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A B S T R A C T

Machine Learning is trending in computer science, especially Deep Learning. Training
algorithms that follow this approach to Machine Learning routinely deal with vast amounts
of data. Processing these enormous quantities of data requires complex computation tasks
that can take a long time to produce results. Distributing computation efforts across multiple
machines makes sense in this context, as it allows conclusive results to be available in a
shorter time frame.

Distributing the training of a Deep Neural Network is not a trivial procedure. Various
architectures have been proposed, following two different paradigms. The most common one
follows a centralized approach, where a centralized entity, broadly named parameter server,
synchronizes and coordinates the updates generated by a number of workers. The alternative
discards the centralized unit, assuming a decentralized architecture. The synchronization
between the multiple workers is assured by communication techniques that average gradients
between a node and its peers.

High-end clusters are the ideal environment to deploy Deep Learning systems. Low
latency between nodes assures low idle times for workers, increasing the overall system
performance. These setups, however, are expensive and are only available to a limited
number of entities. On the other end, there is a continuous growth of edge devices with
potentially vast amounts of available computational resources.

In this dissertation, we aim to implement a fault tolerant decentralized Deep Neural Net-
work training framework, capable of handling the high latency and unreliability characteristic
of edge networks. To manage communication between nodes, we employ decentralized
algorithms capable of estimating parameters globally.

Keywords: Distributed Systems, Machine Learning, Artificial Intelligence, Fault Tolerance.
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R E S U M O

Machine Learning, mais especificamente Deep Learning, é um campo emergente nas ciências
da computação. Algoritmos de treino aplicados em Deep Learning lidam muito frequente-
mente com vastas quantidades de dados. Processar estas enormes quantidades de dados
requer operações computacionais complexas que demoram demasiado tempo para produzir
resultados. Distribuir o esforço computacional por múltiplas máquinas faz todo o sentido
neste contexto e permite um aumento significativo de desempenho.

Distribuir o método de treino de uma rede neuronal não é um processo trivial. Várias
arquiteturas têm sido propostas, seguindo dois diferentes paradigmas. O mais comum
segue uma abordagem centralizada, onde uma entidade central, normalmente denominada
de parameter server, sincroniza e coordena todas as atualizações produzidas pelos workers.
A alternativa passa por descartar a entidade centralizada, assumindo uma arquitetura
descentralizada. A sincronização entre workers é assegurada através de estratégias de
comunicação descentralizadas.

Clusters de alta performance são o ambiente ideal para a implementação de sistemas de
Deep Learning. A baixa latência entre nodos assegura baixos perı́odos de inatividade nos
workers, aumentando assim o rendimento do sistema. Estas instalações, contudo, são muito
custosas, estando apenas disponı́veis para um pequeno número de entidades. Por outro
lado, o número de equipamentos nas extremidades da rede, com baixo aproveitamento de
poder computacional, continua a crescer, o que torna o seu uso desejável.

Nesta dissertação, visamos implementar um ambiente de treino de redes neuronais
descentralizado e tolerante a faltas, apto a lidar com alta latência na comunicações e baixa
estabilidade nos nodos, caraterı́stica de redes na extremidade. Para coordenar a comunicação
entre os nodos, empregamos algoritmos de agregação, capazes de criar uma visão geral de
parametros numa topologia.

Palavras Chave: Sistemas Distribuı́dos, Machine Learning, Inteligência Artificial, Tolerância
a Faltas.
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1

I N T R O D U C T I O N

1.1 context

Machine Learning has been powering an increasingly vast amount of services, ranging from
recommendation systems [7] to pattern recognition [19] and others. One of the enablers of
this growth is the ever-increasing amount of data available to analyzed and processed by
services that satisfy such purposes. These large quantities of data allow the employment of
larger and more complex models that tend to generate better accuracies, resulting in more
relevant results.

Neural networks are a specific set of algorithms that have revolutionized machine learning.
Traditional Neural Network algorithms execute a sequence of steps that gradually minimize
a loss function while consuming a dataset. This process, known as training, is obviously
slow when dealing with reasonably sized datasets or models. To mitigate the inevitable
increases in execution times, the community resorted to concurrent/distributed computing,
in order to split the computational effort across multiple machines.

The most common approach to distributed Neural Network training is the parameter
server concept. This architecture relies on a centralized computing unit, the parameter server,
that coordinates the communication between all the nodes that compose the cluster. The
alternative is to eliminate the parameter server and allow the workers on the cluster to freely
communicate between them, in a decentralized manner.

1.2 motivation

Leading Neural Network frameworks are implemented on high-end servers, equipped with
state of the art GPUs. On the other end of the spectrum, there is a continuous expansion
of edge devices with potentially unused computation power. Additionally, the continuous
expansion and improvement of networks and infrastructures, facilitates the development of
distributed applications that run on the edge. The possibility of using these devices in this
context has already been considered by Hardy et al. [11], but the method described relies

1



1.3. Main Contributions 2

on a centralized server to coordinate the training. This raises a question: Can decentralized
distributed Machine Learning be feasible on edge devices?.

Decentralized architectures allow end users to have total control over their contributions
to the network. Therefore, there is a higher degree of privacy, since inputs are processed
locally, without the need to be transferred to a centralized server.

The prospect of vast amounts of worker nodes reinforces the urge for a decentralized
solution, to avoid the predictable bottleneck observed when a server is responsible for
processing an enormous amount of requests. This congestion can be witnessed either on the
communication network, or in the lack of processing capability to respond to all the requests
efficiently.

1.3 main contributions

In this thesis we aim to implement an efficient decentralized distributed Machine Learning
framework, designed to run on an unreliable environment. This framework should capable
of reacting to failures in the network, while providing acceptable results in a reasonable
time.

1.4 dissertation outline

This dissertation is organized as follows. Chapter 2 presents a summary of machine learning.
Chapter 3 presents an overview of the challenges and approaches to distributed Deep
Learning. Chapters 4 and 5 point out the most widely used techniques used in centralized
and decentralized Deep learning, respectively. In chapter 6 we introduce our novel approach
to distributed Deep Learning and on chapter 7 we evaluate the algorithm presented in the
previous chapter. Finally in chapter 8 we conclude this thesis and share some ideas for
future research.
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M A C H I N E L E A R N I N G

We start this thesis by giving an overview of machine learning along with its different
branches and challenges. The aim of this chapter is not dive deep into the technicalities of
machine learning, but to give the reader the necessary context to understand the ideas and
decisions taken during the development of this dissertation.

2.1 defenition

Machine learning (ML), is a field of Artificial Intelligence that allows a computer system to
achieve a goal without the need to specify the steps necessary to reach it. Instead, the system
resorts to learning and inference techniques. Due to its wide spectrum, machine learning
has branched into numerous subfields that can be classified by several parameters. The most
direct distinction is between supervised and unsupervised learning. Supervised learning
occurs when the learning task is supplied with a set of labeled data denoted as training data.
This data is assumed to be correctly labeled and indicates whether the system is producing
the expected results. The knowledge extracted from the training data is then used to make a
prediction based on unseen data. Unsupervised learning occurs when the learning task is
supplied with a set of unlabeled data. Here the task is to infer certain patterns or rules that
allow the system to make predictions based on unseen data. Imagine we want to build a
system that determines whether a picture contains a car. In a supervised learning setting,
the system would be trained with a set of labeled images that identifies each image has to
having a car or not. In an unsupervised setting, however, the training data would not be
labeled, and it would be up to the algorithm to identify patterns that define a car. Supervised
learning is the most common form of machine learning, so unsupervised learning will not
be considered in this thesis.

Another important classifier of a machine learning task is the distinction between batch
and online learning. A batch learning task trains over large amounts of data before being
ready to make predictions. On the other hand, in online learning there is no established
training period. As a result training and prediction operations can execute at the same time.
This type of algorithms are often used when data is available incrementally, as opposed to

3



2.2. Deep Learning 4

batch training where train datasets are available to be processed. Batch training is the more
common than online learning, so it will be the focus of this thesis.

2.2 deep learning

The emergence of machine learning is in part due to the evolution of deep learning, the
most popular machine learning field. Deep learning algorithms use deep learning neural
networks (DNNs), a type of artificial neural networks (ANNs). Artificial neural networks
draw inspiration from biological neural networks that typically constitute animal brains.
ANNs are comprised of neurons, typically organized in layers connected by a set of edges
[2]. The organization of these layers and edges can vary depending on the type of network.
ANNs whose neurons are connected to neurons of the next layer are called feedforward
networks. Figure 1 represents a simple feedforward network. ANNs that dont restrict the
orientation of connections between nodes are called recurrent networks.

Deep Neural Networks are a specific class of ANNs with multiple layers between the
input and the output layers. The input layer being the first layer of the network and the
output layer the last. The layers between the output and input layers are refered as hidden
layers.

The neurons of the network are organized in layers. Each layer contains a nonempty set of
neurons. Let us denote the set containing all the edges as E, the set containing all the layers,
such that V =

⋃T
t=0 Vt as V and the number of layers as T. In a feedforward network, every

edge in E that has its origin in a layer Vt−1 can only be connected to a node belonging to
the layer Vt. In a recurring network, every edge in E that has its origin in a layer V can be
connected to a node belonging to any layer in V. The first layer, V0, is the input layer. It
contains m + 1 neurons, where m is the amplitude of the input. The additional neuron is the
bias neuron which always outputs 1. Layers V1 to VT−1 are the hidden layers. The final layer,
VT is the output layer.

Each neuron accommodates a simple activation function, responsible for determining the
node’s output. This function normalizes the weighted sum of the incoming connections,
producing a measure of how positive the weighted sum is. Biases can also be used to
calculate the output value of a neuron, together with the return of the activation function. A
bias is an extra neuron per layer that does not have any incoming connections and outputs
the value 1. This additional factor is used to improve the calibration of the output.

Consider a Neural Network and a labeled training dataset {〈x1, l1〉, . . . , 〈xn, ln〉}. When
the network is presented with the input xi, it produces an output yi, that, in most cases, can
be very different from the expected value li. To improve the percentage of correct predictions
from a Neural Network, it is necessary to minimize the cost function, ∆, represented by the
network, typically defined as the sum of square differences:
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Figure 1: Simple feedforward neural network with 3 layers

∆ = 1
n ∑n

i=1(li − yi)2

The predominant minimization heuristic used to train Neural Networks is Stochastic
Gradient Decent (SGD), based on the Gradient Decent method. Gradient Decent is an
iterative optimization procedure that, at each iteration, improves the solution by taking a
step along the negative gradient of the function to be minimized, at the current point [22].
Since we do not have access to the full domain, D, of the problem, this procedure is not
feasible in this case. SGD bypasses that limitation by allowing the step to be taken along a
random gradient, based on a sample of the domain D. This gradient is calculated using the
backpropagation algorithm. With the gradient calculated, the network can be optimized.

2.3 summary

In this Chapter, we presented a broad definition of Machine Learning and one of its subfields,
Deep Learning. We also covered the basic structure of a neural network and how these
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structures are trained. In the next Chapter, we will discuss the need to distribute Deep
Learning and various techniques used to achieve that.



3

D I S T R I B U T E D D E E P L E A R N I N G

As we saw in the previous Chapter, most of the computational effort required to train a
deep neural network is the result of basic linear algebra transformations. To accelerate
the training process, it is necessary to distribute this operation efficiently. As other large-
scale computational systems, there are two different alternatives to distribute approach this
challenge: vertical scaling or horizontal scaling.

3.1 vertical scaling

Vertical scaling involves adding more resources to a single machine. The emergence of deep
learning has lead vendors such as Nvidia, to develop GPUs with versatile architectures
that better accommodate the need for highly parallel tasks. TPUs [13] also yield high
performance while executing highly parallel tasks. These processing units specializes in
transformations of multi-dimensional array structures, and are usually used in combination
with TensorFlow [1].

3.2 horizontal scaling

Horizontal scaling involves partitioning tasks across multiple machines. To achieve desirable
performance, ML algorithms need to be adapted to a distributed setting. This process
is not always straightforward and often presents problems that affect most distributed
applications. Overcoming these challenges, however, is desirable for several reasons. The
first reason is the increase in fault tolerance because, in the event of a failure, the system
can continue to operate. Another reason relates to the high I/O demand of deep neural
networks. Partitioning data across several machines increases the total I/O bandwidth of
the system. In this thesis we will focus on horizontal scaling.

7



3.3. Distributed Deep Learning Architectures 8

3.3 distributed deep learning architectures

When we are distributing computation across several machines, it is important to consider
all of the alternative ways of accomplishing it. Depending on the available hardware or on
the model itself, one might find some techniques more suited to the problem than others. In
distributed deep learning, the first decision falls on whether to implement model or data
parallelism.

3.3.1 Model Parallelism

Model parallelism, represented in Figure 2a, dictates that the model must be split across all
machines and that all workers process the same data. To get a holistic view of the model it
is necessary to aggregate all the portions split across the workers. This approach tends to
yield greater performance with models with local connectivity structures [9].

3.3.2 Data Parallelism

Data parallelism, represented in Figure 2b, dictates that the data must be split across all
machines and that all workers have a copy of the same model. Each worker processes
different data batches using the same model. This approach supports all deep learning
algorithms.

Model Parallelism

D

m1 m2 m3

trained model

(a) Model Parallelism

Data Parallelism

d1 d2 d3

M M M

trained model

(b) Data Parallelism

Figure 2: Two types of parallelism in Distributed Deep Learning. Data is represented by the letter D,
or dn if split, and the model is represented by the letter M, or mn if split.
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3.3.3 Summary

As with most distributed systems, the arrangement of the workers is particularly important
to ensure good performance and coordination. Topologies fall under two major categories:
centralized and decentralized. In the next two Chapters we will study these classes and
present several examples that implement these concepts.
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C E N T R A L I Z E D D I S T R I B U T E D D E E P L E A R N I N G

4.1 parameter server

Most relevant distributed Machine Learning frameworks, such as TensorFlow1 [1], MXNet2

[5] or CNTK3, support the centralized parameter server architecture [17]. This architecture,
illustrated in Figure 3, is devised to allow workers to calibrate their own parameters
according to a portion of the dataset, and then synchronize their variables with the central
parameter server (PS), establishing a starting point for the next round. The PS architecture
provides a global view of the system, allowing the parameters to be stored on a persistent
data store. In the event of a worker failure, the model parameters stored on the PS are used
to restore the malfunctioning worker the current state.

(a) Parameter Sever architecture with a single Pa-
rameter Server

(b) Parameter Sever architecture with multiple Pa-
rameter Servers

Figure 3: Parameter Server architecture

With a small number of workers, it is possible to achieve a near-linear boost in performance.
However, a further increase in the number of workers can expose the bandwidth limitations
of the communication layer due to a large amount of data being sent through the same
channels. One solution is to increase the batch size, leading to fewer synchronization steps.
A larger global batch, though, can decrease the efficiency of the model [14]. Additionally,
GPUs have limited memory, which diminishes the viability of large batches of data. To
further hinder the training performance, current developments in accelerators and networks
suggest an ever evident disparity between computation and communication speeds. New

1 https://www.tensorflow.org/
2 https://mxnet.apache.orrg/
3 https://www.microsoft.com/en-us/cognitive-toolkit/
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hardware and algorithms continue to reduce the computation time, while network speeds
continue getting faster but at a much slower rate. Another solution is to implement sharded
parameter servers [6, 9] that divide the ownership of the model parameters. This design
leads to a waste of potentially expensive computational resources.

Synchronous versions of the parameter server concept guarantee the maximum possible
convergence, at the potential cost of performance. The presence of slow workers can hurt
the system performance since all workers need to communicate their gradients to end
the current round. Several techniques mitigate the negative effect of slow workers. Stale
Synchronous Parallel (SSP) [12] allows workers to run at different paces within a certain
interval. Faster workers that move too far ahead of the slower workers are paused. This
technique maintains a strong model convergence when the number of slow workers is low.
Barrierless Asynchronous Parallel (BAP) [10] removes the synchronization from the system
to minimize the effect of slow workers on the system, thus workers communicate with the
PS in parallel without waiting. This technique obtains the maximum speedup possible. The
presence of slow workers restrains the model convergence though, as slow workers send
gradients based on stale model parameters.

4.2 federated learning

Federated Learning [3] is a hybrid approach to distributed neural network training, where
each node downloads the model and computes the gradients localy, with its own data, and
then sends the resuls to a cloud based server. As a result, only the training coordination is
centralized whereas the training and the data are decentralized. This approach is applied
on the domain of mobile phones, using the data stored on this devices. Due to its rather
specific domain, we will not consider this design on this thesis.

4.3 summary

In this Chapter, we covered the main approach to centralized Deep Learning, the parameter
server architecture, as well as Federated Learning. We discussed its variations along with its
advantages and disadvantages. In the next Chapter, we will analyze the other approach to
distributed Deep Learning, Decentralized Deep Learning.
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D E C E N T R A L I Z E D D I S T R I B U T E D D E E P L E A R N I N G

Decentralized approaches to distributed Deep Learning remove the parameter server from
the system, redirecting the training and coordination to all the worker nodes. Communication
between them ensures the organization and correctness of the training process. This
technique removes the central server as the single point of failure and potential bottleneck.
Most decentralized learning algorithms rely on the allreduce operation which reduces results
across all workers in a decentralized manner.

5.1 allreduce

Many distributed applications benefit from reducing a set of values and distributing the
results across all workers, as illustrated in Figure 4. In distributed Deep Learning this
concept is particularly useful to aggregate gradients, reduce them and disseminate the
result to all workers. The reduction step, denoted as ⊕, is performed by an optimization
algorithm, typically Stochastic Gradient Descent, or an optimized version of this algorithm.
The dissemination of the results varies, depending on the specification of the allreduce
algorithm and the topology formed by the workers, as this versatile operation can be applied
in various topologies such as rings or trees or.

1 2 3

Worker 0

4 5 6

Worker 1

7 8 9

Worker 2

12 15 18

Worker 1

12 15 18

Worker 0

12 15 18

Worker 2

Figure 4: Example of an allreduce operation with sum function as reduction operation
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5.2 ring allreduce

Decentralized distributed Machine Learning frameworks, like Horovod1 [21], have proven to
be a feasible and valid alternative to purely centralized systems. Horovod implements the
ring allreduce algorithm [20], illustrated in Figure 5, a realization of the allreduce concept,
enabling worker nodes to synchronously average gradients between them, without the need
of a parameter server. Ring allreduce organizes workers in a virtual ring topology. This
concept is replicated in TensorFlow with MultiWorkerMirroredStrategy. Fault tolerance was
not the main concern when developing this algorithms. If a failure occurs, the system will
revert to a previous checkpoint and resume the training.

1 2 3

Worker 1

4 5 6

Worker 2

7 8 9

Worker 3

1 2 12

Worker 1

⊕1
5 5

6

Worker 2

⊕5

7 13 9

Worker 3

⊕9

1 15 12

Worker 1

⊕125 5 18

Worker 2

⊕5

12 13 9

Worker 3

⊕13

12 15 12

Worker 1

15
5 15 18

Worker 2

18

12 13 18

Worker 3

12

12 15 18

Worker 1

12
12 15

18

Worker 2

15

12 15 18

Worker 3

18

12 15 18

Worker 1

12 15 18

Worker 2

12 15 18

Worker 3

Figure 5: Horovod ring allreduce example

5.3 tree-based allreduce

Tree-based topologies prove to be advantageous when performing allreduce operations, as
they are highly scalable, simple and efficient [20]. Implementing allreduce on a tree-based
topology is also intuitive. In each round, the nodes in the tree aggregate their gradients
with the ones received from their children. When the aggregated gradients reach the root of

1 https://eng.uber.com/horovod/

https://eng.uber.com/horovod/
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the tree, the final round gradients are calculated and then broadcasted to all the remaining
nodes. Figure 6 illustrates this process.

1

2

4 5

3

6 7

11 16

4 5 76

28

28

28 28

28

28 28

28 28

28 28 2828

Figure 6: Tree-based allreduce

Variants of this design have already been implemented and tested in distributed Deep
Learning. MXNet provides topology-aware allreduce for distributed training [5]. This
approach makes use of binary trees to perform reduce and broadcast operations. Fault
tolerance was not one of the aims when designing this algorithm though, so no failure
detection or recovery mechanisms were specified.

Margolin and Barak [18] proposes tree-based fault-tolerant collective operations (FTCO),
extending existing tree-based algorithms. The FTCO algorithm detects node failures and
excludes them from the topology. This approach allows the application to keep running in
the event of a node failure with a small latency penalty. FTCO does not tolerate link failures
though. In the event of a failure on a link connecting two nodes, there is no guarantee that
the application will keep running.

Chen et al. [4] proposes RABIT, a reliable allreduce, and broadcast interface library,
specifically designed to distribute Deep Neural Networks training. This library can handle
node failures by pausing every node until the malfunctioning node is restarted. After the
restart, the failed node receives the latest model parameters from its peers. Once this step is
completed, the training can resume. As with FTCO, RABIT does not provide link failure
tolerance.

5.4 gossipgrad

Another approach to decentralized machine learning is GossipGraD [8], a gossip comuni-
cation protocol designed for scaling machine learning. This protocol ensures the indirect
dessemination of gradients through all nodes in log2(nodes) steps, where each step repre-
sents a computed batch. GossipGraD also implements a peer rotation mechanism in order to
reduce communication inbalance. This approach does not mention faul tolerance mechanism
though. In the event of a node or link failure, the algorithm does not specify a recovery
mechanism, so it is not suitable for unstable networks.
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5.5 summary

In this Chapter, we covered the main approaches to decentralized Deep Learning. We
presented multiple topologies that implement this concept while discussing their advantages
and disadvantages. In the next Chapter we will introduce our novel fault tolerant algorithm.
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FAU LT T O L E R A N T T R E E

As we demonstrated in the previous Chapter in section 5.3, tree topologies provide good
properties to implement allreduce algorithms. Furthermore, these topologies have been
adapted to tolerante node failures. Given this characteristic, we decided that it would be
worth to invest our effort in finding a way to adapt the tree-based allreduce algorithm to
tolerate link failures. For simplicity, we assume the network to be a fully connected graph.
We also assume the nodes to be immune to failures, as this circumstance has already been
studied [4, 18].

6.1 topology

To increase resilience to link failures, workers establish connections with their brother and
uncle nodes, as illustrated in Figure 7, decreasing the possibility of isolated nodes in case of
a link failure. These backup links, under normal circumstances, are only used to transmit
small messages containing metadata. In the event of a failure on a main link, the backup
links are used to spread the missing messages. This topology is based on the Epidemic
Broadcast Trees [16], as there are two types of node connections: primary and secondary.
The roles that these links fulfill are also similar, as primary links are used to transmit data
and secondary links are used to transmit metadata.

0

1parent

3 4

brother

2 uncle

5 6

Figure 7: Fault Tolerant Tree topology. The black edges represent the main links and the blue dashed
edges represent the backup links. Node 3 connections are also labeled.
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6.2 reduce

We commence by describing the algorithm on the first of two steps (reduce and broadcast),
of an allreduce operation. The algorithm sends data messages through the main links and
metadata messages through the backup links. The backup links, the uncle and brother of a
node, serve as faulty link detectors through the use of timeouts. In the event of a link failure,
the timeouts will expire and these backup links will retransmit the necessary data messages.
The types of message required to implement this behavior are:

• data reducej,i(data) - Data message

• meta reduce sentj,i(target) - Metadata message indicating that node j sent a data
message to target

• meta reduce receivedj,i(sender) - Metadata message indicating that node i received a
data message from sender

• meta reduce requestj,i() - Metadata message requesting data from node i

• data reduce requestj,i(target, data) - Data message

The main portion of the algorithm that every node runs is shown in algorithm 1. Each
node starts with the gradients that are calculated at each iteration. The node then waits
from messages from its neighbours. If there are no communication failures, the node waits
for messages and responds accordingly. Upon receiving a data reduce message (line 10), the
node aggregates the gradients (line 12), sends a confirmation of reception to the sender
backup nodes (lines 13 and 14), sends the aggregated result to its parent (line 7) and finally
sends a meta reduce sent message to each of its backup nodes (lines 8 and 9). The reduce
step, from the perspective of the node 3, is illustrated in Figure 8.
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Algorithm 1: Reduce step

1 Inputs: g; // gradients

2 Procedure data timeout(j) do
3 sleep(t);
4 if ¬ received meta reduce receivedk,i(j) then
5 sendi,j meta reduce request();

6 Upon event received from all children do
7 sendi,parent data reduce(g);
8 sendi,uncle meta reduce sent();
9 sendi,brother meta reduce sent();

10 Upon event data reducej,i(g’) do
11 if ¬ received g’ then
12 g← g ⊕ g’;
13 sendi,brother meta reduce received(j);
14 sendi,child 6=j meta reduce received(j);

15 Upon event meta reduce receivedj,i(k) do
16 Set node k received gradients from node j;

17 Upon event meta reduce sentj,i(k) do
18 if ¬ received meta reduce receivedk,i(j) then
19 timeout data(j);

20 Upon event meta reduce requestj,i() do
21 sendi,j data reduce request(parent, g);

22 Upon event data reduce requestj,i(k, g’) do
23 sendi,k data reduce(g’);
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#2 meta reduce sent
#3 meta reduce received

#3 meta reduce received

(a) Reduce step without failures
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1

4

2

#1 data reduce

#2 meta reduce sent

#2 meta reduce sent

#3 meta reduce request

#4 data reduce request

#5 data reduce

(b) Reduce step with failure of the link between node
3 and node 1. For simplicity, it is only represented
the timeout from node 4, although node 2 will also
trigger a timeout

Figure 8: Reduce step from node 3 perspective

6.3 broadcast

The second step of allreduce is broadcasting the final value to all nodes. The broadcast,
illustrated in Figure 9, starts when the root aggregates all results and broadcasts them to
its children. When a node receives a broadcast message, it sends a metadata message to
its brother and uncle indicating that it received the latest update. For each child, the node
sends it a data message, and a metadata message to its brother and the children’s brother,
indicating that it sent a data message. A failure is detected when a node does not receive
confirmation that a neighbour received the latest update within a timeout. In this case, the
node sends the latest update to the neighbour. The types message required to implement
this behavior are:

• data bcastj,i(g) - Message with data to be broadcasted

• meta bcast receivedj,i() - Metadata message indicating that node j received the broad-
cast message

• meta bcast sentj,i(k) - Metadata message indicating that node i broadcasted a data
message to node k

Algorithm 2 details the functioning of a broadcast step. Upon receiving a data bcast
message, the node sends to its backup links a meta bcast received message (lines 8 and 8),
indicating that it received the latest gradients. Then it propagates the update for each child
(line 10), along with one meta bcast sent for each of the child’s backup nodes (lines 11 and
12).
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Algorithm 2: Broadcast step

1 Procedure bcast timeout(g, k) do
2 sleep(t);
3 if ¬ received meta bcast receivedk,i() then
4 sendi,k data bcast(g);

5 Upon event data bcastj,i(g) do
6 if ¬ received g then
7 sendi,brother meta bcast received();
8 sendi,uncle meta bcast received();
9 forall children ch do
10 sendi,ch data bcast(g);
11 sendi,child 6=ch meta bcast sent(ch);
12 sendi,brother meta bcast sent(ch);

13 Upon event meta bcast receivedj,i() do
14 Set node j received latest update;

15 Upon event meta bcast sentj,i(k) do
16 if ¬ received meta bcast receivedk,i() then
17 timeout bcast(g, k)
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1

4

2

#1 data bcast
#2 meta bcast sent

#2 meta bcast sent

#3 meta bcast received

#3 meta bcast received

(a) Broadcast step without failures

3

1

4

2

#1 data bcast
#2 meta bcast sent

#2 meta bcast sent

#3 data bcast

(b) Broadcast step with failure of the link between node
3 and node 1. For simplicity, it is only represented
the timeout from node 4, although node 2 will also
trigger a timeout

Figure 9: Broadcast step from node 3 perspective
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6.4 probabilistic analisys

The presented algorithm provides a mechanism to continue computation in the advent of
a link failure. If multiple failures occur in the network, a node in the graph can become
disconnected, which leads to a stop in the computation. An example of such event is
illustrated on Figure 10.

To determine the impact of this effect on the algorithm, we measure the probability of a
node becoming disconnected network. The test was performed by removing random links
from the network until a node beacame disconnected. The results are presented on Figure
11.

0

1

3 4

2

5 6

Figure 10: Example of a tree with a disconnected node (node 3)

(a) Average number of failed links until a node is
isolated

(b) Average percentage of failed links until a node
is isolated

Figure 11

Figure 11a shows that the average number of tolerated failed links increases with the tree
height. This behavior is expected, as the total number of links also increases. Figure 11b
shows that the percentage toleranted failed links decreases with the tree height. Since the
failure of only two links (links that are connected to the tree root) can halt the all reduce
operation, it is expected that the percentage of tolerated failed links decreases.
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6.5 summary

In this Chapter, we presented the fault tolerant tree topology. We defined its behavior
under numerous failure circumstances and analyzed its resilience to link failures. In the
next Chapter, we will test this approach and compare it to other architectures presented in
Chapters 4 and 5.
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E VA L UAT I O N

In this Chapter we evaluate the algorithm proposed on the previous Chapter and compare
its performance to other distributed deep learning algorithms.

7.1 experimental steup

We evaluated all alternatives on a single server (four Intel E5-4620 8-Core CPUs at 2.2 GHz
and 126 GB of RAM). This closed environment allows for more precise monitoring and
control over the communication between workers. Each node is restricted to one CPU core
to emulate a single device. To simulate a disconnected link, we defined firewall rules.

We test all alternatives with the MNIST dataset [15], composed of 60,000 training images
and 10,000 test images. These images represent handwritten digits (10 classes), and the goal
is to construct an accurate image classifier. For all distributed algorithms we use the same
neural network, implemented using the tensorflow framework, with 4 layers with a total of
407050 parameters. We batch the data using batch of 100 images per iteration.

7.2 fault tolerance cost

In this section, we present the cost tolerating a link failure. In a tree, concurrent failures
can be classified as parallel or serial. A parallel failure, Figure 12a, occurs when the failed
links are at the same height. Serial failures, Figure 12b, occur when the two links are at
consecutive heights. As we can see in tables 1 and 2, the cost of one failure and two parallel
failures is approximately the same. On the other hand, the cost of two serial failures is
approximately double, as the recovery times cannot overlap.

No. of nodes No Faults 1 Fault 2 Parallel Faults 2 Serial Faults
7 0.033 1.449 1.495 2.822

15 0.062 1.510 1.513 2.890

31 0.091 1.497 1.494 2.880

Table 1: Allreduce step duration (in seconds) with a 500 millisecond timeout

23
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Figure 12: Types of link failures on a tree

No. of nodes No Faults 1 Fault 2 Parallel Faults 2 Serial Faults
7 0.034 2.441 2.473 4.839

15 0.065 2.541 2.498 4.860

31 0.093 2.509 2.541 4.911

Table 2: Allreduce step duration (in seconds) with a 1 second timeout

7.3 results without failures

In this section we present the results gathered from testing the fault tolerant tree topology
in a environment without failures. We also compare it with other topologies presented
previously. All abreviantions used in this Chapter are described in table 3

Abreviation Description
sync Synchronous parameter server architecture
async Asynchronous parameter server architecture
keras TensorFlow native distribution technique using the MultiWorkerMir-

roredStrategy, invoked by the Keras API
tree Standard tree-based allreduce
ft tree Fault tolerant tree allreduce

Table 3: Allreduce step duration (in seconds) with a 1 second timeout

Figure 13a shows the resulting training accuracy and Figure 13b shows the training time.
As we can see in Figure 13a, the best accuracy is achieved using a synchronous parameter

server approach, as this architecture guarantees the maximum convergence, at the expense of
time. This tradeoff is visible in Figure 13b. On the other hand, the asynchronous parameter
server approach trades accuracy for performance. Both centralized approaches show slower
training times when compared to decentralized ones.

The decentralized topologies show faster training time, while keeping high accuracies.
We can see that tree-based allreduce has the edge over ring-based allreduce accuracy wise.
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(a) Train accuracy

(b) Train time

Figure 13: Training accuracy and time using different topologies.

This difference, although, isn’t large. Time wise, we can see that the ring based approach
has the edge over the tree-based allreduce. It is also important to note that the fault tolerant
mechanisms employed on the tree-based allreduce add a time penalty.
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7.4 results with failures

In this section, we present the results gathered from testing the fault tolerant tree topology
in an environment with link failures. For demonstration purposes, we assume that the links
fail between the fifth and the tenth training iteration. Figures 14, 15, 16 and 17 show the
results.

(a) Time per iteration with a 500 millisecond timeout

(b) Time per iteration with a 1 second timeout

Figure 14: Time per iteration with a fault tolerant tree with 3 nodes
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(a) Time per iteration with a 500 millisecond timeout

(b) Time per iteration with a 1 second timeout

Figure 15: Time per iteration with a fault tolerant tree with 7 nodes
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(a) Time per iteration with a 500 millisecond timeout

(b) Time per iteration with a 1 second timeout

Figure 16: Time per iteration with a fault tolerant tree with 15 nodes
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(a) Time per iteration with a 500 millisecond timeout

(b) Time per iteration with a 1 second timeout

Figure 17: Time per iteration with a fault tolerant tree with 31 nodes
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7.5 summary

In this Chapter, we analyzed the performance of the fault tolerant tree algorithm and
compared it to its competitors presented in Chapters 4 and 5. We also presented the cost
that a link failure introduces in the system.
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C O N C L U S I O N S A N D F U T U R E W O R K

This work presented a novel distributed fault tolerant neural network training technique.
The prototype was based on the TensorFlow framework and compared with multiple well-
studied distribution techniques. We see potential on our approach, as it presents good
performance in the tested environments.

Future works should focus on implementing this approach using the TensorFlow strategy
API, as it will potentially improve the performance of the fault tolerant tree topology and
facilitate its distribution on the TensorFlow ecosystem. Future work should also aim to
improve the performance of the algorithm by implementing adaptative timeouts instead of
static timeouts. This improvement could greatly reduce the training time when a failure
occurs in the system.
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Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

[2] Imad A Basheer and Maha Hajmeer. Artificial neural networks: fundamentals, comput-
ing, design, and application. Journal of microbiological methods, 43(1):3–31, 2000.

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
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