

Development of pH-sensitive magnetoliposomes containing shape anisotropic nanoparticles for potential application in combined cancer therapy

1

2

3

10

11

12

13

14

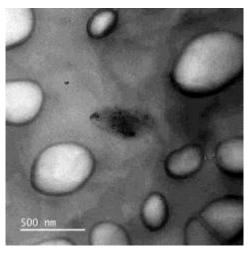
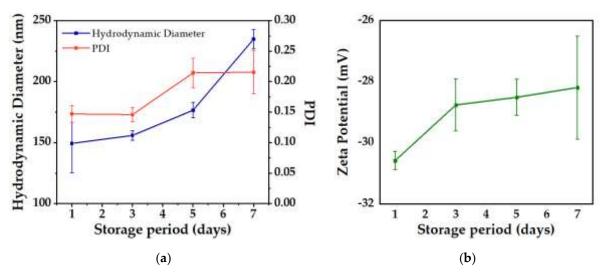
Supplementary Material

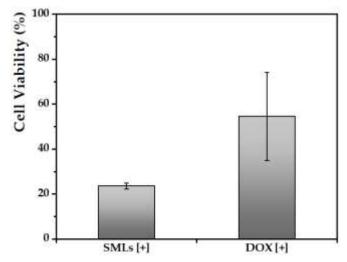
1. Photothermal hyperthermia efficiency

Table S1. SAR values obtained by photothermal hyperthermia of different nanoparticles under a NIR laser at $\lambda = 808$ nm and power density of 1 W/cm² [60].

MNPs Composition	SAR (W/g)	
γ-Fe ₂ O ₃ rock-like NPs	~ 200	
CoFe ₂ O ₄ NPs	~ 650	
γ-Fe ₃ O ₄ nanocubes	1100	

2. SMLs TEM image and colloidal stability


Figure S1. TEM image of solid magnetoliposomes containing a DOPE:Ch:CHEMS (45:45:10) lipid bilayer.

Nanomaterials 2023, 13, x. https://doi.org/10.3390/xxxxx

Figure S2. Variation, for a storage period of 7 days, of: (a) hydrodynamic diameter (blue) and PDI (red); and (b) zeta potential (green) of an aqueous solution of DOPE:Ch:CHEMS (45:45:10) SMLs at pH=7.4.

3. Cell viability

Figure S3. Viability of HepG2 cancer cells in the presence of DOX-loaded solid magnetoliposomes at 1.13×10^{-4} M (SMLs [+]), as well as in the presence of drug in free form at the same concentration (DOX [+]).

[60] Espinosa, A.; Kolosnjaj-Tabi, J.; Abou-Hassan, A.; Sangnier, A.P.; Curcio, A.; Silva, A.K.A.; Corato, R.D.; Neveu, S.; Pellegrino, T.; Liz-Marzán, L.M.; Wilhelm, C. Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. *Adv. Func. Mater.* **2018**, 28, 1803660. [DOI: 10.1002/adfm.201803660]