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R E S U M O

Com os atuais avanços tecnológicos, cada vez mais informação está a ser digitalizada,
resultando assim num aumento exponencial nos dados guardados em formato digital. Este
crescimento sem precedentes tem levantado preocupações acerca do espaço e custo dos
sistemas de armazenamento, criando uma necessidade de explorar mecanismos que visem
mitigar este problema.

Uma estratégia que se foca neste problema é a técnica conhecida por deduplicação, que
se baseia no facto que dados idênticos estão a ser gerados e armazenados repetidamente,
resultando assim num consumo desnecessário de espaço de armazenamento em disco. Deste
modo, a deduplicação propõe uma análise dos dados armazenados e, subsequentemente, a
eliminação de cópias redundantes, economizando espaço e custos de armazenamento.

Serviços como DropBox e Google Drive aplicam essa estratégia, contudo, o processamento
de dados que pertencem a vários ulilizadores fomenta preocupações de privacidade e
segurança, especialmente quando este é realizado em fornecedores de serviços de armazena-
mentos terceiros. A abordagem tradicional para resolver estes problemas é os utilizadores
enviarem os seus dados já cifrados. Contudo, usar uma cifra probabilı́stica implica que da-
dos idênticos podem resultar em textos cifrados diferentes, o que torna impossı́vel encontrar
cópias redundantes e, consequentemente, aplicar a deduplicação.

Deste modo, propomos o S2Dedup, um sistema de deduplicação seguro que explora
tecnologias emergentes de segurança assistida por hardware. Mais especificamente, a
solução proposta recorre ao Intel SGX (Software Guard Extensions), de forma a permitir a
deduplicação de dados entre utilizadores em infraestruturas de armazenamento de terceiros,
sem descuidar da segurança e privacidade dos seus dados. Além disto, o S2Dedup foi
projetado para oferecer suporte a vários esquemas de segurança, cada um oferecendo
diferentes nı́veis de espaço poupado, desempenho e privacidade. Esta caracterı́stica é
fundamental para garantir a aplicabilidade do S2Dedup a uma gama ampla de sistemas
com requisitos diferentes.

Um protótipo do S2Dedup é implementado e avaliado com cargas de trabalho sintéticas e
realistas, assim como comparado com as soluções alternativas de deduplicação seguras do
estado da arte. Os resultados mostram que é possı́vel implementar técnicas de segurança
mais robustas e ao mesmo tempo manter bons resultados de desempenho e até mesmo
alcançar, em alguns casos, uma melhoria na eficácia da deduplicação em comparação com
as soluções do estado da arte.

Keywords: Deduplicação, Segurança, Armazenamento, Hardware Confiável, SGX
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A B S T R A C T

With the current advancements in computer technologies, more and more information
is being digitized, resulting in an exponential increase of digital data. This unprecedented
growth raises concerns about the space and cost of data storage, creating the need to explore
mechanisms that strive to mitigate this ever-increasing data problem.

A strategy that addresses this issue is the technique known as deduplication, which lever-
ages from the fact that identical data is being generated and stored repeatedly, consuming
unnecessary storage space. Therefore, deduplication proposes an analysis of the stored data
and subsequently the elimination of redundant copies, thus saving storage space and costs.

Services like DropBox and Google Drive support deduplication, however, eliminating
redundant information across data belonging to multiple users raises privacy and security
concerns, specially when this is done at third-party untrusted infrastructures. The con-
ventional approach to ensure data privacy is for the users to outsource their data in an
encrypted format. However, using standard probabilistic encryption implies that identical
data will result in different ciphertexts, which makes it impossible to find redundant copies,
and consequently apply deduplication.

Therefore we propose S2Dedup, a secure deduplication system that explores emergent
hardware-assisted security technologies. In more detail, the proposed solution leverages
Intel Software Guard Extensions to enable cross-user privacy-preserving deduplication at
third-party storage infrastructures. Furthermore, S2Dedup is designed to support multiple
security schemes, each providing different trade-offs in terms of deduplication space savings,
storage performance, and privacy. Such feature is key to improve S2Dedup’s applicability to
a wider range of applications with different requirements.

A prototype of S2Dedup is implemented and evaluated with both synthetic and realistic
workloads whilst being compared to the state of the art secure deduplication solutions.
The results show that it is possible to implement more robust security techniques, while
maintaining overall interesting performance results and even achieve, in some cases, an
improvement of deduplication effectiveness when compared to the state of the art solutions.

Keywords: Deduplication, Security, Storage, Trusted Hardware, SGX
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1

I N T R O D U C T I O N

Over the last few years, due to advancements in computer and storage technologies, there
has been an exponential growth in the amount of digital information. For instance, according
to projections provided by the International Data Corporation (IDC) [4], by 2025 the stored
digital information will reach 175 zettabytes, which compared to the 33 zettabytes of 2018

and 16.1 zettabytes of 2016, makes the discussion and implementation of mechanisms to
efficiently store the ever-increasing volumes of data of the uttermost importance.

A recurrent behaviour noticeable in storage services is that identical data is being stored
repeatedly while consuming unnecessary storage space. Deduplication strives at eliminating
these redundant copies, thus enabling savings in storage space and costs, as well as, in
network bandwidth. A study conducted by Meyer and Bolosky revealed that deduplication
can reduce stored data by up to 83% in backup storage and 68% in primary storage systems.

Cloud storage providers like Dropbox and Google Drive employ this mechanism in their
infrastructures [16, 36, 50]. Additionally, to achieve higher deduplication gains these services
perform cross-user deduplication, which implies that if one or more users upload the same
data, the cloud provider will only store one copy. This approach is viable when security
and privacy are not a main concern. However, from the moment that users outsource their
data to a third-party service, they no longer have sole control over their information which
can be exploited by malicious adversaries. As an example, Dropbox in 2012 suffered a
major data breach where more than 68 million user accounts were leaked on to the internet
[5]. Or more recently, in 2020 a vpnMentor’s research team found a serious breach in an
open Amazon S3 bucket owned by Data Deposit Box, a secure cloud storage provider [14].
This leak exposed detailed information about 270,000 private files uploaded by customers
through the company’s secure cloud storage service. Namely, this attack revealed personally
identifiable information (PII) of customers, such as unencrypted administrator usernames,
passwords, and users’ local computer name and globally unique identifier (GUID), which
could have severe consequences for those affected.

In order to avoid this kind of exploits, users should encrypt their data, with their own
encryption keys, before outsourcing it to third-party storage services. However, this leads
to the scenario where identical data, owned by different users, results in ciphertexts with

1
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distinct content, thus making it impossible to apply deduplication and leverage its space
saving benefits.

1.1 problem statement

Traditionally, convergent encryption (CE) is used as the mean to enable cross-user dedu-
plication over encrypted data [30]. Namely, data is encrypted at the users’ premises with a
deterministic encryption scheme in which the secret key is generated from the data content
itself. This means that identical content encrypted by different users will generate matching
ciphertexts thus enabling deduplication. However, employing a deterministic scheme comes
with the cost of being susceptible to numerous attacks, namely leakage of information where
a server, or even a client, can detect if a certain data is a duplicate.

This leads, for example, to the “confirmation of a file attack”, where an adversary can
deduce whether a file was previously sent to a storage provider by simply uploading the
same file and verifying if deduplication occurred. This can be easily achieved in a client-side
deduplication solution since it is first sent to the server a content’s hash signature and, only
if is not duplicated, that is sent the actual content. Therefore, an adversary can check if a file
exists in a storage provider by verifying if that file is sent to the server. It is also possible
to verify if deduplication occurred by observing the time differences between the upload
of files, given that if a new file is being stored it would require a longer time to finish the
operation than for a duplicate file that is already stored and does not need to be persisted
[46].

Another example of the consequences of employing a deterministic scheme is it being
susceptible to the “learn the remaining information attack”, which is done by performing a
brute-force attack, where an adversary repeatedly tries every possible combination that could
make up the content that is trying to obtain, until finding one that matches the ciphertext.
This attack allows an attacker to recover files falling into a known set by applying CE to each
candidate message and comparing the ciphertext of the sampled message with the target
ciphertext. For example, letters from the bank usually follow a certain structure, containing
parts of boilerplate legal text plus a few with critical information, such as a user’s bank
account number and password. An attacker who knows the boilerplate content might be
able to infer a file original content by trying every possible value for the unknown parts,
encrypting it using convergent encryption and then comparing it with the ciphertext that is
trying to determine [3].

Lately, there has been a rise of hardware-assisted security technologies (e.g. Intel SGX
[11, 25]), which provide a secure trusted execution environment to perform critical operations.
This feature can be explored to aid the process of secure deduplication since the secure
execution environment provided by these technologies allows for the data to be handle in
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its original form in an untrusted storage server. This way, before sending their data to the
storage service, a user can protect it using a probabilistic encryption scheme instead, and
once it reaches the storage service, thanks to the trusted execution environment, it is possible
to securely decrypt it and apply deduplication. However, this approach is vaguely explored
by the literature and could provide novel trade-offs in terms of security and performance
when compared to traditional CE solutions.

1.2 objectives and contributions

The main goal of this dissertation is then to develop a system that performs secure
deduplication based on trusted hardware, without neglecting the storage performance and
deduplication effectiveness. Namely, we propose the following contributions:

• The design and implementation of S2Dedup, a secure deduplication prototype that
takes advantage of the functionalities provided by trusted hardware (specifically Intel
SGX), as well as, state of the art frameworks that allow the development of efficient
storage solutions (namely SPDK [12, 13]).

• The proposal of different secure deduplication schemes integrated within S2Dedup,
that balance security guarantees with deduplication performance and effectiveness.
Namely, we propose a novel approach that combines the concept of epochs with the
idea of limiting the number of duplicates per chunk. This solution is based on the
notion of masking the real number of duplicate copies so that an adversary cannot
correctly infer about the content that was previously stored.

• A detailed and extensive evaluation of S2Dedup prototype resorting to both synthetic
and realistic workloads. The evaluation contemplates more than 500 hours of experi-
ments and 60 TB of data read/written. Finally, we also compare our prototype with
the state of the art approaches for secure deduplication [27, 40]. The results show that
is possible to implement more robust security techniques, while maintaining overall
interesting performance results and even achieve, in some cases, an improvement of
deduplication effectiveness when compared to the state of the art solutions.

1.3 outline

The document is organized into 5 different chapters: State of the Art (2), Architecture (3),
Prototype (4), Evaluation (5) and Conclusion (6).
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Chapter 2 introduces the concept of trusted hardware while presenting widely-used
hardware-based trusted computing architectures and their security properties, paying special
attention to how Intel SGX operates and the functionalities that it offers. Then, a definition
for deduplication is presented along with the main features to consider when designing
a deduplication engine. Finally, existing secure deduplication techniques and solutions
based on trusted hardware are also detailed. Chapter 3 introduces S2Dedup architecture
and design, while Chapter 4 describes its implementation. Chapter 5 details the conducted
experimental evaluation and the results obtained for our prototype. Lastly, Chapter 6

concludes the document.



2

S TAT E O F T H E A RT

As explained previously, traditional encryption schemes limit the possibility of performing
deduplication at third-party storage services. Therefore, alternative procedures must be
explored. In this work, we do so by contemplating hardware-assisted security technologies,
specifically the functionalities provided by Intel SGX.

In this chapter, we start by introducing the concept of trusted hardware and discussing
existing solutions, paying special attention to how Intel SGX operates and the functionalities
that it offers (Section 2.1). Then, in Section 2.2, we describe the key concepts behind
deduplication, while detailing existing secure deduplication schemes, as well as, current
solutions based on trusted hardware.

2.1 trusted hardware

Nowadays, with the rise of hardware-assisted security technologies, cloud service providers
are progressively employing trusted hardware, especially Intel SGX [11], at their security
infrastructures (e.g. IBM Cloud Data Guard [8] and Azure Confidential Computing [2]).
This technology is key for enabling secure remote computation (Figure 1), in other words,
for being able to securely execute programs in an untrusted software environment [26].

Even though there are alternative software-based trusted computing architectures, those
solutions are limited and cannot achieve the same security guarantees as hardware-based
architectures. The reason for this is that in a software-based solution an attacker can always
manipulate software if the Operating System (OS) is not trusted. Whereas hardware-based
architectures can protect applications against attackers even when they have full control
over the system, namely when an application or even the OS have been compromised.
This happens because it is much harder for an attacker to modify hardware functionalities,
provided that the hardware is considered to be immutable [43].

5
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Source: Intel sgx explained [25].

Figure 1: Secure remote computation.

Throughout the years, several hardware-based architectures have been proposed. Maene
et al. [43] conducted a survey exploring architectures proposed by both academia and
industry. The study’s conclusions concerning security properties are shown in Table 1.

Although there are several options, it was chosen to work with Intel Software Guard
Extensions (SGX) [11], due to the reliable computing features it makes available, the security
and confidentiality it offers and that its wide use across both academia [26, 34, 37, 53, 64]
and industry [2, 8]. Moreover, it is available in commodity hardware, which facilitates its
practical application.

2.1.1 Intel SGX

Intel Software Guard Extensions (SGX) [11] provides a set of instructions in recent Intel’s
processors that ensure integrity and confidentiality. This is achieved by assuming that any
layer in the computer’s software stack (firmware, hypervisor, OS) is potentially malicious,
thus SGX only trusts the CPU’s microcode and a few privileged containers, known as
enclaves. Enclaves are private regions of memory whose contents are protected and unable
to be accessed by any process outside of it, including processes running at higher privilege
levels.
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Security Properties

Architecture Isolation Attestation Sealing
Dynamic

RoT

Code

Confidentiality

Side-Channel

Resistance

Memory

Protection

AEGIS
TPM —
TXT
TrustZone
Bastion
SMART
Sancus
Soteria
SecureBlue++
SGX
Iso-X
TrustLite
TyTAN
Sanctum

= Yes; = Partial; = No; — = Not Applicable

Source: Hardware-based trusted computing architectures for isolationand attestation [43].

Table 1: Comparative study of security properties of hardware-based trusted computing
architectures.

The memory region reserved for the enclave is called Enclave Page Cache (EPC), which
consists of 4 kB pages that store enclave code and data. Their content is only decrypted
when entering the CPU package, given that it is protected by the enclave mode, and then
re-encrypted when leaving to the EPC memory region.

Interaction. From an outsider perspective, the enclave can be characterized as a black-box,
whose only method to interact with is through communication channels that bridge the
trusted and untrusted environments.

To define these channels, Intel provides an interface definition language called Enclave
Description Language (EDL), which enables the specification of ECALLs (Enclave Calls) and
OCALLs (Enclave Calls). ECALLs enables an untrusted application to invoke a predefined
set of functions inside of the enclave and OCALLs allows for the opposite, to call out to the
untrusted application from inside the enclave.

Listing 2.1 demonstrates an example for the EDL file syntax. The trusted section must
contain the functions to communicate with the enclave and the untrusted section, the
functions to call out of the enclave.
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enclave {

trusted {

/* define ECALLs here. */

};

untrusted {

/* define OCALLs here. */

};

};

Listing 2.1: Example of an EDL file syntax.

Sealing. When the enclave is closed, either by the application itself or a power cut, its
contents are typically lost. To avoid this, the secrets that need to be preserved when an
enclave is closed must be stored outside of the enclave boundary. However, simply storing
the enclave secrets outside of it, without any encryption, can lead to a major security breach.
To prevent this, there is a mechanism that is known as sealing that is responsible for the
process of encrypting enclave secrets before being stored persistently.

The encryption is done by using a private Seal Key that is unique to a particular SGX
enabled platform and enclave, and is unknown to any other entity. That key is used to
encrypt data to that particular platform or to decrypt data already on the platform. The
process of these encrypt and decrypt operations is referred to as sealing and unsealing,
respectively.

Remote and Local Attestation. Another interesting security property of SGX is that
it provides local and remote attestation. Local attestation can be very useful, because
sometimes an application might require the usage of two or more enclaves that need to
collaborate with each other and, therefore, the enclaves must prove to each other that can be
trusted. The process of remote attestation is similar but occurs between an enclave and a
third-party application/service running at a distinct server. Attestation allows assessing the
identity of an enclave, its structure, the integrity of its code and ensuring that this code is
running on a genuine SGX processor.

2.2 deduplication

Deduplication is a technique that allows eliminating redundant copies of data within
a dataset, thus reducing the required storage space and consequently lowering storage
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costs [46]. It is similar to compression, but instead of only identifying intra-file or block
redundancy, deduplication can also eliminate redundancy between files or blocks stored at
different times or even at servers in different locations.

Although there are many variations on how deduplication operates, it generally follows
the following steps:

1. Separate incoming data into fixed or variable size chunks;

2. Calculate an hash sum for each chunk using a cryptographic hash function;

3. Compare the returned hash values with the already existing ones in an index:

a) If an hash value already exists, this means that a duplicate chunk has already
been stored. Thus the new chunk does not need to be stored again and, whenever
requested (read operation), the content of the previously stored chunk is returned
instead;

b) If not, a new chunk is stored and the index updated.

There are several categories for classifying deduplication solutions, such as their granular-
ity, that is, how data is partitioned into the chunks that are going to be compared during
deduplication. If it occurs at the file level, the deduplication engine takes into account the
entire file, eliminating duplicate copies of the same file, which leads to fewer chunks to index
and process. However, this also implies that the smallest alteration to a file requires storing
a full copy of it, thereby decreasing deduplication space savings (ratio). An alternative
approach is partitioning chunks at the block level, which means that data is partitioned into
fixed-sized or variable-sized chunks. This approach offers higher deduplication ratios given
that smaller chunks make it more probable to find redundant information. However, this
approach leads to increased processing and metadata size (e.g., index) overhead.

Deduplication can further be categorized based on the point in time that it occurs, in
other words, if the process happens before or after data is written to disk. In case it happens
before, it is called inline deduplication and I/O requests are intercepted and processed (i.e.,
deduplicated) before being persisted at the storage medium. This approach can introduce
major overhead for write requests latency, but avoids writing redundant content to disk.
With the latter approach, known as offline deduplication, data is first written to the storage
system and only later (in background) checked for duplicates. Although this alternative
solves the overhead introduced at the critical I/O path of write requests, it also entails that
is necessary to temporarily store redudant data at the storage medium, thus requiring more
storage space than inline deduplication.

Another important decision to take when implementing deduplication is its location,
particularly, if it will happen at server-side or client-side. Regarding the first approach, the
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client sends the data (e.g., entire file) to the server and only there is checked for duplicates.
In the case of client-side deduplication, data partitioning and hashing are done at the client
that then sends the hash signatures to the server. The server checks for duplicate hash
signatures at the index and only requests unique chunks from the client, thereby enabling
network bandwidth savings.

2.2.1 Secure deduplication

Throughout the years, different solutions have been proposed in an effort to ensure
secure deduplication. A ground-breaking approach from which many other solutions
developed from is the concept of convergent encryption (CE), introduced by Douceur et al.
[30]. Convergent encryption is a deterministic symmetric encryption scheme that not only
provides confidentiality but also enables deduplication across ciphertexts generated by
different users. This is accomplished because in CE the encryption key is generated from
the cryptographic hash value of the plaintext content, which leads to identical plaintexts
producing the same keys and, consequently, the same ciphertexts. In other words, a user
derives the key K from message M with a cryptographic hash function H and then encrypts
M with K resulting in a ciphertext C, which can be translated to K = H(M), C = E(K,M),
where E is a block cipher.

Furthermore, the convergent encryption scheme also includes a phase where a tag T
is generated that can be used to detect duplicates. This is possible because the tag also
results from the plaintext message itself. This way, for two identical messages, the generated
tags will be the same. It is worth taking note that this tag is derived independently from
the convergent key, thus not being possible to deduce the convergent key from it and
compromising data confidentially.

However, CE due to its deterministic nature, it introduces frequency leakage, so that an
adversary can infer if certain data was deduplicated or not, thus leading to the “confirmation
of a file attack”. Moreover, it is also susceptible to offline brute-force attacks, where a
adversary can recover original plaintext data falling into a known set by applying CE to each
candidate message and comparing the ciphertext of the sampled message with the target
ciphertext, also known as the“learn the remaining information attack”.

Bellare et al. proposed a file-level encryption solution known as Message-Locked Encryption
(MLE) [20], wherein the key used for encryption and decryption, much like in convergent
encryption, is derived from the message itself. MLE suggests four variants of the convergent
encryption approach - CE, HCE1 (Hash Convergent Encryption 1), HCE2 (Hash Convergent
Encryption 2) and RCE (Randomized Convergent Encryption). Of these schemes, it is worth
pointing-out RCE, since it is the most efficient, being able to generate the key, encrypt the
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message and produce the tag in a single pass over the plaintext data. This is only possible
because, unlike CE, HCE1 and HCE2 that first derive its key K from the message and only
later encrypt it, requiring at least two passes over the data, the RCE approach first picks a
random symmetric encryption key L and then, in one pass, encrypts the message using L
and generates the MLE key K simultaneously. Finally, it encrypts L using K and derives the
tag from K, resulting in a single pass over the data.

Unfortunately, since the encryption key is generated from the message itself, MLE is
again susceptible to brute-force attacks and frequency leakage. Also, RCE is vulnerable to
duplicate faking attacks, meaning that a user might not be able to retrieve their original
message because it can be replaced by a fake one without being noticed. In response to this
problem, Bellare and Keelveedhi proposed an interactive version of RCE, called interactive
randomized convergent encryption (IRCE) [19]. In IRCE, whenever data is uploaded, the
server replies back with the necessary metadata for integrity validation, making it possible
for an honest user to interact with the server in order to verify if indeed the original message
is stored. Furthermore, Chen et al. presented a solution named Block-level Message-Locked
Encryption (BL-MLE) [23], that extends MLE in order to support both file-level and block-level
deduplication over encrypted data.

Since MLE is susceptible to brute-force attacks, Keelveedhi et al. [36] proposed a new
architecture called DupLESS (Duplicateless Encryption for Simple Storage). To withstand this
type of attack, DupLESS converts a predictable message into an unpredictable one with
the aid of a key server (KS) that is separate from the storage service. In this system, a
client requests from the KS a convergent key to encrypt their message via an oblivious
pseudorandom function (OPRF) protocol. This key is generated by the KS based on the hash
of a message and a system-wide key. To stop external attackers, KS requires the client to
previously authenticate, as well as, sets a limit on the number of requests that a client can
make during a fixed time interval. As long as the KS remains inaccessible to the attackers,
high security is achieved. On the other hand, DupLESS can deliver at least the same security
as MLE, even if both the key server and storage service are compromised.

2.2.1.1 Optimizations

Besides security, efficiency and data availability also play a very important role in dedupli-
cation. In fact, traditional solutions based on convergent encryption must manage a large
number of convergent keys, which must be stored in a resilient fashion at the client premises.
Dekey [39] is an efficient and reliable key management scheme for block-level deduplication,
that removes the responsability of key management from the users and instead builds
upon secret shares of the original convergent keys while distributing these across multiple
KM-CSPs (Key-Management Cloud Service Providers). The secret shares are created by making
use of the RSSS (Ramp Secret Sharing Scheme) [22, 29], which allows the key management to
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adapt to different reliability, confidentiality, storage overhead and performance levels. This
is possible because RSSS allows tuning a variety of parameters, specifically:

• the number of shares to generate from a secret (n), which translates to the number of
KM-CSPs;

• the minimum number of shares necessary to recover information from the secret (k),
meaning that the higher is k, the lower is the reliability level;

• the confidentiality level (r), which ensures that no information about the secret can be
deduced from any r shares.

Another solution that seeks to address the problem of security and efficiency is SecDep
[66], whose aim is to resist brute-force attacks and to reduce large key space and compu-
tation overheads. This is accomplished because SecDep employs User Aware Convergent
Encryption (UACE) and Multi-Level Key management (MLK). By applying UACE, SecDep
resists brute-force attacks, since file-level CE keys are generated using a server-aided HCE
(Hash Convergent Encryption), whereas for chunk-level applies an efficient user-aided CE
approach, which also reduces computation overheads. Regarding MLK, it lowers key space
overhead by encrypting chunk-level keys using file-level keys, thus an increase in the number
of users, will not linearly increase the key space overheads. Moreover, MLK splits a file-level
key into share-level keys via Shamir secret sharing scheme [54] and sends them to multiple key
servers, which eliminates the chance of having single-point-of-failures.

TED (Tunnable Encrypted Deduplication) [40] is solution proposed by Li et al. that also relies
on a server-aided key manager. TED introduces a new way to compute a block’s hash,
which bases the key derivation on both the chunk content and the number of chunk copies,
thus relaxing the deterministic encryption nature. This property allows controlling the
maximum number of duplicate copies for a given chunk, parameter that is referred to as t.
By choosing a bigger or smaller t value, a user can configure the deduplication effectiveness,
and, consequently, control the storage blowup factor and information leakage. Namely, if
t is defined as 1, it means that it is only possible to have one copy per chunk, leading to
blocks with the same content always having different hashes, thus giving the perception that
the system is operating on data with no duplicates. On the opposite end, if t tends to ∞, it
enables an infinite number of copies per block, which provides the same security guarantees
as not having this control mechanism.

The counter that maintains the number of copies per chunk is implemented with the
Count-Min Sketch [24] algorithm (Figure 2), which allows obtaining a frequency estimation for
each unique chunk, whilst protecting the chunk identities and fixing the memory footprint
for the corresponding metadata structure. This algorithm is implemented by having a
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two-dimensional array with r rows and w counters per row. It is also necessary to define
a hash function (H1,H2,..) per row that returns a value from 1 to w, which represents
the counter’s index for its respective row. This way, when it is necessary to provide the
number of duplicates for a chunk (c), the short hashes H1(c)...Hr(c) are calculated and
the minimum counter indexed by (x,Hx(c)), being x each one of the rows, corresponds to
the estimated number of duplicates for that chunk. However, it is worth noting that w is
generally smaller than the number of different chunks, which leads to hash collisions, and,
consequently to overestimated values. On the other hand, it has its perks in terms of security,
the approximate counting protects the chunk information from an attacker since it is not
able to infer a chunk’s content from its short hashes.

Figure 2: Count-Min Sketch algorithm.

To resist offline brute-force attacks, the mentioned solutions DupLESS [36], Dekey [39],
SecDep [66], SecDep [66], TED [40] and others like ClouDedup [51] or [55], rely on the
aid of additional independent key servers, which is not always possible, especially in a
commercial context. That is why Liu et al. proposed the first single-server scheme that
supports client-side encryption [41], where by exploiting the PAKE (password authenticated
key exchange) [21] protocol, two parties can privately compare their secrets and share their
encryption keys, not needing additional key servers.

2.2.2 Secure deduplication with trusted hardware

Deduplication with trusted hardware is a very recent concept, hence why the literature
for this topic is still limited. Dang and Chang [27] introduced a solution that achieves the



2.2. Deduplication 14

bandwidth savings of client-side deduplication while preventing side-channel attacks. To
this end, they proposed a three-tier architecture composed of three parties: the storage server
S, enterprise proxies Ps and clients Cs (Figure 3). In this system, each client C uploads their
files to a proxy P where it is performed an intermediary deduplication step. The chunks are
then sent to the storage server S to perform cross-proxy deduplication.

Source: Privacy-Preserving Data Deduplication on Trusted Processors [27].

Figure 3: Dang and Chang proposed three-tier architecture.

To achieve data confidentiality, the solution relies on two encryption layers, accomplished
by leveraging trusted SGX-enabled processors that offer a protected execution environment.
The first layer is implemented at the client that encrypts data with a deterministic message-
derived key that was received from the proxy enclave via a blind signature protocol. The
second layer is performed by both the proxy and storage server and introduces randomness.
This randomness is computed using a semantically secure encryption scheme and achieves
protection from equality of information leakages while data is stored, that is, masks if two
records represent the same file.

The proxies and storage server work in epochs, so deduplication is only performed at
the end of an epoch, which protects from an adversary detecting equality of information
leakages for data stored in different epochs. To further prevent this type of leakages, which
could be deduced from the access patterns that the SGX-enabled processor performs during
an epoch, the deduplication is done using a privacy-preserving compaction [28] that can
mask any correspondence between files. Also, the traffic between the proxies and storage
server is padded to prevent traffic analysis from revealing sensitive information or metadata.

Another solution that implements storage functionalities with trusted hardware is TrustFS
[32]. TrustFS is a modular stackable file system framework that executes critical operations
in a secure trusted hardware environment provided by Intel SGX. To support secure dedu-
plication TrustFS employs two enclaves, one is used to re-encrypt incoming data since it
was encrypted with a user’s own key and to be able to find duplicates all data must be
consistent. Therefore, the incoming data must first be decrypted with their owner’s key and
then encrypted with the server’s secure key. The other enclave is used to calculate a chunk’s
cryptographic hash value so that when it is indexed in the metadata of deduplication, the
original content cannot be easily deduced. In this solution to reduce side-channel attacks the
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deduplication is performed in epochs as well, which prevents from an adversary finding
out if a chunk was already stored in previous epoch, but it comes with the cost of lowered
storage savings.

2.3 discussion

As described in Section 2.1, there are several platforms that provide secure and isolated
execution environments, which allow for the processing and storage of sensitive data. Of
these, it was chosen Intel SGX [11], since it offers useful features and is widely used across
both academia [26, 34, 37, 53, 64] and industry [2, 8]. Moreover, it is also available in
commodity hardware, which facilitates its practical application.

When it comes to deduplication, the traditional solutions that aim to achieve secure
deduplication usually apply a deterministic encryption scheme, like convergent encryption
or some sort of variation that developed from this concept (Section 2.2.1). However, these
solutions have some security flaws or rely on the use of a server-aided key manager, which
requires additional resources.

One of these flaws is centered around the fact that traditional approaches allow for the
storage server to be able to recognize when a block is duplicate or not, without any control
mechanism. This is inherently a requirement for deduplication since this is how the storage
server controls if certain data must be written to the storage device or not. However, it can
also lead to information leakage, such as equality of information, so additional measures
must be put into place to try to mitigate this issue. A possible approach is to perform
deduplication in epochs, which protects from an adversary finding out if a chunk was
already stored in a previous epoch, thus making it so that the server is only able to infer
duplicates from the same epoch. Obviously, this scheme leads to lower storage savings,
which can be mitigated if one leverages the concept of temporal locality, which states that a
significant percentage of duplicate blocks are expected to be written in a small time-window.
Although this property may not be present in all storage workloads, it is highly explored
in the deduplication field to introduce caching optimizations and improve deduplication
performance [46].

However, applying deduplication in epochs raises some issues for the traditional approach,
since CE is not designed in a way that allows for the clients to synchronously change the
epoch. Thus it is required to depend on an external key server, a secure proxy or employ
trusted hardware on the storage server to control the change of epoch.

Dang and Chang [27] achieved secure deduplication between epochs by relying on the
use of trusted hardware and enterprise proxies, which validated the idea of combining
deduplication with hardware-assisted security technologies and paved a way for future
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solutions (Section 2.2.2). However, there are still some drawbacks associated with the
proposed approach. For instance, it assumes the existence of reliable proxies between clients,
which is not possible in many use cases. In addition, the several levels of processing lead to
performance overhead in the critical I/O path as well as requires additional resources (e.g.,
additional servers).

Like Dang and Chang, TrustFS [32] also exploits temporal locality and only deduplicates
within an epoch. However, TrustFS was developed using FUSE (Filesystem in Userspace),
which leads to a relatively big overhead and was only tested using a synthetic benchmark,
so it was not possible to get a perception of the real trade-offs of performing deduplication
in epochs.

Evidently, performing deduplication in epochs does not protect from the server inferring
duplicates from the same epoch, so additional measures must be put in place. Of the state
of the art solutions that applied epochs, the approach proposed by Dang and Chang [27] to
protect against leakage in the same epoch assumed an anonymous communication service
in each enterprise service within their local networks. However, in their words, that is “an
aggressive and unreasonable requirement”. In addition, TrustFS did not tackle this issue. So
other solutions must be considered.

Of the state of the art solutions, TED [40] stood out. This security scheme does not apply
epochs but it offers some interesting security guarantees. Of these, it is worth noting that it
is able to mask the real number of duplicates by basing the computation of a block’s hash on
the number of chunk copies. In addition, it also offers a way to control the trade-off between
storage efficiency and data confidentially. However, although TED approach is efficient on
not disclosing the frequency of duplicates per chunk, their estimated frequency counter
can lead to the speculation that a block has a higher number of duplicates than in reality,
which can lead to lower deduplication gains. Nevertheless, the idea of limiting the number
of duplicates for a chunk can be applied to mitigate in-epoch leakage.

Thus, the goal of this thesis is to design a secure solution that solves the aforementioned
problems while achieving low storage performance overhead and high deduplication gains.
This is attained by further exploring Intel SGX functionalities and proposing a novel epoch-
based secure deduplication scheme that is able to hide the real number of duplicates per
block from malicious attackers.
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S 2 D E D U P A R C H I T E C T U R E

This chapter details S2Dedup design and architecture, as well as, the different secure
deduplication schemes supported by our solution.

Our architecture assumes a server that deals with several clients and is equipped with
trusted hardware, which from its perspective is like a black box after the code is loaded.
S2Dedup uses this as an advantage to implement a secure deduplication scheme that handles
sensitive information on the server-side that is protected from a potentially unreliable server
or other clients.

Threat Model. Our design assumes that the client application is running on trusted
premises. On the other hand, the communication channels and server are not trusted and
susceptible to honest-but-curious attackers [49].

Namely, an adversary might take control over the operating system or other software
deployed at the storage server, but, it is unable to compromise trusted hardware (SGX).
Moreover, since deduplication related metadata is maintained outside of a trusted environ-
ment, we take into consideration that an adversary might exploit this information to infer
the number of duplicates per block and check what blocks are duplicated or not. It would be
possible to prevent the latter attack, namely for an attacker to know if a block has duplicates
or not, by using Oblivious RAM [56], and designing our deduplication engine to behave in
constant time to prevent side-channel leakage. However, relying on Oblivious RAM would
take a considerable toll in the performance of our storage system [52, 63], so we prioritize
feasibility, leaving the support for these two types of attack for future work.

Finally the communication channels between the clients and server can be eavesdropped
but, since we are considering honest-but-curious attackers, the content of data sent through
these channels cannot be tempered with.

3.1 general architecture

The main goal of this dissertation is to develop a secure deduplication system that takes
advantage of the functionalities provided by trusted hardware. To this end, we developed
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a general system architecture for S2Dedup, depicted in Figure 4, that demonstrates how
trusted hardware can be integrated with the deduplication workflow.

Figure 4: System architecture overview.

The design follows the classic client-storage server configuration, where a client sends
data to a third-party remote server to be stored persistently.

Concerning the deduplication component, there are three main design choices to take into
account, which are the granularity, timing and location. When it comes to granularity and
timing, our solution works at the block-level and follows an inline approach as these can
achieve higher deduplication gains. Also, deduplication is done at the server-side since any
approach that changes the client-side behaviour towards deduplication will reveal duplicate
information [17].

S2Dedup design is compliant with the architecture of hardware-assisted security tech-
nologies similar to Intel SGX. This choice was done due to SGX’s availability in commodity
hardware and popularity in academia [26, 34, 37, 53, 64] and industry [2, 8]. The goal of the
trusted hardware module is to ensure that computations done by the storage system over
plaintext are conducted in a privacy-preserving setup as well as to store critical data, such
as encryption keys.

3.1.1 Flow of Requests

When a client wants to send their data to a remote storage server, it begins the process
by encrypting it with its own key using a standard probabilistic encryption scheme (Figure
4- 1 ), to protect against attackers targeting the network channels and the untrusted remote
server.
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Then, the encrypted data is sent over the network through a remote storage protocol (e.g.
iSCSI) (Figure 4- 2 3 ). Once it reaches the storage server, the client’s encrypted data is
forwarded to a storage system (Figure 4- 4 ) to be processed. This component integrates a
deduplication engine that analyzes the data, block by block, in order to detect duplicates.
To accomplish this, the deduplication engine must calculate a hash digest for each block
(Figure 4- 5 ) and compare it with the hashes of previously stored blocks.

Note that when data is encrypted at the client level, identical blocks will result in different
ciphertexts since it is used a probabilistic encryption scheme and each client has a different
encryption key. Therefore, the hash calculation needs to be done over the plaintext message
in order to find duplicate blocks. Accessing the data in its original form outside of a secure
execution environment would reveal sensitive information to an attacker at the untrusted
server, thus the hash calculation requires the use of SGX. Moreover, for one to able to decrypt
the client’s data it is necessary to use their key, thus is assumed that S2Dedup has brief
bootstrap stage, where a secure channel is initialized between the client and the remote
enclave. This secure channel is used to exchange critical data between the client and the
enclave, such as the symmetric key used by the client to encrypt their data. Instrumenting
enclave code in this way is a common requirement for these systems, and has been shown to
be achievable with minimal performance overhead [18, 53]. The establishment of a secure
channel and the exchange of keys is not the focus of this dissertation, but it would be
possible resorting to existing protocols, such as the ones presented by Bahmani et al. [18]
and Machida et al. [42]. The enclave can be seen as an extension of the client on the server,
which allows us to do these processing.

If a duplicate block is found, the redundant content does not need to be written to
the storage medium. If the block is unique, then the block’s content is re-encrypted
using a universal encryption key, that is only accessible by the enclave (Figure 4- 6 ), and
then forwarded to the storage device (Figure 4- 7 ) . The re-encryption process is again
accomplished with the aid of SGX since it requires decrypting the client’s encrypted data
and then encrypting it with the universal encryption key. Since plaintext data will be disclosed
temporarily, this needs to be done at a secure enclave. This re-encryption process is required
because the storage server is used by multiple clients, thus the data needs to be stored in a
uniform manner so that when it is necessary to access it, it is not necessary to control which
of the client’s keys was used to encrypt each of the blocks.

Re-encryption and hash calculation steps are done in two separate enclave invocations.
The alternative approach would be to do both in a single enclave call, while always out-
putting to the untrusted environment the corresponding hash and encrypted block. In a
deduplication ecosystem, one expects to find a high percentage of duplicates, therefore
most write operations will not be persisted into the server’s storage medium. Being this the
case, doing the re-encryption step for duplicate blocks that will not be stored is unneces-
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sarily increasing the processing done at the enclave, as well as, the data being transferred
between the enclave and untrusted environment. Thus, our approach only performs data
re-encryption when a block is found to have unique content.

Moreover, due to performance reasons, our design ensures that only a block (e.g., 4kB of
data) is sent to the enclave at each time. This is important for trusted hardware solutions,
such as Intel SGX, as several studies show that transferring large amounts of data (i.e., in the
order of few MiB or more) to enclaves has a negative performance impact [33, 57, 58].

When a client wants to retrieve data from the remote server, the request follows a similar
process. Once it reaches the storage system 4- 4 ), the deduplication engine is consulted,
block by block, in order to figure out where in the storage device is stored the requested
data. When it obtains the addresses, the data is read from storage (Figure 4- 7 ), decrypted
with the encryption key and then re-encrypted with the corresponding client’s key (Figure
4- 6 ). The latter two steps are done inside a secure enclave. Afterwards, the encrypted data
is sent over the network to the client (Figure 4- 4 3 ), where is then decrypted and read by
the client (Figure 4- 2 1 ).

3.2 deduplication engine

As one can infer from Section 3.1, one of the key elements of the proposed system is the
deduplication engine. This engine is integrated in the storage system by a simple interface,
of which is worth pointing out the read block and write block operations (Listing 3.1).

uint64_t read_block(uint64_t laddr);

uint64_t write_block(uint64_t laddr, char *content);

Listing 3.1: Extract from the deduplication engine interface.

In a system that performs deduplication the address that the client perceives to store a
certain block, also known as logical address (laddr), usually does not correspond to its
physical address (paddr), that is, the address in the storage device that the block is actually
stored at. This happens because when a block already exists in disk is not written again
and, when is new, the address that is stored at is controlled by the deduplication engine.
Therefore, functions like the read block and write block are required.

The read block operation is used by the storage system to figure out where to read in
disk a certain block. It receives as an input the logical address (laddr) of where the client
is trying to read and returns the physical address (paddr) of where that block is actually
stored.

Likewise, the write block operation is called by the storage system to figure out if a
block is new and if that is the case, where to write it in the disk. It receives the block’s
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laddr and content to detect for duplicates and returns, in the case of a new block, the
paddr at where the operation should be performed.

Figure 5: Deduplication system architecture.

Since S2Dedup is following an inline deduplication approach, this engine is composed
by four modules (Figure 5) - interceptor, index, freeblocks, metadata - each one
playing a critical role in the correct execution of the deduplication algorithm:

• interceptor - receives external requests, such as read block and write block

operations, and maps the logical address (laddr) to the corresponding physical
address (paddr) at which the operation should be executed.

• index - this module is responsible for keeping track of a block’s physical address
(paddr) and number of references (number of duplicates) (nRef). Since using a block’s
content as a key for search purposes would be inefficient, its corresponding hash sum
is used instead.
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• metadata - manages the mapping of a logical address to the physical address. Es-
sentially maintains the correspondence between the address that a client perceives to
store a certain block and the address in the storage device that is actually stored at.
Therefore, when we want to access a certain address, it is first required to consult this
module in order to determine where to read from in the storage device.

• freeblocks - is a pool of free physical addresses that are available to be written to.
A physical address can become available when the data is replaced or deleted and no
laddr maps to the content that the physical address is storing. Thus it is not necessary
to preserve it and that physical address is considered free for new content to be written
to. In order words, a physical address is available when its number of duplicates, that
is, the correspondent nRef value maintained by the index module, reaches zero.

Considering a scenario that a client wants to read some data from the storage device.
When the storage system receives that request, it invokes the read block operation (Figure
5- 1 ), provided by the interceptor module, for each of the blocks that is trying to read.

The interceptor based on the logical address (laddr) that it receives as an input,
consults the metadata module to find its correspondent physical address (paddr) (Figure
5- 6 ), that is, the address in the storage device that the block’s content should be read from.
Once the interceptor obtains the paddr, returns it back to the storage system (Figure
5- 1 ).

In the case of a write request, the storage system calls the write block method in the
interceptor module for each of the blocks that is trying to write (Figure 5- 1 ). The
interceptor receives as an input not only the block’s laddr, but also its content, in
order to be able to detect duplicates. However, directly using its content as a key to compare
to previously stored blocks would be inefficient, thus the interceptor begins its operation
by calculating its corresponding hash. As explained in 3.1.1, this is accomplished with the
aid of SGX, because the hash calculation needs to be done over the plaintext message and
handling it outside of a secure execution environment would reveal sensitive information to
a possible attacker.

Once the hash is calculated, the index is consulted (Figure 5- 2 ), to check if the block is a
duplicate and determine the physical address that is stored. In the case of a new block, an
available address to write to is return instead. Thereby, the index receives the computed
block’s hash and tries to determine if it is a duplicated block by consulting hashtable

A (Figure 5- 3 ). If it already exists, the number of references to that block is incremented,
otherwise, a free physical address is requested from the freeblocks module (Figure 5- 5 )
and a new entry added to the hashtable A and B (Figure 5- 3 4 ).

Afterwards, based on the paddr returned from the index and the laddr received as
an input in the write block operation, the interceptor invokes a put operation to
the metadata component (Figure 5- 6 ) . This module updates the physical address that
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is mapped by the laddr that it received, so that when it is required to read from that
laddr we know the current address in the storage device that the block’s content should
be read from. However, when this put operation is performed, it means that there is one
less duplicate copy for the previous paddr that was mapped by that laddr. Thus the
index module, more specifically, the nRef in the hashtable A for that paddr, should be
updated.

Thereby, once the metadata completed its operation, the interceptor sends the pre-
vious paddr to the index module to update its nRef (Figure 5- 2 ). The requirement for
the deduplication engine to be able to, based on a paddr, update its current number of
duplicate copies, resulted in the need for the hashtable B. This hashtable B manages
what content (hash) is stored at a certain paddr (Figure 5- 4 ) and, based on this, we can find
its correspondent nRef in the hashtable A (Figure 5- 3 ) and, consequently, decrement
the current number of duplicate copies for that paddr. If the nRef value happens to reach
zero, this means that no laddr maps to that paddr, thus that paddr is free to store new
content. Consequently, it is then added to the freeblocks pool and the respective entries
in the hashtable A and B are deleted.

When all of this is completed, the interceptor can finally inform the storage system
if the block is new or a duplicate and, in the case of a new block, where to write it in the
storage device (Figure 5- 1 ).

3.3 security solutions

Applying deduplication over encrypted data raises new challenges, given that a user
cannot simply encrypt its data using their private key, since the same original data, owned
by different users, may result in different ciphertexts, which makes it impossible to find
duplicates. In fact, if a probabilistic encryption scheme is being used, even identical blocks
from the same user will be encrypted to ciphertexts with different content.

Convergent encryption (CE) solves this problem by encrypting data with a key that is
derived from the block’s content. This way, identical plaintexts will generate the same
ciphertexts, which makes it possible to perform deduplication over encrypted data. However,
this technique is susceptible to numerous attacks, like when an adversary tries to deduce
whether a file was previously sent to a storage system or when an adversary tries to figure
out the original content of a file, by performing a brute-force attack, where repeatedly tries
every possible combination until finding one that matches. Moreover, CE also requires
the client to store the convergent keys generated, so it can later access the data that was
encrypted using this approach.
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Next, we detail three secure deduplication schemes, supported by S2Dedup, that offer
different security and privacy guarantees.

3.3.1 Enclave Based Scheme

S2Dedup relies on hardware-assisted security technologies that grant access to a secure en-
vironment to perform deduplication and even store sensitive information, such as encryption
keys or deduplication related metadata.

The first security scheme, named “Enclave Based”, assumes that clients encrypt their
data at trusted premises, with a probabilistic encryption scheme and a private key, before
sending it through the network. Once the encrypted data reaches the storage server, it
is partitioned and sent to the interceptor module, where it is processed within the SGX
protected environment, block by block. This enclave stores the client’s symmetric key, which
allows for the system to securely decipher the encrypted data and process it in plaintext.
Namely the block’s hash sum is calculated over the plaintext, inside the enclave, using a
specific hash key used only to compute a block’s hash, that is also stored in the enclave.

This hash is used by the deduplication engine, which operates outside of the enclave,
to verify at the index if this is an unique or duplicate block. In case that it is unique, the
data is encrypted, again within the enclave, using the encryption key, which is kept in the
enclave as well. This key is different from the hash key not only because it offers more
security guarantees, but also because it makes this scheme adaptable to more robust security
techniques, which are discussed in Section 3.3.2 and Section 3.3.3.

It is noteworthy that outside of the enclave it is only handled the client’s data encrypted
by their own key, the generated block’s hash and the client’s data encrypted by the en-
clave encryption key, thus at no point, the client’s original data exists outside of a secure
environment.

In the case of a read operation, it follows a similar process. The client sends the request to
the storage system and this consults the deduplication engine, block by block, in order to
figure out where to read the data from in the storage device. Once it obtains the addresses,
the storage system reads the data from the disk. However, this data was previously encrypted
using the server’s encryption key, thus for the client to be able to read, it must be re-encrypted
with the client’s own key. Since this operation requires the data to be handle in its original
form, this re-encryption process is also performed within the enclave. Once all the data is
read and encrypted with the client’s key, it is sent over the network to be then decrypted
and read by the client.

S2Dedup by relying on hardware-assisted security technologies allows for the use of a
probabilistic encryption scheme to encrypt the client’s data, instead of a deterministic one
proposed by the convergent encryption approach. This is possible because our solution
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offers a secure environment in the server for the data to be handled securely in its plaintext
form. Moreover, our solution also avoids the need for the client to store in a resilient fashion
the convergent keys generated.

3.3.2 Epoch Based Scheme

The “Enclave Based” scheme can be improved in terms of security guarantees by trading
off some of the achievable deduplication space savings.

Although “Enclave Based” scheme manages to perform secure deduplication to some
degree, it still suffers from some of the same security issues as the convergent encryption
approach, meaning that an attacker is still able to detect if a block is duplicate. For example,
an adversary can send a file to the storage server and verify how the deduplication related
metadata is affected since it is stored outside of a secure environment.

To protect against this type of attack, we developed an alternative scheme named “Epoch
based” supported by the work of Dang and Chang [27] and Esteves et al. [32]. In S2Dedup
we leverage the concept of temporal locality, that states that a significant percentage of
duplicate blocks are expected to be written in a small time-window [46], to increase the
provided security guarantees, whilst still ensuring its deduplication effectiveness.

In more detail, the proposed scheme operates in epochs, that change according to a
pre-defined number of operations or time period. In each epoch, a new hash key is generated,
therefore making it impossible to detect duplicates from different epochs. Namely, identical
data processed at the same epoch will produce the same hash and will be deduplicated.
However, if identical data is processed at a different epoch, it will not be deduplicated since
different keys were used to calculate their hashes, thus from an outsider perspective, it
will be as if the deduplication system is processing a block with distinct content. Since the
hash key changes for each of the epochs, we cannot use the same key to encrypt the data
(encryption key) as the one to compute its hash (hash key), since to be able to decrypt the data
after that epoch ends, it would require the control of which key was used to encrypt each
block, which introduces unnecessary complexity to a problem that can be easily solved by
simply using different keys.

If storage workloads exhibit strong temporal locality, most duplicates will be written
at the same epoch, thus not affecting significantly the achievable deduplication gain. In
Chapter 5, we show that indeeed this is valid for different realistic workloads. Nevertheless,
the duration of an epoch can have a big influence on the deduplication gains and level of
security. A smaller epoch offers higher security but also leads to fewer duplicates being
detected, while a larger epoch allows finding more duplicates at the cost of leaking more
information about the number of duplicates of a given workload.
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In conclusion, with this scheme, an attacker will not be able to infer the number of
duplicates per block across different epochs, whilst still enabling deduplication space
savings. However, it does not protect from the server inferring duplicates from the same
epoch.

3.3.3 Epoch and Exact Frequency Based Scheme

Li et al. [40] proposed a solution that determines a block’s hash sum not only on its content
but also on the current number of blocks that were found to have the same content. This
allows controlling the maximum number of duplicate copies for a given chunk, parameter
that was referred to as t in Li et al. work. The smaller the t parameter, the higher the security
offered, but it comes with the trade-off of a lower deduplication effectiveness. Evidently, the
higher this parameter, the opposite behaviour occurs.

This solution bases the frequency counter on a Count-Min Sketch algorithm, which only
provides approximate counters in order to reduce the memory footprint for the metadata
where these counters are stored. This algorithm is known to lead to inaccurate counters
that overestimate blocks frequency. In some cases, such behaviour results in conjecturing
that a block has a higher number of duplicates than it has in reality and, therefore, limits
its number of copies, which leads to a lower deduplication effectiveness. For example,
imagining a scenario that defined t as 5 and the counter indicates that a certain chunk had
already 5 duplicates, when in reality only had 3. If that chunk were to be written again it
would be treated as if the system is dealing with a new chunk, thus will not be deduplicated
and, consequently, reducing the deduplication effectiveness. However, this approach comes
with an advantage, the way that is implemented protects the deduplication system from
disclosing the frequency of duplicates per chunk to an attacker.

With the secure environment provided by trusted hardware, an alternative scheme can be
devised. Instead of using an estimated counter, we can base our calculations on an exact
counter, that is, a counter that accurately provides how many duplicate copies for a block
were previously stored. This way, we can ensure that the expected deduplication ratio is
obtained. Revisiting the example mentioned above, if t is 5 and the system already handled
3 copies of a chunk, the exact counter will indicate correctly 3 copies. Thus if the same
chunk is written again the maximum value still was not reached (3<5), so that chunk will
be deduplicated.

Furthermore, by using SGX enclave to store this counter, the security guarantees offered
by an estimated counter are no longer relevant, since an attacker will not be able to access
this counter.
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However, since the secure memory space offered by SGX is limited, when all the memory
is used by the exact counter, it is necessary to clear it and calculate a new hash key. This is
similar to the “Epoch based” setup, but now the epoch is not limited to the number of write
operations performed, but by the enclave’s memory.

Based on this, one might perceive that with an exact counter the deduplication gain is
more affected than with an estimated counter, but that is not the case. It is necessary to take
into account the temporal locality, that an epoch only changes after many operations and that
the t parameter, based on TED, is expected to be relatively small, therefore making almost
imperceptible the change of epoch in the deduplication ratio. Moreover, the integration of
epochs into this solution adds the same security guarantees that the “Epoch based” scheme,
therefore resulting in an extra layer of security, since an attacker is also not able to detect
duplicates from different epochs.

In conclusion, with this scheme, we are able to mask the number of duplicates per block
across different epochs and within each of the epochs, as well.
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P R O T O T Y P E

We now describe the S2Dedup prototype that is evaluated and validated in Chapter 5. In
this chapter we begin by discussing how the server components were implemented, namely,
the frameworks, libraries, data structures and tools used (Section 4.1) and, afterwards, in
Section 4.2, we present how the client component was developed.

4.1 server implementation

As previously mentioned, this project’s main goal is to create a system that performs
secure deduplication without neglecting its performance and efficiency in saving storage
space. It is also crucial that it be up to date with today’s progress in storage technologies.
This way, S2Dedup implementation uses the Storage Performance Development Kit (SPDK)
[12, 13].

Nowadays, with fast storage devices (e.g. NVMe SSDs) becoming increasingly popular,
it is possible to write applications that take better advantage of the speed and resources
of these storage disks. This can be done with SPDK since it provides a set of tools and
libraries for writing high performance, scalable, user-mode storage applications. SPDK-
based applications are able to achieve high performance by eliminating the kernel I/O stack
overhead and alternatively moving all the necessary drivers into userspace and operating in
a polled mode instead of interrupted mode, which avoids kernel context switches, eliminates
interrupt handling overhead and also provides lockless resource access. According to Yang
et al., an SPDK NVMe device driver can reach 6X to 10X better performance per cpu core
(IOPS (Input/Output Operations Per Second)/core) than the kernel space NVMe driver.

By taking advantage of the tools provided by SPDK, S2Dedup secure deduplication engine
is integrated in the form of a virtual block device, as shown in Figure 6. SPDK enables the
implementation of virtual block devices, with user-defined logic, that follow a standard
block-device interface. Therefore, by following the same interfaces, these virtual devices can
be stacked and their functionalities can be aggregated to enable richer and more flexible
user-space storage solutions. In this work, the deduplication virtual block device intercepts

28
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incoming I/O requests, performs secure deduplication and only then sends them to the
NVMe block device or to another virtual processing layer, depending on the targeted SPDK
deployment. These requests will eventually reach the NVMe driver and storage device,
unless intermediate processing eliminates this need, as it can happen for duplicate writes
when using deduplication. Moreover, SPDK also provides a set of storage protocols that can
be stacked over the block device abstraction layer. Of these, our work uses iSCSI (Internet
Small Computer System Interface) to enable our clients to use the storage server from a remote
machine.

Figure 6: Server implementation.Server implementation.

4.1.1 Deduplication engine

Two alternatives were developed for the implementation of the deduplication engine, one
that stores most of the deduplication related metadata in-memory and other that does so
persistently. By comparing the first and latter alternatives one can observe the overhead of
providing fault-tolerance support.
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As described in 3.2 the deduplication engine is composed of four elements, the intercep-
tor, index, metadata and freeblocks. The interceptor acts as a coordinator be-
tween the three other components, thus no data or metadata is required to be stored.

The index and metadata for the in-memory alternative were implemented by using the
GLib [7] library to provide the two hashtables of the index and a simple array to manage
the metadata module.

Regarding the persistent solution, each component was implemented using the on-disk
key-value store LevelDB [1]. However, this presented itself as a challenge, given that when
SPDK connects to the NVMe disk, it firsts unbinds the kernel driver from the device and then
rebinds the driver to a “dummy” driver so that the operating system won’t automatically try
to re-bind the default driver. This makes the device no longer accessible outside of the SPDK
environment, meaning that it is not possible to simply partition a disk and dedicate a part
to run SPDK over it and the other to store the deduplication related metadata. Nevertheless,
SPDK allows for the creation of partitions within its environment, so it was possible to
mount the deduplication virtual block device over part of the disk and run a Linux NBD
(Network Block Device) over the other, which is also provided by the SPDK, allowing for the
data to be stored in the same disk as the deduplication related metadata.

As an alternative, one could simply use another disk to store the deduplication related
metadata, however, we wanted a solution that did not require more than one disk and
benefited from the fast storage of NVMe disks.

Concerning the freeblocks module, it was found that the best solution, for both
alternatives, was to store the free addresses through the SPDK toolkit, combined with a cache
system. Namely, in the same way that blocks of data are read and written to disk, we used
blocks of data to store freeblocks addresses. For example, if a disk block has 4096 bytes and
a freeblock address has 8 bytes, we can store 512 addresses in that block. So, when a new
address is required, our solution, for a matter of efficiency, reads several blocks at once and
stores its addresses in a memory cache, to be used in the next operations. When an address
is no longer required, it is maintained in a different cache until a certain number of block
addresses are released, and then, are flushed into the NVMe disk.

4.1.2 Enclave Based Scheme

The main reason why S2Dedup is able to perform secure deduplication is due to the fact
that critical operations, like the block’s hash computation and re-encryption of data, occur
within the SGX enclaves [11, 25]. As explained in Section 2.1.1, an untrusted application
can execute a set of functions inside of the enclave that were previously defined in a EDL
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(Enclave Description Language) file. Therefore, ours prototype EDL file can be defined as
follows:

enclave {

trusted {

public int trusted_compute_hash(...);

public int trusted_reencrypt(...);

public int trusted_reencrypt_reverse(...);

...

};

untrusted {

...

};

};

Listing 4.1: Extract from the EDL file.

The trusted computed hash function allows for the computation of a block’s hash,
while trusted reencrypt and trusted reencrypt reverse enables an application to
re-encrypt incoming and outgoing data, respectively.

For the computation of a block’s hash, it is generated an HMAC with SHA256 as the
keyed cryptographic hash function, using the hash key as the key. This hash key is created
when the SGX is initiated and maintained in the enclave.

When it comes to the re-encryption of data, for both client’s and server’s encryption
schemes, we use the AES-XTS block cipher mode, which is standardized by the IEEE [15]
and NIST [31]. It is the ideal solution for this deduplication system because it is length-
preserving, thus the length of the ciphertext is the same as of the plaintext and does not
apply chaining, supporting random access to the encrypted data, thereby not requiring
reading several data units to decrypt a single unit.

It is noteworthy that in the case of a system reset or failure, one is still able to decrypt the
data once the system is restarted since the encryption key used to encrypt incoming data is
stored on disk, through the sealing mechanism provided by SGX, which is only accessible
by the enclave.

Also, as explained in Section 3.1.1, our current prototype assumes that, during the
application initialization, it was established a secure channel between the client’s application
and the server’s SGX enclave, so that the client can securely exchange its key with the
enclave. Although this functionality is not implemented, Bahmani et al. [18] and Machida
et al. [42] demonstrated in previous work that is possible. For the purpose of evaluating and
validating the prototype, the client’s symmetric keys currently are stored statically in the
enclave.
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4.1.3 Epoch Based Scheme

This scheme’s implementation is very similar to the “Enclave Based” scheme, but it differs
by the introduction of the concept of epochs, which requires the hash key to be updated at
every epoch.

As described in Section 3.3.2, an epoch is changed when a certain time has passed or a
limit of operations is reached. We chose to define this limit by the number of write operations
that the system has processed, thus when a certain number is reached, the current epoch
ends and a new one is introduced. To achieve this, our solution simply maintains a counter
of how many write operations were conducted until the moment and, when the limit is
reached, this counter is cleared. Next, the function sgx read rand, provided by SGX, is
used to generate a new key.

4.1.4 Epoch and Exact Frequency Based Scheme

The “Epoch and Exact Frequency Based” alternative is also based on the same foundations
as the “Enclave Based” scheme, however, it differs in how a block’s hash is computed.

As explained in Section 3.3.3 this solution bases its block’s hash computation on not only
its content but also on its current number of duplicate copies and a maximum number of
allowed duplicate copies per chunk (t).

To accomplish this, it is first generated a simple hash from the block’s content, that does
not consider the number of copies previously found. Then, it is consulted a hashtable that
returns the number of duplicates for that simple hash. This hashtable is maintained in the
enclave so that it is protected from malicious attackers.

Once known the number of copies (n), that number is divided by t and the obtained
number (n/t truncated towards zero) is used to calculate the new hash for the block. By
dividing n by t, we guarantee that in intervals of t duplicate copies for a block, it will
generate different hashes, thus from an outsider perspective, it will be as if we are dealing
with a new block.

Figure 7 shows an example of this scheme. Let us consider a scenario where S2Dedup
is configured with t as 15 and already found 13 copies for the block with the hash hash1.
Then, another duplicate block is written with the same hash, which results in 14 duplicates
for that chunk. Dividing 14 by t results in zero, which leads to hash1a like the previous
write operations for that block, since, until 15 copies are found, every number when divided
by 15 returns zero.
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Later, the same block is written again, but this time the hashtable returns 15, which
divided by t results in one. This leads to a different hash from hash1a, which is represented
as hash1b, thus, for an attacker observing the content outside of the enclave, this hash will
be inferred as a new block.

Figure 7: Example of the “Epoch and Exact Frequency Based” setup for t=15.

Since this hashtable is maintained in the enclave, which has limited available memory, it
is necessary to clear the hashtable and calculate a new hash key when the memory limit is
reached. We could not simply continue using the same key, because it could lead to a block
having more than t duplicates.

4.1.5 Estimated Frequency Based Scheme

To be able to test our exact frequency approach against the estimated frequency one
proposed by Li et al., we also implemented a setup that is based on an estimated frequency
counter. This scheme is implemented in the same way as the “Epoch and Exact Frequency
Based”, but instead of using a hashtable as a counter, it is used the Count-Min Sketch
algorithm as a counter. Moreover, since this algorithm uses a fixed memory size, it is not
required to change of epoch once all the memory is used. Therefore the implementation of
this scheme, and as proposed in the original work, does not resort to epochs.
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To implement this algorithm, it was used a matrix with 4 rows and 220 counters per row.
These values were based on the ones used in TED, which were 4 rows and 225 counters per
row. It was decided to use 220 counters per row, instead of 225, because it was found that for
220 counters the deduplication effectiveness was not affected by the number of counters, and,
since this matrix is maintained in the enclave, which has limited memory, it was unnecessary
to spend important resources.

4.2 client implementation

The client and the server communicate through the iSCSI protocol. However, since security
is one of the main concerns, a client cannot just send data over a network to a remote server
without first encrypting it, thus it is also necessary a mechanism that enables clients to
transparently secure their data.

Figure 8: Client implementation.

To equip the client’s side with transparent encryption, several alternatives were explored,
but it was found that the straightforward solution was to operate on the data using the
functionalities offered by SPDK (Figure 8). Namely, SPDK features an iSCSI client virtual
block device that integrates the library libiscsi [9] into its configuration, which makes it
possible to connect to a remote storage system by iSCSI. Based on this, one can easily
integrate transparent encryption to a request that is sent through an iSCSI protocol. Again,
the AES-XTS block cipher mode was used to encrypt client’s data. Moreover, by stacking an
Linux NBD over the iSCSI virtual block device, our solution can be used by any application
relying on a standard block-device interface.
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E VA L UAT I O N

Evaluation plays a pivotal role in the development of any solution since it allows us to
critically examine and better understand what impact different settings have on a program.

Considering that our system is based on two main features, deduplication and security,
we intend with our evaluation to examine:

• What is the impact of deduplication on applications performance?

• What are the trade-offs in terms of deduplication throughput, latency and resources
(i.e., RAM, CPU, network) usage, when applying different levels of security?

• How do different levels of security affect deduplication gains?

In this chapter, we detail both how the evaluation of our system was conducted as well as
the obtained results. We begin by introducing which methodology (Section 5.1), workloads
(Section 5.2) and setups (Section 5.3) were used. Then, in the Sections 5.4 and 5.5 we present
the tests and the obtained results and, lastly, we discuss them in Section 5.6.

5.1 methodology

All conducted experiments were based on the same general principles, these being that
4kB blocks (the most commonly used size in deduplication systems) of data were read or
written for a certain amount of time, or, in some cases, until it totalled a specific volume
of data. To guarantee the accuracy of the results, each test was repeated at least three
times, making sure to collect the latency and throughput at the end of its run and, when
appropriate, the deduplication gain as well.

Additionally, it was used dstat [59], a commonly used tool for generating Linux system
resource statistics, which allowed us to collect relevant metrics, like the CPU, RAM and
network usage. Moreover, to ensure the consistency between the different runs, all tests
needed to be performed under the same conditions. Hence, we made sure to clean the page
cache and the deduplication system prototype between each run and to, before any read
operation testing, first populate the system with the same data.

35
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Two types of tests were conducted, first the ones we labelled as environment testing,
which had the goal of evaluating the experimental environment and each component that
is independent from our implementation. The second type was prototype testing and was
used to assess our prototype and its different alternative setups.

The servers used at the evaluation, that whether played the role of client or server, had the
following specifications: a hexa-core 3.00 GHz CPU (Intel Core i5-9500), 16 GB DDR4 RAM,
a 250GB Samsung SSD 970 EVO Plus and were connected by a 10Gb/s network link. Both
servers ran Ubuntu Server 18.04.4 LTS with Linux kernel version 4.15.0-99-generic. Also, it
was used the release of SPDK v20.04, and the 2.10.100.2 version of SGX SDK and Intel SGX
Platform Software (PSW).

5.2 workloads

Both synthetic and realistic workloads were used at the evaluation. The first type of
workload was provided by DEDISbench (commit #0956b9d [10, 48]), which was previously
used in several scientific publications [47, 60, 62, 65]. DEDISbench is a disk I/O block-
based benchmarking tool for deduplication systems that generates a synthetic workload
that follows a realistic content distribution. This allows us to test our system with basic
operations like reads or writes and control what access pattern is followed, which can be
whether sequential, uniform or zipfian. The latter access pattern simulates a scenario where a
small group of blocks is more accessed than the remaining blocks. Moreover, we can also
choose the number of concurrent processes and the content distribution to be generated.
We chose the distributions dist highperf and dist kernels, that have respectively 25% and
72% duplicated blocks, so that it is possible to assess the system with workloads exhibiting
distinct levels of redundancy.

The second workload consisted of three real traces [6], that also have been used previously
to evaluate other systems [38, 47]. These traces were collected for a duration of three weeks
from three production systems at the Florida International University (FIU) Computer
Science department and have different I/O workloads that consist of a virtual machine
running two web-servers (web-vm workload), an email server (mail workload), and a file
server (homes workload). Since these traces were collect over multiple weeks, for a matter of
efficiency, the traces were replayed at different speedups to show how S2Dedup behaves
under different I/O stressing conditions.

5.3 setups

In order to isolate the performance of the different components and secure schemes used
by S2Dedup prototype the following setups were considered at the evaluation:
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1o - Local disk (NVMe). In this setup, the workloads executed I/O operations directly
to a local NVMe disk in a single server.

2o - Local SPDK (NBD + SPDK + NVMe). This setup was established to assess
SPDK’s impact on the workloads performance. SPDK was configure to export a local
NBD interface to the workloads while storage requests were forwarded, by the SPDK,
to the NVMe disk. Note that this is also a local setup as the workloads ran in the same
server as the SPDK storage stack.

3o - Server-based SPDK (iSCSI + SPDK + NVMe). This setup was designed to
assess the network overhead of a remote storage protocol. The server configuration
was similar to the previous one, however, SPDK exported an iSCSI interface to remote
clients. Therefore, the local NBD interface was not used at the server. Additionaly, the
workloads ran in another server (client machine) and used the standard iSCSI library,
included in Linux, to communicate with the iSCSI server.

4o - Client and server-based SPDK (NBD + SPDK + iSCSI + SPDK + NVMe). This
setup maintained the same server configurations of the previous one. At the client
machine, the standard iSCSI deployment was replaced by an SPDK stack composed by
an iSCSI client and an NBD virtual layer. The first layer enabled communication with
the server through the iSCSI protocol, while the latter exposed the SPDK stack as a
local block-device to the workloads.

5o - Only deduplication and no security (NBD + SPDK + iSCSI + SPDK + NVMe).
This setup followed the same configuration as the previous while offering deduplica-

tion, without any in-place security measures. For this setup, as well as the following
ones, there were used two types of implementations, one that stored deduplication
related metadata in-memory and another that stored it in a persistent manner.

6o - Enclave based secure deduplication (NBD + SPDK + iSCSI + SPDK + NVMe).
This was the first setup to perform secure deduplication, by following the “Enclave

Based” security scheme.

7o - Epoch based secure deduplication (NBD + SPDK + iSCSI + SPDK + NVMe).
This setup used instead the “Epoch Based” secure deduplication scheme.

8o - Estimated frequency based secure deduplication (NBD + SPDK + iSCSI +
SPDK + NVMe). This setup used the “Estimated frequency based” secure deduplica-
tion scheme proposed by Li et al.[40].

9o Epoch and exact frequency based secure deduplication (NBD + SPDK + iSCSI
+ SPDK + NVMe). This setup used the “Epoch and exact frequency based” secure
deduplication scheme.
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5.4 environment testing

Performing requests over complex remote I/O stacks can have a toll on systems perfor-
mance. Therefore, before conducting any test on a solution with deduplication or security
enabled, it is pertinent to observe and analyse the impact of the storage stack used by
S2Dedup prototype. To accomplish this goal, the first four setups presented in Section 5.3
were validated with the DEDISbench benchmarking tool. The experiments were configured
with a single benchmarking process and resorted to the dist highperf distribution. For each
experiment, 4kB blocks of data were read or written for 20 minutes or until the aggregated
I/O totalled 64GB, following a sequential or uniform access pattern.

The obtained results are shown in Table 2. Also, the resource usage for these tests can be
consulted at A.1.1.

dist highperf + 1 process
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AVG 1729.8 1606.45 471.01 670.65 0.002 0.002 0.008 0.006
seq-read

DEV 0.08 1.35 12.58 1.28 0.0 0.0 0.0 0.0

AVG 47.05 50.75 30.88 29.54 0.082 0.077 0.126 0.132
uni-read

DEV 0.06 0.01 0.29 0.01 0.0 0.0 0.001 0.0

AVG 470.31 458.36 453.02 451.21 0.006 0.007 0.007 0.007
seq-write

DEV 12.9 8.66 4.75 3.98 0.0 0.0 0.0 0.0

AVG 350.43 381.25 304.42 246.01 0.008 0.009 0.01 0.014
uni-write

DEV 15.01 6.82 14.73 1.0 0.001 0.001 0.001 0.0

Table 2: Environment results.

As one can infer from Table 2 when running SPDK over an NVMe disk, which is repre-
sented by the “Local SPDK” setup, the system does not suffer much impact in either the write
or read tests. However, once the network comes into play, in the “Server-based SPDK” setup,
one can easily infer that although there is a noticeable difference in the write test, especially
when the access pattern is uniform, the most drastic change is for the read test, diminishing
the throughput almost to a quarter in the sequential test and to 60% in the uniform.
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Lastly, for the “Client and server-based SPDK” setup, the sequential writes do not suffer
almost any change, while the uniform writes experience a decrease of almost 50 MiB/s. An
interesting behaviour occurs when observing the results of the read tests for this setup, that is,
there is an increase of 200 MiB/s in the throughput for the sequential access when compared
to the previous one, although the uniform one maintains essentially the same performance.
This result can be caused by prefetching mechanisms at the SPDK stack deployed on the
client machine.

5.5 prototype testing

Once established what to expect from the environment and the frameworks used by our
solution, one can proceed to evaluate the prototype and its different alternative setups. In
the next experimens, six different configurations were used namely: the 4

o, 5
o, 6

o, 7
o, 8

o

and 9
o setups presented in Section 5.3, these being referred onwards as “No deduplication”,

“Only deduplication”, “Enclave based”, “Epoch based”, “Estimated frequency based” and
“Epoch and exact frequency based”, respectively. Both synthetic and realistic workloads were
used to validate each of these setups.

However, before conducting these tests there are some variables that need to be established,
these being:

• The duration of an epoch in the “Epoch based” setup.

• The limit of deduplicates per block in the “Estimated frequency based” and “Epoch
and exact frequency based” setups.

In our experiments, the duration of a given epoch is calculated by the number of write
operations that were carried out. However, having bigger or smaller epochs can affect
the system’s performance, deduplication gains and security. Therefore, in a real system,
the duration of an epoch will establish the level of security that is provided and how the
performance and deduplication are affected. To establish a value we used DEDISbench
and tested the throughput and deduplication ratio for the distribution dist highperf and
dist kernels for a deployment without epochs and for deployments that change epochs for
every 8, 4 or 2 million of write operations.

Based on the results shown at Table 3, we chose 4 million operations as the value for
changing epochs. This choice ensures small overhead in terms of performance and space
savings, while keeping the epoch duration small, thus increasing the provided security
guarantees.
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Epoch
No epoch 8 000 000 4 000 000 2 000 000

Throughput (MiB/s) 106.61 109.15 108.99 109.48

Memory
Deduplication (%) 17.96 17.46 17.16 17.02
Throughput (MiB/s) 52.64 52.42 52.38 52.29

dist highperf
Persistent

Deduplication (%) 17.92 17.45 17.17 17.01
Throughput (MiB/s) 153.95 149.50 139.75 128.72

Memory
Deduplication (%) 70.93 64.73 55.68 43.99
Throughput (MiB/s) 72.85 69.52 65.51 60.85

dist kernels
Persistent

Deduplication (%) 71.23 64.48 55.50 43.87

Table 3: Variation of throughput and deduplication ratio depending on the epoch duration.

For the second configuration variable, the limit of duplicates per block, we based our
choice on the values used by Li et al. [40], which were 5, 10, 15 and 20. For practicability,
we chose only one of these values, which was 15 because, similarly to the epoch case, it
provides a good balance in terms of security, performance and deduplication gains.

5.5.1 Synthetic experiments

For the synthetic benchmarking, two different distributions provided by DEDISbench were
used: dist highperf and dist kernels, which have 25% and 72% of duplicate blocks, respectively.
For each test 4kB blocks of data were read or written for 20 minutes or until the aggregated
I/O totalled 64GB. Moreover, each test followed a sequential (seq), uniform (uni) or zipfian
(zip) access pattern and used whether 1 (p1) or 4 (p4) concurrent processes. The obtained
results are shown in Tables 4, 5, 6 and 7 while the resource usage results are available at
A.1.2.1.

Results Analysis. From Table 4 and 6, one can see that when deduplication related
metadata is stored in-memory (“Only deduplication” setup), there is not a detrimental
impact on the throughput of the write requests. Our solution is even able to reach a higher
throughput for the uniform and zipfian access pattern, which can be justified by the fact
that deduplication avoided unnecessary write operations to the NVMe disk. However, if
the metadata is stored persistently (Table 5 and 7), it suffers a drastic impact, decreasing,
for example, from 429.3 MiB/s to only 113.09 MiB/s for the dist kernels distribution with
a sequential access pattern, which is to be expected from this scenario, since storing data
persistently is more costly than in-memory. Namely, extra I/O operations must be done to
the persistent metadata structures thus requiring more disk accesses and sharing the disk
bandwidth with the workloads operations.
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For the read test is evident a considerable decrease in the throughput when deduplication is
introduced, especially in the sequential test for the dist highperf distribution, since it decreases
from 673.01 MiB/s to only 254.89 MiB/s in the in-memory solution and to 154.46 MiB/s
in the persistent alternative. This behaviour can be justified by the fact that deduplication
introduces data fragmentation, thus turning some sequential accesses into random ones.
Since the latter pattern is more costly in terms of performance, the throughput decrease
observed for sequential reads is to be expected and well documented in the literature [35, 45].

When introducing security (“Enclave based” setup), the system exhibits a decrease in
performance, which is to be expected since operating in the SGX enclave is known to be costly.
The major differences happened in the write tests for the in-memory implementation, which
showed, in some cases, a reduction of throughput to almost a quarter, when compared to
the setup without security. This occurred because it had such a high throughput previously,
that it lead to the security mechanisms not being able to keep up. On the other hand, given
that the persistent implementation did not have a similar level of throughput, the differences
are not as drastic, being able to maintain the throughput at around 60%, when compared to
the baseline deduplication solution. The read results followed a similar pattern, reducing its
throughput overall, however, the differences are less severe since these requests require less
SGX related operations.

In the “Epoch based” setup, there is a minimal difference for the throughput, latency and
deduplication ratio from the ‘Enclave based” configuration for the distribution dist highperf.
This occurred because although the key used for generating a block’s hash changed after an
epoch, it had minor repercussions in the deduplication gains since it was already relatively
small before applying epochs. Therefore, it had less duplicates to be impacted by these
alterations.

The same is not observed for the distribution dist kernels, which with the change of epochs
suffered a reduction in the deduplication gain, decreasing, for example, from 71.46% to
56.1%, when compared to the non-epoch secure deduplication deployment. This decrease is
most noticeable when there is a higher deduplication ratio, than when dealing with a smaller
one, and is also affected by the temporal locality properties of the workload. DEDISbench
presents a worst-case scenario since content is written uniformly across time and thus, it
does not exhibit any temporal locality properties.

Moreover, the decrease on the deduplication ratio meant more write operations to disk,
thus leading to a lower throughput, which is also observed. The changes in this setup only
affect the write operation, hence why the results for the read tests are similar to the “Enclave
based” setup.

The “Estimated frequency based” alternative displayed a slight difference in performance
from the “Enclave based” setup for the distribution dist highperf. Considering that there is
a limit to the number of deduplicates per block, it is discernible a reduction of around 2%
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from the base deduplication gain. Similarly to what happened for the “Epoch based” setup,
the dist kernels workload in this setup is even more affected, reducing space savings from
71.46% to 38.77%. Once again, the changes in this setup only affect the write operation, so
the read results have similar performance.

Lastly, we found that the “Epoch and exact frequency based” configuration suffered a
minimal difference of about 2% from the “Enclave based” for the dist highperf distribution
as well, which is predictable since the previous setup and this one are based on the same
principles of limiting the number of deduplicates per block. The distribution dist kernels
also experienced a drastic reduction in the deduplication ratio from 71.46% to 40.52%.
However, it is noteworthy that it has a slight improvement when compared to the “Estimated
frequency based” setup, which only achieved around 38.77%. This happens because, as
previously mentioned, when using an estimative, it can lead to inaccurate numbers, and
thus to a lower number of deduplicates. There are also no significant changes to the read
tests, since this setup did not alter the read operation. It is also noticeable a minimal decrease
in the throughput from the “Estimated frequency based” setup to the “Epoch and exact
frequency based”. This is happens because although there is a higher deduplication, an exact
counter comes with an higher computational cost that an estimated one. But nonetheless,
the differences are negligible.

Figure 9 shows a comparison of what to expect in terms of latency when sending a write
request to each of the setups. From this figure, one can easily grasp a notion on how the
deduplication, basic security and its different alternatives affect the system’s performance.

Figure 9: Latency for sequentials writes for dist highperf.



5.5. Prototype Testing 43

dist highperf
Troughput(MiB/s) Latency(ms) Deduplication(%)

N
o

de
du

pl
ic

at
io

n

O
nl

y
de

du
pl

ic
at

io
n

En
cl

av
e

ba
se

d

Ep
oc

h
ba

se
d

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d

N
o

de
du

pl
ic

at
io

n

O
nl

y
de

du
pl

ic
at

io
n

En
cl

av
e

ba
se

d

Ep
oc

h
ba

se
d

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d

O
nl

y
de

du
pl

ic
at

io
n

En
cl

av
e

ba
se

d

Ep
oc

h
ba

se
d

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d

AVG 673.01 254.89 169.72 169.42 177.72 174.76 0.006 0.015 0.023 0.023 0.022 0.022 - - - - -
p1

DEV 0.71 0.15 0.03 0.16 0.14 0.05 0.0 0.0 0.0 0.0 0.0 0.0 - - - - -

AVG 1033.7 240.95 162.28 182.17 182.96 182.44 0.06 0.259 0.384 0.343 0.341 0.343 - - - - -se
q-

re
ad

p4
DEV 0.36 1.67 0.18 2.14 0.82 0.17 0.0 0.002 0.0 0.005 0.002 0.002 - - - - -

AVG 29.6 26.31 22.81 22.63 23.03 22.6 0.132 0.148 0.171 0.172 0.169 0.173 - - - - -
p1

DEV 0.03 0.04 0.09 0.02 0.01 0.01 0.0 0.0 0.001 0.0 0.0 0.001 - - - - -

AVG 114.8 100.24 78.63 78.69 79.17 78.25 0.544 0.622 0.792 0.793 0.788 0.797 - - - - -un
i-r

ea
d

p4
DEV 0.12 0.09 0.05 0.11 0.01 0.08 0.0 0.002 0.001 0.001 0.0 0.002 - - - - -

AVG 122.21 69.52 59.31 59.32 60.44 59.33 0.032 0.056 0.065 0.066 0.064 0.066 - - - - -
p1

DEV 0.12 0.18 0.2 0.1 0.07 0.17 0.0 0.0 0.001 0.001 0.0 0.001 - - - - -

AVG 454.93 236.98 179.7 179.19 180.94 178.99 0.136 0.264 0.348 0.348 0.344 0.348 - - - - -zi
p-

re
ad

p4
DEV 0.89 0.16 0.18 0.17 0.2 0.11 0.0 0.0 0.001 0.001 0.0 0.0 - - - - -

AVG 454.6 421.72 105.78 105.9 85.63 80.58 0.007 0.008 0.035 0.035 0.044 0.047 17.81 17.95 17.17 15.93 15.83
p1

DEV 8.7 0.67 0.29 0.15 0.11 0.06 0.0 0.0 0.001 0.0 0.0 0.0 0.0 0.02 0.01 0.01 0.0

AVG 446.51 421.6 103.89 105.91 85.35 80.45 0.133 0.141 0.596 0.584 0.725 0.77 17.8 17.95 17.16 15.93 15.83

se
q-

w
ri

te

p4
DEV 2.13 0.04 2.52 0.41 0.09 0.15 0.002 0.001 0.014 0.004 0.002 0.002 0.01 0.0 0.0 0.01 0.01

AVG 249.24 271.35 101.59 101.79 82.53 78.86 0.014 0.013 0.037 0.037 0.046 0.048 17.8 17.87 17.17 15.92 15.83
p1

DEV 1.24 0.7 0.29 0.16 0.31 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.01 0.01

AVG 248.37 267.51 100.9 101.56 82.5 78.24 0.244 0.228 0.613 0.609 0.751 0.792 17.79 17.87 17.17 15.93 15.83

un
i-w

ri
te

p4
DEV 0.41 0.04 1.33 0.17 0.42 0.23 0.0 0.0 0.009 0.001 0.005 0.004 0.01 0.01 0.01 0.01 0.01

AVG 324.65 457.11 124.2 124.75 101.31 96.59 0.01 0.007 0.03 0.03 0.037 0.039 17.33 17.36 17.06 15.86 15.81
p1

DEV 4.68 1.12 0.25 0.21 0.38 0.19 0.001 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.01 0.01 0.0

AVG 337.57 433.11 118.05 118.32 96.44 91.26 0.179 0.137 0.524 0.521 0.641 0.679 17.33 17.38 17.09 15.86 15.82

M
em

or
y

zi
p-

w
ri

te

p4
DEV 1.68 1.56 0.16 0.11 0.35 0.96 0.001 0.001 0.001 0.002 0.002 0.008 0.0 0.01 0.01 0.01 0.01

Table 4: Synthetic tests results for the distribution dist highperf for the in-memory implementation.
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dist highperf
Troughput(MiB/s) Latency(ms) Deduplication(%)
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AVG 673.01 154.46 151.98 152.4 153.2 151.67 0.006 0.026 0.026 0.026 0.026 0.026 - - - - -
p1

DEV 0.71 0.15 1.46 1.32 1.37 1.22 0.0 0.0 0.001 0.001 0.001 0.001 - - - - -

AVG 1033.7 240.95 151.3 152.02 151.5 151.83 0.06 0.259 0.412 0.412 0.412 0.412 - - - - -se
q-

re
ad

p4
DEV 0.36 1.67 0.22 0.12 0.03 0.05 0.0 0.002 0.0 0.0 0.0 0.0 - - - - -

AVG 29.6 18.88 22.12 21.96 21.94 21.94 0.132 0.207 0.177 0.178 0.178 0.178 - - - - -
p1

DEV 0.03 0.04 0.06 0.03 0.06 0.01 0.0 0.0 0.001 0.001 0.001 0.0 - - - - -

AVG 114.8 100.24 73.79 74.14 73.95 73.61 0.544 0.622 0.845 0.841 0.844 0.848 - - - - -un
i-r

ea
d

p4
DEV 0.12 0.09 0.05 0.02 0.06 0.01 0.0 0.002 0.002 0.0 0.0 0.0 - - - - -

AVG 122.21 50.21 57.61 57.64 57.64 57.26 0.032 0.078 0.068 0.067 0.067 0.068 - - - - -
p1

DEV 0.12 0.18 0.01 0.04 0.08 0.11 0.0 0.0 0.001 0.001 0.001 0.0 - - - - -

AVG 454.93 236.98 166.74 167.62 167.29 166.21 0.136 0.264 0.373 0.372 0.372 0.376 - - - - -zi
p-

re
ad

p4
DEV 0.89 0.16 0.3 0.07 0.21 0.1 0.0 0.0 0.002 0.001 0.0 0.0 - - - - -

AVG 454.6 88.24 50.84 50.66 45.14 44.39 0.007 0.043 0.075 0.076 0.085 0.086 17.81 17.9 17.18 15.93 15.82
p1

DEV 8.7 0.67 0.09 0.14 0.35 0.23 0.0 0.0 0.001 0.001 0.001 0.001 0.0 0.01 0.0 0.0 0.0

AVG 446.51 421.6 50.74 50.5 44.79 44.43 0.133 0.141 1.225 1.231 1.389 1.401 17.8 17.91 17.16 15.93 15.83

se
q-

w
ri

te

p4
DEV 2.13 0.04 0.18 0.08 0.08 0.27 0.002 0.001 0.005 0.002 0.002 0.008 0.01 0.01 0.01 0.01 0.01

AVG 249.24 84.28 49.71 49.71 44.04 43.36 0.014 0.045 0.077 0.077 0.087 0.089 17.8 17.8 17.16 15.93 15.85
p1

DEV 1.24 0.7 0.23 0.2 0.23 0.17 0.0 0.0 0.0 0.0 0.0 0.001 0.0 0.01 0.01 0.0 0.0

AVG 248.37 267.51 49.46 49.18 43.7 43.1 0.244 0.228 1.258 1.265 1.423 1.444 17.79 17.8 17.16 15.92 15.83

un
i-w

ri
te

p4
DEV 0.41 0.04 0.1 0.08 0.28 0.09 0.0 0.0 0.003 0.002 0.009 0.004 0.01 0.01 0.0 0.01 0.01

AVG 324.65 135.84 63.49 63.27 55.78 54.63 0.01 0.027 0.06 0.06 0.069 0.07 17.33 17.35 17.08 15.87 15.82
p1

DEV 4.68 1.12 0.53 0.12 0.32 0.14 0.001 0.0 0.001 0.0 0.001 0.0 0.01 0.0 0.01 0.0 0.0

AVG 337.57 433.11 59.71 59.92 52.65 51.89 0.179 0.137 1.039 1.037 1.18 1.197 17.33 17.37 17.08 15.88 15.83

Pe
rs

is
te

nt
zi

p-
w

ri
te

p4
DEV 1.68 1.56 0.12 0.1 0.52 0.04 0.001 0.001 0.002 0.002 0.012 0.002 0.0 0.01 0.01 0.01 0.01

Table 5: Synthetic tests results for the distribution dist highperf for the persistent implementation.
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dist kernels
Troughput(MiB/s) Latency(ms) Deduplication(%)
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AVG 672.73 339.76 156.46 153.76 172.95 171.5 0.006 0.011 0.025 0.025 0.022 0.023 - - - - -
p1

DEV 1.02 3.23 2.57 0.79 0.19 0.15 0.0 0.0 0.001 0.0 0.0 0.0 - - - - -

AVG 1035.44486.59 183.94 183.47 184.21 182.31 0.06 0.128 0.34 0.34 0.34 0.344 - - - - -se
q-

re
ad

p4
DEV 0.66 0.14 0.06 0.01 0.14 0.03 0.0 0.0 0.0 0.0 0.0 0.0 - - - - -

AVG 29.65 26.42 22.95 22.91 22.97 22.64 0.132 0.148 0.17 0.17 0.17 0.172 - - - - -
p1

DEV 0.06 0.02 0.1 0.08 0.02 0.03 0.001 0.0 0.001 0.001 0.0 0.0 - - - - -

AVG 115.17 102.67 78.88 78.93 79.27 78.2 0.54 0.608 0.792 0.791 0.787 0.797 - - - - -un
i-r

ea
d

p4
DEV 0.05 0.01 0.03 0.05 0.12 0.05 0.0 0.0 0.0 0.002 0.002 0.002 - - - - -

AVG 122.84 70.95 60.65 60.71 60.94 59.94 0.032 0.055 0.064 0.064 0.064 0.065 - - - - -
p1

DEV 0.29 0.05 0.02 0.15 0.04 0.02 0.001 0.0 0.0 0.0 0.0 0.0 - - - - -

AVG 458.01 247.69 182.1 181.89 182.65 180.36 0.136 0.252 0.342 0.343 0.34 0.344 - - - - -zi
p-

re
ad

p4
DEV 0.61 0.09 0.2 0.19 0.24 0.12 0.0 0.0 0.001 0.002 0.0 0.0 - - - - -

AVG 455.32 429.3 151.41 135.11 95.37 90.06 0.007 0.008 0.024 0.027 0.039 0.042 70.37 71.46 56.1 38.77 40.52
p1

DEV 6.34 0.35 0.18 0.32 0.11 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.02 0.04 0.0 0.24

AVG 445.24 430.22 148.09 134.46 95.13 89.76 0.134 0.14 0.416 0.457 0.649 0.689 70.4 71.47 56.09 38.8 40.49

se
q-

w
ri

te

p4
DEV 3.74 0.21 4.7 0.5 0.3 0.32 0.002 0.0 0.013 0.002 0.002 0.002 0.01 0.03 0.08 0.01 0.25

AVG 251.14 271.87 144.17 127.89 91.78 87.57 0.014 0.013 0.025 0.029 0.041 0.043 70.55 70.89 55.95 38.68 40.39
p1

DEV 0.13 1.74 0.59 0.32 0.32 0.35 0.0 0.0 0.001 0.0 0.0 0.0 0.04 0.02 0.04 0.01 0.05

AVG 249.87 270.21 143.7 127.5 91.47 87.36 0.244 0.224 0.428 0.483 0.677 0.708 70.54 70.9 55.93 38.69 40.38

un
i-w

ri
te

p4
DEV 0.08 0.15 0.3 0.48 0.29 0.12 0.0 0.0 0.0 0.002 0.002 0.0 0.0 0.01 0.05 0.01 0.03

AVG 329.05 466.31 172.71 155.55 114.11 108.79 0.01 0.007 0.021 0.023 0.033 0.034 64.28 65.25 50.68 36.31 38.11
p1

DEV 4.87 1.85 0.28 0.41 0.39 0.08 0.0 0.0 0.0 0.001 0.001 0.0 0.03 0.03 0.05 0.02 0.0

AVG 343.36 445.7 166.16 147.11 108.5 102.87 0.175 0.133 0.368 0.419 0.568 0.601 64.4 64.94 50.11 36.11 38.2

M
em

or
y

zi
p-

w
ri

te

p4
DEV 4.47 0.33 2.6 0.48 0.05 0.45 0.003 0.001 0.007 0.002 0.0 0.002 0.01 0.43 0.01 0.03 0.06

Table 6: Synthetic tests results for the distribution dist kernels for the in-memory implementation..
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dist kernels
Troughput(MiB/s) Latency(ms) Deduplication(%)
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AVG 672.73 221.55 141.66 140.64 149.82 148.74 0.006 0.019 0.028 0.028 0.026 0.026 - - - - -
p1

DEV 1.02 70.99 1.44 1.22 1.49 2.24 0.0 0.005 0.001 0.001 0.0 0.001 - - - - -

AVG 1035.44245.82 156.02 151.77 151.78 150.62 0.06 0.254 0.4 0.412 0.412 0.415 - - - - -se
q-

re
ad

p4
DEV 0.66 0.98 0.1 0.15 0.24 1.99 0.0 0.002 0.0 0.0 0.0 0.005 - - - - -

AVG 29.65 22.03 22.22 21.96 21.93 15.63 0.132 0.177 0.175 0.177 0.178 0.549 - - - - -
p1

DEV 0.06 0.02 0.05 0.06 0.03 10.91 0.001 0.0 0.001 0.001 0.0 0.642 - - - - -

AVG 115.17 76.06 74.44 73.89 74.1 73.56 0.54 0.82 0.839 0.844 0.843 0.848 - - - - -un
i-r

ea
d

p4
DEV 0.05 0.15 0.07 0.05 0.1 0.53 0.0 0.001 0.002 0.0 0.002 0.007 - - - - -

AVG 122.84 58.65 58.67 58.22 58.17 53.95 0.032 0.066 0.066 0.067 0.067 0.073 - - - - -
p1

DEV 0.29 0.25 0.09 0.18 0.04 6.83 0.001 0.001 0.0 0.0 0.0 0.01 - - - - -

AVG 458.01 137.97 170.6 168.56 168.55 167.98 0.136 0.452 0.364 0.368 0.369 0.372 - - - - -zi
p-

re
ad

p4
DEV 0.61 0.04 0.25 0.13 0.27 0.2 0.0 0.0 0.0 0.001 0.002 0.001 - - - - -

AVG 455.32 113.09 69.87 63.04 49.91 49.71 0.007 0.033 0.054 0.06 0.077 0.077 71.22 71.39 55.6 38.74 40.65
p1

DEV 6.34 0.15 0.54 0.14 0.33 0.01 0.0 0.0 0.001 0.001 0.001 0.0 0.03 0.04 0.05 0.02 0.01

AVG 445.24 111.51 69.91 62.74 49.35 49.47 0.134 0.555 0.888 0.99 1.261 1.257 71.18 71.43 55.07 38.73 40.67

se
q-

w
ri

te

p4
DEV 3.74 0.84 0.07 0.22 0.23 0.06 0.002 0.005 0.0 0.004 0.005 0.002 0.04 0.01 0.02 0.02 0.04

AVG 251.14 105.73 67.24 60.22 48.31 48.11 0.014 0.035 0.056 0.063 0.079 0.08 70.9 71.11 55.17 38.6 40.32
p1

DEV 0.13 0.32 0.09 0.04 0.29 0.15 0.0 0.0 0.001 0.0 0.001 0.001 0.02 0.02 0.0 0.03 0.05

AVG 249.87 105.11 66.27 59.91 48.6 47.89 0.244 0.587 0.936 1.037 1.279 1.299 70.87 71.24 55.11 38.61 40.3

un
i-w

ri
te

p4
DEV 0.08 0.39 0.34 0.1 0.35 0.21 0.0 0.002 0.004 0.002 0.008 0.005 0.03 0.02 0.03 0.01 0.04

AVG 329.05 154.94 80.46 74.49 61.17 60.0 0.01 0.024 0.047 0.051 0.062 0.063 64.88 65.27 50.33 36.31 38.32
p1

DEV 4.87 0.16 0.3 0.12 0.13 0.27 0.0 0.0 0.0 0.0 0.0 0.001 0.01 0.0 0.02 0.01 0.06

AVG 343.36 151.07 77.5 70.75 58.38 57.08 0.175 0.407 0.8 0.877 1.063 1.088 65.1 65.69 50.13 36.04 37.74

Pe
rs

is
te

nt
zi

p-
w

ri
te

p4
DEV 4.47 0.46 0.31 0.19 0.11 0.08 0.003 0.001 0.004 0.003 0.002 0.0 0.01 0.02 0.03 0.02 0.01

Table 7: Synthetic tests results for the distribution dist kernels for the persistent implementation.
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5.5.2 Realistic experiments

To further assess the performance and deduplication gain of S2Dedup prototype we also
resorted to realistic storage traces - mail, homes and web-vm - described in Section 5.2. Each
run lasted for 40 minutes and I/O operations were issued with a 4kB block size.

We devised a simple tracing tool, written in C, that replayed the I/O events described at
the trace files. However, since these traces were collected over a long period of time, for a
matter of testing the storage system at different stressing levels, the traces were replayed at
diverse speeds (S).

The obtained results can be consulted in the Tables 8, 9 and 10 and the resources con-
sumption at A.1.2.2.

Results Analysis. When deduplication is introduced at the “Only deduplication” setup,
for the trace mail (Table 8), at a speedup of 400, the throughput remained essentially the
same for the in-memory implementation, but experienced a reduction for the persistent
implementation, which is a behaviour that was also noticeable for the synthetic tests.
Nevertheless, at other speedups and in the other traces, it remained essentially the same.
This is justifiable because the peak saturation is reached at a speedup of 400 for the trace
mail, much like what it happens for DEDISbench that is constantly stressing the storage
system.

However, at other speedups, namely 1 and 200, and the other traces, the disk bandwidth
peak saturation is not reached, thus it presents essentially no impact with the integration of
the deduplication mechanism. For these tests, we should redirect our attention instead to
the latency obtained. Although there is some variance between a few values of the same test,
which can be justified by factors like the state of the machine and disk, cache mechanisms
and the prefetching mechanisms preformed by the SPDK, it was observed that overall the
latency for the read operation increased. This is understandable since this setup not only
requires for the storage system to consult the deduplication engine to figure out where at
the storage device to read, but also introduces data fragmentation that leads to an higher
latency. For the write operations it shows a general decrease in the latency, for example, the
trace web-vm in the persistent implementation and speedup of 700 lowers from 1.164µs to
0.841µs. This can again be explained by the deduplication employed, which avoided around
21.19% writes to disk, thus reducing the overall latency.

The same happens for the “Enclave based” setup results as in the “Only deduplication”
setup, the traces homes and web-vm have almost no variation. However, it is perceptible that
for the persistent implementation results, for the trace mail, not only the x400 speedup is
affected by the changes, but also the x200 speedup. Also, it is evident that the in-memory
solution reached peak saturation at x400 of speedup as well. Looking at the latency for the
rest of the results, it is also observed some irregularity in the latency results, but it is possible
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to infer overall an increase in latency for both the read and write tests. This is expected since
the same was observed for the synthetic tests and results from the hash’s computation and
data re-encryption performed within the SGX enclave.

With the introduction of epochs in the “Epoch based” setup, the deduplication in all the
traces results remained almost the same or had just some minor reduction. This behaviour
did not happen for the dist kernels distribution at the synthetic tests, which experienced a
reduction from around 70% to 55% when the epochs were employed. This corroborates the
idea of temporal locality when dealing with a real workload, which is the concept that is
explored by this setup and was not possible to be reproduced with the DEDISbench tool.
Moreover, since TrustFS only tested with synthetic workloads, the author was unable to get
a perception of the real effect of performing deduplication in epochs. When it comes to the
performance, it occurs the same behaviour as for the “Enclave based” setup, although there
is a slight throughput reduction in the trace mail for the in-memory implementation at x400

speedup, due to a minor change in achievable space savings. Similarly to what happened
for the other setups, the latency for some tests demonstrate some variance between runs,
but looking at those with a relatively small standard deviation, it shows it is not negatively
affected by the employment of epochs.

From the “Enclave based” setup to the “Estimated frequency based”, the results show
the biggest differences in terms of deduplication ratio. Mainly for the trace mail since, in
some cases, it even reached a loss of around 14%. For the other traces, this value is around
2%. This inequality does not come as a surprise, since for the synthetic tests the distribution
dist kernels, that has the higher number of duplicates, also suffered a greater deduplication
loss. Generally, this setup also shows a bigger latency, which can be justified by the decrease
in duplicates and the processing required to maintain the approximate counter.

The “Estimated frequency based” and “Epoch and exact frequency based” setups have very
similar results, but it is perceptible an overall slight improvement in the deduplication ratio
at the “Epoch and exact frequency based” setup results when compared to the “Estimated
frequency based”. It even reached improvements of 4% for the trace mail, which supports the
idea of using an exact frequency counter instead of an estimated one. This also shows that
although this setup besides limiting the number of duplicates, it also incorporates epochs in
its algorithm, the deduplication gains are not affected, whilst still offering an extra layer of
security.
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Mail
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AVG 2.24 2.25 2.25 2.25 2.25 2.25 0.008 13.929 0.016 6.97 27.84 20.884 - - - - -
S1

DEV 0.02 0.0 0.0 0.0 0.0 0.0 0.0 12.049 0.002 12.049 31.878 20.872 - - - - -

AVG 23.64 23.64 23.64 23.63 23.59 23.56 22.358 48.663 60.907 72.886 96.497 98.675 - - - - -
S200

DEV 0.0 0.0 0.01 0.0 0.01 0.11 5.853 5.418 30.126 1.804 1.376 7.447 - - - - -

AVG 43.77 44.24 37.20 33.93 28.39 28.18 40.925 53.316 82.409 88.795 100.58 100.718 - - - - -

R
ea

d

S400
DEV 0.02 0.37 1.02 0.95 0.47 0.27 0.805 6.555 3.817 2.9 5.104 4.628 - - - - -

AVG 1.197 1.193 1.197 1.2 1.197 1.193 0.002 0.001 0.001 0.001 0.001 0.001 46.84 46.87 46.87 46.68 46.7
S1

DEV 0.01 0.01 0.01 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.02 0.03 0.0

AVG 181.12 181.12 181.14 181.19 180.45 179.82 0.926 0.623 0.973 1.5 2.62 2.527 84.32 83.5 79.28 71.26 74.77
S200

DEV 0.0 0.0 0.04 0.0 0.0 1.7 0.317 0.09 0.184 0.076 0.177 0.179 0.09 0.94 0.12 0.07 0.08

AVG 330.51 331.77 279.09 261.12 218.64 217.66 2.275 1.337 2.839 3.209 4.61 4.714 85.15 84.67 79.65 70.54 74.6

M
em

or
y

W
ri

te

S400
DEV 0.08 0.95 17.48 3.06 8.83 7.99 0.276 0.121 0.174 0.096 0.246 0.287 0.23 0.16 0.16 0.05 0.07

AVG 2.24 2.24 2.24 2.24 2.25 2.24 0.008 55.712 62.668 83.53 55.728 41.794 - - - - -
S1

DEV 0.02 0.02 0.02 0.02 0.0 0.02 0.0 52.52 41.74 20.87 24.104 20.867 - - - - -

AVG 23.64 23.61 20.14 21.72 18.12 18.21 22.358 97.907 139.41 126.27 148.22 143.148 - - - - -
S200

DEV 0.0 0.04 0.08 1.09 0.14 0.09 5.853 5.885 0.324 5.622 2.428 0.651 - - - - -

AVG 43.77 31.77 21.41 22.50 18.50 18.34 40.925 95.611 136.32 124.82 146.79 147.386 - - - - -

R
ea

d

S400
DEV 0.02 0.39 0.05 0.07 0.32 0.26 0.805 1.656 0.838 0.868 2.808 3.46 - - - - -

AVG 1.197 1.2 1.197 1.2 1.197 1.197 0.002 0.001 0.001 0.001 0.001 0.001 46.87 46.88 46.54 46.7 46.7
S1

DEV 0.01 0.0 0.01 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.03 0.61 0.0 0.0

AVG 181.12 180.56 166.44 168.61 148.05 149.05 0.926 1.94 5.436 5.632 7.476 7.915 83.48 82.32 78.23 70.47 74.24
S200

DEV 0.0 1.03 0.11 1.52 1.62 0.51 0.317 0.328 0.063 0.32 0.247 0.191 0.22 0.17 0.28 0.09 0.21

AVG 330.51 234.93 168.17 169.77 151.51 150.34 2.275 3.558 5.738 6.298 7.688 7.858 83.54 82.43 78.13 70.33 74.14

Pe
rs

is
te

nt
W

ri
te

S400
DEV 0.08 6.2 0.08 0.16 2.43 2.36 0.276 0.071 0.149 0.091 0.129 0.025 0.18 0.16 0.12 0.09 0.05

Table 8: Realistic tests results for the trace mail.
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Homes
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AVG 0.001 0.001 0.001 0.001 0.001 0.001 0.21 0.2 0.279 0.258 0.265 0.25 - - - - -
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.001 0.007 0.0 0.008 0.023 - - - - -

AVG 0.645 0.645 0.645 0.645 0.645 0.645 114.682 119.746 166.127 159.376 193.951 190.595 - - - - -
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 10.22 16.836 2.925 10.111 5.261 13.931 - - - - -

AVG 0.885 0.885 0.885 0.885 0.885 0.885 106.144 114.736 205.532 180.998 193.888 218.426 - - - - -

R
ea

d

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 10.129 11.242 7.437 22.713 10.624 10.137 - - - - -

AVG 0.08 0.08 0.08 0.08 0.08 0.08 0.002 0.001 0.001 0.001 0.001 0.001 41.75 43.51 43.54 41.89 42.02
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.05 0.45 1.67 0.74

AVG 22.77 22.77 22.77 22.77 22.77 22.77 0.811 0.62 1.167 0.763 0.739 0.715 20.49 20.72 20.35 18.57 19.32
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.218 0.18 0.694 0.18 0.083 0.357 0.14 0.59 0.08 0.17 0.31

AVG 27.7 27.7 27.7 27.7 27.7 27.7 1.136 0.823 1.214 0.901 1.253 0.823 20.76 20.82 20.22 18.52 19.31

M
em

or
y

W
ri

te

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.122 0.311 0.628 0.034 0.301 0.156 0.07 0.15 0.37 0.05 0.39

AVG 0.001 0.001 0.001 0.001 0.001 0.001 0.21 0.54 843.645 0.573 422.106 0.5 - - - - -
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.08 1460.1490.027 730.119 0.033 - - - - -

AVG 0.645 0.645 0.645 0.645 0.645 0.645 114.682 172.874 280.818 233.593 293.474 260.587 - - - - -
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 10.22 10.214 6.699 8.881 43.888 15.382 - - - - -

AVG 0.885 0.885 0.885 0.885 0.885 0.885 106.144 177.321 295.106 255.854 333.783 306.773 - - - - -

R
ea

d

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 10.129 23.442 11.826 27.106 55.535 14.864 - - - - -

AVG 0.08 0.08 0.08 0.08 0.08 0.08 0.002 0.001 0.001 0.001 0.001 0.001 42.86 43.71 43.39 42.27 42.25
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.35 0.48 0.81 0.78

AVG 22.77 22.77 22.77 22.77 22.77 22.77 0.811 1.12 0.882 1.144 1.048 0.763 20.93 20.49 20.36 18.67 19.34
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.218 0.148 0.419 0.378 0.149 0.229 0.57 0.13 0.13 0.19 0.19

AVG 27.7 27.7 27.7 27.7 27.7 27.7 1.136 1.018 1.097 0.803 1.018 0.94 20.94 20.56 20.12 18.43 19.34

Pe
rs

is
te

nt
W

ri
te

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.122 0.189 0.148 0.122 0.136 0.305 0.3 0.16 0.17 0.17 0.14

Table 9: Realistic tests results for the trace homes.
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Web-VM
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AVG 0.054 0.054 0.051 0.052 0.053 0.054 0.094 0.102 0.137 0.129 0.133 0.133 - - - - -
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.002 0.001 0.008 0.004 0.016 - - - - -

AVG 1.873 1.874 1.873 1.873 1.873 1.873 10.479 22.995 31.435 27.651 23.576 29.107 - - - - -
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.872 2.807 3.149 2.017 0.873 1.333 - - - - -

AVG 4.467 4.467 4.467 4.467 4.467 4.467 4.744 9.852 11.677 12.65 14.353 13.624 - - - - -

R
ea

d

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.729 0.729 0.965 1.644 3.544 0.421 - - - - -

AVG 0.02 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002 0.002 61.0 60.97 60.86 59.16 59.27
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.13 0.21 0.32 0.44

AVG 6.94 6.94 6.94 6.94 6.94 6.94 1.408 0.861 0.392 0.721 1.329 0.939 22.1 22.01 21.49 19.68 20.93
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.358 0.136 0.029 0.271 0.235 0.09 0.45 0.79 0.31 1.11

AVG 16.78 16.78 16.78 16.78 16.78 16.78 1.164 0.873 1.131 0.873 1.39 0.97 20.49 21.32 21.33 19.42 19.6

M
em

or
y

W
ri

te

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.422 0.097 0.34 0.257 0.148 0.256 0.17 0.25 0.3 0.19 0.28

AVG 0.054 0.053 0.052 0.053 0.054 0.054 0.094 0.299 0.301 0.313 0.319 0.297 - - - - -
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.007 0.005 0.006 0.002 0.002 - - - - -

AVG 1.873 1.873 1.874 1.874 1.873 1.873 10.479 31.728 39.002 33.763 36.383 30.271 - - - - -
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.872 2.667 1.007 3.064 4.155 3.634 - - - - -

AVG 4.467 4.467 4.467 4.467 4.467 4.468 4.744 16.298 17.151 17.028 19.096 16.907 - - - - -

R
ea

d

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.729 1.474 0.365 0.843 2.641 1.172 - - - - -

AVG 0.02 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002 0.002 60.66 60.42 60.72 59.16 59.35
S1

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.001 0.0 0.0 0.56 0.16 0.04 0.16 0.33

AVG 6.94 6.94 6.94 6.94 6.94 6.94 1.408 0.86 1.095 0.939 0.743 1.329 21.86 21.82 21.12 19.99 20.64
S350

DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.271 0.271 0.235 0.231 0.59 0.78 0.78 0.29 0.24 0.81

AVG 16.78 16.78 16.78 16.78 16.78 16.78 1.164 0.841 0.873 1.325 0.808 1.422 21.19 21.55 21.58 20.21 20.5

Pe
rs

is
te

nt
W

ri
te

S700
DEV 0.0 0.0 0.0 0.0 0.0 0.0 0.422 0.056 0.257 0.551 0.056 0.391 0.72 0.15 0.24 0.28 0.26

Table 10: Realistic tests results for the trace web-vm.
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5.6 discussion

With our evaluation, we measured the impact that different secure deduplication schemes
have on a system’s performance and deduplication effectiveness.

Four different secure deduplication setups were put to test: “Enclave based”, “Epoch
based”, “Estimated frequency based” and “Epoch and exact frequency based”, each one
offering more robust security guarantees, but, in some cases, with the cost of deduplication
and throughput loss. With our evaluation, we assessed, for synthetic and realistic workloads,
what is this cost.

Our results show that, as expected, introducing a basic security scheme aided by the Intel
SGX (“Enclave based”), did not affect the deduplication gains, but it led to a considerable
performance loss, since operating in the SGX enclave is known to be costly. By introducing
epochs in this setup (“Epoch based”), we managed to achieve higher security guarantees,
such as avoiding leakage of information between data from different epochs, while not
affecting much the throughput and maintaining most of the deduplication effectiveness for
a realistic workload.

The “Estimated frequency based” and “Epoch and exact frequency based” displayed the
lowest performance and deduplication of all the setups. However, these also offer the highest
security measures. Furthermore, it is noticeable an improvement in terms of deduplication
effectiveness from using an exact counter instead of an estimated one. This proved that
combining epochs with the concept of limiting the number of duplicates for a chunk does
not affect the deduplication gains, whilst it offers an extra layer of security. Also, it confirms
the theory that an exact counter is able to achieve overall better deduplication gains than an
estimated counter.

Moreover, with the realistic workload, we found that the performance overhead of secure
solutions is less noticeable and in some cases negligible, namely when the disk bandwidth
is not being completely saturated. In fact, in a realistic setup, the storage system is not
expected to be in a fully saturated mode at all times.

Resource usage across the different setups and secure deduplication schemes are very
similar. The only exception, which can be seen at the Appendix Chapter A.1.2, is the
increase in RAM usage when running the in-memory solutions, which is to be expected
since deduplication metadata is kept in memory.



6

C O N C L U S I O N

This dissertation proposes S2Dedup, a secure deduplication system based on trusted
hardware, that takes into consideration not only the security guarantees it provides but also
the attained I/O performance and deduplication gain.

Our solution manages to offer secure deduplication with the aid of Intel SGX, which
assists in the calculation of block hash sums and data re-encryption. Additionally, and unlike
in previous research, it proposes secure schemes that offer different trade-offs in terms of
security, performance and deduplication gain. Namely, these schemes enable conducting
deduplication in epochs, which prevents attackers from detecting duplicates from different
epochs, and also, frequency based solutions, that by limiting the maximum number of
duplicate copies per chunk, mask the real number of duplicates per block from an attacker.

The implemented prototype was developed using state of the art technologies, namely
SPDK, in order to achieve good I/O performance and better understand the viability of
the proposed schemes. This prototype was extensively evaluated with both synthetic
and realistic workloads and by comparing multiple setups. The results show that it is
possible to implement more robust security techniques, while maintaining overall interesting
performance results and even achieve, in some cases, an improvement of deduplication
effectiveness when compared to state of the art solutions.

To conclude, S2Dedup is the first solution that provides multiple secure deduplication
alternatives that can be adapted to multiple applications according to their specific per-
formance, space savings and security requirements. We strongly believe this is a crucial
contribution to promote a wider usage of secure deduplication in third-party storage services
while promoting the privacy and security for individuals using those services.

6.1 future work

This work opens the opportunity for new research directions and future improvements
over S2Dedup design and implementation, namely:
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Firstly, S2Dedup prototype I/O performance is decreased by using persistent metadata.
Although this is an expected result that is common across other solutions, if the metadata
structures were fully integrated in the SPDK framework, thus avoiding the need to partition
the NVME disk and export the partition as an NBD driver for a LevelDB key-value store,
one could expect significant performance improvements.

Another possible improvement for this work would be to mask when duplicates occur by
applying ORAM [56]. However, this technique is known to have a significant overhead in
performance, thus further research is needed to increase the security of the solution while
keeping it practical and usable in production environments.

Finally, this solution could be expanded for other types of deduplication, namely, for
offline deduplication solutions. In fact, most of the necessary mechanisms are already
provided by S2Dedup. This would lead to a reduction of the I/O overheads, since the
S2Dedup secure mechanisms would be performed outside of the critical I/O path.
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A
A P P E N D I X

a.1 resource usage

a.1.1 Environment Results

read + dist highperf + 1 process
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

Sequential 6.08 0.08 0.64 0.0 - - - - - - - -
Local disk

Uniform 2.6 0.02 0.64 0.0 - - - - - - - -

Sequential 17.11 0.21 2.78 0.0 - - - - - - - -
Local SPDK

Uniform 17.8 0.01 2.77 0.0 - - - - - - - -

Sequential 15.22 0.05 2.28 0.0 9.89 0.31 0.65 0.01 392.537 14.493 1.112 0.048Server-based

SPDK Uniform 16.54 0.01 2.28 0.0 1.08 0.01 0.65 0.0 28.57 0.266 1.115 0.01

Sequential 15.27 0.05 2.27 0.0 18.99 0.2 2.8 0.0 526.782 0.922 1.258 0.007Client and

server-based SPDK Uniform 16.57 0.01 2.27 0.0 17.45 0.04 2.78 0.0 27.508 0.011 1.087 0.0

Table 11: Resource usage by the read operations of the environment tests.
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write + dist highperf + 1 process
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

Sequential 6.89 0.41 0.68 0.01 - - - - - - - -
Local disk

Uniform 8.08 0.29 0.64 0.0 - - - - - - - -

Sequential 31.01 0.09 2.79 0.0 - - - - - - - -
Local SPDK

Uniform 31.83 0.13 2.78 0.01 - - - - - - - -

Sequential 15.73 0.02 2.28 0.0 15.74 0.45 0.71 0.01 0.773 0.006 379.976 2.084Server-based

SPDK Uniform 16.13 0.06 2.28 0.0 16.89 0.82 0.65 0.01 4.848 0.251 262.757 14.366

Sequential 15.79 0.02 2.27 0.0 33.15 0.53 2.8 0.0 1.375 0.023 376.024 6.121Client and
server-based SPDK Uniform 16.31 0.03 2.27 0.0 26.75 0.14 2.8 0.0 4.288 0.011 218.965 0.629

Table 12: Resource usage by the write operations of the environment tests.
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a.1.2 Prototype Results

a.1.2.1 Synthetic experiments

read + dist highperf
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

p1 15.88 0.02 2.28 0.0 20.97 0.06 2.8 0.0 528.705 0.61 1.26 0.004
Sequential

p4 15.64 0.02 2.27 0.0 22.75 0.06 3.14 0.06 720.726 0.269 1.512 0.002

p1 16.64 0.02 2.28 0.0 17.61 0.01 2.78 0.0 27.56 0.034 1.088 0.001
Uniform

p4 16.71 0.01 2.27 0.0 20.48 0.03 3.16 0.01 104.089 0.056 3.882 0.003

p1 16.53 0.0 2.28 0.0 18.11 0.03 2.8 0.0 28.89 0.018 1.055 0.001

N
o

de
du

pl
ic

at
io

n
-

Zipfian
p4 16.18 0.02 2.27 0.0 20.93 0.02 3.12 0.09 91.529 0.053 3.185 0.001

p1 42.04 14.81 7.75 0.0 17.12 0.05 3.04 0.02 237.167 0.141 0.892 0.001
Sequential

p4 50.19 0.1 7.75 0.0 17.37 0.03 4.13 0.08 226.962 1.493 0.754 0.015

p1 50.5 0.07 7.75 0.0 17.23 0.02 3.03 0.0 26.031 0.031 1.074 0.001
Uniform

p4 51.04 0.12 7.75 0.0 19.66 0.02 4.2 0.0 97.338 0.097 3.835 0.005

p1 50.65 0.14 7.75 0.0 17.43 0.05 3.05 0.01 27.908 0.06 1.065 0.002

M
em

or
y

Zipfian
p4 50.97 0.09 7.75 0.0 19.42 0.02 4.15 0.08 95.33 0.059 3.482 0.003

p1 32.98 18.11 3.14 0.72 17.0 0.09 3.06 0.0 148.29 32.078 0.547 0.118
Sequential

p4 42.53 2.68 2.97 0.76 17.01 0.02 4.2 0.01 134.177 0.864 0.423 0.002

p1 44.89 0.2 2.97 0.76 16.99 0.01 3.05 0.01 18.758 0.028 0.775 0.001
Uniform

p4 44.57 0.46 2.97 0.76 18.71 0.01 4.19 0.03 64.245 0.659 2.545 0.026

p1 45.19 0.49 2.97 0.76 17.21 0.01 3.04 0.0 20.589 0.083 0.787 0.003

O
nl

y
de

du
pl

ic
at

io
n

Pe
rs

is
te

nt

Zipfian
p4 42.6 2.66 2.97 0.76 18.01 0.05 4.2 0.0 43.805 0.759 1.605 0.028

p1 50.07 0.27 7.85 0.0 17.83 0.11 3.03 0.02 163.938 0.011 0.48 0.004
Sequential

p4 50.39 0.18 7.85 0.0 18.01 0.02 4.11 0.06 157.639 0.218 0.395 0.001

p1 50.41 0.2 7.85 0.0 17.43 0.06 3.02 0.01 22.6 0.095 0.933 0.004
Uniform

p4 50.8 0.05 7.85 0.0 19.5 0.04 4.15 0.03 77.038 0.059 2.903 0.003

p1 50.4 0.08 7.85 0.0 17.63 0.03 3.02 0.02 23.908 0.071 0.908 0.003

M
em

or
y

Zipfian
p4 50.79 0.22 7.85 0.0 19.93 0.07 4.1 0.07 73.967 0.093 2.554 0.003

p1 49.03 0.08 3.75 0.0 17.36 0.01 3.03 0.01 148.374 1.491 0.52 0.006
Sequential

p4 48.98 0.14 3.75 0.0 17.52 0.01 4.15 0.06 147.7 0.181 0.343 0.0

p1 49.99 0.05 3.75 0.0 17.26 0.02 3.01 0.01 21.932 0.061 0.905 0.002
Uniform

p4 50.1 0.04 3.75 0.0 19.13 0.02 4.15 0.01 72.481 0.048 2.693 0.003

p1 49.87 0.04 3.75 0.0 17.48 0.01 3.03 0.01 23.235 0.008 0.883 0.0

En
cl

av
e

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 49.2 0.05 3.75 0.0 19.3 0.03 4.12 0.06 69.073 0.088 2.362 0.003
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p1 49.22 0.19 7.96 0.0 17.35 0.03 3.04 0.0 163.506 0.169 0.5 0.001
Sequential

p4 48.85 0.38 7.96 0.0 17.57 0.02 4.19 0.0 175.066 1.368 0.415 0.002

p1 50.05 0.22 7.96 0.0 17.28 0.04 3.03 0.01 22.422 0.021 0.925 0.001
Uniform

p4 50.17 0.05 7.96 0.0 19.22 0.03 4.17 0.03 77.076 0.112 2.896 0.005

p1 50.01 0.03 7.96 0.0 17.42 0.03 3.03 0.01 23.883 0.065 0.907 0.002

M
em

or
y

Zipfian
p4 49.39 0.13 7.96 0.0 19.26 0.02 4.16 0.04 73.77 0.045 2.537 0.003

p1 49.21 0.15 3.78 0.0 17.47 0.02 3.04 0.0 148.815 1.31 0.487 0.004
Sequential

p4 49.28 0.09 3.77 0.0 17.59 0.01 4.15 0.06 148.428 0.159 0.348 0.001

p1 50.09 0.12 3.78 0.0 17.27 0.06 3.03 0.01 21.771 0.03 0.899 0.001
Uniform

p4 50.48 0.08 3.77 0.0 19.13 0.02 4.17 0.03 72.816 0.015 2.708 0.001

p1 50.15 0.09 3.78 0.0 17.51 0.03 3.04 0.0 23.241 0.026 0.883 0.001

Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 49.37 0.12 3.77 0.0 19.32 0.02 4.07 0.06 69.373 0.052 2.371 0.002

p1 50.05 0.37 8.02 0.0 18.04 0.01 3.01 0.0 171.633 0.132 0.58 0.004
Sequential

p4 50.56 0.18 8.02 0.0 18.29 0.02 4.14 0.07 175.819 0.353 0.414 0.002

p1 50.66 0.17 8.02 0.0 17.45 0.02 3.01 0.01 22.82 0.003 0.942 0.0
Uniform

p4 51.11 0.23 8.02 0.0 19.55 0.03 4.17 0.03 77.577 0.011 2.908 0.001

p1 50.6 0.18 8.02 0.0 17.7 0.02 3.04 0.0 24.366 0.015 0.925 0.001

M
em

or
y

Zipfian
p4 50.71 0.15 8.02 0.0 19.98 0.02 4.18 0.0 74.487 0.09 2.559 0.003

p1 49.15 0.16 3.79 0.0 17.4 0.05 3.04 0.0 149.632 1.347 0.513 0.004
Sequential

p4 49.05 0.24 3.79 0.0 17.57 0.02 4.15 0.06 147.907 0.048 0.345 0.0

p1 50.06 0.03 3.79 0.0 17.27 0.06 3.03 0.01 21.757 0.053 0.898 0.002
Uniform

p4 50.22 0.1 3.79 0.0 19.16 0.02 4.15 0.03 72.642 0.055 2.702 0.002

p1 50.05 0.12 3.79 0.0 17.51 0.03 3.03 0.0 23.237 0.029 0.883 0.001

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 49.44 0.13 3.79 0.0 19.33 0.02 4.14 0.06 69.275 0.117 2.369 0.004

p1 48.68 0.05 8.04 0.0 17.22 0.03 3.01 0.01 168.746 0.081 0.574 0.002
Sequential

p4 48.43 0.11 8.04 0.0 17.47 0.07 3.98 0.07 175.617 0.43 0.382 0.003

p1 49.96 0.06 8.04 0.0 17.19 0.01 3.02 0.01 22.395 0.02 0.924 0.001
Uniform

p4 49.95 0.05 8.04 0.0 18.98 0.03 4.19 0.0 76.678 0.082 2.875 0.004

p1 49.92 0.09 8.04 0.0 17.42 0.01 3.03 0.01 23.909 0.058 0.908 0.002

M
em

or
y

Zipfian
p4 48.89 0.05 8.04 0.0 19.06 0.01 4.11 0.06 73.679 0.057 2.536 0.002

p1 49.01 0.1 3.8 0.0 17.39 0.01 3.04 0.0 148.119 1.214 0.515 0.005
Sequential

p4 49.16 0.17 3.8 0.0 17.55 0.04 4.15 0.06 148.239 0.021 0.345 0.001

p1 50.0 0.04 3.8 0.0 17.22 0.01 3.01 0.01 21.757 0.012 0.898 0.001
Uniform

p4 50.06 0.07 3.8 0.0 19.11 0.02 4.14 0.01 72.305 0.006 2.687 0.0

p1 49.91 0.03 3.8 0.0 17.48 0.04 3.03 0.0 23.092 0.042 0.878 0.002Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 49.24 0.16 3.8 0.0 19.35 0.08 4.12 0.06 68.882 0.066 2.355 0.002

Table 13: Resource usage by the read operations of the synthetic tests for the distribution dist highperf.
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write + dist highperf
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

p1 16.23 0.01 2.27 0.0 34.26 0.73 2.8 0.0 1.389 0.023 378.806 9.121
Sequential

p4 16.24 0.02 2.27 0.0 31.46 0.19 3.18 0.0 1.32 0.015 359.14 3.511

p1 16.56 0.04 2.27 0.0 27.22 0.07 2.8 0.0 4.341 0.021 222.018 0.874
Uniform

p4 16.55 0.01 2.27 0.0 27.16 0.06 3.17 0.0 4.336 0.008 221.486 0.298

p1 16.38 0.0 2.27 0.0 24.6 0.54 2.8 0.0 2.396 0.038 144.183 2.349

N
o

de
du

pl
ic

at
io

n
-

Zipfian
p4 16.39 0.01 2.27 0.0 23.75 0.1 3.17 0.0 2.43 0.01 147.172 0.676

p1 47.9 0.31 3.42 0.0 22.41 0.1 3.0 0.04 0.844 0.001 355.89 0.812
Sequential

p4 47.94 0.05 3.43 0.0 19.95 0.04 4.09 0.13 0.847 0.001 357.07 0.433

p1 49.38 0.16 3.4 0.0 23.4 0.03 3.05 0.0 4.041 0.006 245.275 0.533
Uniform

p4 49.37 0.13 3.39 0.0 21.57 0.05 4.19 0.02 4.015 0.002 242.843 0.139

p1 48.18 0.13 2.96 0.0 24.13 0.05 3.04 0.01 3.469 0.001 246.487 0.283

M
em

or
y

Zipfian
p4 48.59 0.17 3.02 0.0 21.3 0.03 4.12 0.03 3.704 0.179 253.117 0.98

p1 49.72 0.05 2.61 0.0 17.04 0.02 3.04 0.0 0.237 0.001 86.087 0.224
Sequential

p4 49.58 0.08 2.62 0.0 17.06 0.01 4.18 0.04 0.237 0.001 86.224 0.446

p1 49.94 0.13 2.6 0.0 17.92 0.02 3.04 0.0 1.148 0.005 82.706 0.351
Uniform

p4 49.99 0.02 2.6 0.0 17.94 0.03 4.17 0.03 1.152 0.001 82.778 0.043

p1 48.64 0.49 2.46 0.0 17.81 0.39 3.04 0.0 1.06 0.002 86.785 0.159

O
nl

y
de

du
pl

ic
at

io
n

Pe
rs

is
te

nt

Zipfian
p4 49.46 0.14 2.48 0.0 17.69 0.06 4.19 0.0 1.08 0.005 87.511 0.374

p1 49.84 0.16 3.58 0.01 17.6 0.01 3.05 0.0 0.281 0.001 104.232 0.297
Sequential

p4 49.88 0.12 3.59 0.01 17.63 0.04 4.16 0.04 0.277 0.007 102.627 2.509

p1 49.83 0.03 3.52 0.0 18.83 0.01 3.04 0.0 1.425 0.004 101.42 0.297
Uniform

p4 49.83 0.03 3.53 0.01 18.87 0.09 4.15 0.04 1.425 0.017 101.203 1.201

p1 49.65 0.05 3.16 0.0 18.59 0.01 3.04 0.01 1.256 0.002 98.505 0.135

M
em

or
y

Zipfian
p4 49.74 0.06 3.17 0.0 18.74 0.04 4.16 0.04 1.277 0.001 98.61 0.091

p1 50.15 0.08 2.7 0.0 17.14 0.01 3.03 0.01 0.143 0.001 51.41 0.214
Sequential

p4 50.07 0.05 2.7 0.0 17.19 0.03 4.17 0.05 0.143 0.001 51.559 0.213

p1 50.11 0.04 2.68 0.0 17.71 0.02 3.03 0.01 0.703 0.003 50.649 0.236
Uniform

p4 50.11 0.07 2.68 0.0 17.78 0.03 4.16 0.02 0.705 0.002 50.663 0.124

p1 49.99 0.17 2.58 0.0 17.7 0.02 3.04 0.01 0.656 0.008 51.634 0.665

En
cl

av
e

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 50.07 0.04 2.59 0.0 17.75 0.01 4.18 0.02 0.668 0.001 51.747 0.056
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p1 50.04 0.07 3.57 0.0 17.61 0.03 3.03 0.01 0.283 0.002 104.348 0.153
Sequential

p4 50.11 0.11 3.57 0.0 17.66 0.02 4.18 0.03 0.283 0.001 104.687 0.403

p1 50.09 0.12 3.51 0.0 18.75 0.01 3.04 0.01 1.428 0.004 101.645 0.196
Uniform

p4 50.13 0.18 3.51 0.0 18.81 0.02 4.17 0.04 1.433 0.004 101.806 0.205

p1 49.9 0.08 3.14 0.0 18.51 0.02 3.04 0.02 1.264 0.002 98.94 0.128

M
em

or
y

Zipfian
p4 50.13 0.18 3.16 0.0 18.65 0.02 4.15 0.05 1.281 0.003 98.746 0.192

p1 50.29 0.02 2.69 0.0 17.15 0.03 3.04 0.01 0.142 0.0 51.128 0.173
Sequential

p4 50.26 0.09 2.69 0.0 17.18 0.03 4.17 0.03 0.142 0.0 51.115 0.098

p1 50.27 0.1 2.66 0.0 17.68 0.03 3.04 0.01 0.703 0.003 50.697 0.191
Uniform

p4 50.23 0.03 2.66 0.0 17.73 0.02 4.14 0.02 0.701 0.002 50.391 0.102

p1 50.21 0.11 2.57 0.0 17.65 0.0 3.05 0.01 0.655 0.001 51.581 0.077

Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 50.3 0.08 2.57 0.0 17.73 0.04 4.18 0.02 0.669 0.001 51.866 0.054

p1 49.72 0.35 3.59 0.0 17.35 0.04 3.05 0.0 0.234 0.0 85.204 0.109
Sequential

p4 49.54 0.08 3.59 0.0 17.42 0.01 4.15 0.02 0.234 0.0 85.154 0.089

p1 49.7 0.07 3.54 0.0 18.28 0.01 3.04 0.01 1.158 0.005 83.141 0.297
Uniform

p4 49.71 0.16 3.54 0.0 18.33 0.02 4.19 0.0 1.165 0.003 83.441 0.39

p1 49.63 0.08 3.16 0.0 18.1 0.05 3.04 0.01 1.032 0.004 81.131 0.322

M
em

or
y

Zipfian
p4 49.36 0.05 3.18 0.0 18.2 0.04 4.16 0.03 1.05 0.005 81.327 0.329

p1 49.77 0.03 2.68 0.0 17.03 0.02 3.03 0.01 0.125 0.001 45.485 0.319
Sequential

p4 49.75 0.03 2.68 0.0 17.08 0.03 4.14 0.02 0.125 0.0 45.317 0.072

p1 49.85 0.07 2.66 0.0 17.52 0.02 3.03 0.01 0.622 0.003 44.852 0.208
Uniform

p4 49.8 0.08 2.66 0.0 17.55 0.03 4.13 0.01 0.623 0.003 44.733 0.264

p1 49.81 0.03 2.58 0.0 17.5 0.03 3.04 0.01 0.581 0.003 45.764 0.259

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 49.81 0.04 2.58 0.0 17.54 0.06 4.18 0.03 0.588 0.005 45.516 0.419

p1 50.2 0.28 3.61 0.0 17.46 0.06 3.04 0.01 0.222 0.001 80.388 0.048
Sequential

p4 50.22 0.07 3.61 0.0 17.48 0.03 4.18 0.03 0.223 0.001 80.493 0.176

p1 50.26 0.24 3.54 0.0 18.36 0.01 3.03 0.01 1.109 0.001 79.573 0.063
Uniform

p4 50.12 0.18 3.55 0.01 18.46 0.06 4.15 0.04 1.107 0.003 79.254 0.227

p1 50.14 0.17 3.17 0.0 18.17 0.01 3.04 0.01 0.985 0.002 77.488 0.142

M
em

or
y

Zipfian
p4 50.25 0.25 3.19 0.01 18.27 0.03 4.15 0.03 0.995 0.01 77.136 0.765

p1 50.21 0.14 2.68 0.0 17.07 0.0 3.03 0.01 0.126 0.001 44.723 0.216
Sequential

p4 50.13 0.07 2.68 0.0 17.12 0.03 4.14 0.02 0.126 0.001 44.91 0.295

p1 50.21 0.1 2.66 0.0 17.59 0.01 3.04 0.0 0.613 0.003 44.107 0.202
Uniform

p4 50.24 0.05 2.66 0.0 17.65 0.0 4.17 0.02 0.613 0.001 44.03 0.101

p1 50.19 0.07 2.58 0.0 17.55 0.01 3.04 0.01 0.569 0.002 44.77 0.158Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 50.27 0.05 2.58 0.0 17.64 0.03 4.14 0.05 0.579 0.001 44.846 0.051

Table 14: Resource usage by the write operations of the synthetic tests for the distribution dist highperf.
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read + dist kernels
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

p1 16.02 0.01 2.28 0.0 21.07 0.05 2.42 0.0 528.474 0.832 1.262 0.007
Sequential

p4 15.83 0.01 2.27 0.0 22.99 0.04 2.8 0.0 722.568 0.402 1.509 0.005

p1 16.67 0.03 2.27 0.0 17.64 0.0 2.42 0.0 27.581 0.05 1.087 0.002
Uniform

p4 16.73 0.0 2.27 0.0 20.51 0.04 2.77 0.0 104.059 0.017 3.869 0.001

p1 16.56 0.0 2.27 0.0 18.12 0.03 2.42 0.0 28.872 0.079 1.054 0.003

N
o

de
du

pl
ic

at
io

n
-

Zipfian
p4 16.28 0.01 2.27 0.0 21.09 0.06 2.8 0.0 91.697 0.168 3.188 0.005

p1 50.23 0.2 4.14 0.0 17.22 0.04 2.68 0.0 304.4 3.01 1.094 0.009
Sequential

p4 50.36 0.18 4.14 0.0 17.64 0.06 3.8 0.05 405.308 0.06 1.088 0.001

p1 50.62 0.16 4.14 0.0 17.22 0.02 2.67 0.01 26.115 0.014 1.077 0.001
Uniform

p4 50.98 0.15 4.14 0.0 19.77 0.04 3.83 0.0 99.581 0.006 3.92 0.001

p1 50.62 0.13 4.14 0.0 17.43 0.01 2.68 0.0 28.214 0.013 1.076 0.0

M
em

or
y

Zipfian
p4 50.87 0.17 4.14 0.0 19.13 0.36 3.82 0.0 97.434 0.067 3.549 0.002

p1 43.2 1.64 2.79 0.01 17.18 0.11 2.68 0.02 208.255 60.208 0.742 0.218
Sequential

p4 40.85 3.45 2.79 0.01 16.99 0.03 3.83 0.0 202.941 2.163 0.545 0.006

p1 45.38 1.62 2.79 0.01 17.11 0.04 2.68 0.01 21.823 0.02 0.901 0.001
Uniform

p4 44.88 0.77 2.79 0.01 19.03 0.02 3.83 0.0 74.003 0.199 2.926 0.008

p1 45.44 1.61 2.79 0.01 17.34 0.05 2.68 0.0 23.449 0.133 0.894 0.005

O
nl

y
de

du
pl

ic
at

io
n

Pe
rs

is
te

nt

Zipfian
p4 42.71 1.55 2.79 0.01 18.28 0.01 3.83 0.0 54.83 0.032 2.004 0.001

p1 49.91 0.15 4.24 0.0 17.69 0.06 2.67 0.0 152.529 2.027 0.507 0.014
Sequential

p4 49.87 0.3 4.24 0.0 17.93 0.09 3.79 0.03 176.432 0.04 0.408 0.001

p1 50.41 0.02 4.24 0.0 17.36 0.01 2.66 0.01 22.725 0.09 0.938 0.004
Uniform

p4 50.64 0.14 4.24 0.0 19.36 0.06 3.81 0.0 77.197 0.024 2.888 0.001

p1 50.49 0.05 4.24 0.0 17.62 0.02 2.66 0.0 24.243 0.016 0.92 0.0

M
em

or
y

Zipfian
p4 50.25 0.1 4.24 0.0 19.79 0.05 3.72 0.03 74.177 0.034 2.535 0.001

p1 48.87 0.08 2.89 0.0 17.29 0.04 2.66 0.01 138.954 1.415 0.466 0.009
Sequential

p4 48.89 0.19 2.88 0.0 17.51 0.02 3.73 0.04 152.35 0.077 0.354 0.0

p1 49.96 0.08 2.89 0.0 17.21 0.04 2.65 0.01 22.008 0.043 0.908 0.002
Uniform

p4 50.04 0.05 2.88 0.0 19.08 0.01 3.81 0.01 73.046 0.079 2.713 0.003

p1 49.85 0.03 2.88 0.0 17.44 0.02 2.66 0.0 23.469 0.04 0.89 0.001

En
cl

av
e

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 48.97 0.06 2.88 0.0 19.21 0.05 3.81 0.0 69.543 0.077 2.368 0.003
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p1 49.14 0.26 5.48 0.0 17.37 0.03 2.67 0.0 149.968 0.871 0.473 0.008
Sequential

p4 48.82 0.05 5.48 0.0 17.54 0.01 3.81 0.0 176.01 0.011 0.411 0.0

p1 50.18 0.24 5.48 0.0 17.29 0.03 2.66 0.01 22.684 0.076 0.936 0.003
Uniform

p4 50.4 0.18 5.48 0.0 19.2 0.05 3.81 0.0 77.238 0.044 2.893 0.002

p1 49.96 0.08 5.48 0.0 17.45 0.02 2.67 0.0 24.241 0.045 0.92 0.002

M
em

or
y

Zipfian
p4 49.09 0.21 5.48 0.0 19.32 0.02 3.77 0.05 74.139 0.057 2.537 0.003

p1 49.38 0.32 3.19 0.0 17.43 0.01 2.67 0.0 137.576 1.347 0.434 0.008
Sequential

p4 49.22 0.16 3.19 0.0 17.63 0.02 3.82 0.0 148.234 0.158 0.347 0.0

p1 50.12 0.1 3.19 0.0 17.28 0.06 2.66 0.01 21.756 0.066 0.898 0.003
Uniform

p4 50.29 0.04 3.19 0.0 19.14 0.01 3.82 0.0 72.515 0.043 2.693 0.002

p1 50.14 0.11 3.19 0.0 17.52 0.09 2.67 0.0 23.284 0.082 0.883 0.003

Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 49.72 0.18 3.19 0.0 19.34 0.02 3.72 0.04 68.873 0.18 2.344 0.005

p1 49.68 0.26 6.28 0.0 17.81 0.03 2.67 0.0 167.072 0.173 0.566 0.003
Sequential

p4 50.28 0.01 6.27 0.0 18.05 0.05 3.81 0.0 176.713 0.136 0.413 0.001

p1 50.52 0.1 6.28 0.0 17.38 0.02 2.66 0.01 22.743 0.018 0.939 0.001
Uniform

p4 50.88 0.23 6.27 0.0 19.46 0.03 3.81 0.0 77.569 0.117 2.904 0.006

p1 50.37 0.13 6.28 0.0 17.62 0.01 2.67 0.0 24.323 0.01 0.923 0.001

M
em

or
y

Zipfian
p4 50.42 0.17 6.27 0.0 19.78 0.04 3.72 0.07 74.13 0.078 2.538 0.001

p1 48.93 0.09 3.44 0.0 17.36 0.05 2.67 0.0 146.309 1.481 0.504 0.005
Sequential

p4 49.1 0.06 3.44 0.0 17.51 0.03 3.81 0.0 148.256 0.261 0.346 0.001

p1 49.92 0.04 3.44 0.0 17.22 0.04 2.66 0.01 21.726 0.021 0.897 0.001
Uniform

p4 50.24 0.13 3.44 0.0 19.09 0.03 3.81 0.0 72.721 0.087 2.702 0.004

p1 50.04 0.09 3.44 0.0 17.46 0.04 2.66 0.0 23.255 0.024 0.883 0.001

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 49.1 0.1 3.44 0.0 19.22 0.03 3.74 0.06 68.847 0.142 2.347 0.005

p1 48.83 0.26 7.36 0.0 17.23 0.03 2.67 0.0 165.673 0.138 0.619 0.002
Sequential

p4 48.8 0.08 7.36 0.0 17.47 0.01 3.69 0.0 175.767 0.016 0.374 0.0

p1 50.03 0.07 7.36 0.0 17.22 0.02 2.66 0.0 22.42 0.021 0.925 0.001
Uniform

p4 50.11 0.04 7.36 0.0 18.97 0.01 3.79 0.03 76.517 0.071 2.866 0.003

p1 49.92 0.01 7.36 0.0 17.43 0.03 2.66 0.0 23.947 0.025 0.908 0.001

M
em

or
y

Zipfian
p4 49.02 0.11 7.36 0.0 19.09 0.04 3.81 0.0 73.54 0.026 2.524 0.001

p1 49.09 0.12 3.59 0.0 17.45 0.04 2.67 0.0 145.292 2.09 0.494 0.039
Sequential

p4 49.03 0.13 3.59 0.0 17.53 0.02 3.81 0.0 147.111 1.953 0.377 0.057

p1 49.94 0.12 3.59 0.0 17.1 0.38 2.65 0.01 15.533 10.712 0.641 0.441
Uniform

p4 50.2 0.05 3.59 0.0 19.1 0.02 3.81 0.0 72.168 0.529 2.683 0.018

p1 49.97 0.03 3.59 0.0 17.45 0.07 2.66 0.01 21.799 2.348 0.828 0.088Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 49.3 0.1 3.59 0.0 19.38 0.03 3.76 0.04 68.884 0.025 2.35 0.002

Table 15: Resource usage by the read operations of the synthetic tests for the distribution dist kernels.
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write + dist kernels
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

p1 16.33 0.01 2.27 0.0 34.19 0.57 2.43 0.0 1.382 0.031 379.505 7.931
Sequential

p4 16.33 0.01 2.27 0.0 31.43 0.11 2.8 0.0 1.317 0.012 358.485 3.346

p1 16.61 0.04 2.27 0.0 27.34 0.02 2.42 0.0 4.361 0.006 223.428 0.147
Uniform

p4 16.61 0.02 2.27 0.0 27.22 0.03 2.8 0.0 4.347 0.002 222.534 0.058

p1 16.47 0.03 2.27 0.0 25.37 0.3 2.42 0.0 2.384 0.037 144.101 2.157

N
o

de
du

pl
ic

at
io

n
-

Zipfian
p4 16.46 0.01 2.27 0.0 23.8 0.17 2.8 0.0 2.419 0.031 147.207 1.935

p1 48.19 0.24 2.97 0.0 22.31 0.08 2.68 0.0 0.859 0.0 362.97 0.302
Sequential

p4 48.26 0.09 2.97 0.0 19.93 0.05 3.82 0.0 0.863 0.001 364.608 0.286

p1 49.32 0.08 2.96 0.0 23.43 0.08 2.66 0.03 4.087 0.019 245.493 1.751
Uniform

p4 49.28 0.05 2.96 0.0 21.57 0.03 3.82 0.0 4.082 0.005 245.176 0.142

p1 48.02 0.23 2.82 0.0 24.14 0.06 2.68 0.0 3.513 0.012 249.368 1.053

M
em

or
y

Zipfian
p4 48.0 0.23 2.83 0.0 20.92 0.06 3.82 0.0 3.525 0.005 247.822 0.211

p1 50.14 0.03 2.47 0.0 17.62 0.01 2.68 0.0 0.299 0.001 108.729 0.224
Sequential

p4 49.75 0.3 2.47 0.0 17.64 0.03 3.82 0.0 0.295 0.002 107.233 0.848

p1 50.11 0.03 2.46 0.0 18.58 0.02 2.68 0.0 1.418 0.006 102.182 0.424
Uniform

p4 50.14 0.12 2.46 0.0 18.52 0.02 3.82 0.0 1.419 0.007 101.972 0.469

p1 49.81 0.02 2.43 0.0 18.28 0.02 2.68 0.0 1.188 0.001 97.369 0.099

O
nl

y
de

du
pl

ic
at

io
n

Pe
rs

is
te

nt

Zipfian
p4 49.75 0.09 2.43 0.0 18.35 0.02 3.82 0.0 1.215 0.005 98.602 0.398

p1 49.76 0.23 3.09 0.0 18.0 0.04 2.67 0.01 0.392 0.001 145.905 0.208
Sequential

p4 49.6 0.19 3.08 0.01 18.0 0.02 3.82 0.0 0.384 0.012 143.214 4.46

p1 49.55 0.04 3.07 0.0 19.7 0.03 2.67 0.0 1.989 0.008 141.161 0.609
Uniform

p4 49.64 0.1 3.07 0.0 19.78 0.05 3.82 0.0 1.998 0.004 141.224 0.324

p1 49.3 0.03 2.96 0.0 19.28 0.02 2.67 0.0 1.693 0.004 132.163 0.291

M
em

or
y

Zipfian
p4 49.32 0.22 2.97 0.0 19.3 0.09 3.82 0.0 1.721 0.028 132.259 2.127

p1 49.97 0.09 2.58 0.0 17.31 0.01 2.68 0.0 0.191 0.001 70.076 0.458
Sequential

p4 50.02 0.04 2.58 0.0 17.37 0.03 3.82 0.0 0.192 0.0 70.406 0.043

p1 50.05 0.03 2.57 0.0 18.09 0.02 2.67 0.0 0.954 0.002 68.333 0.123
Uniform

p4 50.05 0.07 2.57 0.0 18.14 0.02 3.82 0.0 0.947 0.007 67.709 0.48

p1 49.93 0.06 2.55 0.0 17.9 0.02 2.67 0.0 0.818 0.004 64.516 0.328

En
cl

av
e

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 50.03 0.03 2.55 0.0 18.02 0.02 3.82 0.0 0.843 0.004 65.473 0.275
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p1 49.89 0.08 3.2 0.0 17.81 0.01 2.67 0.0 0.36 0.001 131.671 0.28
Sequential

p4 50.01 0.18 3.2 0.0 17.89 0.02 3.82 0.0 0.36 0.001 131.493 0.407

p1 50.16 0.17 3.19 0.0 19.23 0.04 2.67 0.0 1.778 0.004 126.256 0.281
Uniform

p4 50.09 0.08 3.19 0.0 19.32 0.02 3.82 0.0 1.786 0.007 126.426 0.427

p1 49.99 0.16 3.02 0.0 18.94 0.04 2.68 0.0 1.537 0.006 120.206 0.427

M
em

or
y

Zipfian
p4 50.06 0.07 3.02 0.0 18.98 0.05 3.83 0.0 1.558 0.005 119.901 0.393

p1 50.3 0.04 2.6 0.0 17.26 0.04 2.68 0.0 0.176 0.0 63.746 0.157
Sequential

p4 50.21 0.03 2.6 0.0 17.29 0.01 3.82 0.0 0.176 0.001 63.814 0.202

p1 50.22 0.03 2.59 0.0 17.89 0.01 2.67 0.0 0.855 0.0 61.429 0.017
Uniform

p4 50.26 0.11 2.59 0.0 17.99 0.04 3.82 0.0 0.859 0.001 61.521 0.053

p1 50.3 0.03 2.54 0.0 17.77 0.01 2.68 0.01 0.76 0.001 59.94 0.109

Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 50.15 0.14 2.54 0.0 17.83 0.02 3.82 0.0 0.771 0.002 59.862 0.139

p1 49.39 0.06 3.37 0.0 17.4 0.01 2.67 0.0 0.257 0.0 94.32 0.112
Sequential

p4 49.45 0.02 3.38 0.01 17.47 0.01 3.82 0.0 0.257 0.0 94.407 0.193

p1 49.61 0.26 3.34 0.01 18.44 0.04 2.67 0.0 1.287 0.004 91.921 0.305
Uniform

p4 49.56 0.08 3.35 0.01 18.49 0.05 3.82 0.01 1.289 0.004 91.949 0.304

p1 49.39 0.08 3.1 0.0 18.21 0.01 2.68 0.0 1.14 0.004 89.784 0.282

M
em

or
y

Zipfian
p4 49.43 0.23 3.12 0.0 18.34 0.01 3.82 0.0 1.159 0.001 89.898 0.037

p1 49.83 0.03 2.64 0.0 17.07 0.01 2.67 0.01 0.139 0.001 50.286 0.274
Sequential

p4 49.74 0.02 2.64 0.0 17.09 0.01 3.81 0.02 0.138 0.001 49.886 0.303

p1 49.82 0.09 2.63 0.0 17.55 0.01 2.67 0.0 0.683 0.003 49.189 0.242
Uniform

p4 49.85 0.09 2.63 0.0 17.63 0.03 3.79 0.02 0.692 0.004 49.707 0.323

p1 49.76 0.08 2.56 0.0 17.58 0.03 2.67 0.0 0.625 0.002 49.352 0.132

Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

Zipfian
p4 49.86 0.17 2.57 0.0 17.57 0.04 3.82 0.0 0.639 0.001 49.73 0.093

p1 50.15 0.2 3.37 0.0 17.52 0.02 2.68 0.0 0.245 0.001 89.372 0.374
Sequential

p4 50.13 0.06 3.37 0.0 17.56 0.04 3.83 0.0 0.245 0.001 89.404 0.349

p1 50.03 0.06 3.33 0.01 18.51 0.01 2.77 0.01 1.225 0.003 87.739 0.19
Uniform

p4 50.17 0.13 3.34 0.0 18.61 0.0 3.87 0.03 1.234 0.002 88.128 0.098

p1 50.09 0.14 3.1 0.0 18.35 0.01 2.77 0.01 1.093 0.001 86.064 0.072

M
em

or
y

Zipfian
p4 50.02 0.13 3.11 0.0 18.48 0.03 3.93 0.0 1.106 0.003 85.809 0.271

p1 50.19 0.09 2.64 0.0 17.13 0.01 2.67 0.0 0.141 0.0 50.095 0.01
Sequential

p4 50.2 0.06 2.64 0.0 17.18 0.03 3.78 0.0 0.14 0.0 49.977 0.095

p1 50.3 0.13 2.62 0.0 17.68 0.01 2.67 0.01 0.679 0.002 48.889 0.181
Uniform

p4 50.16 0.09 2.63 0.0 17.68 0.02 3.79 0.02 0.681 0.002 48.946 0.179

p1 50.14 0.04 2.57 0.0 17.62 0.01 2.67 0.0 0.614 0.003 48.484 0.259Ep
oc

h
an

d
ex

ac
tf

re
qu

en
cy

ba
se

d
Pe

rs
is

te
nt

Zipfian
p4 50.18 0.05 2.57 0.0 17.67 0.01 3.82 0.0 0.627 0.001 48.696 0.07

Table 16: Resource usage by the write operations of the synthetic tests for the distribution dist kernels.
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a.1.2.2 Realistic experiments

Mail
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

S1 16.18 0.13 2.28 0.0 16.66 0.01 2.58 0.0 0.095 0.0 0.157 0.0

S200 16.22 0.36 2.28 0.0 21.71 0.03 2.58 0.0 21.354 0.011 119.278 0.692N
o

de
du

p.

-

S400 16.64 0.23 2.28 0.0 25.12 0.04 2.58 0.0 39.473 0.062 188.664 0.146

S1 49.81 0.06 2.68 0.0 16.61 0.0 2.59 0.0 0.095 0.0 0.157 0.0

S200 50.31 0.24 2.75 0.01 18.82 0.03 2.59 0.0 20.987 0.047 114.112 1.657

M
em

or
y

S400 50.3 0.09 2.77 0.01 20.46 0.05 2.58 0.0 39.281 0.418 174.631 5.368

S1 50.05 0.06 2.33 0.0 16.65 0.01 2.58 0.0 0.095 0.0 0.157 0.0

S200 50.59 0.01 2.41 0.0 18.71 0.02 2.58 0.0 20.903 0.051 92.326 3.661

O
nl

y

de
du

pl
ic

at
io

n

Pe
rs

is
te

nt

S400 50.46 0.12 2.41 0.0 19.03 0.06 2.58 0.0 28.011 0.408 97.278 3.508

S1 50.23 0.05 2.77 0.0 16.66 0.04 2.59 0.0 0.095 0.0 0.157 0.0

S200 50.4 0.15 2.85 0.01 18.51 0.65 2.59 0.0 16.019 8.635 77.234 43.543

M
em

or
y

S400 50.54 0.16 2.85 0.0 19.6 0.17 2.58 0.0 33.36 0.985 112.874 5.823

S1 50.15 0.07 2.44 0.01 16.66 0.04 2.59 0.01 0.095 0.0 0.157 0.0

S200 50.31 0.01 2.52 0.0 18.31 0.01 2.58 0.0 17.686 0.098 63.16 0.266En
cl

av
e

ba
se

d

Pe
rs

is
te

nt

S400 50.34 0.08 2.52 0.0 18.33 0.01 2.59 0.0 18.853 0.024 62.224 0.108

S1 50.13 0.17 2.75 0.0 16.66 0.0 2.58 0.0 0.095 0.0 0.157 0.0

S200 50.34 0.18 2.87 0.0 18.88 0.05 2.59 0.01 20.969 0.036 104.964 0.156

M
em

or
y

S400 50.75 0.12 2.88 0.0 19.35 0.01 2.58 0.0 30.227 0.965 104.786 1.442

S1 50.09 0.24 2.44 0.01 16.63 0.03 2.59 0.0 0.095 0.0 0.156 0.002

S200 50.38 0.07 2.5 0.0 18.33 0.06 2.58 0.0 19.131 0.999 64.673 1.225Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

S400 50.38 0.08 2.5 0.0 18.32 0.04 2.58 0.0 19.825 0.09 63.486 0.109

S1 50.24 0.04 2.76 0.0 16.65 0.0 2.58 0.0 0.095 0.0 0.157 0.0

S200 50.48 0.05 2.89 0.0 18.76 0.02 2.58 0.0 20.831 0.024 84.542 0.389

M
em

or
y

S400 50.35 0.01 2.9 0.0 18.87 0.06 2.57 0.0 24.899 0.449 82.205 2.93

S1 50.21 0.07 2.44 0.0 16.65 0.0 2.58 0.0 0.095 0.0 0.157 0.0

S200 50.39 0.07 2.51 0.01 18.11 0.05 2.58 0.01 15.97 0.156 53.293 1.315Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

S400 50.34 0.06 2.51 0.0 18.11 0.04 2.58 0.01 16.14 0.129 52.886 0.398

S1 49.94 0.11 2.76 0.01 16.64 0.03 2.58 0.01 0.095 0.0 0.157 0.0

S200 50.58 0.32 2.87 0.0 18.64 0.05 2.58 0.0 20.825 0.153 82.409 3.038

M
em

or
y

S400 50.71 0.06 2.88 0.0 18.79 0.05 2.58 0.0 24.759 0.276 80.411 2.358

S1 50.04 0.17 2.44 0.01 16.64 0.03 2.59 0.01 0.095 0.0 0.157 0.0

S200 50.34 0.09 2.51 0.0 18.06 0.02 2.59 0.0 16.018 0.057 52.886 0.074

Ep
oc

h
an

d
ex

ac
t

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

S400 50.38 0.01 2.51 0.0 18.14 0.03 2.58 0.0 16.137 0.201 53.234 1.544

Table 17: Resource usage by the realistic tests for the trace mail.
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Homes
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

S1 16.18 0.27 2.28 0.0 16.65 0.0 3.17 0.0 0.004 0.0 0.082 0.003

S350 16.19 0.16 2.28 0.0 17.1 0.02 3.32 0.0 0.803 0.002 8.116 0.114N
o

de
du

p.

-

S700 16.19 0.23 2.28 0.0 17.22 0.01 3.33 0.0 1.147 0.002 10.841 0.14

S1 50.12 0.05 2.66 0.0 16.65 0.0 3.17 0.0 0.004 0.0 0.081 0.003

S350 49.98 0.19 2.77 0.01 16.91 0.03 3.32 0.0 0.784 0.001 7.866 0.045

M
em

or
y

S700 50.11 0.18 2.8 0.0 16.95 0.03 3.33 0.0 1.12 0.002 10.672 0.052

S1 50.08 0.02 2.34 0.0 16.65 0.0 3.18 0.0 0.004 0.0 0.077 0.003

S350 50.21 0.1 2.41 0.0 16.93 0.05 3.32 0.0 0.782 0.004 8.027 0.084

O
nl

y

de
du

pl
ic

at
io

n

Pe
rs

is
te

nt

S700 50.2 0.09 2.41 0.0 16.97 0.03 3.33 0.0 1.122 0.001 10.806 0.102

S1 50.31 0.1 2.76 0.0 16.63 0.01 3.17 0.0 0.004 0.0 0.074 0.0

S350 50.33 0.12 2.87 0.0 16.93 0.02 3.32 0.0 0.783 0.001 7.939 0.093

M
em

or
y

S700 50.17 0.18 2.89 0.0 16.92 0.01 3.33 0.0 1.12 0.002 10.761 0.141

S1 50.16 0.16 2.44 0.01 16.65 0.02 3.17 0.01 0.004 0.0 0.074 0.001

S350 50.25 0.12 2.52 0.0 16.91 0.03 3.33 0.0 0.784 0.0 8.1 0.037En
cl

av
e

ba
se

d

Pe
rs

is
te

nt

S700 50.25 0.07 2.53 0.0 16.98 0.02 3.34 0.0 1.118 0.0 10.729 0.07

S1 50.35 0.17 2.75 0.0 16.64 0.0 3.17 0.0 0.004 0.0 0.074 0.002

S350 50.41 0.2 2.85 0.0 16.89 0.0 3.32 0.0 0.784 0.0 7.939 0.031

M
em

or
y

S700 50.37 0.08 2.89 0.0 16.95 0.02 3.33 0.0 1.12 0.002 10.732 0.015

S1 50.22 0.25 2.44 0.01 16.64 0.03 3.18 0.0 0.004 0.0 0.075 0.001

S350 50.36 0.04 2.5 0.0 16.93 0.02 3.32 0.0 0.784 0.001 8.092 0.049Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

S700 50.23 0.16 2.5 0.0 16.95 0.04 3.33 0.0 1.119 0.001 10.638 0.044

S1 50.24 0.03 2.76 0.0 16.65 0.0 3.17 0.0 0.004 0.0 0.078 0.006

S350 50.27 0.1 2.87 0.0 16.92 0.04 3.32 0.0 0.783 0.0 8.016 0.01

M
em

or
y

S700 50.28 0.24 2.9 0.0 16.97 0.01 3.33 0.01 1.119 0.001 10.756 0.067

S1 50.29 0.1 2.44 0.0 16.65 0.0 3.17 0.0 0.004 0.0 0.077 0.003

S350 50.24 0.01 2.51 0.0 16.94 0.01 3.32 0.0 0.783 0.0 8.034 0.061Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

S700 50.14 0.05 2.52 0.0 16.97 0.01 3.33 0.0 1.118 0.001 10.716 0.143

S1 50.16 0.33 2.76 0.01 16.66 0.01 3.17 0.01 0.004 0.0 0.077 0.002

S350 50.12 0.06 2.86 0.0 16.92 0.02 3.33 0.0 0.784 0.001 7.994 0.077

M
em

or
y

S700 50.27 0.15 2.89 0.0 17.0 0.04 3.33 0.0 1.119 0.001 10.773 0.047

S1 50.12 0.28 2.44 0.01 16.64 0.03 3.17 0.01 0.004 0.0 0.077 0.003

S350 50.15 0.09 2.5 0.0 16.92 0.03 3.32 0.0 0.79 0.011 8.093 0.029

Ep
oc

h
an

d
ex

ac
t

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

S700 50.28 0.16 2.51 0.0 17.0 0.03 3.33 0.0 1.121 0.002 10.807 0.16

Table 18: Resource usage by the realistic tests for the trace homes.
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Web-VM
Server Client

CPU
(%)

RAM
(GB)

CPU
(%)

RAM
(GB)

RECV
(MiB/s)

SEND
(MiB/s)

AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV AVG DEV

S1 50.38 0.18 2.29 0.0 16.68 0.08 2.34 0.0 0.001 0.0 0.017 0.0

S350 50.42 0.12 2.28 0.0 16.81 0.0 2.34 0.0 0.639 0.005 3.341 0.045N
o

de
du

p.

-

S700 50.22 0.03 2.28 0.0 16.99 0.01 2.38 0.0 0.674 0.005 6.754 0.214

S1 50.12 0.14 2.66 0.0 16.64 0.01 2.34 0.0 0.001 0.0 0.017 0.0

S350 50.06 0.26 2.7 0.01 16.72 0.03 2.35 0.0 0.636 0.004 3.317 0.029

M
em

or
y

S700 49.97 0.06 2.71 0.01 16.82 0.03 2.39 0.01 0.67 0.001 6.864 0.217

S1 49.99 0.12 2.34 0.02 16.63 0.02 2.34 0.0 0.001 0.0 0.017 0.0

S350 50.04 0.16 2.4 0.01 16.73 0.03 2.35 0.0 0.633 0.005 3.428 0.161

O
nl

y

de
du

pl
ic

at
io

n

Pe
rs

is
te

nt

S700 50.13 0.06 2.4 0.0 16.84 0.0 2.39 0.0 0.664 0.004 7.009 0.287

S1 50.37 0.08 2.76 0.0 16.63 0.0 2.33 0.0 0.001 0.0 0.017 0.0

S350 50.32 0.13 2.79 0.0 16.72 0.01 2.34 0.01 0.635 0.004 3.452 0.032

M
em

or
y

S700 50.07 0.4 2.8 0.0 16.81 0.09 2.39 0.01 0.667 0.005 6.97 0.275

S1 50.37 0.31 2.44 0.0 16.65 0.01 2.33 0.0 0.001 0.0 0.017 0.0

S350 50.13 0.14 2.51 0.0 16.74 0.03 2.35 0.0 0.637 0.0 3.469 0.131En
cl

av
e

ba
se

d

Pe
rs

is
te

nt

S700 50.4 0.03 2.5 0.0 16.86 0.0 2.38 0.0 0.67 0.0 6.944 0.118

S1 50.41 0.04 2.74 0.0 16.65 0.03 2.34 0.0 0.001 0.0 0.017 0.0

S350 49.96 0.2 2.79 0.01 16.7 0.02 2.35 0.0 0.633 0.005 3.458 0.188

M
em

or
y

S700 50.09 0.39 2.8 0.01 16.82 0.03 2.39 0.0 0.664 0.004 6.901 0.226

S1 50.27 0.16 2.43 0.0 16.67 0.03 2.34 0.0 0.001 0.0 0.017 0.0

S350 50.23 0.23 2.48 0.0 16.74 0.01 2.34 0.0 0.638 0.0 3.641 0.059Ep
oc

h
ba

se
d

Pe
rs

is
te

nt

S700 49.99 0.23 2.5 0.01 16.79 0.1 2.39 0.01 0.667 0.005 6.881 0.122

S1 50.26 0.09 2.76 0.0 16.64 0.0 2.33 0.0 0.001 0.0 0.017 0.0

S350 50.11 0.08 2.8 0.0 16.72 0.0 2.35 0.0 0.635 0.005 3.607 0.073

M
em

or
y

S700 50.37 0.22 2.8 0.0 16.86 0.01 2.39 0.0 0.67 0.0 7.083 0.12

S1 50.22 0.16 2.44 0.0 16.63 0.01 2.33 0.0 0.001 0.0 0.017 0.0

S350 50.16 0.12 2.5 0.0 16.73 0.01 2.34 0.0 0.636 0.003 3.574 0.036Es
tim

at
ed

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

S700 50.24 0.11 2.5 0.0 16.83 0.0 2.39 0.0 0.669 0.0 6.877 0.109

S1 50.27 0.2 2.75 0.0 16.67 0.04 2.34 0.0 0.001 0.0 0.017 0.0

S350 50.26 0.23 2.78 0.0 16.74 0.0 2.34 0.0 0.632 0.004 3.475 0.177

M
em

or
y

S700 50.01 0.07 2.79 0.0 16.86 0.01 2.38 0.0 0.664 0.005 7.104 0.126

S1 50.27 0.09 2.43 0.0 16.65 0.01 2.34 0.0 0.001 0.0 0.017 0.0

S350 50.12 0.16 2.5 0.01 16.76 0.06 2.35 0.0 0.632 0.005 3.522 0.183

Ep
oc

h
an

d
ex

ac
t

fr
eq

ue
nc

y
ba

se
d

Pe
rs

is
te

nt

S700 50.24 0.08 2.49 0.0 16.87 0.02 2.39 0.0 0.667 0.004 6.855 0.06

Table 19: Resource usage by the realistic tests for the trace web-vm.
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