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A B S T R A C T

The objective of this dissertation is the development of an application capable of automatically
generating synthetic datasets that are representative and, possibly, very large, directly from
JSON and XML schemas, in order to facilitate the testing of software applications and
scientific endeavors in areas such as Data Science or Application Development.

For this purpose, it is intended to develop a new version of DataGen, an online open-source
application that allows the quick prototyping of datasets through its own Domain Specific
Language (DSL) of specification of data models. DataGen is able to parse these models and
generate synthetic datasets according to the structural and semantic restrictions stipulated,
automating the whole process of data generation with spontaneous values created in runtime
and/or from a library of support datasets.

The objective of this new product, DataGen From Schemas, is to expand DataGen’s use
cases and raise the datasets specification’s abstraction level, making it possible to generate
synthetic datasets directly from schemas. This new platform builds upon its prior version
and acts as its complement, operating jointly and sharing the same data layer, in order to
assure the compatibility of both platforms and the portability of the created DSL models
between them. Its purpose is to parse schema files and generate corresponding DSL models,
effectively translating the JSON or XML specification to a DataGen model, then using the
original application as a middleware to generate the final datasets.

The present dissertation details the entire creative process behind the development of this
application: firstly, it frames the topic of study and its initial phase of investigation, debating
relevant technologies and existing related work; then, the ideation phase of the product is
addressed, projecting an adequate arquitecture and the reasons behind its design choices,
as well as surveying technical requirements for DataGen From Schemas, while taking into
account the conclusions reached through prior research; afterwards, the development phase
is covered, carefully explaining the elaborated components, their properties and the data flow
between them, for both the JSON and XML modules; finally, the reader is presented with
conclusions taken from this project’s development and possible future work to implement,
in order to improve the current solution.

Keywords: Schemas, JSON, XML, Data Generation, Synthetic Data, DataGen, DSL, Dataset,
Grammar, Randomization, Open Source, Data Science, REST API, PEG.js
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R E S U M O

O objetivo desta dissertação é o desenvolvimento de uma aplicação que permita gerar auto-
maticamente datasets sintéticos representativos e possivelmente extensos, a partir de schemas
de JSON e XML, de forma a facilitar a testagem de aplicações de software e empreendimentos
científicos em áreas como a Ciência de Dados e o Desenvolvimento de Aplicações.

Para esta finalidade, pretende-se desenvolver uma plataforma assente sobre o DataGen,
uma aplicação que permite a prototipagem rápida de datasets através da sua própria Domain
Specific Language (DSL) de especificação de modelos de dados. O DataGen é capaz de
processar estes modelos e gerar posteriormente datasets sintéticos que obedeçam às restrições
estruturais e semânticas estabelecidas, automatizando todo o processo de geração de dados
com valores espontâneos gerados em tempo de execução e/ou provenientes de bancos de
dados de suporte.

O objetivo deste novo produto, DataGen From Schemas, é expandir os casos de aplicação do
DataGen e aumentar o nível de abstração da especificação de modelos de dados, tornando
possível a geração de datasets sintéticos diretamente a partir de schemas. Esta nova plataforma
estará assente sobre a sua versão anterior e agirá como seu complemento, operando conjun-
tamente e partilhando a mesma camada de dados, de forma a assegurar a compatibilidade
das plataformas e a portabilidade dos modelos criados entre ambas. O seu propósito é
processar ficheiros schema e gerar modelos correspondentes na DSL, efetivamente traduzindo
a especificação em JSON ou XML para um modelo do DataGen, para depois usar a aplicação
original como um middleware para gerar os datasets finais.

A presente dissertação detalha todo o processo creativo por detrás do desenvolvimento
desta aplicação: começa por enquadrar o tema de estudo e a sua fase inicial de investigação,
debatendo tecnologias relevantes e trabalho relacionado existente; de seguida, é abordada
a fase de ideação do produto, projetando uma arquitetura adequada para a solução e as
razões por detrás das suas escolhas de design, e realizado um levantamento de requisitos
técnicos para o DataGen From Schemas, tendo sempre em conta as conclusões alcançadas
através de investigação prévia; depois, é relatada a fase de desenvolvimento do produto,
explicando minuciosamente os componentes elaborados, as suas propriedades e o fluxo de
dados entre eles, para ambos os módulos de JSON e XML; finalmente, são apresentadas ao
leitor as conclusões retiradas do desenvolvimento deste projeto e possível trabalho futuro a
implementar, de forma a melhorar a solução atual.

Palavras-Chave: Schemas, JSON, XML, Geração de Dados, Dados Sintéticos, DataGen,
DSL, Dataset, Gramática, Aleatoriedade, Open Source, Ciência de Dados, REST API, PEG.js
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1

I N T R O D U C T I O N

This introductory chapter’s purpose is to establish the motif of the present dissertation,
contextualizing it in the current panorama of software development and explaining its
necessity and possible application in a wide array of scientific areas. The motivation behind
the development of this project is then explained, along with the objectives it aims to fulfill
and the methodology under which it will unroll, concluding with a brief summary of the
structure of this dissertation and the topics addressed in each chapter.

1.1 context

The current landscape of the software development market is being increasingly occupied
with scientific areas that operate with large amounts of data. A prime example is that of Data
Science, which aims to apply methods of scientific analysis and algorithms to bulky datasets,
in order to try to extract knowledge and conclusions from the available information, which
may then be used for several other means. Another case is that of Machine Learning, which
looks to use this method to equip informatic systems with the capacity of self-learning,
accessing data and learning from its analysis, as to become more efficient in their function.

However, in a world where the need for bulky and representative datasets increases by
each passing day, data privacy policies and other concerns related to the privacy and safety
of users (Mostert et al., 2016) present themselves as difficult obstacles to the growth of these
sciences and to the progression of many projects in the development (GAO, 2020) and testing
phases. Moreover, the inability to share data which stems from such concerns also frequently
prevents companies from seeking outside help and/or collaboration (Patki et al., 2016).

In this context, the generation of synthetic data arises as a possible solution, under the
premise of being able to create realistic, large datasets artificially, from the given structural
specifications. This approach was originally proposed by Rubin in 1993 (Rubin, 1993), as an
alternative that made it possible to use and share data without disrespecting the present
rigorous regulations regarding the handling of sensitive data (such as the European Union’s
GDPR (GDP, 2018)), since the data in question, altough very similar to corporate datasets
concerning real users, would not be obtained by direct measurement. Since then, this method

1



1.2. Motivation 2

has been further explored and refined, being applied in the most diverse areas such as
Smart Homes (Dahmen and Cook, 2019), spacial microsimulation models (Smith et al., 2009),
Internet of Things (IoT) (Anderson et al., 2014), Deep Learning, (Ekbatani et al., 2017) and
automotive applications (Tsirikoglou et al., 2017).

The present dissertation serves to expose and document the processes of ideation and
development of the application DataGen From Schemas, whose objective is to generate
synthetic datasets directly from either JSON or XML schemas. This application must fulfill
two requisites: on the one hand, it must be able to generate datasets of ample size and with
realistic information; on the other hand, it must also be able to parse the users’ schemas and
obey their specifications, so that the created data is formally and structurally compliant. In
order to satisfy these conditions, the platform will be built upon another existing application,
DataGen, that will be contextualized in chapter 2.

1.2 motivation

DataGen is a versatile tool that allows the quick prototyping of datasets and testing of
software applications. Currently, this solution is one of the few available that offers both the
complexity and the scalability necessary to generate datasets adequate for demanding tasks,
such as the performance review of data APIs or complex applications, making it possible to
gauge their ability to handle an appropriate volume of heterogeneous data.

The core of DataGen is its own Domain Specific Language (DSL), which was created for
the purpose of specifying datasets, both at a structural level (field nesting, data structures)
and a semantic level (values’ data types, relations between fields). This DSL is endowed
with a wide range of functionalities that allow the user to specify different types of data,
local relations between fields, the usage of data from support datasets depicting different
categories, the structural hierarchy of the dataset and many other relevant properties, as well
as powerful mechanisms of repetition, fuzzy generation, etc. This allows for the generation
of very miscellaneous and representative datasets in either JSON or XML, while dealing
with intricate and demanding requirements.

In the current scheme of software development, any enterprise that operates with JSON
or XML data must have well-defined and thorough formal specifications to control and
monitor the data flow in their applications, in order to assure that incoming information
is well-structured and compliant with the software’s requirements and outgoing data is
presented as intended and does not produce unexpected behaviour. As such, it is essential to
formulate schemas for semantic and structural validation, by modeling data either internally
or via third parties with tools oriented to this goal, in order to restrict and enforce the
content intended for each solution.
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Considering the present necessity for these schemas in enterprises’ business models and
their recurring usage, it stands to reason that a program capable of producing large and
accurate datasets from JSON/XML schemas is an incredibly valuable asset, as it provides the
capacity to quickly and effortlessly create representative data to test and debug platforms in
development, as well as to evaluate their performance under heavy stress, without having to
manually concoct the information or wait for third parties to provide such resources.

As such, DataGen From Schemas emerges as a complement and an extension to its prior
version, looking to generate datasets directly from schemas. By doing this, the user is
given the option to specify the structure of the intended dataset in either JSON or XML
Schema. This arises as an alternative to the definition of the operational rules of the dataset
in DataGen’s native DSL, for which the user must first learn how to use it, through the
lengthy documentation available. With this, the formulation of the DSL model becomes an
intermediate step executed in the background and the user only has to interact with the
schema and the resulting dataset. However, the generated DSL model will also be made
available, to enable further customizability in DataGen.

As such, this new product aims to offer a solution for a present and generalized need in
the software development process and increase DataGen’s use cases significantly, making the
dataset generation process simpler and more acessible to any user. This new component
acts as an abstraction layer over the existing application, ignoring the necessity to learn
how to use the DSL from its documentation and greatly expediting the process of structural
specification of the dataset.

1.3 objectives

The main goal of this dissertation is the generation of datasets from schemas (formal
specification files) written in either of the data exchange formats JSON and XML. More
specifically:

• Development of a compiler to filter and preprocess JSON schemas and another for
XML schemas;

• Creation of converter programs capable of generating valid DataGen DSL models from
the filtered data;

• Development of a web application, with user-friendly features and an intuitive worflow;

• Creation of REST routes to enable the application’s usage without its interface and
eventual third party integration;

• Establishment of communication between the new application and its prior version;
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• Testing of the implementation;

• Deployment of DataGen From Schemas.

1.4 methodology

The work methodology for the present dissertation follows these steps:

• Bibliographical research on synthetic data generation from schemas;

• Requirements elicitation and analysis for the application;

• Study and decision of adequate technologies for the implementation;

• Development of the solution;

• Testing and performance analysis of the implementation;

• Weekly meetings with the supervisor.

1.5 structure of the document

The present chapter’s purpose was already established in the beginning of the chapter.
Chapter 2 describes the state of the art, i.e. it presents all relevant knowledge obtained on

the topic of this dissertation, relative to pertinent technologies and existing related work.
It begins with a study of JSON and XML, in order to gain a clear understanding of what
is intended to generate and what difficulties may originate from the differences between
these two formats. Next, a deep analysis is carried out on DataGen, the application that will
act as the foundation of this new version, to show in what measures it is adequate for this
role and determine what shortcomings it has that will need to be addressed. Finally, several
study cases of similar existing applications are carefully investigated with the objective of
identifying their advantages and weaknesses, in order to perform a minute elicitation of
requirements for DataGen From Schemas.

Afterwards, in chapter 3, a detailed and well-substantiated approach is proposed for the
development of the final product, postulating a compartmentalized architecture that shares
certain layers/components with DataGen, justifying the technologies of choice and clearly
outlining what functionalities are meant to be implemented in each part of the application.

Chapter 4 covers everything that was developed in the scope of this project, starting
with a meticulous explanation of both the JSON Schema and XML Schema components of
the product, namely their respective modules and workflow, problems faced during their
implementation and the approaches chosen to solve them, both from an infrastructural and
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an algorithmic standpoint, then an exposition of other extra features developed for user
conveniency and, finally, an overview of the application’s graphical interface.

Chapter 5 displays several complex example use cases that well demonstrate the capabili-
ties and efficiency of DataGen From Schemas, which were used to test the application.

Finally, chapter 6 presents conclusions on the work performed and reported in this thesis,
contemplating the final product that was accomplished and comparing it to the software
ideated in earlier stages, identifying its biggest successes and existing flaws and anticipating
future work that could be done to improve the application.



2

S TAT E O F T H E A RT

This chapter exposes all knowledge obtained from the research carried out, within the
scope of this project, on the central themes of the present dissertation and related work
that is currently available. Firstly, the JSON and XML formats are subjected to a detailed
study, in order to investigate what kind of information each of them can represent and
in what circumstances they should be utilized, so as to have a clear understanding of the
data to be produced. Following this, a minute analysis is carried out on DataGen, the base
application upon which DataGen From Schemas will be constructed, which aims to examine
its compatibility with schemas and determine which of its functionalities will be useful
for the schema translation procedure. Lastly, related work available online is carefully
studied - in this case, JSON and XML generators from the respective schemas. The goal is
to perform a thorough requirements elicitation, dissecting the existing products to identify
their advantages and weaknesses, in order to objectively determine lists of features that are
desirable and others to avoid in DataGen From Schemas.

2.1 formats to adopt

The portuguese National Digital Interoperability Regulation (RNID), published in 2018, is a
regulation the aims to standardize the provision of information in the web performed by
IT systems in Portugal, establishing that all existing information in circulation must be
provided in open, non-proprietary formats, in order to assure the technical and semantical
interoperability, in general terms, within the Public Administration. This norm, which
reflects a growing universal approach to online data exchange (as reflected by the european
guidelines to interoperability, for example), resulted in the majority of portuguese websites
leaning towards two data formats in particular, traditionally used for communication
between web services - JSON and XML.

In historical terms, XML was initially the most popular format for data exchange between
applications, during the emergence and establishment of web services. Over time, it was
concluded that the format was too heavy for this purpose, as it was observed that the
data files were too large and delayed the communication between applications and even

6
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their very own provision of services. As such, new alternatives started being explored,
namely JSON, which turned out to be one of the most interesting and practical solutions,
thanks to its lightweight and compact nature, reason for which it started being incrementally
implemented in this area over the following years. Ultimately, with the arrival of REST
architectures, JSON became the format of election for data exchange between web services,
even though XML still continues to be widely used nowadays in this context.

As such, the data formats that DataGen From Schemas aims to implement are precisely
JSON and XML, which, even though they are considered competitors in the context of data
exchange, are able to represent different types of information and have distinct applications.
This section will conduct an analysis of these formats, in order to better understand their
structures, identify the main differences between these two languages and foresee what
obstacles may arise in their generation through DataGen, which will be discussed in further
detail in section 2.2.

2.1.1 JSON

JavaScript Object Notation (JSON) is a lightweight data-interchange format derived from the
programming language JavaScript, whose simplicity and readability contributed to its current
wide popularity. It possesses an ample and growing support in numerous programming
languages (C++, Java, JavaScript, Python, etc), presenting itself as a strong candidate for fast
and compact exchange of information between applications.

This format is used to represent structured information, i.e. data with rigid and well-
defined configurations, where no divergencies are allowed from the structure established
in the schema, e.g. a different data type for a certain field. JSON’s syntax reflects this
trait, having only four different primitive types for values - string, number, boolean and
null - and constructing instances entirely upon only two different data structures: objects
(non-ordered collections of key/value pairs) and arrays (ordered lists of values).

Figure 1: Structures of a JSON object and array.
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2.1.2 XML

Extensible Markup Language (XML) is a flexible text-based meta-language, i.e. a markup
language usable on its own, but that can also act as a basis for other languages, for publishing
and exchange of information.

This format supports both structured and semi-structured data - data whose model
determines a flexible formal structure, which can provide several degrees of freedom, while
still having markers (in this case, tags) to separate structural elements and distinguish
different fields in the instance. Below is an example of semi-structured data in XML, with
the respective specification in XML Schema Definition (XSD):

Figure 2: Definition of semi-structured data in XML Schema and respective instance.

Moving on to the study of the XML syntax and the structure of the resulting instances, it
is possible to observe the following characteristics:

• usage of tags to separate the content from the formatting, clearly outlining where the
content of each element begins and ends;

• hierarchical structure of elements - for each record, there is a root element and all
others are nested in it;

• each element possesses:
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– opening and closing tags, or only one tag, optionally, if the content is empty;

– attributes: these represent “properties“ of the element, information complemen-
tary to the content;

– content: can be either simple (text), complex (nesting of other elements) or mixed
(both).

2.2 datagen

DataGen is a full-stack web application that is open-source and free to use, available at
https://datagen.di.uminho.pt/. It was developed by the author of the present dissertation,
Hugo Cardoso, in collaboration with other colleagues and under the guidance of the
advisor José Carlos Ramalho, who posteriorly proposed a follow-up project to expand the
application’s functionalities, for it to be able to generate datasets directly from schemas. This
idea would be further refined and ultimately become the central topic of this dissertation,
materialized in DataGen From Schemas.

It is strongly encouraged to check the published paper on DataGen’s development and
functionality first (Santos et al., 2021), in order to be better contextualized in the capacities
of this product and have a greater understanding of what will serve as the foundation for
the new software described. For the sake of brevity, DataGen’s DSL mechanisms will not
be explained in this document and it will be assumed that the reader is familiar with them,
going forward.

DataGen is a powerful and versatile tool that can generate large datasets with diverse
content according to the user’s needs, from specifications written in its own DSL. For it
to serve as the foundation of DataGen From Schemas, it is necessary to ensure that this
application possesses the means necessary to generate data from schemas, i.e. to verify
that there is compatibility between the information and structures specified in schemas and
the program’s method of generation and functionalities. The objetive is to use DataGen as
a middleware: since this application is already capable of generating datasets from DSL
models, there is no need to reinvent the wheel - the intent is to create a preprocessing routine
capable of parsing schemas and translating them to DSL models, then charging DataGen
with producing the final result from these intermediate models. As such, DataGen must
fulfill several requirements:

1. Capacity to generate data in either JSON or XML;

2. Capacity to generate both structured (JSON) and semi-structured (XML) information;

3. Capacity to program every primitive data type made available in schemas;

4. Capacity to generate recursive structures;

https://datagen.di.uminho.pt/
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5. Capacity of fuzzy generation.

2.2.1 Generation in JSON and XML

DataGen provides the option to generate datasets in both JSON and XML. During the parsing
of the DSL model, its compiler creates an intermediate data structure with the final dataset,
correspondent to a JSON object, which can then be translated, or not, to XML (Santos et al.,
2021). This translation procedure creates a string with data in XML, as it iterates the structure
recursively.

Thus, it can be concluded that the translation from JSON Schema to DataGen’s DSL and
from the DSL to JSON is straightforward and without any major complications, given that
the intermediate data structure generated by the program is also a JSON object. Furthermore,
JSON and JSON Schema share the same syntax, since the latter is a JSON vocabulary, which
means it is written in JSON and operates under a strict set of rules, where specific keywords
have precise meanings and can be used to annotate or validate JSON documents. This
common syntax makes it easy to interpret the schema and validate the instance, resulting in
a direct translation along the aforementioned pipeline. As such, DataGen is ideal for creating
datasets with structured information in this data format.

However, the application’s generation procedure of XML data is rudimentary: it only
produces elements, possibly nested, with an opening tag, the respective value and a closing
tag. This is because the software was originally projected to fabricate data in JSON, hence
the syntax of the Domain Specific Language being inspired in this format, having only later
in the development phase been added the feature of translation to XML. This key detail
entails complications for the translation of XML Schema to the DSL, due to a crucial set
of structural differences between the JSON and XML formats, which originates from the
following JSON traits:

• it has no notion of attributes;

• defines only structured content and is not able to represent semi-structured information,
unlike XML. JSON is not capable of wrapping a given property with text, since that
text itself would also need to be formatted as a key/value pair in order to be accepted
in the JSON structure;

• does not support several properties having the same key, at the same depth in the
structure - this results in JSON overwriting them in the instance and only saving the
final value declared, meanwhile this is possible in XML.

In order to circumvent these issues, it will be necessary to expand the funcionalities of
DataGen’s translator to XML. Under the aforementioned circumstances, the DSL model
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produced by DataGen From Schemas will be annotated with special flags in the properties’
keys, which will be posteriorly parsed by the XML translator, as a means to bypass the
gaps in JSON’s ability to represent XML information. The translator will then effect the
required changes to the elements according to each flag’s meaning, before removing it and
preserving only the original key, presenting a clean and formatted final dataset to the user.
DataGen From Schemas will follow a difficult to read and relatively elaborated convention for
these markers, in order to ensure that users of DataGen’s original version don’t use them
by coincidence while constructing their DSL models and obtain results different from the
intended. This strategy should require at least the following markers, whose implementation
will be further discussed in 4.2:

• attribute: |DFSATTR
attributename|;semi−structuredelement:|DFSM IXED

key |;

•• the elements’ keys will be numbered, keeping a separate counter of occurrences for each
distinct key, in order to not overwrite them in the intermediate JSON structure: DFS_1__{key},
DFS_2__{key}, ...

With this method, it becomes possible to represent semi-structured content in the generated
data, since the translator to XML will take charge of identifying the elements with mixed
content, through the respective flag, and wrapping them in lorem ipsum. Requirement 2 is
thus fulfilled.

As such, the translation routine will become much richer in terms of functionalities and it
will be possible to generate much more complex and interesting datasets in XML, which
also checks requirement 1 in its entirety.

2.2.2 Generation of Primitive Data Types

Besides their structural differences, JSON and XML schemas also possess distinct primitive
data types. To make sure that DataGen is an adequate application upon which to base this
project, it is necessary to guarantee that it is possible to generate each of those types through
the tools of its domain language.

Furthermore, the ability to induce controlled randomness in the values’ generation pro-
cedure is also pertinent and very relevant, so that the result is not deterministic. By using
DataGen as a middleware, the intent is to provide users with the intermediate DSL model as
well, giving them the option to utilize it directly in DataGen’s original version (either via its
front end or by HTTP request), if they so choose, and customize it to their liking. As such,
DataGen From Schemas should be able to introduce controlled randomness in the values of
the model it generates, so that it does not always produce the same instance whenever it is
parsed, thus allowing to generate heterogeneous datasets from the same initial state.
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JSON Schema

The main component of DataGen is its Domain Specific Language (DSL), which allows the
user to specify the intended dataset, both at a structural level (field nesting, data structures)
and a semantic level (values’ data types, relations between fields). Its syntax is built upon
the JSON format, having been incrementally attached with a wide range of functionalities,
namely mechanisms of repetition, fuzzy generation, support datasets, among others. As
such, there is a direct translation from JSON to the DSL, so it already incorporates all of
JSON’s primitive data types:

Figure 3: Primitive data types of the JSON format.

Below is presented a simplistic example of these types’ representation in DataGen’s DSL:

Figure 4: Simplistic example of JSON data types in DataGen’s DSL.

Therefore, it is possible to generate any primitive data type programmable in JSON
Schema. However, the code snippet presented above is deterministic, so it is not ideal yet.
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It is here that DataGen’s interpolation functions come in, a powerful tool of its grammar
that allows the user to introduce premeditated randomness in the values’ generation, by
restricting their type and possible range of values. The application has a vast documentation
of all the functions made available and how they operate, listing every data type that can
possibly be generated and the restrictions (arguments) appliable to each of them. Rewriting
the above example with interpolation functions, it is possible to obtain the following model,
which can produce a huge combination of different results:

Figure 5: Example of JSON data types with interpolation functions in DataGen’s DSL.

Thus, it can be concluded that DataGen can not only generate every primitive data type
of the JSON format, but also randomize the generated values, according to preplanned
constraints, allowing the final values to be decided in execution time and not a priori.

XML Schema

The XML format assumes an hierarchical structure, where XML elements are nested inside
others, all the way up to the root element of the instance, similar to a JSON object. Each
element can possess attributes, as well as a text value and/or other elements nested within
it, acting akin to a node in an information tree.

An element with complex content corresponds to the nesting of one or more XML elements
within itself and is the closest there is to a JSON object in this syntax. This also implies that
the notion of array does not exist in this data format: to adapt this structure from JSON to
XML, it is necessary to arrive at a compromise. The approach adopted by DataGen consists
in converting each element of the array in a key/value pair, where the key is a label of the
respective value’s index in the original structure.

Therefore, it is concluded that XML Schema’s primitive data types are all elementary
(non-compound, unlike JSON objects and arrays). There is, however, a wide variety of these,
in contrast to the five elementary types of values distinguished by JSON (figure 3), as can be
observed in the following image:

https://datagen.di.uminho.pt/documentacao
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Figure 6: Primitive data types of the XML format.

After carefully analysing the chart presented above, it is possible to deduce that all of
these types can be divided into several categories:

• boolean: Boolean;

• integer: integer and all of its derived types;

• number: decimal, double, and float (integers are also contained in this category);

• string: string, normalizedString, and all of its derived types, QName, and NOTATION
(these last two have specific meanings in the context of the schema, but are strings
regardless);

• binary: base64Binary and hexBinary;

• temporal: duration, dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, and
gMonth;

• URI: anyURI.
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Taking into account that binary, temporal, and URI types are also represented by formatted
strings, despite their content having a specific meaning associated with the type in question,
it can be concluded that the XML primitive types are basically a deep branching of the
elementary JSON types, the only difference being that there does not exist any notion of
null. Thus, it is possible to state the DataGen possesses, theoretically, the capacity to generate
any of these types, as was explained in 2.2.2.

However, it is necessary to ensure that it also has the means to restrict the value to be
generated to the lexical space of each primitive type, in order to obey the hierarchy presented
in figure 6: for example, any token is a valid normalizedString, but the opposite is not true.
Moreover, it is once again important to be able to induce controlled randomness in the
generation procedure of any of these types. By analysing all of the types case by case, it
can be infered that the following types have direct translation to DataGen’s DSL, through its
interpolation functions:

• numeric types - functions integer and float , defining ranges of values correspondent
to each type via their arguments. For example, the type byte translates to integer(−128,
127) and unsignedShort to integer (0, 65535);

• Boolean - boolean();

• date - function date, specifying the date format established by the type’s lexical space,
YYYY-MM-DD - for example, date("01−06−1950", "20−12−2010", "YYYY−MM−DD");

• dateTime - function date without the date formatting argument, which produces a
date in raw format, e.g. date("01−06−1950", "20−12−2010");

• time - function time with arguments that constrain the value to the type’s lexical space,
for example time("hh:mm:ss", 24, false , "12:00:00" , "20:30:00");

• gYear - function formattedInteger, whose third argument guarantees that the produced
integer always has the number of digits indicated (in this case, 4), e.g. formattedInteger
(1700, 2030, 4, "");

• gMonth - interpolation of two hyphens with the function formattedInteger, to generate
values like “–06“: '−−formattedInteger(1, 12, 2, "") ' ;

• gDay - interpolation of three hyphens with the function formattedInteger, to generate
values like “—15“, e.g. '−−formattedInteger(1, 31, 2, "") ' ;

• language - function language, which chooses from a list of abbreviations of the most
frequently used languages.
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All of the remaining primitive types are strings defined by very specific lexical spaces. For
these cases, another important functionality of DataGen will be used: JavaScript functions -
these allow the user to instantiate the value of a model property as the result of a function,
where any intended code can be written, which is later resolved during execution, originating
the final value. This way, it is possible to translate the rules of each type’s lexical space to a
set of operations and logical conditions, creating code snippets that generate random values
of the remaining XML types.

Concluding, it is also possible to generate any primitive data type of XML Schema with
DataGen. As such, the application fulfills requirement 3.

2.2.3 Generation of Recursive Structures

DataGen From Schemas must not allow infinite recursion in structures, since it needs a stop
condition for the generation procedure, otherwise it would end up stuck in an infinite loop.
As such, it will be necessary for the program to implement a restriction over the maximum
depth of recursive specifications in schemas. For the sake of convenience, a setting for the
minimum level of recursion produced in such datasets will also be provided. These choices
will be made available to the users in the application’s front end, in a settings menu, where
they can adjust them to their liking, according to their particular use cases, managing the
balance between the intended structure depth and the complexity/generation time of the
dataset.

This way, the maximum depth of a dataset will be decided a priori. Taking into account
that the JSON-like syntax of DataGen’s DSL makes it possible to specify any intended level
of nesting of data structures, the ability to generate recursive structures is thus assured,
under a set of reasonable and essential conditions (requirement 4).

2.2.4 Fuzzy Generation

The Domain Specific Language of DataGen provides several tools of fuzzy generation that
are able to restrict the very existence of model properties in the produced instance based
on either logical or probabilistic conditions (Santos et al., 2021). These functionalities are
necessary to deal with some peculiar mechanisms of schemas, some examples of which will
be presented below, pertinent to XML schemas:

Choice Elements

An element of asset type choice allows one and only one of its nested elements to appear
in the final instance, i.e. it represents a set of mutually exclusive elements. DataGen’s DSL
provides the directive or, which has exactly the same functionality, randomly choosing one
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of its specified properties when generating the dataset. As such, there is a direct translation
between these two features, which allows for a random element of the set to be chosen
in runtime, thus making it possible to produce heterogeneous results from the same DSL
model.

Figure 7: Translation of a choice element to DataGen’s DSL.

All Elements

An element of asset type all defines a set of unordered XML elements, i.e. they can appear
in any order in the final instance. This will be implemented using the DSL’s tool at_least ,
which allows for a random subset of properties to be produced, by specifying the original
set of properties and the minimum number of elements to be selected for the subset. An
essential detail of this functionality is that the properties are chosen randomly and added to
the final dataset by the order in which they are selected. This can be taken advantage of by
translating an all element from a schema to an al_least directive that selects every element
of the set, in the DSL model, effectively shuffling them.

Figure 8: Translation of an all element to DataGen’s DSL.
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2.3 related work

In this section, a thorough analysis of several real cases studies with the same finality as
DataGen From Schemas will be carried out, in order to understand how versatile and complete
the existing solutions are, at present. The focus will be on generating semantically cohesive
data, since both specification languages have a high complexity and taking into account
that DataGen already guarantees an efficient and scalable data generation procedure. A first
subsection will highlight some of the most popular tools for generating JSON documents
from JSON schemas, followed up by another that explores their XML equivalents.

2.3.1 JSON Generators

JSON Schema is a much newer concept than XML Schema, which was originally published
in 2001. As such, it is natural that the data generation tools from JSON schemas that exist
presently are not only fewer in number, but also of lower quality overall.

It is important to distinguish between JSON Schema validators and data generators
from JSON Schema. There are several intuitive and comprehensive programs online for
validating schemas, namely Hyperjump JSV, json-everything, jsonschema.dev, and JSON
Schema Lint. However, these applications are not capable of generating data from schemas,
they serve a different purpose - validating JSON documents against schemas (and possibly
vice versa). Therefore, these tools have great practical value for the development of this
dissertation, making it possible to test numerous instances and application cases of schemas,
in order to better understand their syntax and purpose, as well as to certify that DataGen
From Schemas is creating correct and compliant data, but they do not have the same function
as the intended application. For this reason, they will not be addressed in this dissertation.

On the same note, DataGen From Schemas should also not be confused with schema
generators from JSON, for example JSON Schema Tool and JSON Formatter, as these
programs implement the opposite workflow of what is intended, generating schemas from
instances instead.

Finally, it is relevant to mention that there do exist some software packages for generat-
ing fake JSON data from schemas, such as json-schema-generator and json-schema-faker.
However, these packages only implement a very old and outdated version of JSON Schema,
draft-04. Since then, there have been published several further versions of the specification
which are not backward compatible - draft-04 has a vastly smaller range of features compared
to the current draft 2020-12 and some of its keywords now have entirely different semantics,
such as the keyword items. As such, these data generation packages are not viable at present
and in the context of DataGen From Schemas, since the application is projected to have an
up-to-date and complete JSON Schema parser.

https://json-schema.hyperjump.io/
https://json-everything.net/
https://jsonschema.dev/
https://jsonschemalint.com/#!/version/draft-07/markup/json
https://jsonschemalint.com/#!/version/draft-07/markup/json
https://www.jsonschema.net/
https://jsonformatter.org/json-to-jsonschema
https://www.npmjs.com/package/json-schema-generator
https://www.npmjs.com/package/json-schema-faker
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00
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Moving on to the examination of some existing data generators, two different applications
were selected to be analysed in this subsection:

JSON Schema Validator and Generator - ExtendsClass

This program is extremely basic and has little to no utility in the paradigm of data generation.
It demonstrates an enormous lack of functionalities, given that it does not implement gener-
ation mechanisms for a great percentage of the JSON Schema syntax, and the functionalities
that it does possess have a very limited and reductive implementation:

1. the application is divided into two major components: a JSON generator from JSON
Schema (and vice versa) and a JSON validator, that checks against the inserted schema.
Ironically, these two tools that should complement each other in the program’s work-
flow frequently contradict themselves, when the validator determines that the data
created by the generator is not a valid instance of the very same schema from which it
was infered, which immediately highlights the poor nature of this generation program;

2. the generation of values is not random. All JSON content that the application is capable
of generating boils down to an extremely basic set of default values - number: 0.0,
integer: 0, string: "", boolean: true, object: {} , and array: [] . The minimal effort behind
this generation procedure implies numerous serious errors in the resulting instances,
as will be explained below;

3. it is not capable of generating any content when the type keyword is specified using
array notation, to restrict the instance to one or more primitive types, for example
{ "type": ["number"] } or { "type": ["number", "string"] };

4. the generation of enumerations is deterministic, since the program always chooses the
last value of the enumeration. Furthermore, it is also faulty, given that it mistranscribes
the value in consideration to the JSON document most of the time: if it’s a string, the
program does not wrap it in quotation marks and generates an invalid value; in case of
an array, it does not wrap its elements in square brackets; if it’s an object, it produces
[object Object], which means the program tried to write a JavaScript object directly to
a string without first converting it with the function stringify ;

5. when generating strings:

• it ignores length keywords: minLength and maxLength. Since any string value
generated defaults to an empty string, any set of restrictions for a string with
length greater than zero implies that the created value is not semantically compli-
ant;

https://extendsclass.com/json-schema-validator.html
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• it is not capable of generating the syntax’s embedded string formats: date−time,
time, email, hostname, etc.

6. when generating numbers, it does not respect any of the numeric type keywords
existent in JSON Schema, namely multipleOf (defines a number of which the in-
stance’s value must be a multiple of) and range keywords: minimum, maximum,
exclusiveMinimum, and exclusiveMaximum;

7. when generating arrays:

• it is not capable of producing valid data from array schemas with tuple validation,
whose purpose is to specify a collection of items where each one has a different
schema and its ordinal index is meaningful. Regardless of how many items are
semantically defined in the schema, the program always produces a simple empty
array, which is not even valid in this context;

• it ignores the keyword additionalItems, which indicates if the structure is allowed
to have more items besides those manually specified or not. This keyword is
effectively futile from this generator’s perspective;

• likewise, it ignores all the remaining array type keywords of JSON Schema.

8. when generating objects:

• it never generates any additional property, even when the keyword additionalProperties
is set to true, which makes this keyword useless in this program;

• even if a subset of object properties is declared mandatory with the keyword
required, the solution always produces either all of the object’s properties or only
those that are required (the option is given to the user via a checkbox in the
interface). It does not determine the existence of optional properties randomly
(for example, through probabilities), which makes the result very predictable and
uninteresting;

• it ignores the keyword propertyNames, which allows the user to determine a
text pattern to which all of the object’s keys must conform, possibly generating
properties with keys that are not compliant with the set pattern;

• it ignores object size keywords minProperties and maxProperties.

Taking into account that the generation of the primitive data types in ExtendsClass’s
application is extremely limited and rather defective, as was discussed above, further testing
of more complex functionalities is not justified, since they do not possess a sturdy foundation
in order to work properly. This tool is very rudimentary and its implementation of the JSON
Schema syntax leaves a lot to be desired, so it exhibits very little utility for generating data
from schemas.
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JSON Schema to JSON Converter - Liquid Studio

This converter is an application provided by Liquid Studio, which also has some operating
tools with JSON support, even though its main focus is on XML. Although there is an
integrated development environment that centralizes this entity’s generation tools, as will be
mentioned again in 2.3.2, this JSON Schema to JSON program has not yet been built into the
software, so its only available version currently is a free online program. As such, this was
the version that was used for testing purposes, the results of which are presented below:

1. it introduces randomness in the generation of values of the elementary primitive types:
numeric types, booleans and strings. Objects and arrays produced are always empty,
unless further semantical restrictions are imposed on their content, in the schema.
However, when generating an instance from a schema, the application caches the
result and reuses it in subsequent generation attempts from the same model. For one
to obtain different outcomes, it is necessary to refresh the page and input the same
schema again for every new instance intended, which makes this operation more time
consuming and worsens the user’s experience, retracting value from the program’s
ability to create varied instances from the same initial state;

2. unlike the previous program, it is able to correctly process the keyword type when
its value is specified in array notation, even choosing the data type to be generated
randomly when the schema restricts the JSON document to more than one type;

3. the generation of enumerations is also defective: sometimes it works correctly and
randomly selects one of the values of the keyword enum, at others it generates a new
arbitrary value that is not specified anywhere in the schema;

4. when generating strings, it abides by the length keywords minLength and maxLength,
creating strings with lengths within the established limits. Even so, it also does not
support the generation of JSON Schema’s built-in string formats (keyword format),
which is a major drawback for the program’s application cases and for the ease of
instantiation of formatted strings;

5. when generating numbers, it does not show any improvements over the ExtendsClass
software - the range keywords and multipleOf are also ignored in this case, creating
values that are not compliant with the restrictions imposed;

6. the generation of arrays has little to add compared to the previous application’s:

• it obeys the keywords minItems and maxItems, generating structures with lengths
within the established range. However, this funcionality is not very flexible, since
the generated array values are all random, including their data types. The program

https://www.liquid-technologies.com/online-schema-to-json-converter
https://www.liquid-technologies.com/online-schema-to-json-converter
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is not able to combine the length constraints with other semantic constraints
relating to the array’s content, e.g. the keywords contains or prefixItems;

• it seems to respect the keyword uniqueItems, since all generated items are random
and, in all tests performed, no two items of the same array ever coincided;

• nonetheless, this solution is also missing a big percentage of JSON Schema
array functionalities, namely tuple validation, random generation of additional
items (when additionalItems is set to true), and the inclusion keywords contains,
minContains, and maxContains, which are simply ignored in the current version.

7. when generating objects:

• it obeys the specification of properties’ contents according to name patterns
(patternProperties), which the previous application did not. For example, if a
property’s value is defined as a string and there is also a pattern rule that covers
the name of the property in consideration and maps its value to a numeric type,
the generator recognizes the inconsistency and throws an error;

• it also ignores additionalProperties and never generates any additional properties,
which makes this keyword redundant in this context of data generation;

• it always generates all properties specified in the schema, whether or not they are
required - in this aspect, it even has a disadvantage compared to the previous
program, which allowed the user to predefine if the final instance should contain
all optional properties or none of them;

• it ignores the keyword propertyNames, possibly generating properties with
names that do not comply with the indicated standard, as well as the object
size keywords minProperties and maxProperties. It does not correct these short-
comings that also existed in the previously analyzed generator.

It is possible to conclude that, despite showing some improvements over ExtendsClass’s
application, which in themselves already make this tool more interesting and versatile, it
still lacks in many important areas of the generation of JSON Schema’s primitive types.
These functionalities can affect not only each other, but also other, more complex tools of the
syntax built upon them, for example schema composition and conditional application of
subschemas, which makes their incorrect or non-existent implementation a serious flaw of
the software.

As such, it is intended to address the issues exposed in this section on JSON generators in
DataGen From Schemas, in order to achieve a more consistent, powerful, and flexible product.
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2.3.2 XML Generators

This subsection aims to explore the advantages and disadvantages of two different applica-
tions whose purpose is to generate XML data from an input XSD model, arguably the most
popular options available presently.

XSD2XML: Online XSD to XML generator

This tool proved to be quite disappointing, exhibiting a lack of numerous features that are
important to the data generation process and a weak and rather limited implementation of
the existing functionalities. Next will be exposed the downsides to this free web application,
ascertained through its extensive testing:

1. it performs syntatic validation on the schemas input by the user, to check if the
specification is well-constructed, and also some degree of semantic validation, however
it is not very flexible - for example, in the case of a recursive schema, it throws an error
to warn the user that the schema is invalid, although it is not. A possible solution for
this issue would be to have an imbedded recursion limit in its generation algorithm;

2. it does not recognize all the base XSD data types: it does not support any type derived
from normalizedString (token, language, Name, ID, ...). Some of these types are rarely
used, but the absence of types such as ID and IDREF, for example, is very significant,
since it automatically excludes the possibility of creating datasets with identification
and reference of elements;

3. the generation of values is not random. Each data type has predefined values, according
to which the XML content is produced: string -> ' str1234 ' , int -> 123, etc;

4. limited support for restrictions of types - this tool is not reliable when it comes to
generating user-constrained types, since the produced content rarely respects the
restrictions specified in the schema;

5. the generated lists are invalid - as was approved and published by the World Wide Web
Consortium (W3C), any type of XML list must have its items separated by whitespace.
However, the values of the lists created by this program are all adjacent, as well as
predefined, and there is no delimiter separating them;

6. it is not able to generate unions;

7. it does not randomize the order of elements of asset type all ’s contents, simply
generating the elements in the order in which they appear in the schema;

http://xsd2xml.com/
https://www.w3.org/TR/xmlschema11-1/
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8. it ignores occurrence attributes completely, generating all elements a single time. This
is especially crucial, for example, when it comes to elements of asset type sequence - it
generates sequences elementarily, with a single occurence of each element, even if the
minimum number of occurrences specified for the entire sequence is greater than one;

9. it is not capable of generating choices - even though it apparently lets the user decide
between generating only the first element of a choice or all of them, none of the tests
carried out were able to accomplish either of these options: the element with the choice
always came up empty and none of its nested elements were ever generated;

10. when the schema has semi-structured content, it does not generate any enveloping
text, just the mixed elements themselves. Although this is technically compliant
with the schema and a valid iteration of mixed content, it is very reductive and not
representative of the possible results. Furthermore, and circling back to item 4, if the
content of the mixed element’s type is emptiable and the type is restricted so that it has
no child elements and has non-empty surrounding text, the generated data is invalid;

11. it completely ignores the attribute nillable , even when it is set to true - it never
generates the respective element with an attribute nil , only its regular content;

12. does not support cross-referencing between schemas (with the keyword include), since
there is no functionality for file upload or any sort of workaround to enable such a
feature;

13. it allows the user to predefine customized values for each of the supported data
types. Still, even though this is a good addition to the program, it is redundant and
its necessity arises solely from the application’s inability to correctly process type
restrictions, since this exact funcionality can be achieved directly in the schema, by
restricting a simple type to a set of values with an enumeration.

After verifying all these flaws in the application, it was considered unnecessary to proceed
with further testing, since little value can be extracted from it. XSD2XML is an extremely
basic and simplistic data generation tool, capable of rigorously complying with only the
most elementary schemas. It does not implement extensive and relevant parts of the
XSD syntax, such as restrictions of simple types, and it does not introduce any kind of
randomness whatsoever in the data generation prodecure, given that the result of every
intermediate operation is predefined and limited. Furthermore, the solution is also not
capable of generating instances with large quantities of data, always seemingly creating as
little data as necessary/possible, which results in uninteresting datasets of little use.
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XSD to XML Converter - Liquid Studio

As mentioned in 2.3.1, Liquid Studio provides an advanced toolkit for development in XML
and JSON, complete with resources for mapping and transformation of data. Among its
many tools, this toolkit possesses a XML data generator from schemas (XSD). Although
this software is commercialized and its purchase is required in order to freely enjoy it, it is
possible to sample the full product during a 15-day free trial period. This was the method
utilized to gain access to the application for testing purposes, as a means to ensure that the
results obtained corresponded to the best capacity of the software. There is a free online
version of this program available at http://www.liquid-technologies.com/online-xsd-t
o-xml-converter, however the tests carried out on both alternatives proved that the toolkit
version is superior and solves some issues of its alternative. For this reason, this document
will disclose the conclusions drawn from the purchasable version of the product.

This generator proved to be far superior to XSD2XML, correcting many of its shortcomings
and proving to be a more robust and versatile tool:

• it implements the whole XML Schema syntax, which means it supports every em-
bedded simple data type (including types derived from normalizedString), as well as
every kind of XSD elements, namely choices and unions, which the previous program
was incapable of processing;

• it introduces a certain degree of randomness in the generation of data - whenever it
produces a new XML document from a schema:

– it creates values of certain simple types randomly, at runtime, e.g. numeric types;

– whenever an element has an arbitrary number of occurrences (for example,
minOccurs="3"maxOccurs="10"), the number of times it manifests in the final
instance is determined randomly, within the imposed limits, somewhere along
the pipeline.

• it incorporates an effective system of schema inclusion: whenever a schema with an
include is input, the software automatically searches for the linked file in the same
directory and, if it exists, imports it into the text editor environment and takes into
account its contents when generating data from the original schema; if it does not find
the linked file, it warns the user that it is not possible to find the necessary file in the
working directory.

Furthermore, Liquid Studio’s converter possesses yet another very useful functionality that
was not mentioned in the analysis of XSD2XML, due to its total absence in that software: it
prompts the user with a set of customizable options, which allows to configure important
settings such as the upper and lower limits of recursion and the maximum size of the file to

http://www.liquid-technologies.com/online-xsd-to-xml-converter
http://www.liquid-technologies.com/online-xsd-to-xml-converter
http://www.liquid-technologies.com/online-xsd-to-xml-converter
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be generated, at which the program will stop generating optional elements. This menu gives
the user more freedom and provides better control over the generated dataset.

Nevertheless, this tool still has some relevant flaws that prevent it from being as versatile
and powerful as it could be, that will be addressed in the implementation of DataGen From
Schemas. These shortcomings are listed below:

1. like XSD2XML, it performs syntatic validation of schemas, in order to check that their
contents are well-formulated, but only partial semantic validation, not reporting any
errors in certain invalid models - for example, a schema in which a new list type is
declared, whose base type is also a list type, which is forbidden;

2. not all generated content is random - string and its derived types all have a default
value ("string"), except for the element identification data types (ID, IDREF, IDREFS),
which does not contribute for the variety and flexibility of the produced instances;

3. the values generated for the referencing data types IDREF(S) are invalid - for XML
documents of a schema that has ID and IDREF elements to be valid, the contents
of all IDREF elements must match the content of some ID element in the file, thus
referencing an actual existing identifier. This tool generates ID values according to the
following convention: "AAAA", "AAAB", "AAAC", etc; meanwhile, IDREF values are
not the same, following a different pattern: "ID001", "ID002", "ID003", etc. As such,
these identifiers and their supposed references never match, so the instances produced
are semantically invalid;

4. the generated lists are invalid, the issue being exactly the same as with the previously
analyzed application: there is no delimiter separating the list items, so each list can
pass, at most, as a single-item list. However, a (minimum) length constraint greater
than one is enough for the results to not be compliant with the schema;

5. related to the previous point, it was verified that the generation of lists is inconsistent -
with certain schemas (valid, of course), the program generates empty XML elements
and does not produce any kind of list;

6. it always generates the contents of an element all in the order in which they are
specified in the model, instead of randomizing it - although compliant with the
schema, it is an uninteresting approach to generating these elements, since their whole
purpose is precisely to allow their nested elements to appear in any possible order;

7. it is incapable of generating complete semi-structured content: it produces only the
nested XML elements inside the mixed element, without any enveloping text (same
issue that was described in XSD2XML’s item 4);
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8. it ignores the attribute nillable in elements - even when set to true, the solution always
generates the element with its regular content and never with the attribute nil instead.

In conclusion, Liquid Studio’s XSD to XML Converter is a very advanced tool, capable of
handling intricate use cases, however it is not without some unfortunate shortcomings that
limit the usability of the software and compromise the reliability of the generated data.
Nonetheless, it is a good application to study and serve as inpiration and guidestone for
DataGen From Schemas, and it is possible to elicit a considerable ammount of functional
requirements and quality markers for this type of program from it.

The conclusions drawn from the analysis of this tool, as well as the previous ones ad-
dressed in the present chapter, will be taken into account during the development of DataGen
From Schemas, aiming to correct all the flaws observed in the semantics spectrum, thus creat-
ing a more robust and reliable application and implementing the most advantageous and
useful features observed across all programs, for example the menu of customizable settings
over the intended dataset.

Now that the application’s purpose and general method of operation has been contextu-
alized and an elaborate requirements elicitation has been carried out through the study of
several relevant alternatives created for the same needs and use cases, the following chapter
will propose a thorough approach to the development of DataGen From Schemas, detailing
the application’s expected workflow, architecture and design choices, as well as the main set
of operations envisioned for the software.
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P R O P O S E D A P P R O A C H

DataGen From Schemas will be very similar to its prior version, DataGen, in terms of structure
and workflow, since the core of the user interaction is exactly the same for both applications.
To expand on this, the intended workflow for this new version is depicted in the following
image and will be explained below:

Figure 9: Workflow of DataGen From Schemas.

The program will accept the user’s input of a JSON or XML schema, which will then
be parsed by a compiler. The parser will generate an intermediate data structure with
the relevant information and a converter program will then translate it to a DSL model.
Afterwards, DataGen will take care of the remaining workload, parsing the model and
generating a dataset, finally converting it to either JSON or XML format, according to the
user’s preference.

As with DataGen, it is intended to avoid building a single monolithic server, which would
have implications in terms of performance and possible bottlenecks in the program. DataGen
From Schemas will adopt a compartmentalized architecture, which prioritizes the scalability
and availability of the application, separating its front end and back end on distinct servers.
This way, the failure of an individual component does not compromise the functionality
of the entire application, which also makes it easier and faster to perform maintenance
routines.
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This fragmented architecture makes it possible to provide a more pleasant and consistent
user experience and also provides room for the eventual enhancement of any of the individ-
ual servers, by assigning them more computation resources and fault tolerance mechanisms,
such as load balancing and redundancy, should the need arise to scale the application in
order to deal with traffic and/or availability issues.

3.1 architecture

The proposed architecture for DataGen From Schemas is reflected in the following diagram and
will be explained in detail throughout this chapter, seeking to justify the chosen technologies
and the designed structure.

Figure 10: Proposed architecture for DataGen From Schemas.

Since DataGen From Schemas is projected to be a complementary application to DataGen
with the goal of expanding the original program’s application cases, in order to enable the
generation of data from schemas, it is intended to keep some of the functionalities that
already exist in DataGen, namely the user authentication, the option to save DSL models
and their availability on the platform. It does not make sense to also save schemas in the
platform, associated with the respective user’s account, since these are files of standardized
and globally recognized formats (JSON and XML), unlike the Domain Specific Language,
which is only recognized in the context of the application.

Taking into account that all the procedures behind storing and managing this data are
already implemented in the original application, a separate new implementation in DataGen
From Schemas is not justified, since it would just be a copy of most of the existing work. On
the contrary, the hypothesis of reusing DataGen’s back end and database proves to be much
more interesting and useful, given that it allows this new version to maintain the users’
records and DSL models from the original application, ensuring the cross-platform sharing
of all persistent data between the two applications, as well as avoiding a lot of repeated
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and unnecessary work. This approach only brings advantages from the users’ point of view
as well, since it will allow them to use the same account in both applications and to edit
models from both DataGen and DataGen From Schemas.

The deployment of DataGen was performed via Docker, which allows the instantiation of
the project through containers - structures independent from the operating system -, placing
each component of the architecture in a different one. Docker encapsulates the application
and is accessed by an instance of a NGINX server, which acts as a proxy of requests to
the program’s front end and back end. The database is hidden from NGINX itself and is
completely invisible/inaccessible to any entity outside the Docker instance.

This structuring implies a further advantage for the reusage of DataGen’s back end, since it
facilitates the access to the original database, in order to use the same data. As such, the idea
is to develop a new front end for DataGen From Schemas and insert it the original version’s
Docker instance, finally linking it to the application’s back end in the Docker Compose (a tool
that helps define and share multi-container applications), in order to implement persistence
of data and allow data sharing between both versions, while keeping the data layer-secure
and hidden from outside entities.

3.1.1 Server-sided Data Generation

The processing of schemas will be performed by compilers and it is necessary to develop
distinct compilers for JSON Schema and XML Schema, due to their fundamentally different
syntaxes, as was explained in section 2.1. These compilers will be based on PEG.js grammars,
since this was the technology used to develop DataGen’s original DSL compiler and proved
to meet all the requirements of the program. Thanks to this, the author of this dissertation is
also already quite familiar with the tool and knows its various features well, so there will
not be the typical initial learning curve and it will be possible to proceed to the development
phase more quickly.

When parsing the file, the compilers will produce an intermediate data structure with
all the relevant data extracted from the schema. This structure will then be passed to a
converter program written in JavaScript (again, there will be one for each format), for direct
compatibility with PEG.js (that also incorporates this programming language) and JSON
(which has built-in support and conversion to JavaScript objects), which will then translate it
into a model of DataGen’ DSL, that will later be processed by the base application to produce
the final dataset. This workflow can be observed in diagram 9.

Even though DataGen’s published article (Santos et al., 2021) postulated a client-sided
approach, where the computational burden of generating data would be placed entirely on
the client’s browser, this description is outdated and does not reflect the present structure of
the application. Subsequently, the data generation procedure was moved to the back end of
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the program, adopting a server-sided approach, in order to be able to expose API routes
without having to clone the compiler based on the PEG.js grammar and place a copy on
each of the application’s servers.

Following the same logic, it will also make more sense to place the compilers and
converters of DataGen From Schemas in the back end of the application, in order to avoid
duplicating these files to allow the creation and exposure of new API routes, thus enabling
the usage of this service without recourse to the interface and its eventual integration in third
parties. On the one hand, these programs are independent from the rest of the application
and perform their function individually, without needing to access any of the back end’s
private services, namely the database or local variables, which suggests a client-sided
approach to the processing of schemas. However, the overall process of data generation
from schemas will never fully be client-sided, due to DataGen’s implementation (generates
the dataset in the back end), so this differentiation is not justified.

Furthermore, the computational load of processing the schemas and generating the DSL
models is negligible, so the gains derived from performing these operations on the client’s
browser (in terms of freeing up resources on the back-end server, mainly regarding CPU and
memory) are trivial. Placing the new compilers and converters in the back end shared with
DataGen also allows to centralize the programs’ functionalities, avoiding additional requests
between servers and possible downtime, as would be the case if DataGen From Schemas was
deployed in an entirely separate Docker instance and had to communicate with DataGen’s
API via HTTP requests.

Therefore, it emerges as a natural conclusion that DataGen From Schemas should adopt a
server-sided approach for processing the schemas, creating the DSL models and consequently
generating the respective datasets.

3.2 front end

The front-end server is the entry point to the application and is responsible for compiling
and displaying the platform’s interface to the users, managing any and all user interaction.

In general, DataGen From Schemas is intended to have an interface very close to that of
DataGen. This application is, at its core, an extension of its predecessor and its workflow is
analogous - input and processing of model, data generation, output of dataset -, differing
only in the type of input (schemas vs. DSL models). As such, there is no need to “reinvent
the wheel” - it is possible to take advantage of the basis already established by DataGen, also
for the sake of visual cohesion between the two complementary tools.

For this reason and others that will be mentioned below, it is proposed to implement
the interface in Vue.js, which was also the technology used in DataGen’s front end. This



3.2. Front end 32

framework utilizes a Model-View-ViewModel (MVVM) architecture that simplifies the event-
driven paradigm used to process the interactions between the user and the interface:

Figure 11: Representation of the MVVM architecture.

With this architecture, Vue.js effectively separates the user interface (View) from the
program logic (Model), establishing a reactive bidirectional data connection between the
two that circumvents the need to reload the page when it becomes outdated in relation to
the data model. This makes it possible to translate changes in the model to the Document
Object Model (DOM) in real time, updating only the corresponding interface elements, which
results in a much more user-friendly experience, as well as more efficient performance than
some of its alternatives, namely React and Angular.

In operational terms, the interface will provide the following features to the user:

• Authentication - implemented with the JSON Web Token (JWT) standard, which allows
both servers to be stateless, bypassing the need to maintain sessions with user data.
All HTTP requests to the back end that access sensitive data are signed with this token;

• Generation and download of datasets from JSON or XML schemas - the user will be
provided with two distinct methods to input models: either manually, in the interface’s
text editor, or by uploading a schema file to the platform;

• Error feedback - the application will not only inform the users of any incompatibility of
their models with the program’s data generation procedure, but it will also semantically
validate the schemas, reporting any errors it may encounter;

• Saving DSL models - in the original version, the users were able to save any DSL
model (which would be associated to their accounts) and to later change their visibility
on the platform and edit their contents. DataGen From Schemas will keep these features
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on its machine-generated DSL models, providing the option to save these intermediate
models, which can then be used in the original software.

3.3 back end

The back end server is responsible for implementing the application’s business logic and
managing its data persistence layer, which in this case stores the users’ informations and the
DSL models. As was discussed previously in section 3.1, DataGen From Schemas will use the
same back end as its predecessor, expanding its functionalities with the parsing of schemas
and consequent generation of DSL models, as well as API routes for these new use cases. In
addition, the server will still be in charge of data generation and also the authentication of
users and the management of their respective models.

The server is implemented in Node.js, which emerges as the ideal technology for this
context - its event-driven, asynchronous and single-threaded nature grants it a distinct
efficiency when handling requests with light computation load, as is the case. It also has
good performance in terms of speed, a very active community (which translates into good
documentation and help), good scalability, and an extensive package library.

As far as information persistence is concerned, there will be no need for modifications
on DataGen’s database, which will also be accessed by the new application in order to keep
the same user registry and to be able to manage all stored models together, from both
platforms. The database is implemented with a MongoDB server instance, a technology that
was originally chosen due to its Not Only SQL (NoSQL) document-oriented nature, highly
compatible with Node.js, since both have support for JSON documents. It is endowed with
remarkable scalability and performance, derived from the fact that it does not group data
relationally, which allows fast, efficient, and conflict-free queries, since all documents are
independent.

Persistent data is organized into three different collections:

• users - name, email, password (encrypted), and dates of registration and most recent
access;

• models - DSL model, creator, visibility (public or private), title, description, and
registration date;

• blacklist - stores users’ JWT tokens when they log out, along with their expiration
timestamp, so that they are automatically removed from the database as soon as they
expire, preventing the users’ sessions from remaining open forever.

Finally, the back end will also provide Representational State Transfer (REST) routes to
enable the usage of the program without recourse to its graphical interface. In this way,
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it will also be possible to incorporate DataGen From Schemas’s features into third party
applications, through HTTP requests. The planned routes are the following, where the input
schema will be sent in the request’s body:

• POST /api/json_schema/json - produces a JSON dataset from a JSON schema;

• POST /api/json_schema/xml - produces a XML dataset from a JSON schema;

• POST /api/xml_schema/json - produces a JSON dataset from an XML schema;

• POST /api/xml_schema/xml - produces an XML dataset from an XML schema.

As can be seen above, DataGen From Schemas is intended to be able to generate data in
both JSON and XML, from either of the two types of schemas. For this purpose, it will be
necessary to establish some norms regarding the representation of XML information in JSON,
in order to guarantee full data portability between the formats, due to some characteristics
such as those mentioned in 2.2.1. As such, the following taxonomy is proposed for JSON
instances generated from XML schemas:

• any occurrences of the characters . (dot) and − (hyphen) in property keys will be
replaced with the character _ (underscore), since JSON does not allow dots or hyphens
in property names, while XML does;

• properties with the same key at the same depth in a given structure will be differen-
tiated using a counter and if a key is unique, it will not be numbered. For example,
if an XML element possesses three nested elements with the key “address“, in JSON
these will become “address1“, “address2“ and “address3“;

• attribute keys will be prefixed with a flag indicating that they are attributes: for
example, an attribute “weight“ in XML will become “attr_weight“ in JSON;

• whenever an XML element has attributes and textual content, the content will be
placed in a JSON property with the key value;

• whenever an element has mixed content, the text outside of the child elements will
be placed in numbered properties text1, text2, etc. In case there is only one instance
of semi-structured text, it will instead be formatted into a JSON property with the
unnumbered key text.

With this architecture and technical requirements in mind, the project progressed to
the development phase, looking to build the new components from the ground up and
implement the logic and workflow that was described here, which will all be minutely
covered in the next chapter.
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D E V E L O P M E N T

The implementation of DataGen From Schemas was realized over several phases: firstly,
developing the application’s back end, whose core consists in the schemata parsers and
respective translation programs to DataGen’s DSL. This was the first logical step, since the
application needs these components to be able to carry out its function, with or without
a graphical interface. Furthermore, setting up a duplicate build of the application’s prior
version running in localhost and developing these tools directly in its back end, where they
would eventually be integrated, allowed for their immediate testing without the downtime
needed to communicate with DataGen’s live version.

The next step was to implement the application’s front end, designing and developing its
graphical interface and setting up communication between its components and the back end.
DataGen From Schemas also requires the notion of session, allowing users to register, log in
and log out, just as its prior version, in order to enable them to save DSL models in their
accounts. The interface was built as a Single-Page Application (SPA), since its array of features
was compact and interconnected, which enabled the creation of an intuitive, user-friendly,
and easy to navigate website with fast transitions and reduced load times.

Then followed the implementation of API routes in the back end, as well as the introduction
of custom support for DataGen’s interpolation functions directly in the schemata grammars,
in order to enable more detailed and specialized specification of dataset fields, as will be
described in section 4.3. Afterwards, it was necessary to produce documentation on these
two features in the application’s front end, so that users have access to this information and
can easily learn how to use them.

Finally, the application was thoroughly tested and debugged, using complex schemas and
real-life examples to evaluate its performance, both with trivial schemas and under heavy
stress, as well as its correct parsing of every particularity of the schemata languages.

4.1 json schema component

In order to generate DSL models from JSON schemas, DataGen From Schemas needs two
different components: firstly, a PEG.js grammar-based parser to analyze the schema and
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extract all useful information; secondly, a converter program capable of building a DSL
model from the intermediate structure.

The user may input one or more schemas into the program, since cross-schema referencing
is supported. In this case, the user must indicate which of them is the primary schema
from which the program must generate the dataset. The parser then analyzes all schemas
sequentially and builds a separate intermediate structure for each of them, a procedure that
will be explained in detail in this section.

4.1.1 Grammar

JSON Schema is a JSON vocabulary, i.e. it is written in JSON and operates under a strict set
of rules, where specific keys have precise meanings and can be used to annotate or validate
JSON documents. This common syntax makes it easy to interpret the schema and validate
the instance.

Therefore, the grammar was built with a JSON grammar available in the PEG.js Github as
its foundation. JSON Schema’s specification is made available by drafts, which represent
versions. Each time the vocabulary is majorly updated, a new draft is released, where new
features can be found and existing ones altered. These drafts are not backward compatible,
for example there are cases in which a certain key has entirely different semantics depending
on the draft considered. As such, it seemed only logical to adapt the most recent draft to the
application, which is, at the time of writing this dissertation, JSON Schema 2020-12.

As such, the aforementioned JSON grammar was modified into a dialect (a specific version)
grammar of JSON Schema for this particular draft: the set of keywords and semantics that
can be used to evaluate a schema was restricted to those made available in the draft and
custom vocabularies defined by the user are not accepted.

Important Features

By restricting the keywords accepted by the grammar and their semantics, it was possible to
implement a number of important features in this grammar, namely:

• restriction of each keyword’s value to its rigid lexical space - for example, the
keyword uniqueItems’s value must be a boolean and nothing else, while the value of
the keyword additionalProperties may be any subschema;

• rigorous semantic validation of the schema - in JSON Schema, it is possible to create
invalid and contradictory schemas. This may range from something as simple as a
number with a maximum of 20 and minimum of 50, to more contrived cases such as
establishing that a schema must be both of type boolean and string, with the keyword
allOf (example below). As such, a semantic validation procedure was created for this

https://github.com/pegjs/pegjs
https://json-schema.org/draft/2020-12/release-notes.html
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grammar, that checks for erroneous combinations of values or other incongruities in
the schema’s logic;

Figure 12: Example of an invalid JSON schema.

• error reports - following the previous points, whenever the parser finds errors, whether
syntatic or semantic, it halts the execution of the pipeline and reports them to the users,
for them to correct and try again. It provides a detailed explanation for each error,
including its position in the schema, what was expected and what was found instead.

Intermediate Structure

The other central focus of the grammar is building the intermediate data structure, to where
it extracts all relevant information. Before addressing this topic, it is best to categorize and
explain the different kinds of JSON Schema keywords. The reader is encouraged to follow
this section of the paper along with the official JSON Schema documentation, as it has all
the keywords listed and sorted in a relevant taxonomy. For this solution, the following
categorization was taken into account:

• type-specific keywords - these are keywords that apply only to the data type in
question. For example, numeric types have a way of specifying a numeric range that
would not be applicable to other types;

• generic keywords - const, enum, and type. The latter defines the type(s) that the
schema validates, the others may be or contain values of any of those types;

• schema composition keywords - the purpose of these is to combine together schemas
and they correspond to well-known algebra concepts like AND, OR, XOR, and NOT;

• keywords to apply subschemas conditionally - based on logical conditions or the
presence of certain properties in the final object;

• structural keywords - $id, $anchor, $ref, and $defs. These keywords do not reflect
values of the instance explicitly, but are used to structure complex schemas, allowing
the user to break them down into simpler, reusable subschemas, and to reference these

https://json-schema.org/understanding-json-schema/index.html
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from anywhere, to avoid duplication and write schemas that are easier to read and
maintain;

• ignored keywords - comments and annotation/media keywords (string-encoding of
non-JSON data). The parser recognizes these keywords but willingly ignores them,
since they have little to no use in a dataset generation context.

Since a schema’s structure is very basic and consists only of key/value pairs, it is easy
to store its information in memory, before reorganizing it into a more useful configuration
for its following conversion to a DSL model. As such, when parsing a (sub)schema, the
grammar firstly validates its content semantically and stores it in memory basically as is, in
a JavaScript object, with only minor adjustments: e.g. the value of the keyword multipleOf is
stored in an array, despite being a number, since the user may use schema composition to
establish further multiplicity constraints, which will all be bundled together to restrict the
instance jointly, thus it’s useful to adapt the keyword’s value to array format from the start,
to facilitate parsing and standardize use cases.

The grammar then reorganizes the structure into a more efficient configuration. After
thorough reflection, it was concluded that the best approach would be a type-oriented
structure, where the keywords and respective values would be stored under the type of data
they produce. There are multiple points in favor of this line of reasoning:

• each data type has a specific set of keywords that applies only to them (the aforemen-
tioned type-oriented keywords), so it is easy to separate most keywords by type;

Figure 13: JSON Schema’s type-specific keywords.

• a single JSON schema may validate against multiple data types - the same schema can
have keywords respective to booleans, numbers, and strings, for example. As such, it is
useful to know, at all times, exactly what data types are produceable from the schema:
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Figure 14: Example of a multi-type JSON schema and its respective intermediate structure.

• following the previous point, a certain type may be established and then “disallowed“
further into the schema, with a keyword of schema composition. As such, it would
simply be removed from the intermediate structure, preventing its generation or further
unnecessary parsing (example ahead in figure 18);

• this kind of organization makes it easy to update the structure for each new key-
word parsed and facilitates the translation exercise executed later on. With this, the
translation program will need only to choose a random type and parse the keywords
associated with that type, ignoring all others. It is efficient and compact.

However, not all keywords are related strictly to a single type. Generic and schema
composition keywords, as defined previously, plus if /then/else (that apply subschemas
conditionally), may take values or subschemas of multiple types. In these cases, the grammar
follows the ensuing method: firstly, it makes sure each of the keyword’s values has a single
type. For generic keywords, this is already the case, as its values are already the final
product. However, the values of the other keywords mentioned are subschemas, which may
be multi-type: if so, the grammar breaks down the subschema into smaller subschemas, one
per each of its types.

Figure 15: Example of parsing done on multi-type values of a schema composition keyword.
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Then, it separates the keyword’s values by type and introduces an instance of said keyword
in each of its generateable data types, in the intermediate structure, along with that type’s
respective values. An example of this is shown below:

Figure 16: Intermediate structure produced from the previous schema.

With this algorithm, the program is able to classify these keywords and, by extension, all
JSON Schema keywords by type, which makes it possible to use the described structure to
store all relevant data, in a way designed to facilitate and make more efficient the following
program’s translation routine.

In conclusion, the main objective of the grammar, and consequent parser, was to reproduce
the JSON Schema syntax meticulously and collect data from any given schema to a well
thought-out and efficient data structure, to set up the next phase of the process - the
construction of the DSL model. Furthermore, it was also to make the solution as sturdy and
fault-tolerant as possible, preventing it from trying to parse impossible schemas and crashing
or producing unexpected behaviour, which in turn helps the user to better understand their
schema and detect unwilling errors.

4.1.2 Referencing

JSON Schema references can vary a lot: there are absolute and relative references, depending
on if they include the schema’s base Uniform Resource Identifier (URI). It is not mandatory
for a schema to have an id, which is its URI-reference, but without one, it is not possible
to reference it in other schemas, although it can still have local references. Furthermore, a
subschema may be referenced either by JSON pointer, which describes a slash-separated
path to traverse the keys of the objects in the document, or by anchor, using the keyword
$anchor to create a named anchor in the subschema to be referenced. The reader is invited
to check out the official documentation on schema structuring, in order to gain a more
in-depth understanding of schema identification and referencing, which is crucial for this
component of the solution.

https://json-schema.org/understanding-json-schema/structuring.html
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DataGen From Schemas supports all types of referencing defined in JSON Schema 2020-12

and standardizes that any schema’s base URI must begin with https://datagen.di.uminh

o.pt/json-schemas/ and be followed by the schema’s name.
Besides the configuration exposed in 4.1.1, the intermediate data structure has two

additional sections: one for storing the object pointers to all references found in the schema
and another for separately storing all subschemas with their own declared identifier. This
division is useful to resolve all references later on, after the parser has finished analyzing
every schema submitted by the user. The program is unable to resolve references when it is
reading the schemas, since they might be pointing to schemas or subschemas that have yet
to be reached. For the sake of efficiency, instead of checking if that is the case whenever a
new reference is found, the parser simply caches the references and subschemas, in a way
that later on it will be able to quickly find each referenced subschema and substitute its
content in the main body.

Thereby, it becomes possible to generate datasets from schemas with local and/or external
references, as well as more intricate mechanisms, such as recursion and bundling.

resolving references

After parsing every schema, the program needs to resolve all existing references before
moving on to the creation of the corresponding DSL model. In order to do this, it must
determine an optimal order in which to approach the references, since some may be
dependent on others, which means they can only be fully resolved after their dependencies
are complete.

Naturally, the application starts by resolving the local references of every subschema first,
since these point only to the own schema’s structure, which means each one already has
most, if not all the necessary information to handle such cases. When resolving a reference,
the program copies the referenced structure to where it is being pointed from, eliminating
the $ref property from the object and thus centralizing all the necessary information for a
schema’s translation to the DSL in its own structure. The referenced subschema is duplicated
via a shallow copy, so that any existing nested references preserve the original object
pointer when duplicated - this way, it is only necessary to resolve each of these nested
references once, later on, and its new content will be reflected across all of its instances.
Recursive references are parsed separately, by randomly determining, at this point, the level
of recursion that the instance will possess, within reason, in order to avoid incurring in
infinite loops.

After resolving every schema’s local references, it moves on to their foreign references,
with a newly-acquired assurance that the referenced content is as simplified as possible, at
this point. The program builds a dependency map between all schemas and uses it as a

https://json-schema.org/draft/2020-12/release-notes.html
https://datagen.di.uminho.pt/json-schemas/
https://datagen.di.uminho.pt/json-schemas/
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guide on which order it should go about the schemas, starting with those that reference
isolated schemas, which in turn become “isolated“ themselves, after all relevant content has
been centralized in their intermediate structure, and repeating this process along the map
until all references are finally resolved.

Also, it throws an error if it detects any infinite dependency loops between schemas, e.g.:

Figure 17: Example of JSON schemas with an infinite reference loop between them.

4.1.3 Post-processing of the Intermediate Structure

Once the intermediate structure of the main schema is finalized and all references resolved,
it is then sent to the translator program to begin creating the correspondent DSL model.
This component interprets the keywords present on the structure and generates a DSL string
accordingly, taking into account how they influence each other. For the sake of brevity, the
JSON Schema keywords will not be explained minutely in this dissertation, so it is strongly
recommended to follow along this subsection with the official JSON Schema documentation,
as it thoroughly details the function of every keyword, illustrated with meaningful and
intuitive examples.

The intermediate structure is type-oriented, meaning that each value of the schema is
described by a JavaScript object that maps each of its createable data types to their respective
keywords, and values are organized in a hierarquical structure. To produce the model for
the whole schema, the program recursively iterates this intermediate structure, generating
its values’ DSL strings from the leaves to the root and gradually merging them together.

The types present in the structure of each value already reflect the whole logic of its
schema, since the parser relates the keywords and determines the generateable data types
common to all of them, as described in subsection 4.1.1. Take the following example,
illustrated below: even though the keyword type defines that the instance may be either
a string or a number, the keyword allOf implies that only a number is valid, since all its

https://json-schema.org/understanding-json-schema/index.html
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subschemas are only of that type. As such, the section of the intermediate data structure
that describes this value will not have the string type:

Figure 18: Intermediate structure of an apparent multi-type schema.

The program then randomly selects one of the generateable types and moves on to
translating its keywords. The first step is to resolve any existing keywords of schema
composition or conditional application of subschemas - these keywords are not directly
translated to the DSL string, but rather parsed and its contents added to the structure.

In JSON Schema, the aforementioned keywords are not used to extend or merge schemas,
in the sense of object-oriented inheritance. Instead, instances must independently validate
against each of the keywords. This is reasonable when validating instances against schemas,
which is the purpose of JSON Schema. However, DataGen From Schemas reverses this
workflow and looks to create instances from schemas, so the same logic does not apply. It is
not possible to generate a different value for each of these keywords and ultimately merge
the values together. This method could result in some values being valid against individual
parts of the schema, but possibly not the whole of it.

As such, in the context of data generation, it is necessary to parse these “compound“
keywords beforehand and extend the base schema with their content, obtaining a cohesive
and coherent final schema with only type-specific keywords that incorporates these restraints.
Since these “compound“ keywords’ values are or contain schemas, which may, in turn, have
nested such keywords, the program recursively checks all subschemas for these keywords
and resolves them, before using their content in the extension process, so that ultimately the
base schema is extended only with type-specific keywords.

Schema Composition Keywords

There are four keywords belonging to this category: allOf, anyOf, and oneOf, that allow the
user to define an array of subschemas, against all, one or more, or exclusively one of which
the data must be valid, respectively; not, which declares that an instance must not be valid
against the given subschema.
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For the first three, a subset of their schema values is chosen: with allOf, all of its schemas
are considered; for anyOf and oneOf, either an arbitrary number of its schemas or only one
of them, respectively, are randomly selected. The base schema is then extended with these
sequentially and the original keywords are erased from the structure.

As for not, the program must first “invert“ this keyword’s schema, in order to obtain a
complementary/opposite schema, which ensures that no value that is valid against it also
validates against the original schema. Then, the base schema is extended with this inverted
schema and the keyword not is removed from the structure.

For this purpose, a schema inverter capable of generating complementary schemas was
developed, which takes into account the meaning of each JSON Schema type-specific
keyword. There is never a need to invert any other kind of keyword, since those are parsed
recursively before the actual schema to which they belong, which guarantees that the schema
to be inverted will only have type-specific keywords.

On the same note, the solution also incorporates a schema extender program capable of
manually extending a base schema with each type-specific keyword. For each data type, the
new keyword is compared to the already existing ones and incorporated in a reasonable
way - the result may be different depending on whether the base schema already has the
same keyword or not, for example. This solution must handle each individual JSON Schema
keyword differently, as they all have different meanings.

These two components will be later covered in sections 4.1.5 and 4.1.6, after briefly going
over every type-specific keyword in the explanation of the translation process to the DSL,
for better understanding of how they relate with each other.

Keywords that Apply Subschemas Conditionally

These keywords are the reason for JSON Schema’s dynamic semantics, i.e. their meaning
can only be uncovered after the context has actually been instantiated, since these keywords
establish conditions based on actual values of the instance.

Take the following example, where the schema will only know what pattern to validate
the property postal_code with after checking the actual instance for the value of the property
country, and never before. While with other keywords, the schema can determine a priori
the structure of the instance, with these it is not possible to do so:
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Figure 19: JSON schema with dynamic semantics.

Once again, this approach is not reasonable for a solution such as DataGen From Schemas,
since it is not viable to generate an intermediate value from the rest of the schema and only
then exert these keywords, which may imply large changes to the remaining schema - at least
with if , then, and else. Since the keywords dependentRequired and dependentSchemas
are specific to the object data type, it is possible to incorporate them into the translation
procedure of object schemas, as will be detailed ahead in subsection 4.1.4.

The solution found for the keywords if , then, and else was to determine their outcome
probabilistically - unless the if schema is explicitly true or false, in which case it is deter-
ministic whether the instance should be validated with either then or else, respectively.
Otherwise, the program determines the veracity of the condition based on a probability,
customizable by the user (by default, a 50/50% chance) - if true, the base schema is extended
with the if and then schemas, otherwise it is extended with a complementary schema of
if (produced with the aforementioned schema inverter) and the schema of else. This way,
it is possible to produce a coherent, simpler schema that incorporates the logic of these
conditional keywords and to generate the final instance in a single iteration of the structure.

4.1.4 DSL Model Creation

Finally, once the intermediate structure of the selected data type is finalized and possesses
only type-oriented keywords and/or const and enum, the program is able to generate a DSL
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string that translates the logic of the original schema. This subsection will carefully detail
the method behind the translation of each type of value.

DataGen’s DSL was desgined for the specification of datasets and, as such, its models must
obey a key/value notation, for the clear structuring of the intended instances. Therefore, this
tool is only able to generate objects, which are later translated to whichever output format
the user wants, and not any of the other native JSON data types, namely numbers, strings
or arrays. To circumvent this, whenever the root schema introduced is not of type object,
the program creates a DSL model with a single property, with the value being the schema’s
translation to the DSL and the key being DFJS_NOT_OBJECT (DFJS stands for DataGen From
JSON Schemas). After DataGen generates the final dataset, its translator programs to either
JSON or XML detect this key and get rid of the object structure, returning only its value, as
intended.

Figure 20: Non-oject JSON Schema and respective DSL model and example instance.

Generic Keywords

The first step is to check if the intended value must belong to a fixed set of values, i.e. the
usage of any of the keywords const or enum which, at this point, already reflect the absence
of any values disallowed with not. If any of these are present, the remaining keywords
are ignored and the DSL string is generated from these alone. In case of both keywords,
const takes precedence over enum, as it defines that the value is constant and immutable.
The output DSL string produced from these keywords is a random choice from all of their
respective values (typically, const will map to a single value, but if the user composes
multiple instances of this keyword in the same schema, it will be treated as an alternative
between several).

If no fixed set of values is defined, the solution checks if the value was specified with an
interpolation function of DataGen, through the custom keyword _datagen, which will be
explained ahead in 4.3. In this case, the remaining keywords are also ignored, since this
feature’s function is to overwrite the schema’s content with the result of DataGen’s function.
Otherwise, it goes on to actually translate the type’s keywords. Data types null and boolean
are basic, since they possess no specific keywords. These and the previously addressed
keywords are translated as follows:
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Figure 21: Translation of generic keywords, _datagen, and data types boolean and null to the DSL.

String Type

The string type only has four different keywords: pattern, format, and minLength/maxLength
. Only in the case of this data type, it was decided that there would be an order of precedence
to its keywords since, realistically speaking, they will very rarely be used together (except
for both length keywords): for example, it does not make much sense to define a string
value according to a regular expression or format and then further constrain its length, as
the former keywords already establish a very rigid template.

As such, if the schema has the keyword pattern, that will be the one to be translated,
followed by format and, finally, the length keywords. While pattern and length keywords
translate directly to DataGen’s interpolation functions, format is more contrived, since there
is a need to program a different DSL string for each possible format, in order to generate
an according value, some of which map directly to existing interpolation functions and
others that do not. For most of the latter, the program uses DataGen’s pattern function to
generate random, valid values according to their templates (e.g. formats email and ipv4).
Some generated model examples for keywords of this data type are presented below:

Figure 22: Translation of string type schemas to DataGen’s DSL.
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Numeric Types

As for numeric types, there are five keywords: multipleOf, minimum, exclusiveMinimum,
maximum, and exclusiveMaximum. The constraints on numeric types can get a lot more
complicated if the user specifies, via schema composition keywords, that the value must be
a multiple of several numbers simultaneously and/or not a multiple of one or more values.
Let’s first consider simpler cases where the not keyword is not used.

If the instance must be multipliable by one or more values, the program starts by calculat-
ing the Least Common Multiple (LCM) of all these numbers. This way, it is possible to consider
a single value for the multiplicity of the instance, since the LCM and its multiples are the
easiest way to obtain any number simultaneously multiple of all the original values. If the
type in question is an integer, this is also taken into account before determining the LCM, by
considering that the instance must also be a multiple of 1.

Next, the range keywords are evaluated, if present. The program determines the biggest
and smallest integers that it is possible to multiply by the LCM (or 1, if no multipleOf
constraint exists), let’s call them LCM range delimiters, in order to obtain values that belong
to the intended range. This is doable by implementing the following algorithm:

lower_delimiter = Math. f loor(
maximum

LCM
)

upper_delimiter = Math.ceil(
minimum

LCM
)

(1)

where the maximum and minimum, if specified via the exclusive keywords, are deter-
mined by offsetting their values by a small margin, to ensure that the exclusive limits are not
included in the generateable range. If the schema only has either an upper or lower range
boundary, the other LCM range delimiter is calculated by offsetting the existing one by 100

units, to provide confortable margin for values to be generated, e.g.:

lower_delimiter = Math. f loor(
maximum

LCM
)

upper_delimiter = lower_delimiter + 100
(2)

At this point, there are three different possible outcomes:

• if only the type is specified and nothing else, the program simply generates a DSL
string for a random integer or float, accordingly;

• if no range keys are used (the only type-specific is multipleOf), the DSL’s interpolation
function with the same name is used to generate a multiple of the LCM;
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• if both range and multiplicity constraints are present, the value is calculated by
randomly choosing an integer between the predetermined LCM range delimiters and
multiplying it by the LCM.

Figure 23: Translation of numeric type schemas to DataGen’s DSL.

However, the negation of the keyword multipleOf makes these use cases a lot more
contrived, since there is a necessity to further restrict the set of produceable values. As such,
the DSL string produced in this occasion is different for all the alternatives above. Only one
variant will be explained, since the same logic applies across all others:

Figure 24: Translation of a complex numeric type schema to DataGen’s DSL.

As seen in the preceding image, the schema has impositions on the range of the value, as
well as what it must and must not be a multiple of. This translates to the DSL via a JavaScript
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anonym function, where DataGen first calculates all valid multiples in the designated range
and stores them in an array, then removing all elements that are multiples of unallowed
numbers. The final value is selected randomly from the alternatives with the interpolation
function random, however the program firstly does a safety check to ensure that the final
array is not empty: if that is not the case, then it is impossible to produce a value that obeys
all restrictions specified in the schema, so it simply selects a regular multiple in the range
from the first array.

Object Type

The set of type-specific keywords for objects contains properties and patternProperties, to
specify property schemas according to their key; additionalProperties and unevaluatedProperties
, for validating unspecified properties; required, to make properties mandatory, propertyNames
, to validate the object’s keys, and finally size keywords (minProperties and maxProperties).

DataGen From Schemas also treats dependentRequired (used to require properties based
on the presence of certain keys) and dependentSchemas (to apply subschemas if certain
properties exist) as object-specific keywords - for every new property selected for the
final instance along the pipeline, required or not, the solution checks these keywords for
dependencies. In case of the former, if any properties are dependent on the newest key,
these are also translated and added to the object. As for the latter, if there is a subschema
dependent on the latest key, it is parsed and used to extend the current object schema.

For this type, the instance’s model is firstly prototyped in a temporary object, mapping
each key to the DSL string of their respective value, in order to more easily manage all the
different properties that may be produced. Only after determining all properties does the
program produce a model for the whole object, from this DSL string map.

The first operation executed by the program is determining a random size for the final
object, taking into account all relevant factors such as minProperties and maxProperties,
required properties, and the permission or not of unspecified properties (additionalProperties
, unevaluatedProperties). The calculated size will always necessarily allow room for at least
the required properties, and if only the object type is specified and no other keywords are
used, the program will generate an object with between 0 and 3 properties, where both the
key and value are random.

Then, DataGen From Schemas iterates the required properties and generates an according
DSL string for each of their values’ schemas, storing the pair in the temporary map. Once
the required properties have been produced, the solution executes the following pipeline
sequentially, until it reaches the designated size for the final instance:

• iterates the non-required properties specified in properties sequentially, producing
DSL strings for their respective values and storing the pairs in the map. In case the
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object instance needs more properties than those that are required, it makes more
sense to produce other properties specified by the user before random ones;

• iterates the value of the keyword patternProperties - for each of its properties, there is
a probability (customizable by the user) to produce, at most, one according instance
property (to avoid possibly creating repeated keys and messing up the property
count), where the name of the property is obtained through a regular expression value
generator;

• if additional properties are not allowed or not explicitly mentioned in the schema,
the intermediate structure is considered finalized with the properties it currently
has. Do note the mention of explicitly allowing additional properties - if neither of
the keywords additionalProperties and unevaluatedProperties are specified, then the
user most likely wants an instance with only the properties covered by the keywords
properties or patternProperties - as such, it would not make much sense to generate
other random properties, just because it is not explicitly disallowed;

• if the schema specifies additional properties, additionalProperties has precedence over
unevaluatedProperties, so if both keywords are present, additionalProperties’s schema
prevails, else it is the only used keyword’s. The program translates this schema into a
DSL string that it uses to generate values for additional properties with random names,
which are obtained either according to the propertyNames schema, if present, or by
generating small chunks of lorem ipsum. It does this until it reaches the intended key
set size for the instance.

With all the selected properties’ DSL strings, the application joins them together in a string
encased by curly braces, in the syntax of a regular JavaScript object that DataGen is able to
parse and then use to generate an according dataset.

Figure 25: Translation of an object type schema to DataGen’s DSL.
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Array Type

There are several keywords for this data type: items and prefixItems, the main way to
evaluate items; additionalItems and unevaluatedItems, for those that do not validate against
the former keywords; contains, minContains, and maxContains, for inclusion of items with
certain schemas; finally, length keywords (minItems, maxItems), to restrict the array size,
and uniqueItems, to determine the uniqueness of items in the instance.

For this data type, the program creates a temporary array structure firstly, in order to
malleably plot the intended items for the instance, and only at the end converts it to a DSL
string, similar to how it operates with the object type. The solution keeps track, at all times,
of the allowed number of items, which can be established with minItems and maxItems.
If the maximum amount of items is ever reached (and also never before the minimum is
attained), the program stops the execution of the pipeline that will be described ahead and
produces the DSL string from the items it has at that point.

The first step of the algorithm is to check for prefixed items in the schema: if any were
specified, the program sequentially generates their respective values’ DSL strings and pushes
these to the temporary array, in order.

Then, DataGen From Schemas parses the inclusion keywords. In the workflow of this
solution, these keywords effectively have a dynamic semantic, since it is impossible to
validate the array for the inclusion of elements with the specified schema before generating
it, even in the DSL model. As such, a compromise was needed to adapt these keywords:
after parsing the prefixed items, if more items are allowed in the array, then the solution will
push the necessary amount of new elements with the structure of the contains schema (one
if minContains and maxContains are not used, otherwise a random number in the indicated
range). Note that if the intent of the user is for the inclusion keywords to validate some of
the prefixed items, then the program cannot guarantee this.

Once all the “hard-coded“ elements have been parsed, the program then checks for
other items. The keyword additionalItems has precedence over unevaluatedItems, so if
additional items are allowed and both keywords are specified, additionalItems’s schema is
considered, otherwise it is the only specified keyword’s. If the user also disallowed any
instance of the keyword contains, its schema is inverted and used to extend the schema for
additional items, in order to guarantee that all additional items wholly conform to the user’s
configuration, both what they should and should not validate against. This final schema is
used to sequentially generate a random amount of DSL strings for additional items, within
the intended array size, which are appended to the temporary structure.

Finally, DataGen From Schemas checks if all these items must be unique (uniqueItems). This
keyword, as is the case with the inclusion keys, demands a compromise and an intelligent
workaround, since it is impossible to check for the items’ uniqueness before generating them,
and is the reason that warrants the usage of a temporary array to store the DSL string of
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each element, instead of simply building a single string from the start and appending each
item to it. As such, depending on the value of this keyword, two different types of DSL
strings may be created for the final array:

• non-unique items - if either the keyword is not specified or its value is false, then the
procedure is to simply create an array string, where its elements are the DSL strings
stored in the temporary array structure maintained along this pipeline. DataGen can
interpret this syntax and generate all elements according to their respective model;

Figure 26: Translation of an array type schema with non-unique items to DataGen’s DSL.

• unique items - in this case, a DataGen anonym function is used to implement an
algorithm that attempts to generate an array where all elements are distinct. As
illustrated below, the procedure is the following: whenever DataGen creates the next
item, it checks if the array already contains the new value. If not, it pushes the element
to the array and moves on to the next one. Else, it generates the same item again
(which can produce a different result, since the DSL strings accomodate margin for
randomness), for a maximum of 10 tries per item. In case none of them produces a new
value, the result of the latest try is pushed to the array anyway, to prevent crashing the
program, and the resulting array ends up not obeying the uniqueItems restriction.

Figure 27: Translation of an array type schema with unique items to DataGen’s DSL.
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As a by-product of this algorithm, another compromise arises: DataGen From Schemas can
only attempt to generate arrays with unique items if all items are elementary, i.e. neither
objects nor arrays. This is the case because DSL strings for complex values are bigger, more
convoluted and impossible to incorporate in a DataGen function syntax, in the same way a
basic interpolation or anonym function can be. To summarize, DataGen From Schemas is not
the best tool to adapt the keyword uniqueItems in specific, due to its ill-suitability to the
workflow and DataGen’s DSL, however it still manages to satisfy some use cases.

4.1.5 Schema Inverter

In order to be able to integrate the restrictions of the keyword not into the logic of the
resulting instance, DataGen From Schemas employs a schema inverter capable of manually
fabricating a schema complementary to not’s, at least partially, so that no value ever validates
against both simultaneously. Then, the application can extend the instance’s remaining
schema with this new inverted one and delete the property not, producing the same effect.

To start off, not has some interesting use cases related to the disallowance of entire data
types, which must be taken into account:

• universal schema - a true schema (true or {} ) validates any kind of value, of any type.
Thus, the prohibition of such a schema with not does not make sense, since it means
that it is not possible to generate any value from it, so the application throws an error
in this case, warning the user;

• schema with only type - disallowing a schema with only this keyword is equivalent
to prohibiting the specified data type(s). As such, the program maintains an array
with the forbidden types along the pipeline, to ensure that it does not produce any
such value. Disallowing all types of values is exactly the same as using not with an
universal schema, so the application also throws an error in that case.

Generic Keywords

Keywords const and enum indicate that the instance is either a certain imutable value or
one of several hard-coded alternatives. Their negation implies that the instance can never
be any of the listed values, so the program maintains an array with every disallowed value
and ultimately checks that these are not options when generating the DSL model from the
final, simplified schema. If the instance’s remaining schema possesses any of these two
keys without negation, the application checks their values and removes any prohibited
alternatives that it finds, also removing the keyword itself from the schema if it is left with
no valid values.
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String Type

In order to invert a string pattern, the program inverts the regular expression in the following
manner:

|pattern| => ˆ(?!.∗|pattern|)

E.g. : [a-zA-Z]+ => ˆ(?!.∗[a-zA-Z]+)
(3)

where ^ makes the regular expression start matching at the start of the string, (?! starts a
negative look-ahead, which looks ahead in the string and does not permit a match against
the pattern in question, . * translates to zero or more characters of any kind (except line
terminators), i.e. the match can be anything except a string that matches the disallowed
pattern, and ) ends the negative look-ahead. The resulting regular expression is incapable of
producing any value that matches with the original pattern.

As for the keyword format, the application also maintains a separate array for disallowed
string formats and checks the instance’s remaining schema for this keyword - if it is present
and its value has been disallowed, it is removed from the schema. As such, if a string schema
specifies a given format which is later disallowed, the program produces a string according
to its remaining schema restrictions or randomly, if there are none.

Finally, the size keywords: if maxLength is present in the not schema, the program sets
minLength as its incremented value in the instance’s schema (the opposite of a string with
n characters is a string with at least n+1 characters). This solution is valid whether or not
the not schema also specifies a minimum length (n+1 characters is also outside the range
between n-m and n characters); if not only specifies minLength, either the program sets
the maximum length on the instance’s schema as the decremented value of the prohibited
keyword, if the minimum length is positive, or throws an error if it is zero, warning the user
that it is impossible to generate a string with negative length.

Numeric Types

If the schema is of integer type, then DataGen From Schemas changes its type to number and
explicitly prohibits the generation of integers.

As for the range keywords, this data type does not have the non-negative restriction of
the string type’s size keywords value range. Thus, it is possible to invert only one of the
range keywords and ignore all others to create mutually exclusive schemas. Additionally,
if a schema has both maximum and exclusiveMaximum, or both of their counterparts, the
program deletes the redundant one (e.g. having a maximum value higher than an exclusive
maximum is redundant, since no value higher than the latter will ever be produced).
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If the not schema specifies the keyword minimum, the program deletes all range keywords
(including this one) and sets exclusiveMaximum with the same value. This is complementary
for both integer and fractionary values. If not, it checks for exclusiveMinimum next, deleting
the range keywords and setting a maximum with the same value. It repeats this process for
maximum (replaced with exclusiveMinimum) and then exclusiveMaximum (swapped with
minimum).

If the schema does not possess range keywords, the application looks for multiplicity
constraints, maintaining an array with all values that the instance must not be a multiple of.
It then checks the instance’s remaining schema for the keyword multipleOf and, in case it
specifies a disallowed value, removes it from the schema.

Object Type

In this data type, the inversion of the schema becomes recursive, given that a lot of the
object-specific keywords’ values are subschemas. As such, for both keywords properties
and patternProperties, the application iterates their key set and recursively calls the schema
inverter for each of their values. This way, each specified property will have a new, comple-
mentary schema, e.g. if a property was meant to be a string with maximum length n, it will
instead become a string with minimum length n+1.

This approach was chosen in favour of disallowing properties with the specified keys, as
this would require the maintenance of yet another external array with the prohibited keys
and results would become a lot more random, generating properties with new, arbitrary
keys. The schema inverter is also called recursively for the keywords additionalProperties,
unevaluatedProperties and propertyNames, whose value is a single subschema.

As for the keyword required, the program maintains an array with all the unrequired
properties and later checks the instance’s remaining schema for this keyword: if specified, it
checks its values and removes any unrequired keys present. In the end, if the keyword’s
value becomes an empty array, the keyword itself is removed from the schema.

Finally, the inversion of the object size keywords follows exactly the same algorithm that
is used with their string type equivalents (4.1.5).

Array Type

The application calls the schema inverter recursively on several keywords of this data type:
items and unevaluatedItems, whose value is a single subschema that must be inverted;
prefixItems, which defines an array of subschemas, so the application iterates this array,
obtaining complementary schemas for each of the instance’s prefixed items.

The value of the keyword uniqueItems is just a boolean, so the program simply changes it
to its opposite, and the string type size keywords’ algorithm is yet again implemented with
this type’s minItems and maxItems.
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Finally, for the containment keywords:

• if the not schema specifies an upper limit, the program sets minContains in the
instance’s remaining schema as its incremented value and removes maxContains, if
present. If it specifies a lower limit, the procedure is the opposite;

• if it only specifies the keyword contains, the application first removes any types present
in its schema without further type-oriented keywords, thus prohibiting those data
types; next, it calls the schema inverter recursively on the keyword’s schema, obtaining
its complementary schema for different items that must now be included in the final
instance.

The other alternative for the inversion of this keyword was to generate a complementary
schema and prohibit any value compliant with it from occuring in the instance. However
this option was a lot more complicated and harder to achieve, potentially interfering with
other keywords of the array schema in unexpected ways. Since the concept of inverting a
schema is open to interpretation and its final objective was established, in this project, as
simply creating a schema with no validating instances in common, it was decided to instead
force the array to contain elements compliant with the inverted contains schema.

4.1.6 Schema Extender

A schema extender was developed to manually extend a base schema with each new type-
specific keyword. For each data type, the new keyword is compared to the already existing
ones and incorporated in a reasonable way. This solution handles each individual JSON
Schema keyword differently, as they all have different meanings. If the base schema does not
have the same keyword that is being used to extend it, it is simply assigned to the structure.
Otherwise, the logic applied with each keyword is as follows:

Generic Keywords

For the generic keywords const and enum, the old and new values are concatenated in an
array. This is logical for enum, since it indicates all possible alternatives for the instance.
As for const, it does not really make sense to declare more than one constant value in a
schema, so it was decided to make them alternatives in the event that the user did so, of
which ultimately only one will be selected, to make the program more malleable.

String Type

Regarding string-specific keywords, regular expressions of the keyword pattern are AND’ed
together, using non-consuming expressions, (?=expr). These expressions continue matching
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from the original match-point after matching each pattern, ensuring that the string is
compliant with all the patterns, i.e.:

|pattern1| && |pattern2| => (?=|pattern1|)(?=|pattern2|)

E.g. : [a-zA-Z]+ && [0-9]+ => (?=[a-zA-Z]+)(?=[0-9]+)
(4)

As for the keyword format, the base format is overwritten by the new one, since their
templates are mutually exclusive.

For the string size keywords, the following algorithm is applied: when extending
minLength, if the base schema does not have the same keyword, it is simply assigned
to it, otherwise the base value is overwritten only if the new value is higher than the
former (having a minimum length of n is less restrictive than having n+m). After this, the
program checks for the keyword maxLength in the schema: if it exists and its value is lower
than minLength’s, maxLength is erased from the structure, for the sake of coherency. The
extension of maxLength is analogous, but with the opposite logic (only overwrites if the
new value is lower, then compares with minLength).

Numeric Types

The extension of multipleOf follows the same logic applied to generic keywords - it makes
sense to concatenate the values of all instances of this keyword, as what the schema is
indicating is that the value must be a multiple of several numbers simultaneously.

As for the range keywords, these are extended similarly to the string size keywords, with
the extra exclusive use cases: e.g. when extending the keyword minimum, if the base schema
has a lower exclusiveMinimum, this keyword is removed from the schema and minimum
is assigned, otherwise exclusiveMinimum prevails and minimum is discarded (again, the
most restrictive keyword prevails). The application then checks for coherency not only with
the keyword maximum, if present, but also exclusiveMaximum, also deleting it if it has a
value lower or equal to minimum’s. The structure only ever stores one keyword for the
same boundary, since having both repeats information unnecessarily. The three remaining
range keywords are extended analogously.

Object Type

This data type possesses some keywords whose method of extension is open to interpretation,
since there is more than one sensible way in which one could go about this procedure.
For keywords with more than one alternative, users can specify their preference in the
application’s settings, which provide a set of customizable options for cases such as these.
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Keywords properties and patternProperties define objects where each key is the name of
an instance property and each value is the schema used to validate that property. To start
off, when extending a base schema that possesses one of these with another instance of the
same keyword, each of the new properties with a key not found in the base keyword’s object
is assigned to it. If a key is repeated, however, there are two possible approaches: the default
behaviour is to extend the base key’s schema with the new one’s, merging them together to
create a complementary schema with the restrictions of both, but it is also possible to simply
overwrite it, in which case the validating schema of the property in question becomes the
new one.

As for keywords additionalProperties, unevaluatedProperties, and propertyNames, there
are also both of these options, extending or overwriting, since each of them has a value of
a single subschema. Thus, with these keywords, as well as the previous ones, the default
procedure is to recursively call the schema extender within its own routine, for their values,
in order to generate more comprehensive schemas for their respective instances.

Finally, when extending required, the program simply concatenates the values of the
base and new instances of the keyword, bundling all required properties of the object
instance together without any duplicates. As for the size keywords, minProperties and
maxProperties, the schema extender implements exactly the same algorithm described for
their string type equivalents (4.1.6).

Array Type

These type’s items and unevaluatedItems keywords behave exactly as the object type’s
keywords for additional properties do, which makes sense given that they are each other’s
counterparts, for different data types, and their value is a single subschema. As such, the
value of the base instance of each of these keywords can either be extended with its new
one, by calling the schema extender recursively, or overwritten by it, according to the user’s
preference.

The keyword prefixItems specifies an array of schemas, depicting the first elements of the
array instance. It does not make much sense to extend an existing prefixItems with another,
but the user is given several choices in case they do so, in order to better suit their intentions:
the default behavior is to, for each common index, extend the base schema with the new
one, invoking the program recursively for each index’s values. However, it is also possible
to execute a partial overwrite, overwriting the base keyword’s schemas with their new
correspondents, only for those at shared indexes, a total overwrite, completely replacing the
base keyword’s value with the new one (even if their lengths differ), or to simply append
the new array of prefixed items’ schemas to the base one. Also, in the two first options, the
program either leaves the remaining base items’ schemas that do not have corresponding
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new ones at the same index as are, if the base keyword’s array is bigger in size, or appends
the remaining new schemas, if the new keyword’s array is bigger.

As for contains, the application merges both instances of the keyword together, extending
one with another, since the extension of this keyword intuitively means that the array must
obey all schemas specified in instances of the keyword simultaneously.

For both pairs of size keywords - minItems/maxItems and minContains/maxContains
-, the schema extender follows the same logic applied to their string type’s counterparts
(4.1.6) and, finally, when extending the keyword uniqueItems, the base value is overwritten
by the new one, since these are booleans and, therefore, their possible values are exclusive
alternatives.

4.1.7 Settings

It was concluded from the analysis of related work that it would be valuable for a program
such as DataGen From Schemas to have a settings menu with customizable options, allowing
the user to have further control over certain specifics of the schema dialect that can become
tricky when reversing its normal workflow and generating data from the formal specifications
instead.

This idea was further explored during the implementation of the solution, evaluating
which particularities it would be useful to have the ability to influence directly from outside
the schema and, as such, the following options were centralized in a settings menu that is
made available to the user for JSON Schema:

• recursion - the user can define upper and lower limits for the recursion of structures
in a given schema, ensuring that these structures present a minimum established level
of nesting and do not exceed a certain maximum;

• if keyword validation probability - as mentioned in 4.1.3, unless the schema value
of this keyword is explicitly true or false, the program will decide if it validates the
schema or not based on a probability (50/50% by default). This probability can be
altered by the user, in order to influence the odds of this decision;

• patternProperty keyword generation probability - DataGen From Schemas generates,
at most, a single property from each pattern property, in order to avoid creating
properties with the same name that overwrite each other. The probability of generating
such a property according to its key’s regular expression is usually 80%, but users can
also modify this to their liking;

• ability to generate unspecified additional properties - typically, if the user creates an
object schema without using the keywords additionalProperties or unevaluatedProperties
, the intent is to produce only the properties explicitly declared in the schema. However,
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DataGen From Schemas could theorically generate others randomly, since additional
properties are not disallowed, as long as the established object size is respected. Thus,
the user is given to possibility to enable or disable (default) this option;

• extension of schemas - as was described in 4.1.6, the application defines a certain
method for extending each different type-specific keyword of the syntax. Some of these
are more convoluted and leave room for interpretation, as there are several possible
approaches, for example how to proceed when extending instances of the keyword
prefixItems. As such, the user is given the ability to choose the method that best suits
their needs in these cases, specifically when extending properties and patternProperties
, keywords with a schema value (propertyNames, additionalProperties, unevaluatedProperties
, items and unevaluatedItems), and the aforementioned keyword prefixItems.

4.2 xml schema component

The infrastructure required for this component of DataGen From Schemas is very similar to
the JSON Schema component’s, with a parser to analyze the schema and extract information,
as well as a translation program to produce a DSL model from said information.

The XML Schema Definition (XSD) language has a very different way of moduling data
instances from JSON Schema, both in syntax and content. For starters, it has a lot of
redundancy that complicates its parsing: e.g. while in JSON Schema, each value’s type
is clearly declared or implied in its schema, in XSD the type can either be defined as an
attribute of the element or specified via a simpleType/complexType element nested within
it. Another example is how to specify the data types that a union can select from: these
types can all either be stated in the element’s memberTypes attribute, nested inside the
element with type elements or both simultaneously. This redundancy introduces an extra
layer of complexity in the grammar, as it will need to be able to filter all different ways of
approaching certain cases like this.

Figure 28: Redundant XML schemas.
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Furthermore, types are not as clear-cut as in JSON, where there are six different possibilities
and schemas can only ever be restricted with type-specific keywords or tools of schema
composition, so the set of operations that each type accomodates is relatively limited. In
XML Schema, data typing is far more contrived: first of all, the syntax distinguishes between
simple types and complex types, which are not interchangeable, i.e. certain elements
can only have a simple type and others a complex type, and some both. Additionally,
complex types can either have simple content or complex content, and the set of operations
performable on each is radically different. Next, the alteration of a type implies the usage
of a lot of different nested XML elements and there are two kinds of operations: extension
and restriction . These have different purposes and syntaxes, which also differ according
to the type’s simple or complex nature and, in the case of a complex type, the nature of its
content. For reference, there are three different restriction elements, appliable to elements
simpleType, simpleContent, and complexContent, and all of them have a distinct set of
nestable elements. As such, types in XSD are a lot more detailed and structured, which
implies a much more complex and sturdy intermediate structure and semantic grammar
validation, for tracking of (legal) transformation of different types.

Once it became clear that parsing XML schemas would be a lot more difficult than their
JSON counterpart, the first step was to conduct a thorough analysis of the syntax and
determine which elements and attributes were worth parsing and which were not, taking
into account that the XSD language possesses an overall much wider and varied syntax than
JSON Schema.

The main references used to study the syntax were Microsoft’s XML Schemas (XSD) Refer-
ence and the W3C Recommendation, which represents the official source and publication
of the XSD specification, since this language was developed by the W3C team. Microsoft’s
reference is much cleaner, carefully detailing XML Schema elements, data types, etc. in
a user-friendly and readable interface, but lacks in some areas, e.g. the data type facets
which are not explained and simply link to the W3C manuals. Meanwhile, W3C’s reference
is cluttered and harder to read, but minutely details every aspect of the language, namely
lexical spaces of elements’ instances and such.

4.2.1 Grammar

In order to prototype an efficient and feasible data generator from XML Schema, the first
step was to establish a relevant subset of the syntax’s elements, selecting those which are
more common in schemas and useful for dataset specification. The grammar is capable of
recognizing every XSD element, which was implemented to prevent it from crashing or
halting the execution of the pipeline because of the presence of elements that are not of

https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ms256235(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ms256235(v=vs.100)
https://www.w3.org/XML/Schema
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ms256142(v=vs.100)
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interest, such as annotations (used to document schemas). Such elements are filtered but
ignored, not contributing in any way to the final instance.

Figure 29: XML Schema elements.

The XML Schema component was not projected to support cross-schema referencing,
unlike its JSON counterpart, as this entails complicated tasks like the parsing of different
namespaces and prefixes. Cross-schema referencing would only be pondered at the end,
depending on the remaining time available for the project, which ended up not being enough
to implement this feature.

This grammar was developed with the same philosophy as the JSON Schema grammar
and, as such, it possesses the same key features of the latter, described in 4.1.1: besides
validating the schema semantically and producing detailed error reports for the user,
it also restricts each element’s semantics and lexical space, by configuring its respective
attributes and acceptable nested elements (content), which differ from element to element,
and constraining their lexical space minutely.

Let’s look at an example that justifies this necessity: the native data types (figure 36) all
have very specific lexical spaces, sometimes with only minor differences between each other
(especially the derived string types). When restricting a type with the enumeration facet, it
is very important to ensure that the enumerated value conforms to the norms of the type
in question: this facet’s value does not have a predefined lexical space, but instead inherits
the one from the type in question. The grammar is able to keep track of this and enforce
that space on the value introduced by the user, thus ensuring that the produced instance is
coherent.

Another example is that, as mentioned before, there are three different restriction ele-
ments, so it is crucial to differentiate them and restrict their lexical spaces accordingly since,
for example, the variants respective of simple types and complex types with complex content
have the same set of attributes, but radically different content:



4.2. XML Schema Component 64

Figure 30: Definitions of the aforementioned restriction elements, respectively.

Implemented XSD elements

• schema is mandatory, to declare the namespace of the schema and respective prefix.
Every schema must have this element in order to be valid;

• element is also mandatory for the program to be able to generate data from the schema:
it must have at least one root element from which to generate the instance. Furthermore,
it’s the element used to define data units and essential to structure complex structures;

• following the previous point, particles, which are elements that can have occurrence
attributes and always appear as part of a complex type definition or as part of a named
model group. The particles implemented in the grammar (including element, which
was already mentioned) were:

– all - declares a group of elements that can appear in any order in the containing
element;

– choice - enables the presence of one and only one of the elements from the selected
group in the containing element;

– group - combines a set of element declarations into a reciclable group, to be
incorporated into complex type definitions;

– sequence - defines a set of elements that must appear in the specified order in the
containing element.

• attributes - attribute and attributeGroup, to declare (sets of) attributes that can be
incorporated in complex type definitions;

• type elements - simpleType and complexType, in order to specify an element’s data
typing/structure. Both of these elements require the usage of other associated elements
to create their definitions:

– simple type definitions - list (for specifying lists with whitespace-separated
elements), restriction (to further constrain another simple type), and union (for
elements that can be of multiple types);

– complex type definitions - particles and attributes (which were already men-
tioned above), simpleContent and complexContent (to specify a complex type’s
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kind of content), extension (to extend complex type definitions), and restriction
(to restrict complex type definitions).

Ignored XSD Elements

All of the remaining XSD elements that were not mentioned above are not acounted for by
the grammar, for relating to one of three distinct concepts:

• multiple XSD documents and namespaces - any (particle) and anyAttribute, which
serve to enable elements/attributes from other namespaces to appear in the instance,
import, include, and redefine. This concept was not relevant, since it was already
determined that DataGen From Schemas would only operate with the local namespace
of the schema;

• identity constraints - field , key, keyref, selector , and unique, whose purpose is to
enforce certain properties on elements and are very similar to database concepts such
as uniqueness, primary key, and foreign key, specified through XML Path Language
(XPATH) expressions. These elements are rarely used in XML schemas and require
knowledge on XPATH, which the majority of casual users does not possess. As such, it
did not seem immediately necessary to implement these elements in the schema, in
view of the value they had to offer;

• schema annotations - annotation, which requires appinfo or documentation. These
elements are used to annotate schema documents and leave important information
accessible to future users of said schemas. Such as comments, these do not have any
impact in the final instance, so the program simply ignores them.

By modifying diagram 29, it is possible to get a clearer look at the the final subset of
XSD elements selected for implementation in the program, as well as those that were not of
chosen:

Figure 31: Selection of XML Schema elements for DataGen From Schemas.
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4.2.2 Intermediate Structure

XML Schema’s syntax and structure are fundamentally different from JSON Schema’s, so
it’s natural that the type-oriented structure used in the other component is not suitable for
this language. JSON Schema’s most basic data unit is a JSON property, a simple key/value
pair, which is easy to store as is since this format is universal throughout the schema, i.e.
no keyword made available by the syntax deviates from this key/value standard. For this
reason, the information extracted from a JSON schema requires minimal adjustments even
after being reorganized in function of its generateable data type.

This is not the case of XSD’s syntax at all, given that its basic data unit, an element, has a
lot more information that needs to be filtered and extracted, and such information is spread
out over the element’s structure, not centralized in a single value. Every element has an
asset type (attribute , choice, element, etc - green), attributes (specific to each asset type -
yellow) and content (nested elements, each asset type also has a specific set of nested asset
types - orange):

Figure 32: Structure of an XSD element.

The intermediate structure projected to store information from XML schemas revolves
around these three components - the application stores each XSD element’s information
in a JavaScript object with three properties, where element is its asset type, attrs holds its
attributes as simple key/value pairs, since all attributes have simple content, and content is
an array of objects that correspond to its nested elements, in the format described in this
paragraph, e.g.:
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Figure 33: Example of an XSD element’s intermediate structure.

This structuring makes it possible to store all information of an element in an organized
and formulaic manner, which facilitates the structure’s traversal and querying.

Attribute Referencing within the Schema

After storing all of the schema’s information in the intermediate structure, the parser then
resolves all existing references within the schema, which are specified through certain
attributes. Two different attributes classify as references in this context: ref, which can be
observed in the elements attribute , attributeGroup, element, and group, and points to entire
elements and their structures, avoiding duplication of code; type, which can be observed
solely in the elements attribute and element, and is used to specify their data typing by
referencing simple or complex types, either built-in (in this case, only simple types) or
declared elsewhere in the schema by the user.

XML Schema has a key characteristic that assists the resolution of these references: it is
only possible to reference top level elements, i.e. elements declared at the root of the schema.
The only exception is that of built-in simple types, referenced with the attribute type, which
are native to the language and not explicitly declared in the schema. Thus, the program only
needs to iterate the structure recursively, checking each element’s attributes for ref or type.
If it does not have any of these attributes, the solution proceeds to loop through its content,
checking each of its nested elements and repeating this procedure. Otherwise, it identifies
the referenced element at the root of the intermediate structure via its attribute name (which
is required in top level elements) and assigns its attributes and content to the referencing
element (the new values of repeated attributes will prevail over the original element’s), thus
centralizing all information in the structures of the schema’s root elements of asset type
element, from which the dataset can be generated. This way, the DSL translator will have all
the necessary data in the structure of the element selected by the user for the dataset and
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will be able to discard all other information filtered from the schema, allowing for a simpler
and cleaner translation procedure.

However, the parser needs to perform another step before this, in order to be able to
resolve all references, and that is to prepare all custom types declared in the schema, so that
each of their structures possesses all of their respective data.

Parsing Custom Types

Type derivation is a very complex tool in XML Schema. Let’s start with simple types: any
custom simple type needs to reference a base type, which it either extends or restricts,
and that base type must be compatible with the new type’s content: the base type cannot
be a complex type and each of the syntax’s built-in types has a specific set of applicable
constraining elements, i.e. data type facets, which are inherited by the derived type. For
this reason, a simple type derived from a numeric built-in type cannot be restricted with the
constraining facet maxLength, for example.

As for complex types, it is important to distinguish the two different kinds that exist,
depending on the nature of their content:

• simple content - their content is based on a simple type (either built-in or custom) and
the element can possess attributes, which normal simple types cannot;

• complex content - their content is a set of nested elements and the containing element
of this type can also possess attributes.

As such, definition of complex types is even more complicated: simple content types must
always be based on another type (using the element simpleContent), which can be either
simple or complex with simple content, inheriting its content and also its attributes, in case of
the latter; however, it is possible to define complex types with complex content from scratch,
structuring them with particles and attributes, thus creating new complex structures that
all elements of such types must abide by. Still, the user can also create types with complex
content by deriving other such complex types (with the element complexContent), creating
new complex types that further restrict or extend their bases, where each of their nested
elements can be of any of the types mentioned. All of this is illustrated in the following
image:

Figure 34: Flowchart of type derivation in XML Schema.
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This diagram has two great implications:

1. the parser can only derive and finalize custom data types after analyzing the entire
schema, because of their references to base types, since XSD documents do not establish
any kind of mandatory order for the elements at the top level of the schema. As such,
a custom type may reference a base type that is defined anywhere in the schema, so it
is not viable to parse custom types as the parser finds them, since their base may not
yet have been reached;

2. a schema may possess a vast web of interconnected type dependencies, so the order in
which custom types are parsed is incredibly important, since it is necessary to ensure
that a custom type’s dependencies have all already been finalized by the parser when
trying to resolve it, otherwise it will not be able to do so.

Concluding, it is crucial to determine the right order in which to parse the schema’s
custom types, but the schema itself does not help to determine this order in any way, due
to its free placement of top level elements, resulting in a group of unresolved types after
analyzing the entire schema, possibly dependent on each other.

type sorting algorithm

The answer found to this dillema was to implement an algorithm with queues that loops
through all of the remaining custom types and iteratively resolves them, as soon as their
dependencies are complete.

There are two queues: one for types with simple content (simple and complex types) and
another for complex types with complex content. While analyzing the schema, the parser
immediately caches any custom type in the respective queue, whenever it finds one. At the
end, each queue is complete with all the custom types of the schema that have yet to be
resolved.

To determine the order in which these types must be resolved, it is crucial to take into
account the subliminal hierarchy of type dependencies that exists in XML Schema, which
figure 34 suggests:
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Figure 35: Hierarchy of type dependencies in XML Schema.

With this, it becomes clear in which order the custom types of the schema must be resolved
- the language’s built-in simple types are the only data types there are inherently finalized at
any moment and do not require any additional parsing. Since any custom type with simple
content must be based on another simple type, the lowest level derived types of a schema
will necessarily be derived from the built-in types - these are the custom types that need to
be parsed first, since their base type is already complete. Then, the derivation flow becomes
incremental and the program becomes able to parse other custom types derived from the
former batch of resolved types, and so on. Thus, types with simple content are the first to be
parsed and complex types with complex content are best left for last, since it is necessary to
ensure that the types of all of their nested elements are already resolved.

As such, the application starts by looping through the simple content queue recursively,
maintaining an array with the names of the finalized types that it updates on every iteration
with the newly-parsed types. After clearing the first queue, it repeats the same process for
the other one, until it ultimately resolves all custom types.

simple type derivation algorithm

In order to have the ability to create new custom types by deriving base types, it is
necessary to keep track of every type’s constrainments, both on their attributes (complex
types) and content - simple content (simple types and complex types with simple content)
or particles (complex types with complex content).

Let’s start at the base of the type dependency hierarchy. For simple types, there are several
kinds of derivation:

• by restriction - to restrict the lexical space of another type’s content, via constraining
facets;
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• by list - to indicate that values of the new type must be whitespace-separated lists of
items of the base type. After deriving by list, subsequent constraining facets apply on
the list itself and not on the base type;

• by union - to indicate that values of the new type may be of any of the types included
in the union.

The most relevant of these is derivation by restriction, due to its usage of constraining
facets. When deriving types, their restrictions are cumulative, i.e. type A that derives
from type B has both type A’s constraining facets and the new ones established in its
derivation. As such, in order to be able to derive new simple types from built-in types, the
parser requires a structure in memory that maps all of the built-in types to their respective
constraining facets, accumulated along this derivation chart:

Figure 36: Primitive data types of the XML format.

Eric Vlist’s book RELAX NG (Vlist, 2004) possesses a great reference to all the data types
defined by the W3C XML Schema, available online here, which actually shows each type’s
XSD declaration and the constraining facets imposed on their bases.

http://books.xmlschemata.org/relaxng/relax-CHP-19.html
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With the aid of this reference to know each type’s new constraining facets, DataGen From
Schemas is able to create these built-in XSD types in memory: it starts by defining the
primitive types (in orange) and then creating the derived types (in green) in their respective
order, e.g. normalizedString from string, token from normalizedString, etc. until reaching
the final ones.

With this infrastructure, the solution is then able to create custom types by deriving their
base type in the same way. It does this by implementing an algorithm that compares each
new contraining facet to the base type’s, checking if it is allowed in the type in question, and
then incorporating it in a reasonable way, similar to the JSON schema extender (4.1.6): if the
base type does not possess the new constraining facet, it is added to its content, otherwise
the program compares both values of the facet’s instances and evaluates what to do with
them. For example, in the case of the facet enumeration, they are concatenated, while in the
case of maxExclusive, the lower value prevails, as it already implies the other one.

complex type derivation algorithm

As for complex types, there are two different kinds of derivation:

• by extension - used to extend other types with attributes (both simple and complex
content) and particles (complex content), i.e. add new content to the base specification;

• by restriction - used to restrict other types’ contents, namely the lexical space of
the content with constraining facets (simple content), or the particles and attributes
(complex content).

The derivation of complex types is pretty straightforward, since it basically translates to
adding or removing attributes/particles from the base type’s structure, which is very easy
due to the way in which the parser organizes the element’s information (4.2.2). The most
important aspect of this operation is the semantic validation of the extension/restriction in
question, which must adhere to XML Schema’s principles of constraints on particle schema
components.

4.2.3 DSL Model Creation

As was explained in 2.2.1, DataGen generates datasets in an intermediate JSON object, which
is not ideal for representing XML data. As such, it was necessary to create a custom key
nomenclature to annotate the abnormal cases in the DSL model, in order to circumvent this
problem and be able to generate all required data correctly.

https://www.w3.org/TR/xmlschema-1/#coss-particle
https://www.w3.org/TR/xmlschema-1/#coss-particle
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Custom Key Nomenclature

This section exposes all of the circumstances where custom keys are required, in order to
annotate special cases of the DSL model that need to be post-processed after generating
the dataset, i.e. cases where the DSL syntax or intermediate JSON object are not enough to
depict the XML information as is. All of these flags are prefixed with DFXS (DataGen From
XML Schemas), in order to be easily identifiable.

Later on, once the final dataset has been generated and is stored in a JavaScript object, all
that is left to do is to translate it to the intended output format. This process is carried out
by DataGen’s translators to either language, which were already present in the application’s
original build. However, these programs had to be greatly expanded, in order to be able
to parse these custom keys and modify the dataset according to their meaning, cleaning
the structure and creating a final, complete dataset. As such, this section will also expose
how these programs post-process the DSL’s custom keys and what effect they have on the
generated data.

name normalization

As mentioned at the end of section 3.3, XML keys support the characters . and −, which
JSON keys do not. As such, any occurrences of these characters need to be replaced with
a special flag in order to preserve the original name (encoded) of the element along the
generation process. This is applicable to the attribute name of elements of both asset types
attribute and element: if their name has any of these characters, then it is prefixed with
DFXS_NORMALIZED_ and dots are replaced with __DOT__, while hyphens are replaced
with __HYPHEN__, for example:

Figure 37: DSL model with normalized keys produced from the XML schema.

In the end, DataGen’s translators remove the prefix and either change both flags back to
their original characters (XML) or replace them with an underscore (JSON):
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Figure 38: Example of instances produced from the previous schema.

attributes

JSON does not support attributes, so these must also be stored in properties of their
respective element, along with the remaining content properties. To distinguish attribute
properties from others, the program prefixes their name with DFXS_ATTR__ in the DSL
model.

Figure 39: DSL model of an element with simple content and attributes.

In post-processing, the translator to XML removes the prefix and concatenates the attribute
inside the element’s opening tag, writing all attributes inline with the element’s name, while
its JSON counterpart replaces the prefix with attr_, for a cleaner way of differenciating
attribute properties, preserving the property in the element’s corresponding JSON object.
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Figure 40: Example of instances produced from the previous schema.

complex types with simple content

Simple type elements are represented in the DSL model through a simple key/value
property, where the key is the element’s name and the value is its content’s corresponding
DSL string. However, elements of complex type with simple content can also possess
attributes, so in these cases the value must be an object with several properties: attribute
properties were explained above, but the content’s DSL string now also requires a key, to fit
into the structure. For this purpose, the program uses the key DFXS_SIMPLE_CONTENT,
which can be observed in figure 39.

Ultimately, the translator to XML removes this key and pastes its value in the dataset
string, between the element’s opening and closing tags, while its JSON equivalent renames
the key to value, indicating that it’s the element’s content, and leaves the property in its
element’s corresponding JSON object, along with its attribute properties (figure 40).

mixed content

If an element has mixed content, the application must annotate its DSL string with a
special property, in order for it to know that it must generate filler text between its nested
elements/properties in post-processing. It is possible to restrict the filler text’s content in the
schema, so there are two possible keys for this situation:

• DFXS_MIXED_DEFAULT: this key indicates that the element’s text can be any type of
string and has a filler value (true);

• DFXS_MIXED_RESTRICTED: this key indicates that the element’s text has been re-
stricted and its value is the corresponding DSL string to generate it.
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Figure 41: DSL model of a schema with mixed content.

After the dataset has been generated, DataGen’s translator to XML removes this flag and
produces random text around the element’s nested properties, either chunks of lorem ipsum
(first custom key) or according to its schema restrictions (second custom key). The translator
to JSON does the same and stores those chunks of text in JSON properties with the key
text {counter}, since they also need to be in a key/value format.

Figure 42: Example of instances produced from the previous schema.

elements with the same name

While in XML it is possible to have multiple elements with the same name nested together,
which can be specified in the schema, for example, via an element’s occurence attributes,
JSON does not support this feature. Initially, the plan to bypass this was to number every
repeated element’s occurrences, which was suggested in 2.2.1. However, this would imply
having to decide the entire dataset’s structure before creating the DSL model - e.g. for an
element that could occur between 3 and 10 times, its exact number of occurrences would
have to be determined a priori by the program, which would then write said number of
properties of that element to the model. This approach has two big problems:
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1. the dataset’s structure is pre-programmed into the DSL model and not randomly
determined from it in runtime, which was the initial intent. With this method, the
number of occurrences of any element will be hard-coded into the model, vastly
restricting its flexibility and reusability, since only the values of the leaves would be
created in runtime;

2. with more complex schemas, this can originate enormous models, which are hard
to maintain, read and edit, making them very impractical to use. Furthermore, the
requests’ response times would skyrocket and models would potentially be too big for
response bodies, which could crash the program when trying to serve the model and
dataset to the user.

As such, another approach was chosen: using DataGen’s repeat function, which specifies
that a certain DSL chunk must be generated a given number of times, creating an array with
the indicated size. The only problem is that this function produces an array and instances of
XML elements with multiple occurrences should be nested inside the containing element
and not an enveloping list.

Therefore, in these cases, the program uses the repeat function to configure a random
number of occurrences in the DSL model and sets it as the value of a provisory property
with the key DFXS_FLATTEN__{counter}, which indicates that the value must be flattened
in post-processing. This key also possesses a counter that is incremented each time the
repeat function is used, so that multiple properties of this nature don’t overwrite each other,
if present inside the same containing structure.

Figure 43: DSL model of a schema with multiple occurrences of elements.

After the dataset is generated, DataGen’s translators flatten the array, i.e. extract its values
to the root of the containing structure and delete the temporary property, additionally
numbering them when translating to JSON so that they don’t overwrite each other.
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Figure 44: Example of instances produced from the previous schema.

transparent enveloping elements

XML Schema has several asset types meant to specify a group of elements through an
enveloping element that does not appear itself in the instance: all , choice, and sequence.
group does not count since it is simply used to declare and reference top level, resusable
elements of the other three asset types.

Well, choice elements allow one and only one of their nested elements to be present in the
instance, however their nested elements can be of asset types element, choice, sequence or,
indirectly, all (referenced via a group). If a choice possesses a nested all /sequence element
and it is selected, all of its nested elements should be present in the final instance.

However, since DataGen parses DSL models from leaves to root, in this case the nested
elements of all /sequence would be shuffled/ordered and only then would the choice select
an element, meaning it would also interpret the shuffled/ordered elements as alternatives
and not a whole. To prevent this, the application stores the DSL string of the element
all /sequence inside a temporary object, to basically “bubble-wrap“ its nested elements as a
whole, and this object is stored in a property with the key DFXS_TEMP__{counter}. The key
possesses a counter that is incremented for every new temporary object of this kind that is
created, to prevent these properties from overwriting each other, in case there are multiple
at the same depth.
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Figure 45: DSL model with a transparent enveloping element produced from the schema.

In the end, DataGen’s translators omit this enveloping property and copy its content to the
containing structure:

Figure 46: Example of instances produced from the previous schema.

Translation of Elements

With all the custom keys established above, the translation program is finally able to generate
a DSL model, by iterating the intermediate structure with the schema’s data recursively,
generating the DSL string from leaves to root. It receives only the structure of the top
level element that will be instantiated, which possesses all the necessary information for its
complete parsing, at this point.

elements and attributes

When translating elements of these asset types, the application checks their attributes
before the content, according to a specific order:
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• nillable (element-only) - if the element is nillable, its DSL string corresponds to an
if/else statement: the if condition has a default probability of 30% (customizable by
the user) of being true, in which case the program produces a property with a nil
attribute and no additional content; otherwise, it creates a property with the element’s
regular content:

Figure 47: DSL model of a schema with a nillable element.

• use (attribute-only) - if this attribute’s value is "prohibited", then the program returns
an empty string, so that it is not present in the instance;

• fixed - if the element has a fixed value, it simply transcribes said value to the model;

• default - if the element has a default value, its model follows the same structure as
with nillable and produces said value only if the condition evaluates to true.

Figure 48: DSL model of a schema that uses the attributes use, fixed, and default.

Furthermore, if the element’s content is specified with a DataGen interpolation function
via custom comment, as will be described in 4.3, the program declares the property’s value
as the result of such function:
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Figure 49: DSL model of a schema with interpolation functions.

Finally, if the element’s DSL string still has not been finished at this point, then it is
necessary to translate its content, by parsing either the attribute type or, in its absence, the
nested simpleType/complexType element.

types with simple content

DataGen’s original grammar was equipped with a lot of new interpolation functions for
generating relevant types of data, mostly related with built-in XSD simple types, such as
hexBinary, xsd_duration, and xsd_gDay, among many others, which are all thoroughly
documented in the website. Thus, the content of these types is usually easy to specify in the
DSL, with most types having direct translation to interpolation functions, along with their
restrictions.

However, there are a few exceptions:

• if the type is restricted with one or multiple enumeration facets, its value is simply
declared as a random choice between the alternatives, with DataGen’s random function:

Figure 50: DSL model of a schema with enumeration facets.

https://datagen.di.uminho.pt/documentacao
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• if it is restricted with a pattern facet, the program uses DataGen’s function with the
same name to generate a value from the regular expression:

Figure 51: DSL model of a schema with a pattern facet.

• for types ID and IDREF, their value is set as plain strings ' {DFXS_ID}' or ' {DFXS_IDREF
}', respectively, and resolved by DataGen’s translator programs after all data is generated.
This is so that the application doesn’t create any repeated ids or invalid references,
since it is very difficult or even impossible to make sure of that with just the syntax
of the DSL. In post-processing, the translators go through the entire dataset from
beggining to end, firstly replacing each ID value with an incrementing id (id1, id2, ...)
and then replacing each IDREF value with one of the previous ids (randomly chosen),
thus ensuring that the property references a valid id of the schema:

Figure 52: DSL model of a schema with ids and id references, and example XML instance.
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• union - the DSL translation of an union is a random choice between the DSL strings of
all the possible types, using DataGen’s random function:

Figure 53: DSL model of a schema with an union element.

• list - the program creates a JavaScript function which generates lists of variable size at
runtime, within reason. If the list’s values’ content can only have one type, then the
function implements a loop with a randomly determined size, where each iteration
generates a random value from its content’s DSL translation:

Figure 54: DSL model of a schema with a single-type list element.

Otherwise, if the content of each value is an union of several types, it does basically
the same, additionally choosing one of the types randomly in each iteration. In the
end, the function concatenates all values in a string, separated by spaces:
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Figure 55: DSL model of a schema with a multi-type list element.

types with complex content

In order to translate elements with complex typing, the program must be able to create
DSL strings for all , choice and sequence elements, as well as attributes and mixed content.
There is an order to these components in the DSL string: mixed content must be the first
thing to be discriminated in the element’s DSL string, with a property as described in 4.2.3;
next, the attributes, if there are any - their DSL strings must appear before the content’s, for
easier parsing and organization of the instance; finally, the content’s specification, which is
built from translating the nested particles.

• all - as predicted in 2.2.4, elements of this asset type are translated with DataGen’s
at_least function, exactly as exemplified. Furthermore, if the element has a minimum
number of occurrences of zero, its model becomes an if/else statement similar to the
one described in 4.2.3, so that users can control the odds of the element occurring,
otherwise it would not do so in a lot of generation attempts, which is not as interesting:
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Figure 56: DSL model of a schema with an all element.

• choice and sequence - an element of these asset types needs to always be specified with
the custom key DFXS_FLATTEN, even if the particle only occurs a single time, because
there may be other elements with the same name as some of its nested elements, in
the containing structure, which would result in properties being overwritten and data
loss. The custom key prevents this and does not need to be followed by the repeat
function if the particle is unitary, as that would be redundant (it is enough the place
the particle’s content inside an array, to be flattened later):

Figure 57: DSL model of a schema with choice and sequence elements.
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4.3 integration of interpolation functions on schemas

DataGen From Schemas produces a DSL model along its pipeline, which translates the schema’s
requisites for the intended dataset’s structure and semantics, as an intermediate step of the
data generation process. This model is also made available to the user in the application,
along with the end result, in order to allow further customizability of the resulting instance
in DataGen. As such, the user is able to take the produced model and edit it directly in the
application’s prior version, which can be useful to further detail the content of specific fields
or to tweak the specification in ways that require a lot more effort in the schema’s dialect.
Let’s look at the following example in JSON Schema:

Figure 58: JSON schema of a person.

The above schema represents a person, which must have a name, surname, date of birth,
nationality, and profession. Naturally, all of these properties must be strings, however just
restricting them to the string type is too loose a specification, since it presents no impositions
on each property’s semantics. This schema can validate against instances which make no
sense realistically, if the properties’ string contents do not match their keys. Likewise, when
generating data from the schema as it is, without further restrictions, DataGen From Schemas
will produce random strings for each property, which is not ideal.

4.3.1 Possible solutions

The schemata languages do not possess reasonable means to circumvent this problem, since
the most viable option would likely be to hard-code several possible values for each property
via an enumeration, which is too cumbersome and time-consuming to be a feasible solution.
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The user can, however, modify the DSL model directly in DataGen with interpolation
functions, editing each property’s model to a directive that better fits its purpose. DataGen
possesses a vast array of support datasets, which contain vast ammounts of information
on certain topics, e.g. animals, brands, names, and jobs. With interpolation functions, it is
possible to map a field’s content to a random element of one of these datasets, which is
incredibly valuable in the context of data generation and exactly what is needed to solve
the matter at hand. There are also many other interpolation functions of spontaneous
generation, which produce specific types of values at runtime, namely dates, unique
identifiers, coordinates, and times, which are also very useful in this situation. However,
this solution is still not ideal, since the user would always need to edit the intermediate DSL
model manually in DataGen, which breaks the program’s quick schema-to-dataset intended
workflow, requiring an extra ammount of steps and a decentralized approached for the user
to obtain the intended instance.

Therefore, the ideal solution would be the ability to specify properties’ contents with
DataGen’s interpolation functions directly in the schema, making the program more versatile
and allowing the user to provide all necessary information in one go.

4.3.2 Chosen Approach

The objective was to implement this feature without modifying the schemata languages,
in order to preserve their original syntax - the solution that came to mind was to utilize
comments to provide such instructions, since this application completely ignores them when
parsing schemas, given that they have no reflection whatsoever on the produced instance. As
such, by defining a strict nomenclature for these custom comments, it would be possible to
distinguish them from normal ones and enrich the schema with additional context-specific
information for the program, allowing it to produce datasets compliant with the schema
that actually reflect the user’s intended semantics.

This feature works under the following rules:

• the utilized interpolation function substitutes the content of the element originally
established in the schema, in the intermediate DSL model. This creates a reusable
model that can generate different instances, all according to the user’s instructions,
instead of only strictly compliant datasets;

• this functionality can only be used with elements/properties that have elementary
content (numeric types, strings, and booleans). For a field with complex content, it is
always possible to customize its elementary local properties individually;

• DataGen’s support datasets possess data both in portuguese and english. Users should
indicate their preference in the program’s settings;

https://datagen.di.uminho.pt/documentacao#dataset_moustaches
https://datagen.di.uminho.pt/documentacao#gen_moustaches
https://datagen.di.uminho.pt/documentacao#gen_moustaches
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• in accordance with point 4.3.2, the only disallowed interpolation functions are random
, political_party , and pt_entity, since these (can) generate complex structures, i.e.
objects and arrays. Every other DataGen interpolation function is permitted, be it a
spontaneous generation function or one with dataset support.

XML Schema

In order to implement this mechanism for XML Schema, it was necessary to adapt the idea
to the language’s intrincacies, analyzing which types of elements would be apt for these
instructions, where the comments should be integrated and how they would relate with the
elements’ attributes. Finally, the following convention was established:

• it is only possible to personalize the content of element and attribute elements. All
other types of XSD elements are used to structure and organize the schema and only
these two act as its leaves, holding simple-typed information;

• the element’s base-type must be a simple type (simpleType). It is not possible to
use interpolation functions with complex type elements (complexType), for the same
reason that was stated in point 4.3.2;

• the interpolation function substitutes the element’s content (which is defined with
the attribute type or a nested simpleType element), but it does not override the its
attributes - attributes such as nillable , fixed, default, and use will still be considered
during the generation of the model;

• the intended function must be given in a comment nested inside the element, before
any other nested element, and it must be written in the format
<!−−datagen:[function_name][arguments]−−>, for example:

– <!−−datagen:firstName()−−>;

– <!−−datagen:time("hh:mm:ss", 12, false)−−>.

• in case of an interpolation function without arguments, it is enough to indicate only
the function’s name (it is still possible to write empty arguments, only unnecessary),
e.g.:

– <!−−datagen:animal−−>;

– <!−−datagen:firstName−−>.

• otherwise, the function must be written exactly as it would be in DataGen, e.g.:

– <!−−datagen:pt_county("district", "Braga")−−>;

– <!−−datagen:time("hh:mm:ss", 12, false)−−>.

https://datagen.di.uminho.pt/documentacao#gen_moustaches
https://datagen.di.uminho.pt/documentacao#dataset_moustaches
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Thus, the previous schema can be rewritten as seen below, in order to map each element’s
content to adequate interpolation functions, resulting in coherent instances:

Figure 59: Modified XML schema and resulting dataset.

JSON Schema

As for JSON Schema, another ordeal emerged: JSON does not have native support for
comments in its key/value structure, as it is a data-only format. As such, for comments to
be included in the schema or instance, they must be data too.

The usual approach is to have a designated data element named _comment (or some other
similar keyword) that should be ignored by the application that uses the JSON data. As
such, since it is necessary to introduce a custom keyword in the syntax to support comments,
it is better to simply define a _datagen data element in the case of DataGen From Schemas,
given that the program has no use for any other kind of comments, hence providing a more
intuitive keyword to indicate interpolation functions in a more straightforward manner.
After deciding this, the following convention was established for this type of schemata:

• it is only possible to customize the content of (sub)schemas of type string, boolean,
integer, and number, i.e. elementary types, such as with XML Schema - the data type
produced by the interpolation function must naturally match the type of schema where
it is used;

• the function overrides the schema’s type-specific content, but generic keywords such
as const, enum, and default remain in effect;
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• the intended function must be given as the string value of the keyword _datagen, in
the schema in question, and must follow the format "_datagen": "[function_name][
arguments]", for example:

– "_datagen": "firstName()";

– "_datagen": "time('hh:mm:ss', 12, false )".

• if the interpolation function takes no arguments, the user can simply provide its name,
e.g.:

– "_datagen": "animal";

– "_datagen": "firstName".

• otherwise, the function must be written as it usually would in DataGen, except the
string arguments must be encased by apostrophes instead of quotation marks, since
these are already in use around the keyword’s value:

– "pt_county(' district ', 'Braga')";

– "time('hh:mm:ss', 12, false )".

With this, it becomes possible to embed DataGen’s interpolation functions in JSON schemas.
In the case of the schema in figure 69, the result is:

Figure 60: Modified JSON schema and resulting dataset.

4.4 api routes

The four routes mentioned in subsection 3.3 are made available by DataGen From Schemas,
allowing the usage of this application without recourse to its interface, which enables
integration in third party programs.
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The requests’ body structure differs depending on the type of schema in question and will
be explained in detail, just as it is in a segment of the application’s interface, where users can
access this information and learn how to employ the program’s services via HTTP routes.
These routes return a JSON object with the generated dataset, in the indicated format, and
the respective DataGen DSL model, both generated from the given schema.

If the request’s body is invalid for any reason, whether it is not correctly structured or
the schema has errors, the application answers with a failure status and an error message
explaining the problem.

4.4.1 XML Schema Routes

There are two different routes for this type of schema:

• POST /api/xml_schema/xml - generates the instance in XML;

• POST /api/xml_schema/json - generates the instance in JSON.

The body of these HTTP requests must have (only) the three following properties:

• schema - the XML schema from which data is to generated, must be given in a string;

• element - the root element of the schema that the instance should concern. An XML
Schema may have more than one root element, but an instance can only have one,
where all of its information is nested;

• settings - the user’s preferences for the data generation process, regarding the options
made available by the program for XML schemas. These should be sent in an object
with the following properties:

– datagen_language - language of the results of DataGen’s interpolation functions
with dataset support. Must be either “pt“ (portuguese) or “en“ (english);

– recursion - object with the recursion limits. Must have the following properties:

* lower - lower boundary of recursion. Must be a non-negative integer;

* upper - upper boundary of recursion. Must be a non-negative integer.

– unbounded - maximum number of occurrences of an element with the attribute
maxOccurs set to “unbounded“. Must be a non-negative integer;

– prob_default - probability of the instance of an element with the attribute default
specified having that preset value. Must be a number between 0 and 100;

– prob_nil - probability of the instance of an element with the attribute nillable
set to true having the explicit value nil , instead of its normal content. Must be a
number between 0 and 100;
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– prob_noAll - probability of an all element with the attribute minOccurs set to
zero not occurring in the instance. Must be a number between 0 and 100.

Figure 61: Example request to a XML Schema route.

4.4.2 JSON Schema Routes

There are two different routes for this type of schema:

• POST /api/json_schema/json - generates the instance in JSON;

• POST /api/json_schema/xml - generates the instance in XML.

The body of these HTTP requests must have (only) the three following properties:

• main_schema - the JSON schema from which data is to generated, must be given in a
JSON object;

• other_schemas - an array with the remaining relevant schemas, for cross-schema
referencing with the main one. Each of them must also by provided in a JSON object;
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• settings - the user’s preferences for the data generation process, regarding the options
made available by the program for JSON schemas. These should be sent in an object
with the following properties:

– datagen_language - language of the results of DataGen’s interpolation functions
with dataset support. Must be either “pt“ (portuguese) or “en“ (english);

– recursion - object with the recursion limits. Must have the following properties:

* lower - lower boundary of recursion. Must be a non-negative integer;

* upper - upper boundary of recursion. Must be a non-negative integer.

– prob_if - probability of the schema of a keyword if validating the instance, i.e.
the condition being true. Must be a number between 0 and 100;

– prob_patternProperty - probability of generating an instance property from a
pattern property, specified in the keyword patternProperty. Must be a number
between 0 and 100;

– random_props - possibility of generating additional random properties (while
complying with the size designated for the object) if neither of the keywords
additionalProperties and unevaluatedProperties are specified. Must be a boolean;

– extend_objectProperties - how to proceed when extending one schema with
another, where both have the keyword properties or patternProperties and their
values have repeated properties, i.e. what to do when extending those repeated
properties’ schemas. Must be one of these strings:

* “extend“/“overwrite“ - for every repeated property of these keywords, ex-
tend/overwrite its schema of the base keyword with the respective schema
of the new keyword. All original properties of the new keyword are also
assigned to the base keyword.

– extend_schemaProperties - how to proceed when extending keywords whose
value is a subschema (propertyNames, additionalProperties, unevaluatedProperties
, items, and unevaluatedItems). Must be one of the following strings:

* “extend“/“overwrite“ - extend/overwrite the schema of the base keyword
with the schema of the new one.

– extend_prefixItems - how to proceed when extending the keyword prefixItems.
Must be one of the following strings:

* “extend“ - for all schemas at the same index, extend the base keyword’s
schema with the respective schema from the new keyword. If the new
keyword has more elements than the base one, append the extra elements;
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* “append“ - append the schemas of the new keyword to the base keyword’s
array;

* “partial_overwrite“ - for all schemas at the same index, overwrite the base
keyword’s schema with the respective schema from the new keyword. If
the new keyword has more elements than the base one, append the extra
elements;

* “total_overwrite“ - the array of schemas of the base keyword is deleted and
substituted with the new keyword’s.

Figure 62: Example request to a JSON Schema route.
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4.5 graphical interface

The interface of DataGen From Schemas was designed in a very similar way to its previous
version’s, given that the core workflow of both programs is the same and also to maintain a
certain familiarity between the two tools, since they can be used complementarily (reason for
which it is also in portuguese, just as its predecessor). This is the final look of the application:

Figure 63: Interface of DataGen From Schemas.

The application’s name, at the top left corner, possesses a toggle button where users can
select the type of schema from which to generate data, XML or JSON. The interface’s color
theme changes according to the input schema between green (XML) and blue (JSON), to
signal clearly the type of input schema in use:

Figure 64: Interface of the JSON component.
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The JSON component’s interface has two extra features compared to the XML component,
which are highlighted by the red arrows in the figure above:

1. a button to add tabs for schemas: the JSON component supports cross-schema
referencing, thus its interface allows for the input of multiple schemas. Each individual
schema must go into its separate tab and the program automatically detects if the a
schema has an id and, if so, changes its tab’s name to that;

2. a tooltip button for information on how to structure complex schemas: since DataGen
From Schemas standardizes an URI (its own) for the identification of schemas, this
information is provided to the users through a modal prompted by this button,
otherwise they would have no way of knowing this. This modal also takes the
opportunity to show the types of URIs (absolute/relative) and references supported by
the solution:

Figure 65: Modal with information on how to structure complex schemas.

Besides this, both components’ interfaces share the same set of funcionalities, which will
be described with the help of the following screenshot, annotated with numbers in order to
easily identify the features in question:

Figure 66: Highlights of the interface’s features.
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1. authentication - the login button opens a modal where users can sign in/up to the
website. When logged in, this button is replaced with a logout button and users are
able to save DSL models directly to their profile, which can be consulted in DataGen’s
interface;

2. schema upload - this button allows users to upload schemas to the program, opening
a file explorer for the user to locate the intended file. Uploaded files are verified by
extension to ensure that they are in the correct format. In XML Schema, the new
uploaded schema replaces any previous content of the tab, since the program only
allows one schema (no cross-referencing). In JSON Schema, unless the current tab is
empty, the program will load the new uploaded schema to a new tab;

3. settings - each component has its own set of configurable settings for the data genera-
tion process, which were already described in 4.4. These options can be personalized
in a modal which this button opens:

Figure 67: Settings interface.

4. output format - users can choose to generate datasets in either JSON or XML, regardless
of the type of input schema:

5. dataset generation - pressing this button triggers the generation process: the appli-
cation analyzes the schemas, creates an intermediate DSL model and generates the
final instance in the format intended by the user. With JSON Schema, if the user
inputs multiple schemas, the program prompts him to select which one should be
instanceated. With XML Schema, the same happens if the schema has multiple top
level elements;

6. parallel instances - the application stores each new dataset in a different tab, which
means users can generate as many instances as they want and they won’t overwrite
each other. This way, it is easy to compare different results;
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7. intermediate DSL model - this button opens a modal where users can consult the
intermediate DSL model generated from their schema, respective to the dataset in the
current tab. Besides interacting with the model, users can also execute the following
operations on it:

a) copy to the clipboard;

b) download;

c) save to their profile, only if they are logged in.

8. download - users can download the selected dataset and quickly specify the file’s
name in the textbox next to this button;

9. information on the usage of interpolation functions - this button prompts a modal
where users can find a thorough explanation on how to integrate DataGen’s interpola-
tion functions on their schemas, as was described in 4.3. Additionaly, this modal also
possesses a button which redirects user to DataGen’s website;

10. information on the API routes - this button prompts a modal with a complete listing
and specification of the application’s API routes, which were also described in 4.4.

As mentioned previously in this dissertation, both components also produce reports on
the schema’s errors, if there are any, which have the following appearance:

Figure 68: Error report.

Furthermore, if a generation attempt is taking a long time, the application displays a
loading circle so that users know that their request is being processed and disables all
buttons, to prevent them from submitting additional requests or further inconveniencing the
processing of the current one. Each generation attempt has a timeout of 30 seconds, after
which the operation is aborted and the user is informed of its expiration:
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Figure 69: Loading circle on a heavy request (binary tree with 10 levels of recursion).
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T E S T I N G A N D E X A M P L E S

The main focus of the testing phase of DataGen From Schemas was to gauge the application’s
usability and sturdiness in terms of the precision of generated instances, in relation to their
model, and diversity of use cases, assessing its ability to handle every data specification tool
at a schema’s disposal - in JSON Schema, each relevant keyword and different combinations
of them, to check if their semantics coordinated correctly in the program and produced
the expected output, mainly with multi-type schemas and schema composition; in XML
Schema, elements of all the considered asset types, their attributes and possible content,
and especially the definition of new, custom types, both simple and complex, as well as
different ways of specifying the same schema, on the account of the language’s redundancy
(mentioned at the start of section 4.2).

These assessments also focused important advanced mechanisms for both schemata
languages, namely cross-referencing and bundling in JSON Schema, mixed content and
definition of custom types in XML Schema, and recursion in both.

The tests performed were not very focused on output volume, i.e. ascertaining the
product’s ability to generate very large datasets from schemas, since this important property
was already evaluated and certified with DataGen’s first version, which takes over the role
of generating data for this new version as well, parsing the DSL models it creates from the
schemas.

This section will serve to expose some realistic examples of contrived use cases of the
program, breaking down the schemas in question and the respective results produced, in
order to display the potential and capabilities of DataGen From Schemas.

5.1 cross-referencing in json schema

This first example consists of the schema of an order made from the United States of America,
which can be observed below:
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Figure 70: Order schema.

An order possesses the following metadata: the package’s state, which must be one of
three alternatives - “No stock“, “En route to the store“, or “Ready for pickup“; its expected
delivery date, which must be in the format YYYY-MM-DD, and its current location, a set of
geographic coordinates, for live tracking. Furthermore, it also stores information relative to
the product in question and the customer, but these details are not defined in the order’s
schema, but rather in their own, isolated schemas, which the above one points to via external
references.

Figure 71: Product schema.

A product’s metadata includes its product code, a 10-digit reference number, its name,
the price (in dollars) and the available stock, which must be a non-negative integer.
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Figure 72: Customer schema.

As for the customer, its schema specifies a first and last name, which DataGen From Schemas
specifies through the corresponding interpolation functions, that allow for the generation of
real, used names instead of randomly generated strings, a phone number, which must be in
the american format XXX-XXX-XXXX, and also the data relative to the shipping and billing
addresses. Once again, there is a separate schema for this metadata, since an address is a
set of informations commonly used in different instances, so it makes sense to specify its
properties in a separate, reusable schema, in order to avoid duplicating them everywhere
and structure schemas in a cleaner way.

An address specifies the number of the residency, the street’s name and its type, which
must be either a street, an avenue, or a boulevard:

Figure 73: Address schema.

DataGen From Schemas analyzes all of these schemas separately, extracting each’s data to a
different intermediate structure, and resolves the references between the schemas, replacing
each reference in the order with its respective structure and centralizing all the necessary
information for the creation of the corresponding DSL model. The schemas specify the
content of properties in very detailed ways, using DataGen’s interpolation functions to enrich
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the instances with realistic values from support datasets which are otherwise impossible to
recreate using only the language’s native features.

Generated instances look like the following, in either format, and it is possible to observe
that the order’s structure now has all of the properties explained above, which the program
fetched from the referenced schemas.

Figure 74: Example instances generated from the previous interconnected schemas.

5.2 recursion in xml schema

The next example is a binary tree schema, which is a recursive structure. In this case, it is
possible to observe below that the complex type Tnode defines elements with its own typing
in its hierarchy, thus creating a possibly infinite loop, which is the reason why DataGen From
Schemas needs to set an upper boundary for recursion in data structures:
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Figure 75: Binary tree schema.

An instance produced by the application from this schema, in this case with two levels of
recursion depth, looks like this:

Figure 76: Binary tree instances.
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5.3 large datasets

To corroborate the application’s ability to generate large volumes of data which was men-
tioned at the beginning of this section of result analysis, there is another JSON Schema
example of a graph, which possesses 100 nodes and 2000 links between them:

Figure 77: Graph schema.

Both the node’s and the link’s structures are specified separately in their respective
schemas and referenced externally from the graph’s. Each node has an id, which is an
incrementing integer across all nodes, a name and an integer value, whereas each link has
an id, which works as was already described, an origin and destiny nodes (those nodes’
ids), which it links, and a link weight, which is an arbitrary numeric value.

Figure 78: Node and link schemas.

DataGen From Schemas parses these schemas and creates an according DSL model, from
which it then generates datasets with the amount of units indicated above, that look like the
following:
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Figure 79: Graph instances.

5.4 bibtex

The final showcase is a very complex example of a bibliography management tool, BibTeX,
used to describe and process lists of references, mostly in conjunction with LaTeX documents.

A bibliography is a list with a variable amount of references, which can be citing several
different types of source documents: books, PhD theses, articles, proceedings, Master’s
theses or other miscellaneous documents. Each kind of document has its own set of
informations that need to be specified for the reference to be valid, which can be seen in the
schema, in appendix A.

The program is able to parse this schema and produce wildly different bibliographies
according to this structure, such as the following automatically generated example:
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Figure 80: BibTeX instance.
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C O N C L U S I O N

The objective of this work was to develop a synthetic dataset generator from JSON and
XML schemata, capable of producing artificial data in both formats from either type of
schema. The viability of the solution hinged heavily on generation times and scalability,
i.e. its ability to produce possibly large amounts of fake data quickly, while complying
while the model’s constraints. The project was developed on top of the already existing
DataGen software (Santos et al., 2021) and achieved all the established goals. The appli-
cation is available online as an open-source project on Github and also hosted live at
https://datagenfromschemas.di.uminho.pt/, for public use.

6.1 outcomes

The development of this project as a new version of DataGen allowed to build on top of this
tool and take advantage of its dataset specification DSL and data generation routine, which
cover a great part of the new solution’s functionality and helped shift the implementation
focus to the schema processing and automatic building of equivalent DSL models, which
were very complicated and extensive processes.

The result is a fast and reliable program that significantly expands the base application’s
functionality and increases its usability for all users, ditching the necessity to learn the DSL
and allowing them to instead use schemata in hugely popular and widely utilized languages.

In addition, this software further develops several of its predecessor’s features, now
supporting the generation of multiple instances in parallel, in contrast to the previous single
instance that would be overwriten in following requests, which is great for comparing
several results of the same model, as well as the upload of specifications directly to the
application, without need for manual writing or copy-pasting. These changes enhance user
experience and make this tool easier and more practical to use.

Furthermore, the development philosophy of joint operation between DataGen and this new
version also resulted in the creation of interesting and useful tools for dataset specification
which complement the schema languages with DataGen’s tools: the customization of settings
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respective to intrincacies of each type of schema with probabilities and design choices, as
well as the integration of interpolation functions directly in the schema languages, enabling
the definition of concrete, fake content from support datasets, which is impossible in regular
schemata and greatly enriches the produced instances. There is also direct compatibility
between both programs, since DataGen From Schemas provides the intermediate DSL model
to the user, which can be introduced and edited directly in DataGen.

DataGen From Schemas has been vastly tested with complex and exemplary schemas, that
can be found in development and production contexts, and proves to be an adequate solution,
capable of interpreting schemas correctly and generating representative and sizeable datasets
accordingly.

As part of this project, another paper was also written (Cardoso and Ramalho, 2022) and
presented at the 2022 edition of the Symposium on Languages, Applications and Technologies
(SLATE), being then officialy published as part of the volume OASIcs, Volume 104, SLATE
2022. This article covers the development of the JSON Schema component, described in
chapter 4 of the present dissertation.

6.2 future work

Although all of the objectives established for this work were achieved and the final application
even accounts for some extra funcionalities that were not initially planned, there is still room
for improvement and expansion, which could enhance the current build.

Cross-referencing in XML Schema

The biggest disparity between the program’s implementation of JSON and XML Schema is
the limitation to one XML schema, which prevents the usage of external references in this
language. This would be the priority of further work on DataGen From Schemas and would
be useful for the structuring and development of more complex XSD use cases.

Workarounds on Niche Cases of JSON Schema

As covered in 4.1.4, JSON Schema possesses some functionalities that are ill-suited to the
solution’s workflow of generating instances from schemas, instead of the opposite, for which
they were initially designed. This refers mainly to keywords with dynamic semantics, whose
value is based on other values of the instance, namely unique and contains. The current
implementation of these keywords is limited and does not ensure their correct operability in
all use cases, so these features would be a good subject for further development and refining.

https://drops.dagstuhl.de/opus/portals/oasics/index.php?semnr=16249
https://drops.dagstuhl.de/opus/portals/oasics/index.php?semnr=16249
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Improved Feedback

Another feature that would benefit from additional development time is the application’s
error feedback system. Presently, the program halts the execution of the pipeline if it finds
an error and reports it to the user, discriminating the motive of the request’s failure and the
error’s position in the schema, i.e. the line and column where it starts and ends. Additionaly,
in JSON Schema, it switches over to the tab of the schema with the error in question.

However, it would be more user-friendly and intuitive to highlight the error directly in the
schema, without making the user search for it, which can be especially tedious in lenghty
schemas and also because the program’s text editor does not have a column counter, as it
does for lines.
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<?xml version="1.0" encoding="ISO-8859-1"?>

2 <xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="authorType">

4 <xs:simpleContent>

<xs:extension base="xs:string">

6 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:extension>

8 </xs:simpleContent>

</xs:complexType>

10 <xs:complexType name="author-refType">

<xs:attribute name="authorid" type="xs:IDREF" use="required"/>

12 </xs:complexType>

<xs:element name="bibliography">

14 <xs:complexType>

<xs:choice maxOccurs="unbounded">

16 <xs:element name="book">

<xs:complexType>

18 <xs:sequence>

<xs:element name="author" type="authorType" maxOccurs="unbounded"/>

20 <xs:element ref="title"/>

<xs:element ref="publisher"/>

22 <xs:element ref="year"/>

<xs:element ref="address"/>

24 <xs:element ref="month"/>

<xs:element name="deliverables" type="deliverablesType"/>

26 <xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

28 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

30 </xs:element>

<xs:element name="phdthesis">

32 <xs:complexType>

<xs:sequence>

34 <xs:element name="author-ref" type="author-refType"/>

<xs:element ref="title"/>
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36 <xs:element ref="school"/>

<xs:element ref="year"/>

38 <xs:element ref="address"/>

<xs:element ref="month"/>

40 <xs:element name="deliverables" type="deliverablesType"/>

<xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

42 </xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

44 </xs:complexType>

</xs:element>

46 <xs:element name="article">

<xs:complexType>

48 <xs:choice maxOccurs="unbounded">

<xs:element name="author-ref" type="author-refType"/>

50 <xs:element name="author" type="authorType"/>

<xs:element name="journal" type="xs:string"/>

52 <xs:element ref="month"/>

<xs:element ref="title"/>

54 <xs:element name="volume" type="xs:string"/>

<xs:element ref="year"/>

56 <xs:element name="deliverables" type="deliverablesType"/>

<xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

58 <xs:element name="number" type="xs:string"/>

<xs:element ref="publisher"/>

60 </xs:choice>

<xs:attribute name="id" type="xs:ID" use="required"/>

62 </xs:complexType>

</xs:element>

64 <xs:element name="inproceedings">

<xs:complexType>

66 <xs:choice maxOccurs="unbounded">

<xs:element name="author-ref" type="author-refType"/>

68 <xs:element name="author" type="authorType"/>

<xs:element ref="title"/>

70 <xs:element name="booktitle" type="xs:string"/>

<xs:element ref="year"/>

72 <xs:element ref="address"/>

<xs:element ref="month"/>

74 <xs:element name="deliverables" type="deliverablesType"/>

<xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

76 <xs:element name="editor" minOccurs="0">

<xs:complexType>

78 <xs:simpleContent>

<xs:extension base="xs:string">

80 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:extension>

82 </xs:simpleContent>
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</xs:complexType>

84 </xs:element>

</xs:choice>

86 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

88 </xs:element>

<xs:element name="inbook">

90 <xs:complexType>

<xs:sequence>

92 <xs:element name="author-ref" type="author-refType"/>

<xs:element ref="title"/>

94 <xs:element name="chapter" type="xs:string"/>

<xs:element name="pages" type="xs:string"/>

96 <xs:element ref="publisher"/>

<xs:element ref="year"/>

98 <xs:element ref="month"/>

<xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

100 </xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

102 </xs:complexType>

</xs:element>

104 <xs:element name="masterthesis">

<xs:complexType>

106 <xs:sequence>

<xs:element name="author-ref" type="author-refType"/>

108 <xs:element ref="title"/>

<xs:element ref="school"/>

110 <xs:element ref="year"/>

<xs:element ref="month"/>

112 <xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

114 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

116 </xs:element>

<xs:element name="misc">

118 <xs:complexType>

<xs:sequence>

120 <xs:element name="author-ref" type="author-refType"/>

<xs:element ref="title"/>

122 <xs:element name="howpublished" type="xs:string"/>

<xs:element ref="year"/>

124 <xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

126 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

128 </xs:element>

<xs:element name="proceedings">
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130 <xs:complexType>

<xs:sequence>

132 <xs:element ref="title"/>

<xs:element ref="year"/>

134 <xs:element name="editor-ref" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

136 <xs:attribute name="authorid" use="required">

<xs:simpleType>

138 <xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="grl"/>

140 <xs:enumeration value="jcr"/>

<xs:enumeration value="prh"/>

142 </xs:restriction>

</xs:simpleType>

144 </xs:attribute>

</xs:complexType>

146 </xs:element>

<xs:element name="editor" minOccurs="0">

148 <xs:complexType>

<xs:simpleContent>

150 <xs:extension base="xs:string">

<xs:attribute name="id" use="required">

152 <xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

154 <xs:enumeration value="albie"/>

<xs:enumeration value="gva"/>

156 </xs:restriction>

</xs:simpleType>

158 </xs:attribute>

</xs:extension>

160 </xs:simpleContent>

</xs:complexType>

162 </xs:element>

<xs:element ref="address"/>

164 <xs:element ref="month"/>

<xs:element name="deliverables" type="deliverablesType" minOccurs="0"/>

166 <xs:group ref="identifier" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

168 <xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

170 </xs:element>

</xs:choice>

172 </xs:complexType>

</xs:element>

174 <xs:complexType name="deliverablesType">

<xs:choice maxOccurs="unbounded">

176 <xs:element name="xhtml">
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<xs:complexType>

178 <xs:attribute name="url" type="xs:string" use="required"/>

<xs:attribute name="description" use="optional"/>

180 </xs:complexType>

</xs:element>

182 <xs:element name="pdf">

<xs:complexType>

184 <xs:attribute name="url" type="xs:string" use="required"/>

<xs:attribute name="description" use="optional"/>

186 </xs:complexType>

</xs:element>

188 <xs:element name="doc">

<xs:complexType>

190 <xs:attribute name="url" type="xs:string" use="required"/>

<xs:attribute name="description" use="optional"/>

192 </xs:complexType>

</xs:element>

194 <xs:element name="ppt">

<xs:complexType>

196 <xs:attribute name="url" type="xs:string" use="required"/>

<xs:attribute name="description" type="xs:string" use="optional"/>

198 </xs:complexType>

</xs:element>

200 </xs:choice>

</xs:complexType>

202 <xs:element name="address" type="xs:string"/>

<xs:element name="month" type="xs:string"/>

204 <xs:element name="publisher" type="xs:string"/>

<xs:element name="school" type="xs:string"/>

206 <xs:element name="title" type="xs:string"/>

<xs:element name="year" type="xs:short"/>

208 <xs:group name="identifier">

<xs:choice>

210 <xs:element name="isbn" type="xs:string"/>

<xs:element name="issn" type="xs:string"/>

212 <xs:element name="uri" type="xs:string"/>

</xs:choice>

214 </xs:group>

</xs:schema>
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1 Dialect = ws false ws / ws schema:schema_object ws

3 begin_array = ws "[" ws

begin_object = ws "{" ws

5 end_array = ws "]" ws

end_object = ws "}" ws

7 name_separator = ws ":" ws

value_separator = ws "," ws

9

ws "whitespace" = [ \t\n\r]*

11

value = boolean / null / object / array / number / string

13 boolean = false / true

15 false = "false"

null = "null"

17 true = "true"

19 // ----- Keywords -----

keyword = datagen_keyword / generic_keyword / string_keyword / number_keyword / object_keyword /

array_keyword / media_keyword / schemaComposition_keyword / conditionalSubschemas_keyword /

structuring_keyword

21

// ---------- Keywords generic ----------

23 generic_keyword = kw_type / kw_enum / kw_const / kw_default / annotation_keyword

25 kw_type = QM key:"type" QM name_separator value:type_value

type_value = t:type / arr:type_array

27 type = QM v:$("string" / "number" / "integer" / "object" / "array" / "boolean" / "null") QM

29 kw_enum = QM key:"enum" QM name_separator value:array

kw_const = QM key:"const" QM name_separator value:value

31 kw_default = QM key:"default" QM name_separator value:value

33
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// ---------- Keywords annotation ----------

35 annotation_keyword = (kws_annotation_stringValues / kw_examples / kws_annotation_booleanValues)

37 kws_annotation_stringValues = QM key:$("title"/"description"/"$comment") QM name_separator

value:string

39 kw_examples = QM key:"examples" QM name_separator value:array

kws_annotation_booleanValues = QM key:$("readOnly"/"writeOnly"/"deprecated") QM name_separator

value:boolean

41

// ---------- Keywords string ----------

43 string_keyword = kws_string_length / kw_pattern / kw_format

45 kws_string_length = QM key:$("minLength" / "maxLength") QM name_separator value:int

kw_pattern = QM key:"pattern" QM name_separator value:pattern_string

47

kw_format = QM key:"format" QM name_separator value:format_value

49 format_value = QM f:("date-time" / "time" / "date" / "duration" / "email" / "idn-email" /

"hostname" / "idn-hostname" / "ipv4" / "ipv6" / "uuid" / "uri-reference" / "uri-template" /

"uri" / "iri-reference" / "iri" / "json-pointer" / "relative-json-pointer" / "regex") QM

51

// ---------- Keywords number ----------

53 number_keyword = kw_multipleOf / kws_range

55 kw_multipleOf = QM key:"multipleOf" QM name_separator value:positiveNumber

kws_range = QM key:$("minimum" / "exclusiveMinimum" / "maximum" / "exclusiveMaximum") QM

name_separator value:number

57

// ---------- Keywords object ----------

59 object_keyword = kws_props / kw_moreProps / kw_requiredProps / kw_propertyNames / kws_size

61 kws_props = QM key:$("patternProperties"/"properties") QM name_separator value:object_schemaMap

kw_moreProps = QM key:$("additionalProperties"/"unevaluatedProperties") QM name_separator

63 value:schema_object

kw_requiredProps = QM key:"required" QM name_separator value:string_array

65 kw_propertyNames = QM key:"propertyNames" QM name_separator value:schema_object

kws_size = QM key:$("minProperties" / "maxProperties") QM name_separator value:int

67

// ---------- Keywords array ----------

69 array_keyword = kw_items / kw_prefixItems / kw_unevaluatedItems / kw_contains / kws_mContains /

kws_array_length / kw_uniqueness

71 kw_items = QM key:"items" QM name_separator value:schema_object

kw_prefixItems = QM key:"prefixItems" QM name_separator value:schema_array

73 kw_unevaluatedItems = QM key:"unevaluatedItems" QM name_separator value:schema_object

kw_contains = QM key:"contains" QM name_separator value:schema_object

75 kws_mContains = QM key:$("minContains" / "maxContains") QM name_separator value:int

kws_array_length = QM key:$("minItems" / "maxItems") QM name_separator value:int
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77 kw_uniqueness = QM key:"uniqueItems" QM name_separator value:boolean

79 // ---------- Keywords media ----------

media_keyword = kw_contentMediaType / kw_contentSchema / kw_contentEncoding

81

kw_contentMediaType = QM key:"contentMediaType" QM name_separator value:string

83 kw_contentSchema = QM key:"contentSchema" QM name_separator value:schema_object

85 kw_contentEncoding = QM key:"contentEncoding" QM name_separator value:encoding

encoding = QM e:$("7bit"/"8bit"/"binary"/"quoted-printable"/"base16"/"base32"/"base64") QM

87

// ---------- Keywords schema composition ----------

89 schemaComposition_keyword = kws_combineSchemas / kw_notSchema

91 kws_combineSchemas = QM key:$("allOf"/"anyOf"/"oneOf") QM name_separator value:schema_array

kw_notSchema = QM key:"not" QM name_separator value:schema_object

93

// ---------- Keywords conditional subschemas ----------

95 conditionalSubschemas_keyword = kw_dependentRequired / kw_dependentSchemas / kw_ifThenElse

97 kw_dependentRequired = QM key:"dependentRequired" QM name_separator

value:object_arrayOfStringsMap

99 kw_dependentSchemas = QM key:"dependentSchemas" QM name_separator value:object_schemaMap

kw_ifThenElse = QM key:$("if" / "then" / "else") QM name_separator value:schema_object

101

// ---------- Keywords structuring ----------

103 structuring_keyword = kw_schema / kw_id / kw_anchor / kw_ref / kw_defs

105 kw_schema = QM key:"$schema" QM name_separator value:schema_value

schema_value = QM v:"https://json-schema.org/draft/2020-12/schema" QM

107

kw_id = QM key:"$id" QM name_separator value:schema_id

109 kw_anchor = QM key:"$anchor" QM name_separator value:anchor

kw_ref = QM key:"$ref" QM name_separator value:schema_ref

111 kw_defs = QM key:"$defs" QM name_separator value:object_schemaMap

113 // ----- Objects -----

schema_object = boolean /

115 ws "{" ws members:(head:keyword tail:(value_separator m:keyword)*)? ws "}" ws

117 object = begin_object members:(head:member tail:(value_separator m:member)*)? end_object

member = name:string name_separator value:value

119

object_schemaMap = begin_object members:(head:schema_member tail:(value_separator

121 m:schema_member)*)? end_object

schema_member = name:string name_separator value:schema_object

123
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object_arrayOfStringsMap = begin_object members:(head:arrayOfStrings_member

125 tail:(value_separator m:arrayOfStrings_member)*)? end_object

arrayOfStrings_member = name:string name_separator value:string_array

127

// ----- Arrays -----

129 array = begin_array values:(head:value tail:(value_separator v:value)*)? end_array

131 string_array = begin_array values:(head:string tail:(value_separator v:string)*)? end_array

133 schema_array = begin_array values:(head:schema_object tail:(value_separator v:schema_object)*)

end_array

135 type_array = begin_array values:(head:type tail:(value_separator v:type)*)? end_array

137 // ----- Numbers -----

number "number" = "-"? int frac?

139 positiveNumber "positive number" = ("0" frac / [1-9] [0-9]* frac?)

141 exp = [eE] ("-"/"+")? [0-9]+

frac = "." [0-9]+

143

int "integer" = integer:(("0"* i:([1-9] [0-9]*)) / (i:"0" "0"*))

145

// ----- Strings -----

147 string "string" = QM str:$char* QM

pattern_string = QM str:$[^"]* QM

149 anchor "anchor" = QM value:anchor_value QM

schema_id = QM "https:/" "/datagen.di.uminho.pt"? id:$("/schemas" ("/" [^/#"]+)+) QM

151 schema_ref "$ref" = QM "https://datagen.di.uminho.pt"?

ref:$(("/schemas/" [^/#"]+)? ref_segment / "/schemas/" [^/#"]+) QM

153

anchor_value = $([a-zA-Z][a-zA-Z0-9\-\_\:\.]*)

155 ref_segment = "#" (anchor_value / ("/" [^/#"]+)*)

157 char = unescaped

/ escape sequence:( '"' / "\\" / "/" / "b" / "f" / "n" / "r" / "t" / "u" digits:$(HEXDIG

HEXDIG HEXDIG HEXDIG))

159

escape = "\\"

161 QM = '"'

163 unescaped = [^\0-\x1F\x22\x5C]

HEXDIG = [0-9a-f]i

165

// ---------- Keyword datagen ----------

167 datagen_keyword = QM key:"_datagen" QM name_separator QM f:(func:"pattern" args:pattern_arg /

func:datagen_func args:datagen_args?) QM
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datagen_func = datagen_boolean / datagen_integer / datagen_float / datagen_string

169

datagen_boolean = func:"boolean"

171 datagen_integer = func:("index" / "integerOfSize" / "integer")

datagen_float = func:("float" / "multipleOf")

173 datagen_string = func:("date" / "formattedInteger" / "formattedFloat" / "guid" / "hexBinary" /

"language" / "letter" / "lorem" / "objectID" / "position" / "pt_phone_number" /

175 "stringOfSize" / "time" / "xsd_dateTime" / "xsd_date" / "xsd_duration" / "xsd_gDay" /

"xsd_gMonthDay" / "xsd_gMonth" / "xsd_gYearMonth" / "xsd_gYear" / "xsd_string" / "actor" /

177 "animal" / "brand" / "buzzword" / "capital" / "car_brand" / "continent" / "country" /

"cultural_center" / "firstName" / "fullName" / "gov_entity" / "hacker" / "job" / "month" /

179 "musician" / "nationality" / "political_party_abbr" / "political_party_name" /

"pt_businessman" / "pt_city" / "pt_county" / "pt_district" / "pt_entity_abbr" /

181 "pt_entity_name" / "pt_parish" / "pt_politician" / "pt_public_figure" /

"pt_top100_celebrity" / "religion" / "soccer_club" / "soccer_player" / "sport" / "surname" /

183 "top100_celebrity" / "weekday" / "writer")

185 datagen_args = "(" datagen_args_content? datagen_args_close ws

datagen_args_content = (!datagen_args_close). datagen_args_content*

187 datagen_args_close = ")"

189 pattern_arg = "('" pattern_arg_content? pattern_arg_close ws

pattern_arg_content = (!pattern_arg_close). pattern_arg_content*

191 pattern_arg_close = "')"



C
J S O N S C H E M A I N V E RT E R

1 function notSubschema(json) {

let notTypes = [];

3

for (let t in json.type) {

5 if (!Object.keys(json.type[t]).length) { notTypes.push(t); delete json.type[t]; }

else {

7 notGenericKeys(json.type[t]);

switch (t) {

9 case "number": notNumeric(json.type[t]); break;

case "string": notString(json.type[t]); break;

11 case "object": notObject(json.type[t]); break;

case "array": notArray(json.type[t]); break;

13 }

}

15 }

17 if (!Object.keys(json.type).length) {

let types = ["string","number","object","array","null","boolean"];

19 types = types.filter(t => !notTypes.includes(t));

21 if (types.length > 1 && types.includes("null")) types.splice(types.indexOf("null"), 1);

for (let t of types) json.type[t] = {};

23 }

}

25

function notGenericKeys(json) {

27 if ("const" in json) {

json.notValues = json.const;

29 delete json.const;

}

31 if ("enum" in json) {

if ("notValues" in json) json.notValues = json.notValues.concat(json.enum);

33 else json.notValues = json.enum;

delete json.enum;

35 }

123



124

if ("default" in json) {

37 json.notDefault = json.default;

delete json.default;

39 }

}

41

function notNumeric(json) {

43 let invertSchema = (old_k, new_k) => {

let value = json[old_k];

45 Object.keys(json).map(k => delete json[k]);

json[new_k] = value;

47 }

49 if ("integer" in json) {

if (json.integer) json.integer = false;

51 else delete json.integer;

}

53 if ("mininum" in json) invertSchema("minimum", "exclusiveMaximum");

else if ("exclusiveMinimum" in json) invertSchema("exclusiveMinimum", "maximum");

55 else if ("maximum" in json) invertSchema("maximum", "exclusiveMinimum");

else if ("exclusiveMaximum" in json) invertSchema("exclusiveMaximum", "minimum");

57 else {

let {multipleOf, notMultipleOf} = json;

59

if (multipleOf !== undefined && notMultipleOf !== undefined) {

61 let temp = multipleOf;

json.multipleOf = notMultipleOf;

63 json.notMultipleOf = temp;

}

65 else if (multipleOf !== undefined) {

json.notMultipleOf = multipleOf;

67 delete json.multipleOf;

}

69 else if (notMultipleOf !== undefined) {

json.multipleOf = notMultipleOf;

71 delete json.notMultipleOf;

}

73 }

return json;

75 }

77 function notString(json) {

if ("pattern" in json) json.pattern = `^((?!(${json.pattern})).){${"minLength" in json ?

json.minLength : 10},${"maxLength" in json ? json.maxLength : 30}}`;
79 if ("format" in json) json.notFormat = [json.format];

notSizeKeys(json, "minLength", "maxLength");

81 }
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function notObject(json) {

83 notProperties(json, ["properties","patternProperties"]);

notOtherElements(json, ["additionalProperties","unevaluatedProperties"]);

85 if ("required" in json && !("properties" in json)) {

json.notRequired = json.required;

87 delete json.required;

}

89 if ("propertyNames" in json) notString(json.propertyNames.type.string);

notSizeKeys(json, "minProperties", "maxProperties");

91 }

93 function notArray(json) {

notOtherElements(json, ["items","unevaluatedItems"]);

95 notSizeKeys(json, "minItems", "maxItems");

if ("uniqueItems" in json) json.uniqueItems = !json.uniqueItems;

97

if ("prefixItems" in json) {

99 for (let i = 0; i < json.prefixItems.length; i++) notSubschema(json.prefixItems[i]);

}

101

if ("contains" in json) {

103 let notContainsTypes = [];

105 for (let i = 0; i < json.contains.length; i++) {

if (json.contains[i].maxContains !== null) {

107 json.contains[i].minContains = json.contains[i].maxContains + 1;

json.contains[i].maxContains = null;

109 }

else if (json.contains[i].minContains !== null) {

111 json.contains[i].maxContains = json.contains[i].minContains - (!json.contains[i

].minContains ? 0 : 1);

json.contains[i].minContains = null;

113 }

else {

115 let c = json.contains.splice(i--, 1)[0].contains;

117 for (let t in c.type) {

if (!Object.keys(c.type[t]).length) {

119 if (!notContainsTypes.includes(t)) notContainsTypes.push(t);

delete c.type[t];

121 }

}

123

if (Object.keys(c.type).length > 0) {

125 notSubschema(c);

if ("notContains" in json) json.notContains.push(c);

127 else json.notContains = [c];
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}

129 }

}

131

if (!json.contains.length) delete json.contains;

133 if (notContainsTypes.length > 0) {

if ("notContainsTypes" in json) json.notContainsTypes = json.notContainsTypes.concat

(notContainsTypes.filter(t => !json.notContainsTypes.includes(t)));

135 else json.notContainsTypes = notContainsTypes;

}

137 }

}

139

function notSizeKeys(json, min, max) {

141 if (max in json) {

json[min] = json[max] + 1;

143 delete json[max];

}

145 else if (min in json) {

json[max] = json[min] - (!json[min] ? 0 : 1);

147 delete json[min];

}

149 }

151 function notProperties(json, keys) {

keys.filter(k => k in json).map(k => {

153 for (let p in json[k]) {

notSubschema(json[k][p]);

155 if (!Object.keys(json[k][p]).length) delete json[k][p];

}

157 })

}

159

function notOtherElements(json, keys) {

161 keys.filter(k => k in json).map(k => {

if (json[k] === false) json[k] = {type: {string: {}, number: {}, boolean: {}, null: {},

array: {}, object: {}}};

163 else {

let notTypes = Object.keys(json[k].type);

165 notSubschema(json[k]);

167 notTypes = notTypes.filter(x => !Object.keys(json[k].type).includes(x));

if (!Object.keys(json[k].type).length) json[k] = false;

169 else json["not" + k.charAt(0).toUpperCase() + k.slice(1)] = notTypes;

}

171 })

}
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173 module.exports = {

notGenericKeys,

175 notNumeric,

notString,

177 notObject,

notArray

179 }



D
J S O N S C H E M A E X T E N D E R

1 const inverter = require('./schema_inverter');

3 function extendSchema(json, schema, type, key, SETTINGS) {

if (key == "not") {

5 inverter.notGenericKeys(schema);

switch (type) {

7 case "number": inverter.notNumeric(schema); break;

case "string": inverter.notString(schema); break;

9 case "object": inverter.notObject(schema); break;

case "array": inverter.notArray(schema); break;

11 }

}

13

extendArrayKey(json, schema, ["const","enum","default","notValues","notDefault"]);

15 switch (type) {

case "number": extendNumeric(json, schema); break;

17 case "string": extendString(json, schema); break;

case "object": extendObject(json, schema, SETTINGS); break;

19 case "array": extendArray(json, schema, SETTINGS); break;

}

21 }

23 function extendArrayKey(json, schema, keys) {

keys.filter(k => k in schema).map(key => {

25 if (key in json)

json[key] = json[key].concat(schema[key].filter(x => !json[key].includes(x)));

27 else json[key] = schema[key];

})

29 }

31 function extendString(json, schema) {

if ("pattern" in schema) json.pattern = schema.pattern;

33 if ("format" in schema) json.format = schema.format;

extendArrayKey(json, schema, ["notFormat"]);

35 extendSizeKeys(json, schema, "minLength", "maxLength");
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}

37

function extendNumeric(json, schema) {

39 let {minimum, maximum, exclusiveMinimum, exclusiveMaximum} = schema;

if ("integer" in schema) json.integer = schema.integer;

41

extendArrayKey(json, schema, ["multipleOf","notMultipleOf"]);

43

if (minimum !== undefined) {

45 if ("minimum" in json) {

if (minimum > json.minimum) json.minimum = minimum;

47 }

else if ("exclusiveMinimum" in json) {

49 if (minimum > json.exclusiveMinimum) {

json.minimum = minimum;

51 delete json.exclusiveMinimum;

}

53 }

else json.minimum = minimum;

55

if ("maximum" in json && json.minimum > json.maximum) delete json.maximum;

57 else if ("exclusiveMaximum" in json && json.minimum >= json.exclusiveMaximum)

delete json.exclusiveMaximum;

59 }

else if (exclusiveMinimum !== undefined) {

61 if ("minimum" in json) {

if (exclusiveMinimum >= json.minimum) {

63 json.exclusiveMinimum = exclusiveMinimum;

delete json.minimum;

65 }

}

67 else if ("exclusiveMinimum" in json) {

if (exclusiveMinimum > json.exclusiveMinimum)

69 json.exclusiveMinimum = exclusiveMinimum;

}

71 else json.exclusiveMinimum = exclusiveMinimum;

73 if ("maximum" in json && json.exclusiveMinimum >= json.maximum) delete json.maximum;

else if ("exclusiveMaximum" in json && json.exclusiveMinimum >= json.exclusiveMaximum)

75 delete json.exclusiveMaximum;

}

77

if (maximum !== undefined) {

79 if ("maximum" in json) {

if (maximum < json.maximum) json.maximum = maximum;

81 }

else if ("exclusiveMaximum" in json) {
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83 if (maximum < json.exclusiveMaximum) {

json.maximum = maximum;

85 delete json.exclusiveMaximum;

}

87 }

else json.maximum = maximum;

89

if ("minimum" in json && json.maximum < json.minimum) delete json.minimum;

91 else if ("exclusiveMinimum" in json && json.maximum <= json.exclusiveMinimum)

delete json.exclusiveMinimum;

93 }

else if (exclusiveMaximum !== undefined) {

95 if ("maximum" in json) {

if (exclusiveMaximum <= json.maximum) {

97 json.exclusiveMaximum = exclusiveMaximum;

delete json.maximum;

99 }

}

101 else if ("exclusiveMaximum" in json) {

if (exclusiveMaximum < json.exclusiveMaximum)

103 json.exclusiveMaximum = exclusiveMaximum;

}

105 else json.exclusiveMaximum = exclusiveMaximum;

107 if ("minimum" in json && json.exclusiveMaximum <= json.minimum) delete json.minimum;

else if ("exclusiveMinimum" in json && json.exclusiveMaximum <= json.exclusiveMinimum)

109 delete json.exclusiveMinimum;

}

111 }

113 function extendObject(json, schema, SETTINGS) {

assignProperties(json, schema, ["properties","patternProperties"],

115 SETTINGS.extend_objectProperties);

assignSchemaObject(json, schema, ["additionalProperties","unevaluatedProperties",

117 "propertyNames"], SETTINGS.extend_schemaProperties);

extendSizeKeys(json, schema, "minProperties", "maxProperties");

119 extendArrayKey(json, schema, ["required","notRequired","notAdditionalProperties",

"notUnevaluatedProperties"]);

121 }

123 function extendArray(json, schema, SETTINGS) {

assignSchemaObject(json, schema, ["items","unevaluatedItems"],

125 SETTINGS.extend_schemaProperties);

extendSizeKeys(json, schema, "minItems", "maxItems");

127 extendArrayKey(json, schema, ["contains","notContains","notContainsTypes","notItems",

"notUnevaluatedItems"]);

129 if ("uniqueItems" in schema) json.uniqueItems = schema.uniqueItems;
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131 if ("prefixItems" in schema) {

let setting = SETTINGS.extend_prefixItems;

133

if ("prefixItems" in json && setting != "OWT") {

135 if (/^O/.test(setting)) {

for (let i = 0; i < schema.prefixItems.length; i++) {

137 if (i < json.prefixItems.length) {

// OR - extend schemas at the same index

139 if (setting == "OR") assignSubschema(json.prefixItems[i],

schema.prefixItems[i]);

141 // OWP - overwrite only schemas at the same index

if (setting == "OWP") json.prefixItems[i] = schema.prefixItems[i];

143 }

else json.prefixItems.push(schema.prefixItems[i]);

145 }

}

147 // AP - append new prefixItems to old one

if (setting == "AP") json.prefixItems = json.prefixItems.concat(schema.prefixItems);

149 }

// OWT - overwrite old prefixItems completely with the new one

151 else json.prefixItems = schema.prefixItems;

}

153 }

155 function extendSizeKeys(json, schema, min, max) {

if (min in schema) {

157 if (min in json) {

if (schema[min] > json[min]) json[min] = schema[min];

159 }

else json[min] = schema[min];

161

if (max in json && json[max] < json[min]) delete json[max];

163 }

165 if (max in schema) {

if (max in json) {

167 if (schema[max] < json[max]) json[max] = schema[max];

}

169 else json[max] = schema[max];

171 if (min in json && json[min] > json[max]) delete json[min];

}

173 }

175 function assignProperties(json, schema, keys, setting) {

keys.filter(k => k in schema).map(k => {
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177 if (k in json) {

for (let p in schema[k]) {

179 if (p in json[k] && setting == "OR") assignSubschema(json[k][p], schema[k][p]);

else json[k][p] = schema[k][p];

181 }

}

183 else json[k] = schema[k];

})

185 }

187 function assignSchemaObject(json, schema, keys, setting) {

keys.filter(k => k in schema).map(k => {

189 if (k in json) {

if (typeof json[k] == "boolean" || typeof schema[k] == "boolean")

191 json[k] = schema[k];

else {

193 if (setting == "OR") assignSubschema(json[k], schema[k]);

else json[k] = schema[k];

195 }

}

197 else json[k] = schema[k];

})

199 }

201 function assignSubschema(json, schema) {

for (let t in schema.type) {

203 if (t in json.type && Object.keys(schema.type[t]).length > 0)

extendSchema(json.type[t], schema.type[t], t, null);

205 else json.type[t] = schema.type[t];

}

207 }

209 module.exports = { extendSchema }



E
X M L S C H E M A G R A M M A R ( C O D E O M I T T E D )

1 DSL_text = ws dec:XML_declaration xsd:schema comments

3 ws "whitespace" = [ \t\n\r]*

ws2 = [ \t\n\r]+

5

// ----- XML declaration -----

7 XML_declaration = comments dec:$("<?xml" XML_version XML_encoding? XML_standalone? ws '?>') ws

9 XML_version = ws2 "version" ws "=" ws q1:QM "1.0" q2:QM

11 XML_encoding = ws2 "encoding" ws "=" ws q1:QM XML_encoding_value q2:QM

XML_encoding_value = "UTF-"("8"/"16") / "ISO-10646-UCS-"("2"/"4") / "ISO-8859-"[1-9] / "ISO

-2022-JP" / "Shift_JIS" / "EUC-JP"

13

XML_standalone = ws2 "standalone" ws "=" ws q1:QM XML_standalone_value q2:QM

15 XML_standalone_value = "yes" / "no"

17 // ----- <schema> -----

schema = comments open_XSD_el el_name:"schema" attrs:schema_attrs ws ">" ws

19 content:schema_content close_schema

21 close_schema = prefix:close_XSD_prefix "schema" ws ">" ws

23 schema_attrs = attrs:(formDefault / blockDefault / finalDefault / xmlns / elem_id / elem_lang /

schema_version / targetNamespace)+

25 formDefault = ws2 attr:$(("attribute"/"element")"FormDefault") ws "=" q1:QMo val:form_values

q2:QMc

27 blockDefault = ws2 attr:"blockDefault" ws "=" q1:QMo val:block_values q2:QMc

finalDefault = ws2 attr:"finalDefault" ws "=" q1:QMo val:finalDefault_values q2:QMc

29 xmlns = ws2 "xmlns" prefix:(":" p:NCName {return p})? ws "=" ws val:string

schema_version = ws2 attr:"version" ws "=" ws val:string

31 targetNamespace = ws2 attr:"targetNamespace" ws "=" ws val:string

133
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33 schema_content = el:((redefine / include / import / annotation)* (((simpleType / complexType /

group / attributeGroup) / element / attribute / notation) annotation*)*)

35 // ----- <include> -----

include = comments prefix:open_XSD_el el_name:"include" attrs:schemaLocID_attrs ws

37 close:(merged_close / ann_content)

39 schemaLocID_attrs = el:(schemaLocation elem_id? / elem_id schemaLocation?)?

41 schemaLocation = ws2 attr:"schemaLocation" ws "=" ws val:string

43 // ----- <import> -----

import = comments prefix:open_XSD_el el_name:"import" attrs:import_attrs ws

45 close:(merged_close / ann_content)

47 import_attrs = el:(import_namespace / elem_id / schemaLocation)*

49 import_namespace = ws2 attr:"namespace" ws "=" ws val:string

51 // ----- <redefine> -----

redefine = comments prefix:open_XSD_el el_name:"redefine" attrs:schemaLocID_attrs ws

53 close:(merged_close / openEl content:redefine_content close_el:close_XSD_el)

55 redefine_content = c:(comments annotation/ (simpleType / complexType / group / attributeGroup))*

57 // ----- <element> -----

element = comments prefix:open_XSD_el el_name:"element" attrs:element_attrs ws

59 close:(merged_close / openEl content:element_content close_el:close_XSD_el)

61 element_attrs = el:(elem_abstract / elem_block / elem_default / elem_substitutionGroup /

elem_final / elem_fixed / elem_form / elem_id / elem_minOccurs /

63 elem_maxOccurs / elem_name / elem_nillable / elem_ref / elem_type)*

65 elem_abstract = ws2 attr:"abstract" ws "=" q1:QMo val:boolean q2:QMc

elem_block = ws2 attr:"block" ws "=" q1:QMo val:block_values q2:QMc

67 elem_default = ws2 attr:"default" ws "=" ws val:string

elem_final = ws2 attr:"final" ws "=" q1:QMo val:elem_final_values q2:QMc

69 elem_fixed = ws2 attr:"fixed" ws "=" ws val:string

elem_form = ws2 attr:"form" ws "=" q1:QMo val:form_values q2:QMc

71 elem_id = ws2 attr:"id" ws "=" q1:QMo val:ID q2:QMc

elem_maxOccurs = ws2 attr:"maxOccurs" ws "=" q1:QMo val:(int/"unbounded") q2:QMc

73 elem_minOccurs = ws2 attr:"minOccurs" ws "=" q1:QMo val:int q2:QMc

elem_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

75 elem_nillable = ws2 attr:"nillable" ws "=" q1:QMo val:boolean q2:QMc

elem_lang = ws2 attr:"xml:lang" ws "=" q1:QMo val:language q2:QMc

77 elem_ref = ws2 attr:"ref" ws "=" q1:QMo val:QName q2:QMc

elem_source = ws2 attr:"source" ws "=" ws val:string
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79 elem_substitutionGroup = ws2 attr:"substitutionGroup" ws "=" q1:QMo val:QName q2:QMc

elem_type = ws2 attr:"type" ws "=" q1:QMo val:type_value q2:QMc

81

element_content = c:(datagen_comment? comments annotation? (simpleType / complexType)?

83 (keyOrUnique / keyref)*)

85 // ----- <field> -----

field = comments prefix:open_XSD_el el_name:"field" attrs:field_attrs ws

87 close:(merged_close / ann_content)

89 field_attrs = attrs:(field_xpath elem_id? / elem_id field_xpath?)?

91 field_xpath = ws2 attr:"xpath" ws "=" q1:QMo val:fieldXPath q2:QMc

93 // ----- <selector> -----

selector = comments prefix:open_XSD_el el_name:"selector" attrs:selector_attrs ws

95 close:(merged_close / ann_content)

97 selector_attrs = attrs:(selector_xpath elem_id? / elem_id selector_xpath?)?

99 selector_xpath = ws2 attr:"xpath" ws "=" q1:QMo val:selectorXPath q2:QMc

101 // ----- <key/unique> -----

keyOrUnique = comments prefix:open_XSD_el el_name:$("key"/"unique") attrs:keyOrUnique_attrs ws

close:(merged_close / openEl content:xpath_content close_el:close_XSD_el)

103

keyOrUnique_attrs = attrs:(elem_constraint_name elem_id? / elem_id elem_constraint_name?)?

105

elem_constraint_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

107

xpath_content = c:(comments annotation? (selector field+))

109

// ----- <keyref> -----

111 keyref = comments prefix:open_XSD_el el_name:"keyref" attrs:keyref_attrs ws

close:(merged_close / openEl content:xpath_content close_el:close_XSD_el)

113

keyref_attrs = attrs:(elem_id / elem_constraint_name / keyref_refer)*

115

keyref_refer = ws2 attr:"refer" ws "=" q1:QMo val:QName q2:QMc

117

// ----- <attribute> -----

119 attribute = comments prefix:open_XSD_el el_name:"attribute" attrs:attribute_attrs ws

close:(merged_close / openEl content:attribute_content close_el:close_XSD_el)

121

attribute_attrs = el:(elem_default / elem_fixed / elem_form / elem_id / attr_name / attr_ref /

elem_type / attr_use)*

123
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attr_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

125 attr_ref = ws2 attr:"ref" ws "=" q1:QMo val:QName q2:QMc

attr_use = ws2 attr:"use" ws "=" q1:QMo val:use_values q2:QMc

127

attribute_content = c:(datagen_comment? comments annotation? simpleType?)

129

// ----- <attributeGroup> -----

131 attributeGroup = comments prefix:open_XSD_el el_name:"attributeGroup" attrs:attributeGroup_attrs

ws close:(merged_close / openEl content:attributeGroup_content close_el:close_XSD_el)

133 attributeGroup_attrs = el:(elem_id / attrGroup_name / attrGroup_ref)*

135 attrGroup_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

attrGroup_ref = ws2 attr:"ref" ws "=" q1:QMo val:QName q2:QMc

137

attributeGroup_content = c:(comments annotation? attributes)

139

// ----- <anyAttribute> -----

141 anyAttribute = comments prefix:open_XSD_el el_name:"anyAttribute" attrs:anyAttribute_attrs ws

close:(merged_close / ann_content)

143 anyAttribute_attrs = el:(elem_id / any_namespace / processContents)*

145 any_namespace = ws2 attr:"namespace" ws "=" ws val:namespace_values

processContents = ws2 attr:"processContents" ws "=" q1:QMo val:processContents_values q2:QMc

147

// ----- <any> -----

149 any = comments prefix:open_XSD_el el_name:"any" attrs:any_attrs ws

close:(merged_close / ann_content)

151

any_attrs = el:(elem_id / elem_maxOccurs / elem_minOccurs / any_namespace / processContents)*

153

// ----- <simpleType> -----

155 simpleType = comments prefix:open_XSD_el el_name:"simpleType" attrs:simpleType_attrs ws openEl

ws content:simpleType_content close_el:close_XSD_el

157 simpleType_attrs = el:(simpleType_final / elem_id / simpleType_name)*

159 simpleType_final = ws2 attr:"final" ws "=" q1:QMo val:simpleType_final_values q2:QMc

simpleType_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

161

simpleType_content = c:(comments annotation? (restrictionST / list / union))

163

// ----- <annotation> -----

165 annotation = comments prefix:open_XSD_el el_name:"annotation" attr:elem_id? ws

close:(merged_close / openEl content:annotation_content close_el:close_XSD_el)

167
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annotation_content = (appinfo / documentation)*

169

// ----- <appinfo> -----

171 appinfo = comments (appinfo_simple / appinfo_prefix) comments

173 appinfo_simple = "<" el_name:"appinfo" attr:elem_source? ws close:("/>" ws / openEl

content:appinfo_content_simple? close_appinfo_simple)

175

appinfo_prefix = prefix:open_XSD_el el_name:"appinfo" attr:elem_source? ws close:(merged_close /

openEl content:appinfo_content_prefix? close_el:close_appinfo_prefix)

177

appinfo_content_simple = comments (!close_appinfo_simple). appinfo_content_simple*

179 appinfo_content_prefix = comments (!close_appinfo_prefix). appinfo_content_prefix*

181 close_appinfo_simple = "</appinfo" ws ">" ws

close_appinfo_prefix = prefix:close_XSD_prefix name:"appinfo" ws ">" ws

183

// ----- <documentation> -----

185 documentation = comments (doc_simple / doc_prefix) comments

187 documentation_attrs = attrs:(elem_source elem_lang? / elem_lang elem_source?)?

189 doc_simple = "<" el_name:"documentation" attrs:documentation_attrs ws close:("/>" ws /

openEl content:doc_content_simple? close_doc_simple)

191 doc_prefix = prefix:open_XSD_el el_name:"documentation" attrs:documentation_attrs ws

close:(merged_close / openEl content:doc_content_prefix? close_el:close_doc_prefix)

193

doc_content_simple = comments (!close_doc_simple). doc_content_simple*

195 doc_content_prefix = comments (!close_doc_prefix). doc_content_prefix*

197 close_doc_simple = "</documentation" ws ">" ws

close_doc_prefix = prefix:close_XSD_prefix name:"documentation" ws ">" ws

199

// ----- <union> -----

201 union = comments prefix:open_XSD_el el_name:"union" attrs:union_attrs ws close:(merged_close /

openEl content:union_content close_el:close_XSD_el)

203 union_attrs = attrs:(elem_id union_memberTypes? / union_memberTypes elem_id?)?

205 union_memberTypes = ws2 attr:"memberTypes" ws "=" q1:QMo val:list_types q2:QMc

207 union_content = c:(comments annotation? simpleType*)

209 // ----- <list> -----

list = comments prefix:open_XSD_el el_name:"list" attrs:list_attrs ws close:(merged_close /

openEl content:list_content close_el:close_XSD_el)

211
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list_attrs = attrs:(elem_id list_itemType? / list_itemType elem_id?)?

213

list_itemType = ws2 attr:"itemType" ws "=" q1:QMo val:type_value q2:QMc

215

list_content = c:(comments annotation? simpleType?)

217

// ----- <restriction> (simpleType) -----

219 restrictionST = comments prefix:open_XSD_el el_name:"restriction" attrs:base_attrs ws

close:(merged_close / openEl content:restrictionST_content close_el:close_XSD_el)

221

base_attrs = attrs:(base elem_id? / elem_id base?)?

223

base = ws2 attr:"base" ws "=" q1:QMo val:type_value q2:QMc

225

restrictionST_content = comments h1:annotation? h2:simpleType? t:constrFacet*

227

// ----- <restriction> (simpleContent) -----

229 restrictionSC = comments prefix:open_XSD_el el_name:"restriction" attrs:base_attrs ws

close:(merged_close / openEl content:restrictionSC_content close_el:close_XSD_el)

231

restrictionSC_content = comments c:(restrictionST_content attributes)

233

// ----- <restriction> (complexContent) -----

235 restrictionCC = comments prefix:open_XSD_el el_name:"restriction" attrs:base_attrs ws

close:(merged_close / openEl content:CC_son_content close_el:close_XSD_el)

237

CC_son_content = c:(comments annotation? (all / choiceOrSequence / group)? attributes)

239

// ----- <extension> (simpleContent) -----

241 extensionSC = comments prefix:open_XSD_el el_name:"extension" attrs:base_attrs ws

close:(merged_close / openEl content:extensionSC_content close_el:close_XSD_el)

243

extensionSC_content = c:(comments annotation? attributes)

245

// ----- <extension> (complexContent) -----

247 extensionCC = comments prefix:open_XSD_el el_name:"extension" attrs:base_attrs ws

close:(merged_close / openEl content:CC_son_content close_el:close_XSD_el)

249

// ----- <minExclusive/minInclusive/maxExclusive/maxInclusive/totalDigits/fractionDigits/length/

minLength/maxLength/enumeration/whiteSpace/pattern> -----

251 constrFacet = comments prefix:open_XSD_el el_name:constrFacet_values attrs:constrFacet_attrs ws

close:(merged_close / ann_content)

253 constrFacet_attrs = el:(elem_id / constrFacet_fixed / constrFacet_value)*

255 constrFacet_fixed = ws2 attr:"fixed" ws "=" q1:QMo val:boolean q2:QMc

constrFacet_value = ws2 attr:"value" ws "=" ws val:string
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257

// ----- <complexType> -----

259 complexType = comments prefix:open_XSD_el el_name:"complexType" attrs:complexType_attrs ws

close:(merged_close / openEl content:complexType_content close_el:close_XSD_el)

261

complexType_attrs = el:(elem_abstract / complexType_block / elem_final / elem_id / complex_mixed

/ complexType_name)*

263

complexType_block = ws2 attr:"block" ws "=" q1:QMo val:elem_final_values q2:QMc

265 complex_mixed = ws2 attr:"mixed" ws "=" q1:QMo val:boolean q2:QMc

complexType_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

267

complexType_content = c:(comments annotation? (simpleContent / complexContent / ((all /

choiceOrSequence / group)? attributes)))

269

// ----- <simpleContent> -----

271 simpleContent = comments prefix:open_XSD_el el_name:"simpleContent" attr:elem_id? ws openEl

content:simpleContent_content close_el:close_XSD_el

273 simpleContent_content = c:(comments annotation? (restrictionSC / extensionSC))

275 // ----- <complexContent> -----

complexContent = comments prefix:open_XSD_el el_name:"complexContent" attrs:complexContent_attrs

ws openEl content:complexContent_content close_el:close_XSD_el

277

complexContent_attrs = attrs:(complex_mixed elem_id? / elem_id complex_mixed?)?

279

complexContent_content = c:(comments annotation? (restrictionCC / extensionCC))

281

// ----- <all> -----

283 all = comments prefix:open_XSD_el el_name:"all" attrs:all_attrs ws close:(merged_close /

openEl content:all_content close_el:close_XSD_el)

285

all_attrs = el:(elem_id / all_maxOccurs / all_minOccurs)*

287

all_maxOccurs = ws2 attr:"maxOccurs" ws "=" q1:QMo val:"1" q2:QMc

289 all_minOccurs = ws2 attr:"minOccurs" ws "=" q1:QMo val:[01] q2:QMc

291 all_content = c:(comments annotation? element*)

293 // ----- <choice/sequence> -----

choiceOrSequence = comments prefix:open_XSD_el el_name:$("choice"/"sequence")

295 attrs:choiceOrSeq_attrs ws close:(merged_close / openEl content:choiceOrSeq_content

close_el:close_XSD_el)

297

choiceOrSeq_attrs = el:(elem_id / elem_maxOccurs / elem_minOccurs)*

299 choiceOrSeq_content = c:(comments annotation? (element / choiceOrSequence / group / any)*)
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// ----- <group> -----

301 group = comments prefix:open_XSD_el el_name:"group" attrs:group_attrs ws close:(merged_close /

openEl content:group_content close_el:close_XSD_el)

303 group_attrs = el:(group_name / elem_id / elem_maxOccurs / elem_minOccurs / group_ref)*

305 group_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

group_ref = ws2 attr:"ref" ws "=" q1:QMo val:QName q2:QMc

307

group_content = c:(comments annotation? (all / choiceOrSequence)?)

309

// ----- <notation> -----

311 notation = comments prefix:open_XSD_el el_name:"notation" attrs:notation_attrs ws

close:(merged_close / ann_content)

313

notation_attrs = el:(elem_id / notation_name / notation_URI_attrs)*

315

notation_name = ws2 attr:"name" ws "=" q1:QMo val:NCName q2:QMc

317 notation_URI_attrs = ws2 attr:("public" / "system") ws "=" ws val:string

319 // ----- Comment -----

comments = comment*

321 comment = "<!--" comment_content close_comment ws

comment_content = (!close_comment). comment_content*

323 close_comment = "-->"

325 // ----- DataGen type -----

datagen_comment = "<!--datagen:" func:datagen_func args:datagen_args? "-->" ws

327 datagen_func = datagen_boolean / datagen_integer / datagen_float / datagen_string

329 datagen_boolean = func:"boolean"

datagen_integer = func:("index"/"integer"/"integerOfSize")

331 datagen_float = func:("float"/"multipleOf")

datagen_string = func:("date"/"formattedInteger"/"formattedFloat"/"guid"/"hexBinary"/"language"/

"letter"/"lorem"/"objectID"/"pattern"/"position"/"pt_phone_number"/"stringOfSize"/"time"/

333 "xsd_date"/"xsd_dateTime"/"xsd_duration"/"xsd_gDay"/"xsd_gMonth"/"xsd_gMonthDay"/"xsd_gYear"

/"xsd_gYearMonth"/"xsd_string"/"actor"/"animal"/"brand"/"buzzword"/"capital"/"car_brand"/

"continent"/"country"/"cultural_center"/"firstName"/"fullName"/"gov_entity"/"hacker"/"job"/

335 "month"/"musician"/"nationality"/"political_party_abbr"/"political_party_name"/

"pt_businessman"/"pt_city"/"pt_county"/"pt_district"/"pt_entity_abbr"/"pt_entity_name"/

337 "pt_parish"/"pt_politician"/"pt_public_figure"/"pt_top100_celebrity"/"religion"/

"soccer_club"/"soccer_player"/"sport"/"surname"/"top100_celebrity"/"weekday"/"writer")

339

datagen_args = "(" datagen_args_content? datagen_args_close ws

341 datagen_args_content = (!datagen_args_close). datagen_args_content*

datagen_args_close = ")"

343
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// ----- Recurring regex -----

345 openEl = ">" ws

closeEl = ">" ws

347

open_XSD_el = "<" prefix:(p:NCName ":")?

349 close_XSD_prefix = "</" prefix:(p:NCName ":")?

351 merged_close = "/>" ws comments

353 close_XSD_el = prefix:close_XSD_prefix name:XSD_el_name ws closeEl comments

ann_content = openEl comments content:annotation? close_el:close_XSD_el

355

attributes = c:((attribute / attributeGroup)* anyAttribute?)

357

// ----- Values -----

359 QM = '"' / "'"

QMo = ws qm:('"' / "'") ws

361 QMc = ws qm:('"' / "'")

363 boolean = true / false

false = "false"

365 true = "true"

null = "null"

367

int = integer:(("0"* i:([1-9] [0-9]*)) / (i:"0" "0"*))

369

letter = [a-zA-Z]

371 letter1_8 = $(letter letter? letter? letter? letter? letter? letter? letter?)

string = ('"'[^"]*'"' / "'"[^']*"'")

373

NCName = $(([a-zA-Z_]/[^\x00-\x7F])([a-zA-Z0-9.\-_]/[^\x00-\x7F])*)

375 QName = prefix:(p:NCName ":")? name:NCName

377 ID = id:NCName

language = $((letter letter / [iI]"-"letter+ / [xX]"-"letter1_8)("-"letter1_8)?)

379

XSD_el_name = "include"/"import"/"redefine"/"notation"/"annotation"/"appinfo"/"documentation"/

381 "element"/"field"/"selector"/"key"/"keyref"/"unique"/"attributeGroup"/"attribute"/

"anyAttribute"/"simpleType"/"union"/"list"/"restriction"/"extension"/constrFacet_values/

383 "complexType"/"simpleContent"/"complexContent"/"all"/"choice"/"group"/"sequence"/"any"

385 // ----- Simple values of attributes -----

form_values = $("un"?"qualified")

387 use_values = "optional" / "prohibited" / "required"

processContents_values = "lax" / "skip" / "strict"

389 constrFacet_values = $("length" / ("max"/"min")"Length" / ("max"/"min")("Ex"/"In")"clusive" /

("total"/"fraction")"Digits" / "whiteSpace" / "pattern" / "enumeration")
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391 type_value = type:(p:NCName ":" name:NCName / name:NCName)

393 // ----- Lists of values of attributes -----

finalDefault_values = "#all" / finalDefault_listOfValues

395 finalDefault_list_val = "extension" / "restriction" / "list" / "union"

finalDefault_listOfValues = l:$(finalDefault_list_val (ws2 finalDefault_list_val)*)

397

elem_final_values = "#all" / "extension" ws "restriction" / "restriction" ws "extension" /

399 "extension" / "restriction"

401 list_types = ws fst:type_value? others:(ws2 n:type_value)* ws

403 block_values = "#all" / block_listOfValues

block_list_val = "extension" / "restriction" / "substitution"

405 block_listOfValues = l:$(block_list_val (ws2 block_list_val)*)

407 simpleType_final_values = "#all" / simpleType_final_listOfValues

simpleType_final_list_val = "list" / "union" / "restriction"

409 simpleType_final_listOfValues = l:$(simpleType_final_list_val (ws2 simpleType_final_list_val)*)

411

namespace_values = (namespace_values_Q / namespace_values_A)

413 namespace_values_Q = $('"' ws ("##any" / "##other" / l:namespace_listOfValues_Q) ws '"')

namespace_values_A = $("'" ws ("##any" / "##other" / l:namespace_listOfValues_A) ws "'")

415

namespace_list_val_Q = "##local" / "##targetNamespace" / $((!("##"/'"')). [^ "\t\n\r]+)

417 namespace_list_val_A = "##local" / "##targetNamespace" / $((!("##"/"'")). [^ '\t\n\r]+)

419 namespace_listOfValues_Q = $(namespace_list_val_Q (ws2 namespace_list_val_Q)*)

namespace_listOfValues_A = $(namespace_list_val_A (ws2 namespace_list_val_A)*)

421

// ----- XPath -----

423 selectorXPath = $(path ('|' path)*)

path = ('.//')? step ('/' step)*

425 fieldXPath = $(('.//')? (step '/')* (step / '@' nameTest))

step = '.' / nameTest

427 nameTest = QName / '*' / NCName ':' '*'
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