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R E S UM O

As diferenças no ambiente molecular dos óleos vegetais (e.g., insaturação, ácidos gordos livres)

induzem alterações nas medições de NMR. Manipulando um equipamento mais antiquado (i.e., NMR

de domínio temporal) com ferramentas atuais (p.e., algoritmos de machine learning), foi concebido o

Lipidomic Profiler. Esta metodologia permite rastrear desvios fenotípicos de perfis lipídicos. Com base

neste conceito, podemos identificar (em minutos) e classificar líquidos (i.e., óleos de palma, amendoim,

azeitona (azeite), abacate, sésamo, girassol, milho) de forma não destrutiva. Mais pormenorizadamente,

é demonstrado que, o Lipidomic Profiler proposto tem potencial na caracterização do perfil lipídico (p.e.,

quantidade de ácidos mono- e poli-insaturados) e na classificação do azeite pelo grau de acidez (p.e.,

extra-virgem, virgem ou refinado) e pela região de origem. A caracterização do perfil lipídico alcançou

um bom nível de previsão na caracterização do teor de ácidos gordos mono- (R2=0,86) e poli-insaturados

(R2=0,89). Além disso, na classificação do azeite por grau de acidez, o conceito prosposto (AUC=0,95)

revelou-se mais sensível e preciso do que as metodologias atuais, como, a espectroscopia de infravermelho

próximo (AUC=0,84) e a espetroscopia do UV-Visível (AUC=0,73), respectivamente. Devido às ferramentas

utilizadas, tais metodologias podem fornecer futuras avaliações e classificações de amostras in situ (devido

ao reduzido tamanho do equipamento de NMR no domínio temporal) não rotuladas num curto espaço de

tempo.
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A B S T R A C T

The differences in molecular environment of the vegetable oils (e.g., unsaturation, free fatty acids)

induce substantial changes in the time-domain NMR-phenotypic traits. Using an old-fashioned equipment

(i.e., time-domain NMR) augmented with modern tools (i.e., machine learning models), was conceptualize

a Lipidomic Profiler, a scientific tool for tracing down phenotypic deviation in lipid profiles. Using this

concept, we can rapidly (in minutes) identify and classify (e.g., palm, peanut, olive, avocado, sesame,

sunflower, corn) in label-free and non-destructive manner. In more detail, is demonstrated that the proposed

Lipidomic Profiler, has potential in characterizing the lipid profile (i.e., amount of monounsaturated and

polyunsaturated fatty acids), and classifying olive oil by its grading (e.g., extra-virgin, virgin or refined) and

region of origin. Characterization of the lipid profile achieved an prediction level in the fatty acid content of

monounsaturated (R2=0.86) and polyunsaturated (R2=0.89) species. In addition, in classifying olive oil by

grade, the proposed Lipidomic Profiler (AUC=0.95) proved higher sensitive and specificity than the current

gold-standards, i.e., near infrared spectroscopy (AUC=0.84) and ultraviolet-visible spectroscopy (AUC=0.73),

respectively. Due to the tools used, such conceptual methodologies may provide future rapid assessments

and object classification in situ (NMR point-of-use) of unlabelled samples with a short delay.

K E Y WORDS fatty acids, lipid profile, NMR-based traits, time-domain NMR.
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1

I N T R O D U C T I O N

Fraudulent food industry is one of the major public health concerns. Vegetable oils, for example, are one of

the main targets due to their indispensable nutritional values (e.g., bioactive compounds) and attractive organoleptic

properties. Therefore, the high-value authentic products (e.g., extra-virgin olive oils) are often blended with the

counterfeit low-value oils (e.g., sunflower oils) [1]. For example, in Spain (1981), there was a report of an oil (e.g.,

contaminated rapeseed) fraudulently sold with olive oil who affected 20,000 individuals, killing around 1,000 (i.e.,

toxic oil syndrome [2]). Although regulation became tighter, olive oil is still the one of the most notified product in

the EU [3]. Thus, in short-terms, adulteration serves to capitalise on consumer and boost profits. In part, this is due

to the raising support for ’natural’ products (i.e., unprocessed food), which uses only the highest quality materials,

otherwise it may deteriorate during storage [4]. For instance, conventional food processing techniques (e.g., refining)

have lost popularity to cold-pressed oils since there is no contact between cold press oil and chemicals [5].

The complexity of adulteration detection increases with blended oils mixtures, whose biochemical properties

may mimic the one of an authentic product [6]. As consequence, some of the fraudulent products are untraceable.

For example, as much as 82% of avocado oils distributed in the US is reported to be either adulterated or expired

[7]. Thus, the search for newer adulteration ’detectors’ with similar or better properties (i.e., time to results, user-

friendly, price per assay) than the current gold-standard techniques (spectroscopy [8–12]), or gel- or high-performance

liquid-chromatographies [13, 14], is fundamental in a growing and technological-adapted society. For this purpose,

time-domain NMRmeasures augmented with machine learning models (i.e., Lipidomic Profiler) are tested in vegetable

oils characterization (i.e., detailed content of the lipid profile) and classification (i.e., olive oil grade).

1



1.1. Objectives 2

1.1 Ob j e c t i v e s

Time-domain Nuclear Magnetic Resonance (NMR) (i.e., low-field NMR or relaxometry) is a powerful method to

study interactions occurring in biological systems. The primary purpose is tracking down relaxation times (T1, T2). It

provides spectral, one- or two-dimensional information (e.g., exponential, bi-exponential or Laplace raw data fitting)

regarding the relaxation or diffusion properties of a sample. The measured signal ’contains’ generalizable knowledge

from molecular environment differences, [8, 15–18], being a highly unique molecular signature. With an increase

in the dimensionality of information (i.e., various raw data fittings), the coupled machine learning algorithms were

proven to improve accuracy and precision [15]. Based on this, the concept of a Lipidomic Profiler (Figure 1) was built

to trace down phenotypic deviation in several vegetable oils (i.e., characterization, classification).

Vegetable plant oils are majorly constituted by fatty acids. Due to fatty acid species (e.g., saturated,

unsaturated) combinations, there is a plethora lipid profiles. As examination, the Lipidomic Profiler is employed in

characterizing (i.e., detailed content of saturated and unsaturated), and classifying olive oil by grade and region of

origin. Using just a single droplet on a bench-sized time-domain NMR, the subtle differences in lipid profile and

specific molecular environment of oils, are expected to induce subtle changes in the relaxation mechanism (i.e.,

NMR-phenotypic traits). Similar or higher prediction levels (with machine learning) than current gold-standard may

develop this scientific tool (i.e., new adulteration ’detector’) to futurely assist the food science community.

Figure 1: Conceptual Lipidomic Profiler using NMR-phenotypic traits. The concept of using Lipidomic Profiler
as proposed in this work. The time-domain NMR device consists of a portable commercial console, a circuit coil and
a palm-sized permanent magnet (magnetic field of 0.5T). For the analysis, a microcapillary tube with the sample
(e.g., a drop of oil) is slotted into the NMR detection coil. The entire assay completes in less than 10 minutes. The
measured NMR-based traits (e.g., T1, T2 relaxation times), augmented with machine learning models (to improve
clear-cut classification and precise labelling) may provide scientific advances in the food science community [15, 19].
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1.2 Wo r k s t r u c t u r e

This work is divided in order to approach less-knowledgeable readers (of NMR-based techniques) in a gradual

manner. The following part (’State of the art’), encloses how the composition (i.e., lipid profile) of vegetable oils

is synthesised and regulated in biological systems, with a few insights on it may change with storage and cooking.

Subsequently, a chapter on NMR (more specific in time-domain NMR) wherein is described how the phenomenon is

detected, and how it changes the relaxation times (T1, T2) in lipid profiles. The part is finished with a small chapter

in machine learning.

The second part (’Experimental results’) starts with a framework of analyses (i.e., resumed protocol of the work

done) to combine both vegetable oils and NMR-based information (i.e., abbreviations, expressions). It is followed by

the methods (e.g., sample preparation, NMR acquisition parameters, statistical analyses) and the whole experimental

results, for both characterization and classification of vegetable oils. These results are evaluated and compared to the

gold-standard techniques in the field (i.e., near infrared spectroscopy and ultraviolet-visible spectroscopy). In last, the

part (’Discussion’), is used to resume the overall scientific discoveries and how to improve them futurely using the

Lipidomic Profiler concept.



Part I

S TAT E O F T H E A R T



2

V E G E TA B L E O I L S

Vegetable oils are mostly constituted by fatty acids (FA) (higher than 90%) and they represent one of the main

sources of essential FA in human beings [20]. The term essential refers to the polyunsaturated FA’s (PUFA) that are

present in our diet yet they are not able to be synthesized in our body. PUFA are vital for the overall health being [21]

(e.g., diminishing risks of cardiovascular diseases [22, 23], maintaining health of ageing individuals [24]). In addition

to PUFA, vegetable oils are often characterized by the amount of saturated FA (SAFA), monounsaturated FA (MUFA),

and ‘trace’ compounds (e.g., tocopherol, phenolic compounds, chlorophyll) [25]. Vegetable oils of different vegetable

origin, mainly differ as consequence of their lipid profile (e.g., saturation levels, hydrocarbon chain properties).

In order to unveil the main causes of phenotypic variations (i.e., NMR-based traits) and where they may arise a

description of FA biophysical properties, how they are synthesized (i.e., metabolic pathway and regulator factors) and

their ’shelf-stability’ (i.e., factors in oil oxidation) are presented below. The scope includes the main synthetic pathway

(fatty acid synthase type II) for most of the vegetable oils in study. Classification of vegetable oils will be based on

their dominant FA such as SAFA (palm), MUFA (peanut, olive and avocado) and PUFA (sesame, sunflower, corn). The

lipid profile of the most used vegetable oils as inferred by the manufacturer displayed in Table 1.

5



2.1. Biophysical properties and effects of the lipid profile 6

Table 1: Quantitative traits (lipid profile) of the main vegetable oil samples (e.g., palm, peanut, olive,
avocado, sesame, sunflower and corn). Grey color represent the predominant specie of FA on this organism, while
’bracketed’ values, show the ratio of a FA versus the total lipid profile (FA) (all samples in the characterization study
are in Appendix, Table A1).

Oil type Palm Peanut Olive Avocado Sesame Sunflower Corn

Manufacturer brand Guineas™ Fula™ Herdade do Esporão™ Graduva™ Emile Noël™ Fula™ Fula™

Energy (kJ/kcal) 3700 / 900 3374 / 821 3375 / 821 3397 / 826 3700 / 900 3397 / 826 3397 / 826

Fatty acids (g/mL) 100 90.7 92 92 100 92 91

SAFA
48

(0.48)

16

(0.17)

13.2

(0.15)

11

(0.12)

16

(0.14)

13

(0.14)

10

(0.11)

MUFA
37

(0.37)

61

(0.66)

71.2

(0.79)

67

(0.73)

42

(0.42)

28

(0.31)

28

(0.30)

PUFA
15

(0.15)

15

(0.16)

6.3

(0.07)

14

(0.15)

42

(0.42)

50

(0.54)

53

(0.58)

Unsaturated
52

(0.52)

76

(0.83)

77.5

(0.85)

81

(0.88)

84

(0.84)

81

(0.89)

78

(0.85)

2.1 B i o p h y s i c a l p r o p e r t i e s a n d e f f e c t s o f t h e l i p i d p r o f i l e

The lipid profile traits of each vegetable oil type has an abundance of combinations due to the interconnected

biophysical, and geometrical differences of each FA (and other trace compounds). In a bottom-up type approach, the

main key points are the triacylglycerols species (e.g., glycerol bonded with three fatty acids), and FA variability (e.g.,

hydrocarbon chain length, number, position, and stereochemistry of cis-bonds (double bonds), see Table 2). This

accounts for the free FAs content (FFA, FA decoupled from glycerol), a valuable parameter for accessing vegetable oil

quality with known adverse health effects [26, 27]. However, their poor solubility in water in their undissociated form,

due to reactiveness to potassium or sodium salts (i.e., agents of neutralization) makes their removal slightly easier.

In oil-phase, FA do not form ideal fluids but small domains of hydrogen-bonded layers somewhat similar to the

molecular organization seen in their X-ray crystal structures [28, 29]. Generally, Van der Waals attractive forces are

predominant in well-packed hydrocarbon chains. The degree of presence of these forces is proportional to viscosity

(i.e., liquid friction). Consequently, an increase in average hydrocarbon chain length, leads to a increase of viscosity

(𝜂) and density of the oil [30]. In the other hand, disrupting the packing ‘efficiency’ (i.e., weakening of Van der Walls

forces) will disrupt in the viscosity.
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Thus, unsaturation level (i.e., number of cis-bonds), or small hydrocarbon chain length [30, 31], will both be

proportional to fluidity (1/𝜂) (see Figure 2). In a similar event, the decrease of the melting point, is somewhat

correlated with the presence of branching or unsaturation. In addition, the melting point of a FA depends on whether

the chain is even- or odd (generally higher melting point) numbered [32]. The effect of glycerol (in triacylglycerols), is

the addition of density and rigidity (i.e., packing) to the lipid profile. For example, triolein (glycerol + 3 oleic acids)

has higher viscosity than individual oleic acids [33].

Figure 2: Physical properties of individual fatty acids in the lipid profile. (A) normalized relative kinematic
viscosity from, orange [34, 35], blue [33] works; (B) the conceptual change in the viscosity of a lipid profile due to FAs
intrinsic variability (e.g., hydrocarbon chain length (nº), double bond effect). Note that further unsaturation (n) will
decrease the viscosity (orange arrow representing phenotypic variation to unsaturation). Maximum point, or highest
viscosity, is conferred to stearic acid (18:0).

Beside the physical effects on the lipid profile, individual or complexed FA differ in their biological impact.

Normally they are associated with storage and transport of energy, however they [32, 36] exhibit a hindered connection

with signaling pathways and consequently, with cell metabolism. Complexed FA (e.g., phospholipids, triacylglycerols)

are integral members of a cell system (e.g., cell lipid bilayer, storage of fat). Wherein, their effect is (generally) only

adverse in surplus, for example, in hypertriglyceridaemia enhancing risk of pancreatitis [37].
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In contrast, individual FA (in this case the FFA content), and especially long-chain SAFA, has been linked with

unhealthy effects such as the mediation of insulin resistance, impaired glucose tolerance, and 𝛽-cell toxicity

[26, 38, 39]. This worsens with trans isomers displaying high risks of ischemic heart disease [40], inhibition of the

enzymatic desaturation of PUFA species and increasing low-density lipoproteins plasma concentration [41, 42]. In

counterpart from SAFA, PUFA are vital (some essential) in reducing the risk of cardiovascular diseases [22, 23], and

on diminishing ageing in individuals (𝜔-3,6 PUFAs) [24]. However, one of the concerns with PUFA is their ease of

oxidation (due to high level of unsaturation). This facilitates the peroxidation of low-density lipoproteins that might be

endocytosed by macrophages and initiate the development of atherosclerosis [43, 44]. Further adverse physiological

or health effects are directly correlated with FA oxidation pathways products (i.e., effect of cooking, process of

extraction).

Table 2: Fatty acid variability in vegetable oils: individual FA may be characterized by their unsaturation levels,
lipid number (e.g., C:D, C being the number of carbons in the chain, D the number of double bonds), or (specially
unsaturated FA) by the omega denotation (𝜔-𝑥, double bond located on the 𝑥𝑡ℎ carbon–carbon bond, starting from
the methyl end). The table presents the name of some of the most commons FA species in vegetable oils. The
cis-bond position starts counting from the carboxylic group.

FA variability Common name Lipid number cis-bond position

SAFA

lauric acid 12:0 -

myristic acid 14:0 -

palmitic acid 16:0 -

stearic acid 18:0 -

arachidic acid 20:0 -

MUFA

palmitoleic acid 16:1 𝜔-7 9

oleic acid 18:1 𝜔-9 9

gondoic acid 20:1 𝜔-9 11

erucic acid 22:1 𝜔-9 13

PUFA

linoleic acid 18:2 𝜔-6 9,12

eicosadienoic acid 20:2 𝜔-6 11,14

linolenic acid 18:3 𝜔-3 9,12,15

𝛼-linolenic acid 20:3 𝜔-6 8,11,14
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2.2 Fa t t y a c i d s me t a b o l i c p a t hway s

A pathway is a series of biochemical interactions via specific enzymes to produce a certain type of metabolite.

In prokaryotic, plants and algae plastid, the synthases (FAS) is denominated as type II and consists of a multi-protein

complex (Figure 3) [45]. On the other hand, FAS type I is found on the cytosol of eukaryotes being based on a large

single multifunctional protein capable of catalyzing every step of the biosynthesis (these FAS’s may work together)

[46]. Focusing on FAS type II, our attention goes towards the knowledge of the predominant enzymes in the final

percentage of unsaturated (e.g., MUFA and PUFA) and saturated FA (e.g., SAFA), in a lipid profile. In the main

vegetable oil samples (Table 1), a variable percentage of FA are present. The major percentage of PUFA is found in

corn oil (58%), MUFA in olive oil (79%) and SAFA in palm oil (48%). This approach is essential in order to constrain

the length of the phenotype dimensions (protein-genes in focus).

It becomes relevant when defining a phenotype-genotype mapping. However, biological and environmental factors

(e.g., up- and down-regulations of proteins) need to be further elucidated to correctly understand the key-changers in

the final FA pool within a phenotypic change.

The first step of de novo FA biosynthesis starts with the same substrate, pyruvate from three different routes

[47]. This compound is then converted to acetyl-CoA by pyruvate dehydrogenase (PD) and, from here, two different

routes can be taken. In first route, acetyl-CoA carboxylase (ACC) catalyzes the irreversible carboxylation to form

malonyl-CoA [48, 49]. Then malonyl-CoA:ACP transacylase (MCAT) transfer the malonyl group from previous molecule

to holo-ACP (acyl carrier protein, a complete protein constituted only by an amino acid chain plus a prosthetic group)

and malonyl-ACP is obtained [50]. The second route (coloured in black in Figure 3) consist in an association of

acetyl-CoA and malonyl-ACP forming acetoacetyl-ACP, catalysed by KAS III [48]. It is important to refer that route

two is dependent on the malonyl-ACP produced in route one. Acetoacetyl-ACP is the first element of the elongation

cycle (i.e., addition of carbons to the chain) and is reduced to 𝛽-hydroxyacyl derivate by 𝛽-ketoacyl-ACP reductase

(KAR) in NADH presence [48]. Afterwards, the final compound is dehydrated by 𝛽-hydroxyacyl-ACP dehydratase (DH)

and reduced by enoyl-ACP reductase (ENR), through NADPH oxidation [51]. These two steps result in a four-carbon

(butyryl) acyl-ACP [48]. This substrate is condensated with malonyl-ACP by KAS I and a new chain elongation cycle

begin. The principal difference between KAS I and KAS III is that, the protein uses acetyl-CoA as substrate to react with

malonyl-ACP, instead of using acyl-ACPs (e.g., butyryl). Later on (after five elongations) the final product (palmitoyl-

ACP) is directly formed, by having KAS I a determinant impact in the condensation necessary to produce acyl-chains

[48]. Palmitic acid is one of the most common SAFA, palmitoyl-ACP (C16) is one form of this acid found in cells

[52]. This compound can be further elongated in a cycle, and a last condensation catalyzed by KAS II, produces

stearoyl-ACP (C18). KAS II can use palmitoyl-ACP for condensation with malonyl-ACP [51].
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Similar to palmitic acid, stearic acid (e.g., stearoyl-ACP) is one of most common long chain saturated FA founded in

vegetable cells [53]. At this point, activity of desaturases introduce, if needed, double bonds into the FA (forming

unsaturated FA). In plants, desaturases work via an aerobic mechanism giving rise to two water molecules (oxygen

being reduced by four hydrogen) [54]. More concretely, stearoyl-ACP desaturase (SAD) in plastid stroma is

responsible for the oleaoyl-ACP formation [55]. Further reactions occur by action of FA desaturase (FAD2) present in

the endoplasmic reticulum [56]. For seed oils, FAD 2 is the main pathway to form PUFA’s outside the plastid [54].

PUFAs, especially linoleic acid, are the most abundant FA in plants [51].
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Figure 3: Fatty acid biosynthesis pathway - Type 2. Detailed description in the chapter ’Fatty acids metabolic
pathways’.
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2.3 Me t a b o l i c p a t hway r e g u l a t o r y f a c t o r s

Although the crucial precursor for the de novo FA biosynthesis is acetyl-CoA, its synthesis is not directly

correlated with changes in concentrations of FA. It becomes relevant for the formation of triacylglycerols (specificity

of acyltransferases) and synthesis of malonyl-CoA [48, 57]. Also, proteins related with the elongation process,

directly correlated with SAFA concentration and sixteen/eighteen-hydrocarbon chain length (C16/C18) ratio of FA,

are totally sequenced but without high liability in these plants. Additionally, genome-wide surveys [58] and metabolic

pathways were studied for the proper choice of predominant FA-regulatory networks. Within this, proteins such as

SAD, ACC, FAD2 and KAS family, are distinctively described as potential main regulators wherein, some are

described as fundamental to the up or down-regulation in the biosynthesis of FA [59].

ACC is a multifunctional biotin-dependent enzyme that catalyzes and regulates the obligatory the first step in

FA biosynthesis in both bacteria and plants [60, 61]. It is the only known plant FA metabolism protein encoded by a

plastid genome. In plants, the majority binding ion for ACC is manganese, but, in the other organisms this protein

shows zinc as cofactor [57, 62].

Next in the pathway, the protein family KAS comes into play. It can be subdivided into three proteins with

different functions (KAS I, KAS II, KAS III). Firstly appears KAS III, that catalyzes the formation of acetoacetyl-ACP.

Previous articles suggest that this protein may have a rate-limiting role in the pool of FA [63, 64]. When KAS III is

overexpressed it shows an increase in C16 chain FA’s in spinach seeds [63], and in PUFA with the consequence of

lowering the amount of MUFA in B. napus [64]. Moving onto the KAS I, not much information about his effects when

up or down regulated exists. However, when this protein is mutated (i.e., presents deficiency) a significant change

in the polar FA composition appears (due to agglomeration, and posterior degradation, to the chloroplast) [65]. This

protein presents sensibility to cerulenin. Unlike the KAS III, butyrate is a good substrate for KAS I [66]. Lastly, KAS II

is used for chain lengthening (final condensation) and controls the final C16/C18 ratio in a FA pool. Is distinguished

from KAS I due to its sensitivity to arsenite [51].

Steps ahead in the FA metabolism we find SAD, a protein responsible for the formation of the first unsaturarion

(i.e., SAFA to MUFA) in FAs metabolism [48]. Its down-regulation enhanced stearic acid content by 40% in B. napus

(due to the lack of conversion of saturated to unsaturated FA) [58]. Finally, FAD2 is responsible for the addition of

more cis bonds in FA (MUFA to PUFA). This protein is regulated by temperature, light, environmental and mechanical

stresses. When temperature increase to 35∘C the expression of gene decrease. FAD2 genes indicate a light-dependent

transcriptional regulation, and PUFAs are signaling precursors molecules for the defense system and wound-healing

[67].
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Two conformations have been described, FAD2-1 and FAD2-2. FAD2-1 is found in a young seed, is involved in

desaturation and, FA storage. One the other side, FAD2-2 proteins are present at the mesocarp and mature seeds

being mostly responsible for reserve FA desaturation [48].

2.4 Fa c t o r s i n o i l o x i d a t i o n

Vegetable oils tend to present higher unsaturation levels than animal fats. Although unsaturated FA enhance

a healthy dietary, they are more susceptible to spontaneous oxidation (i.e., deterioration) than their counterparts (i.e.,

SAFA), thereby, increasing the degree of formation of primary (e.g., hydroperoxides) and secondary oxidation (e.g.,

low molecular weight volatile compounds) products. For example, MUFA rich oils (e.g., olive) have greater oxidative

stability than PUFA rich oils (e.g., corn) [68]. Besides oxidation, oils are deteriorated by hydrolysis and polymerization

[69]. Hydrolysis increases the amount of FFAs, monoacylglycerols and diacylglycerols (i.e., by breaking FA bond to

the glycerol). Polymerization occurs at higher temperatures (e.g., cooking) creating dimers and polymers.

Oxidation stability is the resistance to oxidation during processing and storage [70]. It can be expressed as

the period of time necessary to attain a critical point of oxidation, establishing one important indicator for oil quality

and shelf-life. Oil oxidizes via enzymatic, autoxidation or photosynthetic pathways (enhanced in the presence of metal

ions and energy from heat/light) [70]. FA oxidation products from non-enzymatic sources may pose as health threat,

reportedly being associated with an increasing risk of chronic diseases [71]. Non-enzymatic pathways have in common

their trigger, oxygen. Both atmospheric triplet oxygen (3O2) and singlet oxygen (
1O2) react with vegetable oils, starting

autoxidation and photosensitized oxidation pathways, respectively (see Box 1, below). Note that autoxidation has a

higher rate in the final products. Although the saturation level plays an major role in oxidation stability, vegetable oil

processing, concentration of oxygen and other trace compounds of vegetable oils (e.g., antioxidants, chlorophyll’s),

exposure to energy of light and temperature, do play a minor role in the final stability.

In addition, common oil quality is monitored and compared with parameters such as: color and odor, FFA

content (i.e., acidity or acid value), polar compounds (polymerization), peroxide (primary oxidation), p-anisidine

(secondary oxidation) and iodine (unsaturation level) values. During this work, comparison in the detection

classification of NMR-based traits with the current gold-standard techniques (e.g., NIR and UV-Vis) will be presented.
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Box 1. Autoxidation and Photosensitized oxidation mechanisms.

Autoxidation. Also known as the free radical chain reaction, it is a three-phased event: a initiation,

propagation and termination steps. (Initiation) FA or acylglycerols need to be in radical forms (i.e., by hydrogen

removal) [70] due to the effect metal catalysis, ultraviolet, visible light, or processing effects. Double bonds

are the most energetically favoured regions where it can happen. For example, to remove an hydrogen from

C11 vs C8 and C14 is about 209 kj/mol vs 314 kj/mol, respectively. While the homolytic dissociation energy

between hydrogen and C17 or C18 is about 418 kj/mol [72]. After removal, the double bond adjacent to

the carbon radical shifts to a more stable next carbon and from the cis to the trans form. (Propagation

and termination) The remaining FA alkyl radical easily reacts with 3O2, resulting in FA peroxide radicals.

This reaction occurs quickly at normal pressure, hence increasing the concentration of FA peroxide radicals

over FA alkyl radicals. Continuously, FA peroxide radicals remove hydrogen from other FA alkyls to form

hydroperoxides (i.e., propagation), completing the primary oxidation products. Finally radicals react with each

other and nonradical species are produced (i.e., termination), to end the cycle. Additionally, the degree of

formation of primary oxidation products is only dependent on the temperature and oxygen availability.

Photosensitized oxidation. Oil oxidation is accelerated by light in the presence of sensitizers such

chlorophylls. Excited sensitizers (due to absorption of light energy) react with 3O2 and produce superoxide

anion. Superoxide produces hydrogen peroxide by spontaneous dismutation (redox reaction). Then, the

reaction of hydrogen peroxide with superoxides results in singlet oxygen formation (1O2), which either reacts

chemically or by transferring its energy to them. Due to its higher energy, it directly reacts with high-electron

density regions (i.e., double bonds) without the formation of alkyl radicals, and forms hydroperoxides in

these regions. When hydroperoxide is formed, cis-bond shift and trans FA occur, producing both conjugated

and nonconjugated hydroperoxides. Production of nonconjugated hydroperoxides is not observed in the

autoxidation.



3

NM R - B A S E D T H E O R Y

Nuclear magnetic resonance (NMR) is a physical phenomenon based on the intrinsic properties of a nuclei.

However, these intrinsic magnetic properties do not appear when the nuclei is spinless (i.e., zero nuclear spin, 𝐼 = 0),

therefore, NMR silent. ’By a quirk of fate’ this includes 12C and 16O, some of the most common and abundant isotopes

of organic substances. For all the other atoms, with one-half spins or quadrupolar nuclei (i.e., 𝐼 > 1/2), detection is

possible. In this thesis the focus is towards 1𝐻 protons (𝐼 = 1/2) which, unlike other nuclei, presents an spherical

shape with convenient magnetic properties [73].

A simple NMR measure starts by applying a magnetic field on a sample. Because nuclei spins behave like a

compass needle, they will rotate and align with this external magnetic field in the same or in the opposite direction

(minimizing the magnetic energy). At this stage, the energy levels and their population are no longer equal due

to nuclear Zeeman splitting, wherein, a nuclear state is (2𝐼 + 1)-fold degenerated. Note that this splitting is far

smaller than the thermal energy (i.e., ground/excited nuclear states) [73]. Afterwards, a second magnetic field, radio

frequency pulse (tuned to the precessional frequency of target nuclei, Larmor frequency, 𝜔0) allows the nuclei to

absorb and then emit electromagnetic energy (polarization of nuclei spins) [74]. The magnetic field experienced by

each nuclei differs slightly from the applied field since it’s Larmor frequency is affected by the chemical environment

(i.e., electron shielding).

In frequency-domain NMR (i.e., high-field NMR or NMR spectroscopy), the spectrum is obtained as a function

of the chemical shift (ppm) which is independent of specific experimental conditions yet dependent on the resonant

and applied frequency. Therefore, the NMR signal is a peak with a defined amplitude and placed in a characteristic

region of the spectrum. Wherein, the chemical structure of a molecule is elucidated.

On other hand, time-domain NMR (i.e., low-field NMR or relaxometry) lacks on molecular ’resolution’. Although

this may appear as a problem in certain types of analyses, time-domain NMR detects generalized information about

the mobility of the nuclei (e.g., longitudinal and transversal relaxation times) in a given environment (e.g., vegetable

oils). The produced molecular signature is highly unique and rapidly obtained (in minutes) compared to high-field

NMR which is much more expensive (i.e., magnetic fields required are much stronger) and time-consuming [15].

15
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The acquisition of these relaxations times is mostly done by data manipulation (i.e., fitting data to a function).

Relaxometry studies often process data by single-exponential fittings. However, bi-exponential or even inverse

Laplace transformation algorithms may be applied to dimensionally up-scale the analysis.

3.1 Re l a x a t i o n me ch a n i sms a n d d e t e c t i o n o f NMR - b a s e d t r a i t s

In NMR, a signal is observed when the sample of interest is exposed to a magnetic field and the resonance

condition is satisfied:

𝜔0 = 𝛾𝐵0 (1)

where 𝛾 is the gyromagnetic ratio, and 𝐵0 the external applied magnetic field. The detected signal, free induction

decay (FID) is measured as a decay in the time domain, which is then mathematically operated with n-exponential

fittings to simplify the information obtained, Laplace transforms to unveil the relaxometry spectra, or with Fourier

transforms to move back to the frequency-domain.

The interaction between the applied field, matter, and the radio frequency pulse are exploited through a

sequence of pulses in order to maximize the signal-to-noise ratio of FID. The ensemble spin network (after applying

𝐵0) has an average magnetization vector (i.e., bulk magnetization) due to stem degeneracy of the energy levels

through Nuclear Zeeman splitting. In 1𝐻, this leads to two observable energy levels (𝐼 = 1/2), wherein, the

probability of spin alignment is unequal but occupation is favourable for the lower energy state (as Boltzman

equilibrium describes). The corresponding difference in the occupation of the two energy levels forms a finite state

z-magnetization where the nuclei precess around this axis. Note that the equilibrium value and axis are arbitrarily

chosen in the z-axis, thus precessing is oscillating in the x-y plane. However, to be rendered by NMR a transverse

radio frequency pulse (i.e., tilting from equilibrium state) is irradiated in repeated pulse patterns based on the

phenomena in study. The resonant phenomenon is therefore, caused by the external 𝐵0 and the frequency

matching irradiation leads to the rotation of the bulk magnetization by an angle (𝛽), see Figure 4. Hence, the

information retained from both spectroscopic or/and relaxometry studies is remarkably rich as the nucleus can be

effectively used as extremely sensitive probes to their surrounding environment (e.g., detailing structural and

dynamical information dependent on spin).

The bulk magnetization vectors in NMR can be described using the Bloch equations with the relaxation

phenomenon (i.e., the process that drives the spins back to equilibrium).
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There are two kinds of relaxation processes in low-field NMR: longitudinal (spin-lattice, T1), occurring in the z-axis,

and transverse (spin-spin, T2) relaxation times occurring in the x-y plane. Both measure how much time (average)

the nuclei takes to return to the equilibrium state (after irradiation). Developing Bloch equations with the relaxation

phenomena terms (i.e., exponential decay) and before any irradiation, gives the following relationship:

𝑀𝑥(𝑡) = 𝑀⟂ cos(𝜔0𝑡 + 𝜙) exp (− 𝑡
𝑇2

) (2)

𝑀𝑦(𝑡) = 𝑀⟂ sin(𝜔0𝑡 + 𝜙) exp (− 𝑡
𝑇2

) (3)

𝑀𝑧(𝑡) = 𝑀𝑒𝑞 + (𝑀∥ − 𝑀𝑒𝑞) exp (− 𝑡
𝑇1

) (4)

where, 𝑀𝑖 is the magnetization component over the i-axis, 𝑀∥ or 𝑀⟂ are representative of the applied magnetization

provided by 𝐵0 under a relative direction, 𝜙 is the phase term, 𝑀𝑒𝑞 is the mean magnetization at equilibrium and t

time. From an initial interpretation of these equations, is clear that transverse relaxation will be modulated (i.e., cosine

under x, sine under y), oscillating at a characteristic Larmor frequency while decaying over the time. Consequently,

this becomes the voltage oscillation detected (exponentially fitted) as the FID in a standard NMR experiment.

Figure 4: Interaction between external magnetic field, irradiation and matter. (A) Average bulk
magnetization vector after applying 𝐵0, thus representing the finite z-magnetization in the equilibrium state; (B) Bulk
magnetization is flipped (𝛽 = 𝜋/2) with irradiation (i.e., radio frequency pulse). At the instant when the pulse is
completed, the bulk magnetization vectors are: 𝑀𝑧 = 0 and 𝑀𝑦 = 𝑀𝑒𝑞. After 𝜏 time, the 𝑀𝑧 and 𝑀𝑥𝑦, which,
respectively, are parallel and perpendicular to the field 𝐵0, progressively return towards their equilibrium states, (A)
configuration: 𝑀𝑥𝑦 = 0, and 𝑀𝑧 = 𝑀𝑒𝑞.

Therefore, the study of the relaxation phenomena in NMR (i.e., low-field NMR or relaxometry) contemplates the

behaviour of the T1 and T2 constants, which we denominate of NMR-based traits.
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3.1.1 Longitudinal relaxation - Inversion Recovery

T1 (i.e., longitudinal or spin-lattice relaxation) defines the process that describes how the spins lose their intrinsic

energy (i.e., absorbed by the lattice) and restores the Boltzmann and z-magnetization equilibrium (after pulse is

applied). Two routinely employed pulse sequences for estimating the behaviour of T1 are: Inversion Recovery (IR) and

Saturation Recovery. Both observe how the system evolves under a perturbation offset of the z-magnetization. The IR

pulse sequence (details in Figure 5) was the standard procedure in this work.

Figure 5: Inversion recovery pulse sequence. Detailed pulse sequence, FID signal, and inversion recovery
fitting curve (left). (A) Pulse initializes by flipping (𝛽 = 𝜋) the bulk magnetization (from 𝑀𝑒𝑞 to −𝑀𝑒𝑞), which is
allowed to evolve during 𝜏 time. (B) A second pulse (𝛽 = 𝜋/2) that produces a decaying oscillating signal from
the relaxation phenomenon. (C) System return to equilibrium z-magnetization. Varying the 𝜏, with estimation of how
the magnetization recovers based within a time interval, ergo estimating the exponential behaved T1. The standard
protocol is to wait 5T1, since after oscillation decay the 𝑀𝑧 component will continue to evolve (due to 𝑇1»𝑇2). Orange
(𝑀𝑧) and blue (𝑀𝑥𝑦) represent the bulk magnetization components.
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3.1.2 Transverse relaxation - CPMG

The decay of the 𝑀𝑥𝑦 components to equilibrium is denominated as T2 (transverse or spin-spin relaxation). It is

the responsible for modulating the FID signal and may be measured by the Carr Purcell Meiboom and Gill (CPMG)

pulse sequence. In summary, the pulse was originated from two works, Carr-Purcel [75] and Meiboom-Gil [76], which

improved the pulse sequence by introducing a phase shift between the two first pulses. For estimation of the T2

relaxation, its needed the acquisition of the echoes (e.g., FID repetitions) intensity points. In the expected decay signal

(see Figure 6), and after the refocusing pulse, we observe the subsequent coherence leading to the formation of an

echo.

Figure 6: CPMG pulse sequence. Detailed pulse sequence, FID signal, and CPMG fitting curve (left). (A) A pulse
(𝛽 = 𝜋/2) with a FID decay for 𝜏 times. (B) It is followed by a ’train’ of 𝛽 = 𝜋 pulses, which recovers magnetization
up to the amount lost in the relaxation phenomena. Nonetheless, the spins of each region still retain precession and
magnetization. Refocusing pulse is needed to reverse nuclei relative motion in a way that, and acummulation of phase
differences, leads to a coherent state after 𝜏 time. Orange (𝑀𝑧) and blue (𝑀𝑥𝑦) represent the bulk magnetization
components.



3.2. Time-domain NMR phenotypic mechanisms in lipid profiles 20

3.2 T ime - d oma i n NMR ph e n o t y p i c me ch a n i sms i n l i p i d p r o f i l e s

As above-mentioned, lipid profiles display a remarkable variability in hydrocarbon chain composition,

particularly in chain length and in the number, position, and stereochemistry (i.e., trans or cis conformations) of

double bonds. These differences directly impact the geometrical properties and consequent molecular packing (i.e.,

Van der Walls interactions) of FA. [28, 31]. In overview, it’s described how unsaturation level (i.e., level of cis-bonds),

and hydrocarbon chain length vary at low-field NMR lens, and further weaken these interactions creating more

degrees of freedom for molecular movements in the liquid (i.e., less friction, more mobility).

Due to the dense network of 1/2 spins in the FA hydrocarbon, the dominant relaxation mechanism is through

dipole−dipole (D-D) interactions [73]; it may be written as the following relationships [77]:

1
𝑇1

𝐷−𝐷
= 2𝐶[ ( 𝜏𝑐

1 + 𝜔2𝜏2𝑐
) + ( 4𝜏𝑐

1 + 4𝜔2𝜏2𝑐
) ] (5)

1
𝑇2

𝐷−𝐷
= 𝐶[3𝜏𝑐 + ( 2𝜏𝑐

1 + 𝜔2𝜏2𝑐
) + ( 2𝜏𝑐

1 + 4𝜔2𝜏2𝑐
) ] (6)

where 𝐶 is a constant related to the rigid lattice second moment [78], 𝜏𝑐 is the rotational correlation time of a

molecule in a environment, and 𝜔 the resonant frequency (𝜔/2𝜋 = 𝜈0). The constant 𝐶 is unique for each FA

and is acquired using the inter proton distances and angles as the main source of information [79]. It is important

to mention that if protons are free to rotate the value of the constant will be small, or, if the intrinsic lattice (i.e.,

hydrocarbon chain) is mainly rigid, C will be larger. Studies show that with an increasing length hydrocarbon chain the

lattice rigidity increases up to 18 carbons, decreasing afterwards [80]. For example, for palmitic acid (16:0) the value

of C is 2.0 × 1010𝑠2 [81], but for stearic acid its slightly higher (18:0) and then it slightly decreases at 20 carbons

[79, 82] (note that: 𝐶 ∝ 1/T𝑖).

Adding to this, 𝜏𝑐 may be generalized using the Stokes−Einstein−Debye relationship for rotational diffusion (𝐷𝑟):

𝐷𝑟 = 1
𝜏𝑖𝑐

= 𝑘𝐵𝑇
𝜂𝑉𝑓𝑖

(7)

in which, 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the absolute temperature, 𝑉 the molecular volume, 𝜂 is the absolute

viscosity (i.e., fluid’s internal flow resistance or friction), and 𝑓𝑖 is the dimensionless constant related to the geometrical

properties of the molecule.
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Robinson et al. [31] discriminate that, in the extreme case where 𝑇2 = 𝑇1 and (𝜔𝜏𝑐)2 >> 1, considering the

equations 6 and 7, leads to the following proportionality:

𝑇𝑖 ∝ 1/𝜏𝑐 ∝ 𝐷𝑟 ∝ 1/𝜂 (8)

wherein, we hypothesize that our NMR-based traits (e.g., T1 and T2) should exhibit a close to linear relationship with

fluidity (e.g., 1/𝜂). Moreover, and since vegetable oils are a mixture of triacylglycerols, in the narrow case where

glycerol impact on the viscosity and individual FA molecular dynamics is ’constant’, the final sample viscosity may be

segmented into the summation of 𝑛 viscosities mixtures from 𝑛-FA’s types [33].

Interestingly, SAFA’s kinematic viscosity, 𝜈, (𝜂/𝜌, where 𝜌 is density) and rigid lattice second moment display

the same pattern (see Figure 2); 𝜌 pattern is inverted [83]. An increasing length of the hydrocarbon chain (until

18 carbons) is proportional to a rise in viscosity, decreasing afterwards (number of carbons > 18). The addition, of

unsaturation or branching, will lead to a disruption of the molecular packing of FA, thus to a decrease in viscosity (see

Section 2.1).

Figure 7: Vegetable oil relaxometry spectra as resolved by inverse Laplace transform. The main vegetable
oil samples (see Table 1) evaluated under the T2 relaxation time spectra. Raw data was fitted with a inverse Laplace
transform.
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In time-domain NMR, working under just one- or two-dimensional information may lead to equal phenotypes

with different lipid profiles (i.e., vegetable oils viscosity phenotypic landscape is narrower than for individual FAs).

Therefore, the generalized mobility information from nuclei (e.g., T1, T2 relaxation times and A-ratio (T1/T2), can

be up-scaled by adding bi-exponential decay expression (e.g., T𝑥𝑎,T𝑥𝑏, where x is either longitudinal or transversal

relaxation) or even inverse Laplace transformation algorithms (e.g., peak intensity and position). Further prediction of

the lipid landscape is proven to improve based on the dimensionality of NMR-based traits [16].

Reports employing low-field NMR-based traits for adulteration detection between vegetable oils [8, 17, 18] use

time-domain traits, or personalized fingerprints varying with the pulse sequence parameters. In order to overcome this

reductionist approach, spectral relaxometry (i.e., data fitted with inverse Laplace transformations) is already reported

in assessing FA variability [31] (e.g., double bond position and stereochemistry) and the phenotypic impact. On the

region of milliseconds, in pure FA samples, 2 or 3 peaks are resolved based on the clustering of hydrogen atoms in the

FA molecule. Each peak varies (i.e., horizontal shift) proportionally with the lipid profile viscosity, having 2 domains

displayed for SAFAs, or MUFAs when the double bond position is close to the carboxyl atoms, otherwise displaying

three. Double bond trans conformation, comparatively with cis, displayed much faster relaxation mechanisms (i.e.,

higher viscosity, less mobility). For illustrative purposes, and seeing vegetable oils as a whole mixture of different

FA, three peaks are well resolved using our time-domain NMR equipment (see Figure 7). This is in agreement with

Robinson et al. [31] work from our NMR.
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M ACH I N E L E A R N I N G A L G O R I T H M S

The effectiveness of a ML augmented-work is directly linked to the nature, source and characteristics of the

data used. However, we often overlook how the type (mostly) and the quality of the data influences the final results.

Most of the time, ML studies follow a bottom-top approach, where, some criticism to the source of the data is frequently

forgot. Not only should we have a sceptical approach from the start, but also adapt our ML algorithms to the type

of data (increase the likelihood to extract insights or useful knowledge from the analysis). During this thesis, ML

models will be evaluated using the Area Under the curve of the Receiver Operating Characteristics (AUC), a valuable

metric in checking any classification model’s performance. Wherein, the Receiver Operating Characteristics (ROC) is

a graphical plot of true positive rate (i.e., sensitivity) versus the false positive rate (i.e., specificity) of the classifications.

Based on this, it is important to know and discuss the various types of data that currently exist [84, 85]:

unstructured can be understood as the data that is randomly distributed or with no predefined format or organization.

This type of information is much more harder to capture, process and analyze comparatively to the others due to

the difficulty in data segmentation; structured has a data model which follows a standard order with most of the

information labeled, being highly organized and easily accessed. These factors enhance processing and analysis

efficiency/quickness [84]; semi-structured fits in structured data but does not conform with the formal structure of

data models associated with data tables (e.g., relational databases). However, contain tags or other markers for

separate semantic elements and inflict hierarchies of records and fields within the data [84]; metadata is a ”data

about data” and describes the relevant information being very useful for users. The main difference between ”data ”

and ”metadata” is that data can simply classify, measure, or even document something relative to an organization’s

data properties [85].

While the term taxonomy is often used in biology, it also may be applied for ML algorithms based on the desired

outcome. We can divide them in four distinctive groups: supervised learning, unsupervised learning, semi-supervised

and reinforcement learning [84, 86]. A detailed explanation of the supervised and unsupervised learnings (used in

this work), the associated models/algorithms and applications is continued below.

23
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4.1 S u p e r v i s e d l e a r n i n g

May be defined as a learning with a task-driven approach [84]. Here the output is directly connected to the

input information with a mapping function constructed upon structured data. Thus, this data consists on a set of

training examples. A supervised algorithm is often used in situations where we pretend to learn some kind of pattern

from the training data set [87]. This teaching can provide predictions/regressions or classifications from test data

sets [86].

To thoroughly understand this, three models, decision trees, Naïve Bayes classifier, and support vector

machines will be presented:

• Decision trees: this algorithm displays an output, based on conditional statements, in a flowchart like model.

Every node represents an attribute that needs to be classified, where each branch represents a value that the

node can take. Applications of this type of classifier are common into random forest algorithms [88]. In

this method, decision trees are ensembled in parallel (i.e., forming sub-trees), and uses the averaging voting

from each tree for the final output. Thus minimizing the problem of over-fitting but increasing the prediction

accuracy [89].

• Naïve Bayes’ classifier: as explicit in the name, this model is based on the bayes theorem. It relies on

two assumptions: it assumes that the output is conditionally independent given the class; it posits that latent

or hidden attributes influence the prediction [90, 91]. Naïve Bayes is mostly applied to group and classify

information. Comparatively to others more sophisticated algorithms, it needs lower amount of data to train

effectively. Some variants to this classifier are the Gaussian and Bernoulli statistical distributions or even non

parametric for calibration of data [84].

• Support vector machines: is a linear classification model that separates classes with the largest gaps

(denominated as optimal margin) between a support vector (i.e., median border line between aggregates)

[92]. However, this model can perform non-linear classifications using the kernel trick (mapping inputs into

higher dimensions) and post-creation of hyperplanes. The margins between data are drawn to maximize

distances, thus minimizing errors in classifications [91].
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4.2 Un s u p e r v i s e d l e a r n i n g

As the name unsupervised suggest, this method of learning does not require a specific training set. These

algorithms are specialized in dealing with unstructured data with the objective of exploring meaningful trends and

correlations, being defined as an data-driven process [84, 93]. This is achieved because algorithms are left on their

own devises to discover patterns with taskings such as: clustering, feature learning, dimensionality reduction and

anomaly detectors [94].

Some well known groups of algorithms, based on their function, for unsupervised learning are described below:

• Clustering: the main function of a clustering method is to group and identify data. Having 𝑥 number of

defined clusters provides a collection of objects with similarity between each other. Examples of algorithms for

this task are: K-means [95], Mean-shift [96] and Density-based spatial clustering of applications with noise

(DBSCAN) [97]. They differ from each other on the cluster method. For example, K-means uses a partitioning

method where the centroids of a group of data are calculated to be as far away from each other. This same

method is applied on Mean-shift analysis, however, DBSCAN utilizes an density-based method where a cluster

is defined as a contiguous region with high point density [84]. Points not belonging to this high density region

are considered as noise. Consequently, partitioning methods are less sensible to outliers (affecting directly

the median) comparatively to density approach’s.

• Dimensionality reduction: for better interpretation of high-dimensional data, like which feature has a

highest impact on the final results, two type of reduction algorithms come up: feature extraction (creation of

new subsets) and feature selection (keeps the initial set, choosing the most relevant features). An example of

feature extraction algorithm is the Principal component analysis (PCA). On the other hand, methods such as

Analysis of variance (ANOVA), t-distributed stochastic neighbor embedding (T-SNE) and Chi-squared tests are

samples of feature selection algorithms [84].
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M E T H O D O LO G Y

5.1 Fr amewo r k o f t h e a n a l y s e s

As aforesaid, vegetable oils lipid profiles variability induce detectable changes in the relaxation mechanisms

(T1 relaxation, T2 relaxation). The concept of a Lipidomic Profiler, time-domain NMR-phenotypic traits augmented

with machine learning models (see Figure 1), was tested in the characterization of an lipid profile of several vegetable

oils (i.e., amount of saturated, monounsaturated and polyunsaturated FA), and classification of olive oils by their

grading and region of origin. For both analyses, the NMR-based traits measured from vegetable oils were saved in a

database format. According with the experiment, data was processed (e.g., addition of nutritional information) and

trained by ML models. Due to this tools, we traced down the dominant NMR-phenotypic variation mechanisms in both

characterization (interspecies) and classification (intraspecies) of oils. Further, and with the aid of machine learning,

the sensitivity and specificity of our models were compared with current gold-standards (e.g., ultraviolet-visible (UV-Vis),

near-infrared spectroscopy (NIRS) for oil quality.

In the characterization of vegetable oils, we trained the models to predict and map changes in the NMR-

based traits (T2, T1) in various lipid profiles (e.g., palm, olive, avocado, peanut, sesame, corn, grapeseed, sunflower,

linseed). Nutritional information (i.e., lipid profile) as inferred by manufacturer and average measurements displayed

in Appendix, Table A1-A2, respectively. With it, database was created in pair with combinations of NMR-based traits.

Wherein, we tested the precision and accuracy of single-phase systems (T1, T2, A-ratio), and/or, biphasic systems

(addition of bi-exponential fittings, T𝑥𝑎, T𝑥𝑏). Then, the prediction ability of NMR-based traits was studied to predict

monounsatured (MUFA) and polyunsaturated FA (PUFA) content (i.e., characterization).

For the classification of the grading and region of origin of olive oils (OO), measures were performed blindly

(without manufacturer (e.g., region of origin or type disclosed). Our sample pool was composed of Portugal, Spain, Italy,

Greece based OO, with different gradings (e.g., extra-virgin OO (EVOO), virgin OO (VOO), and refined OO). Manufacturer

information and averaged measurements are in Appendix, Table A3-A4, respectively. Augmented with the ML models,

we traced down the effect of free FA (i.e., acid value) in the lipid profile, being a key-changer in NMR-phenotypic

deviation.

27
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Specifically in identifying the region of origin, we employed, using AUC comparison matrix, a phylogenic tree to ensure

cluster proximity with geographical distance. All of this work was replicated and compared with the gold-standards

techniques (e.g., UV-VIS, NIRS).

5.2 Me t h o d s

Details and vegetable oils sample preparation. The characterization of the lipid profile (i.e., amount of MUFA

and PUFAs) of vegetable oils (interspecies), and classification of olive oil by their grading and region of origin

(intraspecies) had samples bought locally in Braga, Portugal or purchased online (e.g., international brands). The

commercial (i.e., manufacturer) brands names for of all vegetable oil are disclosed in Appendix, Table A1, and

specifically for olive oils, in Appendix, Table A3. No sample processing was made before the NMR measurements,

and all other measurements.

UV-VIS and NIR measurements and detection. UV-Vis measurements were performed in a SHIMADZU UV-2550

spectrophotometer (Kyoto, Kyoto, Japan), while for NIR measurements a PerkinElmer LAMBDA 950 instrument was

used. All samples were measured in matched 1 cm path length quartz, with a empty cell as a reference. UV-Vis

spectra were measured within 200 to 800 nm spectral range at 1 nm spectral resolution, while NIR, spec-tra were

obtained within 500 to 2200 nm with 5 nm steps. NIR spectra spike removal algorithms were applied (cut-off=6,

threshold=10) [98]. Every sample was measured three times and the mean values were taken as representation.

Acid value measurements. The acid value, or the free FA content, was determined under the EN ISO 660:200940

[99] protocol for oleic acid quantification. Simply, 10 mL of vegetable oil were weighted and diluted in 20 mL of ethanol

(𝜙 = 99 %) with small amounts of phenolphthalein. Titrations with 0.1 mol/L of potassium hydroxide (KOH) were

done under magnetic stirring until slight color changes appear (and persisted for +10s). Measures were executed

twice per sample. The acid value was extrapolated from the amount of KOH required for each sample, defined as the

amount of KOH required to neutralize one gram of chemical substance, with the following formula:

𝑊𝐴𝑉 = 56.1 × 𝑐𝑉
𝑚 (9)

where, c is the exact concentration of the standard KOH solution (mol/L), V the volume of KOH added (mL), and m

the mass (g) of the test portion. Acidity, or the free FA content, can be estimated by:

𝑊𝐹𝐹𝐴 = 𝑉𝑐𝑀
10𝑚 ≈ 0.5 × 𝑊𝐴𝑉 (10)
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wherein, M is the molar mass (g/mol) of the predominant FA in the vegetable oil, in this case oleic acid (282.47

g/mol).

NMR-based traits acquisition and parameters. The 1H magnetic resonance measurements of olive oils were

acquired at the average resonance frequency of 21.7579 MHz polarized using a portable permanent magnet (Metrolab

Instruments, Switzerland), 𝐵0=0.5T, using a benchtop-type console (Kea Magritek, New Zealand). A temperature

controller was set to maintain the measurement chamber at 33∘C. The T1 relaxation and T2 relaxation times were

acquired using standard IR and CPMG train pulse sequences, respectively. The experimental parameters used were

echo time (200), number of echoes (8,000) and signal averaging (64). A recycle delay of two seconds was set to

provide sufficiently long time to allow all molecular spins to return to thermal equilibrium. (T2 relaxation, T1 relaxation)

measurements were carried out on a wide variety of vegetable oils (e.g., palm, olive, avocado, peanut, sesame, corn,

grapeseed, sunflower, linseed) and commercial EVOOs, VOOs and refined OOs. Averaged values for characterization

of vegetable oils and identification of olive oil presented in Appendix, Table A2-A4, respectively. Clustering based-NMR

methodology [16] uses a pair of relaxation times (T2, T1) for each object (each oil in this case).

Machine learning algorithm and workflows. Using statistical programming languages (e.g., Orange 3.1.2 or

R), the raw datasets were processed using supervised and unsupervised learning techniques. The machine learning

algorithms were written and run on a personal laptop (Intel Core Pentium i7 CPU @ 3.20 GHz, 16GB RAM). Once the

model in machine learning was built, all the tasks run simultaneously and completed typically in less than 1 min.

Using unsupervised learning, the relationship between each object was rapidly constructed (e.g., hierarchical

clustering) and its quantitative linkages shown on heat map and dendogram, or through evaluation metrics (e.g.,

Receiver Operating Characteristics (ROC) curve, Area Under the Curve (AUC) of ROC). Supervised learning models

(AdaBoost, k-Nearest Neighbors (kNN), Linear Regression, Logistic Regression, Naïve Bayes, Neural Network,

Stochastic Gradient Descent (SGD) and Random Forest) were used to train the datasets and the best model with the

highest accuracy was chosen to predict the object classification and predictions (e.g., oil classification, or

characterization) using pre-trained datasets.
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Statistical analysis. A separation between two different vegetable oils was considered statistically significant when

this criterion (P<0.5) is achieved or otherwise denote as non-significant (n.s). The Student’s unpaired t-test was used

throughout this study. One tailed were used, or otherwise mentioned in the figure captions. OriginLab - Pro 8 was

used to handle all the graphs plotting. Pearson correlational coefficient (𝑟) was calculated with the same approach.

Receiving Operating Characteristic. Analyses were used to evaluate the specificity and sensitivity of the

diagnostic techniques. Various supervised models were used for the ROC tests. These were namely the (AdaBoost,

k-Nearest Neighbors (kNN), Logistic Regression, Naïve Bayes, Neural Network, and Random Forest) models. A fitting

of all ROC tests, was performed with a power function 𝑦 = 𝑎𝑥𝑏 for the classification of olive oils by its grading and

region of origin. Iterations were run with the Levenberg–Marquardt algorithm until a chi-squared tolerance of 10−9

was achieved. Final function AUC was compared to the real averaged AUC from all assistive models (Appendix,

Figure A3).



6

E X P E R I M E N TA L R E S U LT S

6.1 Ch a r a c t e r i z a t i o n o f t h e l i p i d p r o f i l e

The NMR-measurements were carried out on nine different vegetable oil types (i.e., palm, olive, avocado,

peanut, sesame, corn, grapeseed, sunflower, linseed) at 33∘C. The vegetable oils can be classified based on their

dominant FA content such as saturated (SAFA), monounsaturated (MUFA) and polyunsaturated (PUFA), details of the

lipid profile as inferred by manufacturer in Figure 8A.

Figure 8: Single-phase system for identification of vegetables oils. Time-domain NMR measures were
performed in 36 vegetable oils (palm, olive, avocado, peanut, sesame, corn, grapeseed, sunflower, linseed). In total,
504 pairs of relaxation (T2, T1) were collected. Single-phase refers to using single exponential decay fit. (A) Ternary
plot of the lipid profile (e.g., SAFA, MUFA, and PUFA content) of the labelled (23 out of 36) vegetable oil samples
(i.e., nutritional information). Note that their sum equals unity. Full nutritional information in Appendix, Table A1. (B)
Two-dimensional plot of the relaxation pairs. Points can be linearly fitted (y=0.84x+37, R2>0.98). One-dimensional
plot of all the NMR-based traits in Appendix, Figure A1.
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The mean values as evaluated by the single-phase relaxation pair (T2, T1), were for palm (124.7, 144.3) ms,

olive (147.5, 161.5) ms, avocado (150.2ms, 163.2ms), peanut (151.7, 165.5) ms, sesame (161.8, 174.1) ms, corn

(174.4, 182.5) ms, grapeseed (189.4, 196.5) ms, sunflower (198.4, 189.9) ms, and linseed (232.0, 232.2) ms

(Figure 8B). With the Pearson correlation coefficients (𝑟), we observed that with an increase in the PUFA content, the

single-phase relaxation pair is enhanced towards slower relaxations (𝑟 = 0.81, 0.80), resulting in a decrease on A-ratio

(𝑟 = -0.79). For example palm oil has an A-ratio of (1.16), while linseed (1.01). In overall, the clustering was efficient

(i.e., good separation between interspecies) both on T2, and T1 dimensions (P<0.005, in Appendix, Figure A1A-C).

In time-domain NMR, working under just one- or two-dimensional (e.g., single-phase) leads to overlapping (i.e.,

equal phenotypes with different lipid profiles). Therefore, the generalized mobility information from nuclei was up-

scaled by adding bi-exponential decay expression (e.g., T𝑥𝑎,T𝑥𝑏). Thus, when the system is treated as a biphasic (only

in T2 dimension), one fast (T2𝑎) and one slow relaxation component (T2𝑏) are unfolded.

The mean values as evaluated by bi-exponential fitting, for the fast component were (69.0, 78.8, 79.9, 79.9,

82.5, 86.6, 89.6, 91.7 108.6) ms, while for the slow component were (220.0, 245.8, 258.6, 261.8, 278.7, 299.9,

339.2, 332.2, 437.3) ms for (palm, olive, avocado, peanut, sesame, corn, grapeseed, sunflower, linseed), respectively

(Figure 9A-B). Similar patterns as the single-phase system were obtained with a correlational study (𝑟>0.6). Both

systems delineate a positive relation with unsaturation level (higher PUFA’s content) and negative with MUFA.

Figure 9: Biphasic system for identification of vegetables oils. Time-domain NMR measures in vegetable oils
evaluated using bi-exponential decay fits (i.e., biphasic system). (A) Two-dimensional plot of the fast relaxation pair
(T2𝑎, T1), and (B) of the slow relaxation pair (T2𝑏, T1). One-dimensional plot of all the NMR-based traits in Appendix,
Figure A1.
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The NMR-based traits from both systems (i.e., single-phase, biphasic), were further tested in vegetable oil

identification (i.e., classification by specie) using Receiver Operating Characteristics (ROC) analysis (Figure 10). The

single-phase system relaxation pair presented an AUC of (0.95) while the biphasic system (0.93). When combined

(Figure 10B), the NMR-based traits achieve an ability to identify the vegetable oil of (0.96). Its observed that an

increase in NMR-based traits dimensionality, enhances the precision and accuracy of the detection.

Figure 10: Identification of vegetable oils using Receiver Operating Characteristics. AUC plots evaluated
by the ROC of various supervised models (i.e., kNN, Logistic Regression, Naïve Bayes, Neural Network, Random
Forest) using various combination of n-dimensional phase parameters. One-dimensional plot of single-phase traits
(T1, T2, A-ratio), biphasic traits (T2𝑎, T2𝑏) and their combination (All, in darker grey). The box plots represent 25%
and 75% quantile of the measurements. ROC-AUC results for single-phased and biphasic systems in Appendix, Table
A5-A6, respectively.

Due to the feasibility of the NMR-based traits (both from single-phase and biphasic systems), we moved forward

to use them in the characterization of the lipid profile (i.e., MUFA and PUFA content). Predictions, as averaged by

the supervised models (Appendix, Table A7), achieved an R2(0.86, 0.89) for MUFA and PUFA, respectively. ML

models were, for visual help, trained to predict the T1 and T2 phenotypic landscape of various lipid profiles (Figure

11). Thus, for fast characterization of blind samples, characterization of MUFA and PUFA content can be accessed by

the relaxation pair (T2, T1) directly into the machine learning model, or searched within the prediction landscape (i.e.,

search algorithm). SAFA content is not as viable as its counterparts R2(0.65), due to database bias towards higher

unsaturation level samples (i.e., lack of mechanistic behaviour in process of model learning).
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Figure 11: Phenotypic landscape of the single-phase system in vegetables oils. The NMR-phenotypic
landscape in lipid profiles represented by ternary plots. Each point corresponds to exact ratios between SAFA, MUFA
and PUFA that sum to unity. Color intensity is based on T1 and T2 predicted relaxation values from supervised models.
(A, B) T1, T2 as predicted by AdaBoost, (C, D) kNN, (E, F) Neural Network. Evaluation metrics of the validated model
in Appendix, Table A8. Each dot corresponds to the lipid profile of the labelled (23 out of 36) vegetable oil samples.
Missing values (out of 120 to 250ms range) coloured in grey.
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6.2 C l a s s i f i c a t i o n o f o l i v e o i l s b y g r a d e a n d r e g i o n o f o r i g i n

In order to demonstrate the industrial applications of time-domain NMR, we use the proposed technique (i.e.,

Lipidomic Profiler) to validate the authenticity of EVOO from VOOs and refined OO (Figure 12). A wide variety of

olive oils (i.e., 21 EVOOs, 8 VOOs, and 7 refined OOs) were purchased from different manufacturers off-the-shelf in

Braga, Portugal, or through online platforms. The relaxometry measurements and acid value (i.e., free FA content)

determination were performed on 36 types of OO without disclosing the manufacturers label and country of origin. For

each sample, the relaxation measurements were carried out in double using 5 different samplings (i.e., 10 relaxation

pairs per sample).

Figure 12: Classification of olive oil grade using single-phase system. Time-domain NMR measures were
performed in 36 olive oils (360 relaxation pairs). (A) Two-dimensional plot of (21) EVOOs (green), (8) VOOs (blue),
and (7) refined OO (red) by their relaxation pairs measures (T2, T1). The averaged relaxation pair and acid values
(AV) were denoted below. (B) Average T1 and T2 for the different types of OOs. The statistical analysis of the data
was calculated using unpaired two-tailed Student t-tests (P<0.005). (C) Classification of OOs using the single-phase
traits in the form of clustering analysis. This hierarchical clustering was constructed based on the Euclidean distance
between the averaged measures per sample. The color code (vertical axis) of each OO type is illustrated for eye-ball
purposes. One-dimensional plot of NMR-based traits and AV measured in Appendix, Figure A2.
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The mean single-phase relaxation pairs (T2, T1) generalize the composite intrinsic properties of the vegetable

oils, thereof, forming a calibration standard for OO grading (EVOOs, VOOs, refined OOs), averaging (150.5, 168.0)

ms, (153.2, 174.4) ms, and (146.3, 162.8) ms, respectively (Figure12A). There is a well-clustered effect (P<0.005) in

NMR-based traits and in AV (Appendix, Figure A2), implying that the intra-variation were much smaller than the inter-

variation of the OOs (Figure 12B). The details breakdown for each commercial brand is shown in heatmap (Figure

12C). The classification of olive oil by ROC analysis indicated that relaxometry measures have excellent detection

sensitivity and specificity with AUC of (0.95) (Appendix, Table A9).

Figure 13: Identification of olive oil region of origin using single-phase system. EVOO samples were studied
based on their regions of origin. Off-the-shelf EVOO samples from different European regions (i.e., Portugal (red), Spain
(orange), Italy (green), Greece (blue)) according to their labelling. Pair-wise two-dimensional mapping of EVOOs origin
as inferred by relaxation pairs (T2, T1). The sensitivity and specificity of each pair of regions were calculated using
ROC analysis. The substantially high AUC, ranging from 0.6 to 0.9 of each pair-wise region were evaluated (AUC
correlation matrix at top right). The models were validated using the Leave-one-out method using single-phase system
(Appendix, Table A10)
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We further proposed NMR-analysis in classification based on their regions of origin. The variation in phenotypic

traits is now governed by number of factors, such as migration drift (e.g., diversification and domestication events

[49]), and abiotic factors (e.g., local climate, soil factors [100, 101]) which have a direct effect of the lipid profile.

For the identification of the regions of origin for OO, a matrix of data subsets (i.e., only EVOOs), encompasses four

different regions (i.e., 3 Greece, 4 Italy, 9 Portugal, 5 Spain) that were plotted in pair-wise form using the single-phase

system (Figure 13).

Figure 14: Single-phase system in identification of the regions of origin. (A) The NMR-based phylogenetic
tree was built using the AUC comparison matrix (Figure 13) using neighbour joining algorithm which splits the NMR-
based traits into three main regions (i.e., Iberian, Italy, Greece). The proposed NMR-based traits (legends of AUC
is 0.25 in vertical) in agreement with their geographical orientation (shown in legend of 300 km per bar). Higher
similarities are expected to be found species that are closely related. Neighbouring countries are expected to have
higher species exchange and genes flow due to their geographical proximity. Similarities fade away with, for example,
geographical distance. (B, C) One-dimensional plot of measured T1, and T2 for the different regions of origin of EVOOs.
The statistical analysis of the data was calculated using unpaired two-tailed Student t-tests (P<0.5). Note that higher
AUC means higher separability
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At a pair-wise point of view, higher separability is achieve between (Portugal, Spain with Greece EVOOs),

achieving AUC of (0.89, 0.84), respectively. This is to be expected as neighbouring countries are expected to have

much higher of species exchange due to its proximity in geographical location. We confirmed this by applying the

AUC comparison matrix (Figure 13 at top right) and employing an algorithm to construct a phylogenetic tree (Figure

14A). In addition, the mean relaxation pairs (T2, T1) were, for Portugal (151.0, 168.9) ms, Spain (150.1, 166.7) ms,

Italy (150.2, 168.9) ms, Greece (147.7, 166.3) ms (Figure 14B-C). The overall regional-based identification for

time-domain NMR is AUC of (0.71) (Appendix, Table A10).

6.3 C ompa r i s o n o f NMR - b a s e d t r a i t s w i t h c u r r e n t g o l d - s t a n d a r d s

In order to compare NMR-based traits precision and accuracy with gold-standard techniques (e.g., UV-VIS,

NIRS), the OO analysis (i.e., see ’Classification of olive oils by grade and region of origin’) was replicated and the

Limit-of-detection (LOD) of all techniques was evaluated. ROC analysis (i.e., spectra peak with higher deviation versus

single-phase system traits) was used as evaluation metric between techniques.

As previously done for NMR-based traits, a calibration standard for OO grading and region of origin was repeated

with 12 random samples (3 readings) with UV-VIS and NIRS techniques (details in ’Methods’). In OO classification

of grading (e.g., EVOO, VOO or refined OO) ROC analysis between the techniques indicated that time-domain NMR

measures have higher accuracy and precision than gold-standards (Figure 15A). Averaging an AUC of (0.95), while

NIRS (0.84) and UV-Vis (0.73) as evaluated by supervised models (Figure 15B-C). Full results in Appendix, Table A9.

Equivalent prediction was obtained in ROC analysis for OO identification or origin (Figure 15D-E). Time-domain NMR

AUC of (0.71), while NIRS and UV-Vis (0.69). Results in Appendix, Table A10. Nonetheless, clustering effect (P<0.5)

was still well defined in gold-standard calibrations.

As final experiment, we evaluated the limit-of-detection (LOD) of NMR-based traits by mixing sunflower oil into

a selected EVOO to mimic the cases of adulteration. For each sample, the relaxation measurements were conducted

in double using five different samplings, covering from 0% (sunflower oil) to 100% of OO (control) in the mixed edible

oil (Figure 16). As clearly indicated by the relaxation pairs, a linear relation (R2=0.93) between NMR-based traits and

the amount of sunflower oil (PUFA-rich oil) reduced into EVOOs (MUFA-rich) relaxation effect becomes clearer (due to

a decrease in saturation level as seen in characterization of vegetable oils). Therefore, the averaged (T2, T1) relaxation

pairs were (188.3, 202.9) ms and (155.3, 174.6) ms for sunflower oil and EVOO (control), respectively (Figure 16A-B).

The LOD for single-phased traits were approximately (1%), which are comparable to NIRS (1%, Figure 16C-D) or

much better than UV-Vis (5%, Figure 16E-F).
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Figure 15: Classification of olive oil grading and origin using gold-standard techniques (e.g., UV-Vis,
NIR spectroscopy). Classification of OO by its grade (e.g., EVOO, VOO, refined OO) and identification of region of
origin (e.g., Portugal, Spain, Italy, Greece) against the gold-standard techniques. The color coding follows previous
images. (A) The ROC curves for NMR-based traits (red), NIRS (blue) and UV-Vis (gray) calculated from a number
of supervised models (Appendix, Figure A3). The fitting 99% confidence bands are displayed (see ’Methods’). (B)
NIRS, and (C) UV-Vis spectra for classification by grade (e.g., refined OO (red), EVOO (green), VOO (blue)). (D) NIRS,
and (E) UV-Vis spectra for identification of region of origin (e.g., Portugal (red), Spain (orange), Italy (green), Greece
(blue)). Each experimental curve (i.e., NIRS or UV-Vis) represents the average of 3 measurements for each sample.
The box plots represent the standard error of the median quantile of the entire measures. Sensitivity and specificity
of each analysis (grey boxes) were calculated using the AUC of the ROC curve (Appendix, Table A9-A10). Peaks for
ROC analysis were chosen on the most overlapped region.
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Figure 16: Limit-of-detection of the time-domain NMR versus gold-standard (e.g., UV-Vis, NIR
spectroscopy). The EVOOs (as control) were mixed with sunflower oil in concentration of 1%, 5%, 10%, 25%,
and 50% to mimic the cases of adulteration. (A) Two-dimensional relaxation pairs (T2, T1) of the EVOOs (grey) as
a function of sunflower oils concentration (coloured). The mean relaxation pairs (10 per mixture) were denoted for
each dilution. Data points were linearly fitted (R2=0.93) with function y=0.85x+42.13. The zoom-in plot indicates
the OOs (as control) and OOs with 1% adulteration, the box plots indicating 25% and 80% percentiles of the entire
measurements. (B) The averaged T1 (without strips, left) and T2 (with strips, right) relaxations of the most overlapped
region (e.g., control, 1%, 5% and 10%). (C) NIRS spectra taken from 500 nm to 2250 nm. (D) Multiple samplings
were taken for each dilution. The maximum peak deviations were found to be at the 670 nm. (E) UV-Vis spectra
taken from 250 nm to 700 nm. (F) Multiple samplings were taken for each dilution. UV-Vis- The most significant peak
was at 670 nm. Each experimental curve (i.e., NIRS or UV-Vis) represents the average of 3 measurements for each
sample. The box plots represent standard error of median quantile of the entire measurements. Two tailed Student’s
t-test was used to calculate the P-value. The LODs were 1%, 1%, and 5%, for time-domain NMR, NIRS and UV-Vis,
respectively (see ’Methods’).
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L I P I D O M I C P R O F I L E R

Is reported the employment of the methodology Lipidomic Profiler for fast, label-free and distinctive lipid

profiling. This is essential for testing and reducing attempts of adulteration, assuring vegetable oil safety and quality.

The NMR-phenotypic traits represent the intrinsic molecular relaxation dynamics due to the composite effect of the

FA profile (e.g., unsaturation level) and/or the presence of FFA (e.g., acid value), which created the observed

molecular environment differences.

Fatty acids in oil-phase consists of small domains of attractive forces (e.g., Van der Walls) predominant in

well-packed hydrocarbon chains [31]. The degree of presence of these forces is proportional to viscosity (i.e., liquid

friction) with a direct impact in NMR-based traits. Disrupting the packing ‘efficiency’ (i.e., weakening of Van der Walls

forces) leads to a increase in degrees of freedom for molecular mobility (i.e., higher T1 and T2) [31]. Based in our

results, this effect is clear in differentiating PUFA-rich species (e.g., sunflower, linseed, grapeseed) from MUFA-, SAFA-

rich species. Similar mechanisms for packing disruption occurs in OO classification based on their grading (i.e., due

to free FA content).

Figure 17: Single-phase system as averaged for each vegetable oils. The time-domain NMR measures as
averaged per relaxation pairs (T2, T1) in 36 vegetable oils. Two-dimensional plot of relaxation pairs as averaged per
sample. Color gradient resumes the PUFA/MUFA ratio value of the labelled (Appendix, Table A2) lipid profiles as
disclosed by manufacturers (Appendix, Table A1), otherwise (i.e., not labelled samples) in black color. The Pearson
correlation coefficient (r) between PUFA/MUFA ratio and relaxation pairs is (r>0.85).
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In the characterization of the lipid profile, relaxation pairs indicate a major phenotypic deviation due to

unsaturation level (i.e., amount of double bonds), more precisely the PUFA/MUFA ratio (Figure 17). For example,

averaged relaxation pair (T2, T1) for palm oil (SAFA-rich) was (124.7, 144.3) ms, while linseed (PUFA-rich) obtained

(232.0, 232.2) ms. Even though identification of vegetable oil type was ’successful’ in validating NMR-based traits

(i.e., prediction level of NMR-based traits increases with n-dimensions), clear-cut classification between vegetable oils

should be more viable through bioactive compounds and not lipid profile changes (i.e., different oil may mimic lipid

profile of another when looking at a macroscopic, SAFA, MUFA and PUFA, point of view). NMR-based traits (e.g.,

single-phase and biphasic systems) averaged an detection level with a R2 of (0.86, 0.89) for the pair MUFA, PUFA

with good accuracy (mean square error < 0.013) for all supervised models. SAFA detection was left out due to poor

ML models evaluation metrics (R2 of 0.65), in part by the natural bias for vegetable oils in MUFA-, PUFA-rich species

(i.e., SAFA inter-variability is low). Thus, our approach lacks in the prediction ability in some regions of the lipid

profile landscape.

Figure 18: Olive oil variation in NMR-based traits. Molecular dynamics in vegetable oils are mapped by a function
of the lipid profile (e.g., unsaturation level) and interactions with ‘trace compounds’ (e.g., tocopherols) and FFAs (e.g.,
acid value). Since refined OO display FFAs contents severely reduced when compared to its counterparts, VOOs and
EVOOs, we hypothesize that an arise in FFAs is one of the mechanisms for packing disruption. Note: Content amount
was chosen for illustration purposes and does not indicate reality.
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In the classification of OO by grade, the process of making OOs has a direct impact on the FA profile, for

instance, in the process of filtration, making of EVOOs (AV=0.52) and VOOs (AV=0.71), the AV of the oils is greater

than for refined OO (AV=0.40) [102]. Since refined OO display FFAs contents severely reduced when compared

to its counterparts with, VOOs and EVOOs, we observed and draw conclusion that a increment in FFAs is one of

the mechanisms contribute to the packing disruption (Figure 18). Further support is made upon clustering pattern

between AV, T2 and T1 relaxations(P<0.005). This is important since AV is one of the most important parameters

related to the oil quality is, being key in grading OO [102–104]. In overall, performance of NMR-based traits were

excellent, with a AUC of (0.96) in distinguish OO grade, when compared to NIRS (0.84) and UV-Vis (0.73) techniques.

Yet, in classification of the region of origin NMR-based traits averaged an AUC of (0.71) and gold-standards (0.69),

proving the versatility of the generalized information about the molecular environment (i.e., relaxation pairs). Further

geographical clustering (i.e., neighbouring countries closer) was obtained by employing a AUC pair-wise comparison

matrix has a distance matrix, however, due to undisclosed types of olive used in each vegetable oil, further conclusions

can’t be accomplished.

When compared with the current gold-standard techniques (spectroscopy [8–12]), similar or better properties

were achieved (SWOT-like Table 3). The proposed NMR-based detection is cheaper per assay and user-friendly.

Augmented by machine learning models, the concept of Lipidomic Profiler displayed high levels of accuracy and

precision. The sensible and generalizable information presented within relaxation times proved to predict both

qualitative (e.g., grade) and quantitative traits (e.g., lipid profile). Due to the tools used, validation of the vegetable oil

(i.e., scientific cross-validation) lipid profile is the main goal for future market-implantation.

Table 3: Qualitative performance of the Lipidomic Profiler against gold-standards (e.g., UV-Vis, NIRS).
SWOT-like analysis between the state-of-the-art technologies (e.g., Near-Infrared spectroscopy, UV-Visible) versus the
Lipidomic Profiler proposed in this work (machine learning assisted time-domain NMR).

Features Lipidomic Profiler NIRS, UV-Vis

Sensitivity very high high/medium

Specificity very high high/medium

LOD (1%) (1%, 5%)

Extensive experience not required not required

Time to results minutes minutes

Sample processing nil (no solvents needed) nil, need specific solvents

Price per assay ultra-cheap expensive (cuvettes, solvents)

Equipment size point-of-care testing bench-top
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C O N C L U S I O N

In this thesis we have shown that the developed Lipidomic Profiler can detect the unsaturation level of vegetable

oils, accurately grade OO, and can be useful to determine the region of origin of EVOOs (more work/samples is needed

in this area). Thus proposed Lipidomic Profiler was extremely sensible to phenotypic deviations of lipid profiles, more

specifically in detecting changes on the unsaturation level (i.e., MUFA/PUFA ratio) and free fatty content (i.e., acid

value). Although information is not scientifically cross-validated, the precision of the results positions this concept

as a powerful scientific tool. For market-implantation previous validations of manufacturer label would be crucial.

Morevover, in future studies, the access of the lipid profile in more detail should be held with individual (e.g., pure

FA samples) and complex mixtures (e.g., vegetable oils) with machine learning. Since prediction of the lipid profile

landscape is improved with increasing NMR-based traits [16], its possible that inverse Laplace transform algorithm

(i.e., relaxometry spectra) can provide other details based on FA variability. However, this transformation lacks the

repeatability of exponential NMR-based traits (e.g., single-phase and biphasic systems) and the time per assay to

obtain better spectra is largely increased.

Conventionally, chromatographic-based techniques, or high-field NMR, are time-consuming and require

complicated sample preparation with expensive laboratory equipment. Some techniques is require complex data

interpretation (i.e., chemometric studies), in comparison to the proposed NMR-based detection and other

gold-standard technologies. With the introduction of EU Protected Designation of Origin registration and equivalents

in other geographical locations, rapid classification of EVOOs, and vegetable oils in general, will be invaluable to

industry and regulatory agencies alike. On the other hand and especially in grading the olive oils, the proposed

Lipidomic Profiler (i.e., time-domain NMR-phenotypic traits augmented with machine learning models) provides

rapid, precise, low-cost, label-free and accurate analysis. In addition, the introduction of machine learning, is now

inexpensive to process large datasets running in almost real-time settings, opening the door to make predictions of

unlabelled samples with much high sensitivity and specificity.
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Part IV

A P P E N D I X



Table A1: Quantitative traits (e.g., lipid profile) of all vegetable oils samples used (e.g., palm, olive, avocado,
peanut, sesame, corn, grapeseed, sunflower, linseed). Grey color represent the predominant specie of FA on this
organism. Values with arbitrary units refer to the proportion of the FA specie on the lipid profile.

Oil type Manufacturer brand Energy (kJ / kcal) SAFA (g) MUFA (g) PUFA (g) Unsaturated (g) Fatty acids (g) SAFA (arb) MUFA (arb) PUFA (arb) Unsaturated (arb)

Avocado Graduva™ 3397 11.0 67.0 14.0 81.0 92.0 0.120 0.728 0.152 0.880

Avocado La Masia™ 3700 15.0 67.0 18.0 85.0 100.0 0.150 0.670 0.180 0.850

Avocado Woxiaoya 3696 - - - - 99.9 - - - -

Avocado Three Squirrels-Deer Blue™ 3696 17.2 70.8 11.9 82.7 99.9 0.172 0.709 0.119 0.828

Avocado Meinongji™ 3696 14.2 73.6 12.1 85.7 99.9 0.142 0.737 0.121 0.858

Corn Fula™ 3397 13.0 28.0 50.0 78.0 92.0 0.141 0.304 0.543 0.848

Corn Cofco-Chucui™ 3696 - - - - 100.0 - - - -

Corn Xiwang 3696 15.0 30.8 54.1 84.9 99.9 0.150 0.308 0.542 0.850

Corn Haitian-Yousling™ 3694 17.7 26.0 56.0 82.0 99.7 0.178 0.261 0.562 0.822

Corn Longevity Flower™ 3700 15.0 30.6 54.5 85.1 100.0 0.150 0.306 0.545 0.851

Corn Yihai Kerry-Arawana Brand™ 3700 - - - - 100.0 - - - -

Grapeseed Fula™ 3404 11.0 19.0 61.0 80.0 91.0 0.121 0.209 0.670 0.879

Linseed Nature Foods™ 3760 11.0 18.0 71.0 89.0 100.0 0.110 0.180 0.710 0.890

Olive Herdade do Esporão™ 3375 13.2 71.2 6.3 77.5 90.7 0.146 0.785 0.069 0.854

Olive Olivoila™ 3700 14.0 79.0 7.0 86.0 100.0 0.140 0.790 0.070 0.860

Olive Andasalusia™ 3700 15.0 79.0 6.0 85.0 100.0 0.150 0.790 0.060 0.850

Palm Guineas™ 3700 48.0 39.0 13.0 52.0 100.0 0.480 0.390 0.130 0.520

Peanut Fula™ 3374 16.0 61.0 15.0 76.0 92.0 0.174 0.663 0.163 0.826

Peanut Vitaquell™ 3700 15.0 80.0 5.0 85.0 100.0 0.150 0.800 0.050 0.850

Peanut Luhua™ 3696 - - - - 99.9 - - - -

Peanut Hujihua™ 3700 - - - - 100.0 - - - -

Peanut Longda™ 3700 20.6 42.2 37.1 79.3 99.9 0.206 0.422 0.371 0.794

Peanut Kingshare-Xianyoufang™ 3696 - - - - 99.9 - - - -

Peanut Moyanghua™ 3700 - - - - 100.0 - - - -

Sesame Emile Noel™ 3700 16.0 42.0 42.0 84.0 100.0 0.160 0.420 0.420 0.840

Sesame La Masia™ 3700 14.0 40.0 46.0 86.0 100.0 0.140 0.400 0.460 0.860

Sesame Yihai Kerry-Xiangmanyuan™ 3700 - - - - 100.0 - - - -

Sesame Fuyun™ 3700 - - - - 100.0 - - - -

Sesame Yihai Kerry-Arawana Brand™ 3700 - - - - 100.0 - - - -

Sesame Totole™ 3696 - - - - 99.9 - - - -

Sesame Luhua™ 3696 - - - - 99.9 - - - -

Sunflower Fula™ 3397 10.0 28.0 53.0 81.0 91.0 0.110 0.308 0.582 0.890

Sunflower Cofco-Chucui™ 3696 - - - - 99.9 - - - -

Sunflower Cofco-Fulinmen™ 3696 13.0 26.4 60.5 86.9 99.9 0.130 0.264 0.606 0.870

Sunflower Sinopharm-LizziI™ 3696 12.0 25.8 62.1 87.9 99.9 0.120 0.258 0.622 0.880

Sunflower Mighty™ 3700 12.0 26.0 62.0 88 100.0 0.120 0.260 0.620 0.880



Table A2: Average vegetable oil measures obtained using NMR-based traits. Mean longitudinal (T1) and
transversal (T2) relaxation times, A-ratio, and unfolded biphasic traits (T2𝑎, T2𝑏) experimentally obtained for palm,
olive, avocado, peanut, sesame, corn, grapeseed, sunflower, linseed oils. Values with arbitrary units refer to the
proportion of the FA specie on the lipid profile.

Oil type Manufacturer Brand Saturated (arb) MUFA (arb) PUFA (arb) PUFA/MUFA (arb) T1 (ms) T2 (ms) A-ratio T2𝑎 (ms) T2𝑏 (ms)

Avocado Graduva™ 0.120 0.728 0.152 0.209 159.4 147.8 1.08 78.9 257.3

Avocado La Masia™ 0.150 0.670 0.180 0.269 158.5 146.3 1.08 77.2 251.3

Avocado Woxiaoya™ 161.4 147.8 1.09 78.9 247.0

Avocado Three Squirrels-Deer Blue™ 0.172 0.709 0.119 0.168 166.6 153.6 1.08 80.7 267.3

Avocado Meinongji™ 0.142 0.737 0.121 0.164 170.1 155.4 1.1 83.8 270.2

Corn Fula™ 0.141 0.304 0.543 1.786 180.7 172.1 1.1 84.9 293.4

Corn Cofco-Chucui™ 188.5 181.1 1.04 89.2 309.7

Corn Xiwang™ 0.150 0.308 0.542 1.756 177.5 168.4 1.05 83.8 288.7

Corn Haitian-Yousling™ 0.178 0.261 0.562 2.154 187.6 180.2 1.04 89.0 308.7

Corn Longevity Flower™ 0.150 0.306 0.545 1.781 184.6 177.7 1.04 88.5 304.3

Corn Yihai Kerry-Arawana Brand™ 176.1 167.1 1.05 84.3 288.9

Grapeseed Fula™ 0.121 0.209 0.670 3.211 196.5 189.4 1.04 89.6 330.2

Linseed Nature Foods™ 0.110 0.180 0.710 3.944 233.2 232.0 1.01 108.6 437.3

Olive Herdade do Esporão™ 0.146 0.785 0.069 0.088 154.1 139.3 1.11 74.1 235.0

Olive Olivoila™ 0.140 0.790 0.070 0.089 164.6 151.0 1.09 81.2 252.1

Olive Andasalusia™ 0.150 0.790 0.060 0.076 165.7 152.1 1.09 80.9 250.4

Palm Guineas™ 0.480 0.390 0.130 0.333 144.3 124.7 1.16 69.0 220.0

Peanut Fula™ 0.174 0.663 0.163 0.246 156.8 141.7 1.11 76.8 242.1

Peanut Vitaquell™ 0.150 0.800 0.050 0.063 152.6 134.9 1.13 73.8 223.5

Peanut Luhua™ 161.0 148.8 1.08 79.6 253.6

Peanut Hujihua™ 164.4 149.9 1.10 80.4 259.5

Peanut Longda™ 0.206 0.422 0.371 0.879 166.1 154.9 1.07 81.4 269.0

Peanut Kingshare-Xianyoufang™ 181.1 168.1 1.1 86.3 297.1

Peanut Moyanghua™ 176.4 163.7 1.08 85.3 288.0

Sesame Emile Noël™ 0.160 0.420 0.420 1.000 172.2 160.9 1.07 81.9 277.8

Sesame La Masia™ 0.140 0.400 0.460 1.150 173.9 162.8 1.07 82.9 280.9

Sesame Yihai Kerry-Xiangmanyuan™ 175.3 164.7 1.06 83.5 283.3

Sesame Fuyun™ 181.5 165.3 1.10 81.9 285.4

Sesame Yihai Kerry-Arawana Brand™ 169.3 155.6 1.09 82.0 269.8

Sesame Totole™ 171.4 160.1 1.07 81.6 274.9

Sesame Luhua™ 175.2 163.6 1.07 84.0 278.8

Sunflower Fula™ 0.110 0.308 0.582 1.893 193.4 183.4 1.06 88.9 318.8

Sunflower Cofco-Chucui™ 203.0 195.8 1.04 94.2 342.4

Sunflower Cofco-Fulinmen™ 0.130 0.264 0.606 2.292 201.8 195.2 1.03 92.5 339.8

Sunflower Sinopharm-LizziI™ 0.120 0.258 0.622 2.407 189.0 178.1 1.06 87.9 315.5

Sunflower Mighty™ 0.120 0.260 0.620 2.385 204.9 197.2 1.04 94.9 344.5



Table A3: Quantitative traits (lipid profile) of all olive oil samples. The nutritional information (e.g., lipid profile,
acidity) of each olive oil sample as disclosed by manufacturers (e.g., olive oil type, region of origin). Undisclosed
countries are denotes as not defined (n.d.).

Olive oil type Region Manufacturer
Nutritional Information (per 100g)

SAFA (g) MUFA (g) PUFA (g) Max acidity (%)

EVOO Greece Agric™ 14.0 77.0 9.0 0.8

EVOO Greece Omega live™ 13.6 70.7 7.3 0.8

EVOO Greece Molon™ 12.8 70.5 8.3 0.4

EVOO Italy Antika™ - - - -

EVOO Italy Costa’Oro™ 15.0 - - -

EVOO Italy Ewen™ - - - 0.8

EVOO Italy Berio™ 13.9 70.4 7.0 0.6

EVOO Portugal GALLO - Colheira Madura™ 15.0 68.0 7.9 0.3

EVOO Portugal Oliveira da Serra - Gourmet™ 15.0 69.0 6.9 0.3

EVOO Portugal Herdade do Esporão - Azeite DOP™ 13.1 71.8 6.3 0.3

EVOO Portugal GALLO - Clássico™ 15.0 68.0 7.9 0.7

EVOO Portugal GALLO - Reserva™ 15.0 68.0 7.9 0.5

EVOO Portugal Vidigueira™ 13.1 - - 0.8

EVOO Portugal Chaparro - Origens™ 13.3 - - 0.7

EVOO Portugal Oliveira da Serra - Clássico™ 13.0 72.0 6.0 0.5

EVOO Portugal Flor do Alentejo™ 13.0 - - 0.8

EVOO Spain Olivolia™ 14.0 79.0 7.0 0.5

EVOO Spain Froiz™ 13.0 - - -

EVOO Spain Mercadona™ 13.2 71.2 6.3 0.4

EVOO Spain Rego - Arbequina™ - - - -

EVOO Spain Rego™ - - - -

VOO n.d. Continente™ 13.1 - - 2.0

VOO Portugal Oliveira da Serra - Versátil™ 14.5 68.6 8.1 0.9

VOO Portugal Oliveira da Serra - Virgem™ 15.0 69.0 8.1 0.9

VOO Portugal GALLO - Delicado™ 15.0 68.0 7.9 1.0

VOO Portugal 5 Soldos - Casto™ 13.1 71.8 6.3 0.5

VOO Portugal Chaparro - Virgem™ 14.5 - - 0.9

VOO Portugal Vila Branca™ 14.0 77.0 9.0 0.9

VOO Portugal Guia™ 12.0 - - 0.7

VOO+REF Portugal 5 Soldos - Azeite™ 13.1 71.8 6.3 1.0

VOO+REF Portugal Oliveira da Serra - Azeite™ 13.0 72.0 6.0 1.0

VOO+REF Portugal Serrata™ 14.0 - - 1.0

VOO+REF Portugal Rustica™ 14.0 - - 1.0

VOO+REF Spain Froiz™ 14.0 - - 1.0

VOO+REF Spain Olearia del Olivar™ 11.9 - - 1.0

VOO+REF Spain La Española™ 14.0 - - -



Table A4: Average olive oil measures obtained using NMR-based traits. Mean longitudinal (T1) and
transversal (T2) relaxation times, A-ratio, and experimentally obtained acid value for refined OO, EVOOs and VOOs
with respect to their type and origin. Undisclosed regions were denoted as not defined (n.d.)

Region Olive oil type
T1
(ms)

T2
(ms)

A-ratio
(arb)

Acid Value
(mg KOH 𝑔−1)

Greece EVOO 164.3 148.3 1.11 0.456

Greece EVOO 167.1 146.2 1.14 0.578

Greece EVOO 167.5 148.7 1.13 0.510

Italy EVOO 167.8 148.7 1.13 0.671

Italy EVOO 170.6 150.8 1.09 0.718

Italy EVOO 171.5 153.1 1.12 0.414

Italy EVOO 165.6 148.2 1.12 0.478

Portugal EVOO 168.9 150.1 1.13 0.487

Portugal EVOO 166.8 151.9 1.10 0.418

Portugal EVOO 166.6 150.3 1.11 0.575

Portugal EVOO 168.7 151.2 1.12 0.616

Portugal EVOO 170.2 151.5 1.12 0.624

Portugal EVOO 172.7 149.8 1.15 0.435

Portugal EVOO 170.8 154.2 1.11 0.561

Portugal EVOO 167.2 151.6 1.10 0.673

Portugal EVOO 168.4 148.1 1.14 0.596

Spain EVOO 165.2 152.1 1.09 0.409

Spain EVOO 166.6 149.9 1.11 0.469

Spain EVOO 166.8 153.1 1.09 0.391

Spain EVOO 167.3 144.8 1.16 0.449

Spain EVOO 167.6 150.6 1.14 0.368

n.d. VOO 174.4 153.3 1.14 0.740

Portugal VOO 172.9 149.9 1.15 0.628

Portugal VOO 173.3 152.7 1.14 0.740

Portugal VOO 174.4 152.1 1.15 0.648

Portugal VOO 173.5 152.2 1.14 0.718

Portugal VOO 174.6 154.8 1.13 0.592

Portugal VOO 174.6 155.3 1.13 0.787

Portugal VOO 177.1 155.1 1.14 0.860

Portugal VOO+REF 164.1 146.6 1.12 0.435

Portugal VOO+REF 163.9 146.1 1.12 0.350

Portugal VOO+REF 163.5 144.3 1.13 0.364

Portugal VOO+REF 162.3 150.4 1.08 0.504

Spain VOO+REF 160.3 144.2 1.11 0.359

Spain VOO+REF 163.5 146.2 1.12 0.397

Spain VOO+REF 161.9 146.0 1.11 0.387



Figure A1: One-dimensional plot of all the NMR-based traits. (A) A-ratio, (B) T1, (C) T2, (D) T2𝑎, (E) T2𝑏. The
legend for each vegetable oil is the same for each plot (top). The box plots represent 25% and 75% quantiles of the
measurements. One tailed Student’s t-test was used to calculate the P-value



Table A5: Identification of vegetable oils using ROC with single-phase system. AUC (range between 0 to
1) of the various supervised models evaluated to identify vegetable oil. Models were validated using Leave-one-out
method using the single-phase system (A-ratio, T1, T2).

Single-phase Model AUC CA F1 Precision Recall

(T1) kNN 0.857 0.633 0.620 0.642 0.633

Logistic Regression 0.884 0.524 0.476 0.455 0.524

Naïve Bayes 0.829 0.456 0.368 0.311 0.456

Neural Network 0.922 0.599 0.585 0.592 0.599

Random Forest 0.942 0.667 0.665 0.669 0.667

average 0.887 0.576 0.543 0.534 0.576

(T2) kNN 0.982 0.849 0.846 0.851 0.849

Logistic Regression 0.896 0.567 0.513 0.478 0.567

Naïve Bayes 0.828 0.433 0.352 0.299 0.433

Neural Network 0.937 0.732 0.717 0.745 0.732

Random Forest 0.992 0.889 0.887 0.891 0.889

average 0.927 0.694 0.663 0.653 0.694

(A-ratio) kNN 0.902 0.569 0.558 0.562 0.569

Logistic Regression 0.753 0.238 0.135 0.094 0.238

Naïve Bayes 0.764 0.335 0.234 0.185 0.335

Neural Network 0.825 0.438 0.407 0.387 0.438

Random Forest 0.971 0.762 0.757 0.765 0.762

average 0.843 0.469 0.418 0.399 0.469

(T1, T2) kNN 0.991 0.897 0.896 0.898 0.897

Logistic Regression 0.893 0.611 0.575 0.557 0.611

Naïve Bayes 0.852 0.468 0.397 0.360 0.468

Neural Network 0.964 0.768 0.757 0.782 0.768

Random Forest 0.997 0.944 0.944 0.944 0.944

average 0.940 0.738 0.714 0.708 0.738

(T1, T2, A-ratio) kNN 0.991 0.897 0.896 0.898 0.897

Logistic Regression 0.891 0.619 0.585 0.565 0.619

Naïve Bayes 0.897 0.512 0.463 0.487 0.512

Neural Network 0.967 0.756 0.746 0.750 0.756

Random Forest 0.998 0.954 0.954 0.954 0.954

average 0.949 0.748 0.729 0.731 0.748



Table A6: Identification of vegetable oils using ROC with biphasic system. AUC (range between 0 to 1) of
the various supervised models evaluated to identify vegetable oils. Models were validated using Leave-one-out method
using the biphasic system (T2𝑎,T2𝑏) and in combination with single-phase traits (All).

Biphasic Model AUC CA F1 Precision Recall

(T2𝑎) kNN 0.896 0.558 0.554 0.562 0.558

Logistic Regression 0.813 0.407 0.356 0.323 0.407

Naïve Bayes 0.789 0.421 0.340 0.288 0.421

Neural Network 0.839 0.468 0.424 0.414 0.468

Random Forest 0.934 0.651 0.647 0.649 0.651

average 0.854 0.501 0.464 0.447 0.501

(T2𝑏) kNN 0.945 0.677 0.669 0.689 0.677

Logistic Regression 0.882 0.548 0.500 0.467 0.548

Naïve Bayes 0.830 0.444 0.358 0.302 0.444

Neural Network 0.910 0.587 0.558 0.577 0.587

Random Forest 0.982 0.823 0.824 0.825 0.823

average 0.910 0.616 0.582 0.572 0.616

(T2𝑎,T2𝑏) kNN 0.965 0.766 0.758 0.762 0.766

Logistic Regression 0.886 0.587 0.550 0.532 0.587

Naïve Bayes 0.835 0.460 0.367 0.427 0.460

Neural Network 0.946 0.716 0.703 0.706 0.716

Random Forest 0.994 0.909 0.908 0.908 0.909

average 0.925 0.688 0.657 0.667 0.688

All Model AUC CA F1 Precision Recall

(NMR-based traits) kNN 0.989 0.891 0.891 0.892 0.891

Logistic Regression 0.911 0.637 0.619 0.617 0.637

Naïve Bayes 0.907 0.556 0.487 0.523 0.556

Neural Network 0.984 0.861 0.861 0.862 0.861

Random Forest 1.000 0.974 0.974 0.975 0.974

average 0.958 0.784 0.766 0.774 0.784



Table A7: Characterization of vegetables oils with NMR-based traits. Determination coefficient (R2, range
between 0 to 1) of the various supervised models evaluated to characterize vegetable oils. ML models were trained
with lipid profiles and NMR-based traits (from both single-phase and biphasic system) measures (Appendix, Table
A2) in order to predict lipid profile (e.g., SAFA, MUFA, PUFA content). Validation was done using the Leave-one-out
method.

Prediction of Model MSE RMSE MAE R2

(SAFA) AdaBoost 0.000 0.012 0.005 0.972

kNN 0.000 0.012 0.007 0.973

Linear Regression 0.004 0.060 0.035 0.318

Neural Network 0.002 0.043 0.026 0.644

SGD 0.003 0.058 0.039 0.345

average 0.002 0.037 0.023 0.650

(MUFA) AdaBoost 0.002 0.049 0.013 0.952

kNN 0.003 0.055 0.024 0.942

Linear Regression 0.013 0.115 0.100 0.740

Neural Network 0.005 0.071 0.054 0.901

SGD 0.012 0.108 0.093 0.773

average 0.007 0.080 0.057 0.862

(PUFA) AdaBoost 0.002 0.040 0.011 0.970

kNN 0.002 0.047 0.021 0.960

Linear Regression 0.012 0.109 0.093 0.783

Neural Network 0.004 0.060 0.046 0.933

SGD 0.011 0.103 0.088 0.804

average 0.006 0.072 0.052 0.890



Table A8: Characterization landscape of vegetables oils in single-phase system. Determination coefficient
(R2, range between 0 to 1) of the various supervised models evaluated to characterize the phenotypic landscape
of vegetable oils. ML models were trained with full database (i.e., 504 points) lipid profiles (Appendix, Table A2) to
predict individually T1 and T2 (i.e., single-phase system) phenotypic landscape. Validation was done using the random
sampling (50%) method repeated 5 times.

Prediction of Model MSE RMSE MAE R2

(T1) AdaBoost 6.593 2.568 1.963 0.978

kNN 6.611 2.571 2.026 0.978

Neural Network 9.668 3.109 2.456 0.968

average 7.624 2.749 2.148 0.975

(T2) AdaBoost 3.583 1.893 1.358 0.991

kNN 5.880 2.425 1.716 0.986

Neural Network 6.423 3.551 2.712 0.970

average 5.295 2.623 1.929 0.982



Figure A2: Classification of olive oil using single-phase system. (A) T1 and (B) T2 relaxations, (C) A-ratio, and
(D) acid value obtained for the different commercial brands (7 refined OOs, 21 EVOOs and 8 VOOs). The box plots
represent 25% and 75% quantile of the entire measurements. Two tailed Student’s t-test was used to calculate the
P-value.



Table A9: Classification of olive oils using ROC analysis. Area Under the Curve (range between 0 to 1) of the
various supervised models evaluated to predict OO grading. Models were validated using Leave-one-out method with
averaged single-phase system (e.g., T1, T2 and A-ratio). The wavelength (𝜆) used for UV-Vis spectroscopy and NIRS
was chosen upon the region of bigger differentiation, being it the 415nm and 670nm peaks, respectively.

Olive oil type Model AUC CA F1 Precision Recall

UV-Vis kNN 0.898 0.833 0.833 0.835 0.833

(𝜆=415 nm) Logistic Regression 0.444 0.417 0.370 0.333 0.417

Naïve Bayes 0.615 0.472 0.479 0.495 0.472

Neural Network 0.762 0.667 0.663 0.672 0.667

Random Forest 0.937 0.778 0.781 0.790 0.778

average 0.731 0.633 0.625 0.625 0.633

NIRS kNN 1.000 1.000 1.000 1.000 1.000

(𝜆=670nm) Logistic Regression 0.542 0.417 0.362 0.333 0.417

Naïve Bayes 0.771 0.750 0.743 0.778 0.750

Neural Network 0.875 0.833 0.822 0.889 0.833

Random Forest 1.000 1.000 1.000 1.000 1.000

average 0.838 0.800 0.785 0.800 0.800

NMR-based traits kNN 0.974 0.889 0.889 0.889 0.889

(T1, T2, A-ratio) Logistic Regression 0.984 0.889 0.889 0.889 0.889

Naïve Bayes 0.950 0.861 0.864 0.878 0.861

Neural Network 0.918 0.889 0.889 0.889 0.889

Random Forest 0.919 0.833 0.831 0.834 0.833

average 0.949 0.872 0.872 0.876 0.872



Table A10: Classification by ROC analysis for regions of origin. Area Under the Curve (range between 0 to
1) of the various supervised models evaluated to predict region of origin. Models were validated using Leave-one-
out method with averaged single-phase system traits(e.g., T1, T2 and A-ratio). The wavelength (𝜆) used for UV-Vis
spectroscopy and NIRS was chosen upon the region of bigger differentiation (670nm peaks), full data is not shown.

Olive oil region Model AUC CA F1 Precision Recall

UV-VIS kNN 0.856 0.667 0.646 0.679 0.667

(𝜆=670 nm) Logistic Regression 0.403 0.179 0.203 0.274 0.179

Naïve Bayes 0.674 0.385 0.387 0.422 0.385

Neural Network 0.751 0.641 0.62 0.684 0.641

Random Forest 0.786 0.694 0.685 0.704 0.694

average 0.694 0.513 0.508 0.553 0.513

NIRS kNN 0.856 0.667 0.646 0.679 0.667

(𝜆=670nm) Logistic Regression 0.43 0.179 0.131 0.127 0.179

Naïve Bayes 0.687 0.385 0.383 0.382 0.385

Neural Network 0.753 0.436 0.433 0.456 0.436

Random Forest 0.752 0.641 0.625 0.635 0.641

average 0.696 0.462 0.444 0.456 0.462

NMR-based traits kNN 0.718 0.538 0.539 0.541 0.538

(T1, T2, A-ratio) Logistic Regression 0.658 0.433 0.365 0.331 0.433

Naïve Bayes 0.667 0.433 0.383 0.348 0.433

Neural Network 0.788 0.576 0.561 0.571 0.576

Random Forest 0.699 0.5 0.497 0.497 0.5

average 0.706 0.496 0.469 0.458 0.496



Figure A3: Performance of olive oil classification by ROC analysis. Classification of of live oil types (e.g., VOO,
EVOO, refined OO) with (A) time-domain NMR (red), (B) NIRS (blue), and (C) UV-Vis spectroscopy (grey) techniques
assisted by supervised models (e.g., kNN, Logistic Regression, Naïve Bayes, Neural Network and Random Forest) in
Appendix, Table A9. The models were trained using the NMR-based traits (e.g., T1, T2 and A-ratio), NIRS (670nm
peak) and UV-Vis (415nm peak) values of each sample. Power function fitting curves with confidence levels of 99%
were used.
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