
New algorithm for solving pentadiagonal CUPL-Toeplitz linear systems

Hcini Fahda,∗, Yulin Zhangb

aUniversity of Tunis El Manar, ENIT-LAMSIN, BP 37, 1002, Tunis, Tunisia
bCentro de Matematica, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

In this paper, based on the structure of pentadiagonal CUPL-Toeplitz matrix and Sherman-Morrison-
Woodbury formula, we develop a new algorithm for solving nonsingular pentadiagonal CUPL-Toeplitz linear
system. Some numerical examples are given in order to illustrate the effectiveness of the proposed algorithms.

Keywords: CUPL-Toeplitz matrix, Sherman-Morrison-Woodbury formula, Toeplitz matrix, low rank
matrix, LU decomposition.
2022 MSC: 15A23, 35L30

1. Introduction

A n× n matrix is called column upper-plus-lower (CUPL) Toeplitz matrix if it is of the following form

TCUPL =

a0 a−1 a−2 · · · a1−n

a1 a0 + a1
. . .

. . .
...

a2 a1 + a2
. . .

. . . a−2
...

...
. . .

. . . a−1
an−1 an−2 + an−1 · · · a1 + a2 a0 + a1

, (1)

i.e., its entries satisfy

aij =

{
ai−j , j = 1 or j > i

ai−j + ai−j+1, 2 ≤ j ≤ i
.

Obviously, a CUPL-Toeplitz matrix TCUPL can be splitted as the difference of a Toeplitz matrix and a rank
one matrix, i.e.,

TCUPL = T − aeT1 , (2)

where T = [ak,j], k, j = 0, 1, ..., n − 1 is a Toeplitz matrix, a =
[
a1 a2 · · · an−1 0

]T
and e1 =[

1 0 · · · 0
]T
.

Any Toeplitz Matrix perturbed by a lower rank matrix can be viewed as quasi-Toeplitz matrix.
Therefore, the CUPL-Toeplitz matrix can be considered as a special class of quasi-Toeplitz matrix.5

Quasi-Toeplitz matrices are widely used in quasi birth-and-death processes, option pricing and signal
processing etc. [1, 2]. In [3], Du et al presented an efficient method for finding the solution of tridiagonal
quasi Toeplitz linear systems. Later on this method was generalised to solve the block quasi tridiagonal
Toeplitz [4]. In [5, 6], a fast method for solving quasi-pentadiagonal Toeplitz linear systems was presented,
which was based on solving pentadiagonal Toeplitz linear systems.10

∗Corresponding author
Email address: hcini.fahd@enit.rnu.tn (Hcini Fahd)

Preprint submitted to Elsevier November 9, 2022

As a special class of quasi-Toeplitz matrix, the CUPL-Toeplitz Matrix brought attention to the re-
searchers in the last decades [7, 8, 9, 10]. For calculating the inverse of CUPL-Toeplitz matrix, an explicit
inverses of this matrix were introduced [11]. Recently, based on the decomposition form a CUPL-Toeplitz
matrix (2) and the Sherman-Morrison-Woodbury formula, Fu et al [12] presented two algorithms to solve
the CUPL-Toeplitz linear system

TCUPLx = f, (3)

where TCUPL is nonsingular.
In this paper, we propose a new algorithm for finding the solution of the nonsingular pentadiagonal

CUPL-Toeplitz linear system
Tx = f, (4)

where

T =

a b c
d a+ d b c
e d+ e a+ d b c

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

e d+ e a+ d b c
e d+ e a+ d b

e d+ e a+ d

.

The idea is to decompose the pentadiagonal CUPL-Toeplitz matrix into a product of LU matrices plus a
ranks two matrix, then apply the Sherman-Morrison-Woodbury formula to get its inverse. At the and, some
numerical examples are given to illustrate the effectiveness of our algorithms.

2. Algorithms for solving pentadiagonal CUPL-Toeplitz linear system15

In this section, we decompose the CUPL-Toeplitz into the quasi-Toeplitz matrix plus a rank two matrix.
Let

L =

1
s 1
e/p s 1

. . .
. . .

. . .

. . .
. . .

. . .

e/p s 1
e/p s 1

e/p s 1

and U =

1 t c/p
1 t c/p

1 t c/p
. . .

. . .
. . .

. . .
. . .

. . .

1 t c/p
1 t

1

.

The

pLU =

p pt c
ps pst+ p b c
e c′ a′ b c

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

e c′ a′ b c
e c′ a′ b

e c′ a′

,

2

where c′ = d + e, a′ = a + d. We will choose p, s and t such that the following non-linear equations are
satisfied.

et+ ps− c′ = 0,

p2(st+ 1)− a′p+ ec = 0,

pt+ sc− b = 0.

(5)

Then the matrix T can be written as

T = pLU +
[
e1 e2

] [ec
p + pst− d sc

et− e ec
p

] [
eT1
eT2

]
. (6)

From (5), we observe that the parameter p satisfy the following equation

p6 − a′p5 + (bc′ − ce)p4 + (2a′ce− b2e− c′2c)p3 + (bcc′e− e2c2)p2 − a′e2c2p+ e3c3 = 0. (7)

Theorem 1. The analytic solution of Eq. (7) can be written as

p2i−1 =
qi +

√
q2i − 4ce

2
and p2i =

qi −
√
q2i − 4ce

2
, i = 1, 2, 3, (8)

where

q1 = µ1 + µ4 +
µ2
1 + µ2

µ4
,

q2 = µ1 −
µ4

2
− µ2

1 + µ2

2µ4
+ i

√
3

2

(
µ4 −

µ2
1 + µ2

µ4

)
,

q3 = µ1 −
µ4

2
− µ2

1 + µ2

2µ4
− i
√

3

2

(
µ4 −

µ2
1 + µ2

µ4

)
,

and µ1 = a′

3 , µ2 = 4ce−bc′
3 , µ3 = 4a′ce−cc′2−b2e

2 , µ4 =
3

√
µ3
1 + 3µ1µ2

2 − µ3 +

√(
µ3
1 + 3µ1µ2

2 − µ3

)2 − (µ2
1 + µ2)

3
.

Proof. We divide the both sides of (7) by p3, and define q = p+ c
e , then the equations (7) can be written

as
q3 − a′q2 − (4ce− bc)q + 4a′ce− c′2c− b2e = 0. (9)

Using the Cardano’s method, we can deduce the solution of equation (9), then the final solution of (7) is
given by

p2i−1 =
qi +

√
q2i − 4ce

2
and p2i =

qi −
√
q2i − 4ce

2
, i = 1, 2, 3,

where q1, q2, q3 are defined above, and the proof is complete.

Assuming p 6= 0 and p 6= ce, after obtaining p, it is easy to deduce that

s =
c′p− be
p2 − ce

=
(d+ e)p− be
p2 − ce

and t =
bp− c′c
p2 − ce

=
bp− (d+ e)c

p2 − ce
.

Next, for the convenience of the readers, we transcribe the Sherman-Morrison-Woodbury formula here, which
can be found in [13], Sherman-Morrison-Woodbury formula: Let A be an n× n nonsingular matrix, n× k
matrix U and k × n matrix V and let B be an n × n matrix such that B = A + UV . Then, assuming a
nonsingular matrix (Ik + V A−1U), we have

B−1 = A−1 −A−1U
(
Ik + V A−1U

)−1
V A−1.

3

According to the Sherman-Morrison-Woodbury formula, the inverse of the matrix T can be written as

T−1 =
1

p

[
(LU)

−1 − 1

p
(LU)

−1
[e1, e2]

[ec
p + pst− d sc

et− e ec
p

]
N−1

[
eT1
et2

]
(LU)

−1
]
, (10)

where

N = I2 +
1

p

[
eT1
eT2

]
(LU)

−1
[e1, e2]

[ec
p + pst− d sc

et− e ec
p

]
. (11)

Let y = (y1, y2, . . . , yn)T , z = (z1, z2, . . . , zn)T and w = (w1, w2, . . . , wn)T be the solutions of the following
systems: LUy = f/p, LUz = e1 and LUw = e2, which will be calculated by Algorithm 1.

Algorithm 1 An algorithm for solving LUy = f̃ , f̃ = f/p

Input: s, t, p, e, c and f̃ .
1. (solving Lz̃ = f̃) z̃1 = f̃1, z̃2 = f̃2 − sz̃1, z̃i = f̃i − sz̃i−1 − e

p z̃i−2, i = 3 to n .

2. (solving Uy = z̃) yn = z̃n, yn−1 = z̃n−1 − tyn, yi = z̃i − tyi+1 − c
pyi+2, i = n− 2 to 1.

Output: y = [y1, y2 . . . , yn]T .

Thus, the matrix N becomes20

N =I2 +
1

p

[
eT1
eT2

]
[z, w]

[ec
p + pst− d sc

et− e ec
p

]
=

[
1 + (ecp2 + st− d

p)z1 + (etp −
e
p)w1

sc
p z1 + ec

p2w1

(ecp2 + st− d
p)z2 + (etp −

e
p)w2 1 + sc

p z2 + ec
p2w2

]

=

[
θ1 θ2
θ3 θ4

]
.

Then, the final solution of (4) is obtained by multiplying equation (10) by f as follows:

x =y − [z, w]

[ec
p + pst− d sc

et− e ec
p

]
N−1

[
y1
y2

]
(12)

=y − [z, w]

[ec
p + pst− d sc

et− e ec
p

]
1

(θ1θ4 − θ2θ3)p

[
θ4 −θ2
−θ3 θ1

] [
y1
y2

]
(13)

=y − αz − βw. (14)

where

α =
1

(θ1θ4 − θ2θ3)p

(
(
ec

p
+ pst− d)θ4y1 − scθ3y1 − (

ec

p
+ pst− d)θ2y2 + scθ1y2

)
, (15)

and

β =
1

(θ1θ4 − θ2θ3)p

(
(et− e)θ4y1 −

ec

p
θ3y1 + (e− et)θ2y2 +

ec

p
θ1y2

)
. (16)

The execution algorithm steps are summarized as follows:

4

Algorithm 2 An algorithm for solving Tx = f

Input: a, b, c, d, e and f .
1. Choose an arbitrary root p of Eq. (7) which satisfies p2 − ce 6= 0.

2. Compute s = (d+e)p−be
p2−ce and t = bp−(d+e)c

p2−ce .

3. Solving LUy = f/p, LUz = e1 and LUw = e2 by Algorithm 1.
4. Compute α, β.

Output: The solution of system (4), x = y − αz − βw.

The study of the stability of our Algorithm 2 depends on the Algorithm 1, precisely, the solving the
upper and lower triangular linear systems LUy = f/p, LUz = e1 and LUw = e2. More precisely, two
recursive iterations such as yi = szi−1 − e

pzi−2 and xn+1−i = zn+1−i − txn+2−i − c
pxn+3−i for i = 3, 4, ..., n25

corresponding to the forward and backward substitutions as in Algorithm 1 are essential for Algorithm 2.
Still, if all the roots of their characteristic equations ρ2 + sρ + e

p = 0 and ρ2 + tρ + c
p = 0 are all less than

unity in magnitude, errors of zi and xn+1−i will smaller than the errors of previous values zi−1 and xn+2−i,
respectively, in which case Algorithm 2 is stable.

3. Numerical Experiments30

In this section, we give the results of some simple numerical experiments to demonstrate the effectiveness
of our algorithms. All tests are implemented in MATLAB R2018a and the computations are done on an
Intel PENTIUM computer, (2.2 GHz), 6 GB memory.

3.1. Experiment 1

In this experiment, we used five artificial examples. Values of a, b, c, d and e corresponding to each35

example are presented in Table 1. We initialized the exact solution x∗ = [1, 1, ..., 1]T . The right-hand side
vector was set to be f = Ax∗. The absolute errors ‖x − x∗‖, residuals ‖Ax − f‖, and CPU time will be
listed. Here, ‖.‖ is the euclidean vector norm.
The compared results between our algorithm and algorithme [12], algorithme [14] and MATLAB Solver for
all tests examples are presented in Tables 2–6.40

Table 1: Test examples.

a b c d e
Example 1 7 -1 5 2 -1.5
Example 2 0.80 0.70 0.65 -0.4 -0.2
Example 3 5.5 2.7 2.6 2.25 -5.25
Example 4 10 -2 1 0.54 1
Example 5 6 -1 -1.5 1 -2

5

Table 2: Numerical results of Example 1

n 100 1000 10000 100000
Our Algorithm ‖Ax− f‖ 1.1512e− 14 1.1512e− 14 1.1512e− 14 1.1512e− 14

‖x− x∗‖ 1.2462e− 15 1.2462e− 15 1.2462e− 15 1.2462e− 15
CPU(s) 0.0010 0.018 0.081 0.85

Algorithm [12] ‖Ax− f‖ 1.4862e− 14 1.4862e− 14 1.4862e− 14 1.4862e− 14
‖x− x∗‖ 1.3276e− 15 1.3276e− 15 1.3276e− 15 1.3276e− 15
CPU(s) 0.0037 0.021 0.17 1.65

Algorithm [14]
‖Ax− f‖ 1.9860e− 14 4.2596e− 14 1.2655e− 13 Failure
‖x− x∗‖ 2.3708e− 15 5.2733e− 15 1.5801e− 14 Failure
CPU(s) 0.0028 0.024 7.30 Failure

MATLAB Solver
‖Ax− f‖ 1.5486e− 14 4.0740e− 14 1.2593e− 13 Failure
‖x− x∗‖ 1.0934e− 15 2.5966e− 15 7.8873e− 15 Failure
CPU(s) 0.0046 0.054 1.06 Failure

Table 3: Numerical results of Example 2

n 100 1000 10000 100000
Our Algorithm ‖Ax− f‖ 3.6422e− 15 1.0987e− 14 3.4541e− 14 1.0916e− 13

‖x− x∗‖ 4.9214e− 15 1.1958e− 14 3.6418e− 14 1.1471e− 13
CPU(s) 0.0010 0.0083 0.081 0.82

Algorithm [12] ‖Ax− f‖ 3.8751e− 15 1.1029e− 14 3.4554e− 14 1.0917e− 13
‖x− x∗‖ 5.0120e− 15 1.1966e− 14 3.6421e− 14 1.1471e− 13
CPU(s) 0.0026 0.017 0.16 1.65

Algorithm [14]
‖Ax− f‖ 2.4751e− 15 7.1534e− 15 2.2246e− 14 Failure
‖x− x∗‖ 3.4255e− 15 1.2474e− 14 3.9506e− 14 Failure
CPU(s) 0.0021 0.027 7.74 Failure

MATLAB Solver ‖Ax− f‖ 2.2093e− 15 3.9968e− 15 1.1265e− 14 Failure
‖x− x∗‖ 3.1225e− 15 5.6512e− 15 1.5931e− 14 Failure
CPU(s) 0.0046 0.049 1.07 Failure

Table 4: Numerical results of Example 3

n 100 1000 10000 100000
Our Algorithm ‖Ax− f‖ 1.4789e− 14 2.1224e− 14 2.1224e− 14 2.1224e− 14

‖x− x∗‖ 1.4937e− 15 2.1384e− 15 2.1384e− 15 2.1384e− 15
CPU(s) 0.0013 0.0088 0.091 0.99

Algorithm [12] ‖Ax− f‖ 1.6829e− 14 2.2399e− 14 2.2399e− 14 2.2399e− 14
‖x− x∗‖ 1.5662e− 15 2.1614e− 15 2.1614e− 15 2.1614e− 15
CPU(s) 0.0028 0.017 0.30 1.98

Algorithm [14]
‖Ax− f‖ 2.2227e− 14 5.8135e− 14 1.7827e− 13 Failure
‖x− x∗‖ 2.2343e− 15 1.0427e− 14 3.4901e− 14 Failure
CPU(s) 0.0022 0.029 6.94 Failure

MATLAB Solver ‖Ax− f‖ 1.6998e− 14 4.9182e− 14 1.5401e− 13 Failure
‖x− x∗‖ 1.7659e− 15 5.0304e− 15 1.5722e− 14 Failure
CPU(s) 0.0058 0.054 1.02 Failure

6

Table 5: Numerical results of Example 4

n 100 1000 10000 100000
Our Algorithm ‖Ax− f‖ 1.1783e− 14 1.1783e− 14 1.1783e− 14 1.1783e− 14

‖x− x∗‖ 7.7716e− 16 7.7716e− 16 7.7716e− 16 7.7716e− 16
CPU(s) 0.0016 0.0091 0.092 0.90

Algorithm [12] ‖Ax− f‖ 1.2561e− 14 1.2561e− 14 1.2561e− 14 1.2561e− 14
‖x− x∗‖ 8.1584e− 16 8.1584e− 16 8.1584e− 16 8.1584e− 16
CPU(s) 0.0038 0.020 0.21 1.72

Algorithm [14]
‖Ax− f‖ 1.0358e− 14 1.0358e− 14 1.0358e− 14 Failure
‖x− x∗‖ 1.1697e− 15 2.6296e− 15 7.8982e− 15 Failure
CPU(s) 0.0043 0.024 6.03 Failure

MATLAB Solver ‖Ax− f‖ 5.0243e− 15 5.0243e− 15 5.0243e− 15 Failure
‖x− x∗‖ 7.8439e− 16 7.8439e− 16 7.8439e− 16 Failure
CPU(s) 0.0056 0.054 0.98 Failure

Table 6: Numerical results of Example 5

n 100 1000 10000 100000
Our Algorithm ‖Ax− f‖ 1.2829e− 14 1.8539e− 14 4.6029e− 14 1.4095e− 13

‖x− x∗‖ 7.0497e− 15 9.7099e− 15 2.3195e− 14 7.0536e− 14
CPU(s) 0.0015 0.0095 0.097 0.86

Algorithm [12] ‖Ax− f‖ 1.5414e− 14 2.0423e− 14 4.6819e− 14 1.4121e− 13
‖x− x∗‖ 7.1702e− 15 9.7914e− 15 2.3229e− 14 7.0547e− 14
CPU(s) 0.0033 0.021 0.18 1.75

Algorithm [14]
‖Ax− f‖ 1.0975e− 14 2.8832e− 14 8.9056e− 14 Failure
‖x− x∗‖ 2.9395e− 15 2.0180e− 14 6.6339e− 14 Failure
CPU(s) 0.0030 0.024 7.23 Failure

MATLAB Solver ‖Ax− f‖ 7.1158e− 15 2.1213e− 14 6.6660e− 14 Failure
‖x− x∗‖ 3.3510e− 15 1.3738e− 14 4.4313e− 14 Failure
CPU(s) 0.0052 0.049 0.94 Failure

For all numerical tests, we can see that our algorithm takes less CPU time and is about twice as fast as
other algorithms.

3.2. Experiment 2

In this experiment, we considered the exact solution x∗ = [−3,−3, ...,−3]T , and T a pentadiagonal
CUPL-Toeplitz matrix. Then, our pentadiagonal CUPL-Toeplitz linear system is written as follows:

9 −1 2
1 10 −1 2
1 2 10 −1 2

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 2

1 2 10 −1
1 2 10

x1
x2
...
...

xn−2
xn−1
xn

=

−3
−3
−3
...
−3
−3
−3

The compared results, absolute errors ‖x− x∗‖, residuals ‖Ax− f‖, and CPU time between our algorithm
and algorithme [12], algorithme [14] and MATLAB Solver are presented in Table 7.45

7

Table 7: Numerical results of Experiment 2

n 100 1000 10000 100000
Our Algorithm ‖Ax− f‖ 1.7764e− 14 1.7764e− 14 1.7764e− 14 1.7764e− 14

‖x− x∗‖ 1.9860e− 15 1.9860e− 15 1.9860e− 15 1.9860e− 15
CPU(s) 0.0012 0.0096 0.094 0.87

Algorithm [12] ‖Ax− f‖ 2.2748e− 14 2.2748e− 14 2.2748e− 14 2.2748e− 14
‖x− x∗‖ 2.4726e− 15 2.4726e− 15 2.4726e− 15 2.4726e− 15
CPU(s) 0.0030 0.020 0.19 1.75

Algorithm [14]
‖Ax− f‖ 3.9080e− 14 3.9080e− 14 3.9080e− 14 Failure
‖x− x∗‖ 5.1789e− 15 1.0750e− 14 3.1671e− 14 Failure
CPU(s) 0.0027 0.042 8.73 Failure

MATLAB Solver
‖Ax− f‖ 1.5888e− 14 1.5888e− 14 1.5888e− 14 Failure
‖x− x∗‖ 3.4111e− 15 1.0019e− 14 3.1430e− 14 Failure
CPU(s) 0.0051 0.050 1.01 Failure

Table 8: Time ratio of Experiment 2.

n Time ratio
Our Algorithm/ Algorithm[12] Our Algorithm/ Algorithm[14] Our Algorithm/MATLAB Solver

100 0.4000 0.444 0.2353
1000 0.4800 0.228 0.1920
10000 0.4947 0.0107 0.0931
100000 0.4971 - -

We can see that our proposed algorithm takes less CPU time and is about twice faster than the algorithme
[12], algorithme [14] and MATLAB Solver.

Remark 1. In step 1 of the algorithm presented in [12], we used fast pentadiagonal Toeplitz solver and
MATLAB Solver, is a solver for pentadiagonal linear system from MATLAB.

4. Conclusion50

In this paper we have exploited the special pentadiagonal CUPL-Toeplitz structure to develop a fast
algorithm for solving pentadiagonal CUPL-Toeplitz linear systems. We compare our algorithm with the
algorithms [12], [14] and MATLAB Solver, the numerical results show that our algorithm is more efficient,
in terms of time, almost half that of the other algorithms and in terms of error.

Funding55

The last author was partially financed by Portuguese Funds through FCT (Fundação para a Ciência e a
Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.

Declarations

Ethical Approval

Not Applicable.60

Availability of supporting data

Not Applicable.

8

Competing interests

The author has no relevant financial or non-financial interests to disclose.

Authors’ contributions65

The authors confirm sole responsibility for the following: study conception and design, data collection,
analysis and interpretation of results, and manuscript preparation

Acknowledgments

Not applicable.

References70

[1] Marcel F Neuts. Structured stochastic matrices of M/G/1 type and their applications. CRC Press, 2021.
[2] Marcel F Neuts. Matrix-geometric solutions in stochastic models: an algorithmic approach. Courier Corporation, 1994.
[3] Lei Du, Tomohiro Sogabe, and Shao-Liang Zhang. A fast algorithm for solving tridiagonal quasi-toeplitz linear systems.

Applied Mathematics Letters, 75:74–81, 2018.
[4] Skander Belhaj, Fahd Hcini, and Yulin Zhang. A fast method for solving a block tridiagonal quasi-toeplitz linear system.75

Portugaliae Mathematica, 76(3):287–299, 2020.
[5] Skander Belhaj, Fahd Hcini, Maher Moakher, and Yulin Zhang. A fast algorithm for solving diagonally dominant symmetric

quasi-pentadiagonal toeplitz linear systems. Journal of Mathematical Chemistry, 59(3):757–774, 2021.
[6] Skander Belhaj, Fahd Hcini, and Maher Moakher. A fast method for solving quasi-pentadiagonal toeplitz linear systems

and its application to the lax–wendroff scheme. Mathematics and Computers in Simulation, 188:77–86, 2021.80

[7] Dario A Bini, Stefano Massei, and Beatrice Meini. On functions of quasi-toeplitz matrices. Sbornik: Mathematics,
208(11):1628, 2017.

[8] Dario Bini, Stefano Massei, and Beatrice Meini. Semi-infinite quasi-toeplitz matrices with applications to qbd stochastic
processes. Mathematics of Computation, 87(314):2811–2830, 2018.

[9] Dario A Bini, Stefano Massei, and Leonardo Robol. Quasi-toeplitz matrix arithmetic: a matlab toolbox. Numerical85

Algorithms, 81(2):741–769, 2019.
[10] Dario A Bini and Beatrice Meini. On the exponential of semi-infinite quasi-toeplitz matrices. Numerische Mathematik,

141(2):319–351, 2019.
[11] Zhao-Lin Jiang, Xiao-Ting Chen, and Jian-Min Wang. The explicit inverses of cupl-toeplitz and cupl-hankel matrices.

East Asian Journal on Applied Mathematics, 7(1):38–54, 2017.90

[12] Yaru Fu, Xiaoyu Jiang, Zhaolin Jiang, and Seongtae Jhang. Fast algorithms for finding the solution of cupl-toeplitz linear
system from markov chain. Applied Mathematics and Computation, 396:125859, 2021.

[13] William W Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–239, 1989.
[14] Tomohiro Sogabe. New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems. Applied

Mathematics and Computation, 202(2):850–856, 2008.95

9

	Introduction
	Algorithms for solving pentadiagonal CUPL-Toeplitz linear system
	Numerical Experiments
	Experiment 1
	Experiment 2

	Conclusion

