

Development of Sustainable Techniques for Cellulose Recovery from Leftovers and Cellulose-containing Garments

Fábio Pedroso de Lima¹, <u>Bárbara Vieira¹, Adriana Pereira¹, Rita Gomes-Dias¹, Talita Nicolau¹, Jorge Padrão¹,</u> and Andrea Zille^{1*}

> ¹Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, Portugal *azille@2c2t.uminho.pt

> > WASTE COLLECT

INTRODUCTION

Textile and clothing industry is one of the most polluting industries in world, with high impact on water and land consumption. the Approximately 5.8 million tons of textiles are discarded in Europe,

METHODOLOGY

CELLULOSE RECOVERY

and only 1% is fiber-to-fiber recycled.

Cotton-based waste products are usually mechanically recycled. This recycling method decreases the mechanical properties of the cotton fibres, due to the shredding, opening and carding processes. The quality of the new products is, therefore, compromised. Through chemical recycling, it is possible to regenerate the cotton

fibres from waste and produce new value-added products.

OBJECTIVES

- Optimize the cellulose recovery without compromising its physicochemical properties;
- Create value-added products with the recovered cellulose.

RESULTS AND DISCUSSION

AmimCl with stirring at 25 °C

CRYSTALLINITY INDEX

DEGREE OF POLYMERIZATION (DP)

MICROSCOPY

Wet spun fibres with **Post-Consumer Textile** Waste treated with enzime 5% + HNO₃

TCI HBI LOI

DP SAMPLE **Original Carding Waste** 1197.74 322.38 HNO₃ Reflux Enzyme 20% + HNO₃ Reflux 250.00 Enzyme 10% + HNO₃ Reflux 307.14 360.00 Enzyme 5% + HNO₃ Reflux 619.05 **Original Post-Consumer Waste** 222.86 HNO₃ Reflux 229.20 Enzyme 20% + HNO₃ Reflux Enzyme 10% + HNO₃ Reflux 215.71 241.43 Enzyme 5% + HNO₃ Reflux

Wet spun fibres with **Carding Textile Waste** treated with HNO₃

Figure 2 – Microscope images of the wet spun fibres with (a), (c), and (d) 4x, and (b) 10x

Figure 1 – Total Crystallinity Index (TCI), Hydrogen Bond Intensity (HBI), and Lateral Order

- Cellulose treated with HNO₃ presents high crystallinity index (high TCI and high HBI); A lower degree of polymerization leads to increased brittleness thus lowering the
- On the contrary, the presence of HNO_3 lowers the degree of polymerization;

production of wet spun fibres.

C[©]MPETE 2020

CONCLUSIONS

- The process was optimized. It is now possible to regenerate cellulose in less time, by adding an enzymatic treatment;
- It is possible to produce new products through cellulose regeneration, such as wet spun fibres and cellulose acetate;
- The production of new value-added products needs to be optimized.

ACKNOWLEDGEMENTS

This research was funded by FEDER funds through the Operational Competitiveness Program-COMPETE, under the project POCI-01-0247-FEDER-047124, and by National Funds through Fundação para a Ciência e Tecnologia (FCT), under the project UID/CTM/00264/2020. Talita Nicolau and Cátia Alves acknowledge FCT, MCTES, FSE and UE PhD grants 2022.15386.BD and 2022.10454.BD, respectively.

Excellence in Textile Research

www.2c2t.uminho.pt +351-253 510 289