
Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Pedro Santos Monteiro

A Meta-Learning Approach for
Selecting Machine Learning Algorithms

May 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Pedro Santos Monteiro

A Meta-Learning Approach for
Selecting Machine Learning Algorithms

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Doutor João M. Fernandes
Professor Doutor Francisco J. Duarte

May 2020

A G R A D E C I M E N T O S

O trabalho realizado para esta dissertação não estaria concluı́do sem o contributo signi-
ficativo dos meus orientadores, Professor Doutor João M. Fernandes e Professor Doutor
Francisco J. Duarte aos quais agradeço pelas sugestões, correções e pela, igualmente impor-
tante, confiança demonstrada.
À empresa Bosch Car Multimédia pela oportunidade, por todo o auxı́lio e a experiência
transmitida. Em especial, um forte agradecimento a toda a equipa de logı́stica que me acol-
heu.
Aos meus pais e à minha irmã, pela minha educação e acima de tudo pelo amor e apoio
incondicional.
À Sara pela paciência, amparo, incentivo e inspiração.
O meu profundo e sentido agradecimento a todos os amigos e colegas que, mesmo não
citados nesta lista de agradecimentos, contribuı́ram de forma direta ou indireta não só para
a concretização desta dissertação, mas também para o meu crescimento pessoal e profis-
sional.

A todos, o meu sincero obrigado.

i

A B S T R A C T

One of the major challenges in Machine Learning is to investigate the capabilities and lim-
itations of the existing algorithms to identify when one algorithm is more adequate than
another to solve particular problems. Traditional approaches to predicting the performance
of algorithms often involve costly trial-and-error procedures or expert knowledge, which is
not always straightforward to acquire. Thus, the main goal of this dissertation is to support
beginners or even experienced data scientists by automatically indicating which classifica-
tion algorithm is most suitable for their datasets.
This dissertation proposes the use of Meta-Learning as a possible solution to the above-
mentioned problem. In this respect, we introduced a novel framework for the automatic
generation of meta-datasets. Taking advantage of the developed framework, several clas-
sification datasets from public sources were used. The result is the meta-dataset for the
experiment of this research project.
Concerning the goal of forecasting the best model for a classification dataset, two different
solutions are presented: the first toward binary classification and the second on multiclass
classification. A variety of Machine Learning algorithms are tested and compared through
cross-validation.
The experiment confirms the feasibility of applying Meta-Learning to select the algorithm
that is expected to obtain the best performance for classification problems.

Keywords: Machine Learning; Meta-Learning; Metadata; Machine Learning algorithms selection; Classifica-

tion; Data Mining.

iii

R E S U M O

Um dos principais desafios do Machine Learning passa por investigar os recursos e as
limitações dos algoritmos existentes para identificar quando é que um algoritmo é mais
adequado do que outro para resolver um determinado problema. Por norma, as aborda-
gens tradicionais envolvem procedimentos de tentativa e erro, que requerem muito tempo
ou conhecimento especializado, o que nem sempre é fácil de adquirir. Assim, a presente
dissertação pretende auxiliar iniciantes, indivı́duos que não são cientistas de dados e até
cientistas de dados experientes, indicando automaticamente qual o algoritmo que é mais
vantajoso para os seus conjuntos de dados de classificação.
O presente trabalho propõe a utilização de Meta-Learning como uma possı́vel solução para
o problema acima mencionado. Numa primeira etapa é apresentada uma Framework para
extração automática de meta-caracterı́sticas informativas. Tirando recurso da Framework de-
senvolvida, foram utilizados vários conjuntos de dados de classificação de fontes públicas,
gerando assim o meta conjunto de dados para o experimento desta dissertação.
Relativamente à meta previsão do melhor modelo a utilizar, foram abordadas duas soluções:
uma primeira focada em classificação binária e a segunda em classificação com múltiplas
classes. Em ambas foram testados e comparados vários algoritmos de Machine Learning
através de validação cruzada.
O experimento confirmou a viabilidade da aplicação de Meta-Learning para a seleção de
algoritmos com melhor desempenho em problemas de classificação.

Palavras-chave: Machine Learning; Meta-Learning; Metadados; Seleção de Algoritmos; Problemas de classificação;

Análise de Dados.

v

C O N T E N T S

1 introduction 1

1.1 Framework and Motivations 1

1.2 Objectives 2

1.3 Dissertation Outline 2

i state of the art 5

2 data mining 7

2.1 Introductory Remarks 7

2.2 Knowledge Discovery Process Models 8

2.2.1 Academic Research Models 8

2.2.2 Industrial Models 9

2.2.3 Hybrid Models 11

2.3 Concluding Remarks 13

3 machine learning algorithms 15

3.1 Introductory Remarks 15

3.2 Supervised Learning 16

3.2.1 Regression Versus Classification Problems 17

3.3 Unsupervised Learning 18

3.4 Semi-supervised learning 18

3.5 Reinforcement learning 19

3.6 Deep Learning 20

3.6.1 Shallow vs deep networks 20

3.7 Machine Learning Algorithms 21

3.7.1 Decision Trees 21

3.7.2 Artificial Neural Networks 21

3.7.3 Linear models 22

3.7.4 Probabilistic models 22

3.7.5 Clustering 23

3.7.6 Rule-Based Machine Learning 24

3.8 Evaluation of Machine Learning Algorithms 25

3.8.1 Cross-validation 25

3.8.2 Metrics For Classification Model 25

3.9 Concluding Remarks 28

4 meta-learning for algorithm recommendation 29

vii

viii Contents

4.1 Introductory Remarks 29

4.2 Meta-learning Approaches 30

4.2.1 Meta-data based algorithm recommendation (ranking) 30

4.2.2 Ensemble Learning 30

4.2.3 Inductive Transfer 31

4.3 Theoretical Considerations 31

4.4 Algorithm Recommendation 32

4.5 Meta-features 33

4.6 Concluding Remarks 34

ii contribution 35

5 meta-dataset generator for machine learning algorithms recom-
mendation 37

5.1 Proposed Solution 37

5.2 Architecture 38

5.2.1 ETL Dataset Module 39

5.2.2 Meta Features Extractor Module 40

5.2.3 Machine Learning Module 41

5.2.4 Meta-Dataset Module 43

5.3 Experiment Setup and Results 43

5.3.1 Datasets 44

5.3.2 Algorithms analyses 45

5.4 Discussion 48

6 machine learning algorithm recommendation 49

6.1 Understanding the problem domain 49

6.1.1 Background information 49

6.1.2 Research goals 50

6.2 Understanding of the data 50

6.3 Preparation of the data 51

6.3.1 Synthetic Minority Over-sampling Technique (SMOTE) 52

6.3.2 Dimensionality Reduction 53

6.3.3 Overview of the considered datasets 54

6.4 Data Mining 55

6.4.1 Selecting Modelling Techniques 55

6.4.2 Building the Models 55

6.5 Evaluation of the Discovered Knowledge 56

6.5.1 Evaluation of the Binary Classifiers 56

6.5.2 Evaluation of the Multi-Class Classifiers 58

6.6 Discussion 60

Contents ix

7 conclusions and future directions 61

7.1 Research Limitations 61

7.2 Major Contributions 62

7.3 Future Work 63

a glossary of terms , abbreviations and acronyms 73

b support material 75

c additional results 81

L I S T O F F I G U R E S

Figure 1 Phases of the CRISP-DM reference model 10

Figure 2 The six-step KDP model 12

Figure 3 Artificial Intelligence is an umbrella term, encompassing machine
learning and deep learning 16

Figure 4 Semi-supervised learning 19

Figure 5 Shallow vs deep networks 20

Figure 6 Taxonomy of clustering approaches 23

Figure 7 Area Under the Receiver Operating Characteristics example 27

Figure 8 Generic meta-dataset generator architecture 39

Figure 9 KNIME workflow (Macro view) 40

Figure 10 Some aggregated meta-features of the 34 datasets 44

Figure 11 Average AUC results per algorithm over the 34 datasets 46

Figure 12 Average improvement of the algorithm performance (AUC) using
Gridsearch 47

Figure 13 Fit and predict computation time in seconds by algorithm 48

Figure 14 Output of the RFECV for the meta-dataset with y target1 and y target2 54

Figure 15 Boxplot of the meta-datasets results for the binary target for the bi-
nary target 57

Figure 16 Boxplot of the meta-datasets results for the multi-class target 59

xi

L I S T O F TA B L E S

Table 1 Instances with known labels (the corresponding correct outputs) 17

Table 2 Instances with a quantitative known labels 17

Table 3 Modelling algorithm classes vs model types 18

Table 4 Example database with four transactions and four items 24

Table 5 Sample train/test setting for binary functions over 3 boolean vari-
ables 31

Table 6 Example of a proposal meta-dataset 38

Table 7 Machine Learning algorithms implemented 41

Table 8 Example of One Hot Enconding 42

Table 9 Datasets used in this work 45

Table 10 Example of time and AUC ranking by 17 algorithms on the heart
disease dataset 52

Table 11 Meta-dataset class distribution for y target1 53

Table 12 Meta-dataset class distribution for y target2 53

Table 13 Overview of 8 considered datasets 54

Table 14 Top 5 worst algorithms performances for y target1 57

Table 15 Top 5 best algorithms performances for y target1 58

Table 16 Top 5 worst algorithms performances for y target2 59

Table 17 Top 5 best algorithms performances for y target2 59

Table 18 List of attributes from the meta-dataset generator 76

Table 19 List of attributes after the data preparation phase 77

Table 20 Overview of the implemented hyperparameter optimization 78

Table 21 Output of the RFECV by meta-dataset and attribute 79

Table 22 Complete performance evaluation for the meta-dataset with binary
target 82

Table 23 Complete performance evaluation for the meta-dataset with binary
target 83

xiii

1

I N T R O D U C T I O N

1.1 framework and motivations

Just fifty years ago, Machine Learning (ML) was seen as science fiction, now ML is revolu-
tionizing our society by transforming data into useful predictions and information.

With the increase in the processor speed and memory size, ML has become quite popular,
as a result of many algorithms that use mathematical or statistical analysis to learn, draw
or infer data. For that reason, ML Algorithms have been categorized based on the purpose
for which they are designed [57].

This number continues to increase as evidenced by the number of scientific publications
that propose variations or combinations of ML algorithms. Numerous significant commer-
cial applications have already appeared, including recommendation engines, speech and
handwriting recognition systems, content identification, image classification/retrieval, au-
tomatic captioning, spam filters, and demand forecasting. [48]

However, the ML field does not have a clear classification scheme for its algorithms,
mainly because of the high number of approaches and the variations proposed in the litera-
ture [51]. A conventional question at the beginning of a project, when facing a wide variety
of ML algorithms, is ”which algorithm should I use?” The answer to this question can be
very difficult to obtain, because it depends on many factors, such as:

• The purpose for which the data is being used.

• The urgency of the task.

• The size, quality, and nature of data.

• The available computational time.

Even an experienced data scientist may have doubts and difficulties in telling which
algorithm will perform the best before trying different algorithms. Hence, it is an important
task to decide for any given set of data which method produces the best results. Selecting
the best approach can be one of the most challenging parts of performing statistical learning
in practice [38].

1

2 Chapter 1. introduction

Meta-Learning for algorithm selection arises in this context as an effective solution, ca-
pable of automatically predicting an algorithm’s performance, thus assisting users in the
choice of the most adequate techniques for dealing with the problems at hand [19].

This dissertation focuses on using Meta-Learning to address the automatic selection of
algorithms via features extracted from the set of problems to be solved.

1.2 objectives

With the purpose of tackling the problem stated before, this dissertation intends to:

• Devise a recent in-depth review of the scientific literature of data mining methodolo-
gies, ML algorithms and meta-learning.

• Analyze and study the influence of meta-learning in the algorithm selection problem.

• Develop a generic meta-dataset generator framework for meta-learning-based algo-
rithm ranking. The framework aims to significantly improve the predictive perfor-
mances of different meta-learners.

• Apply and evaluate the application of ML algorithms to select the most appropriate
algorithm given a new unseen meta-dataset instance.

• Develop insight of how different metrics and different evaluation criterion affect the
performance of the different used algorithms.

Thus, the main goal of this dissertation is to support beginners or even experienced data
scientists by automatically indicating which classification algorithm is most suitable for
their datasets.

1.3 dissertation outline

This research project is composed of two main Parts.
The First Part introduces well known concepts related to Data Mining (Chapter 2), ML al-

gorithms (Chapter 3) and Meta-Learning (Chapter 4), taken from the literature. In Chapter
4, a brief explanation regarding the application of meta-learning for the algorithm recom-
mendation is also provided. Throughout the First Part, some scientific literature references
and examples are given.

The Second Part uses the theoretical background raised in the First Part to design and
implement the Meta-Dataset Generator (Chapter 5). We showcase the application of the
Meta-Dataset Generator for the binary classification algorithms selection, using different
algorithms and different performance metrics.

1.3. Dissertation Outline 3

The following Chapter - Machine Learning Algorithm Recommendation - goes through
the six steps of the application of the Knowledge Discovery Process model to propose a
solution to the main topic of this research, the automatic algorithm selection.

This dissertation ends with a section devoted to conclusions and some suggestions for
future work.

Part I

S TAT E O F T H E A RT

2

D ATA M I N I N G

2.1 introductory remarks

As mentioned before, our society is overwhelmed with huge amounts of collected data.
We are living in the data age, data collecting and storing is a regular practice for most of
today’s companies and business. The term Data Mining (DM) is often used as a synonym
for Knowledge Discovery from Data or KDD, which is a process that can provide new, in-
teresting, non-trivial, hidden and potentially useful knowledge about collected data. The seminal
book ”Data Mining Concepts and Techniques” [33] establishes that DM is technically only
a small part of the whole search-for-knowledge process and the process itself contains the
following parts:

• Data cleaning (to remove noise and inconsistent data)

• Data integration (where multiple data sources may be combined)

• Data selection (where data relevant to the analysis task are retrieved from the database)

• Data transformation (where data are transformed and consolidated into forms appro-
priate for mining by performing summary or aggregation operations)

• Data mining (an essential process where intelligent methods are applied to extract
data patterns)

• Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on interestingness measures)

• Knowledge presentation (where visualization and knowledge representation tech-
niques are used to present mined knowledge to users)

The first four steps are often referred to as data preprocessing.

7

8 Chapter 2. data mining

2.2 knowledge discovery process models

There are no known models that focus only on the selection of ML algorithms, but there
are some methodologies for analytics, DM, and data science projects. In [16] the authors
describe the knowledge discovery process (also called knowledge discovery in databases)
as a nontrivial process of identifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data. The process generalizes to non-database sources of data,
although it emphasizes databases as the primary source of data. To understand what leads
to the choice of ML algorithms is essential to comprehend these methodologies/models.
Although the models usually emphasize independence from specific applications and tools,
they can be broadly divided into those that take into account industrial issues and those
that do not. However, the academic models, which are usually not concerned with indus-
trial issues, can be made applicable relatively easily in the industrial setting and vice versa.
The discussion about the models was restricted to the models that have been popularized
in the literature and have been used in real knowledge discovery projects.

2.2.1 Academic Research Models

The efforts to establish a KDP model were initiated in academia. In the mid-1990s, when
the DM field was being shaped, researchers started defining multi-step procedures to guide
users of DM tools in the complex knowledge discovery world. The main emphasis was to
provide a sequence of activities that would help to execute a KDP in an arbitrary domain.
The two-process models developed in 1996 and 1998 are the nine-step model [25]. The nine
parts can be defined as:

1. Developing and understanding the application domain. This step includes learning the
relevant prior knowledge and the goals of the end-user of the discovered knowledge.

2. Creating a target data set. Here the data miner selects a subset of variables (attributes)
and data points (examples) that will be used to perform discovery tasks. This step
usually includes querying the existing data to select the desired subset.

3. Data cleaning and preprocessing. This step consists of removing outliers, dealing with
noise and missing values in the data, and accounting for time sequence information
and known changes.

4. Data reduction and projection. This step consists of finding useful attributes by applying
dimension reduction and transformation methods and finding invariant representa-
tion of the data.

2.2. Knowledge Discovery Process Models 9

5. Choosing the data mining task. In this step, the data scientist matches the goals de-
fined in the first step with a particular DM method, such as classification, regression,
clustering, etc... (see chapter 3).

6. Choosing the data mining algorithm. In this step, the data scientist selects methods
to search for patterns in the data and decides which models and parameters of the
methods used may be appropriate.

7. Data mining. This step generates patterns in a particular representational form, such
as classification rules, decision trees, regression models, trends, etc (see chapter 3).

8. Interpreting mined patterns. In this step, the data analyst performs some visualization
of the extracted patterns and models.

9. Consolidating discovered knowledge. The final step consists of incorporating the discov-
ered knowledge into the performance system, documenting and reporting it to the
interested parties. This step may also include checking and resolving potential con-
flicts with previously believed knowledge.

The number of loops between any two steps is usually executed, but they give no specific
details. The model provides a detailed technical description for data analysis but lacks a
description of business aspects. This model has become a cornerstone of later models [25].
Thus, we can infer that the process is iterative [16].

2.2.2 Industrial Models

Industrial models quickly followed academic efforts. Several different approaches were
undertaken, ranging from models proposed by individuals with extensive industrial expe-
rience to models proposed by large industrial consortiums. The most representative indus-
trial model is the industrial six-step CRISP-DM model, developed by a large consortium of
European companies, aimed to create a standard, non-proprietary and free process model
for the development of DM [14; 16].

Hierarchical breakdown

The CRISP-DM methodology is described in terms of a hierarchical process model, consist-
ing of sets of tasks described at four levels of abstraction (from general to specific): phase,
generic task, specialized task, and process instance.

The CRISP-DM reference model

CRISP-DM is divided into six phases, as shown in Figure 1. The sequence of the phases is
not rigid. Moving back and forth between different phases is always required. The outcome

10 Chapter 2. data mining

of each phase determines which phase, or particular task of a phase, has to be performed
next. The arrows indicate the most important and frequent dependencies between phases
[14].

Figure 1.: Phases of the CRISP-DM reference model (adapted from [14])

Business Understanding

This initial phase focuses on understanding the project objectives and requirements from a
business perspective, then converting this knowledge into a data mining problem definition
and a preliminary plan designed to achieve the objectives.

Data Understanding

The data understanding phase starts with initial data collection and proceeds with activities
that enable the data analyst to become familiar with the data, such as, identifying data qual-
ity problems, discovering first insights into the data, and/or detecting interesting subsets
to form hypotheses regarding hidden information.

Data Preparation

This stage encompasses all the activities necessary to construct the dataset or datasets, which
will be used in the modeling phase (including ML algorithms). Tasks include table, record,
and attribute selection, as well as transformation and cleaning of data for modeling tools.

2.2. Knowledge Discovery Process Models 11

Modeling

In this phase, various modeling techniques are selected and applied, and their parameters
are calibrated to optimal values. Typically, there are several techniques (including ML
algorithms) for the same DM problem type. Some techniques have specific requirements
in the form of data. Consequently, stepping back to the data preparation phase is often
needed.

Evaluation

The Evaluation stage consists of evaluating model results based on business metrics created
at the beginning of the project and then refining the model to prepare it for deployment.
A key objective of this phase is to determine if there is some important business issue that
has not been sufficiently considered. At the end of this phase, a decision on the use of the
DM results should be reached.

Deployment

The creation of the model is generally not the end of the project. Even if the purpose of the
model is to increase knowledge of the data, the knowledge gained will need to be organized
and presented in a way that the customer can use it. Depending on the requirements, the
deployment phase can be as simple as generating a report or as complex as implementing
a repeatable DM process.

2.2.3 Hybrid Models

The development of academic and industrial models has led to the development of hybrid
models. The most known model is a six-step Knowledge Discovery Process (KDP) model
(see Figure 2) it was developed based on the CRISP-DM model by adopting it to academic
research [16].

12 Chapter 2. data mining

Understanding of the
Problem

Understanding of the
Data

Preparation of the Data

Data Mining

Evaluation of the
Discovered Knowledge

Use of the Discovered
Knowledge

Input Data
(database, imagens, video, semi-

structured data, etc.)

Knowledge
(patterns, rules, clusters,

classification, associations, etc.)

Extend knowledge to other
domains

Figure 2.: The six-step KDP model 1

This hybrid model consists of six steps, which are outlined as follows:

1. Understanding of the problem domain. This initial phase focuses on working closely with
domain experts to define the problem and determine the project goals, identifying key
people, and learning about current solutions to the problem. It also involves learning
domain-specific terminology. A description of the problem, including its restrictions,
is prepared. Finally, project goals are translated into DM goals, and the initial selection
of DM tools to be used later.

2. Understanding of the data. This phase includes collecting sample data and deciding
which data, including format and size, will be needed. Background knowledge can be
used to guide these efforts. Data are checked for completeness, redundancy, missing
values, plausibility of attribute values, etc. Finally, the step includes verification of the
usefulness of the data concerning the DM goals.

1 This image was adapted from [16]

2.3. Concluding Remarks 13

3. Preparation of the data. Mining methods in the subsequent step. It involves sampling,
running correlation and significance tests, and data cleaning, which includes check-
ing the completeness of data records, removing or correcting for noise and missing
values, etc. The cleaned data may be further processed by feature selection and ex-
traction algorithms (to reduce dimensionality), by derivation of new attributes, and
by summarization of data (data granularization). The results are data that meet the
specific input requirements for the DM tools selected in the first phase.

4. Data mining. In this phase are used various DM methods to derive knowledge from
preprocessed data.

5. Evaluation of the discovered knowledge. The evaluation phase includes understanding
the results, checking whether the discovered knowledge is novel and interesting, in-
terpretation the results by domain experts, and checking the impact of the discovered
knowledge. If the results do not go according to was expected, is necessary to return
to the first step.

6. Use of the discovered knowledge. This final step consists of planning where and how to
use the discovered knowledge. The application area in the current domain may be
extended to other domains.

The main differences between this approach, is providing more general, research-oriented
description of the steps, introducing several new explicit feedback mechanisms, and modifi-
cation of the last step, since in the hybrid model, the knowledge discovered for a particular
domain may be applied in other domains (see, e.g., [16] for more detailed information).

2.3 concluding remarks

KDP models were introduced and some literature was referenced (see, e.g., [25; 14; 16]).
These robust and well-proven methodologies provide a structured approach for planning a
Data Mining project.

All the methodologies presented in this chapter when it comes to the proper algorithm
selection only divides the problem into classes, for example, if it is a regression or a clas-
sification problem (explained in chapter 3), but the algorithm selection itself is completely
relegated to the experience of the data scientist or a trial and error task. At this point, it’s
known the lack of optimization on the algorithm selection phase (also called modeling),
and that highlights the goal of this dissertation, an improvement in the algorithm selection
area.

3

M A C H I N E L E A R N I N G A L G O R I T H M S

3.1 introductory remarks

Machine Learning (ML) is a sub-set of Artificial Intelligence (AI), which has been studied
since the late 1950s [53]. According to A. L. Samuel in his remarkable article published in
1959, ”Some Studies in Machine Learning Using the Game of Checkers” describes ML as a
field of computer science that gives computers the ability to learn without being explicitly
programmed [63]. More formally, ML is defined as follows: ”A computer program is said
to learn from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E”[75].

In the last years, ML resurfaced as a popular technology. In the ’90s and 2000s, the
internet transformed the way we live and do business, and in the process generated many
petabytes of data that contributes to this. Now ML algorithms are used in several areas
besides computer science, including business [4], advertising [18] and medicine [32].

Today, there are a large number of ML algorithms proposed in the literature. We can clas-
sify them based on the approach used for the learning process. There are some variations of
how to define the types of ML algorithms (e.g., [21]) but commonly they can be divided into
supervised learning, unsupervised learning, semi-supervised learning and reinforcement
learning [52; 66].

Deep learning is a subset of ML, and ML is a subset of AI, which is an umbrella term for
any computer program that does something smart.

15

16 Chapter 3. machine learning algorithms

Figure 3.: Artificial Intelligence is an umbrella term, encompassing machine learning and deep learn-
ing (adaption from [37])

Hereupon, in this dissertation, the focus will be only on ML and more precisely in Classi-
fication, which is a subclass of supervised learning. This Chapter intends to introduce and
describe some fundamental learning processes.

3.2 supervised learning

Supervised learning [47] is the search for algorithms that reason from externally supplied
instances to produce general hypotheses, which then make predictions about future in-
stances. In other words, the goal of supervised learning is to build a concise model of the
distribution of class labels in terms of predictor features. The resulting classifier is then
used to assign class labels to the testing instances where the values of the predictor features
are known, but the value of the class label is unknown. Every instance in any dataset used
by ML algorithms is represented using the same set of features. The features may be con-
tinuous, categorical or binary. If instances are given with known labels (the corresponding
correct outputs) then the learning is called supervised (See table 1).

3.2. Supervised Learning 17

Dataset

case Feature 1 Feature 2 ... Feature n Class

1 x xxx xx True
2 x xxx xx False
3 x xxx xx True
... ...

Table 1.: Instances with known labels (the corresponding correct outputs)

Supervised learning is used in classification(see table 1) and regression (see table 2).

ID
Years of Higher
Education (X)

Income
(Y)

1 4 80,000

2 5 91,500

3 0 42,000

...

N 2 100,000

Table 2.: Instances with a quantitative known labels

3.2.1 Regression Versus Classification Problems

Supervised learning problems can be further grouped into Regression and Classification
problems. Both problems have as goal the construction of a succinct model that can predict
the value of the dependent attribute from the attribute variables.

Variables can be characterized as either quantitative or qualitative (also known as cate-
gorical). Quantitative variables take on numerical values. Examples include a person’s age,
height, or income, the value of a house, and the price of a stock. In contrast, qualitative
variables take on values in one of K different classes, or categories. Examples of qualita-
tive variables include a person’s gender (male or female), the brand of product purchased
(brand A, B, or C), whether a person defaults on a debt (yes or no), or a cancer diagnosis
(Acute Myelogenous Leukemia, Acute Lymphoblastic Leukemia, or No Leukemia). The lit-
erature tend to refer to problems with a quantitative response as regression problems (see
Table 2), while those involving a qualitative response are often referred to as classification
problems (see Table 1). [38]

Some algorithms can be used for both classification and regression with small modifi-
cations, such as decision trees and artificial neural networks. Some algorithms cannot, or
cannot easily be used for both problem types, such as linear regression for regression pre-
dictive modeling and logistic regression for classification predictive modeling [84; 72]. Table

18 Chapter 3. machine learning algorithms

3 illustrates where some algorithms can applied.

Classification Regression

Decision trees Y Y1

Rule learning Y
Neural networks Y Y
Linear regression Y
Logistic regression Y
Support Vector Machine Y Y

Table 3.: Modelling algorithm classes vs model types (Adaption from [30])

3.3 unsupervised learning

Unsupervised learning [38] in a statistical view describes the situation in which for every
observation i = 1,...,n, it can be observed a vector of measurements xi but no associated
response yi. It is not possible to fit a linear regression model, since there is no response
variable to predict. The situation is referred to as unsupervised because we lack a response
variable that can supervise our analysis. In unsupervised learning [12], ML algorithms do
not have a training set. They are presented with some data about the real world and have to
learn from that data on their own. Unsupervised learning algorithms are mostly focused on
finding hidden patterns in data. For example, suppose that an ML algorithm has access to
user profile information in a social network. By using an unsupervised learning approach,
the algorithm can separate users into personality categories, allowing the social network
company to target advertising more directly at specific groups of users.

Unsupervised learning problems can be further grouped into clustering and association
problems [9], presented in 3.7.5 and 3.7.6, respectively.

3.4 semi-supervised learning

ML algorithms can also be classified as semi-supervised learning. Semi-supervised learning
refers to the use of both labeled and unlabeled data for training. It contrasts supervised
learning (data all labeled) or unsupervised learning (data all unlabeled), see Figure 4. The
goal is to learn a predictor that predicts future test data better than the predictor learned
from the labeled training data alone. This approach is motivated by the fact that labeled
data is often costly to generate, whereas unlabeled data is generally not. It can be concluded

1 Not all algorithms support.

3.5. Reinforcement learning 19

that semi-supervised learning is motivated by its practical value in learning, faster, better,
and cheaper. Therefore, being capable to utilize the surplus of unlabeled data is desirable.

Figure 4.: Semi-supervised learning: The black boxes represent unlabeled data [50]

Semi-supervised learning could be classified into three groups, classification, clustering
and regression.

Furthermore, common semi-supervised learning methods include generative models,
semi-supervised support vector machines, graph Laplacian based methods, co-training, and
multiview learning. These methods make different assumptions on the link between the
unlabeled data distribution and the classification function. Such assumptions are equiva-
lent to prior domain knowledge, and the success of semi-supervised learning depends to a
large degree on the validity of the assumptions [13].

3.5 reinforcement learning

Reinforcement learning [77] occurs when algorithms learn based on external feedback given
either by a thinking entity or the environment.

Supervised or unsupervised learning methods learn to encode/predict/classify patterns,
but they do not learn to act or make decisions. Reinforcement learning does this by:

1. Observing the real-time responses of the environment when random or non-optimal
actions are taken

2. Learning, either implicitly or explicitly, the cost associated with the given state (and
possibly the action).

20 Chapter 3. machine learning algorithms

For example, consider an ML algorithm that plays games against an opponent. Moves that
lead to victories (positive feedback) in the game should be learned and repeated, whereas
moves that lead to losses (negative feedback) are avoided [48].

3.6 deep learning

Deep learning is a key technology behind driverless cars, enabling them to recognize a
stop sign, or to distinguish a pedestrian from a lamppost. It is the key to voice control in
consumer devices like phones, tablets, TVs, and hands-free speakers. In deep learning, a
computer model learns to perform classification tasks directly from images, text, or sound.
Models are trained by using a large set of labeled data and neural network architectures that
contain many layers. Most deep learning methods use neural network architectures, which
is why deep learning models are often referred to as deep neural networks. Traditional
neural networks only contain 2-3 hidden layers, while deep networks can have as many as
100 layers [68; 48].

3.6.1 Shallow vs deep networks

Deep networks can be distinguish from shallow by the number of hidden layers, shallow
networks have one hidden layer that have nodes that perform a transformation of their
inputs and sums them up, whereas deep networks have at least four or more and may have
mixtures of types of layers (see figure 5) [48].

Figure 5.: Shallow vs deep networks [48]

3.7. Machine Learning Algorithms 21

3.7 machine learning algorithms

In this section we will be looking at some ML model types including popular algorithm
implementations meant for classification. The types are chosen because they are frequently
referenced in literature and cover a wide area of applications. We will outline the general
properties of each model type and provide (illustrative) examples where necessary.

3.7.1 Decision Trees

Tree models, also known as decision trees, are a popular method of choice for modeling
data. The classification problem is solved by asking a series of questions about the attributes
of the observations. Each time an answer is received, a follow-up question is asked until
a conclusion about the class of the observation’s target attribute is reached. The series
of questions and their possible answers are organised in the form of a decision tree. A
decision tree is a hierarchical structure comprising nodes and directed edges. The tree has
three types of nodes:

• Root node: node that has no incoming edges and two or more outgoing edges.

• Internal nodes: nodes that have exactly one incoming edge and two or more outgoing
edges.

• Terminal nodes: nodes that have no outgoing edge

Each terminal node in a decision tree is assigned to a class label. Each non-terminal node
(root node or internal nodes) contains attribute test conditions to divide observations that
have different attributes. The classification of an observation from the test set is straightfor-
ward once the decision tree is constructed [47].

3.7.2 Artificial Neural Networks

Artificial neural network (ANN) is a mathematical model for predicting system perfor-
mance (i.e., system output) inspired by the structure and function of human biological
neural networks. The ANN is developed and derived to have a function similar to the
human brain by memorizing and learning various tasks and behaving accordingly. It is
trained to predict specific behavior and to remember that behavior in the future like the
human brain does. Its architecture also is similar to human neuron layers in the brain as
far as functionality and inter-neuron connection [1].
A ANN comprises simple processing units called as neurons, directed weighted connection
between the neurons, and then mathematical function is applied to determine the activa-
tion of the neuron. Neuron takes input data and performs operations on it. The outcome

22 Chapter 3. machine learning algorithms

of these operations, called activation, is passed onto the other neurons. The desired output
can be obtained by adjusting the weights. More the weight of the neuron, stronger will be
the input that has to be multiplied by it. ANN are suitable for the problems in which the so-
lution requires a knowledge which is difficult to specify but contains enough observations
[85].

3.7.3 Linear models

A popular class of procedures for solving classification tasks are based on linear models.
Linear models approach the learning task from a geometric perspective reasoning about
data as points in a (Cartesian) coordinate system. Modeling techniques apply geometric
concepts such as lines and planes (2-D surface) to structure points in coordinate spaces and
in turn enable the classification of these points [71]. Logistic Regression [84], SVM [17]
and Discriminant Analysis [78] are some popular implementations of the linear model type
known for their high accuracy on classification problems.

A distinction can be made between Binary Logistic Regression and Multinomial Logistic
Regression. The Binary Logistic Regression can predict a binary variable (0 or 1). The
Multinomial Logistic Regression is an extension of Binary Logistic Regression. This model
is able to predict more than two discrete categorical outcomes. They both use maximum
likelihood estimation to find the parameters that best fit the data [20].

The formulation of Support Vector Machine (SVM) is proposed by Vapnik et al. in 1990s
which is based on statistical learning theory [17]. Initially, SVM was developed to solve the
two-class classification problem but later it was formulated and extended to solve multiclass
classification problems [34]. SVM divides the data samples of two classes by determining a
hyper-plane in input space that maximizes the separation between them.

3.7.4 Probabilistic models

Probabilistic classification models determine class membership as a function of the proba-
bilities that specific feature values belong to a certain class [26], this is assessed by applying
Bayes’ theorem. In short Bayes’ theorem describes how to determine the probability of an
event given the conditions related to that event. This particular perspective on ML revolves
around the reduction of uncertainty. Modeling initiates with maximum uncertainty about
the prior probability of an instance belonging to a certain class. The act of learning is per-
formed by adjusting the probability estimates after screening each instance and its class
information, thus leading to reduced uncertainty about class membership [3].

The Naive Bayes modeling technique follows the principles as explained above. The al-
gorithm relies on the assumption that features are independent of each other. For instance,

3.7. Machine Learning Algorithms 23

if we take features like temperature, humidity and wind speed to predict the rain we would
assume that all those three features independently contribute to the probability of upcom-
ing rain. Even if these features have some relation we would naively tell that they are not.
This is one of the reasons why the algorithm is called ”Naive”.

3.7.5 Clustering

Clustering [38] refers to a very broad set of techniques for finding subgroups, or clusters.
A clustering problem is where you want to discover the inherent groupings in the data.

For example, in a market segmentation study, we might observe multiple characteristics
(variables) for potential customers, such as zip code, family income, and shopping habits.
We might believe that the customers fall into different groups, such as big spenders versus
low spenders. If the information about each customer’s spending patterns is not available,
we do not know whether each potential customer is a big spender or not. Therefore, we can
try to cluster the customers based on the variables measured in order to identify distinct
groups of potential customers. Identifying such groups can be of interest because it might
be that the groups differ concerning some property of interest, such as spending habits.

There are several clustering approaches, in ”A review of clustering techniques and devel-
opments” it is stated that the main reason is due to the fact that there is no such precise
definition to the notion of ”cluster” and that is why, different clustering approaches have
been proposed, each of which uses a different inclusion principle [64]. Fraley and Raftery
suggested dividing the clustering approaches into two different groups: hierarchical and
partitioning techniques [27] (see Figure 3.7.5).

Figure 6.: Taxonomy of clustering approaches [27] 2

24 Chapter 3. machine learning algorithms

3.7.6 Rule-Based Machine Learning

Rule-based Machine Learning is a term in computer science intended to encompass any
ML method that identifies, learns, or evolves ”rules” to store, manipulate or apply. The
defining characteristic of a rule-based machine learner is the identification and utilization
of a set of relational rules that collectively represent the knowledge captured by the system
[81].

Association Rules Learning

An association rule has the form X → Y , where X and Y are item sets, which are subsets
of I, the set of all items in the domain of investigation, consisting of a set of transactions.

In the standard ML terminology, transactions correspond to training examples (records
in a database, see table 4), an item is a binary feature, and item sets are conjunctions of
features. [43].

transaction ID bread beer milk butter

1 1 1 0 0

2 0 1 0 1

3 1 0 1 1

4 0 1 0 0

Table 4.: Example database with four transactions and four items

In order to illustrate the concept, let’s use a small example from a supermarket domain.
The set of items is I = bread, beer, milk, butter and Table 4 shows a small database containing
the items, where, in each entry the value 1 means the presence of the items in the corre-
sponding transaction, and the value 0 represents not being present in that transaction.

An example rule for the supermarket could be:

{milk, butter} ⇒ {bread} (1)

That means, if milk and butter are bought, costumers also buy milk. Association rule
Learning finds all rules in the database that satisfy some minimum support and minimum
confidence constraints.

2 This image was adapted from [64]

3.8. Evaluation of Machine Learning Algorithms 25

3.8 evaluation of machine learning algorithms

A crucial part in ML is the problem of evaluating the performance of a ML model, which
is an integral component of any data science project. Model evaluation aims to estimate
the generalization accuracy of a model on future (unseen/out-of-sample) data. This section
reviews the cross validation method and some ML evaluation metrics for classification
problems, which is the main focus of this dissertation.

3.8.1 Cross-validation

The evaluation of classification tasks is normally done by splitting the data set into a train-
ing data set and a test data set. The ML algorithm is then trained on the first one, while
the test data set is used to calculate performance indicators in order to evaluate the qual-
ity of the algorithm. A common problem for ML algorithms lies in the access to limited
test and training data. Therefore, overfitting can be a serious problem when evaluating
these programs. In order to address this problem, a common approach is, to use an X-Fold
Cross Validation. Cross Validation [46] describes the process of splitting the whole data set
into X parts and using each one of them sequentially as the test data set while combining
the others to the training data. Cross-validation has been used widely in model selection,
model/algorithm comparison and feature selection [11; 35].

3.8.2 Metrics For Classification Model

There is no perfect metric for every subject concerning evaluation of ML algorithms, since
everyone has its flaws and advantages. The most important metrics for evaluating the
performance of a ML program are the following:

• The precision value, also called positive prediction value, is defined as the relative
amount of correctly as true classified instances among all as true classified instances
[58].

Precision =
True Positive

True Positive + False Positive
(2)

• The recall value, also called sensitivity is defined as the relative amount of as true
classified instances among all true instances [58].

Recall =
True Positive

True Positive + False Negative
(3)

26 Chapter 3. machine learning algorithms

• The F-Measure, also called F-score or F1 Score aims to combine the statements of
recall and precision by using the harmonic mean between the two:

F1 = 2× precision× recall
precision + recall

(4)

• The confusion matrix, also called contingency table, is one of the most intuitive and
easiest metrics used for finding the correctness and accuracy of the model. It is used
for Classification problem where the output can be of two or more types of classes.
On the other hand, the main disadvantage of a confusion matrix is that it requires
human interpretation [58].

actual
value

Prediction outcome

p n total

p′
True
Positive

False
Negative

P′

n′
False
Positive

True
Negative

N′

total P N

• The accuracy in classification problems is the number of correct predictions made by
the model over all kinds predictions made.

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative
(5)

Accuracy is a good measure when the target variable classes in the data are nearly
balanced. But if the data is unbalanced, it should not be used. For example, let’s
consider that there are 98% samples of class A and 2% samples of class B in the
training set. The model can easily get 98% training accuracy by simply predicting
every training sample belonging to class A, and that can lead to a false sense of
achieving high accuracy. The real problem arises, when the cost of misclassification
of the minor class samples are very high. For example, if a data scientist deals with
a rare but fatal disease, the cost of failing to diagnose the disease of a sick person is
much higher than the cost of sending a healthy person to more tests.

3.8. Evaluation of Machine Learning Algorithms 27

• AUC (Area Under The Curve) - ROC (Receiver Operating Characteristics) curve,
also written as AUROC (Area Under the Receiver Operating Characteristics), is one
of the most important evaluation metrics for checking any classification model’s per-
formance. AUC - ROC curve is a performance measurement for classification prob-
lems at various thresholds settings. ROC is a probability curve and AUC represents
degree or measure of separability, it tells how much model is capable of distinguish-
ing between classes [24]. Higher the AUC, better the model is at predicting 0s as 0s
and 1s as 1s. The better the classification algorithm is, the higher the area under the
ROC curve. The score ranges from 0.5 to 1, and the score being 1 is the ideal case
where True Positive Rate (TPR) is 1 and Flase Positive Rate (FPR) is 0, which means
we correctly classify all positives and negatives.

Figure 7.: Area Under the Receiver Operating Characteristics [54].

28 Chapter 3. machine learning algorithms

3.9 concluding remarks

In this chapter, the main concepts related with ML were introduced. Although the multiple
variations of how to define the types of ML algorithms, in this dissertation we present the
most common one, which divided into categories according to their purpose. The main pre-
sented categories are supervised learning, unsupervised Learning, semi-supervised Learn-
ing and reinforcement Learning. For each one of them popular algorithms and major prop-
erties were recalled and some literature was referenced.

We highlighted the large number of ML algorithms proposed in the literature and some
metrics to evaluate classification algorithms were presented. Since many classifiers exist, all
containing a number of parameters that potentially influence predictive performance, this is
a challenging problem. Performing a cross-validation evaluation procedure on all possible
combinations of classifiers and parameters (e.g.,using a grid search) is typically infeasible,
as this would take too much time. In the next chapter, Meta-Learning as a solution to the
algorithm selection problem is discussed.

4

M E TA - L E A R N I N G F O R A L G O R I T H M R E C O M M E N D AT I O N

4.1 introductory remarks

In the previous chapter 2, it was discussed that user interactivity in the KDD process is,
to some extent, necessary to achieve the required results. The main issue regarding data
mining is a huge variety of different evolving techniques and methods. Therefore, it’s prac-
tically impossible at the beginning of the analysis to know what is the ideal algorithm to
achieve the desired results. Thus, the analysts must constantly reconfigure and alter the
algorithms according to the obtained results. This is often very much a trial and error
based procedure. To avoid these drawbacks, researchers have investigated the use of meta-
learning to select the best recommendation algorithms in different scopes. Such studies
allow understanding the relationships between data characteristics and the relative perfor-
mance of different algorithms, which can be used to select the best algorithm(s) for a new
problem.[19]

Meta-learning is concerned with discovering patterns in data and understanding the
effect on the behavior of algorithms. It has been extensively explored for algorithm selection
[61; 74]. Successful contributions can be seen in StatLog [45], METAL [7], and NOEMON
[42] projects, which were large-scale European funded projects.

The algorithm selection task can be viewed as a learning problem itself, by casting it as a
predictive task. For such, it uses a meta-dataset, where each meta-example corresponds to
a dataset. For each meta-example, the predictive features are characteristics (meta-features)
extracted from the corresponding dataset and the targets are the performance (meta-labels)
of a set of algorithms when they are applied to the dataset.

According to [6], there are several basic applications of meta-learning:

• Selecting and recommending ML algorithms.

• Employing meta-learning in KDD.

• Employing meta-learning to combine base-level ML systems.

• Control of the learning process and bias management.

29

30 Chapter 4. meta-learning for algorithm recommendation

• Transfer of meta-knowledge across domains

Therefore, in this chapter, we will describe several representative contributions that are
related to meta-learning in general. The list is eclectic and by no means exhaustive. Hence,
in this chapter is discussed these contributions with an emphasis on the degree of relevance
to the work presented in this dissertation.

4.2 meta-learning approaches

Meta-Learning is indeed a rich field, usually explained as ”learning to learn”, different
researchers hold different views of exactly what the term “meta-learning” means. In the
novel ”A perspective view and survey of meta-learning” has given a comprehensive review on
the different perspectives on meta-learning. As a summary, will be listed some of the views
and approaches to meta-learning [80].

4.2.1 Meta-data based algorithm recommendation (ranking)

In this procedure, a meta-dataset is created by using various features of a given dataset
collection, like for example, the statistical information or the information-theoretic charac-
teristics, such characteristics are termed as ”meta-features”. Another type of meta-feature
is called ”landmarkers” [56], in which some properties (e.g., predictive performance) of a
model learned by an algorithm are used as meta-features. To be efficient, the landmarker-
based features need to be computed relatively quickly otherwise one could simply run
the candidate algorithms on the dataset. Given a meta-dataset, another algorithm, usu-
ally called a metalearner, learns a model using the given meta-features. With a new dataset,
firstly the meta-features are calculated, and the expected or relative predictive performances
of different algorithms can be predicted.

4.2.2 Ensemble Learning

Ensemble methods are an ML technique that combines several base models in order to
produce one optimal predictive model, and because of that can be viewed as a type of meta-
learning. For instance, the stacking generalization method [82] works by combining several
base-level learning algorithms and using a meta-level learner to learn a linear function of
the models produced by the base-level algorithms. Given a new dataset, the predictions
of the base-level algorithms are combined to provide the final prediction. Boosting [67] is
another popular ensemble learning strategy in which the same base-level algorithm is used
multiple times, wherein each boosting iteration, a re-weighted training set is used. The final

4.3. Theoretical Considerations 31

boosting prediction is also a combination of base-level models. Bootstrap aggregating also
called bagging [8], is another example of ensemble learning wherein is used multiple weak
models and aggregate the predictions from each of the models to get the final prediction. As
suggested by the name, it consists of two parts, bootstrapping and aggregation. Extensive
theoretical and empirical studies have been done in the previous years. Comprehensive
reviews on ensemble techniques can be found on [69].

4.2.3 Inductive Transfer

In [80], the authors discussed the term inductive transfer as a variant of meta-learning.
Inductive transfer refers to the ability of a learning mechanism to improve performance on
the current or target task after having learned a different but related concept or skill on a
previous source task. Transfer may additionally occur between two or more learning tasks
that are being undertaken concurrently. This idea has been widely studied in multi-task
learning [10].

4.3 theoretical considerations

Theoretical motivations as well as some arguments on meta-learning research is due to the
No Free Lunch (NFL) theorem [83]. The basic idea is: ”When taken across all learning tasks,
the generalization performance of any learner sums to 0 ”. In the context of ML, it is also known
as a Law of Conservation for Generalization Performance (LGC) [65].

As a simple illustration of the NFL theorem, consider the simple space, χ, of binary func-
tions defined over B = {1, 0}3 and assume that the instances of set Tr = {000, 001, ..., 101}
are observed. The instances of set Te = B3 − Tr = {110, 111} constitute the off-training test
set. The situation is shown in table 5.

Inputs f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 ...

Training
Set

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

...

Test
Set

1 1 0

1 1 1

0

0

0

1

1

0

1

1

0

0

0

1

1

0

1

1

0

0

1

0

...

Table 5.: Sample train/test setting for binary functions over 3 boolean variables (Adaption from [29])

32 Chapter 4. meta-learning for algorithm recommendation

The NFL theorem in this table shows that the behavior on Te of any learner (f 1, f 2, ..., f 256)
trained on Tr is that of a random guesser (can be seen, e.g., while considering functions f1
through f4 in table 5). The NFL theorem in essence simply restates Hume’s conclusion
about induction having no rational basis [36]: ”There can be no demonstrative argument to
prove, that those instances, of which we have had no experience, resemble those, of which
we have experience...” The crucial contribution of the NFL theorem, is pointing out that
whenever a learning algorithm performs well on some function it must perform poorly on
some others.

Taking that into consideration NFL Theorem and Hume’s conclusion, let’s discuss the
application of an Ultimate Learning Algorithm (ULA), therefore for a given learning al-
gorithm, a model M is induced, which defines a class probability distribution p over the
instances space. An ULA is a learning algorithm that induces a model M∗, such that:

∀M′ 6= M∗ E(δ(p∗, pΩ)) ≤ E(δ(p′, pΩ)) (6)

where the expectation is computed for a given training/test set sample of the instance
space, over the entire function space, δ is some appropriate distance measure and p∗, pΩ

and p′ are class probability distributions. As pointed out in [29], here we are interested in
an ”ultimate” but not a ”universal” algorithm because ”universal” generally means either:

1. (mathematically) applicable independent of any assumptions, or

2. applicable throughout the entire universe.

When asking about the real world (our universe) it is the second definition that is impor-
tant; what could happen in other conceivable universes is of no possible interest to us. As
pointed out in multiple research papers and books [22; 29].

4.4 algorithm recommendation

The purpose of this dissertation focuses on the recommendation of a meta-learning ap-
proach for the problem of algorithm selection. Therefore, it’s important to discuss the
general ideas of meta-learning-based algorithm ranking and motivations. As discussed in
the section 4.3, there is no single best algorithm to be used in all problems, theoretically due
to the NFL theorem [83]. The brute-force approach is to try all the algorithms with different
parameter settings (e.g., using a grid search) for a given dataset at hand. In practice this is
usually not feasible due to the computation time and the enormous amount of alternative
algorithms available as described in chapter 3.

A usual task of the data scientist normally involves the preparation of a dataset that can
be processed by a model (ML algorithm). Usually, there are several algorithms available,

4.5. Meta-features 33

so the data scientist needs to select one of them for a business goal. Given the selected
algorithm, the data scientist also needs to further fine tune the parameters in order to
obtain a stable and accurate model. The choice of algorithm and parameter is guided by
the performance estimation methodology that the analyst uses (see Chapter 2).

The most common practice is to use the ”trial and error” strategy. Taking algorithm
selection as an example, the data scientist could get the performance estimations of the
algorithms based on cross-validation, and then use performance measures to determine
the best algorithm to use. Although feasible, this strategy may still require a reasonable
amount of computing time, especially when there are many algorithms available. There-
fore, the choice of which algorithm(s) to use depends on the dataset at hand, and systems
that can provide such recommendations would be very useful [6]. Regarding to the meta-
learning systems, an important discussion focus on ”which type of recommendation should
be provided to the end-user?”, as described in [79] : ”...As the first recommended classifier
is not always the correct choice, multiple recommendations should be made, making this a
ranking problem rather than a classification problem....”.

In [6], the user’s goal is stated as: ”Save time by reducing the number of alternative
algorithms tried out on a given problem with minimal loss in the quality of the results
obtained when compared to the best possible ones.”. Meta-Learning for algorithm ranking
uses a general ML approach to generate meta-knowledge mapping the characteristics of a
dataset, captured by meta-features, to the relative performances of the available algorithms.

This approach is particularly important for business domains that require fast deploy-
ment of analytical techniques (e.g., stock market prediction and customer response predic-
tion, etc...).

For a comprehensive review of meta-learning research and its applications, we refer the
reader to [6; 80; 73; 76]

4.5 meta-features

To be able to implement a meta-learning system, it is necessary to have the ability to char-
acterize the source dataset. This can be resolved by using ”meta-features”. The idea is
to gather descriptors about the data distribution that correlate well with the performance
of learned models. Traditionally, meta-features are clustered in the following categories
[6; 40]:

• features that describe the nature of attributes

• features that describe attributes

• features that describe relationships between attributes

• features that describe relationships between attributes and the target.

34 Chapter 4. meta-learning for algorithm recommendation

As known, the performance of meta-learning depends crucially on the quality of the
meta-features available. In terms of the meta-features, existing meta-learning systems are
mainly based on four types of meta-features:

• Simple - Number of instances, number of attributes, number of classes or targets
[23]...

• Statistical - Mean kurtosis of attributes, mean skewness of attributes [23]...

• Information-theoretic - Class entropy, mean entropy of attributes, noise signal ratio
[40]...

• Landmarking – Exploiting dataset properties from the performance of a set of sim-
ple and fast learners with significantly different learning mechanisms [56]. Various
landmarking methods are evaluated in [28].

Thorough reviews and explanations of these meta-features are given in [5; 6; 40; 29].

4.6 concluding remarks

In this chapter, it was presented the research area of Meta-Learning as a solution for the
algorithm selection problem. Examples of successful research projects were introduced
with their main contributions to the literature in different domains. It was also explained
the different categories of meta-features and their use as well as the added knowledge they
provide to basic ML.

The literature indicates the use of Meta-Learning as one of the best-known approaches
for the algorithm selection problem, however, most of the research papers usually indicate
only the number of the selected features or the performance of a classifier designed us-
ing a feature subset of a specific size. Also, the available public meta-datasets are scarce
and without a lot of important meta-features, algorithms, and results of several evaluation
metrics.

Next, in the Second Part of this work, a novel framework for meta-dataset generation is
presented, and a solution for the ML algorithm selection problem is proposed.

Part II

C O N T R I B U T I O N

5

M E TA - D ATA S E T G E N E R AT O R F O R M A C H I N E L E A R N I N G
A L G O R I T H M S R E C O M M E N D AT I O N

In this chapter, we propose a framework for the automatic generation of meta-datasets in
the context of Meta-Learning. The main motivation comes from the work described in the
literature review, it was clear the lack of public meta-datasets, and most of the research
papers usually only indicate the number of the selected features, or the performance of a
classifier designed using a feature subset of a specific size, or the execution time. This frame-
work aims to receive an arbitrary dataset, to extract the meta-features from that dataset and
to store the evaluation results (e.g., AUC) of multiple available algorithms.

In this thesis, we focus on the performance of meta-learning for algorithm ranking on
classification datasets only. Nevertheless, the solution presented is designed to be flexible,
and can incorporate any type of meta-features and ML algorithms.

5.1 proposed solution

Taking the dataset illustrated in Table 7 as an example, our approach, therefore, is twofold.
First, it’s necessary to extract the meta-features from the original dataset, then it’s necessary
to train and test the algorithms using the original dataset to have the algorithm performance
results. Finally, we must concatenate the performance results to the meta-features already
extracted. Given the above information, the proposal meta-dataset, is a n×m data matrix,
where m = mf + mt. Here, m is the sum of the number of meta-features mf and the number
of algorithm performance results mt, and n is the number of datasets.

37

38 Chapter 5. meta-dataset generator for machine learning algorithms recommendation

dataset mf1 mf2 mf3 algorithms ae1 ae2 ae3

Iris 100 20 0.78 Random Forest 0.88 0.79 0.82

Iris 100 20 0.78 BernoulliNB 0.75 0.73 0.67

Iris 100 20 0.78 Ada Boost Classifier 0.90 0.80 0.85

Heart Disease 300 55 0.08 Random Forest 0.90 0.81 0.82

Heart Disease 300 55 0.08 BernoulliNB 0.87 0.83 0.83

Heart Disease 300 55 0.08 Ada Boost Classifier 0.92 0.84 0.83

Table 6.: Example of a meta-dataset with the sample of two datasets (Iris, Heart Disease), three
meta-features (mf1,mf2,mf3), the algorithm used (e.g., BernulliNB) and the results of three
different evaluation metrics (ae1, ae2, ae3).

The proposed meta dataset generator was instantiated in Python [62], more precisely
in Python 3.6. Python brings enormous advantages for the developing of the proposed
solution, highlighting the large collection of data science libraries. For the meta-features
extraction the pymfe library [60] has been chosen. By making available a large set of meta-
feature extraction functions, this package allow us to extract 108 meta-features from the
datasets. Concerning the ML algorithms, it was used the library scikit-learn [55], due to the
large range of ML algorithms and a consistent interface.

As mentioned in chapter 3, the ML field is vast, and to make the implementation practica-
ble for the proposed solution, in this dissertation, we focus only on classification problems.

5.2 architecture

The architecture of the Meta-Dataset Generator is explained in figure 8 and consists of
four main components. The ETL Dataset Module, Meta-feature Extractor Module, Machine
Learning Module, and the Meta-Dataset Module. Each of these elements and their overall
flow are explained next.

5.2. Architecture 39

Dataset (n)

Dataset 3

Algorithm 1

Dataset 2

Dataset 1

Algorithm 2

Algorithm 3

Algorithm (m)

Meta-features
Dataset 1

Meta-features
Dataset 1

Meta-features
Dataset 1

Meta-features
Dataset 2

Performance Measures results
Algorithm 2

Performance Measures results
Algorithm 1

Performance Measures results
Algorithm (m)

Performance Measures results
Algorithm 1

Meta-features
Dataset (n)

Performance Measures results
Algorithm (m)

Train Test Performance Metrics
Evaluation

Meta-feature Extractor Module

Machine Learning Module

ETL Dataset Module

Meta-Dataset Module

Figure 8.: Generic meta-dataset generator architecture

5.2.1 ETL Dataset Module

The ETL Dataset Module is responsible for handling the data from the original datasets.
The main inspiration for this module comes from the traditional ETL (Extract, Transform
and Load) process [44], and as the name implies, first the module extracts the data from
the sources of the different datasets (e.g, MySQL, Excel, etc) then transform the data into a
specific format and loads the treated datasets into a database.

The most relevant phase of this module is the transformation since it’s necessary to
provide a standardize dataset(s) to the Meta-feature Extractor Module and to the Machine
Learning Module, the two main transformation steps are the following:

• The name of the target variable is changed to y target, creating a standard separation
between the target and the features.

• Since in this dissertation we propose only to work with classification problems, and
to be able to draw statistically significant conclusions, in this module we also convert
multiple-class classification dataset (by keeping the top two majority classes) and re-
gression (by using the mean as a binary splitting point to transfer the numeric target
to a binary target) datasets to binary classification datasets.

After the transformation, the treated datasets files are organized and stored in a specific
folder.

This module was mainly developed in the KNIME Analytics Platform [2]. KNIME is an
open-source data analytics, reporting, and integration tool. The use of this platform has

40 Chapter 5. meta-dataset generator for machine learning algorithms recommendation

tremendously simplified the developing of this module. Nevertheless, the data extraction
and the target name transformation continues to be a manual job. Figure 9 is an example
of a macro KNIME Workflow developed in this dissertation.

Figure 9.: Macro view from the KNIME Workflow

The last step is developed in Python, using the Pandas library to load the excel datasets
as a Pandas DataFrame, to be then used by the adjacent modules.

5.2.2 Meta Features Extractor Module

As explained in the section 4.5, the performance of meta-learning depends crucially on
the quality of the meta-features available. For that very reason, and to ensure an expressive
characterization of the dataset, in this module we use the Python library pyfme [60] (version
0.1.0) due to the large set of meta-feature extraction functions, this library allow us to ex-
tract 108 meta-features from six different groups (General, Statistical, Information-theoretic,
Model-based, Landmarking and Clustering). An example of the meta-feature extraction
using pymfe is the following:

def meta_features_extractor(self , data_set_name):

mfe = MFE(groups =["general", "statistical", "info -theory", "model -base

", "landmarking"])

mfe.fit(self.X.values , self.y)

ft = mfe.extract ()

meta_data = list(ft)

headers = meta_data.pop (0)

meta_data_pandas = pd.DataFrame(meta_data , columns=headers)

meta_data_pandas['data_set_name '] = data_set_name

return meta_data_pandas

Listing 5.1: Code sample of the Meta Feature Extractor Module

A complete overview of the meta-features used in this research project can be found in
Appendix B Table 18 and in [60].

5.2. Architecture 41

5.2.3 Machine Learning Module

The Machine Learning Module is responsible for applying ML algorithms over the dataset(s)
provided by the ETL Dataset Module, and to store the results from the different metrics
used to evaluate the algorithm performance.

As mentioned before, in this dissertation we focus only on the performance of meta-
learning for algorithm ranking on classification datasets, and because of that, it was only
implemented state-of-the-art supervised learning algorithms (explained in chapter 3). The
implemented algorithms are the following:

Algorithm Algorithm Group

Ada Boost Classifier Ensemble Methods
Bagging Classifier Ensemble Methods
Bernoulli Naive Bayes Naive Bayes
Decision Tree Classifier Decision Trees
Extra Tree Classifier Decision Trees
Gaussian Naive Bayes Naive Bayes
Gradient Boosting Classifier Ensemble Methods
K Neighbors Classifier Nearest Neighbors
Linear Discriminant Analysis Discriminant Analysis
Logistic Regression (Binary and Multinomial) Generalized Linear Models
Neural Networks (Multi-layer Perceptron) Neural network models (supervised)
NuSVC Support Vector Machines
Quadratic Discriminant Analysis Discriminant Analysis
Random Forest Classifier Ensemble Methods
Stochastic Gradient Descent Generalized Linear Models
Support Vector Machines Support Vector Machines
Voting Classifier Ensemble Methods

Table 7.: Machine Learning algorithms implemented

The ML algorithms are developed using Scikit-Learn [55] Python package (version 0.18.1),
and since many ML algorithms don’t deal with categorical data, we use the One Hot En-
coder (get dummy function from scikit-learn) to convert categorical data to numerical data.
An example of how the One Hot Encoder works can be found in the table below:

42 Chapter 5. meta-dataset generator for machine learning algorithms recommendation

Color
red
orange
blue

red orange blue
1 0 0

0 1 0

0 0 1

Table 8.: Example of One Hot Enconding

The presented ML models were developed and evaluated using the 10-fold cross vali-
dation technique, and for some algorithms, the hyperparameter tuning was implemented
using Grid Search (can be consulted in Appendix B Table 20). We also store the time
required for the model fitting as a meta-feature (e.g., for future algorithms comparison
analysis, algorithm selection decision criteria, etc...). The code below describes an example
of a real implementation.

def gradient_boosting_classifier(self , hypertuning):

gbc = GradientBoostingClassifier ()

if hypertuning:

parameters = {'learning_rate ': [0.01 , 0.05, 0.1, 0.5, 1],

'min_samples_split ': [2, 5, 10, 20],

'max_depth ': [2, 3, 5, 10]}

clf = GridSearchCV(gbc , parameters , cv=10)

clf.fit(self.X,self.y)

y_score = clf.predict(self.X)

return metrics.average_precision_score(self.y, y_score)

else:

gdc_fit = gbc.fit(self.X, self.y)

cv_10 = KFold(n_splits =10, random_state =457, shuffle=True)

y_score = cross_val_predict(estimator=gdc_fit , X=self.X, y=self.y,

cv=cv_10 , method='predict_proba ')
evaluation = Evaluation(self.y, y_score)

return evaluation.binary_classification_evaluation ()

Listing 5.2: Gradient Boosting Classifier implementation example

The performance measure reported by 10-fold cross-validation is then the average of the
values computed in the loop. This approach can be computationally expensive, but does
not waste too much data (as is the case when fixing an arbitrary validation set), which is
a major advantage in problems such as inverse inference where the number of samples is
very small.

Since we are only working with binary classification datasets the following performance
metrics are applied and stored:

• AUC-ROC Score

5.3. Experiment Setup and Results 43

• Precision

• Recall

• F1 Score

• Accuracy

5.2.4 Meta-Dataset Module

This module aggregates the information received from the Meta-feature Extractor Module
with all the results from the ML Module. The final result is a matrix with 108 meta-features
from the original data-set by all the algorithms (with all evaluation results and computation
time). After the concatenation, the final meta-dataset is stored in an SQLite database.

5.3 experiment setup and results

In this section, the results obtained based on the proposed solution introduced in section 5.2
are presented. To be able to draw statistically significant conclusions, we choose a variety
of datasets from various public data sources, including the UCI 1, Kaggle 2 and mldata 3

repositories, with a total of 34 datasets. All the ML algorithms presented in table 7 have
been used over the 34 selected datasets.

The experiment was carried out using a MacBook Pro machine running on a 2.7 GHz
dual-core Intel Core i5 processor.

Figure 10 shows some of the aggregated properties of the 34 datasets.

1 https://archive.ics.uci.edu/ml/
2 https://www.kaggle.com/datasets
3 https://www.mldata.io/datasets/

44 Chapter 5. meta-dataset generator for machine learning algorithms recommendation

Figure 10.: Some aggregated meta-features of the 34 datasets showing the diversity of the meta-
dataset1

5.3.1 Datasets

The datasets used in this research project came from various public dataset sources and
different areas (e.g., business, advertising, medicine, etc), to bring a varied data sample.
All the 34 datasets have been extracted as CVS files and cataloged as regression, multi-
classification or binary classification, as illustrated in Table 9. The purpose of this catalog
is related to the transformation by the ETL Database Module explained in 5.2.1, to ensure
the transformation of all datasets into binary classification problems.

1 Number of Attributes (nr attr), Number of attributes pairs with high correlation (nr cor attr), Number of nu-
meric attributes (nr num), Number of attributes with outliers values (nr outliers), Number of instances (nr inst),
Number of binary attributes (nr bin)

5.3. Experiment Setup and Results 45

Dataset Source Type
Adult income https://www.kaggle.com/uciml/adult-census-income Binary Classification
Balance scale https://www.mldata.io/dataset-details/balance scale Multiclass Classification
Balloons https://archive.ics.uci.edu/ml/datasets/balloons Binary Classification
Bank https://www.kaggle.com/lovelesh/bank-dataset Binary Classification
Bank marketing https://www.mldata.io/dataset-details/bank marketing Binary Classification
Breast cancer https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin Binary Classification
Cars evaluation https://archive.ics.uci.edu/ml/datasets/car+evaluation Multiclass Classification
Cereals https://www.kaggle.com/crawford/80-cereals Regression
Chess king rook https://www.mldata.io/dataset-details/chess king rook Multiclass Classification
Congressional voting https://www.mldata.io/dataset-details/congressional voting Binary Classification
Credit card fraud https://www.kaggle.com/mlg-ulb/creditcardfraud Binary Classification
Cryotherapy https://www.mldata.io/dataset-details/cryotherapy Binary Classification
Gender voice https://www.mldata.io/dataset-details/gender voice Binary Classification
German credit data https://www.mldata.io/dataset-details/german credit data Binary Classification
Glass Identification https://archive.ics.uci.edu/ml/datasets/Glass+Identification Multiclass Classication
Heart disease https://www.kaggle.com/ronitf/heart-disease-uci Binary Classification
Horse Colic http://archive.ics.uci.edu/ml/datasets/Horse+Colic Binary Classification
Indian liver patient https://www.kaggle.com/uciml/indian-liver-patient-records Binary Classification
Iris species https://www.kaggle.com/uciml/iris Multiclass Classication
Mammogram https://www.mldata.io/dataset-details/mammogram Binary Classification
Monk https://www.mldata.io/dataset-details/monk Binary Classification
Mushroom https://archive.ics.uci.edu/ml/datasets/Mushroom Multiclass Classication
NBA logreg https://data.world/exercises/logistic-regression-exercise-1 Binary Classification
Pima native american diabetes https://www.mldata.io/dataset-details/pima native american diabetes Binary Classification
School grades https://www.mldata.io/dataset-details/school grades/ Regression
Soccer international https://www.mldata.io/dataset-details/soccer international history Multiclass Classification
Student Alcohol Consumption - Math Grades https://archive.ics.uci.edu/ml/datasets/STUDENT+ALCOHOL+CONSUMPTION Regression
Student Alcohol Consumption - Portuguese Grades https://archive.ics.uci.edu/ml/datasets/STUDENT+ALCOHOL+CONSUMPTION Regression
Tic tac toe https://www.mldata.io/dataset-details/tic tac toe Binary Classification
Titanic https://www.kaggle.com/c/titanic Binary Classification
Vehicle silhouette https://www.mldata.io/dataset-details/vehicle silhouette Multiclass Classification
Wine quality (red) https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality Regression
Wine quality (white) https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality Regression
Zoo Animal https://archive.ics.uci.edu/ml/datasets/Zoo Multiclass Classification

Table 9.: Datasets used in this work

Afterward, we generate the 108 meta-features from the 34 datasets which took approxi-
mately 1 hour to compute.

5.3.2 Algorithms analyses

The class distributions of the 34 datasets vary a lot, with some datasets being very skewed,
which can cause high variance on zero-one loss estimation. Consequently, for a fair algo-
rithms comparison, we choose the area under the receiver operating characteristic curve
(AUC) metric as the main performance measure, as it is less affected by class skew.

46 Chapter 5. meta-dataset generator for machine learning algorithms recommendation

12/12/2019 AUC_Average

1/1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

algorithm_name

Av
er

ag
e

of
 ro

c_
au

c_
sc

or
e

random_forest_
cla

ssi
fier

bagging_cla
ssi

fier

gradient_boostin
g_cla

ssi
fier

decis
ion_tree_cla

ssi
fier

extra
_tree_cla

ssi
fier

ada_boost_
cla

ssi
fier

linear_disc
rim

inant_analys
is

logisti
c_regressi

on

voting_cla
ssi

fier

gaussi
an_naive

_bayes

k_neighbors_
cla

ssi
fier

quadratic_
disc

rim
inant_analys

is

neural_network_
mplClassi

fier

NuSVC

support_vecto
r_machines

sto
chastic

_gradient_desce
nt

BernoulliN
B

0,86 0,85 0,84 0,84 0,84
0,82 0,80 0,79 0,79 0,77 0,76

0,72 0,72 0,72 0,71

0,67 0,65

Figure 11.: Average AUC results per algorithm over the 34 datasets (without hyperparameter opti-
mization)

For simplicity and in order to speed up experiments, it was used the default parameter
settings from the Scikit Learn library as a first step, and we use 10-fold cross validation for
the ranking generation which took ≈ 1 day to complete. Figure 11 shows the average AUC
score result (from 0 to 1) over the 34 datasets, in which Random Forest outperformed with
an average of 0.86.

Although the default parameter settings are a valid approach for fast results, in practice
is a suboptimal solution, because to make useful predictions, most algorithms have to be
optimized for each specific dataset. Technically, predicting the full combination of parame-
ter settings is not feasible. Nevertheless, as explained in 5.2.3 for 12 algorithms we define
some parameter settings (see Appendix B Table 20), and it was implemented using Grid
search with 10 fold cross-validation based AUC scores for ranking generation. Building
up this meta-dataset with the hyperparameter optimization was the most expensive part of
our meta-learning experiment, it took roughly 37 days to complete.

5.3. Experiment Setup and Results 47

16/12/2019 Difference_tunning

1/1

0,00

0,02

0,04

0,06

0,08

0,10

Algorithm name

Av
er

ag
e

im
pr

ov
em

en
t

neural_network_
mplClassi

…

sto
chastic

_gradient_desce
nt

NuSVC

k_neighbors_
cla

ssi
fier

logisti
c_regressi

on

voting_cla
ssi

fier

extra
_tree_cla

ssi
fier

bagging_cla
ssi

fier

gradient_boostin
g_cla

ssi
fier

decis
ion_tree_cla

ssi
fier

ada_boost_
cla

ssi
fier

random_forest_
cla

ssi
fier

0,099 0,093

0,055
0,053

0,036
0,031

0,022 0,022 0,022

0,016
0,011

0,004

Figure 12.: Average improvement of the algorithm performance (AUC) using Gridsearch

Figure 12 shows the average percentage (from 0 to 1) of improvement of the best AUC
score among the 12 classification machine algorithms for each dataset over the best AUC
score of the same 12 algorithms using their default parameters. The result demonstrates
the benefit of using the performances of optimised algorithms for generating algorithm
rankings.

An optimized and non-optimized algorithm is also a piece of valid information to be
stored into meta-dataset. Therefore, these optimized algorithms, have been saved into the
meta-dataset as, for example, (optimized) Random Forest.

A supplementary analysis can be done on the training and testing time per algorithm,
which can be an important requirement for the algorithm selection problem [7]. It can be
seen in figure 13 the total sum and the average of learning time by the 17 algorithms over
the 34 datasets without hyperparameter optimization.

In our experiment, the support vector machines took exponential more time to fit and to
predict than the other algorithms, in comparison with the lowest time consumer algorithm
the support vector machines took more 9794 times longer. It was also interesting that most
of the algorithms achieve satisfactory results in a relatively short amount of time.

48 Chapter 5. meta-dataset generator for machine learning algorithms recommendation

12/12/2019 Time_By_algorithm

1/1

0,1

1,0

10,0

100,0

1.000,0

10.000,0

100.000,0

algorithm_name

Ti
m

e
in

 s
ec

on
ds

support_vecto
r_machines

voting_cla
ssi

fier

NuSVC

k_neighbors_
cla

ssi
fier

gradient_boostin
g_cla

ssi
fier

bagging_cla
ssi

fier

random_forest_
cla

ssi
fier

neural_network_
mplClassi

fier

decis
ion_tree_cla

ssi
fier

ada_boost_
cla

ssi
fier

logisti
c_regressi

on

extra
_tree_cla

ssi
fier

linear_disc
rim

inant_analys
is

quadratic_
disc

rim
inant_analys

is

BernoulliN
B

sto
chastic

_gradient_desce
nt

gaussi
an_naive

_bayes

computation_time Average of computation_time

Figure 13.: Fit and predict computation time in seconds by algorithm (without hyperparameter op-
timization)

5.4 discussion

In this chapter, the overall proposed architecture for the meta-feature extractor, and the
four modules comprising the architecture are described in detail. For the experiment, 108

meta-features from 34 datasets arising out of various public data sources (e.g., UCI) were
extracted. Unlike previous work, experiments in this chapter were based on an unusu-
ally large number of meta-features and algorithms, to allow the applicability of the new
techniques to a wide range of meta-learning problems, and consequently, the algorithm
selection problem.

In terms of the implementation of the algorithms, our results show that the use of a 10-
fold cross-validation estimator allows us to have a lower variance than a single hold-out
set estimator, which can be very important since the amount of data available is limited.
Our experimental results also indicate the use of hyperparameter tuning can increase sig-
nificantly the algorithms performance.

On the other hand, we observe that the generation of the meta-dataset with hyperparam-
eter optimization and the complete meta-features extraction took a huge amount of time
and computer performance, in practice this is usually not feasible if there are too many al-
ternative algorithms available and huge datasets. However, for this experiment, we wanted
to extract the full potential of the meta-dataset generator to create a robust meta-dataset for
further analyses.

6

M A C H I N E L E A R N I N G A L G O R I T H M R E C O M M E N D AT I O N

This chapter presents an approach to solve the dilemma given in this dissertation, the
algorithm selection problem. To sum up, a system for algorithm recommendation can be
defined as a tool that supports the user in the algorithm selection step of the data mining
process. Given a dataset, it indicates which algorithm should be used to achieve the best
possible results.

In this regard, it will be discussed and analyzed the application of data mining tech-
niques to recommend the best algorithm for a specific classification dataset. A proposal
that is studied in this dissertation is based on the meta-dataset obtained in the proposed
framework introduced in Chapter 5. Throughout this Chapter, we apply the six-step KDP
methodology (see 2.2.3) as structured approach for providing a blueprint for conducting
this data mining project.

Hence, the case is solved according to the six phases of the KDP model given in figure 2.

6.1 understanding the problem domain

6.1.1 Background information

One of the major challenges in many domains of Computational Intelligence, Machine
Learning, Data Analysis, and other fields is to investigate the capabilities and limitations
of the existing algorithms in order to identify when one algorithm is more adequate than
another to solve a particular problem [41]. Traditional approaches to selecting algorithms
involve, in general, costly trial-and-error procedures, or require expert knowledge, which
is not always easy to acquire.

Therefore, the algorithm selection is the case under study in this dissertation, and since
the problem is already presented extensively in the first chapter, as well as the motivation
behind it, thus it shall not be debated any longer.

49

50 Chapter 6. machine learning algorithm recommendation

The six-step KDP model also requires the presentation of the advantages and disadvan-
tages of current solutions. This task has already been done in the chapter dedicated to the
Literature review.

6.1.2 Research goals

The main goal to be achieved with this project is to give a valid suggestion for which classi-
fication algorithm should be one of the most beneficial to use in a data science project. For
that, the input must be the original dataset and the output the algorithm suggestion (or sug-
gestions). The suggestion must take into consideration the algorithm performance and/or
the learning time as the evaluation criteria. There are, however, other minor objectives that
have to be achieved, namely to:

• Identify patterns in the meta-data that are relevant to the algorithm performance.

• Develop one or several ML models and choose the most relevant ones for the predic-
tion of the algorithm selection.

• Develop other Data Mining models, towards the success in fulfilling the leading ob-
jective.

The KDP model states that for every objective a success criteria shall be defined. For the
main goal of this dissertation to be a success, the algorithm prediction must achieve a
reasonable performance result(i.e. AUC > 80%). Also, valuable knowledge about the meta-
data must be learned. This know-how might help to understand what meta-information is
more relevant for the output prediction.

6.2 understanding of the data

Once the result of the project is well identified and understood, it’s time to build an un-
derstanding of the data collected so that appropriate attributes and relationships between
them can be selected for further use.

Since the data for this project has been collected using the meta-dataset generator from
the previous chapter, he data analysis has already been done in the section 5.3.

Even though, as a summary, the meta-dataset is composed of 118 columns (see table 18),
that includes:

• 108 meta-features from the original dataset

• The algorithm name (used to generate the results)

• 5 performance results (e.g., f1 score)

6.3. Preparation of the data 51

• The algorithm learning time

• A boolean for hyperparameter optimization identification

• The meta-dataset computation time

• The original dataset name

This meta-dataset matrix is composed of 34 different datasets and 17 ML algorithms (see
chapter 5 for more detailed information).

6.3 preparation of the data

As explained in subsection 2.2.3 the data preparation is probably the most important phase
of the KDP model. It is the point where the data engineer finally starts to manipulate
the data, preparing and packaging it for mining. Under normal circumstances, most of
the project’s time would be spent in preparing the data, but in the previous chapter, the
data preparation has already started, and the thorough understanding of the problem do-
main and the data understanding stages performed earlier, have already minimized this
overhead.

In what concerns to the output variable (also known as y target) we have defined two
approaches:

1. y target1 = 1 or 0 (binary classification)

2. y target2 = TOP 3 ranking algorithms and rest all are as Others

After deciding what is the output for our ML models to predict, it’s necessary to trans-
form the meta-dataset target into the desired values. As defined in the understanding
stages, the output must take into consideration the algorithm performance and/or the learn-
ing time. For the algorithm performance we choose the attribute area under the receiver
operating characteristic curve (AUC) as our output, because it is less affected by class skew.

Hence, by dataset we apply a descending ranking in the AUC value and an ascending
ranking in the learning time as described in table 10.

52 Chapter 6. machine learning algorithm recommendation

Dataset name Algorithm name Computation time (s) AUC score (%) Rank AUC score Rank time

Heart disease BernoulliNB 0,04 81,86 1 6

Heart disease Random Forest Classifier 3,52 81,83 2 16

Heart disease Linear Discriminant Analysis 0,04 81,38 3 4

Heart disease Logistic Regression 0,05 81,26 4 8

Heart disease Gaussian Naive Bayes 0,04 80,59 5 1

Heart disease Voting Classifier 3,73 80,22 6 17

Heart disease Extra Tree Classifier 0,23 79,28 7 12

Heart disease Quadratic Discriminant Analysis 0,04 79,01 8 2

Heart disease Gradient Boosting Classifier 0,75 78,89 9 15

Heart disease Bagging Classifier 0,24 78,59 10 13

Heart disease Decision Tree Classifier 0,04 75,20 11 5

Heart disease AdaBoost Classifier 0,06 72,93 12 9

Heart disease K Neighbors Classifier 0,04 65,16 13 7

Heart disease Neural Network MLP Classifier 0,47 64,86 14 14

Heart disease Stochastic Gradient Descent 0,04 56,83 15 3

Heart disease NuSVC 0,11 50,24 16 10

Heart disease Support Vector Machines 0,22 49,39 17 11

Table 10.: Example of time and AUC ranking by 17 algorithms on the heart disease dataset

The next step consists in the definition of the relative importance of AUC score and time
in order to have a unique output as defined above. In this regard, we create a new column
which is the ascending ranking result of β = 0.7 × rank roc auc score + 0.3 × rank time.
After the final ranking we have created three outputs according to the expectations above.

For the y target1, we did the following approach:

y target1(β) =

{
1 i f β = 1
0 i f β 6= 1

(7)

Hence, for the y target2, we apply more and less the same approach as in as y target1:

y target2(β) =

{
β i f β <= 3

Others i f β >= 3
(8)

6.3.1 Synthetic Minority Over-sampling Technique (SMOTE)

Most ML algorithms perform better when the number of observations of each class of the
target attribute is practically equal. The so-called class imbalance problem arises when the
number of observations of one class far exceeds the other.

In Tables 11 and 12, we can observe that our datasets have imbalanced classes.

6.3. Preparation of the data 53

y target2 # of Instances Distribution (%)

1 91 15,74

0 487 84,26

total 578 100

Table 11.: Meta-dataset class distribution for y target1

y target2 # of Instances Distribution (%)

1 91 15,74

2 36 6,23

3 32 5,54

Others 419 72,49

Total 578 100

Table 12.: Meta-dataset class distribution for y target2

To deal with these imbalanced datasets, we apply a technique called Synthetic Minor-
ity Over-sampling Technique (SMOTE) [15]. SMOTE is a combination of under-sampling
the majority class and over-sampling the minority class by creating ”synthetic samples”.
To perform SMOTE, the library SMOTE from imbalanced-learn1is applied to the training
datasets.

6.3.2 Dimensionality Reduction

Application of feature selection methods on the data containing many irrelevant features
has become a necessity in many applications because many pattern recognition techniques
cannot cope with high dimensional [31]. The selection of attributes is critically important
because it can mean the difference between great performance with short training time and
average performance with long training time.

In this dissertation, we have more than 100 columns in our meta-dataset (see Appendix
B Table 19), and some variables might contain redundant and insignificant information for
predicting outcome of the trainees. So, feature selection method has been applied with
the help of the scikit-learn library. More specifically, the recursive feature elimination with
cross-validation (RFECV)2as been used to select important attributes that contribute the
most in the performance of the prediction.

1 The imbalanced-learn library can be found in [49]
2 The source code can be found in [70]

54 Chapter 6. machine learning algorithm recommendation

0 20 40 60 80 100 120
Number of features selected

0.4

0.5

0.6

0.7

0.8

Cr
os

s v
al

id
at

io
n

sc
or

e
(n

b
of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns
)

RFECV for y_target1

roc_auc score =0.818
n_features =59

0 20 40 60 80 100 120
Number of features selected

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Cr
os

s v
al

id
at

io
n

sc
or

e
(n

b
of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns
)

RFECV for y_target2
accuracy =0.795
n_features =34

Figure 14.: Output of the RFECV for the meta-dataset with y target1 and y target21

An overview of the selected attributes, including the ranking output from the RFECV, is
given in Appendix B Table 21.

6.3.3 Overview of the considered datasets

Throughout this section, the changes done over the dataset have been described. Nonethe-
less, the way they were implemented was not referred to so far, therefore the purpose of
this final subsection is to document those modifications and the created datasets. As stated
several times in this document, all this modifications have been implemented in the training
set, and the table 13 collects the considered datasets in an overview.

Dataset Name Feature Selection SMOTE Target

meta-dataset 1 No No y target1
meta-dataset 2 No Yes y target1
meta-dataset 3 Yes Yes y target1
meta-dataset 4 Yes No y target1
meta-dataset 5 No No y target2
meta-dataset 6 No Yes y target2
meta-dataset 7 Yes Yes y target2
meta-dataset 8 Yes No y target2

Table 13.: Overview of 8 considered datasets

The following section briefly describes the algorithms which will be applied to the trans-
formed meta-datasets.

1 Y-axis does not start at zero

6.4. Data Mining 55

6.4 data mining

In the Data Preparation phase, described in section 6.3, several choices had to be made to
prepare the data for the Modelling phase. These choices concerned for instance feature
selection or over-sampling the dataset.

To investigate which choices are optimal, a total of 8 different training datasets are created.
In the Modelling phase, the considered models are implemented.

6.4.1 Selecting Modelling Techniques

The selection of modelling techniques is preceded by a reflection about the data types
available for mining, the Data Mining goals and the specific modelling requirements.

This phase demands investment of the time to discover and find models which suits best
to the problem and to the data. Availability of the labeled data gives the ability to make
use supervised learning techniques.

Chapter 4 describes the theory behind supervised learning and some families of algo-
rithms are explained. Nevertheless, in chapter 5, 17 supervised learning algorithms have
been implemented with and without hyperparameter optimization, these models have been
selected based on their usefulness in solving ML problems and on their popularity.

Consequently, and since our use cases are classification problems, we took advantage of
the work developed in the previous chapter and embrace all the 17 algorithms for our 8

meta-datasets. These algorithms are summarized in Table 7.

6.4.2 Building the Models

For building the models, as explained in 5.2.3, we use the 10-fold cross-validation technique,
and for some algorithms, the hyperparameter tuning was implemented using Grid Search
(see Appendix B Table 20 for more details). Although applying 10-fold cross-validation
on our meta-datasets, for the ones with SMOTE, we have previously divided the dataset
with the proportion of 70% for the training set (with SMOTE) and 30% for the test (original
dataset).

In practice, the 8 training sets are fitted on the 17 different models. Hence, for every
training set the corresponding test set is run through the 17 built models. At the end of the
Modelling phase 17 × 8 = 136 prediction vectors of the target attributes are obtained.

56 Chapter 6. machine learning algorithm recommendation

6.5 evaluation of the discovered knowledge

In the Data Mining phase, described in section 6.4, 136 prediction are made. In this section,
these predictions are compared with the actual target attributes y target1 and y target2 in
order to find out which data preparation steps and which classification model lead to the
most accurate model. The most accurate model is defined as the model that predicts most
correctly which algorithm or algorithms are the finest for a specific dataset. Recall that
there are two different target attributes, y target1 and y target2, we divide the evaluation
in two, the evaluation of the binary classifiers (for the y target1) and the evaluation of the
multi-class classifiers (for the y target2).

6.5.1 Evaluation of the Binary Classifiers

To evaluate the performance of the models for the meta-datasets with the y target1, the
measures accuracy, precision, recall, F-measure and AUC-ROC are used. The Evaluation
measures are theoretically explained in section 3.8.

The accuracy measure, although very popular in model evaluation, can be misleading
when considering an imbalanced dataset. Consequently, we choose the AUC-ROC metric
as the main performance measure, since is assumed to be a better measure when dealing
with imbalanced binary datasets.

Figure 15 shows the aggregated performances of the 17 ML algorithms by meta-dataset.
Clearly, the application of SMOTE and RFECV improved the overall performances. Based
on the discussion in the preparation phase, this result is not surprising. The total results of
the performance metrics of classification models are given in Appendix C Table 23.

6.5. Evaluation of the Discovered Knowledge 57

meta-dataset1 meta-dataset2
(SMOTE)

meta-dataset3
(SMOTE + RFECV)

meta-dataset4
(RFECV)

data_set_name

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ro

c_
au

c_
sc

or
e

Figure 15.: Box plot with the meta-datasets results for the binary target1

Although the overall improvement with SMOTE and RFECV, for some algorithms the
RFECV had an negative impact. Table 14 shows the top 5 worst performance results.

SMOTE RFECV Dataset name Algorithm name AUC score Precision score Recall score F1 score

Yes Yes meta-dataset3 Support Vector Machine 0,1483 0,6959 0,7919 0,7408

No Yes meta-dataset4 Stochastic Gradient Descent 0,3892 0,7090 0,8420 0,7698

Yes Yes meta-dataset3 Gaussian Naive Bayes 0,4018 0,8656 0,2081 0,1346

No No meta-dataset1 Stochastic Gradient Descent 0,4080 0,7090 0,8420 0,7698

Yes Yes meta-dataset4 Support Vector Machine 0,4089 0,7090 0,8420 0,7698

Table 14.: Top 5 worst algorithms performances for y target1

Gaussian Naive Bayes and Support Vector Machines were the most negatively affected
by the feature extraction. A possible reason for that, is one of the most important strengths
of these algorithms are the ability of working better with high dimensions [39].

On the other hand, table 15 shows the top 5 best results. The meta-datasets with SMOTE
outperformed the other meta-datasets in every category. Moreover, feature selection also
had a beneficial contribution to the best results.

1 Y-axis does not start at zero

58 Chapter 6. machine learning algorithm recommendation

SMOTE RFECV Dataset name Algorithm name AUC score Precision score Recall score F1 score

Yes No meta-dataset2 BernoulliNB 0,8858 0,9354 0,9364 0,9358

Yes Yes meta-dataset3 Gradient Boosting Classifier 0,8858 0,929 0,9306 0,9296

Yes Yes meta-dataset3 Linear Discriminant Analysis 0,885 0,9409 0,9422 0,9393

Yes No meta-dataset2 Bagging Classifier 0,8788 0,9147 0,9191 0,9159

Yes Yes meta-dataset3 Logistic Regression 0,87 0,7025 0,8382 0,7644

Table 15.: Top 5 best algorithms performances for y target1

Therefore, it can be agreed that based on our data, Bernoulli Naive Bayes and Gradient
Boosting Classifier with 88.58 % (AUC performance) are the most accurate models for our
binary classification target. Furthermore, other models like Linear Discriminant Analysis
and Bagging Classifier also present very satisfactory results in all performance measures.

6.5.2 Evaluation of the Multi-Class Classifiers

In terms of the evaluation for the y target2, the measures accuracy, precision, recall, F-
measure are used. As explained in the previous subsection, accuracy is not a good measure
if our class labels are not uniformly distributed. Which is the case, as exposed in table
12. F1 Score is the Harmonic Mean between precision and recall. The range for the F1

Score is [0, 1]. It tells you how precise your classifier is (how many instances it classifies
correctly), as well as how robust it is (it does not miss a significant number of instances),
and is assumed to be a better measure when dealing with imbalanced datasets. For that
very reason, the F1 Score is the leading measure for the meta-datasets with the y target2.
F1 score and the other evaluation metrics are are theoretically explained in section 3.8. The
complete results are given in table 16 Appendix C.

As we can see in Figure 16, the best results outcome from the meta-datasets with SMOTE.
On the other hand, RFECV has not brought any benefit to the performances of the algo-
rithms, and for the same cases, SMOTE worsened the results. Also, while evaluating the
performance of the classifiers it is seen that the linear models (see table 16) has shown the
lower overall performances than the ensemble methods (e.g., Decision Trees). One of the
possible reasons behind this could be overfitting of the model. Overfitting is caused when
the algorithm is heavily swayed by the training set. This can be mitigated by adding more
data for training the model.

Table 17 shows the top 5 best results, and it’s undeniable the benefits of the SMOTE on
the training sets since all of the top 5 best results are the meta-datasets with SMOTE. In
terms of performance results, ensemble methods have retrieved satisfactory results, with
Bagging Classifier achieving 83.09 % on the F1 Score measure.

6.5. Evaluation of the Discovered Knowledge 59

meta-dataset5 meta-dataset6
(SMOTE)

meta-dataset7
(SMOTE + RFCEV)

meta-dataset8
(RFECV)

data_set_name

0.0

0.2

0.4

0.6

0.8
f1

_s
co

re

Figure 16.: Boxplot of the meta-datasets results for the multi-class target

SMOTE RFECV Dataset name Algorithm name Precision score Recall score F1 score

Yes No meta-dataset6 Stochastic Gradient Descent 0,0015 0,0347 0,0029

Yes No meta-dataset6 Logistic Regression 0,0192 0,1387 0,0338

No No meta-dataset5 Quadratic Discriminant Analysis 0,3928 0,1024 0,0397

No Yes meta-dataset8 Logistic Regression 0,0250 0,1580 0,0431

Yes Yes meta-dataset7 Logistic Regression 0,0262 0,1618 0,0451

Table 16.: Top 5 worst algorithms performances for y target2

SMOTE RFECV Dataset name Algorithm name Precision score Recall score F1 score

Yes No meta-dataset6 Bagging Classifier 0,8344 0,8555 0,8309

Yes No meta-dataset6 Extra Tree Classifier 0,7894 0,8555 0,8207

Yes No meta-dataset6 Random Forest Classifier 0,7849 0,8555 0,8182

Yes No meta-dataset6 Voting Classifier 0,7849 0,8555 0,8182

Yes No meta-dataset6 K Neighbors Classifier 0,7857 0,8555 0,8161

Table 17.: Top 5 best algorithms performances for y target2

60 Chapter 6. machine learning algorithm recommendation

6.6 discussion

In this chapter, we proposed a solution for the algorithm selection problem with a meta-
learning approach. For conducting the research, the six-step KDP model has been used.

One of the main goals of this chapter was to identify if the work developed in the meta-
dataset generator (Chapter 5) was not fruitless. Which was proved by very satisfactory
results presented in section 6.5. Our experimental results also indicate the use of hyper-
parameter tuning (with Grid Search), feature selection (with RFECV) and over-sampling
techniques (with SMOTE) can increase significantly the algorithm performances. However,
for some algorithms, SMOTE and RFECV have shown unfavorable results. One reason
could be that the number of instances in the meta-dataset for algorithm ranking is too
small (only 578 examples), which led to a diverse ranking model library becoming more
likely to overfit.

Regarding the last phase of the used methodology, due to the time constraints of the
dissertation, it was not possible to follow the developed models. Notwithstanding, the
devised models can, in the future, be deployed as part of a recommendation system.

The techniques described in this chapter could probably also be applied to regression,
but this needs to be verified in a future study.

7

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

With the increase in the processor speed and memory size Machine Learning (ML) has
become quite popular and a rich set of data analysis techniques, including algorithms and
methods, have been developed in the ML and Data Mining (DM) community. However, no
single algorithm is guaranteed to outperform every other one in every case.

This dissertation deals with the challenge of using Meta-Learning to automate the pro-
cess of algorithm selection for classification problems. With this purpose, the work was
divided in two main areas, the meta-dataset creation (Chapter 5) and ML algorithm recom-
mendation (Chapter 6). In this process, regardless of the research limitations, some major
contributions were derived.

7.1 research limitations

During the development of the dissertation, some research limitations were found. The lack
of available public meta-datasets was one of the main drawbacks of this research project.
Despite the work developed in Chapter 5, it was necessary to acquire several datasets from
public data sources, which proved to be very time expensive. As a result of this manual
work, the meta-dataset created was not really extensive.

Since many ML algorithms require large amounts of data before they begin to give useful
results, this was a clear limitation to accomplish even better results (e.g, Neural Networks).
Hence, if the values of meta-features of a new dataset are outside the ranges of the training
meta-dataset, the developed recommendation system may fail because the target distribu-
tion is changed.

Besides the difficulty of acquiring datasets, the necessary computational time to generate
the meta-dataset blocked the creation of a larger experiment, as an example, for our 34

datasets in a MacBook Pro machine running on a 2.7 GHz dual-core Intel Core i5 processor
took approximately 38 days to complete.

61

62 Chapter 7. conclusions and future directions

7.2 major contributions

This research led to general contributions to the field of DM and ML. Next, we summarize
the main contributions of this dissertation.

In Chapter 5 we proposed a framework for generating meta-datasets. The developed
framework was implemented with Python, taking advantage of the multiple libraries that
language offers, such as Sklearn (for the implementation of the algorithms) and Pymfe (for
meta-feature extraction). It was then possible to implement 17 different ML algorithms
and extract 108 meta-features from several public data sources. To store the algorithms
performance, 5 different metrics have been implemented, resulting in a meta-dataset with
118 meta-features. This framework is one of the major contributions in this research project
since it allows us to create a meta-dataset with a large number of meta-features, which was
not available in the ML and DM community.

The developed framework was tested with 34 datasets from public libraries (such as UCI,
Kaggle, etc.) and empirical analysis over the performance of the algorithms is presented. At
this point, cross-validation results show a performance improvement by using parameter
optimization.

In Chapter 6, we examine the feasibility of solving the dissertation main goal as a clas-
sification problem. We proposed two meta-features generation methods for meta-learning
based algorithm ranking. One as binary classification, and the other as multiclass classifi-
cation.

A variety of preprocessing and model construction strategies were evaluated through-
out this work. One of the major challenge in the empirical study was the imbalanced
meta-dataset, which resulted in poor performing models regardless of the used feature se-
lection approach. The problem was solved by applying Synthetic Minority Over-sampling
Technique (SMOTE). In both cases promising results were obtained when applied to the
meta-dataset created in Chapter 5. Using 10-fold cross validation as the evaluation criteria,
Bernoulli Naive Bayes was able to achieve an average AUC score of 88.5% (and 93.64% of
F1 Score) on predicting the most suitable algorithm for the binary target. Moreover, for
the multiclass target our results also showed auspicious results, with Bagging Classifier we
have been able to achieve an average F1 Score of 83.09%.

Our experimental results are very satisfactory, showing the ability of computer systems
to store virtually infinite amounts of prior learning experiences (in the form of meta-data)
and to use that experience in completely new ways. In our use case, for the ML algorithms

7.3. Future Work 63

recommendation. Potentially, the algorithms and methods proposed in this dissertation can
be used as part of a DM recommendation system.

7.3 future work

In the context of the Meta-Dataset Generator (Chapter 5), different improvements can be
considered in future work, such as increasing the number of meta-features, investigating the
viability of using artificial datasets in order to generate a larger database of meta-examples
and performing experiments with other ML algorithms. Moreover, different metrics than
the ones that were employed in this dissertation must be investigated. These metrics may
involve meta-features (requirements) from the project itself, such as the available computa-
tional time, RAM consumption, interpretability, etc...

Furthermore, the creation of the meta-data set is tremendously time and computation-
ally expensive, the hyperparameter tuning with Grid Search proved to be not feasible in a
reasonable amount of time. In this regard, another direction for future work is to investi-
gate the implementation of Evolutionary Algorithms for parameter optimization instead of
Grid Search, since some literature highlights the results from EA-based techniques are not
significantly worse than those found with Grid Search, in a much shorter time[59].

Although the meta-dataset created in this dissertation was focused only on binary datasets,
it would be interesting to apply the same approach to multiclass and regression datasets.
For that, new evaluation metrics must be investigated accordingly.

Regarding the ML algorithm recommendation (Chapter 6), alternative data representa-
tion strategies and more sophisticated data filtering, over-sampling and under-sampling
methods should also be considered to attempt to increase the predictive power of future
models. Additionally, for further research, it might be interesting to add other automatic
feature selection approaches. This dissertation uses the recursive feature elimination algo-
rithm, but perhaps another wrapper method or even a filter method performs in a better
way.

B I B L I O G R A P H Y

[1] M. H. Bataineh. Artificial neural network for studying human performance. The University
of Iowa, 2012.

[2] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb,
K. Thiel, and B. Wiswedel. KNIME: The Konstanz Information Miner. In Studies in
Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer, 2007.

[3] W. M. Bolstad and J. M. Curran. Introduction to Bayesian statistics. John Wiley & Sons,
2016.

[4] I. Bose and R. K. Mahapatra. Business data mining — a machine learning perspective.
Information Management, 39(3):211 – 225, 2001.

[5] P. Brazdil, J. Gama, and B. Henery. Characterizing the applicability of classification
algorithms using meta-level learning. In European conference on machine learning, pages
83–102. Springer, 1994.

[6] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning - Applications to
Data Mining. 01 2009.

[7] P. B. Brazdil, C. Soares, and J. P. da Costa. Ranking learning algorithms: Using ibl
and meta-learning on accuracy and time results. Machine Learning, 50(3):251–277, Mar
2003.

[8] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, Aug 1996.

[9] J. Brownlee. Supervised and unsupervised machine learn-
ing algorithms. https://machinelearningmastery.com/

supervised-and-unsupervised-machine-learning-algorithms/, 2016. Accessed:
2018-12-05.

[10] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[11] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd International Conference on Machine Learning, ICML
’06, pages 161–168, New York, NY, USA, 2006. ACM.

[12] M. Celebi and K. Aydin. Unsupervised Learning Algorithms. Springer International
Publishing, 2016.

65

https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/

66 Bibliography

[13] O. Chapelle, B. Scholkopf, and A. Z. Eds. Semi-supervised learning (chapelle, o. et al.,
eds.; 2006) [book reviews]. IEEE Transactions on Neural Networks, 20(3), March 2009.

[14] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth.
CRISP-DM 1.0 Step-by-step data mining guide. Technical report, The CRISP-DM con-
sortium, Aug. 2000.

[15] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. Smote: Synthetic minority over-
sampling technique. J. Artif. Intell. Res. (JAIR), 16:321–357, 01 2002.

[16] K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan. Data mining: a knowledge
discovery approach. Springer Science & Business Media, 2007.

[17] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
Sep 1995.

[18] Q. Cui, F.-S. Bai, B. Gao, and T.-Y. Liu. Global optimization for advertisement selection
in sponsored search. Journal of Computer Science and Technology, 30(2):295–310, Mar
2015.

[19] T. Cunha, C. Soares, and A. C. de Carvalho. Metalearning and recommender sys-
tems: A literature review and empirical study on the algorithm selection problem for
collaborative filtering. Information Sciences, 423:128 – 144, 2018.

[20] S. A. Czepiel. Maximum likelihood estimation of logistic regression models: theory
and implementation. Available at czep. net/stat/mlelr. pdf, pages 1825252548–1564645290,
2002.

[21] A. Dey. Machine learning algorithms: a review. International Journal of Computer Science
and Information Technologies, 7(3):1174–1179, 2016.

[22] P. Domingos. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will
Remake Our World. Basic Books, Inc., New York, NY, USA, 2018.

[23] R. Engels and C. Theusinger. Using a data metric for preprocessing advice for data
mining applications. In ECAI, volume 98, pages 23–28, 1998.

[24] T. Fawcett. Introduction to roc analysis. Pattern Recognition Letters, 27:861–874, 06 2006.

[25] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, et al. Knowledge discovery and data
mining: Towards a unifying framework. In KDD, volume 96, pages 82–88, 1996.

[26] P. Flach. Machine learning: the art and science of algorithms that make sense of data. Cam-
bridge University Press, 2012.

Bibliography 67

[27] C. Fraley and A. E. Raftery. How many clusters? which clustering method? answers
via model-based cluster analysis. The Computer Journal, 41:578–588, 1998.

[28] J. Fürnkranz and J. Petrak. An evaluation of landmarking variants. In Working Notes of
the ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining, Decision Support
and Meta-Learning, pages 57–68, 2001.

[29] C. Giraud-Carrier. Metalearning-a tutorial. In Tutorial at the 7th international conference
on machine learning and applications (ICMLA), San Diego, California, USA, 2008.

[30] C. Giraud-Carrier and O. Povel. Characterising data mining software. Intell. Data Anal.,
7(3):181–192, Aug. 2003.

[31] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach.
Learn. Res., 3:1157–1182, Mar. 2003.

[32] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine Learning, 46(1):389–422, Jan 2002.

[33] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier, 2011.

[34] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002. cited By 4362.

[35] J. Hua, W. D. Tembe, and E. R. Dougherty. Performance of feature-selection methods
in the classification of high-dimension data. Pattern Recogn., 42(3):409–424, Mar. 2009.

[36] D. Hume. A treatise of human nature. Courier Corporation, 2003.

[37] Intel. How to get started as a developer in ai. https://software.intel.com/en-us/

articles/how-to-get-started-as-a-developer-in-ai, 2016. Accessed: 2018-11-30.

[38] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning:
With Applications in R. Springer Publishing Company, Incorporated, 2014.

[39] T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. In European conference on machine learning, pages 137–142. Springer,
1998.

[40] A. Kalousis. Algorithm selection via meta-learning. PhD thesis, University of Geneva,
2002.

[41] A. Kalousis, J. Gama, and M. Hilario. On data and algorithms: Understanding induc-
tive performance. Machine learning, 54(3):275–312, 2004.

https://software.intel.com/en-us/articles/how-to-get-started-as-a-developer-in-ai
https://software.intel.com/en-us/articles/how-to-get-started-as-a-developer-in-ai

68 Bibliography

[42] A. Kalousis and T. Theoharis. Noemon: Design, implementation and performance re-
sults of an intelligent assistant for classifier selection. Intelligent Data Analysis, 3(5):319–
337, 1999.

[43] B. Kavšek and N. Lavrač. Apriori-sd: Adapting association rule learning to subgroup
discovery. Applied Artificial Intelligence, 20(7):543–583, 2006.

[44] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit: Practical Techniques for Ex-
tracting, Cleaning, Conforming and Delivering Data. John Wiley & Sons, Inc., USA,
2004.

[45] R. King, C. Feng, and A. Sutherl. Statlog: Comparison of classification algorithms on
large real-world problems. Applied Artificial Intelligence, 9, 11 2000.

[46] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the 14th International Joint Conference on Artificial Intel-
ligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[47] S. Kotsiantis. Supervised machine learning: A review of classification techniques. 31,
10 2007.

[48] J. H. Lee, J. Shin, and M. J. Realff. Machine learning: Overview of the recent progresses
and implications for the process systems engineering field. Computers Chemical Engi-
neering, 2017.

[49] G. Lemaitre. over-sampling using smote. https://imbalanced-learn.readthedocs.

io/en/stable/generated/imblearn.over_sampling.SMOTE.html.

[50] Lu, Tyler (Tian). Fundamental limitations of semi-supervised learning. Master’s thesis,
University of Waterloo, 2009.

[51] H. Lv and H. Tang. Machine learning methods and their application research. In 2011
2nd International Symposium on Intelligence Information Processing and Trusted Computing,
pages 108–110, Oct 2011.

[52] S. Marsland. Machine learning: an algorithmic perspective. Chapman and Hall/CRC,
2014.

[53] H. H. Martens. Two notes on machine “learning”. Information and Control, 2(4):364 –
379, 1959.

[54] S. S. Nazrul. Receiver operating characteristic curves de-
mystified (in python). https://towardsdatascience.com/

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html
https://towardsdatascience.com/receiver-operating-characteristic-curves-demystified-in-python-bd531a4364d0
https://towardsdatascience.com/receiver-operating-characteristic-curves-demystified-in-python-bd531a4364d0

Bibliography 69

receiver-operating-characteristic-curves-demystified-in-python-bd531a4364d0,
2018.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[56] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier. Meta-learning by landmarking
various learning algorithms. In Proceedings of the Seventeenth International Conference on
Machine Learning, ICML ’00, pages 743–750, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[57] I. Portugal, P. Alencar, and D. Cowan. The use of machine learning algorithms in
recommender systems: A systematic review. Expert Systems with Applications, 97(Sup-
plement C):205 – 227, 2018.

[58] D. Powers. Evaluation: From precision, recall and f-factor to roc, informedness,
markedness correlation. Mach. Learn. Technol., 2, 01 2008.

[59] M. Reif, F. Shafait, and A. Dengel. Meta-learning for evolutionary parameter optimiza-
tion of classifiers. Machine Learning, 87:357–380, 06 2012.

[60] A. Rivolli, L. P. Garcia, C. Soares, J. Vanschoren, and A. C. de Carvalho. Towards
reproducible empirical research in meta-learning. arXiv preprint arXiv:1808.10406, 2018.

[61] A. L. D. Rossi, A. C. P. de Leon Ferreira de Carvalho, C. Soares, and B. F. de Souza.
Metastream: A meta-learning based method for periodic algorithm selection in time-
changing data. Neurocomputing, 127:52 – 64, 2014. Advances in Intelligent Systems.

[62] G. Rossum. Python reference manual. Technical report, Amsterdam, The Netherlands,
The Netherlands, 1995.

[63] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210–229, July 1959.

[64] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er, W. Ding,
and C.-T. Lin. A review of clustering techniques and developments. Neurocomputing,
267(Supplement C):664 – 681, 2017.

[65] C. Schaffer. A conservation law for generalization performance. In Machine Learning
Proceedings 1994, pages 259–265. Elsevier, 1994.

[66] R. E. Schapire. The boosting approach to machine learning: An overview. In Nonlinear
estimation and classification, pages 149–171. Springer, 2003.

https://towardsdatascience.com/receiver-operating-characteristic-curves-demystified-in-python-bd531a4364d0
https://towardsdatascience.com/receiver-operating-characteristic-curves-demystified-in-python-bd531a4364d0

70 Bibliography

[67] R. E. Schapire and Y. Freund. Boosting: Foundations and Algorithms. The MIT Press,
2012.

[68] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85 – 117, 2015.

[69] F. Schwenker. Ensemble methods: Foundations and algorithms [book review]. Compu-
tational Intelligence Magazine, IEEE, 8:77–79, 02 2013.

[70] Scikit-Learn. scikit-learn recursive feature elimination (rfe). https://github.com/

scikit-learn/scikit-learn/blob/7e85a6d1f/sklearn/feature_selection/_rfe.

py#L37.

[71] S. R. Searle and M. H. Gruber. Linear models. John Wiley & Sons, 2016.

[72] G. A. Seber and A. J. Lee. Linear regression analysis, volume 329. John Wiley & Sons,
2012.

[73] K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv., 41(1):6:1–6:25, Jan. 2009.

[74] C. Soares, P. B. Brazdil, and P. Kuba. A meta-learning method to select the kernel
width in support vector regression. Machine Learning, 54(3):195–209, Mar 2004.

[75] M. J. Stefik. Machine learning: An artificial intelligence approach: R.s. michalski, j.g.
carbonell and t.m. mitchell, (tioga, palo alto, ca). Artificial Intelligence, 25(2):236 – 238,
1985.

[76] Q. Sun. Meta-learning and the full model selection problem. PhD thesis, University of
Waikato, 2014.

[77] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

[78] A. Tharwat. Linear vs. quadratic discriminant analysis classifier: a tutorial. Interna-
tional Journal of Applied Pattern Recognition, 3(2):145–180, 2016.

[79] J. van Rijn, S. Abdulrahman, P. Brazdil, and J. Vanschoren. Fast algorithm selection
using learning curves. volume 9385, pages 298–309, 10 2015.

[80] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, Jun 2002.

[81] S. Weiss and N. Indurkhya. Rule-based machine learning methods for functional pre-
diction. 3, 11 1995.

https://github.com/scikit-learn/scikit-learn/blob/7e85a6d1f/sklearn/feature_selection/_rfe.py#L37
https://github.com/scikit-learn/scikit-learn/blob/7e85a6d1f/sklearn/feature_selection/_rfe.py#L37
https://github.com/scikit-learn/scikit-learn/blob/7e85a6d1f/sklearn/feature_selection/_rfe.py#L37

Bibliography 71

[82] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241 – 259, 1992.

[83] D. H. Wolpert, W. G. Macready, et al. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

[84] R. E. Wright. Logistic regression. 1995.

[85] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural networks::
The state of the art. International journal of forecasting, 14(1):35–62, 1998.

A
G L O S S A RY O F T E R M S , A B B R E V I AT I O N S A N D A C R O N Y M S

AI Artificial Intelligence

ANN Artificial Neural Networks

AUC Area Under The Curve

AUROC Area Under the Receiver Operating Characteristics

CV Cross Validation

DM Data Mining

EA Evolutionary Algorithms

ETL Extract Transform and Load

KDP Knowledge Discovery Process

KDD Knowledge Discovery from Data

ML Machine Learning

RFECV Recursive Feature Elimination with Cross-Validation

ROC Receiver Operating Characteristic

ULA Ultimate Learning Algorithm

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machines

73

75

76 Appendix B. support material

B
S U P P O RT M AT E R I A L

1 attr conc.mean 41 leaves corrob.sd 81 one nn.mean

2 attr conc.sd 42 leaves homo.mean 82 one nn.sd

3 attr ent.mean 43 leaves homo.sd 83 random node.mean

4 attr ent.sd 44 leaves per class.mean 84 random node.sd

5 attr to inst 45 leaves per class.sd 85 range.mean

6 best node.mean 46 linear discr.mean 86 range.sd

7 best node.sd 47 linear discr.sd 87 sd.mean

8 can cor.mean 48 mad.mean 88 sd.sd

9 can cor.sd 49 mad.sd 89 sd ratio

10 cat to num 50 max.mean 90 skewness.mean

11 class conc.mean 51 max.sd 91 skewness.sd

12 class conc.sd 52 mean.mean 92 sparsity.mean

13 class ent 53 mean.sd 93 sparsity.sd

14 cor.mean 54 median.mean 94 t mean.mean

15 cor.sd 55 median.sd 95 t mean.sd

16 cov.mean 56 min.mean 96 tree depth.mean

17 cov.sd 57 min.sd 97 tree depth.sd

18 eigenvalues.mean 58 mut inf.mean 98 tree imbalance.mean

19 eigenvalues.sd 59 mut inf.sd 99 tree imbalance.sd

20 elite nn.mean 60 naive bayes.mean 100 tree shape.mean

21 elite nn.sd 61 naive bayes.sd 101 tree shape.sd

22 eq num attr 62 nodes 102 var.mean

23 freq class.mean 63 nodes per attr 103 var.sd

24 freq class.sd 64 nodes per inst 104 var importance.mean

25 g mean.mean 65 nodes per level.mean 105 var importance.sd

26 g mean.sd 66 nodes per level.sd 106 w lambda

27 gravity 67 nodes repeated.mean 107 worst node.mean

28 h mean.mean 68 nodes repeated.sd 108 worst node.sd

29 h mean.sd 69 nr attr 109 meta dataset computation time

30 inst to attr 70 nr bin 110 data set name

31 iq range.mean 71 nr cat 111 hypertunning

32 iq range.sd 72 nr class 112 algorithm name

33 joint ent.mean 73 nr cor attr 113 computation time

34 joint ent.sd 74 nr disc 114 roc auc score

35 kurtosis.mean 75 nr inst 115 precision score

36 kurtosis.sd 76 nr norm 116 f1 score

37 leaves 77 nr num 117 recall score

38 leaves branch.mean 78 nr outliers 118 accuracy score

39 leaves branch.sd 79 ns ratio

40 leaves corrob.mean 80 num to cat

Table 18.: List of attributes from the meta-dataset generator

77

1 attr conc.mean 41 leaves corrob.sd 81 one nn.mean

2 attr conc.sd 42 leaves homo.mean 82 one nn.sd

3 attr ent.mean 43 leaves homo.sd 83 random node.mean

4 attr ent.sd 44 leaves per class.mean 84 random node.sd

5 attr to inst 45 leaves per class.sd 85 range.mean

6 best node.mean 46 linear discr.mean 86 range.sd

7 best node.sd 47 linear discr.sd 87 sd.mean

8 can cor.mean 48 mad.mean 88 sd.sd

9 can cor.sd 49 mad.sd 89 sd ratio

10 cat to num 50 max.mean 90 skewness.mean

11 class conc.mean 51 max.sd 91 skewness.sd

12 class conc.sd 52 mean.mean 92 sparsity.mean

13 class ent 53 mean.sd 93 sparsity.sd

14 cor.mean 54 median.mean 94 t mean.mean

15 cor.sd 55 median.sd 95 t mean.sd

16 cov.mean 56 min.mean 96 tree depth.mean

17 cov.sd 57 min.sd 97 tree depth.sd

18 eigenvalues.mean 58 mut inf.mean 98 tree imbalance.mean

19 eigenvalues.sd 59 mut inf.sd 99 tree imbalance.sd

20 elite nn.mean 60 naive bayes.mean 100 tree shape.mean

21 elite nn.sd 61 naive bayes.sd 101 tree shape.sd

22 eq num attr 62 nodes 102 var.mean

23 freq class.mean 63 nodes per attr 103 var.sd

24 freq class.sd 64 nodes per inst 104 var importance.mean

25 g mean.mean 65 nodes per level.mean 105 var importance.sd

26 g mean.sd 66 nodes per level.sd 106 w lambda

27 gravity 67 nodes repeated.mean 107 worst node.mean

28 h mean.mean 68 nodes repeated.sd 108 worst node.sd

29 h mean.sd 69 nr attr 109 meta dataset computation time

30 inst to attr 70 nr bin 110 algorithm name

31 iq range.mean 71 nr cat 111 y target

32 iq range.sd 72 nr class

33 joint ent.mean 73 nr cor attr

34 joint ent.sd 74 nr disc

35 kurtosis.mean 75 nr inst

36 kurtosis.sd 76 nr norm

37 leaves 77 nr num

38 leaves branch.mean 78 nr outliers

39 leaves branch.sd 79 ns ratio

40 leaves corrob.mean 80 num to cat

Table 19.: List of attributes after the data preparation phase

78 Appendix B. support material

Algorithm Name Hyperparameter Optimization

NuSVC
param grid = {’gamma’:[1, 0.1, 0.001, 0.0001],
’kernel’:[’linear’,’rbf’]}

LogisticRegression
param grid = { ”C”: np.logspace(-3, 3, 7),
”penalty”: [’l1’,’l2’],
”max iter”:[10000]}

ExtraTreesClassifier

param grid = {,’n estimators’: [200, 500, 1000],
’max features’: [’auto’, ’sqrt’, ’log2’],
’max depth’: [4, 5, 6, 7, 8],
’criterion’: [’gini’, ’entropy’]}

VotingClassifier param grid= {’rf n estimators’: [20,100, 200,500,1000]}

BaggingClassifier

param grid = {,’bootstrap’: [True, False],
’bootstrap features’: [True, False],
’n estimators’: [5, 10],
’max samples’: [0.6, 0.8],
’base estimator bootstrap’: [True, False],
’base estimator n estimators’: [100, 200],
’base estimator max features’: [0.8, 1.0]}

AdaBoostClassifier with DecisionTreeClassifier
param grid = {’n estimators’: [50, 500, 1000, 2000],
’learning rate’: [.001, 0.01, .1]}

MLPClassifier

param grid = {’solver’: [’lbfgs’],
’max iter’: [1000, 1200, 1600, 1800, 2000],
’alpha’: 10.0 ** -np.arange(1, 10),
’hidden layer sizes’: np.arange(10, 15),
’random state’: [0, 1, 2, 4, 6, 8]}

GradientBoostingClassifier
param grid = {’learning rate’: [0.01, 0.05, 0.1, 0.5, 1],
’min samples split’: [2, 5, 10, 20],
’max depth’: [2, 3, 5, 10]}

KNeighborsClassifier param grid = {’n neighbors’: np.arange(1, 25)}

SGDClassifier
param grid = {”loss”: [”hinge”, ”log”, ”squared hinge”, ”modified huber”],
”alpha”: [0.0001, 0.001, 0.01, 0.1],
”penalty”: [”l2”, ”l1”, ”none”]}

SupportVectorMachines

param grid =,{’kernel’: [’rbf’], ’gamma’: [1e-2, 1e-3, 1e-4, 1e-5],
’C’: [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]},
{’kernel’: [’sigmoid’], ’gamma’: [1e-2, 1e-3, 1e-4, 1e-5],
’C’: [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]},
{’kernel’: [’linear’],
’C’: [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]}

DecisionTreeClassifier
param grid = {’criterion’:[’gini’,’entropy’],
’max depth’:[4,5,6,7,8,9,10,11,12,15,20,30,40,50,70,90,120,150]}

RandomForestClassifier

param grid = {,’n estimators’: [200, 500, 1000],
’max features’: [’auto’, ’sqrt’, ’log2’],
’max depth’: [4, 5, 6, 7, 8],
’criterion’: [’gini’, ’entropy’]}

BernoulliNB None

QuadraticDiscriminantAnalysis None

LinearDiscriminantAnalysis None

GaussianNB None

Table 20.: Overview of the implemented hyperparameter optimization

79

Table 21.: Output of the RFECV by meta-dataset and attribute
Attribute Name RFECV ranking y target1 RFECV support y target1 RFECV ranking y target2 RFECV support y target2
algorithm name BernoulliNB 1 True 1 True

algorithm name NuSVC 1 True 1 True

algorithm name ada boost classifier 1 True 1 True

algorithm name bagging classifier 1 True 1 True

algorithm name decision tree classifier 1 True 1 True

algorithm name extra tree classifier 1 True 1 True

algorithm name gaussian naive bayes 1 True 1 True

algorithm name gradient boosting classifier 1 True 1 True

algorithm name k neighbors classifier 1 True 1 True

algorithm name linear discriminant analysis 1 True 1 True

algorithm name logistic regression 1 True 1 True

algorithm name neural network mplClassifier 1 True 1 True

algorithm name quadratic discriminant analysis 1 True 1 True

algorithm name random forest classifier 1 True 1 True

algorithm name stochastic gradient descent 1 True 1 True

algorithm name support vector machines 1 True 1 True

algorithm name voting classifier 1 True 1 True

best node.sd 1 True 10 False

can cor.mean 1 True 1 True

can cor.sd 1 True 1 True

cat to num 1 True 1 True

cor.mean 1 True 23 False

cor.sd 1 True 22 False

elite nn.sd 1 True 9 False

freq class.sd 1 True 24 False

g mean.mean 1 True 1 True

g mean.sd 1 True 1 True

h mean.mean 1 True 19 False

h mean.sd 1 True 13 False

iq range.sd 1 True 25 False

kurtosis.mean 1 True 1 True

leaves branch.sd 1 True 8 False

leaves corrob.sd 1 True 26 False

leaves homo.sd 1 True 1 True

leaves per class.sd 1 True 1 True

linear discr.sd 1 True 3 False

mad.mean 1 True 14 False

mad.sd 1 True 7 False

max.sd 1 True 6 False

min.mean 1 True 5 False

min.sd 1 True 11 False

naive bayes.sd 1 True 4 False

nodes per level.sd 1 True 1 True

nodes repeated.sd 1 True 1 True

nr bin 1 True 1 True

nr cat 1 True 1 True

nr disc 1 True 12 False

nr norm 1 True 1 True

nr outliers 1 True 16 False

num to cat 1 True 1 True

one nn.sd 1 True 15 False

range.sd 1 True 21 False

sd ratio 1 True 1 True

skewness.mean 1 True 17 False

sparsity.sd 1 True 20 False

tree imbalance.sd 1 True 1 True

tree shape.sd 1 True 2 False

w lambda 1 True 1 True

worst node.sd 1 True 27 False

nr cor attr 2 False 18 False

median.sd 3 False 28 False

class conc.sd 4 False 31 False

kurtosis.sd 5 False 30 False

t mean.sd 6 False 34 False

mean.mean 7 False 36 False

mean.sd 8 False 35 False

var.sd 9 False 38 False

skewness.sd 10 False 32 False

mut inf.sd 11 False 33 False

joint ent.sd 12 False 29 False

sd.sd 13 False 37 False

attr ent.sd 14 False 39 False

Continued on next page

80 Appendix B. support material

Table 21 - continued from previous page
Attribute Name RFECV ranking y target1 RFECV support y target1 RFECV ranking y target2 RFECV support y target2
class conc.mean 15 False 42 False

sd.mean 16 False 65 False

ns ratio 17 False 56 False

var importance.sd 18 False 77 False

worst node.mean 19 False 47 False

meta dataset computation time 20 False 44 False

best node.mean 21 False 48 False

sparsity.mean 22 False 80 False

leaves branch.mean 23 False 87 False

inst to attr 24 False 70 False

max.mean 25 False 57 False

var importance.mean 26 False 43 False

joint ent.mean 27 False 76 False

class ent 28 False 50 False

attr to inst 29 False 49 False

mut inf.mean 30 False 64 False

iq range.mean 31 False 72 False

linear discr.mean 32 False 82 False

leaves 33 False 88 False

cov.mean 34 False 58 False

nodes repeated.mean 35 False 86 False

cov.sd 36 False 41 False

nr num 37 False 54 False

eigenvalues.mean 38 False 63 False

nr attr 39 False 71 False

eigenvalues.sd 40 False 40 False

nr inst 41 False 85 False

median.mean 42 False 53 False

elite nn.mean 43 False 67 False

eq num attr 44 False 73 False

nr class 45 False 84 False

freq class.mean 46 False 74 False

random node.mean 47 False 52 False

random node.sd 48 False 60 False

leaves corrob.mean 49 False 45 False

naive bayes.mean 50 False 62 False

range.mean 51 False 46 False

tree shape.mean 52 False 75 False

leaves homo.mean 53 False 59 False

var.mean 54 False 61 False

t mean.mean 55 False 66 False

tree imbalance.mean 56 False 69 False

gravity 57 False 55 False

leaves per class.mean 58 False 78 False

one nn.mean 59 False 68 False

nodes 60 False 79 False

tree depth.mean 61 False 51 False

nodes per attr 62 False 83 False

tree depth.sd 63 False 81 False

nodes per inst 64 False 89 False

nodes per level.mean 65 False 90 False

attr ent.mean 66 False 91 False

attr conc.sd 67 False 92 False

attr conc.mean 68 False 93 False

81

82 Appendix C. additional results

C
A D D I T I O N A L R E S U LT S

Meta-dataset
Transformation

Dataset name Algorithm name ROC-AUC score Precision score Recall score F1 score

None meta-dataset1

linear discriminant analysis 0,8400 0,9141 0,9184 0,9139

bagging classifier 0,8318 0,8936 0,8993 0,8953

gradient boosting classifier 0,8226 0,8873 0,8924 0,8892

BernoulliNB 0,8154 0,9075 0,9097 0,9085

extra tree classifier 0,7925 0,9161 0,9201 0,9155

k neighbors classifier 0,7766 0,9122 0,9167 0,9124

neural network mplClassifier 0,7739 0,8441 0,8420 0,8430

random forest classifier 0,7676 0,9181 0,9219 0,9171

voting classifier 0,7635 0,9181 0,9219 0,9171

decision tree classifier 0,7410 0,8634 0,8646 0,8640

ada boost classifier 0,7328 0,8548 0,8507 0,8526

support vector machines 0,5509 0,7523 0,5990 0,6516

NuSVC 0,5000 0,0250 0,1580 0,0431

logistic regression 0,5000 0,7090 0,8420 0,7698

gaussian naive bayes 0,4782 0,8226 0,2153 0,1576

quadratic discriminant analysis 0,4231 0,5396 0,1788 0,1368

stochastic gradient descent 0,4080 0,7090 0,8420 0,7698

SMOTE meta-dataset2

Bernoulli NB 0,8858 0,9354 0,9364 0,9358

bagging classifier 0,8788 0,9147 0,9191 0,9159

ada boost classifier 0,8582 0,9354 0,9364 0,9358

linear discriminant analysis 0,8378 0,9334 0,9364 0,9332

decision tree classifier 0,8354 0,9008 0,8671 0,8782

gradient boosting classifier 0,8312 0,9165 0,9191 0,9176

voting classifier 0,8086 0,9334 0,9364 0,9332

k neighbors classifier 0,8070 0,9334 0,9364 0,9332

extra tree classifier 0,8055 0,9354 0,9364 0,9358

random forest classifier 0,7878 0,9354 0,9364 0,9358

neural network mplClassifier 0,6546 0,8518 0,6936 0,7398

gaussian naive bayes 0,5252 0,8367 0,2370 0,2204

support vector machines 0,5007 0,7618 0,8324 0,7909

Nu SVC 0,5000 0,0192 0,1387 0,0338

logistic regression 0,5000 0,7418 0,8613 0,7971

stochastic gradient descent 0,5000 0,7418 0,8613 0,7971

quadratic discriminant analysis 0,4891 0,7509 0,3006 0,3417

SMOTE
AND

RFECV
meta-dataset3

gradient boosting classifier 0,8858 0,9290 0,9306 0,9296

linear discriminant analysis 0,8850 0,9409 0,9422 0,9393

logistic regression 0,8700 0,7025 0,8382 0,7644

bagging classifier 0,8681 0,9157 0,9191 0,9165

Bernoulli NB 0,8626 0,9290 0,9306 0,9296

extra tree classifier 0,8433 0,9290 0,9306 0,9296

ada boost classifier 0,8267 0,8927 0,8786 0,8839

k neighbors classifier 0,8241 0,9290 0,9306 0,9296

voting classifier 0,8151 0,9290 0,9306 0,9296

decision tree classifier 0,8151 0,9051 0,9075 0,9061

random forest classifier 0,8091 0,9290 0,9306 0,9296

neural network mplClassifier 0,7367 0,8584 0,7919 0,8127

quadratic discriminant analysis 0,5590 0,7704 0,4277 0,4816

Nu SVC 0,5000 0,7025 0,8382 0,7644

stochastic gradient descent 0,5000 0,7025 0,8382 0,7644

gaussian naive bayes 0,4018 0,8656 0,2081 0,1346

support vector machines 0,1483 0,6959 0,7919 0,7408

RFECV meta-dataset4

bagging classifier 0,8491 0,9029 0,9080 0,9040

linear discriminant analysis 0,8373 0,9141 0,9184 0,9139

BernoulliNB 0,8280 0,9075 0,9097 0,9085

extra tree classifier 0,8222 0,9103 0,9149 0,9108

gradient boosting classifier 0,8133 0,9029 0,9080 0,9040

neural network mplClassifier 0,7973 0,8789 0,8819 0,8803

random forest classifier 0,7927 0,9161 0,9201 0,9155

k neighbors classifier 0,7811 0,8981 0,9045 0,8981

decision tree classifier 0,7682 0,8684 0,8576 0,8622

ada boost classifier 0,7603 0,8780 0,8819 0,8797

voting classifier 0,7585 0,9181 0,9219 0,9171

quadratic discriminant analysis 0,5405 0,7596 0,5938 0,6479

NuSVC 0,5000 0,0250 0,1580 0,0431

logistic regression 0,5000 0,7090 0,8420 0,7698

gaussian naive bayes 0,4411 0,7309 0,7743 0,7505

support vector machines 0,4089 0,7090 0,8420 0,7698

stochastic gradient descent 0,3892 0,7090 0,8420 0,7698

Table 22.: Complete performance evaluation for the meta-dataset with binary target

83

Meta-dataset
Transformation

Dataset name Algorithm name Precision score Recall score F1 score

None meta-dataset5

random forest classifier 0,7395 0,8212 0,7729

support vector machines 0,7395 0,8212 0,7729

voting classifier 0,7395 0,8212 0,7729

extra tree classifier 0,7562 0,8056 0,7713

bagging classifier 0,7562 0,7882 0,7708

k neighbors classifier 0,7331 0,8160 0,7682

BernoulliNB 0,7252 0,7847 0,7531

linear discriminant analysis 0,7516 0,7448 0,7458

gradient boosting classifier 0,7276 0,7639 0,7439

decision tree classifier 0,7250 0,7257 0,7250

ada boost classifier 0,7087 0,7135 0,7108

neural network mplClassifier 0,6485 0,6233 0,6352

logistic regression 0,5496 0,7413 0,6312

NuSVC 0,5736 0,6858 0,6230

stochastic gradient descent 0,5790 0,6111 0,5924

gaussian naive bayes 0,0292 0,1319 0,0475

quadratic discriminant analysis 0,3928 0,1024 0,0397

SMOTE meta-dataset6

bagging classifier 0,8344 0,8555 0,8309

extra tree classifier 0,7894 0,8555 0,8207

random forest classifier 0,7849 0,8555 0,8182

voting classifier 0,7849 0,8555 0,8182

k neighbors classifier 0,7857 0,8555 0,8161

gradient boosting classifier 0,7952 0,8208 0,8078

decision tree classifier 0,7871 0,7572 0,7711

linear discriminant analysis 0,7905 0,7514 0,7704

ada boost classifier 0,7527 0,7283 0,7352

Nu SVC 0,6017 0,7399 0,6637

quadratic discriminant analysis 0,6064 0,7052 0,6521

Bernoulli NB 0,8191 0,5607 0,6457

neural network mplClassifier 0,7335 0,2775 0,3754

gaussian naive bayes 0,7453 0,2081 0,1720

support vector machines 0,6881 0,1676 0,0995

logistic regression 0,0192 0,1387 0,0338

stochastic gradient descent 0,0015 0,0347 0,0029

SMOTE
AND

RFECV
meta-dataset7

bagging classifier 0,7774 0,8208 0,7876

random forest classifier 0,7304 0,8266 0,7740

voting classifier 0,7304 0,8266 0,7740

extra tree classifier 0,7371 0,8150 0,7729

ada boost classifier 0,7291 0,8208 0,7703

gradient boosting classifier 0,7675 0,7688 0,7679

decision tree classifier 0,7392 0,7630 0,7482

k neighbors classifier 0,7172 0,7688 0,7421

linear discriminant analysis 0,7764 0,7399 0,7351

Bernoulli NB 0,7541 0,7052 0,7266

stochastic gradient descent 0,7349 0,7514 0,6876

neural network mplClassifier 0,7371 0,5838 0,6496

Nu SVC 0,5221 0,7225 0,6062

quadratic discriminant analysis 0,5758 0,2890 0,3644

support vector machines 0,5580 0,0809 0,0817

gaussian naive bayes 0,5442 0,0751 0,0695

logistic regression 0,0262 0,1618 0,0451

RFECV meta-dataset8

random forest classifier 0,7243 0,8160 0,7626

extra tree classifier 0,7375 0,8038 0,7622

bagging classifier 0,7347 0,7708 0,7515

neural network mplClassifier 0,7269 0,7899 0,7494

k neighbors classifier 0,7063 0,8038 0,7489

linear discriminant analysis 0,7204 0,7743 0,7455

gradient boosting classifier 0,7234 0,7691 0,7426

BernoulliNB 0,6959 0,7917 0,7356

decision tree classifier 0,7361 0,7344 0,7351

ada boost classifier 0,7226 0,7153 0,7184

support vector machines 0,5241 0,7240 0,6080

NuSVC 0,5231 0,7188 0,6055

voting classifier 0,6278 0,5903 0,5860

stochastic gradient descent 0,6179 0,5017 0,5483

gaussian naive bayes 0,5419 0,5313 0,5350

quadratic discriminant analysis 0,6276 0,2830 0,3528

logistic regression 0,0250 0,1580 0,0431

Table 23.: Complete performance evaluation for the meta-dataset with binary target

NB: place here information about funding, FCT project, etc in which the work is framed. Leave empty otherwise.

	1 Introduction
	1.1 Framework and Motivations
	1.2 Objectives
	1.3 Dissertation Outline

	State of the Art
	2 Data Mining
	2.1 Introductory Remarks
	2.2 Knowledge Discovery Process Models
	2.2.1 Academic Research Models
	2.2.2 Industrial Models
	2.2.3 Hybrid Models

	2.3 Concluding Remarks

	3 Machine Learning Algorithms
	3.1 Introductory Remarks
	3.2 Supervised Learning
	3.2.1 Regression Versus Classification Problems

	3.3 Unsupervised Learning
	3.4 Semi-supervised learning
	3.5 Reinforcement learning
	3.6 Deep Learning
	3.6.1 Shallow vs deep networks

	3.7 Machine Learning Algorithms
	3.7.1 Decision Trees
	3.7.2 Artificial Neural Networks
	3.7.3 Linear models
	3.7.4 Probabilistic models
	3.7.5 Clustering
	3.7.6 Rule-Based Machine Learning

	3.8 Evaluation of Machine Learning Algorithms
	3.8.1 Cross-validation
	3.8.2 Metrics For Classification Model

	3.9 Concluding Remarks

	4 Meta-Learning for Algorithm Recommendation
	4.1 Introductory Remarks
	4.2 Meta-learning Approaches
	4.2.1 Meta-data based algorithm recommendation (ranking)
	4.2.2 Ensemble Learning
	4.2.3 Inductive Transfer

	4.3 Theoretical Considerations
	4.4 Algorithm Recommendation
	4.5 Meta-features
	4.6 Concluding Remarks

	Contribution
	5 Meta-Dataset Generator for Machine Learning algorithms recommendation
	5.1 Proposed Solution
	5.2 Architecture
	5.2.1 ETL Dataset Module
	5.2.2 Meta Features Extractor Module
	5.2.3 Machine Learning Module
	5.2.4 Meta-Dataset Module

	5.3 Experiment Setup and Results
	5.3.1 Datasets
	5.3.2 Algorithms analyses

	5.4 Discussion

	6 Machine Learning Algorithm recommendation
	6.1 Understanding the problem domain
	6.1.1 Background information
	6.1.2 Research goals

	6.2 Understanding of the data
	6.3 Preparation of the data
	6.3.1 Synthetic Minority Over-sampling Technique (SMOTE)
	6.3.2 Dimensionality Reduction
	6.3.3 Overview of the considered datasets

	6.4 Data Mining
	6.4.1 Selecting Modelling Techniques
	6.4.2 Building the Models

	6.5 Evaluation of the Discovered Knowledge
	6.5.1 Evaluation of the Binary Classifiers
	6.5.2 Evaluation of the Multi-Class Classifiers

	6.6 Discussion

	7 Conclusions and Future Directions
	7.1 Research Limitations
	7.2 Major Contributions
	7.3 Future Work

	A Glossary of Terms, Abbreviations and Acronyms
	B Support Material
	C Additional Results

