𝑃𝐿)∑𝑓𝑖

𝑛𝑋

𝑖=1

; 𝑋 = ℎ𝑏𝑜𝑛𝑑,𝑀𝑎 𝑜𝑟 𝑙𝑖𝑝𝑜 𝑎𝑛𝑑 0 ≤  𝑓𝑖  ≤ 1 

 

Equation 16. General equation for calculating the mixed entropic-energetic terms associated with the 
protein-ligand component of CHEMSCORE scoring function. 

 

In equation 16, 𝑛𝑋 is the number of atomic pairs (one atom belonging to the ligand and 

other to the protein) associated with an interaction of the type X, 𝑓𝑖  is the effectiveness 

factor of the i-th of these interactions and ∆𝑎𝐺𝑋,𝑜𝑝𝑡
0 (𝑃𝐿) is the standard molar Gibbs 

energy for an optimal interaction (f = 1) of this type. 

The rotamer term ∆𝑎𝑆𝑟𝑜𝑡
0 (𝑃𝐿) represents the entropy penalty, associated with the 

rotamers of ligand that are constrained due to interactions with the protein. This term 

is calculated in a similar way to those used in equation 16. 

 

∆𝑎𝑆𝑟𝑜𝑡
0 (𝑃𝐿) =  ∆𝑎𝑆𝑟𝑜𝑡,𝑚𝑎𝑥

0 (𝑃𝐿)∑ 𝑓𝑖

𝑛𝑟𝑜𝑡

𝑖=1

; 0 ≤  𝑓𝑖 ≤ 1 

 

Equation 17. Equation for calculating the rotamer term associated with the protein-ligand component 
of CHEMSCORE scoring function. 

 

In equation 17, 𝑛𝑟𝑜𝑡 is the number of ligand rotamers that are constrained upon binding, 

𝑓𝑖  is the effectiveness factor of the i-th of these rotamers and ∆𝑎𝑆𝑟𝑜𝑡,𝑚𝑎𝑥
0 (𝑃𝐿) is the 

maximum entropy penalty (correspondent to f = 1) associated with a rotamer of this 

type [125]. 
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The clash energy term (𝐸𝑐𝑙𝑎𝑠ℎ(𝑃𝐿)) is associated with the repulsive interactions 

involving atomic pairs dominant at short distances (𝑟 ≤  𝑟𝑐𝑙𝑎𝑠ℎ). This term is calculated 

by equation 18 [125]. 

 

                𝐸𝑐𝑙𝑎𝑠ℎ = ∑ 𝜀𝑖(𝑟𝑖, 𝑟𝑐𝑙𝑎𝑠ℎ𝑖)

𝑛𝑐𝑙𝑎𝑠ℎ

𝑖=1

 

 

Equation 18. Equation for calculating the clash energetic term associated with the protein-ligand 
component of CHEMSCORE scoring function. 

 

In equation 18,  𝑛𝑐𝑙𝑎𝑠ℎ  is the number of heavy atomic pairs (one atom belonging to 

ligand and the other to protein), that are close in contact and 𝜀𝑖(𝑟𝑖, 𝑟𝑐𝑙𝑎𝑠ℎ𝑖) is the clash 

energy of the i-th of these pairs that is characterized by a distance 𝑟𝑖 and a clash distance  

𝑟𝑐𝑙𝑎𝑠ℎ𝑖. This energetic quantity can be calculated by equation 19. 

𝜀𝑖(𝑟𝑖 > 𝑟𝑐𝑙𝑎𝑠ℎ𝑖) 

= 

{
 
 
 
 

 
 
 
 

0; 𝑟𝑖 > 𝑟𝑐𝑙𝑎𝑠ℎ𝑖
20

∆𝑎𝐺ℎ𝑏𝑜𝑛𝑑,𝑜𝑝𝑡
0  

(𝑟 𝑐𝑙𝑎𝑠ℎ𝑖 − 𝑟𝑖

𝑟𝑐𝑙𝑎𝑠ℎ𝑖
;  𝑟𝑖 ≤ 𝑟𝑐𝑙𝑎𝑠ℎ𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑝𝑎𝑖𝑟 𝑖 𝑖𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑎 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛−𝑏𝑜𝑛𝑑

20

∆𝑎𝐺ℎ𝑏𝑜𝑛𝑑,𝑜𝑝𝑡
0  

(𝑟 𝑐𝑙𝑎𝑠ℎ𝑖 − 𝑟𝑖

𝑟𝑐𝑙𝑎𝑠ℎ𝑖
;  𝑟𝑖 ≤ 𝑟𝑐𝑙𝑎𝑠ℎ𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑝𝑎𝑖𝑟 𝑖 𝑖𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑎 𝑚𝑒𝑡𝑎𝑙−𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

1 + 
4 (𝑟𝑐𝑙𝑎𝑠ℎ𝑖 − 𝑟𝑖)

𝑟𝑐𝑙𝑎𝑠ℎ𝑖
;  𝑟𝑖 ≤ 𝑟𝑐𝑙𝑎𝑠ℎ𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑝𝑎𝑖𝑟 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑎𝑛𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠.

 

  

 

Equation 19. Clash energy for an atomic pair, characterized by a distance 𝐫𝐢 and a clash distance 𝐫𝐜𝐥𝐚𝐬𝐡. 

 

The covalent energy term (𝐸𝑐𝑜𝑣(𝑃𝐿)) is associated with the covalent bonds eventually 

established between the ligand and the protein. This term can be calculated using 

equation 2.4.4 – 14 [125]. 

 

 𝐸𝑐𝑜𝑣 = ∑𝜀𝑡𝑜𝑟𝑠

𝑛𝑡𝑐

𝑖=1

(𝜔𝑖) + 𝑐𝑐𝑜𝑣∑𝐾𝑗(𝜃𝑗 − 𝜃𝑜,𝑗)
2

𝑛𝑎𝑐

𝑗=1
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Equation 20. Equation for calculating the covalent term associated with the protein-ligand component 
of CHEMSCORE scoring function. 

 

In equation 20, the first summation is over all 𝑛𝑡𝑐  dihedral angles involved in the 

covalent linkage and the second one is extended to all 𝑛𝑎𝑐  covalent bond angles around 

the same linkage. In this equation, 𝜀𝑡𝑜𝑟𝑠(𝜔𝑖)  is the torsional energy associated with 

the dihedral angle (𝜔𝑖), 𝐾𝑗  is the force constant of the bond angle number,  𝑗 of 

magnitude, 𝜃𝑗 , 𝜃𝑜,𝑗   the ideal magnitude for this angle and 𝑐𝑐𝑜𝑣 a constant used to 

balance the covalent bond term against the rest of the CHEMSCORE scoring function. 

 

d) The GOLDSCORE force field scoring function, estimates the association energy 

(∆𝑎𝐸). This scoring function is the original used by GOLD and can be calculated using 

the following equation: 

 

                𝐺𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒 ≈  ∆𝑎𝐸 ⟺ 𝐺𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒 ≈  ∆𝑎𝐸1 + ∆𝑎𝐸2 (21𝑎) 

                            ∆𝑎𝐸1 = ∆𝐸𝑟𝑒𝑎𝑟𝑟(𝐿) + ∆𝐸𝑟𝑒𝑎𝑟𝑟(𝑃) ⟺ ∆𝑎𝐸1

≈ 𝐸(𝐿𝑏𝑜𝑢𝑛𝑑) − 𝐸(𝐿) + 𝐸(𝑃𝑏𝑜𝑢𝑛𝑑) − 𝐸(𝑃)(21𝑏) 

∆𝑎𝐸2 = ∆𝑎𝐸2,𝐿−𝐽 + ∆𝑎𝐸2,ℎ𝑏𝑜𝑛𝑑 (21𝑐) 

 
Equation 21. General formulation for the GOLDSCORE scoring function. 

 

If a rigid-protein search algorithm is adopted, E(𝑃𝑏𝑜𝑢𝑛𝑑) = E(P) and second term of 

equation 21b is neglected. 

 

3.4.3. LeDock 

 

LeDock is flexible small molecule docking software developed by Hongtao Zhao and co-

workers (Zhang & Zhao, 2016). LeDock combines a genetic algorithm with simulated 

annealing search to generate the first generation of docking poses. The conformation of 

the ligand is randomly changed at the start of each simulated annealing search, so that 

each search starts with a different pose. This software uses an empirical scoring function 

which can be calculated by the following equation [126]. 
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𝐿𝑒𝐷𝑜𝑐𝑘𝑆𝑐𝑜𝑟𝑒 ≈  ∆𝑎𝐺
0 ⇔ 𝐿𝑒𝐷𝑜𝑐𝑘𝑆𝑐𝑜𝑟𝑒

=  𝛼∑(𝐸𝑖
𝐿𝐽 + 𝐸𝑖

ℎ𝑏)  ×  𝐻(|𝐸 +𝑖
𝐿𝐽

𝑛𝐿

𝑖=1

𝐸𝑖
ℎ𝑏| −  𝐸𝑐𝑢𝑡)

+  𝛽(𝑟) ∑𝐸𝑖
𝑒𝑙 +  𝛾 𝐸𝐿

𝑠𝑡𝑟

𝑛𝐿

𝑖=1

 

 

Equation 22. LeDock scoring function. 

 

In this equation, the summations are extended to all the 𝑛𝐿 atoms of the ligand. Each of 

their terms represents a specific interaction (Lennard-Jones + hydrogen bond in the first 

summation and electrostatic in the second summation) between an atom i of the ligand 

with all atoms of the protein. In the first summation, H is the Heaviside step function 

(see equation 23) and 𝐸𝑐𝑢𝑡 is the cut-off energy for Lennard-Jones + hydrogen bond 

interactions. 

 

𝐻 (𝑥) = {
0; 𝑥 < 0
1; 𝑥 ≥ 0

  

 

Equation 23. The Heaviside step function. 

 

As 𝐸𝑐𝑢𝑡 is a positive value, 𝐻 (|𝐸𝐿𝐽 + 𝐸h𝑏| − 𝐸) prevents the docking algorithm of 

calculating negligible interactions of this type. The coefficients  (r) and  are fitted, 

using a least squares procedure, for reproducing experimental values of ∆𝑎𝐺
0 obtained 

for a large number of protein-ligand complexes. In particular, (r) is a distance 

dependent function, which accounts for both electrostatic screening and desolvation. 

The Lennard-Jones (𝐸𝑖
𝐿𝐽), hydrogen bond (𝐸𝑖

ℎ𝑏) and electrostatic 𝐸𝑖
𝑒𝑙 interactions of the 

ligand atom 𝑖𝑖𝑖 i with the protein are calculated respectively as: 

 

𝐸𝑖
𝐿𝐽 =∑ 4𝜀𝑖𝑗((

𝜎𝑖𝑗

𝑟𝑖𝑗
)12

𝑛𝑝

𝑗=1
− (

𝜎𝑖𝑗

𝑟𝑖𝑗
)6 (24𝑎) 
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𝐸𝑖
ℎ𝑏 =∑ 𝑤𝑖𝑗(𝑟𝑖𝑗

𝑛𝑝

𝑗=1
− 𝑟𝑐𝑢𝑡) 𝐻(𝑟𝑐𝑢𝑡 − 𝑟𝑖𝑗) (24𝑏) 

𝐸𝑖
𝑒𝑙 =∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (24𝑐)

𝑛𝑝

𝑗=1
 

 

Equation 24.The Lennard-Jones (𝑬𝒊
𝑳𝑱

), hydrogen bond (𝑬𝒊
𝒉𝒃) and electrostatic (𝑬𝒊

𝒆𝒍) interactions of a 

ligand atoms i with the protein. 

 

In general, for these equations, 𝑟𝑖𝑗 is the distance between the ligand’s atom i and the 

protein’s atom j. In equation 24𝑎, 𝜎𝑖𝑗 is the distance for which the Lennard-Jones 

interaction energy between atoms i and j is null and 𝜀𝑖𝑗 is the symmetrical of the 

minimum value for this interaction energy. In equation 24𝑏 𝑤𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑐𝑢𝑡)  is the energy 

of the hydrogen-bond that depends on the nature of the atoms involved and, on the 

distance, while 𝑟𝑐𝑢𝑡 is the cut-off distance (minimum distance for a non-null hydrogen 

bond interaction). 𝐻(𝑟𝑖𝑗 − 𝑟𝑐𝑢𝑡)  is the Heaviside step function that imposes this 

constrain. In equation 24𝑐 𝑞𝑖 and 𝑞𝑗 are the charges of atoms i and j respectively. 

 

4. Virtual screening 

 

4.1. Introduction 

 

Virtual screening (VS) is a computational method used in drug discovery to identify 

potential drug candidates by screening a virtual library of compounds against a target 

protein of interest. The goal of virtual screening is to identify compounds that have a 

high likelihood of binding to the target protein, which can then be further tested in 

experimental assays. It is very useful since it allows to evaluate thousands of compounds 

in a matter of hours and reduce the number of compounds that have to be synthesized 

or purchased [127,128]. 

There are two main types of virtual screening: structure-based and ligand-based. 

Structure-based virtual screening uses the 3D structure of the target protein to predict 
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how compounds will bind to it. This can be done using molecular docking, which involves 

predicting the binding pose and binding energy of a compound to a target protein. The 

scores obtained are then used to distinguish the ligands that bind strongly to the target 

from those that do not [116]. 

Ligand-based virtual screening, on the other hand, uses the properties of known ligands 

that bind to the target protein to predict the properties of new potential ligands. The 

main disadvantage of these methods is the need of a significant amount of activity data 

for the compounds that are studied in order to get reasonable results [116]. 

 

4.2. Inverted Virtual Screening 

 

Inverted virtual screening (IVS), also known as reverse virtual screening or target fishing, 

is a variation of virtual screening that is used in various stages of drug discovery to 

identify potential targets for a given compound or set of compounds. In this approach, 

a query ligand is screened against a virtual library of proteins to identify those that have 

a high likelihood of binding to the compound [129] 

The process of inverted virtual screening typically requires a protein database, that is a 

collection of structures of proteins or active sites and a molecular docking program and 

involves three steps [129]: 

• Docking: the compound of interest is docked into the active site of each protein 

in the database using molecular docking software. 

• Scoring: the docked poses of the compound are then scored to determine the 

binding affinity between the compound and the protein. 

• Filtering: based on the binding affinity scores, a threshold is set, and the proteins 

that have a binding affinity score above the threshold are considered as potential 

targets. 
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Figure 9. A flowchart of a docking-based inverted virtual screening protocol. 
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The results will be presented and discussed in this section. The chapter begins with a 

discussion of the research methodology used in this study, as well as the goal and 

rationale for it. It then presents background, methodology, results, and conclusions for 

each phase of the study process. Firstly, the results for The Structural Database of 

Insecticide Targets are presented, followed by the application of an integrated 

molecular modelling – inverted virtual screening protocol on a collection of eugenol 

derivatives with confirmed insecticide activity against a molecular library of chosen 

protein targets typically associated with the insecticide activity of natural compounds. 

 

1. Line of Research 

 

To meet the needs of an exponentially growing population in terms of sustainable food 

production, an increase in the use of pesticides is inevitable to ensure a greater 

production and a safe food supply [130,131]. However, despite their beneficial role, 

some of these agrochemicals have been associated to dangerous characteristics, 

including carcinogenicity, teratogenicity, high and acute residual toxicity, interference 

with the hormonal and reproductive systems of mammals and long environmental 

persistence. Thus, the development of alternative pesticides that are eco-friendly, safe 

to humans and non-target organisms and that can circumvent the evolution of 

resistance has been an important topic of research in recent years.  

This was the rationale behind this work – to develop new insecticides that could avoid 

all the prejudicial effects of conventional insecticides. In particular, to provide a strategy 

that could be used to understand and identify the most likely protein targets of 

molecules with insecticidal activity.  

Two main goals were defined for this project - the development of a structural database 

of insecticide targets and its application in an integrated inverted virtual screening 

methodology to a collection of molecules with confirmed insecticide activity in order to 

identify their most likely protein targets responsible for the insecticide activity. 
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To accomplish these goals, the project began with a detailed review of the literature 

available on the most used insecticides. From then on, we built the database, through 

careful research of structural information on the most relevant protein targets with 

insecticidal activity. This database will be useful to all researchers in the field. 

At the same time, we explored the literature for other virtual screening studies 

performed on known proteins targets associated to insecticide activity to minimize the 

candidate pool. Of the 18 studies found in the literature, 14 different protein targets 

were selected to continue the study. After careful optimization of the VS protocol, the 

eugenol derivatives were docked into each of these targets with six different scoring 

functions. The consistency of the scores was evaluated and a ranked list of most likely 

targets was created to be validated experimentally in the future.  

 

2. The structural database of insecticide targets 

 

2.1. Scope 

 

The Structural Database of Insecticide Targets aims to compile all known protein target 

structures associated with insecticide activity in order to create a highly useful tool that 

integrates molecular, biological, and atomic level information that may be used by both 

experimentalists and theoreticals entirely for free. Currently, the database contains 307 

entries, including 31 different protein targets, and 125 molecular ligands from 31 

different organisms.  

This is an ongoing project that will continue to be improved and curated as the number 

of resolved protein targets directly associated to insecticide action increases. 
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Figure 10.Scheme of the metrics used during the development of the database. 

 

2.2. Methodology 

 

To lead us through the initial stages of developing the Structural Database of Insecticide 

Targets, the IRAC Mode of Action Classification Scheme was crucial – it clarified the 

primary known protein targets of conventional insecticides and was also used as a 

template for the database architecture. 

After intensive manual review of the available literature on the topic, data acquisition 

began with the direct download of a broad sample of potential pesticide targets 

structures from PDB. The acquired information was then carefully curated and verified, 

considering certain criteria, such as the relevance of the target, the source organism and 

the experimental method used. Subsequently, the significant structures were extracted 

and organized to be added to the database.  

To get further useful information for each item, external links were made to other 

databases including Brenda, ChEMBL, and UniProt. 

As previously mentioned, the database design was sculpted after the IRAC Mode of 

Action Classification Scheme, which divides protein targets into broad categories based 

on the physiological functions that they influence. These categories include: Growth and 

Development, Nerve and Muscle, Respiration, Inhibition of Blood Coagulation and 

Other. 
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The figure below represents an outline of the work in progress. The chemical structure 

of the most used pesticides in the present days is also represented next to their main 

protein targets. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Work in progress – protein targets grouped into broad categories based on the 
physiological functions that are affected. The chemical structure of the most used pesticides is also 
represented next to their main protein targets. 
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The Structural Database of Insecticide Targets is composed by the following sections: 

2.2.1. Targeted physiology 

This section groups the protein targets based on the physiological functions they affect. 

2.2.2. Target 

Name of the protein target responsible for the insecticidal activity. 

2.2.3. PDB code 

4-letter code assigned to each protein's crystallographic structure, as in the Protein Data 

Bank (PDB). 

2.2.4. Experimental Method  

Methodology applied to solve the crystallographic structure, including X-Ray diffraction, 

Nuclear Magnetic Resonance (NMR), and Electron Microscopy.  

2.2.5. DOI  

DOI of the article describing the associated experimental structure. 

2.2.6. Release Date 

The year the structure entry was released in the PDB archive. 

2.2.7. Mutation(s)  

For some structures, only the mutated form of some three-dimensional structures is 

available. This occurs because enzymes are frequently insoluble in their wild-type form, 

requiring the application of in-site mutagenesis in crucial residue positions. Additionally, 

some variants are engineered variants that are claimed to affect thermostability and 

enzymatic activity. This database specifies whether or not we are in the presence of a 

structure in its mutated form. 

2.2.8. Molecular Weight 

Mass of the macromolecule. 
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2.2.9. Resolution  

Resolution an important measure of the resolvability in the electron density map of a 

molecule. The resolution range can influence the geometrical and structural studies 

meaning that low resolution shows a structure with almost no errors.  

2.2.10.  Source Organism 

This name includes naturally occurring, artificially created, and synthetic source 

organisms, and it corresponds to the taxonomy identifier given by the PDB depositor. 

2.2.11.  Macromolecular Name 

Scientific name of the macromolecule. 

2.2.12.  Chain ID 

Several information relating the chains of each enzyme (number of chains, length, 

sequence and missing positions) available on PDB databank are included. 

2.2.13.  EC Number  

Enzyme can be divided according to its Enzyme Commission number (EC number) or by 

its gene name. Both methodologies are commonly used and were added to the 

database. The data were obtained in PDB database and Brenda. 

2.2.14.  Ligand  

This section determines whether or not the protein has crystallographic ligands. 

2.2.15. Ligand Name 

Name of the crystallographic ligand present in the protein. 

2.2.16. Ligand SMILES 

The simplified molecular-input line-entry system (SMILES) is a specification in the form 

of a line notation for describing the structure of chemical species using short ASCII 

strings.  

 

2.3. Results – Current appearance of the Database 

 



 

 

 

79 

Currently, the database created contains X-ray crystallographic data for 307 molecular 

systems of 31 different protein targets directly associated to insecticide action. Each line 

corresponds to one entry – a structure characterized by its PDB code. The 20 columns 

that make up the database are: Targeted Physiology, Target, PDB Code, Experimental 

Method, DOI, Release Date, Mutations, Resolution, Source Organism, Macromolecule 

Name, Chain ID, EC Number, Ligand, Ligand Name and Ligand SMILES. It is important 

noting that some targets have more than one crystallographic ligand. In these cases, 

each ligand has two columns, one with its name and the other with its SMILES, and they 

are arranged in decreasing order of molecular weight. In the sample below of the current 

state of the database, only one ligand per target is shown, although it could contain 

more. To easily offer more pertinent information for a researcher seeking for a certain 

protein structure, the columns were carefully chosen and curated. 
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Figure 12. Work in progress – protein targets grouped into broad categories based on the physiological functions that are affected. The chemical structure of the most 
used pesticides is also represented next to their main protein targets. 

  

TARGETED 
PHYSIOLOGY 

TARGET 
PDB 

CODE 
EXPERIMENTAL 

METHOD 
DOI 

RELEASE 
DATE 

MUTATIONS 
MOLECULAR 

WEGHT 
RESOLUTION 

(Å) 
SOURCE 

ORGANISM 
MACROMOLECULE 

NAME 
CHAIN 

ID 
EC 

NUMBER 
LIGANDS LIGAND NAME LIGAND SMILES 

Growth and 
Development 

Ecdysone 
receptor 

1R20 
X-RAY 

DIFFRACTION 
10.1038/nat

ure02112 
18/11/03 no 61.26 3.0 Heliothis 

virescens 
Ecdysone receptor, 

Ultraspiracle protein 
D, A  yes 

L-ALPHA-PHOSPHATIDYL-BETA-
OLEOYL-GAMMA-PALMITOYL-

PHOSPHATIDYLETHANOLAMINE, A 

CCCC=CCC=CCCCCCCCC(=O)O[CH](COC(=O)C
CCCCCC=CCCC=CCCC=CC)CO[P](O)(=O)OCCN 

Growth and 
Development 

Group I chitinase 3WL1 
X-RAY 

DIFFRACTION 

10.1107/S13
990047130 3

3841 

09/04/14 
 

no 
46.49 

 
1.8 

 
Ostrinia 

furnacalis 
Chitinase 

A 
 

3.2.1.14 
 

yes 
 

2-acetamido-2-deoxy-beta-D-
glucopyranose 

CC(=O)N[CH]1[CH](O)O[CH](CO)[CH](O)[CH]
1O 

Growth and 
Development 

Beta-N-acetyl-D-
hexosaminidase 

OfHex6 
3NSN 

X-RAY 
DIFFRACTION 

10.1074/jbc.
M110.18479

6 

24/11/10 
 

no 
66.38 

 
2.1 

 
Ostrinia 

furnacalis 

N-
acetylglucosaminidas

e 

A 
 

3.2.1.52 
 

no   

Nerve and Muscle 
Acetylcholinester

ase 
1QON 

X-RAY 

DIFFRACTION 

10.1110/ps.

9.6.1063 

20/07/00 

 
no 

66.38 

 

2.7 

 

Drosophila 
melanogast

er 
Acetylcholinesterase A 3.1.1.7 yes 

9-(3-IODOBENZYLAMINO)-1,2,3,4-

TETRAHYDROACRIDINE 
Ic1cccc(CNc2c3CCCCc3nc4ccccc24)c1 

Nerve and Muscle Alpha-esterase-7 5TYP 
X-RAY 

DIFFRACTION 

10.1073/pna
s.190913011

6 

06/12/17 
 

yes 66.39 
1.9 

 
Lucilia 

cuprina 
Carboxylic ester 

hydrolase 
A 
 

3.1.1 
 

yes 
(3-bromo-4-methylphenyl)boronic 

acid 
B(c1ccc(c(c1)Br)C)(O)O 

Nerve and Muscle 
Voltage-gated 

sodium channel 
NavPaS 

6A95 
ELECTRON 

MICROSCOPY 
10.1126/scie
nce.aau2596 

08/08/18 
 

no 
192.23 

 
2.6 

 

Periplaneta 

americana | 
Diguetia 
canities 

Sodium channel 
protein PaFPC1 | 

Mu-diguetoxin-Dc1a 
A | B  yes Sodium ion [Na+] 

Inhibition of Blood 

Coagulation 
Nitrophorin 3TGA 

X-RAY 

DIFFRACTION 

10.1002/ani
e.20110869

1 

30/05/12 

 
yes 

20.337 

 

1.3 

 

Rhodnius 

prolixus 
Nitrophorin-4 A 

1.7.6.1 

 
yes 

PROTOPORPHYRIN IX CONTAINING 

FE 

CC1=C(CCC(O)=O)C2=Cc3n4[Fe]5|6|N2=C1C
=c7n5c(=CC8=N|6C(=Cc4c(C)c3CCC(O)=O)C(

=C8C=C)C)c(C)c7C=C 

Respiration Kinase domain 5YJ9 
X-RAY 

DIFFRACTION 

10.1038/s41
598-018-

28656-8 

20/08/25 
 

yes 
48.199 

 
2,5 

Tribolium 
castaneum 

Serine/threonine-
protein kinase PINK1, 

mitochondrial-like 
Protein 

D 
 

 
yes 

 
PHOSPHOAMINOPHOSPHONIC 

ACID-ADENYLATE ESTER 
Nc1ncnc2n(cnc12)[CH]3O[CH](CO[P](O)(=O)

O[P](O)(=O)N[P](O)(O)=O)[CH](O)[CH]3O 

Other 
Sterol Carrier 

Protein 
4UEI 

SOLUTION 
NMR 

10.1038/sre
p18186 

30/12/15 
 

no 
14.05 

 
 

Helicoverpa 
armigera 

Sterol carrier protein 
2/3-oxoacyl-CoA 

thiolase 

A 
 

2.3.1.176 
 

no 
 

  

Other 
Odorant binding 

protein 
3K1E 

X-RAY 
DIFFRACTION 

10.1371/jou
rnal.pone.00

08006 

08/12/09 
 

no 
30.59 

 
1.9 

 
Aedes 

aegypti 
Odorant binding 

protein 
A, B 

 
 

yes 
 

2,5,8,11,14,17,20,23,26,29,32,35,38
,41,44,47,50,53,56,59,62,65,68,71,7

4,77,80-

HEPTACOSAOXADOOCTACONTAN-
82-OL 

COCCOCCOCCOCCOCCOCCOCCOCCOCCOCC
OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO

CCOCCOCCOCCOCCOCCOCCO 

Other 
Polyphenol 

oxidase 
1BUG 

X-RAY 
DIFFRACTION 

10.1038/419
3 

02/09/99 
 

no 
38.815 

 
2.7 

 
Ipomoea 
batatas 

PROTEIN (CATECHOL 
OXIDASE) 

 

A, B 
 

1.10.3.1 
 

yes 
 

COPPER (II) ION  
 

[Cu+2] 
 

Other Oxidoreductase 1YVE 
X-RAY 

DIFFRACTION 

10.1093/em
boj/16.12.34

05 

04/09/97 
 

no 
57.046 

 
1.65 

 
Spinacia 
oleracea  

ACETOHYDROXY 
ACID 

ISOMEROREDUCTASE 
 

A,B,C,
D 
 

1.1.1.86 
 

yes 
 

NADPH DIHYDRO-NICOTINAMIDE-
ADENINE-DINUCLEOTIDE 

PHOSPHATE 
 

c1nc(c2c(n1)n(cn2)C3C(C(C(O3)COP(=O)(O)
OP(=O)(O)OCC4C(C(C(O4)N5C=CCC(=C5)C(=

O)N)O)O)O)OP(=O)(O)O)N 
 

Other 

N-
Acetylglucosamin

e-1-phosphate 
uridyltransferase 

2V0K 
X-RAY 

DIFFRACTION 
10.1110/ps.
073135107  

15/01/08 no 
49.346 

 
2.3 

 
Haemophilu
s influenzae 

BIFUNCTIONAL 
PROTEIN GLMU 

A 
2, 

2.7.7.23, 
2.3.1.157 

yes URIDINE-5'-DIPHOSPHATE 
C1=CN(C(=O)NC1=O)C2C(C(C(O2)COP(=O)(O

)OP(=O)(O)O)O)O 

Other 
Octopamine 

receptor 
4N7C 

X-RAY 
DIFFRACTION 

10.1016/j.m

olimm.2014.
03.016 

21/05/14 
 

no 20.376 1.75 
Blattella 

germanica 
Bla g 4 allergen 

variant 1 
A 3.5.1.88 yes CITRIC ACID C(C(=O)O)C(CC(=O)O)(C(=O)O)O 

Other 
Peptide 

deformylase 
5CY8 

X-RAY 
DIFFRACTION 

 03/08/16 no 19.098 2.38 

Xanthomona
s oryzae pv. 
oryzae KACC 

10331 

Peptide deformylase A  
yes 

 
(3R)-2,3-dihydro[1,3]thiazolo[3,2-

a]benzimidazol-3-ol 
c1ccc2c(c1)nc3n2C(CS3)O 
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2.4. Conclusion and Future Works 

 

The database is currently being developed and we hope to publish it soon. It will follow 

the Fair Principles, ensuring accessibility, interoperability, and reusability of the data. 

Our aim is to provide a valuable tool for visualizing, exploring, and understanding these 

targets, which may lead to the design and development of more effective insecticides. 

New structures are constantly being deposited on the PDB, which makes it crucial to 

continuously update this tool. Also, in the future, plans exist to add modelled structured 

based on the AlphaFold, and curated 3D representations of these forms after modelling 

and molecular dynamics simulations. 

 

3. In silico identification of protein targets associated to the 

insecticide activity of natural products 

 

3.1. Context 

 

One of the difficulties associated with the rational development of new eugenol 

derivatives with enhanced insecticidal activity lies in the lack of knowledge of the specific 

protein target responsible for their activity and to the binding conformation of these 

molecules. Here, we report the application of an integrated molecular modelling – 

inverted virtual screening protocol of a collection of eugenol derivatives with confirmed 

insecticide activity against a molecular library of protein targets typically associated with 

the insecticide activity of natural compounds. The protocol included six different scoring 

functions from popular docking software alternatives. The results consistently show a 

marked preference for interaction of the eugenol derivatives with the odorant binding 

proteins (OBPs) in insect species. 
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3.2.  Methodology  

 

A search on Scopus was performed for papers describing VS studies, involving targets 

and molecules with insecticidal and herbicide activity. The selection criteria placed 

relevance of the target and year of publication. In the eighteen studies found, fourteen 

targets were identified and listed below: 

 

Table 5. List of targets selected for the inverted virtual screening study. 

 

TARGET ORGANISM PDB RESOLUTION DESCRIPTION REFERENCE 

Ecdysone receptor 
Heliothis 

virescens 

1R20 3.00 Å 
A receptor-based pharmacophore model was developed 

using VS based on 1R20 bound to an agonist. 
[27] 

1R1K 2.90 Å 

2 million different compounds were tested against the 1R1K 

ecdysone receptor, which was bound to its known ligand, 

Ponasterone A. 

[28] 

Chitinase 

Ostrinia 

furnacalis 

3WL1 1.77 Å Two crystal structures of chitinases, 3WL1 bound to its 

reaction product and 3WQV bound to an inhibitor, were 

used for pharmacophore-based screening. 

[29] 
3WQV 2.04 Å 

Beta-N-acetyl-D-

hexosaminidase OFHex1 

3NSN 2.10 Å 

Considering the 3NSN crystal structure coupled to a 

recognized inhibitor, VS of the ZINC database is used to find 

OfHex1 inhibitors. 

[30] 

3OZP 2.00 Å 
3OZP, a crystal structure of OfHex1 coupled to an inhibitor, 

was targeted by VS from the ZINC database. 
[31] 

N-Acetylglucosamine-1-

phosphate 

uridyltransferase (GlmU) 

Xanthomonas 

oryzae 

2V0K 2.30 Å Docking homology model developed with 2V0K and 2VD4 

templates. The crystal structure of 2V0K is attached to a 

recognized ligand, whereas 2VD4 is bound to a potential 

inhibitor. 

[32] 
2VD4 1.90 Å 

Acetylcholinesterase 

Aedes aegypti 

1QON 2.72 Å With the crystal structures of acetylcholinesterase 1QON 

and 4EY6 bound to potential inhibitors, search for novel 

compounds with insecticidal efficacy against A. aegypti. 

[33] 
4EY6 2.40 Å 

Drosophila 

melanogaster 
1DX4 2.70 Å 

Instead of utilizing 1DX4 as a template, the homology 3D 

model was created. A powerful inhibitor is attached to the 

1DX4 crystal structure. 

[34] 

Polyphenol oxidase 
Ipomoea 

batatas 
1BUG 2.70 Å 

Docking simulations utilizing the homologous sweet potato 

polyphenol oxidase crystal structure in combination with 

the pesticide phenylthiourea. 

[35] 
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p-

hydroxyphenylpyruvate 

dioxygenase 

Arabidopsis 

thaliana 
6ISD 2.40 Å 

A receptor-ligand pharmacophore model based on the 

crystal structure of 6ISD bound to a routinely used herbicide 

was created. The best model developed was then used to 

VS experiments. 

[36] 

Oxidoreductase 
Spinacia 

oleracea 
1YVE 1.65 Å 

The crystal structure of a plant oxireductase, 1YVE, coupled 

to its cofactor, NADPH, was exploited to uncover novel 

inhibitors in VS tests. 

[37] 

Voltage-gated sodium 

channel 

Periplaneta 

americana 
6A95 2.60 Å 

The crystal structure of NavPaS, a voltage-gated sodium 

channel, linked to tetrodotoxin, a pore blocker (TTX). 
 

Octopamine receptor 
Blatella 

germanica 
4N7C 1.75 Å 

Octopamine receptor Bla g 4's crystal structure when it is 

coupled to tyramine. 
[38] 

Sterol carrier protein-2 

(HaSCP-2) 

Helicoverpa 

armígera 
4UEI 

Solution 

NMR 

Structure-based VS. of a database of commercially available 

compounds to find potential inhibitors of HaSCP-2. For the 

binding cavity, the residues Phe53, Thr128, and Gln131 

were chosen. 

[39] 

Peptide deformylase 
Xanthomonas 

oryzae 
5CY8 2.38 Å 

A potential inhibitor is linked to the crystal structure of 5CY8 

after docking and VS of a library of 318 phytochemicals. 
[40] 

Alpha-esterase-7 (E7) Lucilia cuprina 

5TYJ 1.75 Å 5TYJ and 5TYP crystal structures are attached to the 

inhibitors (3-bromo-5-phenoxylphenyl) boronic acid and (3-

bromo-4-methylphenyl) boronic acid, respectively. 

Computational design of effective and selective covalent 

inhibitors of E7. 

[41] 
5TYP 1.88 Å 

Odorant binding protein 

Aedes aegypti 5V13 1.84 Å 

Using the crystal structure of the hormone-binding protein 

5V13 of a juvenile mosquito with insecticidal action against 

A. aegypti, search for novel compounds. 

[42] 

Drosophila 

melanogaster 
2GTE 1.40 Å 2GTE crystal structure is bound to its natural ligand. [43] 

Anopheles 

gambiae 
3N7H 1.60 Å 

QSAR and docking experiments on the crystal structure for 

the rational design of insect repellents 3K1E crystal 

structure attached to a polyethylene glycol molecule; 3N7H 

crystal structure bound to a common repellent. 

 

[43] 

Aedes aegypti 3K1E 1.85 Å 

 

Eugenol and eleven derivatives (Figure 13 EU1-EU3e) were selected as new potential 

insecticides. These molecules have been previously synthesized and validated 

experimentally with good insecticidal activity.  
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Figure 13. Eugenol and derivatives used in this study. 

 

Each Protein Databank (PDB) structure was prepared for docking using the AutoDock 

Vina plugin for PyMOL. Crystallographic waters and cofactors were removed. The ligands 

were extracted and saved in separate files to be used for the re-docking and as a 

reference site for the docking coordinates. When there were no crystallographic ligands 

present, a selection based on the most important active site residues was made. Re-

docking was used to evaluate the ability of the docking software to reproduce the 

geometry and orientation of the crystallographic pose, as well as the quality of the 

docking protocol, and to optimize the docking protocol. 

The docking programs/scoring functions used were GOLD (PLP, ASP, ChemScore, and 

GoldScore scoring functions), AutoDock Vina, and LeDock. With each docking 

program/scoring function, the protocol was optimized for each protein target, to 

minimize the RMSD in the docking predictions of the reference ligand in redocking, by 

comparison with the crystallographic structure of the corresponding complex.  

The optimized parameters for each program/scoring function were: Vina — docking box 

position, docking box dimension, exhaustiveness; LeDock — docking box position, 

docking box dimension; GOLD (PLP, ASP, ChemScore, GoldScore) — binding pocket 

center, docking region radius, search efficiency, number of runs. The final optimized 

conditions were used for the subsequent stages. Eugenol and derivatives were prepared 
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for docking using Datawarrior and OpenBabel and were docked into each structure with 

the optimized protocol with all the six scoring functions. A ranked list was prepared 

based on the average scores of each target.  

 

3.3. Results and Discussion 

 

Table 6 presents the average scores obtained for of all the eugenol derivatives for each 

potential target with each scoring function. The score for all of the GOLD scoring 

functions is dimensionless, and the higher the score, the better the binding affinity. Vina 

and LeDock scoring functions, on the other hand, use a metric that is a more precise 

approximation of binding free energy, so a more negative value means better affinity.  

Table 6. Average eugenol derivative scores obtained for all PDB structures with the six different 
scoring functions. 

TARGET PDB PLP ASP ChemScore GoldScore Vina LeDock 

Ecdysone receptor 
1R20 57.3 27.5 28.1 52.5 -6.4 -4.7 

1R1K 59.3 26.4 28.3 54.5 -7.1 -5.2 

Chitinase 
3WL1 63.0 40.8 30.1 60.0 -6.9 -4.8 

3WQV 63.4 40.7 30.6 55.7 -6.5 -4.3 

Beta-n-acetyl-d-hexosaminidase ofhex1 

3NSN 66.7 46.7 29.1 62.8 -6.1 -4.4 

3OZP 63.3 43.7 28.3 58.7 -7.1 -4.3 

N-acetylglucosamine-1-phosphate 

uridyltransferase (glmu) 

2V0K 55.0 24.1 23.3 54.3 -5.9 -4.6 

2VD4 46.9 22.2 21.6 43.8 -5.2 -3.7 

Acetylcholinesterase 

1QON 73.3 48.2 35.3 62.2 -7.6 -5.0 

4EY6 72.6 41.2 32.4 55.2 -7.1 -5.0 

1DX4 70.0 43.2 32.2 55.3 -7.2 -4.9 

Polyphenol oxidase 1BUG 56.7 27.2 25.9 56.2 -5.2 -4.1 

P-hydroxyphenylpyruvate dioxygenase 6ISD 57.9 31.6 24.8 47.8 -6.3 -4.3 

Oxidoreductase 1YVE 66.0 25.6 32.1 59.5 -6.3 -5.2 

Voltage-gated sodium channel 6A95 53.1 23.6 22.3 56.5 -5.8 -4.5 

Octopamine receptor 4N7C 68.1 37.9 35.1 65.2 -7.1 -4.5 

Sterol carrier protein-2 (hascp-2) 4UEI 54.1 28.2 29.4 45.8 -6.4 -4.9 

Peptide deformylase 5CY8 64.0 26.4 24.3 62.5 -6.8 -5.6 

Alpha-esterase-7 (e7) 
5TYJ 62.9 34.6 29.3 52.1 -6.4 -4.3 

5TYP 59.9 35.2 29.4 53.1 -6.4 -4.8 

Odorant binding protein 
5V13 72.1 43.2 35.9 59.4 -7.6 -5.1 

2GTE 63.1 33.8 34.3 56.9 -6.5 -3.1 
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Overall, the results show good consistency, with odorant binding proteins, 

acetylcholinesterases, octopamine receptors, and chitinases yielding better scores. On 

the other hand, targets, such as voltage-gated sodium channels, sterol carrier protein-2 

(HaSCP-2), and GlmU, are consistently presenting lower scores for all scoring functions.  

The structure with the best score was selected for each potential target and they were 

ranked from the best target to worst, according to the predictions of the different 

docking programs/scoring functions. The results are listed in Table 7. Globally, 

considering the results obtained with the several scoring functions, odorant binding 

proteins are the target with the highest affinity towards eugenol derivatives, followed 

closely by acetylcholinesterase, chitinases, and octopamine receptors. Enan in 2001 

suggested that the insecticidal activity of eugenol was mediated by octopamine 

receptors. Our study implies that there might be other targets involved as well, as the 

binding affinity of eugenol derivatives was higher for odorant binding proteins (OBPs) 

and acetylcholinesterase.  

Some variations between the predictions of different scoring functions exist. For 

example, for the PLP and ChemScore scoring function, odorant binding proteins, and 

acetylcholinesterase come in first and second as preferable targets for eugenol 

derivatives. However, for ASP and Vina, the preferable target is the acetylcholinesterase, 

and for both Vina and LeDock, odorant binding proteins are the second preferable 

targets. The discrepancy is even higher for GoldScore, with odorant binding proteins 

coming in third place and octopamine receptors presenting the highest binding affinity 

for eugenol derivatives. This may be explained by the own nature of each scoring 

function, as they consider different aspects of protein-ligand binding.  

Table 7. Ranking of targets obtained with the different docking programs/scoring functions. 

3N7H 64.8 34.5 28.9 56.6 -6.3 -4.6 

3K1E 73.4 39.6 35.8 62.4 -6.0 -5.5 

Ranking PLP ASP ChemScore GoldScore Vina LeDock Overall 

Ranking 
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The consistency of the results was visually confirmed by the analysis of the 

corresponding poses. The hypothesis formed is that eugenol and eugenol derivatives 

can be used as repellents because they can bind to odorant binding proteins or be used 

as pesticides, inhibiting insect acetylcholinesterase. As observed in figure 14, they are 

very different targets, both in size and in function.  

Odorant binding 

protein 
1 4 1 3 2 2 1 

Acetylcholinesterase 2 1 2 5 1 5 2 

Chitinase 4 2 5 2 6 7 3 

Octopamine receptor 3 5 3 1 5 10 4 

Peptide deformylase 6 11 12 4 7 1 5 

Oxidoreductase 5 12 4 6 11 4 6 

-N-acetyl-D-

hexosaminidase 

OfHex1 

7 3 9 7 3 13 7 

Ecdysone receptor 9 9 8 10 4 3 8 

-esterease-7 8 6 7 12 9 8 9 

Sterol carrier protein-2 

(hascp-2) 
13 8 6 14 8 6 10 

p-

hydroxyphenylpyruvat

e dioxygenase 

10 7 11 13 10 12 11 

Polyphenol oxidase 

(PPO) 
11 10 10 9 14 14 12 

N-acetylglucosamine-

1-phosphate 

uridyltransferase 

(GlmU) 

12 13 13 11 12 9 13 

Voltage-gated sodium 

channel 
14 14 14 8 13 11 14 
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Figure 14. Docking-predicted binding mode of EU3e to OBPs a) and docking-predicted binding modes 
of EU3e to Acetylcholinesterase b) with PLP scoring function. 

 

Odorant binding proteins (OBPs) are a large family of insect proteins that are crucial for 

species survival and reproduction, as they use pheromones, plant volatiles, and other 

odorant molecules to mate, find food, and avoid predators. OBPs are present in a variety 

of organisms, are highly expressed and highly divergent in sequence. They do however, 

present a few common features, such as their small size and the presence of six 

conserved cysteines. These features also make them good targets for rapid screenings. 

There is not enough consensus regarding the specificity of these proteins and further 

studies must be performed to better understand the sensitivity of OBPs [131]. 

Acetylcholinesterase (AChE) is one of the most common targets of synthetic pesticides, 

such as organophosphates and carbamate and has been a target of reference for over 

50 years. This enzyme is a serine hydrolase and is responsible for regulating the levels of 

acetylcholine in a variety of organisms, from mammals to insects Due to its extensive 

“attack”, some pests have become resistant to organophosphates, and the search for 

new and effective alternatives is currently being promoted [132]. 

Interestingly, during a search in the Protein Data Bank for eugenol, a structure of an 

odorant binding protein complexed with eugenol was found. It is an OBP of Apis 

mellifera (PDB: 3S0E) that exhibits high affinity for eugenol. This reinforces the proposed 
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theory that eugenol and derivatives can, in fact, bind to OBPs and could potentially work 

as repellents. Still, additional computational and experimental studies need to be 

performed to further optimize and develop this hypothesis.  
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Insecticides play a crucial role in controlling pest populations, but their increased use 

has led to the development of resistance in pests and the emergence of adverse effects 

on the environment and non-target species. As a result, there is a rising demand for the 

development of alternative pesticides based on natural substances that are potentially 

less toxic to other organisms and/or biodegradable. In this project, an inverted virtual 

screening protocol was applied to eugenol derivatives (chemical compounds derived 

from eugenol, which is a naturally occurring substance found in various plants, including 

cloves and cinnamon) in order to identify potential protein targets for insecticidal 

activity.  

The study revealed these compounds have increased binding affinity for odorant binding 

proteins and acetylcholinesterases, suggesting that eugenol derivatives may have 

potential as repellents, which are an alternative to conventional insecticides that aim to 

deter pests without causing harm.  

The inverted virtual screening protocol used in this study proved to be a simple and 

effective approach for the identification of new insecticidal targets. By carefully 

optimizing the protocol and using multiple scoring functions, the results of this study 

were able to provide a ranked list of the most likely targets for insecticidal activity. These 

findings provide a valuable starting point for further experimentation and optimization 

in the development of new insecticides. 

In addition, in this project the creation of a large database of insect 3D-structures of 

protein targets associated with insecticide activity was developed.  While in its first 

steps, this database will constitute an important starting point for future large scale 

inverted virtual screening projects for the development and identification of 

insecticides.  

Going forward, there are several directions in which this work could be further 

developed: 
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1. Experimental validation: The results of this study provide a valuable starting 

point for further experimentation and optimization in the development of new 

insecticides or repellents. It would be valuable to validate the findings of this study 

through experimental means, such as bioassays, to determine the efficacy of eugenol 

derivatives as insecticides or repellents. 

2. Optimization of eugenol derivatives: Based on the results of this study, further 

optimization of eugenol derivatives may be necessary to improve their efficacy as 

insecticides or repellents. This could involve modifying the molecular structure of the 

eugenol derivatives or exploring new derivatives with improved binding affinity for the 

identified protein targets. 

3. Expansion to other insect species: The current study focused on a limited set of 

insect species. Further work could expand the scope of the study to include other insect 

species to determine the generalizability of the results and the potential of eugenol 

derivatives as insecticides or repellents. 

4. Application of other virtual screening methods: The current study used an 

inverted virtual screening protocol, but there are other virtual screening methods that 

could be applied to eugenol derivatives to identify additional protein targets for 

insecticidal activity. Further work could explore the application of other virtual screening 

methods to eugenol derivatives to identify new insecticidal targets. 

5. Development of the Insecticide Targets database: The current study includes a 

limited number of structures and insecticide targets. The recent release of Alphafold and 

of the Alphafold Database offers high quality 3D structures predicted from artificial 

intelligence with almost X-ray quality. These structures can be included in the database 

for species and protein targets not previously represented. 

In conclusion, this master's thesis highlights the importance of virtual screening 

protocols in the development of new and alternative insecticides. The results of this 

study provide a simple and effective approach for the identification of new insecticidal 

targets and suggest that eugenol derivatives may have potential as new insecticides or 

repellents. Overall, this work contributes to the ongoing efforts to find alternative 

insecticides that are more environmentally friendly and less likely to lead to resistance. 
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Todas as paisagens que vi através de janelas ou vigias, 

Ou de tombadilhos, sonhando, 

E tudo isso, que é tanto, é pouco para o que eu quero.” 

 

 

- Álvaro de Campos 
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