The Relationship between Learning and Evolution

Static and Dynamic Environments

Miguel Rocha, Paulo Cortez and José Neves

Departamento de Informatica - Universidade do Minho
Largo do Pago, 4709 Braga Codex, PORTUGAL
{mrocha, pcortez, jneves}@di.uminho.pt

Abstract

Evolution and lifetime learning have been adopted
by living creatures to get the best of the adapta-
tion processes to natural environments. Within the
Machine Learning (ML) arena such methods have
been treated, particularly in the fields of Genetic and
Evolutionary Computation and Artificial Neural Net-
works. Why not to combine both techniques, giving
rise to several ML models, namely those based on
Lamarckian or Baldwinian approaches? The results
so far obtained point to better performances with the
former ones under static settings, but reward the lat-
ter under dynamic environments, where the learning
tasks change over time.

Keywords: Genetic and Evolutionary Algorithms,
Artificial Neural Networks, Hybrid Systems, Lamar-
ckian Optimization, Baldwin Effect.

1 Introduction

Since the early ages of the Artificial Intelligence (AI)
field, in general, and the Machine Learning (ML)
arena in particular, one has observed a trend to
look at Nature for inspiration, when building prob-
lem solving models. In Biology, most scientists agree
that the remarkable adaptation of some complex or-
ganisms to their environments comes as a result of
the interaction of two processes, working at different
time scales: evolution and lifetime learning. Evolu-
tion takes place at the population level and deter-
mines the basic structures of an organism. It is a
slow process that works by stochastically selecting
the better individuals to survive and to reproduce,

and therefore works in order to propagate good fea-
tures to the next generations. The lifetime learn-
ing is responsible for some degree of adaptation at
the individual’s level. It works by tuning up the
structures, built in accordance with the genetic in-
formation, by a process of gradual improvement of
the adaptation to the surrounding environment. In
terms of a computational procedure, evolution seems
suitable for global search, while learning should be
used to perform local search.

In this work, the evolution process is represented by
a Genetic and Evolutionary Algorithm (GEA), while
the lifetime learning one is approached by a gradient
based training procedure to Artificial Neural Net-
works (ANNs). The work to combine both strategies
has been going on for more than a decade, and has
been developed in several directions. In the past,
combinations have been both supportive (i.e., the
methods have been used sequentially), and collabora-
tive (i.e., they have been used simultaneously). The
former ones work by preparing data for consumption
by the other, namely using a GEA to select features
to be used by ANNs’ classifiers. Collaborative com-
binations, on the other hand, use GEAs to evolve the
ANN’s connection strengths, the ANNs topology, or
both [10].

One aims at studying the relationship between evo-
lution and lifetime learning, when applied to a simple
ML task. The purpose is to analyze potential syn-
ergetic effects when one combines both approaches,
and to compare those models with simple learning
or evolution procedures. The combination of GEAs
and ANNs is materialized via an evolution of popula-
tions of individuals, each one coding an ANN. Each
individual is allowed to improve its fitness during
lifetime, by a gradient descent process. Two dif-

ferent frameworks are defined, named Lamarckian
and Baldwinian, depending on the fact that the ac-
quired information is recoded into the chromosome
or not. These different models are compared both in
static and dynamic environments; i.e., the ML task
is changed at regular intervals in time.

The paper is organized as follows: firstly, one de-
fines the basic concepts and the programming envi-
ronments for the ANNs and GEAs; then, one defines
the ML task used as benchmark; one follows with a
description of the different models implemented; fi-
nally, the experiments are described and the results
obtained are presented and discussed.

2 Artificial Neural Networks

2.1 Basic Concepts

Artificial Neural Networks (ANNs) are connection-
ist models that mimic the central nervous system of
living species, acquiring knowledge from the environ-
ment through a learning process, in order to react to
new situations, even when noise or incomplete data
are present. An ANN is made up by simple process-
ing units, called neurons, and interneuron synaptic
strengths, known as connection weights, where the
acquired knowledge is stored [2].

One can find a kaleidoscope of different A NNs, that
diverge on several features, such as the training
paradigm or the internal architecture. Each of these
networks has some merits and demerits, and can be
used to tackle different tasks. An important class of
ANNs is the MultiLayer FeedForward (MLFF) one.
In a MLFF, neurons are grouped in layers and only
forward connections exist; i.e., one is not allowed to
have cycles in the ANN. This kind of network is char-
acterized to have one input and one output layer, and
also one or more hidden layers, that provide high
connectivity. This feature, in conjunction with non-
linear procedures (e.g. Backpropagation) provides a
powerful tool, with successful applications ranging
from computer vision, data analysis or expert sys-
tems, just to name a few.

2.2 The Artificial Neural Network
Programming Environment

The Artificial Neural Network Programming Envi-
ronment (ANNPE) was built with the purpose to
increase productivity when developing applications
with ANNs. It takes advantage on the features of the
object-oriented paradigm, being developed in C++,
allowing easy use and incremental development. One
developed an hierarchy of classes just turn in to com-
mon sense, where the main one (also named ANN), is
made of behaviors, interfaces (that must be defined
in subclasses), and data structures, which are shared
by all kinds of ANNs. MLFF networks are defined
in a subclass, with several training algorithms being
available, such as the standard Backpropagation, or
the more sophisticated ones, such as Quickprop or
Ryprop [7].

3 Genetic and Evolutionary
Algorithms

3.1 Basic Concepts

In this work, the term Genetic and Evolutionary Al-
gorithm (GEA) is used to name a family of com-
putational procedures that share a set of common
features:

e there are a number of potential solutions (indi-
viduals) to a problem, evolving simultaneously
(a population);

e cach individual represents a solution to a prob-
lem, which is coded by a string (chromosome)
of symbols (genes), taken from a well defined
alphabet;

e the individuals are evaluated; i.e., to each of
them is assigned a numeric value (fitness), that
stands for a solution’s quality or appropriateness
metric;

e the solutions to the problem can be recombined
and/or changed in some way, by using genetic
operators (eg. crossover, mutation), in order to
create new solutions (reproduction);

e the processis evolutionary;i.e., it is based on the
Darwinian process of natural selection, where
the fittest individuals have greater chances of
surviving;

e its major structure is the one outlined in the
pseudo-code of Figure 1.

BEGIN
Initialize time (¢ = 0).
Generate and evaluate the individuals in
the initial population (Fy).
WHILE NOT (termination criteria) DO
Select from P;, a number of individuals
for reproduction.
Apply to those individuals the genetic
operators to breed the offspring.
Evaluate the offspring.
Select the offspring to insert into the
next population (Pyy1).
Select the survivors from P, to be
reinserted into P41.
Increase current time (t = ¢+ 1).
END

Figure 1: Structure of a GEA

3.2 Real-valued Representations

The first GEAs [4], and most of the ones developed
so far, make use of a binary representation; i.e., the
solutions to a given problem are coded in a 0/1 al-
phabet. In the last few years some authors have ar-
gued that when one is faced with problems where
the parameters are given by real values, the best
strategy is to represent them directly in the chro-
mosome [5], thus using a Real- Valued Representation
(RVR). These kind of representations allows for the
definition of different operators. In this work, one
developed three genetic operators, two of which are
crossover ones; i.e., they take two individuals as in-
puts, and recombine their genetic information, by
generating two new individuals (offspring), and the
other one is a mutation; i.e., it takes one individ-
ual, and creates a new one by a small change in the
genome. They can be described as follows:

e One-point Crossover: it is similar to its binary
counterpart, so it works by randomly selecting
a cutting point, collecting the genes in the first
ancestor until the cutting point is reached, pro-
ceeding with the genes in the second parent from
that point on, and in this way building a new in-
dividual. The inverse operation is used to breed
the second offspring;

e One-Gene Sum Crossover: it randomly selects a
gene in the chromosome and, for that position,
the first offspring receives the sum of the values
for that position in the ancestors, and the second
receives the difference. The other genes are kept
unchanged from each of the ancestors.

e Gaussian Perturbation: it is a mutation oper-
ator that adds, to a given gene, a value taken
from a Gaussian distribution, with zero mean.

3.3 The Genetic and Evolutionary
Programming Environment

The Genetic and Evolutionary Programming Envi-
ronment (GEPE) [6] was built within the same spirit
of its ANNPE counterpart; i.e., it aims to make easier
the task of developing applications with GEAs. The
framework developed is made of four main blocks
(Figure 2), namely the individuals, the populations,
the GEAs and the evaluation module. Each of these
modules is materialized by an hierarchy of classes,
that are built in such a way that the common at-
tributes and behaviors are defined in the root classes,
and a process of specialization is followed when one
walks toward the leafs, by redefining or adding new
attributes and/or behaviors.

Genetic and
Evolutionary
Algorithms

Population

Evaluation
Module

Problem

Individuals

Figure 2: The GEPE’s Archetype

At the individual’s level, the root is an abstract class
with a template field that contains its genotype; i.e.,
its genetic information. In this way, one sets the
doings for any kind of representational scheme, sim-
ply by assignment of the template with the necessary
data type (Figure 3). In order to implement the RVR
under this setting one has the RVRIndiv class, where
the operators described above are implemented. At
the population and GEA levels, similar strategies are
followed, allowing for the easy definition of default
behaviors, but also for the possibility of redefining
some parameters, such as the selection or the re-
insertion processes, or the structure of the overall

Abstract class

for individuals

Real-valued genes

Real-valued
Representation

Integer genes

OBRIndiv BRIndiv

Order-based
Representation

Binary representation

,,,,,,,,, Template instantiation
——— Sub-class

Figure 3: The Individuals hierarchy’s class

algorithm. The last of the modules in the system
is the evaluation one, where the programmer defines
the decoding procedure; i.e., how to reach a solution
to a given problem from the chromosome, and how
to assign it a fitness value. A subclass to this module
was created, in order to define the way one decodes a
string of real values into an ANN, and the way each
chromosome is evaluated in terms of the ML task.

4 Problem Formulation

Figure 4: The Color Cube Problem in its static vari-
ant

The Color Cube Problem (CCP) is a simple ML task,
that can be easily adapted to make dynamic environ-
ments. The task consists on learning how to paint a
large 3D cube made up by a 3x3 grid of blocks (27
smaller cubes) (Figure 4). Each smaller cube is rep-
resented by its coordinates on the X, Y and Z axis,
that can take values from the set {—1,0,1}, and can
be painted with three different colors: black, grey
and white.

In the static variant, the corners are black (8 cubes),
the cubes in the center are white (7 cubes), being

the others grey (Figure 4). Two different approaches
were followed when building the dynamic environ-
ments. In the former one (EI), the same discrimina-
tion rules prevail, although all the cubes are periodi-
cally repainted, following a predefined order (black
follows grey, grey follows white and white follows
black). In the latter case (E2), each cube is initially
assigned a random color (black, grey or white), and
then, periodically, the color of K cubes randomly
chosen is changed.

In terms of the ANN training cases, 27 patterns are
created, one for each cube, consisting of 3 inputs
and 3 outputs. Each input stands for the node’s
coordinates, while each output represents a different
color (100 for black, 010 for grey and 001 for white).

5 Learning Models

It were defined four different models to approach the
CCP, namely:

Population

crossover IEIET I
Mutation [III]]

Selection

Decode Baldwinian Encode)
(O .\
KAOK Learning R N
W &/

Figure 5: An illustration of the Baldwinian and
Lamarckian strategies of inheritance

Lamarckian

e The Connectionist Model (CM). Under these
circumstances the learning is achieved by a sin-
gle ANN. The adopted ANN has a fixed topol-
ogy, being a MLFF one with an input, an hidden
and an output layer, with 3, 10 and 3 neurons,
respectively. The activation function used was
the logistic one, and the training is achieved by
the Rprop algorithm, a more efficient variant of
the well known back-propagation one [7]. The
initial weights were randomly assigned within
the range [—1;1].

e The Darwinian Model (DM). In this approach,
the overall learning process is accomplished by a
GEA, where a population of 20 real-valued chro-
mosomes is evolving, each coding the weights for

an ANN similar to the one described above. In
each iteration, 40% of the individuals are kept
from the previous generation, and 60% are gen-
erated by the application of the genetic opera-
tors described in Section 3.2. The fitness of each
chromosome is calculated by an error metric, the
Root Mean Squared Error (RMSE), that ranges
over all the 27 training patterns.

e The Lamarckian Model (LM). The LM com-
bines both lifetime learning and evolutionary ap-
proaches, making use of GEAs and ANNs. Sim-
ilarly to the DM, the GEA is still the engine of
the process, but in this case each individual is
allowed to learn during its lifetime, in this case
by running the Rprop algorithm for 20 epochs.
Then, the improved weights are encoded back
into the chromosome (Figure 5).

e The Baldwinian Model (BM). In natural envi-
ronments the process defined in the LM does
not occur, or occurs with a negligible frequency.
According to J.M. Baldwin [1], there is a syner-
getic effect when there is an evolving population
of learning individuals; i.e., lifetime learning can
accelerate evolution. This was known as the
Baldwin effect, and is exploited in this model.
The approach followed is close to the LM one,
except that the lifetime learning is only used
to improve the fitness of the individuals, and
the new weights are not encoded back into the
genome (Figure 5). This means that, in the pro-
cess of reproduction, the offspring do not inherit
the acquired genetic information from their an-
cestors.

6 Results

A set of experiments were conducted, in order to
evaluate the performance of each of the given mod-
els in the CCP. This comparison took place under
two different settings, the former considering a static
environment, and the latter a dynamic one; i.e., the
ML task evolves over time. The results obtained are
compared in terms of two orthogonal parameters, the
overall learning’s accuracy, measured by the RMSE
obtained for the set of patterns, and the process’ ef-
ficiency, measured by the time elapsed (in seconds).
When one considers a dynamic setting, it is also con-
sidered the robustness of the method; i.e., how the
error metric evolves when the conditions suffer a sud-
den change. For all models, at each time/generation
slot, one considers the average of the results obtained

in ten independent runs. When applicable, one con-
sidered the best individual in the population.

Some work in this arena has already been put for-
ward, where similar models have been compared.
However, most of these studies consider only a sub-
set of the given strategies, typically looking only at
the Baldwin effect synergy [3], comparing the LM
and the BM approaches [8], or simply showing the
benefits of lifetime learning. Furthermore, some re-
searchers have focussed primarily on these benefits,
and the tradeoff between benefits and costs is rarely
considered [9]. In the present framework, the com-
parisons between the models is made by considering
the CPU time, so that they can be fair. Finally, most
of the studies consider only static environments in
their experiments, although some researchers have
already focused on the dynamic case [8].

6.1 Experiments with a Static Envi-
ronment

08 i T T T T T T
t Connectionist Model
Darwinian Model =s=s===
B Baldwinian Model e
Lamarckian Model ===

0.4

0.3

error (RMSE)

0.2

01+

.
0 50 100 150 200 250 300 350 400
time (seconds)

Figure 6: Results for the experiment in a static en-
vironment (time elapsed)

Initially, the four models were compared, in terms
of their aptitude to learn the C'CP, in the original
static version. The evolution of the RMSE, for each
model, was measured both in terms of the CPU time
(Figure 6) and of the generations elapsed (Figure 7).
An analysis of the results shows that the LM behaves
in a better way, although the CM achieves a faster
convergence in the initial stages, but looks as being
trapped in a local minima. Therefore, the combina-
tion of lifetime learning and evolution may exceed
the sum of its parts. The DM and the BM are much
slower in their convergence under an acceptable mar-
gin of error. In Figure 7 one can observe the Baldwin
effect; i.e., there are some evolutionary benefits taken

0.6

Darwinian Model
Baldwinian Model ======x
Lamarckian Model ++sssese:

0.4 f*,

03 |

error (RMSE)

02 %

01

. . .
0 50 100 150 200
generations

Figure 7: Results for the experiment in a static en-
vironment (by generations)

from the lifetime learning process. However, when
the computational costs are taken into account (Fig-
ure 6), the DM still makes better use of the resources
available.

6.2 Experiments with a Dynamic En-
vironment

The previous results can be intuitively explained; the
LM presents itself as more effective due to a cumula-
tive effect of the evolution and lifetime learning pro-
cesses. It even exceeded the performance of the CM,
due to the diversity induced by the GEA. It is not to
expect the same behavior from the BM, since individ-
uals need to restart the learning at each new genera-
tion. Yet, Nature evolves in dynamic and not static
environments, where adaptation strategies may need
to change or adapt over time.

When the problem to be learned changes with time,
in accordance with the environments EF1 and E2 re-
ferred to above, the results obtained are significantly
different, as it is shown in Figures 8 and 9. For E1,
the cubes are repainted every 50 seconds, while for
E2, 2 cubes are changed every 10 seconds. Firstly,
one can observe the inability of the CM to cope with
changes in the environment, denoting a complete lack
of adaptability, being incapable of escaping the ini-
tial learning bias. The DM shows a stable pattern,
but seems unable to improve, in both cases. The
LM seems the best model for some time in the be-
ginning of the experiments, following a pattern of
improvement, almost to a level of perfection. From
a given point onwards, however, it shows a trend of
decreasing performance. Finally, the BM shows al-

most the inverse behavior, starting with poor perfor-
mances, but steadily evolving in a nearly continuous
way, towards a stable solution, showing robustness
when facing the changes in the environments. This
results can be explained by concluding that the BM
is evolving not a solution to a given task, but instead
structures with a good learning capability.

7 Conclusions and Future

Work

When faced with the given results, it is hard not to
fall into the temptation of comparisons with natural
systems. In fact, these were the inspiration of the
work developed, and the results are a clear confir-
mation of the models that lead to the diversity and
complexity of the living creatures. However, one de-
veloped a very simplified model, and to extrapolate
with such narrow basis would be dangerous. Namely,
when it comes to the comparison of the Lamarckian
and the Baldwinian strategies, a lot has been said,
and the natural systems are often used to support the
latter. One can refer the fact that, due to the com-
plexity of natural embryogenetic processes, a recod-
ing of the genetic information after lifetime learning
had occurred, would be a difficult and costly task.
This is an important factor, that should not be for-
gotten when comparing both models.

Nevertheless, the results do support the idea that
the evolution of learning entities makes itself has a
very interesting method for ML tasks, when facing
dynamic environments, that constitute most of the
real-world applications. Referring to the LM vs BM
debate, this work supports the belief that the former
is preferable in static settings, while the latter reveals
a greater robustness in dynamic ones.

In the future one intends to enlarge the experiments
by tackling a greater domain of tasks, namely some
real-world applications, such as medical diagnosis,
time-series forecasting or production scheduling.

References

[1] J.M. Baldwin. A New Factor in Evolution.
American Naturalist, (30):441-451, 1896.

[2] S. Haykin. Neural Networks - A Compreensive
Foundation. Prentice-Hall, New Jersey, 2nd edi-
tion, 1999.

N
oo
— i v !
[y " 1 !
(72} N 1
= AN Y
= AN AN
s RN i
=3 noNs
I R
'
s
Connectionist Model -
Darwinian Model ---------
Baldwinian Model ----------
J N N N N Lamarckian Model ---.---:-
o 200 400 600 800 1000 1200 1400
time (seconds)
Figure 8: Results for the experiment in the dynamic environment E1
0.7
0.6 -
0o.5 —
L o.a - RPN e TN - TR e R e T N I e wa A A LN
= = et e
< 0.3 [[7 e e e - ‘_,,‘.‘, o —‘ .
NI N B R PPV NI AN WL S S
o.2 o o]
e, N
V
' =y . .
o.1 = s Connectionist Model 1
ot K Darwinian Model ---------
S Baldwinian Model ----------
N Lamarckian.Model ---------
o
500

s
1000

s
1500

2000 2500

time (seconds)

Figure 9: Results for the experiment in the dynamic environment E2

[3] G. Hinton and S. Nolan. How Learning Can
Guide Evolution. Complex Systems, (1):495-
502, 1987.

[4] John Holland. Adaptation in Natural and Arti-
ficial Systems. PhD thesis, University of Michi-
gan, Ann Arbor, 1975.

[5] Z. Michalewicz. Genetic Algorithms + Data
Structures Evolution Programs. Springer-
Verlag, USA, third edition, 1996.

[6] J. Neves, M. Rocha, H. Rodrigues, M. Biscaia,
and J. Alves. Adaptive Strategies and the De-
sign of Evolutionary Applications. In Proceed-
ings of the Genetic and Evolutionary Computa-
tion Conference (GECC099), Orlando, Florida,
USA, 1999.

[7] M. Riedmiller. Supervised Learning in Mul-
tilayer Perceptrons - from Backpropagation to

Adaptive Learning Techniques .
Standards and Interfaces, 16, 1994.

Computer

[8] T. Saski and M. Tokoro. Adaptation toward

Changing Environments: Why Darwinian in
Nature? In Proceedings of the Fourth European
Conference on Artificial Life, 1997.

[9] P. Turney. Myths and Legends of the Baldwin

Effect. 13th International Conference on Ma-
chine Learning (ICML96), Workshop on Evo-
lutionary Computation and Machine Learning,
Bari, Italy, July, 135-142, 1996.

[10] D. Whitley. Genetic Algorithms and Neural

Networks. In J. Perioux, G. Winter, M.Galan,
and P.Cuesta, editors, Genetic Algorithms in

Engineering and Computer Science. John Wil-
ley & Sons Ltd., 1995.

