

Estudo Numérico de Estruturas Celulares com Geometria Adaptada Diogo Manuel Figueiredo Carneiro

UMinho | 2022

Universidade do Minho Escola de Engenharia

Diogo Manuel Figueiredo Carneiro

Estudo Numérico de Estruturas Celulares com Geometria Adaptada

Universidade do Minho Escola de Engenharia

Diogo Manuel Figueiredo Carneiro

Estudo Numérico de Estruturas Celulares com Geometria Adaptada

Dissertação de Mestrado Mestrado Integrado em Engenharia Mecânica

Trabalho efetuado sob a orientação do: Professor Doutor Nuno Ricardo Maia Peixinho

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial CC BY-NC https://creativecommons.org/licenses/by-nc/4.0/

AGRADECIMENTOS

Ao Professor Doutor Nuno Peixinho, pela orientação e esclarecimentos prestados durante esta dissertação.

À minha família, nomeadamente aos meus pais e irmã, pelo infindável apoio e compreensão ao longo deste percurso.

Aos colegas de curso que se transformaram em verdadeiros amigos, pela entreajuda, mútuo apoio e noites de estudo.

Aos restantes colegas de curso que de uma forma ou se outra me ajudaram durante esta caminhada

DECLARAÇÃO DE INTEGRIDADE

Declaro ter atuado com integridade na elaboração do presente trabalho académico e confirmo que não recorri à prática de plágio nem a qualquer forma de utilização indevida ou falsificação de informações ou resultados em nenhuma das etapas conducente à sua elaboração.

Mais declaro que conheço e que respeitei o Código de Conduta Ética da Universidade do Minho.

STATEMENT OF INTEGRITY

I declare that I worked with integrity in the preparation of this academic work and confirm that I have not resorted to the practice of plagiarism or any form of misuse or falsification of information or results in any of the stages leading to its preparation.

I further declare that I know and have respected the Code of Ethical Conduct of the University of Minho.

Universidade do Minho, 28 de outubro de 2022

RESUMO

O estudo numérico apresentado nesta Dissertação de Mestrado em Engenharia Mecânica tem como objetivo o desenvolvimento e estudo do comportamento de geometrias de estruturas celulares, através de um algoritmo de otimização e de uma análise elasto-plástica estrutural.

Desta forma, apresenta-se inicialmente o estado de arte no sentido de compreender o que é uma estrutura celular, a sua história e como se determinam importantes propriedades mecânicas como o módulo de elasticidade e a densidade relativa. No final deste capítulo faz-se ainda uma análise a estudos mais recentes sobre esta matéria.

No capítulo seguinte analisa-se a componente teórica deste estudo, iniciando por conceitos mecânicos como a rigidez, energia de deformação e critérios de cedência relevantes. Ainda neste capítulo, estuda-se a parte computacional da análise, nomeadamente o Método dos Elementos Finitos *(MEF)* e a Otimização Topológica *(OT)*, sendo que nesta última consideram-se os métodos e filtros utilizados no algoritmo.

Em relação ao estudo numérico, capítulo 4, começa-se por explicar o procedimento adotado durante a análise numérica. De seguida, recorre-se à otimização topológica, através do módulo *Structural Optimization* do *software ANSYS*, para se desenvolverem novas geometrias das estruturas celulares. Deste modo, as mesmas geometrias são depois remodeladas, com a utilização do *SOLIDWORKS*.

Com isto, faz-se uma análise estrutural elasto-plástica a cada uma das geometrias, utilizando o módulo *Static Structural* do *ANSYS* e adotando um modelo de encruamento bilinear. Por fim, neste capítulo, efetua-se uma comparação de resultados, estudando duas propriedades mecânicas relevantes neste tipo de estruturas, rigidez e energia de deformação específicas.

O capítulo 5 é referente à análise de um componente final com a utilização de estruturas celulares. Para isto, desenvolveu-se um *bracket* onde se aplicou *OT*. Seguidamente, preencheu-se a versão otimizada com três modelos de estruturas celulares e fez-se uma comparação entre eles no estudo das propriedades referidas anteriormente.

Finalmente, no capítulo 6, apresentam-se as conclusões finais desta dissertação, bem como as perspetivas e trabalhos futuros.

PALAVRAS-CHAVE

ENERGIA DE DEFORMAÇÃO, ESTRUTURA CELULAR, OTIMIZAÇÃO TOPOLÓGICA, RIGIDEZ, RVE

ABSTRACT

The numerical study presented in this Masters Dissertation in Mechanical Engineering, aims to develop and study the behavior of new cellular structures geometries, using an optimization algorithm and an elastic-plastic structural analysis.

With that in mind, the state of the art is initially presented in order to what a cellular structure is, its history and how to determine important mechanical properties like the elastic modulus and the relative density. At the end of the chapter an analysis of more recent studies is made.

The following chapter analyzes the theoretical component, starting with mechanical concepts such as stiffness, energy absorption and important yield criteria. Afterwards, the computational part of the analysis is studied, namely the Finite Element Analysis *(FEA)* and the Topologic Optimization *(TO)*, considering filters and methods used in the algorithm.

Furthermore, in the fourth chapter, the adopted procedure during the numerical analysis is explained. After that, the topology optimization algorithm is used, through the Structural Optimization module of the *ANSYS* software, to develop new geometries of cellular structures. This geometries are later redesign with the *SOLIDWORKS* software.

With this, an elastic-plastic structural analysis is carried out for each of the geometries, using the Static Structural module of *ANSYS* and adopting a bilinear hardening model. Finally, in this chapter, a comparison of results is made, studying two important mechanical properties for this kind of structures, specific stiffness and specific strain energy.

The chapter number 5 refers to the analysis of a final component using cellular structures. For this, a bracket was developed where topology optimization was then applied. The optimized version was filled with three models of cellular structures and a comparison was made between them.

Finally, in chapter number 6, the final conclusions and future work of this dissertation are presented.

KEYWORDS

CELLULAR STRUCTURE, RVE, STIFFNESS, STRAIN ENERGY, TOPOLOGY OPTIMIZATION

ÍNDICE

Agradecin	mentos	iii
Resumo		v
Abstract		vi
Índice		vii
Índice de	Figuras	x
Índice de	Tabelas	xviii
Lista de S	Símbolos	xix
1. Intro	odução	1
1.1.	Guia de leitura	2
2. Esta	ado de arte	3
2.1.	Introdução	3
2.1.	1. Conceito de espuma	3
2.2.	Estruturas celulares	4
2.2.	1. Contexto histórico	4
2.2.2	2. Caracterização da estrutura	6
2.2.3	.3. Propriedades mecânicas	8
	2.2.3.1. Densidade relativa	8
2.2	2.2.3.2. Módulo de elasticidade	9
2.2.4		
	2.2.4.1. Painėis s <i>andwich</i>	
0.0	2.2.4.2. Usso tradecular	14
2.3.	Artigos científicos relevantes	15
3. Com	nponente teórica	26
3.1.	Elemento de Volume Representativo	26
3.2.	Rigidez	26
3.3.	Energia de deformação	27
3.4.	Deformação elasto-plástica	29

3.5. Cri	térios de cedência	
3.5.1.	Critério de <i>von Mises</i>	32
3.5.2.	Critério de <i>Tresca</i>	
3.6. Mé	todo dos Elementos Finitos	34
3.6.1.	Convergência da malha	
3.6.2.	Método de <i>Newton-Raphson</i>	
3.7. Oti	mização Topológica	
3.7.1.	SIMP – Solid Isotropic Material with Penalization	
3.7.2.	Filtros em otimização topológica	41
3.7.3.	Ansys Solvers no módulo de otimização topológica	42
4. Estudo N	Numérico	
4.1. Po	nto de partida	44
4.2. Oti	mização topológica	45
4.2.1.	Análise numérica pré otimização topológica	45
	4.2.1.1. Modelo 1	47
	4.2.1.2. Modelo 2	50
	4.2.1.3. Modelo 3	53
4.2.2.	Otimização topológica – <i>ANSYS</i>	56
4.3. Mo	delação	65
4.3.1.	Geometrias resultantes do modelo 1	66
4.3.2.	Geometrias resultantes do modelo 2	68
4.3.3.	Geometrias resultantes do modelo 3	70
4.4. Es	tudo Numérico - <i>ANSYS</i>	71
4.4.1.	Análise numérica às estruturas	73
	4.4.1.1. Análise numérica às estruturas resultantes do modelo 1	75
	4.4.1.2. Análise numérica às estruturas resultantes do modelo 2	79
	4.4.1.3. Análise numérica às estruturas resultantes do modelo 3	
4.5. Re	sultados obtidos	84
4.5.1.	Comparação de resultados	86
	4.5.1.1. Rigidez	86

4.5.1.2. Energia de Deformação	
5. Componente final	91
5.1. Otimização topológica	91
5.2. Remodelação do componente final e preenchimento com estruturas celulares	94
5.3. Análise numérica do componente final	97
5.4. Resultados obtidos	
6. Considerações finais	103
6.1. Conclusões	103
6.2. Perspetivas e Trabalhos Futuros	
Anexo A: Tabela com várias propriedades de geometrias 3D	106
Anexo B: Tutorial de Análise Numérica Estrutural em ANSYS	107
Anexo C: Tutorial de Otimização Topológica em ANSYS	113
Anexo D: Valores do estudo de convergência da malha	118
Anexo E: Valores da reação nos apoios e deformação do estudo numérico por modelo	121
Anexo F: Imagens referentes à análise numérica	130
Anexo G: <i>Script</i> em linguagem <i>Python</i> utilizado	135
Anexo H: Desenho técnico do componente final	139
Anexo I: Artigo	140
Bibliografia	152

ÍNDICE DE FIGURAS

Figura 2.1 - Espuma líquida utilizada em incêndio de combustíveis [3]	3
Figura 2.2 - Espumas em alimentos: (a) pão, (b) doce "Suspiro", (c) chocolate, (d) batata frita (<i>fast fo</i>	od),
(e) Malteser, (f) bolo "Jaffa" [1]	4
Figura 2.3 - À esquerda: Desenho da observação feita por Hooke, à direita: Estrutura da cortiça, desc	rita
por Hooke como "células" [1]	5
Figura 2.4 - Estrutura <i>Honeycomb</i> fabricada por abelhas [4]	5
Figura 2.5 - Geometria de um dodecaedro rômbico [5]	6
Figura 2.6 - (a) Célula de <i>Kelvin</i> (tetradecaedro); (b) Célula unitária de <i>Weaire</i> e <i>Phelan</i> , composta po	or 6
poliedros de 14 faces e 2 poliedros de 12 faces [1]	6
Figura 2.7 – Micrografia de uma célula fechada (à esquerda) e de uma célula aberta (à direita) [1]	7
Figura 2.8 - Células a três dimensões (poliedros): (a) tetraedro, (b) prisma triangular, (c) prisma retangu	ılar,
(d) prisma hexagonal, (e) octaedro, (f) dodecaedro rômbico, (g) dodecaedro pentagonal, (h) tetradecaedro	, (i)
icosaedro	7
Figura 2.9 – <i>Array</i> de vários poliedros: (a) prismas triangulares, (b) prismas retangulares, (c) prisr	mas
hexagonais, (d) dodecaedros rômbicos, (e) tetradecaedros	8
Figura 2.10 - Relação entre densidade e módulo de elasticidade para vários grupos de materiais (imag	gem
adaptada do inglês) [7]	.10
Figura 2.11 - Modelo cúbico de uma célula aberta [1]	.11
Figura 2.12 - Flexão dos suportes durante a deformação elástica	.11
Figura 2.13 - Modelo cúbico para uma célula fechada [1]	.12
Figura 2.14 - Comparação de propriedades entre verdadeiros sólidos e estruturas celulares (espumas)	[1]
	.13
Figura 2.15 – Comparação da rigidez, resistência e massa de várias espessuras de painéis <i>sandwich</i>	ı [8]
	.14
Figura 2.16 – À esquerda: vista em corte de vários ossos (fémur, tíbia e vertebra); à direita: estrutura cel	ular
	.15
Figura 2.17 - (a) cubo e cilindro com o volume original; (b) <i>Uniform-size</i> com poros esféricos (<i>USS</i>);	; (c)
Dual-size com poros esféricos (DSS)	.16
Figura 2.18 - (a) Rigidez específica; (b) Resistência à compressão	.16
Figura 2.19 - Curva tensão relativa – deformação de cada um dos modelos (<i>USS</i> e <i>DSS</i>)	. 17
Figura 2.20 - Distribuição da deformação plástica equivalente. (a) <i>USS</i> ; (b) <i>DSS</i>	. 17
Figura 2.21 - Procedimento para a otimização das estruturas celulares (otimização topológica)	. 19
Figura 2.22 - Três modos de carregamento utilizados	. 19

Figura 2.23 - Iterações durante a otimização topológica20
Figura 2.24 - Princípio de funcionamento do método <i>SLM</i> 2
Figura 2.25 - Comportamento à compressão da estrutura com 90% porosidade. (a) Estrutura <i>FCC</i> , (b
Estrutura <i>VC</i> , (c) Estrutura <i>ECC</i>
Figura 2.26 - Curvas tensão-deformação para várias percentagens de porosidade: (a) Estrutura <i>FCC</i> ; (b
Estrutura VC, (c) Estrutura ECC
Figura 2.27 - Porosidade (%) <i>versus</i> Módulo de Elasticidade (<i>MPa</i>)2
Figura 2.28 - Distribuição da tensão para as três estruturas (90% porosidade). (a) Estrutura <i>FCC</i> , (b
Estrutura VC, (c) Estrutura ECC
Figura 2.29 - Curvas da Eficiência da Energia Absorvida. (a) Estrutura <i>FCC</i> . (b) Estrutura <i>VC</i> . (c) Estrutur
<i>ECC</i>
Figura 3.1 - Figura representativa de um RVE [11]20
Figura 3.2 - Declive da reta da zona elástica de um diagrama força-deslocamento (imagem adaptada d
inglês) [14]2
Figura 3.3 - Curva tensão-deformação de uma espuma e respetiva área abaixo do diagrama, correspondent
à energia de deformação (imagem adaptada do inglês) [15]2
Figura 3.4 - Exemplo de um diagrama força-deslocamento (imagem adaptada do inglês) [16]2!
Figura 3.5 - Representação da zona elástica (imagem adaptada do inglês) [17]29
Figura 3.6 - Deslocações associadas a planos de deslizamento em resposta à aplicação de uma tensão d
corte. (a) "Meio plano" inicial A. (b) Deslocação do plano para a direita, conexão do plano A com a metade inferio
do plano B, que é agora o "meio plano". (c) O "meio plano" move-se até à direita e cria um unit step of splip3
Figura 3.7 - (a) Não linearidade geométrica [18]; (b) Não linearidade do material [19]; (c) Não linearidad
por contacto [20]
Figura 3.8 - Diferentes modelos do comportamento do material após atingir a tensão de cedência,
esquerda: Comportamento elástico-perfeitamente plástico (sem encruamento), à direita: Comportamento elástico
plástico com encruamento linear3
Figura 3.9 - Representação das várias regiões de um diagrama tensão-deformação de um material dúct
[17]
Figura 3.10 - Superfícies de cedência do critério de <i>von Mises</i> e <i>Tresca</i> . À esquerda a três dimensões e
direita a duas dimensões [23]
Figura 3.11 - Representação do <i>MEF</i> . À esquerda: elemento com dois nós, à direita a distribuição da malh
pelo componente
Figura 3.12 - <i>Workflow</i> habitual na resolução de um problema pelo <i>MEF</i> , através de um <i>software</i> 34
Figura 3.13 - Exemplo de uma análise numérica [26]
Figura 3.14 - Tipos de elementos presentes no <i>software ANSYS</i> [26]

I	Figura 3.15 - Gráfico tensão máxima <i>versus</i> número de elementos [27]	38
I	Figura 3.16 - Exemplo da aproximação do resultado pelo método de <i>Newton-Raphson</i> [20]	39
I	Figura 3.17 - Geometria resultante de uma otimização topológica [29]	39
I	Figura 3.18 - Típico problema de <i>checkerboarding.</i> (a) Geometria inicial; (b) Solução para 400 elemento	os;
(c) Solu	ıção para 6400 elementos [30]	42
I	Figura 3.19 - Processo completo de uma otimização topológica [32]	43
I	Figura 4.1 - Imagem representativa do cubo inicial	44
I	Figura 4.2 - Esquema figurativo dos três modelos do cubo inicial (<i>RVE</i>) e casos de carga	45
I	Figura 4.3 - Definição da malha utilizada na análise dos cubos iniciais	46
I	Figura 4.4 - Geometria do elemento <i>SOLID187</i>	46
I	Figura 4.5 - Malha refinada do cubo inicial	47
I	Figura 4.6 - Condições de fronteira do modelo 1 - compressão	47
I	Figura 4.7 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 1 - compressão	48
I	Figura 4.8 - Caso de carga torção + compressão para o modelo 1	48
I	Figura 4.9 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 1 – torção	+
compre	essão	49
I	Figura 4.10 - Caso de carga corte + compressão para o modelo 1	49
I	Figura 4.11 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 1 – corte	+
compre	essão	49
I	Figura 4.12 - Condição de fronteira aplicada ao modelo 2	50
I	Figura 4.13 - Caso de carga de compressão pura para o modelo 2	50
I	Figura 4.14 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 2 – compressão	51
I	Figura 4.15 - Caso de carga torção + compressão para o modelo 2	51
I	Figura 4.16 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 2 – torção	+
compre	essão	52
I	Figura 4.17 - Caso de carga corte + compressão para o modelo 2	52
I	Figura 4.18 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 2 – corte	+
compre	essão	53
I	Figura 4.19 - Caso de carga de compressão pura para o modelo 3	53
I	Figura 4.20 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 3 – compressão	54
I	Figura 4.21 - Caso de carga torção + compressão para o modelo 3	54
I	Figura 4.22 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 3 – torção	+
compre	essão	55
1	Figura 4.23 - Caso de carga corte + compressão para o modelo 3	55

Figura 4.24 - Resultado numérico da tensão equivalente de <i>von Mises</i> para o modelo 3 – corte +
compressão
Figura 4.25 - <i>Tree view</i> típica utilizada numa <i>OT</i> em <i>ANSYS</i> 57
Figura 4.26 - Regiões de otimização, objetivo e constrangimentos dos modelos para a ${\it OT}$. (a) modelo 1, (b)
modelo 2, (c) modelo 3
Figura 4.27 - Etapas de uma otimização topológica. Exemplo pertencente ao modelo 1, caso de carga de
compressão
Figura 4.28 - Geometria resultante da ${\cal OT}$ - modelo 1, caso de carga: compressão. (a) vista isométrica, (b)
vista de frente
Figura 4.29 - Gráfico do critério de convergência do modelo 1, caso de carga: compressão59
Figura 4.30 - Geometria resultante da \mathcal{OT} - modelo 1, caso de carga: torção + compressão. (a) vista
isométrica, (b) vista de frente
Figura 4.31 - Gráfico do critério de convergência do modelo 1, caso de carga: torção + compressão60
Figura 4.32 - Geometria resultante da \mathcal{OT} - modelo 1, caso de carga: corte + compressão. (a) vista
isométrica, (b) vista de frente
Figura 4.33 - Gráfico do critério de convergência do modelo 1, caso de carga: corte + compressão60
Figura 4.34 - Geometria resultante da <i>OT</i> - modelo 2, caso de carga: compressão. (a) vista isométrica, (b)
vista de frente
Figura 4.35 - Gráfico do critério de convergência do modelo 2, caso de carga: compressão61
Figura 4.36 - Geometria resultante da <i>OT</i> - modelo 2, caso de carga: torção + compressão. (a) vista
isométrica, (b) vista de frente61
Figura 4.37 - Gráfico do critério de convergência do modelo 2, caso de carga: torção + compressão62
Figura 4.38 - Geometria resultante da \mathcal{OT} - modelo 2, caso de carga: corte + compressão. (a) vista
isométrica, (b) vista de frente
Figura 4.39 - Gráfico do critério de convergência do modelo 2, caso de carga: corte + compressão62
Figura 4.40 - Geometria resultante da <i>OT</i> - modelo 3, caso de carga: compressão. (a) vista isométrica, (b)
vista de frente
Figura 4.41 - Gráfico do critério de convergência do modelo 3, caso de carga: compressão63
Figura 4.42 - Geometria resultante da <i>OT</i> - modelo 3, caso de carga: torção + compressão. (a) vista
isométrica, (b) vista de frente
Figura 4.43 - Geometria resultante da \mathcal{OT} - modelo 3, caso de carga: corte + compressão. (a) vista
isométrica, (b) vista de frente
Figura 4.44 - Gráfico do critério de convergência do modelo 3, caso de carga: torção + compressão64
Figura 4.45 - Gráfico do critério de convergência do modelo 3, caso de carga: corte + compressão64
Figura 4.46 - Janela do módulo de otimização topológica do <i>ANSYS</i> 65

Figura 4.47 - Esquema explicativo da nomenclatura dos modelos	66
Figura 4.48 - Janela típica de uma análise em <i>ANSYS</i> , para o caso se compressão, modelo 1. (a) <i>Struc</i>	tural
<i>Optimization</i> (otimização topológica); (b) <i>Static Structural</i> (análise numérica)	71
Figura 4.49 - Gráfico tensão-deformação do encruamento bilinear utilizado	72
Figura 4.50 - Patch Conforming Method utilizado	72
Figura 4.51 - Definições gerais da análise numérica às estruturas celulares	73
Figura 4.52 - Referencial utilizado na análise numérica efetuada	73
Figura 4.53 - Gráficos do estudo de convergência da malha por estrutura	74
Figura 4.54 - Gráficos do estudo de convergência da malha por estrutura (continuação)	75
Figura 4.55 - Estrutura <i>COMP1_A</i> . (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	76
Figura 4.56 - Estrutura <i>COMP1_B</i> . (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	76
Figura 4.57 - Estrutura <i>COMP1_C</i> . (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	77
Figura 4.58 - Estrutura <i>COMP1_D</i> . (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de von <i>Mises</i>	78
Figura 4.59 - Estrutura <i>TORC1_A</i> . (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	78
Figura 4.60 - Estrutura <i>TORC1_B</i> . (a) representação da malha; (b) deslocamento e suporte aplicado	; (c)
tensão equivalente de <i>von Mises</i>	79
Figura 4.61 - Estrutura <i>CORT1_A</i> . (a) representação da malha; (b) deslocamento e suporte aplicado	; (c)
tensão equivalente de <i>von Mises</i>	79
Figura 4.62 - Estrutura <i>COMP2_A</i> . (a) Representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	80
Figura 4.63 - Estrutura COMP2_B. (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	81
Figura 4.64 - Estrutura <i>TORC2_A</i> . (a) representação da malha; (b) deslocamento e suporte aplicado	; (c)
tensão equivalente de von Mises; (d) vista de frente da tensão equivalente de von Mises	81
Figura 4.65 - Estrutura <i>CORT2_A.</i> (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	82
Figura 4.66 - Estrutura <i>COMP3_A</i> . (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	83
Figura 4.67 - Estrutura <i>TORC3_A.</i> (a) representação da malha; (b) deslocamento e suporte aplicado); (c)
tensão equivalente de <i>von Mises</i>	83

Figura 4.68 - Estrutura <i>CORT3_A</i> . (a) representação da malha; (b) deslocamento e suporte aplicado; (c)
tensão equivalente de <i>von Mises</i>
Figura 4.69 - Gráfico força <i>vs</i> deslocamento resultante de todas as estruturas celulares
Figura 4.70 - Reta da zona elástica das estruturas celulares <i>COMP1_A, COMP1_C</i> e <i>TORC1_B</i> 87
Figura 4.71 - Estruturas com maior valor de rigidez. Da esquerda para a direita: <i>COMP1_A</i> , <i>COMP1_C</i> , e
<i>TORC1_B</i>
Figura 4.72 - Estruturas com maior valor de energia de deformação. Da esquerda para a direita: TORC1_B,
<i>COMP1_D</i> , e <i>COMP1_B</i>
Figura 4.73 - Gráfico força <i>vs</i> deslocamento das três estruturas com maior energia de deformação89
Figura 4.74 - Comparação entre rigidez específica e energia de deformação das várias estruturas90
Figura 5.1 - <i>Bracket</i> original pré <i>OT</i> 91
Figura 5.2 - Definições da malha na análise estrutural pré <i>OT</i> efetuada
Figura 5.3 - Condições de fronteira. (a) apoio cilíndrico fixo; (b) carregamento aplicado
Figura 5.4 - Tensão equivalente de <i>von Mises</i> do <i>bracket</i> original
Figura 5.5 - Regiões de otimização e exclusão93
Figura 5.6 – Resultado do processo de otimização do <i>bracket</i> 94
Figura 5.7 - <i>Bracket</i> otimizado remodelado94
Figura 5.8 - Preenchimento do componente final, desde a célula unitária à estrutura celular95
Figura 5.9 - Vista de frente do <i>assembly</i> dos 3 modelos de estruturas celulares. (a) <i>COMP1_C</i> , (b)
<i>COMP1_D</i> ; (c) <i>TORC1_B</i> 96
Figura 5.10 - Bracket remodelado com preenchimento parcial de estruturas celulares. (a) preenchimento
com células COMP1_C, (b) preenchimento com células COMP1_D, (c) preenchimento com células TORC1_B 96
Figura 5.11 - Tipo de contacto escolhido entre células e componente final
Figura 5.12 - Definições da malha dos componentes com preenchimento de estruturas celulares. (a) e (b)
definições relativas ao <i>bracket</i> , (c) e (d) definições relativas às estruturas celulares
Figura 5.13 - Número de nós e elementos dos modelos com preenchimento de estruturas celulares. (a)
<i>COMP1_C</i> ; (b) <i>COMP1_D</i> ; (c) <i>TORC1_B</i>
Figura 5.14 - Representação da malha nos três modelos do componente final com preenchimento de
estruturas celulares
Figura 5.15 – Resultado da análise numérica do <i>bracket</i> pré <i>OT</i> 99
Figura 5.16 - Resultado da análise numérica do <i>bracket</i> otimizado
Figura 5.17 - Resultado da análise numérica do modelo do <i>bracket</i> com estruturas <i>COMP1_C</i> 100
Figura 5.18 - Resultado da análise numérica do modelo do <i>bracket</i> com estruturas <i>COMP1_D</i> 101
Figura 5.19 - Resultado da análise numérica do modelo do <i>bracket</i> com estruturas <i>TORC1_B</i> 101
Figura 5.20 - Gráfico comparativo da rigidez e energia de deformação específicas por modelo

Figura A.1 - Propriedades geométricas de células isoladas [1]	106
Figura B.1 - Janela inicial do ANSYS Workbench	107
Figura B.2 - Seleção do material em "Engineering Data"	108
Figura B.3 - Importação de uma geometria <i>CAD</i>	108
Figura B.4 - Visualização do <i>CAD</i> no <i>SpaceClaim</i>	109
Figura B.5 - Definição do comportamento do componente em relação à rigidez e seleção do material	109
Figura B.6 - Definições gerais da malha utilizada	110
Figura B.7 - Definições da análise numérica	110
Figura B.8 - Constrangimento to tipo "suporte fixo" utilizado	111
Figura B.9 - Solicitação do tipo "deslocamento" utilizada	111
Figura B.10 - Solução obtida para a tensão equivalente de <i>von Mises</i>	112
Figura B.11 - Gráfico da convergência das soluções	112
Figura C.1 - Janela do ANSYS WORKBENCH com o módulo de OT	113
Figura C.2 - Definições gerais de uma otimização topológica em ANSYS	114
Figura C.3 - Escolha das regiões de otimização	114
Figura C.4 - Escolha do objetivo da otimização	115
Figura C.5 - Janela referente ao " <i>Response Constraint</i> "	115
Figura C.6 - Inserir um novo sistema de coordenadas	116
Figura C.7 - Definições do novo sistema de coordenadas	116
Figura C.8 - Inserção de um " <i>Design Constraint</i> " do tipo simetria para o plano <i>YZ</i>	117
Figura F.1 - Estrutura COMP1_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
 	130
Figura F.2 - Estrutura COMP1_B. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
 	130
Figura F.3 - Estrutura COMP1_C. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
 	131
Figura F.4 - Estrutura COMP1_D. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
 	131
Figura F.5 - Estrutura COMP2_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
	131
Figura F.6 - Estrutura COMP2_B. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
	132
Figura F.7 - Estrutura COMP3_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo do	s YYJ
 	132

Fig	ura F.8 - Estrutura <i>CORT1_A</i> . À esquerda: deformação total. À direita: Deslocamento axial (eixo dos <i>YY</i>)
Fig	ura F.9 - Estrutura <i>COMP2_A</i> . À esquerda: deformação total. À direita: Deslocamento axial (eixo dos <i>۲۱</i>)
Fig	ura F.10 - Estrutura <i>COMP3_A</i> . À esquerda: deformação total. À direita: Deslocamento axial (eixo dos
YYJ	
Fig	gura F.11 - Estrutura <i>TORC1_A</i> . À esquerda: deformação total. À direita: Deslocamento axial (eixo dos <i>YY</i>)
Fig	gura F.12 - Estrutura TORC1_B. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos
YYJ	
Fig	gura F.13 - Estrutura <i>TORC2_A</i> . À esquerda: deformação total. À direita: Deslocamento axial (eixo dos <i>YY</i>)
Fig	gura F.14 - Estrutura <i>TORC3_A</i> . À esquerda: deformação total. À direita: Deslocamento axial (eixo dos <i>ΥΥ</i>)

ÍNDICE DE TABELAS

Tabela 2.1 - Energia absorvida normalizada para cada um dos modelos	18
Tabela 2.2 - Estruturas <i>FCC, VC</i> e <i>ECC</i> com 70% a 90% de porosidade	20
Tabela 4.1 - Propriedades do aço estrutural utilizado na análise numérica aos cubos iniciais	45
Tabela 4.2 - Tabela com as geometrias resultantes da ${\cal OT}$ do modelo 1	67
Tabela 4.3 - Tabela com as geometrias resultantes da \mathcal{OT} do modelo 2	69
Tabela 4.4 - Tabela com as geometrias resultantes da \mathcal{OT} do modelo 3	70
Tabela 4.5 - Propriedades da máquina onde se realizaram as análises numéricas	74
Tabela 4.6 - Massa pós <i>OT</i> , massa final e densidade relativa de cada estrutura	85
Tabela 4.7 - Valores de rigidez e rigidez específica das estruturas celulares	87
Tabela 4.8 - Valores da energia de deformação das estruturas celulares	88
Tabela 5.1 - Resultados da rigidez e energia de deformação específicas por modelo	102
Tabela D.1 - Dados para o estudo da convergência da malha por estrutura celular	118
Tabela E.1 - Valores de força e deslocamento dos modelos <i>COMP1_A</i> , <i>COMP1_B</i> e <i>COMP1_C</i>	121
Tabela E.2 - Valores de força e deslocamento dos modelos <i>COMP1_D</i> , <i>COMP2_A</i> e <i>COMP2_B</i>	122
Tabela E.3 - Valores de força e deslocamento dos modelos <i>COMP3_A</i> , <i>TORC1_A</i> e <i>TORC1_B</i>	124
Tabela E.4 - Valores de força e deslocamento dos modelos TORC2_A, TORC3_A e CORT1_A	126
Tabela E.5 - Valores de força e deslocamento dos modelos <i>CORT2_A</i> e <i>CORT3_A</i>	128

LISTA DE SÍMBOLOS

Siglas, abreviaturas e acrónimos

DSS	Dual Size with Spherical pores
ECC	Edge Centered Cubid
FCC	Face Centered Cubic
FEA	Finite Element Analysis
MEF	Método dos Elementos Finitos
MMA	Method of Moving Asymptotes
00	Optimiality Critiria
OT	Otimização Topológica
RVE	Representative Volume Element
SCP	Sequential Convex Programming
SIMP	Solid Isotropic Material with Penalization
SLM	Selective Laser Melting
USS	Uniform Size with Spherical pores
VC	Vertex Cubic

Nomenclatura

ρ	densidade relativa;
$ ho^*$	densidade do material celular;
$ ho_s$	densidade do material sólido;
δ	deslocamento;
Ε	módulo de elasticidade relativo;
E^*	módulo de elasticidade do material celular;
Es	módulo de elasticidade do material sólido;
Е	deformação;
\mathcal{E}_m	deformação num dado momento;
ε_1	extensão principal máxima;
F	força aplicada;
$\{F\}$	vetor das forças;
$\{F^a\}$	vetor das forças aplicadas;
$\{F^t\}$	vetor das reações;

Ι	eficiência de energia de deformação;
k	rigidez;
k	rigidez especifica;
Κ	matriz global de rigidez;
K _e	matriz rigidez de um elemento;
l	comprimento;
Р	carregamento axial;
P _{crit}	carregamento de <i>Euler;</i>
σ	tensão;
σ_{ad}	tensão admissível;
σ_m	tensão para um dado valor de $arepsilon_m;$
σ_{max}	tensão principal máxima;
σ_{min}	tensão principal mínima;
σ_c	tensão uniaxial de cedência;
σ_{cc}	tensão uniaxial de cedência à compressão;
σ_{ct}	tensão uniaxial de cedência à tração;
$\sigma_1, \sigma_2, \sigma_3$	tensões principais máximas;
J_2'	tensão de desvio;
$ au_{max}$	tensão de corte máxima;
E _{ijkl}	tensor de rigidez ótimo;
E^{O}_{ijkl}	tensor rigidez do material;
Ω	domínio de referência (\mathbb{R}^2 ou \mathbb{R}^3);
Ω_{mat}	subdomínio ocupado por um corpo num domínio $\Omega;$
ϕ	fração de material sólido contido nos suportes da célula;
$ ho_0$	pressão de um dado gás presente numa célula;
p	valor da penalização do modelo <i>SIMP</i> ,
t	espessura;
t _e	espessura de um suporte de uma dada célula;
t_f	espessura da face de uma dada célula;
<i>{u}</i>	vetor dos deslocamentos global;
V	volume;
ν	coeficiente de <i>Poisson</i> ,
ν^*	coeficiente de Poisson do material celular;
W	energia total absorvida;

 $\frac{W}{E_s}$ energia de deformação normalizada;mmassa;ncoeficiente de segurança

1. INTRODUÇÃO

Na atualidade a preocupação com a emissão de gases para a atmosfera é parte integrante em qualquer área científica. Neste sentido, em engenharia mecânica, o mesmo é bem visível pelo número de estudos publicados nos últimos anos. Por exemplo, a importância da redução da massa no ramo dos transportes é diretamente proporcional à redução da emissão de gases poluentes pelos veículos.

A constante procura de novos materiais com maior eficiência e melhores propriedades mecânicas e a evolução da manufatura aditiva na construção de estruturas metálicas e não metálicas veio potencializar descobertas recentes. Assim sendo, as estruturas celulares, apesar de não serem um tema recente, voltaram a ser um objeto de estudo relevante. Uma estrutura celular é um conjunto de células compostas por suportes/vigas interligadas que formam arestas e faces. As células podem ser classificadas como células abertas ou fechadas, sendo que as células abertas têm apenas arestas e por isso o centro de cada célula é acessível através de qualquer célula adjacente. Por outro lado, as células fechadas possuem faces que fazem com o centro da célula esteja selado e sem contacto com as células adjacentes. Considera-se uma estrutura celular quando a sua densidade relativa é inferior a 0,3 [1], o que faz deste tipo de estrutura ideal para construção de materiais *lightweight* com boas propriedades específicas. Este tipo de material possui, para além de uma baixa densidade, uma excelente capacidade de resistir a esforços de compressão e de absorção de energia, o que torna as estruturas celulares ideais para substituir componentes em veículos, fazendo com que a massa dos mesmos seja reduzida.

Neste sentido, a geometria das células torna-se de extrema importância, uma vez que garantir um certo desempenho com uma baixa densidade pode ser desafiante. De forma a garantir esse desempenho, a geometria deve ser tal que o comportamento da célula ocorre como previsto, garantindo assim que a estrutura corresponde ao pretendido. Para isto, soluções computacionais são geralmente utilizadas de modo a se obterem geometrias não convencionais. Um dos algoritmos mais importantes, implementado atualmente em vários *softwares*, é o de otimização topológica.

A otimização topológica é um método matemático que tem como objetivo *otimizar* um dado domínio através de informações como condições de fronteira, carregamentos e constrangimentos. Este método permite que se encontre um balanço entre resistência e quantidade de material, obtendo soluções que são demasiado complexas para serem obtidas sem ajuda de um computador. A otimização topológica tem como base o método dos elementos finitos que serve sobretudo para avaliar o comportamento da geometria sob o carregamento e condições de fronteira indicadas. Após essa avaliação e definindo-se um constrangimento para a otimização topológica, como redução de massa/volume, o *design* é otimizado utilizando algoritmos matemáticos como o *Optimality Criteria* ou o *Method of Moving Asymptotes*, baseados no método *SIMP - Solid Isotropic Material with Penalisation*.

1

Desta forma, as estruturas otimizadas podem ser avaliadas e caracterizadas no que toca às suas propriedades, nomeadamente a rigidez e energia de deformação. Estas duas propriedades podem ser obtidas através de um diagrama de força deslocamento, onde o declive da reta da zona elástica corresponde ao valor da sua rigidez e a área abaixo do gráfico à sua energia de deformação. Para a energia de deformação torna-se fulcral estudar a zona plástica da estrutura, pelo que um modelo de encruamento é importante. Existem vários modelos de encruamento, sendo que os modelos bilineares se caracterizam por um encruamento linear onde a zona plástica é definida por uma reta ou modelos multilineares que são compostos por vários pontos e que se aproximam da realidade.

Assim, existem vários objetivos presentes nesta dissertação, como a análise de geometrias previamente estudadas, o estudo do comportamento de estruturas celulares através do conceito de *RVE* e a utilização de modelos numéricos como a otimização topológica, que permite encontrar geometrias não convencionais de modo a aumentar as propriedades específicas de um dado componente. Com isto, quer-se principalmente demonstrar a possível aplicabilidade de componentes com estruturas celulares com o intuído de redução de massa dos mesmos.

1.1. GUIA DE LEITURA

Esta dissertação está estruturada da seguinte forma: um capítulo relativo ao estado de arte, onde se analisa o que é uma estrutura celular e a sua evolução, bem como estudos mais recentes. De seguida, no capítulo 3 aborda-se a componente teórica presente no estudo, nomeadamente das propriedades mecânicas de estruturas celulares, teoria relativa ao método dos elementos finitos e otimização topológica. Os capítulos seguintes são responsáveis pelo estudo numérico especificamente, o capítulo 4 em relação às estruturas celulares e o capítulo 5 ao componente final. Por fim, no capítulo 6, estão presentes as conclusões e trabalhos futuros.

2. ESTADO DE ARTE

2.1. INTRODUÇÃO

A palavra célula deriva do latim *cella*: um compartimento pequeno, um espaço enclausurado. Ao conjunto destas células chamamos estruturas celulares, com arestas sólidas e faces, juntas para ocupar espaço e comumente encontradas na natureza. Mais recentemente, o Homem produziu as suas próprias estruturas celulares, nomeadamente estruturas do género de *honeycombs* (duas dimensões) e espumas (três dimensões) [1].

2.1.1.CONCEITO DE ESPUMA

Nos dias que correm as espumas podem ser facilmente encontradas à nossa volta, seja em aplicações tecnológicas, na alimentação ou na natureza. Dependendo da sua aplicação a espuma pode ser utilizada no estado líquido ou sólido. Este conjunto de diferentes aplicações só é possível graças às interessantes propriedades que as espumas apresentam. Por exemplo, para baixas tensões de corte demonstram propriedades elásticas semelhantes a corpos sólidos, no entanto, para tensões de corte superiores a deformação assemelha-se aos líquidos. Por outro lado, uma aplicação de pressão ou temperatura nestas espumas, provoca uma variação do volume proporcional, um comportamento semelhante aos gases [2].

A baixa densidade é outra característica importante. As espumas líquidas utilizadas com o propósito de apagar incêndios (nomeadamente incêndios com presença de fluidos combustíveis), Figura 2.1, possuem uma densidade baixa, bem como boa resistência mecânica e à temperatura.

Figura 2.1 - Espuma líquida utilizada em incêndio de combustíveis [3]

Tal como referido a alimentação é outra área que aproveita as características da espuma. Muitos dos alimentos têm uma estrutura semelhante a uma espuma. O pão obtém-na através da fermentação, Figura 2.2 (a),

o chocolate, Figura 2.2 (b), e outros alimentos sofrem também processos de expansão que possibilitam a formação de vazios que os tornam mais atrativos do ponto de vista do custo de produção por unidade de volume [1].

Figura 2.2 - Espumas em alimentos: (a) pão, (b) doce "Suspiro", (c) chocolate, (d) batata frita (*fast food*), (e) *Malteser*, (f) bolo "*Jaffa*" [1]

2.2. ESTRUTURAS CELULARES

2.2.1. CONTEXTO HISTÓRICO

As estruturas celulares fascinaram vários investigadores durante mais de 300 anos, *Hooke* estudou a sua forma, *Kelvin* como podem ser agrupadas e *Darwin* a sua origem e função [1].

Esta estrutura pode variar entre uma ordem quase perfeita a duas dimensões, como a *honeycomb*, até estruturas de três dimensões completamente estocásticas, como esponjas e espumas. Um dos primeiros materiais observados foi a cortiça quando *Hooke*, por volta de 1665, aperfeiçoou o seu microscópio. Nos cuidadosos desenhos das observações feitas, é notória a forma hexagonal das células num plano e a forma quadrada no plano normal (Figura 2.3). Observa-se ainda que as células estão dispostas em linha com paredes de espessura reduzidas, tal como as *honeycombs*.

Figura 2.3 - À esquerda: Desenho da observação feita por Hooke, à direita: Estrutura da cortiça, descrita por Hooke como "células" [1]

A *honeycomb* (Figura 2.4) foi a estrutura celular mais estudada e que mais fascinou matemáticos, físicos e biólogos. A literatura sobre esta estrutura é de facto vasta, *Thompson's* (1961) lista mais de trinta teses publicadas antes de 1860, com nomes importantes tais como: *Colin MacLaurin* (1742), *Georges Louis Leclere Buffon* (1753) e *Charles Darwin* (1859) [1]. Esta estrutura é importante pois acaba por epitomar a categoria de estruturas celulares de duas dimensões.

Figura 2.4 - Estrutura Honeycomb fabricada por abelhas [4]

O estudo de estruturas celulares a três dimensões, que não são mais do que espumas, tem estado em crescendo desde que *Plateau* (1873), na sua tese sobre sólidos geométricos, identificou a forma de uma célula como um dodecaedro rômbico, ou seja, um poliedro com doze faces congruentes, 24 arestas e 14 vértices (Figura 2.5). Apesar de ser possível fazer um *array* de células com esta geometria, não é de facto a forma mais eficiente de ocupar o espaço [1].

Figura 2.5 - Geometria de um dodecaedro rômbico [5]

De forma a representar a microestrutura de uma espuma, utilizou-se durante muito tempo o tetradecaedro (poliedro de 14 faces) de *Kelvin* (1887) com faces ligeiramente curvas, Figura 2.6 (a), uma vez que se julgou que seria a geometria com área de superfície por unidade de volume mínima [1]. Mais recentemente, através de um *software* de minimização da área de superfície desenvolvido por *Brakke* (1992), *Weaire* e *Phelan*, em 1994, otimizaram uma célula unitária com menos área de superfície do que aquela definida por *Kelvin*, em cerca de 0.3%. Esta célula unitária contém 6 células de 14 faces, 12 faces com forma pentagonal e 2 faces com forma hexagonal e ainda 2 células com 12 faces com forma de pentágono, Figura 2.6 (b), todas com o mesmo volume. Neste modelo as faces hexagonais são planares e as faces pentagonais são curvas [1].

Figura 2.6 - (a) Célula de *Kelvin* (tetradecaedro); (b) Célula unitária de *Weaire* e *Phelan*, composta por 6 poliedros de 14 faces e 2 poliedros de 12 faces [1]

2.2.2. CARACTERIZAÇÃO DA ESTRUTURA

Uma estrutura celular não é mais do que uma rede interligada por suportes ou faces que formam vértices e arestas. As suas propriedades dependerão essencialmente da sua topologia. De um ponto de vista somente geométrico, uma estrutura celular é um conjunto de vértices ligados por arestas, formando faces [1].

À primeira vista, poder-se-ia pensar que o tamanho da célula seria o parâmetro geométrico com maior importância, no entanto, as propriedades mecânicas da célula pouco dependem deste. Por outro lado, a forma geométrica da célula é mais relevante no que toca a tais propriedades. Quando as células são equiaxiais as propriedades são isotrópicas, mas se as células forem alongadas ou achatadas o suficiente, as propriedades dependem fortemente da direção [1].

Relativamente aos sólidos celulares a três dimensões existe uma distinção interessante a fazer. Para este caso, a célula pode ser classificada como de faces fechadas ou abertas. Segundo *Ashby*, se a face for sólida e por isso isolar o interior de cada célula, ou seja, não permitir contacto entre os interiores das células, diz-se fechada (Figura 2.7). De outro modo, se o contacto entre células for feito exclusivamente pelas arestas das mesmas (suportes), e por isso não existirem faces sólidas, diz-se aberta (Figura 2.7). É ainda possível encontrar células parcialmente fechadas e abertas [1]. A utilização de células fechadas ou abertas dependerá do propósito, já que se umas têm melhores resultados para, por exemplo, material de isolamento, outras potenciam a absorção de energia.

Figura 2.7 – Micrografia de uma célula fechada (à esquerda) e de uma célula aberta (à direita) [1]

Existe uma grande variedade de geometrias possíveis a três dimensões, a Figura 2.8 apresenta algumas dessas geometrias, que podem ser assembladas de forma a ocupar espaço. A caracterização (número de faces, arestas e vértices, volume da célula, área de superfície e comprimento da aresta) de cada uma das geometrias está presente no Anexo A.

Figura 2.8 - Células a três dimensões (poliedros): (a) tetraedro, (b) prisma triangular, (c) prisma retangular, (d) prisma hexagonal, (e) octaedro, (f) dodecaedro rômbico, (g) dodecaedro pentagonal, (h) tetradecaedro, (i) icosaedro

A Figura 2.9 exibe um array de geometrias de estruturas celulares apresentadas por Gibson e Ashby [1].

Figura 2.9 – *Array* de vários poliedros: (a) prismas triangulares, (b) prismas retangulares, (c) prismas hexagonais, (d) dodecaedros rômbicos, (e) tetradecaedros

2.2.3. PROPRIEDADES MECÂNICAS

2.2.3.1. DENSIDADE RELATIVA

A propriedade mais importante numa estrutura celular é a sua densidade relativa, que pode ser obtida através da equação 2.1 [1]:

$$\rho = \frac{\rho^*}{\rho_s} \tag{2.1}$$

Onde ρ^* é a densidade do material celular e ρ_s é a densidade do material sólido. Espumas com densidade muito baixa atingem valores de cerca de 0.001 [1]. Espumas de origem polimérica para *packaging* e isolamento tem densidades relativas entre 0.05 e 0.2, a cortiça por volta dos 0.14 e a maior parte das madeiras suaves entre 0.15 e 0.4 [1]. A balsa, por exemplo, tem uma densidade relativa geralmente abaixo de 0.25 [6].

À medida que a densidade relativa aumenta, a espessura da parede da estrutura aumenta também e o espaço vazio no interior da célula diminui. Para densidades relativas superiores a 0.3 existe uma transição de estrutura celular para uma estrutura que não é mais do que um sólido que contém poros isolados, deixando assim de ser consideradas verdadeiras estruturas celulares [1].

A escolha de uma equação que represente a densidade relativa depende da tipologia da estrutura, isto é, se é uma *honeycomb* ou uma espuma e se, no caso de ser uma espuma, possui células abertas ou fechadas. Se

se considerar que a célula tem um comprimento de aresta l, uma espessura de parede t e que $t \ll l$, ou seja, baixa densidade relativa, *Ashby* propõe a seguinte equação para células abertas:

$$\frac{\rho^*}{\rho_s} = C_1 \left(\frac{t}{l}\right)^2 \tag{2.2}$$

Para células fechadas:

$$\frac{\rho^*}{\rho_s} = C_2 \frac{t}{l} \tag{2.3}$$

Onde as constantes numéricas C_1 e C_2 , dependem essencialmente da forma geométrica da célula.

2.2.3.2. MÓDULO DE ELASTICIDADE

O módulo de elasticidade pode ser determinado através do declive da curva, na zona elástica, de um diagrama tensão-deformação. Por outro lado, o módulo de elasticidade relativo pode ser obtido através da equação 2.4:

$$E = \frac{E^*}{E_s} \tag{2.4}$$

Onde, *E* representa o módulo de elasticidade relativo, E^* o módulo de elasticidade do material celular e E_s o módulo de elasticidade do material sólido.

O comportamento da elasticidade depende não só da forma geométrica da estrutura celular, bem como do material que a compõe. A Figura 2.10 apresenta uma comparação entre a densidade e módulo de elasticidade de vários materiais.

Figura 2.10 - Relação entre densidade e módulo de elasticidade para vários grupos de materiais (imagem adaptada do inglês) [7]

A dependência da geometria está diretamente relacionada com o facto de as células serem abertas ou fechadas. Por essa razão a formulação do módulo de elasticidade será diferente.

Células abertas

Segundo *Ashby*, poder-se-á assumir que na sua forma mais simples uma estrutura de célula aberta pode ser modelada com uma geometria cúbica composta por suportes de comprimento l de uma secção quadrada com largura t (Figura 2.11). Sabe-se que a forma real de uma estrutura celular, por exemplo numa espuma, é mais complexa do que a assumida. No entanto, se deformar segundo o mesmo mecanismo, as suas propriedades podem ser compreendidas [1].

Figura 2.11 - Modelo cúbico de uma célula aberta [1]

Assim, o módulo de elasticidade é calculado pelo conceito da flexão elástica de uma viga (Figura 2.12) com comprimento l e uma solicitação F em $\frac{l}{2}$.

Figura 2.12 - Flexão dos suportes durante a deformação elástica

Deste modo, para células abertas o módulo de elasticidade é dado através da equação:

$$\frac{E^*}{E_s} = C_1 \left(\frac{\rho^*}{\rho_s}\right)^2 \tag{2.5}$$

Neste momento é relevante referir que a equação 2.5 é válida apenas para pequenas deformações. À medida que a deformação elástica aumenta, o carregamento axial P no suporte aumenta também. Quando P iguala o carregamento de *Euler*, P_{crit} , o suporte entra em encurvadura. Além disso, antes da encurvadura, o carregamento axial induz um momento que não está contemplado na equação 2.5 [1].

Células fechadas

A determinação do módulo de elasticidade em células fechadas é mais complexa. Na Figura 2.13 é possível ver uma representação cúbica deste tipo de células, tal como nas células abertas.

Figura 2.13 - Modelo cúbico para uma célula fechada [1]

O módulo de elasticidade para células fechadas é a junção de três contribuições distintas. A primeira contribuição é causada pela flexão dos suportes, a segunda pela compressão do fluído contido no interior e a terceira pelo esticar das faces, causado pela flexão (*bending*) dos suportes [1].

Deste modo, a equação (2.6) que aproxima o valor do módulo de elasticidade para células fechadas é dada por:

$$\frac{E^*}{E_s} = C_1 \phi^2 \left(\frac{\rho^*}{\rho_s}\right)^2 + C_1 (1-\phi) \frac{\rho^*}{\rho_s} + \frac{\rho_0 (1-2\nu^*)}{E_s (1-\frac{\rho^*}{\rho_s})}$$
(2.6)

Onde ϕ representa a fração de sólido contida nos suportes da célula, enquanto $(1 - \phi)$ representa a fração de sólido nas faces. A espessura dos suportes é dada por t_e e a espessura das faces por t_f . O valor de ρ_0 é referente à pressão do gás presente no interior do vazio (usualmente corresponde à pressão atmosférica) [1].

As principais propriedades das estruturas celulares, físicas, mecânicas e térmicas, são avaliadas da mesma forma do que em materiais completamente sólidos. A Figura 2.14 compara a performance de verdadeiros sólidos com espumas no que toca à densidade, condutividade, módulo de elasticidade e resistência à compressão [1].

Figura 2.14 - Comparação de propriedades entre verdadeiros sólidos e estruturas celulares (espumas) [1]

2.2.4. APLICABILIDADE DE ESTRUTURAS CELULARES

2.2.4.1. PAINÉIS SANDWICH

Os painéis *sandwich* são membros estruturais constituídos por duas faces sólidas e um interior *lightweight* constituído normalmente por estruturas celulares. A distância entre as faces, provocada pelo material interior, aumenta o seu momento de inércia com pouco incremento na massa total, aumentando a sua resistência à flexão e à encurvadura [1]. Na Figura 2.15 é possível verificar que, por exemplo, para um interior com uma espessura *3t*, comparativamente a um material sólido de espessura *t*, a rigidez aumenta 37 vezes, ao passo que o aumento da massa é pouco significativo.

Figura 2.15 – Comparação da rigidez, resistência e massa de várias espessuras de painéis sandwich [8]

O comportamento mecânico do painel vai obviamente depender não só do material utilizado nas faces e no interior, bem como na geometria. Na maior parte das aplicações é importante que o painel tenha uma rigidez mínima, ou seja, não deve ceder quando é solicitado. Desta forma pode-se formular um problema de otimização onde o objetivo é obter um painel com menor massa, maior rigidez e que resista ao constrangimento do carregamento.

2.2.4.2. OSSO TRABECULAR

De um ponto de vista superficial, os ossos parecem completamente sólidos. Uma grande parte dos ossos são constituídos por uma camada densa e compacta, mas que no seu interior contém uma estrutura celular conhecida como trabecular, Figura 2.16.

Figura 2.16 – À esquerda: vista em corte de vários ossos (fémur, tíbia e vertebra); à direita: estrutura celular

Uma melhor compreensão do comportamento mecânico dos ossos é relevante para aplicações biomédicas. Em pacientes com osteoporose a massa dos ossos diminui com o tempo, até que os mesmos não suportam solicitações consideradas normais em pacientes saudáveis. Assim, uma leitura correta da densidade do osso e da sua resistência permite prever o risco de fratura e potencia o desenvolvimento de ancas artificiais [1].

A estrutura celular do osso trabecular é visível na Figura 2.16. É constituído por uma rede interligada de células abertas e fechadas. A sua densidade varia entre 0.05 e 0.7 (tecnicamente qualquer osso com densidade abaixo dos 0.7 é considerado trabecular) [1].

2.3. ARTIGOS CIENTÍFICOS RELEVANTES

Peixinho et al [9] realizaram uma análise da resposta das propriedades de uma espuma de alumínio à compressão.

O conceito de Elemento Representativo de Volume (*RVE*) foi utilizado neste estudo, através da idealização de uma célula unitária de uma espuma real. Deste modo é possível prever as propriedades estruturais essenciais de uma célula típica.

Com isto, foram modeladas duas células (*open-cell*) cúbicas de faces centradas (*FCC*) a partir do mesmo cubo, Figura 2.17 (a), (considerado o volume inicial) com aresta igual a 2.65 mm. As células têm tipologias diferentes, sendo que uma tem estrutura *uniform-size* (*USS*), Figura 2.17 (b), que apresenta apenas um tipo de

poro esférico. A segunda célula tem uma estrutura *dual-size* (*DSS*), Figura 2.17 (c), que para além do poro principal apresenta ainda um poro secundário que não está presente na *USS*.

Figura 2.17 - (a) cubo e cilindro com o volume original; (b) *Uniform-size* com poros esféricos (*USS*); (c) *Dual-size* com poros esféricos (*DSS*)

Em relação à análise numérica foi utilizado o *software ANSYS* onde as condições de fronteira foram: suporte do tipo *frictionless* imposto na face da base do modelo; carregamento aplicado verticalmente na face do topo.

A Figura 2.18 mostra os resultados para a rigidez específica e resistência de cada um dos modelos, onde se pode observar que os resultados do modelo *DSS* são superiores em 2 a 3 vezes.

Por outro lado, Figura 2.19 apresenta as curvas tensão relativa-deformação.

Figura 2.18 - (a) Rigidez específica; (b) Resistência à compressão

Figura 2.19 - Curva tensão relativa - deformação de cada um dos modelos (USS e DSS)

A distribuição da deformação plástica equivalente, para uma compressão de cerca de 2% é visível na Figura 2.20, em cada um dos modelos. Verifica-se que existem diferentes modos de deformação, sugerindo que a forma da célula (e dos poros) influencia a resposta mecânica dos modelos.

Figura 2.20 - Distribuição da deformação plástica equivalente. (a) USS; (b) DSS

Pela análise da Figura 2.20, no modelo *DSS* a deformação plástica está distribuída tanto pelos suportes principais como pelos secundários. Isto faz com que a capacidade resistiva dos suportes principais seja maior, por outro lado os suportes secundários contribuem para a deformação total.

A energia total absorvida (W) pela estrutura pode ser determinada através da área abaixo da curva do diagrama tensão-deformação.

A Tabela 2.1 contém os valores de energia de absorção normalizada ($\frac{W}{E_s}$, em que E_s é o módulo de elasticidade do material) para cada um dos modelos, onde se conclui que o modelo *DSS* absorve quase duas vezes mais energia do que o *USS*.

Geometric Model	Normalized energy absorbtion	
Uniform-size with spherical pores (USS)	4.55E-04	
Dual-size with spherical pores (DSS)	8.78E-04	

Tabela 2.1 - Energia absorvida normalizada para cada um dos modelos

Em suma, este estudo demonstra a importância dos modelos de elementos finitos no estudo da influência da geometria nas propriedades mecânicas de espumas metálicas. O arranjo das células demonstrou afetar o comportamento à compressão de espumas metálicas com células abertas.

Como referido anteriormente, os autores concluíram também que a rigidez e resistência específica de estruturas celulares *USS* podem ser melhoradas com a adição de poros secundários. Referem ainda que, tendo em conta os resultados obtidos, espumas metálicas com células abertas e configuração *DSS* são adequadas para aplicações que envolvam impacto como *crashworthiness*.

Xiao at al [10] utilizam um método de manufatura aditiva para fabricar estruturas celulares previamente otimizadas numericamente.

Inicialmente foi utilizado um algoritmo de otimização topológica através do módulo *TOSCA* do *software ABAQUS*. O processo de otimização está presente na Figura 2.21.

Figura 2.21 - Procedimento para a otimização das estruturas celulares (otimização topológica)

De modo garantir continuidade entre células adjacentes, a estrutura deve ser simétrica nas direções *XYZ*. Foram idealizados 3 modos de carregamento com base num cubo sólido. Para garantir consistência aplicou-se a mesma forma de solicitação em cada uma das faces do cubo, sendo que uma pressão igual a 250 *MPa* foi aplicada em cada uma delas. Os 3 modos de carregamento diferem na localização da solicitação, o modo 1 sofre carregamento no centro de cada uma das faces (*Face Centered Cubic - FCC*), o modo 2 nos oito vértices (*Vertex Cubic - VC*) e o modo 3 no centro de cada uma das doze arestas (*Edge Centered Cubid - ECC*), Figura 2.22.

Figura 2.22 - Três modos de carregamento utilizados

O estudo respeita a premissa de que a tensão de cedência não é ultrapassada, pelo que o mesmo realizase apenas na zona elástica. As zonas de carregamento não fazem parte da área de *design* do algoritmo, de modo a garantir pontos de conexão entre as células.

Como objetivo da otimização foi definido maximizar a rigidez, o volume dos modelos otimizados está constrangido a 10%, 15%, 20%, 25% e 30% do volume inicial. A Figura 2.23 mostra as várias iterações (até à 15^a) da otimização topológica até chegar a uma geometria final para cada um dos modos, enquanto a Tabela 2.2 apresenta as geometrias otimizadas resultantes para diferentes percentagens de porosidade (definidas pelo constrangimento inicial).

Figura 2.23 - Iterações durante a otimização topológica

Tabela 2.2 - Estruturas FCC, VC e ECC com 70% a 90% de porosidade

As estruturas foram depois fabricadas por manufatura aditiva através do método *SLM* (*Selective Laser Melting*), utilizando uma máquina com o modelo M280. O diagrama da Figura 2.24 mostra o princípio de funcionamento do método *SLM*.

Figura 2.24 - Princípio de funcionamento do método SLM

De seguida, realizaram testes de compressão às estruturas celulares, segundo a norma ISO 13314. As estruturas celulares otimizadas foram agrupadas para fazer amostras com $18 \times 18 \times 18 mm^3$. As condições do teste uniaxial à compressão contou com um carregamento de 100 kN e uma velocidade de 1 mm/min. Na Figura 2.25 é possível analisar o comportamento da estrutura com 90% de porosidade durante o teste uniaxial à compressão, para cada um dos modos de carregamento. Os dados foram utilizados para construir as curvas de tensão-deformação Figura 2.26, e para calcular o módulo de elasticidade. Na análise da figura referida conclui-se que o comportamento mecânico das estruturas *FCC* e *VC* era similar, com uma performance muito superior à *ECC*.

Figura 2.25 - Comportamento à compressão da estrutura com 90% porosidade. (a) Estrutura FCC, (b) Estrutura VC, (c) Estrutura ECC.

Figura 2.26 - Curvas tensão-deformação para várias percentagens de porosidade: (a) Estrutura *FCC*, (b) Estrutura *VC*, (c) Estrutura *ECC*

Quando o carregamento inicia a curva tensão-deformação é não linear e côncava, depois passa por uma fase em que a estrutura demonstra uma zona elástica (mais linear). No geral, durante toda a fase de compressão verificou-se que a estrutura deforma de maneira estabilizada e suave.

À medida que a porosidade diminui o módulo de elasticidade dos 3 modos de carregamento aumenta, Figura 2.27. Isto acontece devido ao material ser o principal suporte de uma estrutura celular, o que significa que a porção de material afeta diretamente as propriedades mecânicas.

Figura 2.27 - Porosidade (%) versus Módulo de Elasticidade (MPa)

Foi realizada ainda uma análise numérica às 3 estruturas com porosidade de 90% no *ABAQUS*, aplicandose uma pressão de 10 *MPa* na direção *Z*. A tensão equivalente máxima de *von-Mises* para a estrutura *FCC* foi de 23.32 *MPa*, para a *VC* foi de 49.37 *MPa* e para a *ECC* foi de 236 *MPa*, Figura 2.28.

Figura 2.28 - Distribuição da tensão para as três estruturas (90% porosidade). (a) Estrutura *FCC*, (b) Estrutura *VC*, (c) Estrutura *ECC*.

Depreendeu-se que a estrutura *FCC* tem uma capacidade de receber carregamento superior e que a estrutura *ECC* é mais propensa a dano, o que corrobora com as conclusões da Figura 2.26. Por outro lado, a estrutura *ECC* obteve melhores resultados no que toca à eficiência de energia de absorção. Esta eficiência é calculada através da equação 2.7 e os resultados estão presentes na Figura 2.29.

$$I = \frac{\int_0^{\varepsilon_m} \sigma(\varepsilon) d\varepsilon}{\sigma_m \varepsilon_m}$$
(2.7)

Figura 2.29 - Curvas da Eficiência da Energia Absorvida. (a) Estrutura FCC. (b) Estrutura VC. (c) Estrutura ECC

3. COMPONENTE TEÓRICA

3.1. ELEMENTO DE VOLUME REPRESENTATIVO

Quando se fala na previsão de propriedades de uma dada macroestrutura, o conceito de elemento de volume representativo (*RVE*) é usualmente utilizado. O *RVE* não é mais do que uma célula unitária capaz de representar a estrutura de um componente, Figura 3.1.

Figura 3.1 - Figura representativa de um RVE [11]

Segundo *Kanit et al*, uma das formas de resolver problemas de homogeneização é utilizando simulações numéricas de amostras da microestrutura. Neste caso, a noção de elemento de volume representativo é de grande importância. Um *RVE* é geralmente considerado como um volume *V* de um material homogêneo com dimensões suficientes para ser estatisticamente representativo da estrutura. Além disso, um *RVE* deve garantir uma dada precisão na estimativa de uma propriedade como tensão, deformação ou energia para um dado domínio *V* [12]. A noção de homogeneização do material em estruturas celulares aparece quando a célula unitária do *RVE* é quadrada [13].

3.2. RIGIDEZ

A definição de rigidez é a capacidade de determinado componente resistir a um deslocamento δ , consequente de uma força aplicada F. Deste modo, um componente é mais rígido se deforma menos para a mesma força. A equação 3.1 demonstra isso mesmo, para uma rigidez k:

$$k = \frac{F}{\delta} \tag{3.1}$$

Assim, é notório que k não é mais do que o declive correspondente à reta da zona elástica, de um diagrama força-deslocamento (Figura 3.2) e que desta forma as suas unidades, em *SI*, são N/m.

Figura 3.2 - Declive da reta da zona elástica de um diagrama força-deslocamento (imagem adaptada do inglês) [14]

Interessa agora introduzir o conceito de rigidez específica (\dot{k}). Para que se faça uma comparação fiável entre vários componentes, torna-se importante comparar determinada propriedade por unidade de massa ou volume. Obtém-se esta propriedade dividindo a rigidez da estrutura pela sua massa m, pelo que as unidades passam a ser N/m. kg (equação 3.2).

$$\dot{k} = \frac{k}{m} = \frac{F}{m} = \frac{F}{\delta m}$$
(3.2)

3.3. ENERGIA DE DEFORMAÇÃO

A energia de deformação é definida como a energia absorvida até à falha, ou seja, o somatório da energia absorvida na zona elástica e plástica. O seu valor é igual à área abaixo da curva de um diagrama tensãodeformação, Figura 3.3, ou seja, pode ser calculada pelo integral de área, equação 3.3, onde σ representa a tensão em *MPa* e ε a deformação (adimensional).

Figura 3.3 - Curva tensão-deformação de uma espuma e respetiva área abaixo do diagrama, correspondente à energia de deformação (imagem adaptada do inglês) [15]

$$\int_{0}^{\varepsilon} \sigma(\varepsilon) d\varepsilon \tag{3.3}$$

No cálculo desta propriedade para componentes específicos pode fazer mais sentido utilizar um diagrama força-deslocamento (Figura 3.4), uma vez que a definição de energia de deformação para este diagrama se mantém. Assim, a unidade da energia de deformação é N.m ou, pela unidade usualmente utilizada para medir energia mecânica, J.

Considerando o conceito de energia de deformação específica, tal como na rigidez específica, pode-se agora dividir a energia obtida pela massa do componente. As unidades desta propriedade passam a ser J/kg.

Figura 3.4 - Exemplo de um diagrama força-deslocamento (imagem adaptada do inglês) [16]

3.4. DEFORMAÇÃO ELASTO-PLÁSTICA

Sabe-se que o comportamento de determinado material está dividido entre uma zona linear elástica e uma não linear plástica. A zona elástica, Figura 3.5, tal como o nome indica, constitui uma deformação não permanente e é governada pela lei de *Hooke*, onde E_s corresponde ao módulo de elasticidade. Esta equação é válida até que a tensão atinja o valor da tensão de cedência. Até que este limite seja atingido, a relação entre a tensão e a deformação é linear e proporcional.

Figura 3.5 - Representação da zona elástica (imagem adaptada do inglês) [17]

Após ultrapassar a tensão de cedência, a resposta do material a um dado carregamento é não linear e encontra-se por isso na região plástica.

A deformação plástica ocorre pelo movimento de deslocações associadas a planos de deslizamento. Estas deslocações são a resposta à tensão de corte aplicada na direção perpendicular aos planos mencionados. A mecânica deste movimento de deslocação está representada na Figura 3.6. Se considerarmos o plano *A* da figura como um "meio plano" inicial, quando a tensão de corte é aplicada, o plano *A* é forçado a mover-se para a direita, ora isto faz com que os planos *B*, *C*, *D*, *etc* se movimentem na mesma direção. No caso da tensão aplicada ser de magnitude suficientemente elevada, as ligações interatómicas do plano *B* rompem e a metade superior deste plano passa a ser o "meio plano" extra. No mesmo instante o plano *A* liga-se à metade inferior do plano *B*. Este processo é repetido para os restantes planos, até que o plano extra inicial se mova da esquerda para a direita, rompendo e criando sucessivas ligações atómicas [17].

Ao contrário da região elástica, a deformação plástica é permanente e ocorre a volume constante.

Figura 3.6 - Deslocações associadas a planos de deslizamento em resposta à aplicação de uma tensão de corte. (a) "Meio plano" inicial A. (b) Deslocação do plano para a direita, conexão do plano A com a metade inferior do plano B, que é agora o "meio plano". (c) O "meio plano" move-se até à direita e cria um *unit step of splip*

As estruturas podem comportar-se plasticamente essencialmente por três razões: por não linearidade geométrica, quando a rigidez varia como consequência de uma alteração geométrica, por exemplo em grandes deslocamentos (Figura 3.7 a); por não linearidade do material, quando a tensão de cedência do material é ultrapassada (Figura 3.7 b); por contacto (Figura 3.7 c), ou seja, uma grande variação da rigidez provocada pelo contacto entre dois corpos [18].

Figura 3.7 - (a) Não linearidade geométrica [18]; (b) Não linearidade do material [19]; (c) Não linearidade por contacto [20]

Uma vez atingida a tensão de cedência e de entrar na região plástica, o valor desta pode manter-se ou não com o aumento da deformação. Se esse valor não depender do aumento da extensão plástica, diz-se que o material tem um comportamento perfeitamente plástico, Figura 3.8 (a). Se, pelo contrário, o valor da tensão de cedência aumentar com o crescimento da extensão plástica, diz-se que o material está a sofrer um encruamento, Figura 3.8 (b). O encruamento do material acontece quando para um dado incremento de deformação plástica corresponde um incremento de tensão.

Em síntese, na Figura 3.9 é possível verificar as várias regiões do comportamento de um material dúctil num diagrama tensão deformação. Na figura estão registadas quatro regiões, da direita para a esquerda: a região elástica; a região plástica dividida em três fases, cedência, encruamento e *necking*.

Figura 3.9 - Representação das várias regiões de um diagrama tensão-deformação de um material dúctil [17]

3.5. CRITÉRIOS DE CEDÊNCIA

O objetivo de um critério de cedência é a obtenção de uma relação matemática que preveja as condições para as quais se inicia a deformação plástica, quando o material está sujeito a uma solicitação [21].

Deste modo, para um caso simples de estado de tensão uniaxial, considera-se deformação plástica quando a tensão aplicada ultrapassa a tensão de cedência do material, tal como já referido. No entanto, para estados de tensão biaxiais ou triaxiais, a cedência dá-se quando as tensões aplicadas atingirem os valores calculados de acordo com a expressão matemática do critério de cedência em questão [21].

Por outro lado, os critérios podem ainda ser representados graficamente por superfícies de cedência. Os pontos no interior desta superfície estão na região elástica e os pontos que coincidem com o limite da superfície estão em cedência. Não existem pontos fora desta superfície, ao invés é a própria superfície que se adapta. Esta adaptação é descrita pelos vários modelos de encruamento existentes.

Apresentam-se de seguida os critérios mais importantes da teoria da plasticidade.

3.5.1. CRITÉRIO DE VON MISES

Este é o critério normalmente utilizado em problemas de plasticidade e baseia-se na observação experimental de que a pressão hidrostática, responsável pela variação de volume num sólido, não provoca cedência. Uma vez que a deformação plástica acontece a volume constante, a componente hidrostática num dado estado de tensões aplicado a um corpo não influencia a tensão de cedência. Assim, as tensões de desvio são responsáveis pela mesma. O critério de cedência, num material isotrópico, deve ser independente da escolha dos eixos. Deste modo, *von Mises* propôs que a cedência teria lugar quando o segundo invariante das tensões de desvio, J'_2 , excedesse um determinado valor crítico do material igual a α^2 (limite do início da cedência) [21]:

Estudo Numérico de Estruturas Celulares com Geometria Adaptada

$$J_2' = \alpha^2 \tag{3.4}$$

Sendo que J'_2 é dado pela equação:

$$J_2' = \frac{1}{6} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]$$
(3.5)

Assim, para calcular a constante α e sabendo que no ensaio uniaxial de tração e no ponto de cedência $\sigma_{ct} = \sigma_c \text{ e } \sigma_2 = \sigma_3 = 0$. Substituindo estes valores na equação 3.5, vem:

$$\sigma_c = \sqrt{3} \to \alpha = \frac{\sigma_c}{\sqrt{3}} \tag{3.6}$$

Substituindo novamente na equação 3.5, obtemos a expressão final do critério de von Mises.

$$\sigma_c = \frac{1}{\sqrt{2}} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]^{\frac{1}{2}}$$
(3.7)

Graficamente, no espaço de tensões principais, este critério define um cilindro infinito de raio $\sqrt{\frac{2}{3}\sigma_c}$ em torno do eixo hidrostático (Figura 3.10). Por outro lado, na Figura 3.10 é possível ainda verificar o critério no espaço de tensões a duas dimensões.

3.5.2. CRITÉRIO DE TRESCA

O critério de *Tresca* possui uma expressão matemática mais simples do que o critério anterior. Para este caso, a falha do material por cedência ocorre quando a tensão de corte máxima τ_{max} , atinge a tensão de corte que provoca falha por corte num ensaio uniaxial [22]. Desta forma, $\tau_{max} = \tau_c$ e pela equação 3.8:

$$\tau_{max} = \frac{\sigma_{max} - \sigma_{min}}{2} \tag{3.8}$$

Onde σ_{max} e σ_{min} correspondem às tensões principais máxima e mínima, respetivamente.

Ao contrário do critério de *von Mises*, graficamente é definido como um prisma hexagonal infinito (Figura 3.10).

Figura 3.10 - Superfícies de cedência do critério de *von Mises* e *Tresca*. À esquerda a três dimensões e à direita a duas dimensões [23].

3.6. MÉTODO DOS ELEMENTOS FINITOS

O método dos elementos finitos (*MEF* ou *FEA* em língua inglesa) é o método numérico mais utilizado na resolução de problemas estruturais, de transferência de calor, de fluidos, entre outros. O primeiro passo no procedimento do *MEF* é dividir o domínio em vários elementos finitos, processo que faz parte da discretização [24]. Estes elementos estão conectados por pontos denominados por nós, Figura 3.11. Ao conjunto destes elementos e nós, que formam o domínio de análise, chama-se malha, Figura 3.11.

Figura 3.11 - Representação do *MEF*. À esquerda: elemento com dois nós, à direita a distribuição da malha pelo componente

Após a região ser discretizada, as equações que governam cada elemento são aplicadas e propriedades do material como o módulo de elasticidade ou a condutividade térmica são utilizadas. Assim, estas equações servem para se obter uma equação global da malha que descreve o comportamento do corpo como um todo. Deste modo, para uma análise linear estática, a equação 3.9 utiliza a matriz rigidez global *K* (que é o somatório da matriz

rigidez de cada elemento K_e , equação 3.10) e o vetor das forças $\{F\}$ para calcular o vetor dos deslocamentos global $\{u\}$ [25].

$$[K]\{u\} = \{F\} \tag{3.9}$$

$$[K] = \sum_{m=1}^{N} [K_e]$$
(3.10)

Onde *N* representa o número de elementos no domínio.

Por outro lado, para uma melhor compreensão pode-se ainda separar o vetor das forças em dois vetores, o vetor das reações $\{F^t\}$ e o vetor do carregamento aplicado $\{F^a\}$, ficando com a expressão da equação 3.11:

$$[K]{u} = {F^t} + {F^a}$$
(3.11)

Na resolução de um problema não linear, a matriz rigidez K não é constante e depende dos deslocamentos, equação 3.12. Desta forma, como consequência, a curva força-deslocamentos será não-linear, o que significa que um incremento na força de uma dada magnitude não resulta necessariamente no mesmo incremento nos deslocamentos [20].

$$[K(u)]\{u\} = \{F\}$$
(3.12)

Quando o problema engloba geometrias complexas, nomeadamente a três dimensões, a utilização deste método através de um *software*, simplifica a sua resolução. De uma forma analítica tornar-se-ia impossível resolver o número de equações necessárias. Assim, um *workflow* usual para a resolução de um problema pelo *MEF*, com a ajuda de um *software* como o *ANSYS* ou *SOLIDWORKS*, é o apresentado pela Figura 3.12:

Figura 3.12 - Workflow habitual na resolução de um problema pelo MEF, através de um software

Na Figura 3.13 pode-se verificar um exemplo de uma análise numérica, desde a escolha da geometria até ao pós-processamento.

Figura 3.13 - Exemplo de uma análise numérica [26]

A escolha do tipo de elementos e o tamanho da malha a utilizar na análise é de extrema importância, tanto para o tempo computacional de resolução requerido como para o erro dos resultados. A Figura 3.15 apresenta os elementos mais usuais, presentes no *software ANSYS*, sendo que os de volume (*3D*) são os que mais tempo computacional requerem, mas que apresentam resultados mais aproximados.

Dimension	Degree	Element Shape	Element Type
	Linear	••	Beam, Truss
1D (Line)	Quadratic		Beam
	Cubic		Beam
	Linear	$ \bigtriangleup \Box $	
2D (Area)	Quadratic	$\Delta \Box$	Plane stress Plane strain Plate, Shell
	Cubic	DD	
3D (Volume)	Linear		A
(volume)	Quadratic	$\oplus \square$	\square

Figura 3.14 - Tipos de elementos presentes no software ANSYS [26]

3.6.1. CONVERGÊNCIA DA MALHA

O conceito de convergência da malha é essencialmente perceber qual o tamanho ótimo da malha, ou seja, o tamanho que não afeta o resultado da análise e que não recorre a mais tempo computacional do que o necessário. Uma das formas de descobrir este tamanho ótimo é realizar um estudo da tensão máxima *versus* o número de elementos. Pela análise da Figura 3.15 pode-se verificar que no ponto A, para uma malha com cerca de 300 elementos o resultado da tensão é de 147.5 *MPa*. Por outro lado, no ponto E, uma malha de 3000 elementos resulta numa tensão de 149.3 *MPa*. O custo computacional é muito superior no ponto E para uma variação consideravelmente pequena da tensão, pelo que podemos admitir que a malha converge no ponto A [27]. É desta relação entre o custo computacional e a precisão do resultado que resulta o tamanho ótimo da malha.

Figura 3.15 - Gráfico tensão máxima versus número de elementos [27]

3.6.2. MÉTODO DE NEWTON-RAPHSON

O método de *Newton-Raphson* é uma técnica iterativa e eficiente na aproximação do resultado de equações numéricas. Como referido anteriormente, na resolução de problemas não lineares a matriz rigidez não é constante. Assim, uma matriz de rigidez tangencial é formada e decomposta a cada iteração, o que significa que para modelos demasiado complexos a aplicação deste método pode ser custosa computacionalmente.

A primeira iteração executada pelo método conta com a aplicação de uma força F_a , Figura 3.16. Em resultado dessa força obtém-se x_1 . A partir dos deslocamentos calcula-se F_1 . Se $F_a \neq F_1$ o sistema não está em equilíbrio e o declive da reta formada (a vermelho na Figura 3.16) serve de nova matriz rigidez para a próxima iteração. Chama-se força residual à diferença entre F_a e F_1 e a sua amplitude deve ser reduzida o suficiente para a solução convergir. O processo continua até à iteração i, onde $F_a = F_i$. Desta forma o sistema está em equilíbrio e a solução convergiu [20].

Figura 3.16 - Exemplo da aproximação do resultado pelo método de Newton-Raphson [20]

3.7. OTIMIZAÇÃO TOPOLÓGICA

A otimização topológica (*OT*) é uma forma matemática de encontrar uma estrutura ótima para um dado conjunto de carregamentos e condições de fronteira. Por norma, a *OT* tem como resultado geometrias complexas e não intuitivas que são difíceis de prever pelo engenheiro, Figura 3.17. É quase sempre possível otimizar um modelo já existente para uma versão melhorada. Assim, neste novo domínio de *design* são criadas geometrias potencialmente superiores comparativamente às originais [28].

Figura 3.17 - Geometria resultante de uma otimização topológica [29]

Aos dias de hoje, este método faz parte de um grande número de *softwares* de *MEF*, nomeadamente o *ANSYS*, o *Optistruct* ou o *Creo*. Uma otimização estrutural deste género tem como objetivo redesenhar uma estrutura, que suporte da melhor forma as solicitações para um volume de material inferior ao original [28]. Ora, em termos de engenharia de materiais, isto significa que o ponto de partida será melhorar a rigidez, que por outro lado se traduz na minimização da *compliance*.

Desta forma, se o objetivo passa pela diminuição do material, o propósito da *OT* é determinar onde deve existir material (isotrópico) e onde não deve existir qualquer material. Isto implica, para o tensor de rigidez, as seguintes expressões [28]:

$$E_{ijkl} = 1_{\Omega_m} E_{ijkl}^O, \quad 1_{\Omega_{mat}} = \begin{cases} 1 \ se \ x \ \in \ \Omega_{mat} \\ 0 \ se \ x \ \in \ \frac{\Omega}{\Omega_{mat}} \end{cases}$$
(3.13)

Onde E_{ijkl} é o tensor de rigidez ótimo, E_{ijkl}^{O} é o tensor rigidez do material (isotrópico) que compõe o corpo e Ω_{mat} é o corpo que faz parte de um domínio de referência Ω , em \mathbb{R}^2 ou \mathbb{R}^3 .

$$\int_{\Omega} 1_{\Omega_m} d\Omega = Vol(\Omega_{mat}) \le V$$
(3.14)

A equação 3.13 indica que estamos perante um problema 0-1. Por outro lado, a equação 3.14 mostra um volume V máximo, ou seja, a quantidade de material que existe à disposição no domínio.

Desta forma, o problema está restringido a um domínio fixo e formulado como um problema de tamanho que altera a matriz de rigidez de forma que depende continuamente de uma função que interpreta uma densidade artificial (pseudo-densidade) do material. Variando a densidade irá influenciar o tensor rigidez de cada elemento.

$$E_{ijkl}(\rho = 0) = 0$$

$$E_{ijkl}(\rho = 1) = 1 \rightarrow E_{ijkl}^{0}$$
(3.15)

Durante a otimização, de forma a manter a função contínua entre regiões com material e sem material (vazios) é utilizado um sistema de penalização. O método mais utilizado é o *SIMP* (*Solid Isotropic Material with Penalization*).

3.7.1. SIMP - Solid Isotropic Material with Penalization

O modelo *SIMP* atribui a cada elemento (da malha produzida pelo *software MEF*) uma pseudo-densidade $\rho(x)$ que terá valores entre 0 e 1, ou seja, $0 \le \rho(x) \le 1$, que irá alterar a rigidez do material. A densidade $\rho(x)$ pode ser descrita como sendo uma fração da densidade real do material [28]:

$$\rho(x_j) = \frac{\rho_j}{\rho_0} \tag{3.16}$$

Onde ρ_j é a densidade do elemento j, ρ_0 é a densidade do material e $\rho(x_j)$ é a pseudo-densidade do elemento j.

Deste modo, a rigidez de um dado elemento pode ser determinada através da pseudo-densidade para esse mesmo elemento, com a expressão [28]:

$$E_{ijkl}(x) = \rho(x)^p E_{ijkl}^0, \quad p > 1$$
 (3.17)

$$\int_{\Omega} \rho(x) \, d\Omega \le V; \ 0 \le \rho(x) \le 1, x \in \Omega \tag{3.18}$$

Considerando que p é o peso da penalização, usualmente p > 3 [28]. Assim:

$$E_{ijkl}(\rho(x) = 0) = 0; \ E_{ijkl}(\rho(x) = 1) = E_{ijkl}^{0}$$
(3.19)

Com isto, quando $E_{ijkl} = 0$ significa que não existe material e quando $E_{ijkl} > 0$, existe material. A existência ou não de material é controlada pela pseudo-densidade. Esta é aproximada de valores 0 - 1 pela penalização p > 1. Recomenda-se a escolha de um valor de p > 3 para atingir um verdadeiro *design* 0 - 1 [28].

3.7.2. FILTROS EM OTIMIZAÇÃO TOPOLÓGICA

Este método sofre de alguns problemas numéricos, nomeadamente um em específico comumente referido, em inglês, por *checkerboarding*. Este termo deriva da aparência, a preto e branco, de um tabuleiro de damas (*checkerboard*). Assim, em otimização topológica as áreas a preto seriam elementos que contém material e a branco os elementos que não contém material [28], Figura 3.18.

O problema do *checkerboarding* é que todos os carregamentos poderiam ser partilhados pelos elementos vizinhos. Ademais a solução geométrica é fortemente dependente da malha pelo que para este tipo de problemas requer um filtro [28].

Figura 3.18 - Típico problema de *checkerboarding.* (a) Geometria inicial; (b) Solução para 400 elementos; (c) Solução para 6400 elementos [30]

Sigmund introduziu um filtro sensitivo que calcula o peso médio de determinado elemento e dos seus oito elementos adjacentes [31].

3.7.3. Ansys Solvers no módulo de otimização topológica

Uma vez que se irá utilizar o *ANSYS* no sentido da otimização topológica, durante este documento, importa fazer referência aos *solvers* que o mesmo usa. Na verdade, o módulo de *OT* em *ANSYS* usufrui de dois *solvers*, baseados no método *SIMP*, o *Sequential Convex Programming (SCP)* e o *Optimiality Critiria (OC)*. Um método muito comum neste tipo de otimização, e que está implementado em *ANSYS*, é o *MMA (Method of Moving Asymptotes*).

O método *SCP* é uma extensão do método *MMA*. Resumidamente o *MMA* é um algoritmo não linear que requer a aproximação da solução do problema de otimização topológica. Esta aproximação é feita pela resolução de subproblemas onde o método necessita das derivadas de todas as funções do problema. Para além disso, rejeita passos que não contribuem para a otimização, assegurando que a solução converge [28].

Em contrapartida, o método *OC* é iterativo e limitado, podendo apenas ser utilizado para problemas de otimização simples, onde o objetivo de minimizar a *compliance* utiliza apenas como constrangimento o volume ou a massa [28].

Em suma, a Figura 3.19 apresenta um fluxograma do processo completo de uma otimização topológica, neste caso utilizando o método *Optimiality Critiria*.

Figura 3.19 - Processo completo de uma otimização topológica [32]

4. ESTUDO NUMÉRICO

4.1. PONTO DE PARTIDA

Na abordagem inicial ao problema foi pensada a estratégia a utilizar para a sua resolução. Sabendo que o objetivo é obter uma geometria ideal para uma estrutura celular, o conceito de *RVE* foi utilizado.

Deste modo foi definido que se utilizaria um cubo com dimensões iguais a $10 \times 10 \times 10 \text{ mm}^3$, Figura 4.1. Este volume representa um *RVE*, ou seja, uma célula unitária representativa que pode ser multiplicada para formar uma estrutura celular final. A decisão de estudar um *RVE* e não um conjunto de células derivou da possibilidade de prever o comportamento de uma estrutura a partir deste elemento unitário, onde é possível ser mais rigoroso na sua geometria e análise numérica.

Figura 4.1 - Imagem representativa do cubo inicial

Como referido no capítulo 2.2, a forma geométrica da célula de uma estrutura celular é mais impactante do que o seu tamanho no que toca às suas propriedades mecânicas, nomeadamente a rigidez e capacidade de absorção de energia cinética. Por outro lado, este estudo aborda apenas a vertente das células abertas, precisamente pelas propriedades referidas serem superiores, por unidade de massa, relativamente às células fechadas (estas são mais relevantes quando o objetivo é, por exemplo, captar um gás dentro da célula).

Ainda no referido capítulo é mencionado que a característica mais importante de uma célula é a sua densidade relativa. Todos os modelos resultantes deste estudo terão uma densidade relativa aproximada de 10%, para que a comparação entre os mesmos tenha significado.

Sabendo que se utilizaria o módulo de otimização topológica do *software ANSYS*, formularam-se três modelos do cubo, onde a localização do carregamento difere, Figura 4.2. O primeiro cubo tem carregamento no centro de cada uma das seis faces, o segundo no centro de cada uma das arestas e o terceiro no centro de cada uma das faces e dos oito vértices.

Ademais, fez-se variar o tipo de carregamento em cada um deles, pelo que originou três casos de carga para cada um dos modelos, um de compressão pura, outro de torção e outro de corte.

Figura 4.2 - Esquema figurativo dos três modelos do cubo inicial (*RVE*) e casos de carga

4.2. OTIMIZAÇÃO TOPOLÓGICA

4.2.1. ANÁLISE NUMÉRICA PRÉ OTIMIZAÇÃO TOPOLÓGICA

Em primeiro lugar existe a necessidade de resolver uma análise numérica estrutural da geometria que se pretende otimizar. Isto serve para que o algoritmo de otimização topológica defina as zonas críticas que devem ou não conter material, utilizando os resultados obtidos nessa análise. Assim, utilizando o módulo *Static Structural* do *software ANSYS*, os modelos do cubo referidos anteriormente e os seus casos de carga, executou-se uma simulação numérica para cada uma dessas versões.

Nesta fase interessa definir as condições de fronteira, magnitude do carregamento e material a utilizar. Utilizou-se, como material de análise, um aço estrutural pertencente à biblioteca de materiais do *ANSYS*. As suas propriedades estão apresentadas na Tabela 4.1.

Tabela 4.1 - Propriedades do aço estrutural utilizado na análise numérica aos cubos iniciais

Propriedade	Valor	Unidade	
Densidade	7850	kg/m ³	
Módulo de elasticidade	200	GPa	
Coeficiente de <i>Poisson</i>	0.3	-	
Tensão de cedência	250	МРа	

Relativamente ao carregamento, aplicou-se uma pressão igual a 200 *MPa* em cada um dos pontos mencionados por cubo. No estudo mencionado no capítulo 2.3 *Xiao at al* utilizaram uma magnitude de 250 *MPa*, pelo que se considera que a utilização de 200 *MPa* razoável.

Deste modo, com o material definido, foi criada uma malha fina e estável para proceder com a análise. Para isto inseriu-se um novo método de "*Patch Conforming*" para se obter uma malha mais refinada, utilizando tetraedros como elementos de ordem quadrática. Por outro lado, no detalhe da malha definiu-se como "*Pysics Preference*" - "*Nonlinear Mechanical*", uma vez que nos oferece um maior número de elementos comparativamente com a opção "*Mechanical*" (em troca de tempo de computação) e um tamanho do elemento igual a 0.35 *mm*, Figura 4.3. Estas definições resultaram num número total de elementos igual a 74 554 e número de nós igual a 109 973.

D	etails of "Mesh"		D	etails of "Patch C	Conforming Method" - Method
Ξ	- Display			Scope	
				Scoping Method	Geometry Selection
	Display Style	Use Geometry Setting		Geometry	1 Body
-	 Defaults 		Ξ	Definition	
	Physics Preference	Nonlinear Mechanical	-	Suppressed	No
	Element Order	Program Controlled		Method	Tetrahedrons
				Algorithm	Patch Conforming
	Element Size	0,35 mm		Element Order	Quadratic

Figura 4.3 - Definição da malha utilizada na análise dos cubos iniciais

Assim, a geometria do elemento utilizado em *ANSYS* resulta no *SOLID187*. Este é um elemento de volume (3D) de ordem superior que contém 10 nós, Figura 4.4 (com três graus de liberdade cada). Ademais, com este elemento é possível estudar plasticidade, hiperelasticidade, grandes deformações, entre outros.

Figura 4.4 - Geometria do elemento SOLID187

Com isto, sendo um elemento de volume é notório que é um elemento computacionalmente mais pesado. No entanto, como o corpo em estudo é de uma geometria bastante simples e sabendo a importância da malha na otimização topológica (problema de *checkerboarding* mencionado anteriormente), a escolha deste elemento foi relevante. A Figura 4.5 representa a malha final.

Assim, esta foi a malha utilizada nas análises numéricas de cada uma das versões dos cubos, apresentadas de seguida.

Figura 4.5 - Malha refinada do cubo inicial

4.2.1.1. MODELO 1

O modelo 1 está dividido em três casos de carga, compressão pura, torção e corte. No que diz respeito à compressão pura, Figura 4.6, foi aplicado um carregamento do tipo "pressão", com magnitude igual a 200 MPa, no centro de cada uma das faces. A área de aplicação é um quadrado com 2 mm de largura, perfazendo uma área de aplicação igual a 4 mm^2 . Como condição de fronteira utilizou-se um suporte fixo na área de aplicação correspondente à face inferior (ponto A da Figura 4.6).

Figura 4.6 - Condições de fronteira do modelo 1 - compressão

Por agora o resultado da análise numérica pré otimização topológica não tem muito interesse em si, no entanto, a Figura 4.7 apresenta a tensão equivalente de *von Mises* resultante.

Figura 4.7 - Resultado numérico da tensão equivalente de von Mises para o modelo 1 - compressão

Relativamente ao caso de carga de torção, manteve-se a compressão da versão anterior, fazendo com que este seja um caso de carga combinada de compressão e torção, Figura 4.8.

Figura 4.8 - Caso de carga torção + compressão para o modelo 1

A Figura 4.9 exibe o resultado numérico da tensão equivalente de *von Mises* para o modelo 1, caso de carga de torção mais compressão. Como seria de esperar este caso de carga combinado resulta numa tensão equivalente superior, o que nesta fase é pouco relevante.

Figura 4.9 - Resultado numérico da tensão equivalente de von Mises para o modelo 1 - torção + compressão

Por último, para o modelo 1, foi ainda efetuado um caso de carga que inclui corte e compressão, Figura 4.10. O resultado da análise numérica consequente apresenta-se na Figura 4.11.

Figura 4.10 - Caso de carga corte + compressão para o modelo 1

Figura 4.11 - Resultado numérico da tensão equivalente de von Mises para o modelo 1 – corte + compressão
4.2.1.2. MODELO 2

A respeito do modelo 2, os casos de carga seguiram a mesma lógica do primeiro modelo. Nesta situação os pontos de aplicação são no centro de cada uma das arestas do cubo, no entanto, a área de aplicação mantém-se, bem como a magnitude do carregamento. O suporte fixo aplicou-se às áreas dos pontos de aplicação da vista debaixo, Figura 4.12.

Figura 4.12 - Condição de fronteira aplicada ao modelo 2

Começando pelo caso de carga da compressão, a Figura 4.13 monstra os pontos de aplicação da mesma enquanto a Figura 4.14 apresenta o resultado da análise numérica pela tensão equivalente de *von Mises*.

Figura 4.13 - Caso de carga de compressão pura para o modelo 2

Figura 4.14 - Resultado numérico da tensão equivalente de von Mises para o modelo 2 - compressão

Da mesma forma, para o segundo caso de carga, manteve-se a compressão e adicionou-se solicitações que representam torção, Figura 4.15.

Figura 4.15 - Caso de carga torção + compressão para o modelo 2

Consequentemente, a Figura 4.16 apresenta o resultado da tensão equivalente de *von Mises* para o segundo caso de carga do modelo 2.

Figura 4.16 - Resultado numérico da tensão equivalente de von Mises para o modelo 2 - torção + compressão

O último caso de carga para o modelo 2 pretende representar uma solicitação combinada de compressão e corte, Figura 4.17. Assim, é possível verificar o resultado da análise numérica desta versão na Figura 4.18.

Figura 4.17 - Caso de carga corte + compressão para o modelo 2

Figura 4.18 - Resultado numérico da tensão equivalente de von Mises para o modelo 2 - corte + compressão

4.2.1.3. MODELO 3

Por último, criou-se o modelo 3 com pontos de carregamento no centro das faces do cubo bem como na zona dos vértices do mesmo. Os casos de carga, tal como anteriormente, são de compressão pura, torção mais compressão e corte mais compressão. Apresenta-se de seguida estas três versões deste modelo.

Primeiro caso de carga, compressão pura, Figura 4.19 e resultado da simulação numérica, Figura 4.20.

Figura 4.19 - Caso de carga de compressão pura para o modelo 3

Figura 4.20 - Resultado numérico da tensão equivalente de von Mises para o modelo 3 - compressão

Assim, a Figura 4.21 demonstra os pontos de aplicação do carregamento para o caso de carga da torção mais compressão neste modelo. A Figura 4.22 exibe o resultado da análise numérica.

Figura 4.21 - Caso de carga torção + compressão para o modelo 3

Figura 4.22 - Resultado numérico da tensão equivalente de von Mises para o modelo 3 - torção + compressão

O restante caso de carga representa corte mais compressão e pode ser verificado na Figura 4.23. Da mesma forma o resultado da sua análise numérica apresenta-se na Figura 4.24.

Figura 4.23 - Caso de carga corte + compressão para o modelo 3

Figura 4.24 - Resultado numérico da tensão equivalente de von Mises para o modelo 3 - corte + compressão

Considerando os resultados da análise numérica pré-*OT*, é notável desde logo que nos três modelos o caso de carga com tensão equivalente de *von Mises* máxima superior é o compressão mais torção. No entanto, em todos os casos esta tensão máxima ocorre na zona da condição de fronteira.

De uma forma geral, o resultado relativo ao caso de carga de compressão é o esperado, não sendo um caso de carga combinado, apenas as zonas circundantes aos pontos de aplicação se deformam. Por outro lado, nos casos de carga de torção mais compressão e corte mais compressão, nota-se uma deformação e tensão equivalente de *von Mises* superior no plano *XY*, uma vez que é neste plano que se encontram as solicitações relativas à torção e corte.

4.2.2.OTIMIZAÇÃO TOPOLÓGICA - ANSYS

No sentido da utilização do algoritmo de otimização topológica, foi utilizado o módulo *Structural Optimization* do *software ANSYS.* Este módulo utilizará características da análise numérica previamente efetuada para devolver um componente otimizado, comparativamente ao original. Assim, é obrigatório definir desde logo o objetivo da otimização, regiões que devem ser excluídas da mesma, a densidade relativa que deve ter o componente, entre outros. A visão de uma árvore típica (*tree view*) de uma *OT* em *ANSYS* está apresentada na Figura 4.25. O Anexo C apresenta um tutorial para este tipo de otimização em *ANSYS*.

Figura 4.25 - Tree view típica utilizada numa OT em ANSYS

Começando pelas definições gerais da *OT*, definiu-se um fator de penalização, utilizado pelo modelo *SIMP* (referenciado no capítulo 3.7.1) igual a 3. Em relação ao filtro utilizado, estabeleceu-se que seria controlado pelo programa, pelo que se deixou a opção de origem *"Program Controlled"*. Existem ainda duas opções para este caso, linear e não-linear. Do mesmo modo, o tipo de *solver* foi *"Program Controlled"*, apesar de que o programa permite-nos escolher entre os tipos *SCP* e *OC*, mencionados no capítulo 3.7.3.

Relativamente às zonas que devem ser excluídas ou incluídas na otimização, definiu-se que as áreas dos pontos de aplicação, bem como as condições de fronteira, devem ser zonas que não são otimizadas. Deste modo garante-se que a célula tem conexão com as células adjacentes.

No que se refere ao objetivo da *OT*, existem vários caminhos. É possível escolher entre minimizar a massa, volume, *compliance*, tensão ou outro critério. Neste caso, uma vez que se quer aumentar a rigidez global do componente, escolheu-se minimizar a *compliance*.

Um outro constrangimento que deve ser definido previamente é a percentagem de massa ou volume que queremos reter do componente original. Como referido anteriormente, pretende-se neste estudo que os componentes otimizados tenham cerca de 10% do valor da massa original.

Por último, uma vez que a célula deve ter uma resposta isotrópica, inseriram-se três novos constrangimentos de *design* correspondentes à simetria dos 3 planos, *XY*, *XZ* e *YZ*. O *software* possibilita ainda que seja definido uma panóplia de constrangimentos, desde relativos à manufatura aditiva, fundição, entre outros.

A Figura 4.26 representa as definições e constrangimentos da otimização topológica para os modelos 1, 2 e 3.

Figura 4.26 - Regiões de otimização, objetivo e constrangimentos dos modelos para a *OT*. (a) modelo 1, (b) modelo 2, (c) modelo 3.

Assim, com o problema dimensionado, o *software* irá correr o algoritmo, que nos devolverá uma nova estrutura com 10% da massa do cubo original. A Figura 4.27 mostra as várias etapas (1 a 8) do processamento da resolução numérica da otimização, onde se verificam regiões que o algoritmo exclui da otimização (condições de fronteira e solicitações). Por outro lado, são também visíveis regiões onde foi removido material bem como elementos fundamentais mantidos.

Figura 4.27 - Etapas de uma otimização topológica. Exemplo pertencente ao modelo 1, caso de carga de compressão.

Serão agora apresentadas as soluções obtidas pela *OT* para cada um dos modelos e casos de carga. Iniciando pelo modelo 1, a Figura 4.28 apresenta a solução obtida para o caso de carga de compressão, onde se verifica um vazio no interior da célula e conexão entre os pontos de aplicação do carregamento.

No final de cada otimização avaliou-se o gráfico relativo à convergência da solução, apresentado na Figura 4.29. Combined Objective Convergence Combined Objective Convergence Criterion 100 24.28 . 5,8983 e 1,4325 0,3479

14,

ion Numbe

16,

18,

20,

22,

24

26, 27,

12

Verifica-se que o modelo necessita apenas de 27 iterações para convergir, o que é um bom indicador.

10,

8,4492e-2

0,

2,

4,

6,

8,

Para os dois casos de carga de torção + compressão e corte + compressão, optou-se por retirar dois planos de simetria, para forçar o algoritmo a criar uma estrutura diferenciada, Figura 4.30 e Figura 4.32, respetivamente. Deste modo, observou-se um conjunto superior de material na zona inferior da célula e no plano onde a torção é aplicada.

Figura 4.30 - Geometria resultante da OT- modelo 1, caso de carga: torção + compressão. (a) vista isométrica, (b) vista de frente

Na Figura 4.31 pode-se analisar o gráfico de convergência para a torção mais compressão.

Figura 4.31 - Gráfico do critério de convergência do modelo 1, caso de carga: torção + compressão

No que toca ao último caso de carga, os suportes presentes no plano onde os esforços de corte foram aplicados possuem um diâmetro maior do que os restantes.

Figura 4.32 - Geometria resultante da *OT* - modelo 1, caso de carga: corte + compressão. (a) vista isométrica, (b) vista de frente

Para este caso de carga apresenta-se de seguida o gráfico com o critério de convergência, Figura 4.33.

Figura 4.33 - Gráfico do critério de convergência do modelo 1, caso de carga: corte + compressão

Desta forma, os resultados da otimização topológica para o modelo 2 estão representados na Figura 4.34 para o caso de carga de compressão, onde se denota um interior vazio da célula. Na Figura 4.36, para o caso se carga de torção + compressão, existe uma conexão no centro do interior da célula. Assim, para o caso de corte + compressão, Figura 4.38, verifica-se que os suportes da zona inferior possuem um diâmetro maior do que os da zona superior.

Figura 4.34 - Geometria resultante da OT - modelo 2, caso de carga: compressão. (a) vista isométrica, (b) vista de frente

O gráfico relativo à convergência do modelo 2 (compressão) mostra-se na Figura 4.35. Para este caso, a solução necessita de 42 iterações para convergir.

Figura 4.35 - Gráfico do critério de convergência do modelo 2, caso de carga: compressão

Figura 4.36 - Geometria resultante da *OT* - modelo 2, caso de carga: torção + compressão. (a) vista isométrica, (b) vista de frente

Por outro lado, a Figura 4.37 e a Figura 4.39 representam o gráfico do critério de convergência para os restantes casos de carga do modelo 2.

Figura 4.37 - Gráfico do critério de convergência do modelo 2, caso de carga: torção + compressão

Figura 4.38 - Geometria resultante da *OT* - modelo 2, caso de carga: corte + compressão. (a) vista isométrica, (b) vista de frente

Figura 4.39 - Gráfico do critério de convergência do modelo 2, caso de carga: corte + compressão

Por último, para o modelo 3, os resultados da *OT* foram os seguintes: para o caso de carga de compressão, Figura 4.40, verificar-se um vazio no interior da célula e suportes a conectar os pontos de aplicação. Os suportes que conectam os pontos no centro das faces tendem a ser mais espessos do que os que conectam os vértices do cubo. Em relação à versão com solicitações de torção e compressão, Figura 4.42, observa-se um reforço no plano onde a torção está aplicada. Na Figura 4.43, mostram-se os resultados para o caso de carga de corte + compressão, onde ao contrário dos outros casos, os suportes que conectam os vértices são mais espessos.

Figura 4.40 - Geometria resultante da OT- modelo 3, caso de carga: compressão. (a) vista isométrica, (b) vista de frente

Por outro lado, o gráfico da análise à convergência da solução apresenta-se na Figura 4.41, verificando-se que

Figura 4.41 - Gráfico do critério de convergência do modelo 3, caso de carga: compressão

Figura 4.42 - Geometria resultante da *OT* - modelo 3, caso de carga: torção + compressão. (a) vista isométrica, (b) vista de frente

Figura 4.43 - Geometria resultante da *OT* - modelo 3, caso de carga: corte + compressão. (a) vista isométrica, (b) vista de frente

Por último, os gráficos de convergência dos casos de carga de torção mais compressão e corte mais compressão podem ser visualizados nas figuras seguintes (Figura 4.44 e Figura 4.45, respetivamente).

Figura 4.44 - Gráfico do critério de convergência do modelo 3, caso de carga: torção + compressão

Figura 4.45 - Gráfico do critério de convergência do modelo 3, caso de carga: corte + compressão

Deste modo, uma janela de trabalho usual do módulo "*Structural Optimization*" no *ANSYS 2022 R1* é visível na Figura 4.46. Pode-se verificar do lado esquerdo a árvore de trabalho separada por secções. Analisando esta árvore, de cima para baixo, tem-se informação relativa à geometria original, material, sistema de coordenadas utilizado, malha, análise estrutural pré *OT* e por último a secção da otimização topológica.

Figura 4.46 - Janela do módulo de otimização topológica do ANSYS

Analisando os resultados obtidos pela otimização topológica constata-se que em relação ao modelo 1 do cubo original as geometrias estão bem definidas. No que toca ao modelo 2, apesar de para o caso de carga de compressão pura e corte mais compressão a geometria ser percetível, a falta de elementos, por limitação da licença do *software*, no caso de carga de torção mais compressão fez-se notar. O motivo pelo qual as geometrias não são tão definidas é porque estas dependem fortemente da malha, tal como referenciado no capítulo 3.7.2. Para o modelo 3, o mencionado anteriormente aconteceu para os três casos de carga. No entanto, foi possível extrapolar em todos os casos, pelo menos uma geometria por modelo e caso de carga.

4.3. MODELAÇÃO

Após a otimização topológica é oportuno redesenhar e dimensionar as estruturas resultantes. Com isto, torna-se importante não só gerar estruturas que derivem diretamente do resultado da *OT*, como versões alternativas. A modelação destas novas estruturas foi efetuada através do *software SOLIDWORKS* 2017.

No sentido do explicado anteriormente, é determinante que as estruturas finais tenham uma natureza isotrópica. Para isto, estas geometrias serão sempre, pelo menos, simétricas no plano perpendicular a um carregamento de compressão. Para o efeito de comparação de resultados adiante, definiu-se que as estruturas redesenhadas teriam uma densidade relativa aproximada de 10%.

A criação de várias versões destas estruturas leva a que seja importante atribuir uma nomenclatura a cada uma delas, de fácil identificação. Com isto em mente desenvolveu-se um sistema com esse efeito, explicado no esquema da Figura 4.47. O nome de cada geometria está dividido em 3 elementos. O primeiro diz respeito ao caso de carga que deu origem à mesma, sendo que para a compressão atribuiu-se "COMP", para a torção + compressão atribuiu-se "TORC" e para o corte + compressão atribui-se "CORT". O segundo elemento diz respeito

ao modelo do cubo original, podendo este valor ser 1, 2 ou 3. O terceiro e último elemento fornece informação da versão dessa geometria, que pode variar dependendo por exemplo, das dimensões dos suportes ou de alterações mínimas na própria geometria. Este elemento tem ordem alfabética de *A* a *Z*.

Figura 4.47 - Esquema explicativo da nomenclatura dos modelos

4.3.1. GEOMETRIAS RESULTANTES DO MODELO 1

Neste sentido, na Tabela 4.2 pode-se verificar as geometrias resultantes com origem no modelo 1 do cubo, onde os pontos de aplicação do carregamento estão presentes do centro das faces do mesmo. O caso de carga de compressão originou quatro geometrias, o de torção duas e o de corte uma.

Nomenclatura	Imagem representativa			
do modelo	(da esquerda para a direita: vista isométrica, vista de frente, vista em corte)			
COMP1_A	学会			
COMP1_B				
COMP1_C				
COMP1_D				
TORC1_A				
TORC1_B				

Tabela 4.2 - Tabela com as geometrias resultantes da \mathcal{OT} do modelo 1

CORT1_A

Na análise às geometrias das estruturas finais é bem visível, na Tabela 4.2, que são todas simétricas nos três planos ortogonais. As quatro estruturas referentes ao caso de carga de compressão derivam essencialmente de duas geometrias distintas. Ademais, adicionaram-se suportes centrais com o objetivo de aumentar a rigidez, nas geometrias *COMP1_C* e *COMP1_D*. Do mesmo modo, as geometrias *TORC1_A* e *TORC1_B* diferenciam-se também por estes suportes centrais e distinguem-se das anteriores pelos suportes curvos consequentes da torção. Por último, a estrutura *CORT1_A* possui suportes mais espessos em dois dos planos que a constitui.

4.3.2. GEOMETRIAS RESULTANTES DO MODELO 2

Em relação ao modelo 2, este originou duas geometrias consequentes do carregamento de compressão, uma do de torção e uma do de corte, Tabela 4.3. Neste caso, os pontos de exclusão da otimização encontram-se a meio do comprimento das arestas.

Nomenclatura	Imagem representativa		
do modelo	(da esquerda para a direita: vista isométrica, vista de frente, vista em corte		
COMP2_A			
COMP2_B			
TORC2_A			
CORT2_A			

Tabela 4.3 - Tabela com as geometrias resultantes da OT do modelo 2

Pelo estudo das estruturas da Tabela 4.3, observa-se desde logo que são mais complexas (maior número de suportes) do que as anteriores. Uma vez que a densidade relativa é aproximadamente a mesma, significa que a espessura dos suportes é inferior. As estruturas *COMP2_A* e *COMP2_B* diferem apenas na forma como é efetuada a ligação entre células. A *TORC2_A* resultou numa geometria peculiar com um ponto de união entre suportes no seu centro. A estrutura resultante do caso de carga de corte, *CORT2_A*, é semelhante à *COMP2_B* com a eliminação dos suportes menos espessos.

4.3.3. GEOMETRIAS RESULTANTES DO MODELO 3

Por fim, o modelo 3 (com pontos de exclusão da *OT* nos vértices do cubo) e os seus casos de carga resultaram em três geometrias, uma de compressão, uma de torção e uma de corte (Tabela 4.4).

Nomenclatura	Imagem representativa			
do modelo	(da esquerda para a direita: vista isométrica, vista de frente, vista em corte)			
COMP3_A	本义文			
TORC3_A				
CORT3_A				

Tabela 4.4 - Tabela com as geometrias resultantes da OT do modelo 3

À semelhança das estruturas do modelo 2, as do modelo 3 (Tabela 4.4) são mais complexas do que as que resultaram do primeiro modelo. Assim, a estrutura *COMP3_A* é a que possui menos suportes das três, sendo que na *TORC3_A* é possível observar suportes resultantes da torção (curvos, na zona inferior). Relativamente à estrutura *CORT3_A*, esta tem um aspeto cuboide com uma subestrutura, de menos dimensão, no seu interior.

4.4. ESTUDO NUMÉRICO - ANSYS

O estudo numérico do comportamento mecânico das estruturas celulares foi feito utilizando o módulo *Static Structural* do *ANSYS*, Figura 4.48 (Anexo B). Uma vez que o *software* não lê diretamente o formato dos ficheiros *SOLIDWORKS*, exportou-se o ficheiro de cada geometria para *Parasolid Binary* (*.x_b*), que é um formato capaz de compactar a informação do *CAD* de forma eficiente. Importa referir que a licença utilizada nesta análise foi a de estudante, pelo que existe um número máximo de elementos permitido de cerca de 125 000.

Unsaved Project - Workbench		Unsaved Project - Workbench		
e View Tools Units Extensions Jobs Help		File View Tools Units Extensions	Jobs Help	
2 13 18 G		0.13.15.0		
		The second second		
a a w / F Holec		Project		
Import + Reconnect 🔄 Refresh Project 🥓 Update Pr	oject ACT Start Page	Dimport Reconnect () Refresh P	roject 🦻 Update Project 📲 ACT Star	t Page
box • • • Project Schematic		Toolbox • • × P	roject Schematic	
Analysis Systems		Analysis Systems		
Coupled Field Harmonic	• 8 • C	Coupled Field Harmonic	▼ A	• B
Coupled Field Modal 1 Sr Engineering	Data 1 🛃 Static Structural 1 🛃 Structural Optimization	Coupled Field Modal	1 🧧 Static Structural	1 🧧 Static Structural
Coupled Field Static 2 🛷 Engineering	Data 🗸 📲 2 🖤 Engineering Data 🗸 🚽 🖷 2 🐨 Engineering Data 🗸 🖉	Coupled Field Static	2 Regipeering Data	2 @ Engineering Data
Coupled Field Transient Engineering D	Data 3 🔯 Geometry 🗸 🚽 🖬 3 🔯 Geometry 🖌	Coupled Field Transient		
Igenvalue Buckling	4 🥥 Model 🗸 🚽 🗰 Model 🗸	Eigenvalue Buckling	3 Geometry	3 Geometry
Jectric	5 🎒 Setup 🗸 🚽 5 👰 Setup 🗸	Bectric	4 S Model	4 🖤 Model 🗸
opeot Dynamics	6 😰 Solution 🧹 🤚 6 😰 Solution 🗸	Explore Dynamics	s 🍓 Setup 🗸 🖌	s 🍓 Setup 🧹
luid Flow - Blow Molding (Polytio	7 😥 Results 🗸 7 😥 Results 🗸	Plud Flow - Blow Molding (Polyfio	6 🗐 Solution 🧹	6 📾 Solution 🧹
Juid Flow - Extrusion (Polythow)	COMPL Rate Deuteral COMPL TO 1995	Fluid Flow - Extrusion (Polynow)	2 Dan An	7 A Bandhi (
fuld Flow (CFX)	CONFIGURE CONFIGURE	Plud Flow (CFX)	/ Resolus	Resuls
Huid Flow (Fluent with Fluent Me		Pluid Flow (Fluent with Fluent Me	COMP1_A - Static Structural	COMP1_B - Static Structural
Had Flow (Fishelic)		Plan Plan (Palett)		
and Flow (Foryhow)	• D • E	Hard Flow (Foryitoly)		
tarmonic Acoustics	1 🚺 Static Structural 1 📓 Structural Optimization	Marmonic Response		
whether a sponse	🐂 2 💣 Engineering Data 🧹 🚬 🗰 2 💣 Engineering Data 🔍 🖉	M Mudrodynamic Diffraction		- c
vorodynamic Dimaction	3 🔯 Geometry 🗸 🚽 🖬 🔯 Geometry 🖌 🖌	M Mudrodynamic Demaction		1 🐺 Static Structural
Isonatostalic	🛪 🝘 Model 🗸 🖉 🛶 🖬 Model 🗸 🖉	Mamatostatic		2 @ Engineering Data 🗸 .
tagnetoscalos.	s 🏟 Setup 🥥 😽 🙀 Setup 🐓	Modul		2 Committee
Andal Accounting	6 🗑 Solution 🗸 6 😰 Solution 🐓	Model Acceptics		a Ceomeny
Random Mitratian	7 🔊 Results 🖉 7 🔊 Results 😰	Random Vibration		4 🖤 Model 🗸 🖌
Assource Spactnum	COMPLEME Southeral COMPLEX 195	Response Spectrum		5 🍓 Setup 🗸 🖌
baid Dynamics	Construction of the second sec	Rigid Dynamics		6 😭 Solution 🧹
tatic Aroustics		E3 Static Acoustics		7 A Partiete
tatic Structural		Static Structural		
teady-State Thermal	• F • G	1 Steady-State Thermal		COMP1_C
tructural Optimization	1 🐷 Static Structural 1 😼 Structural Optimization	Structural Optimization		
ubstructure Generation	🖬 2 💣 Engineering Data 🗸 🚽 🖬 Engineering Data 🖌	No Substructure Generation		
hermal-Electric	3 🔯 Geometry 🗸 🛁 🖬 Geometry 🖌	1 Thermal-Electric		
ransient Structural	4 🥥 Model 🗸 🚽 🖬 Model 🗸	C Transient Structural		• D
ransient Thermal	S 🏨 Setup 🥔 🖉 🙀 Setup 💱 🖉	🔁 Transient Thermal		1 🧧 Static Structural
arbomachinery Fluid Flow	6 🍘 Solution 🛛 😺 🖌 🤞 🗐 Solution 🛛 😕 🖕	Turbomachinery Fluid Flow		2 @ Engineering Data
nponent Systems	7 😥 Results 🛛 V , 7 😥 Results 🔍 ,	Component Systems		3 Geometry
(P (Post)	COMP3-Static Structural COMP3-T0-10%	ACP (Post)		A Car Model
CP (Pre)		of ACP (Pre)		-
itodyn		autodyn 👸		a dif sechb
ladeGen		BladeGen		6 🗑 Solution 🗸
FX		CFX		7 🥩 Results 🗸
hemkin		Ohemkin Demkin		(04491 D
ngineering Data		🥏 Engineering Data		COMPT_D
nSight (Forte) +		EnSight (Forte)		
View AI / Custombe		View Al / Customize		
sady		Ready		
	a)		b)	

Figura 4.48 - Janela típica de uma análise em *ANSYS*, para o caso se compressão, modelo 1. (a) *Structural Optimization* (otimização topológica); (b) *Static Structural* (análise numérica)

O objetivo deste estudo é analisar propriedades como rigidez e capacidade de absorção de energia. A rigidez pode ser obtida através do declive da reta da zona elástica do gráfico força-deslocamento, no entanto, para a energia de deformação é necessária a zona plástica do mesmo gráfico. Assim, é pertinente fazer uma análise não-linear das estruturas. Com isto, escolheu-se inicialmente uma versão não-linear do material utilizado na *OT*. Neste caso, a teoria de encruamento utilizada foi a bilinear com encruamento isotrópico, regida essencialmente por duas retas com um determinado declive. Uma que descreve o comportamento elástico e outra que descreve o plástico, fazendo desta teoria um regime elasto-plástico, Figura 4.49. Este material está contido na biblioteca de materiais do *ANSYS* em "*General Non-Linear Materials*" e as suas propriedades apresentadas na Tabela 4.1.

Figura 4.49 - Gráfico tensão-deformação do encruamento bilinear utilizado

Em relação à malha, foi utilizado o elemento *SOLID187*, tal como na análise estrutural aos modelos dos cubos iniciais (pré otimização topológica). Do mesmo modo, para refinar a mesma, utilizou-se um "*Patch Conforming Method*", onde se utilizou o método tetraedros e o algoritmo "*Patch Conforming*", Figura 4.50. O tamanho do elemento varia para cada uma das geometrias, no entanto como "*Physic Preference*" utilizou-se a opção "*Nonlinear Mechanical*", como na análise numérica previa.

D	Details of "Patch Conforming Method" - Method			
-	∃ Scope			
	Scoping Method	Geometry Selection		
	Geometry 1 Body			
_	Definition			
	Suppressed No			
	Method Tetrahedrons			
	Algorithm	Patch Conforming		
	Element Order Use Global Setting			

Figura 4.50 - Patch Conforming Method utilizado

Neste sentido, efetuou-se um estudo de convergência da malha para cada uma das geometrias, apresentado adiante individualmente.

Em relação às definições do estudo numérico (em *"Analysis Settings")*, utilizou-se 1 *step*, que corresponde à aplicação do deslocamento para um tempo igual a 1 segundo. De forma a obter valores para construir o diagrama força-deslocamento, na opção, *"Initial Substeps"* e *"Minimum Substeps"* definiu-se como 50 enquanto na *"Maximum Substeps"* definiu-se 100. Isto significa que a cada *substep* (incremento no deslocamento) o *software* irá devolver os dados relativos a, por exemplo, à tensão equivalente de *von Mises*, ou seja, iremos obter pelo menos 50 pontos para construir o gráfico. No entanto, caso o programa tenha problemas em convergir este

número pode ser superior a 50, mas nunca superior a 100. Esta escolha pode acarretar um tempo computacional excessivo, pelo que é importante estudar este impacto se a geometria for demasiado complexa (número elevado de elementos da malha). A opção "*Large Deflection*" foi também ativa, Figura 4.51.

Details of "Analysis Settings	." 🕶 🕈 🗖			
Step Controls				
Number Of Steps	1,			
Current Step Number	1,			
Step End Time	1, s			
Auto Time Stepping	On			
Define By	Substeps			
Initial Substeps	50,			
Minimum Substeps	50,			
Maximum Substeps	100,			
Solver Controls				
Solver Type	Program Controlled			
Weak Springs	Off			
Solver Pivot Checking	Program Controlled			
Large Deflection	On			
Inertia Relief	Off			
Quasi-Static Solution	Off			

Figura 4.51 - Definições gerais da análise numérica às estruturas celulares

De modo que os resultados sejam consequentes dos mesmos critérios, estabeleceu-se que se iria aplicar um deslocamento igual a 0,1 *mm* numa análise à compressão a todas as estruturas celulares analisadas. Para cada uma destas serão apresentadas as condições de fronteira, bem como o resultado da tensão equivalente de *von Mises* (estão presentes no Anexo F mais imagens relativas a estes resultados).

4.4.1.ANÁLISE NUMÉRICA ÀS ESTRUTURAS

De forma a uniformizar os resultados, foi aplicada a mesma magnitude e tipo de solicitação a cada uma das estruturas. O tipo escolhido foi deslocamento com uma magnitude igual a 0,1 mm no sentido de compressão da estrutura (-Y). Em relação à condição de fronteira, utilizou-se um suporte fixo nas faces opostas ao deslocamento, dependendo esta da estrutura em questão. Passa a ser importante apresentar o sistema de coordenadas e referencial utilizado neste estudo, Figura 4.52.

Figura 4.52 - Referencial utilizado na análise numérica efetuada

Como indicado anteriormente, foram utilizados os mesmos modelos da malha em todas as análises. No entanto, o tamanho do elemento difere para cada uma delas. No sentido de verificar se a malha converge, foi efetuado para cada estrutura um estudo de convergência da malha, Figura 4.53 e Figura 4.54. Assim, foram efetuadas várias simulações numéricas com tamanhos de elementos entre os 0,2 a 0,8 *mm*, com incremento de

0,1 *mm*. Para cada um destes tamanhos registou-se o número de elementos resultantes, o tempo computacional necessário para a sua resolução e o deslocamento (os dados resultantes estão presentes no Anexo D). Este deslocamento é resultado de uma força de compressão igual a 100 *N*.

Apresentar-se-á de seguida os gráficos que resultaram do estudo de convergência de malha para cada uma das estruturas. O tempo computacional depende da máquina onde a análise numérica foi efetuada. Para este estudo as propriedades de tal máquina foram as apresentadas na Tabela 4.5:

Processador	Intel® Core™ i7-8750H CPU @ 2.20 GHz
Memória RAM	16 Gb
Sistema Operativo	Windows 10 Home 64 bits

Tabela 4.5 - Propriedades da máquina onde se realizaram as análises numéricas

Figura 4.53 - Gráficos do estudo de convergência da malha por estrutura

Figura 4.54 - Gráficos do estudo de convergência da malha por estrutura (continuação)

4.4.1.1. ANÁLISE NUMÉRICA ÀS ESTRUTURAS RESULTANTES DO MODELO 1

Iniciando pela estrutura *COMP1_A*, foi utilizado um tamanho de elemento de malha igual a 0,2 *mm* com cerca de 101 382 nós e 65 857 elementos. Em relação à convergência da malha, não há alterações consideráveis no resultado com a alteração do tamanho da malha. Como condição de fronteira aplicou-se um suporte fixo na face aposta ao deslocamento, Figura 4.55.

Figura 4.55 - Estrutura *COMP1_A*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Pode-se verificar o resultado da tensão equivalente de *von Mises* na Figura 4.55. Denota-se uma tensão máxima de cerca de 356,88 *MPa* na face onde foi aplicado o deslocamento, ultrapassando assim a tensão de cedência do material. A tensão mínima, como é de esperar devido à natureza do carregamento, encontra-se nos suportes laterais.

Deste modo, analisou-se a estrutura *COMP1_B*. Para este caso o tamanho do elemento da malha foi de 0,2 *mm*, resultando num número de nós igual a 118 781 e de 76 863 elementos. Pela análise do estudo da convergência da malha não há mudanças significativas no resultado do deslocamento com a variação do tamanho do elemento.

Figura 4.56 - Estrutura *COMP1_B*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Pela análise da Figura 4.56 (c), a tensão equivalente de *von Mises* ultrapassa a tensão de cedência do material, verificando-se o seu máximo na conexão entre os suportes do plano *XY* e *YZ* com o plano *XZ*.

A Figura 4.57, demonstra o resultado do estudo da estrutura *COMP1_C*. Foi utilizado um tamanho de malha de 0,2 *mm*, 100 340 nós e 65 464 elementos. Neste sentido, tal como as estruturas anteriores, não se encontraram mudanças significativas no estudo da convergência da malha.

Figura 4.57 - Estrutura *COMP1_C*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Ao contrário da estrutura *COMP1_A*, geometricamente semelhante a esta última, a tensão máxima equivalente de *von Mises* encontra-se na zona do suporte fixo e não perto da zona de aplicação do deslocamento Figura 4.57 (c).

Da mesma forma, a estrutura *COMP1_D* tem como ponto de aplicação a face superior e como suporte fixo a sua simétrica, Figura 4.58. Por outro lado, não se registaram problemas com a malha, sendo que o estudo da mesma é bastante estável para tamanho de elementos entre 0,5 e 0,2 *mm*. Pela análise da mesma figura, verifica-se que a tensão equivalente de *von Mises* ultrapassa a tensão de cedência e que o seu máximo se encontra na zona do suporte.

Figura 4.58 - Estrutura *COMP1_D*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de von *Mises*

De seguida analisa-se o resultado das estruturas resultantes do caso de carga de torção mais compressão. Neste sentido, na estrutura *TORC1_A* utilizou-se um tamanho de elemento de 0,2 *mm* com 114 397 nós e 73 682 elementos. Verificou-se pelo estudo da malha que esta converge e é estável desde os 0,8 *mm* aos 0,2 *mm*. Pela análise da Figura 4.59, observa-se que a tensão equivalente de *von Mises* máxima se encontra no plano *XZ*, bem como no suporte central vertical.

Figura 4.59 - Estrutura *TORC1_A*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Deste modo, na Figura 4.60 apresenta-se o resultado do estudo numérico da estrutura *TORC1_B*, onde se acrescenta dois suportes horizontais no plano *XZ* relativamente à estrutura *TORC1_A*. O tamanho da malha foi de 0,2 *mm*, resultando em 123 785 nós e 79 600 elementos. Não se registaram problemas na convergência da malha. Em relação à tensão equivalente de *von Mises* máxima, esta encontra-se na união entre os suportes horizontais e verticais, no centro da estrutura.

Figura 4.60 - Estrutura *TORC1_B*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Por último, para o modelo 1, efetuou-se a análise numérica para estrutura resultante do caso de carga de corte mais compressão. Utilizou-se um tamanho de elemento igual a 0,2 *mm*, sendo que o mesmo resultou em 121 784 nós e 79 143 elementos. Na Figura 4.54 encontra-se o estudo da convergência da malha para esta estrutura, no qual se verifica que não existem problema significativos. Assim, a Figura 4.61 apresenta a malha em (a), as condições de fronteira em (b) e o resultado da análise numérica em (c), onde se observa que a tensão equivalente de *von Mises* máxima está localizada numa zona onde há ligação com possíveis células adjacentes.

Figura 4.61 - Estrutura *CORT1_A*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

4.4.1.2. ANÁLISE NUMÉRICA ÀS ESTRUTURAS RESULTANTES DO MODELO 2

Desta forma, apresenta-se a análise numérica às estruturas do modelo 2.

Iniciando pela estrutura *COMP2_A*, utilizou-se um tamanho de malha de 0,24 *mm* com 103 771 nós e 60 559 elementos. O estudo da malha indica que ela converge, apesar de o número de elementos ser muito semelhante até a um tamanho de malha igual a 0,5 *mm*. Aplicou-se o deslocamento de 0,1 *mm* às quatro faces superiores e um suporte fixo às faces opostas a estas. Após a análise numérica, verifica-se que a tensão equivalente de *von Mises* se encontra numa zona onde existe conexão entre os suportes com menor diâmetro com suportes de diâmetro superior, Figura 4.62.

Figura 4.62 - Estrutura *COMP2_A*. (a) Representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Ademais, estudou-se numericamente a estrutura *COMP2_B*, Figura 4.63. Esta é uma alternativa à estrutura anterior. Relativamente à malha e através do seu estudo, constata-se que a mesma converge sem problemas a anotar. O tamanho do elemento, tal como para a *COMP2_A*, foi de 0,24 *mm*, resultando em 101 694 nós e 59 895 elementos. Pela semelhança com a estrutura anterior, a tensão equivalente de *von Mises* máxima encontra-se também numa zona perto da ligação entre suportes de diferentes diâmetros.

Figura 4.63 - Estrutura COMP2_B. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Passando assim para o seguinte caso de carga, torção mais compressão, realizou-se uma análise numérica à estrutura *TORC2_A*. Neste caso, utilizou-se um tamanho de malha igual a 0,22 *mm* com 127 184 nós e 75 378 elementos. Em relação à convergência da malha, presente na Figura 4.54, não se encontraram problemas significativos no estudo. As condições de fronteira aplicadas foram as mesmas que as anteriores, sendo que o deslocamento se encontra nos suportes horizontais superiores e o suporte fixo nos vértices inferiores, Figura 4.64. A tensão equivalente de *von Mises* máxima está localizada nos suportes laterais verticais, observando-se inclusive problemas aparentes de encurvadura.

Figura 4.64 - Estrutura *TORC2_A*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises;* (d) vista de frente da tensão equivalente de *von Mises*

Relativamente ao caso de carga de corte mais compressão, a estrutura analisada foi a *CORT2_A* e encontra-se apresentada na Figura 4.65. O deslocamento aplicou-se nos suportes superiores horizontais e o

suporte fixo nos suportes da sua base. O tamanho do elemento da malha foi de 0,21 *mm*, gerando 122 925 nós e 75 175 elementos. Em relação à convergência da malha existe uma variação insignificante nos resultados com a variação do tamanho do elemento (cerca de 1 %). A tensão equivalente de *von Mises* máxima encontra-se na conexão entre quatro suportes, junto ao suporte fixo aplicado.

Figura 4.65 - Estrutura *CORT2_A.* (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

4.4.1.3. ANÁLISE NUMÉRICA ÀS ESTRUTURAS RESULTANTES DO MODELO 3

O modelo 3 do cubo inicial é caracterizado pela localização dos pontos de aplicação do carregamento, sendo que neste caso os mesmos ocorrem no centro do cubo e nos seus vértices. Assim, as estruturas resultantes assemelham-se a esta característica. A análise numérica da estrutura *COMP3_A*, consequente do caso de carga de compressão, apresenta-se na Figura 4.66. Neste caso foi utilizado um tamanho de elemento de 0,21 *mm* que originou 126 343 nós e 78 218 elementos. O deslocamento aplicou-se nos quatro vértices superiores e no centro da estrutura da mesma cota. Por outro lado, a condição de fronteira de suporte fixo aplicou-se nos quatro vértices e centro da face oposta ao deslocamento. Relativamente ao estudo da convergência da malha, denotou-se uma variação maior do deslocamento com a variação do tamanho do elemento, no entanto, dentro dos limites aceitáveis. O tempo computacional necessário para esta análise numérica foi também superior, em relação às análises anteriores. Por fim, analisando a Figura 4.66 (c), a tensão equivalente de *von Mises* máxima encontra-se essencialmente no centro das faces laterais, relativamente ao cubo.

Figura 4.66 - Estrutura *COMP3_A*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

De seguida, efetuou-se uma análise numérica à estrutura *TORC3_A*, Figura 4.67. Neste caso usou-se um tamanho de elemento igual a 0,22 mm, gerando 123 940 nós e 73 714 elementos. O deslocamento de 0,1 mm foi aplicado nos dois suportes da face superior, enquanto o suporte fixo foi aplicado nos quatro vértices da face inferior. A malha converge com a diminuição do tamanho do elemento, como se verifica pelo estudo da mesma na Figura 4.54. A tensão equivalente de *von Mises* máxima localiza-se nos elementos imediatamente abaixo da aplicação do deslocamento, Figura 4.67 (c).

Figura 4.67 - Estrutura *TORC3_A.* (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

Por último, analisou-se a estrutura relativa ao caso de carga de corte mais compressão, *CORT3_A*. Para esta situação utilizou-se um tamanho de elemento de 0,25 *mm*, com 118 145 nós e 67 088 elementos. Em

relação às condições de fronteira, o deslocamento aplicou-se nos suportes da face superior e o suporte fixo na face inferior, bem visível na Figura 4.68 (b). A tensão equivalente de *von Mises* máxima localiza-se no centro dos quatro suportes verticais, criando inclusive alguma encurvadura.

Figura 4.68 - Estrutura *CORT3_A*. (a) representação da malha; (b) deslocamento e suporte aplicado; (c) tensão equivalente de *von Mises*

4.5. RESULTADOS OBTIDOS

Na utilização do algoritmo de otimização topológica, apesar das geometrias resultantes serem suficientemente definas para serem compreendidas e remodeladas, poder-se-ia obter um maior detalhe com um maior número de elementos da malha, não fosse pelo número máximo de elementos imposto pela licença utilizada do *software ANSYS*.

Em relação aos resultados obtidos da massa de cada modelo resultante da otimização topológica e da estrutura celular final, consta-se que são expectáveis, uma vez que se verifica uma densidade relativa de aproximadamente 10% para todas as estruturas, Tabela 4.6.

Modelo	Massa pós <i>OT</i> [g]	Massa final [g]	Densidade Relativa [%]
COMP1_A	0,839	0,789	10,1%
COMP1_B	0,839	0,791	10,1%
COMP1_C	0,839	0,798	10,2%
COMP1_D	0,839	0,820	10,4%
COMP2_A	0,862	0,771	9,8%
COMP2_B	0,862	0,805	10,3%
COMP3_A	0,839	0,777	9,9%
CORT1_A	0,825	0,808	10,4%
CORT2_A	0,825	0,795	10,0%
CORT3_A	0,832	0,808	10,3%
TORC1_A	0,792	0,806	10,3%
TORC1_B	0,813	0,816	10,1%
TORC2_A	0,839	0,787	10,3%
TORC3_A	0,813	0,812	10,3%

Tabela 4.6 - Massa pós OT, massa final e densidade relativa de cada estrutura

O principal objetivo dos resultados deste estudo é a análise da rigidez e capacidade de absorção de energia específica. A rigidez pode-se obter, tal como referido anteriormente, pelo declive da reta da zona elástica do gráfico força-deslocamento. Por outro lado, o valor da capacidade de absorção de energia é obtido pela área abaixo da curva gerada por tal gráfico.

Deste modo, no que toca a análise numérica, retiraram-se cinquenta pontos relativos ao deslocamento e reações nos apoios durante o tempo de simulação, de forma que se construa o gráfico referido.

Após este passo, desenvolveu-se um *script* na linguagem de programação *python*, de modo que com os dados retirados da simulação numérica devolve-se os valores relativos às duas propriedades em estudo de forma fácil e dinâmica. O código na íntegra deste *script* pode ser encontrado no Anexo G, no entanto para o cálculo da rigidez utilizou-se a função *polyfit* do módulo *numpy*. Esta é uma função de regressão linear que cria um polinómio de grau *n* através dos dados fornecidos como *arrays*. Assim, criando um polinómio de grau 1, pode-se obter o declive e interseção com o eixo das ordenadas, obtendo-se deste modo o valor da rigidez. Por outro lado, para o cálculo do valor da capacidade de absorção de energia é necessário a utilização de um método numérico de aproximação de valores, uma vez que estamos a calcular uma área. Existem vários métodos como o nome indica, divide a área abaixo da curva do gráfico em trapézios e calcula a área de cada, somando todas as áreas no final e aproximando o valor da área original do gráfico. No mesmo módulo referido (*numpy*) existe já uma função com a aplicação matemática deste método, chamada *trapz*. Esta função tem como *input* as coordenadas dos pontos em questão, neste caso da reação das forças e do deslocamento.
4.5.1. COMPARAÇÃO DE RESULTADOS

Desta forma, após retirar os valores relativos ao deslocamento e força de reação no apoio fixo (Anexo E), desenharam-se as curvas força-deslocamento, pelo modelo de encruamento bilinear, de todas as estruturas celulares obtidas, Figura 4.69.

Figura 4.69 - Gráfico força vs deslocamento resultante de todas as estruturas celulares

Pela análise da Figura 4.69 é possível observar desde logo uma discrepância entre os modelos *COMP2_A*, *COMP2_B*, *COMP3_A*, *CORT2_A* e os restantes. A força máxima necessária para deformar estas estruturas foi de apenas 352 *N* (*COMP3_A*), o que indica que são estruturas que se deformam com muita facilidade, não tendo muito interesse para este estudo. Analisando estas quatro estruturas verifica-se que a sua geometria é semelhante e que a falta de suportes/vigas no seu centro é um fator comum entre elas. Em contrapartida as estruturas *TORC1_B*, *COMP1_D* e *COMP1_C* aparentam ter interesse tanto pela energia de deformação como pela rigidez.

4.5.1.1. RIGIDEZ

No que toca à propriedade de rigidez, analisada pelo declive da reta da zona elástica, observa-se na Tabela 4.7 os valores obtidos para cada uma das estruturas celulares. A rigidez específica pode ser obtida dividindo a rigidez pela massa da estrutura celular.

Modelo	Densidade Relativa [%]	Rigidez [N/mm]	Rigidez Especifica [N/mm.g]
COMP1_A	10,1%	61 675	78 140
COMP1_B	10,1%	33 047	41 759
COMP1_C	10,2%	70 226	88 052
COMP1_D	10,4%	55 087	67 193
COMP2_A	9,8%	9 472	12 292
COMP2_B	10,3%	9 890	12 288
COMP3_A	9,9%	11 188	14 400
CORT1_A	10,4%	29 171	35 768
CORT2_A	10,0%	4 379	5 564
CORT3_A	10,3%	45 085	55 550
TORC1_A	10,3%	39 843	49 293
TORC1_B	10,1%	56 076	70 518
TORC2_A	10,3%	50 616	62 659
TORC3_A	10,3%	42 876	53 185

Tabela 4.7 - Valores de rigidez e rigidez específica das estruturas celulares

Pela análise da Tabela 4.7, denota-se uma rigidez específica superior nas estruturas $COMP1_C$ (88 052 N/mm. g), $COMP1_A$ (78 140 N/mm. g) e $TORC1_B$ (70 518 N/mm. g), verificável também no gráfico da Figura 4.70.

Figura 4.70 - Reta da zona elástica das estruturas celulares COMP1_A, COMP1_C e TORC1_B

Comparando estas três estruturas e analisando quais os pontos em comum entre elas, é notável que existe um suporte vertical central que confere à estrutura uma rigidez superior em duas delas, em comparação com estruturas sem este suporte. Por outro lado, existem outras estruturas que apesar de conterem este suporte central não obtiveram valores de rigidez tão altos. As três estruturas referenciadas tem a particularidade de terem suportes, que conectam a face superior/inferior às faces laterais, curvos (Figura 4.71). Este facto é ainda mais

relevante quando se avalia a estrutura *COMP1_A*, uma vez que apesar de não conter o suporte vertical central, possui o segundo valor de rigidez mais alto. Verificou-se ainda que das cinco estruturas com maior valor de rigidez, quatro derivam do modelo 1 do cubo (carregamento no centro das faces) e três das cinco derivam do caso de carga de compressão.

Figura 4.71 - Estruturas com maior valor de rigidez. Da esquerda para a direita: COMP1_A, COMP1_C, e TORC1_B

Por outro lado, notou-se que as estruturas sem suporte vertical central e sem suportes laterais curvos resultaram em valores de rigidez muito abaixo das restantes, nomeadamente as estruturas: *CORT2_A, COMP2_A, COMP2_B* e *COMP3_A*. O vazio no centro da célula, consequente dos suportes conectarem apenas faces perpendiculares e não faces opostas, faz com que a estrutura necessite de pouca força para deformar.

4.5.1.2. ENERGIA DE DEFORMAÇÃO

Relativamente à energia de deformação (ou capacidade de absorver energia), obtida através da área abaixo da curva força-deslocamento (zona elástica e plástica), Figura 4.73, apresentam-se na Tabela 4.8 os valores obtidos.

Modelo	Densidade Relativa [%]	Energia [N.mm]	Energia [J/kg]
COMP1_A	10,1%	0,0632	80,1
COMP1_B	10,1%	0,0738	93,2
COMP1_C	10,2%	0,0562	70,5
COMP1_D	10,4%	0,0837	102,1
COMP2_A	9,8%	0,0195	25,3
COMP2_B	10,3%	0,0217	27,0
COMP3_A	9,9%	0,0281	36,2
CORT1_A	10,4%	0,0548	67,2
CORT2_A	10,0%	0,0136	17,3
CORT3_A	10,3%	0,0718	88,4
TORC1_A	10,3%	0,0589	72,9
TORC1_B	10,1%	0,0858	107,8
TORC2_A	10,3%	0,0664	82,3
TORC3_A	10,3%	0,0712	88,3

Tabela 4.8 - Valores da energia de deformação das estruturas celulares

Pela análise da Tabela 4.8, verifica-se que as estruturas com maior capacidade para absorver energia são a *TORC1_B, COMP1_D* e *COMP1_B* (Figura 4.72) com valores de 107,8 J/kg, 102,1 J/kg e 93,2 J/kg, respetivamente.

Figura 4.72 - Estruturas com maior valor de energia de deformação. Da esquerda para a direita: *TORC1_B, COMP1_D*, e *COMP1_B*

A estrutura *COMP1_B* torna-se interessante por se diferenciar das restantes, sendo que esta não possui suporte vertical central (o que ajuda na deformação) e os seus suportes laterais são retos ao invés de curvos (tal como a *COMP1_D*). As cinco estruturas com valores maiores de energia de deformação incluem geometrias que advém do modelo 1 e 3 do cubo. Relativamente aos casos de carga, encontram-se os três casos de carga nas cinco estruturas referidas. Na Figura 4.73, observa-se o gráfico força-deslocamento das três estruturas com maior capacidade de absorção de energia.

Figura 4.73 - Gráfico força vs deslocamento das três estruturas com maior energia de deformação

Assim, à semelhança da análise à rigidez, verifica-se que as estruturas *CORT2_A, COMP2_A, COMP2_B* e *COMP3_A* obtiveram os valores mais baixos de energia de deformação.

Com isto, a fim de avaliar os resultados obtidos de todas as estruturas, apresenta-se o gráfico da Figura 4.74, que compara a rigidez específica e a capacidade de absorção de energia. Existem várias estruturas de interesse, nomeadamente a *COMP1_C* que regista a rigidez específica máxima, a *TORC1_B* que regista a energia

de deformação específica máxima e a *COMP1_D* que possui uma boa relação entre rigidez específica e capacidade de absorção de energia específica.

Figura 4.74 - Comparação entre rigidez específica e energia de deformação das várias estruturas

5. COMPONENTE FINAL

Uma vez concluído o estudo numérico com recurso ao conceito de *RVE*, é pertinente avaliar o comportamento de uma estrutura final que contenha várias estruturas celulares de forma a avaliar se a performance da mesma aumenta em relação às propriedades mecânicas estudadas.

Deste modo, idealizou-se um *bracket* (suporte) simples com dois apoios cilíndricos fixos e com um deslocamento imposto. O desenho técnico deste *bracket* pode ser encontrado no Anexo H. Após a modelação deste componente utilizou-se otimização topológica para se obter um *bracket* melhorado, que depois foi preenchido com estruturas celulares. Assim, compara-se o comportamento do componente original, depois da *OT* e com o preenchimento de três estruturas celulares. As estruturas escolhidas foram: *COMP1_C, TORC1_B* e *COMP1_D,* pelas razões mencionadas no capítulo 4.5.1, ou seja, estrutura com rigidez específica máxima, energia de deformação específica máxima e boa relação entre as duas propriedades.

5.1. OTIMIZAÇÃO TOPOLÓGICA

Para a realização da otimização topológica, modelou-se em primeiro lugar um *bracket* com material propositadamente a mais, Figura 5.1, para que o algoritmo tenha um domínio de *design* maior.

Figura 5.1 - Bracket original pré OT

Após a modelação efetuou-se a análise numérica pré *OT*, utilizando o módulo "*Static Structural*" do *software ANSYS*. Deste modo, o material utilizado foi o mesmo que na otimização topológica do capítulo 4.2.1, Tabela 4.1. As definições da malha estão presentes na Figura 5.2, onde é possível verificar as definições gerais (a), como a opção "*Physics Preference*", o tamanho do elemento escolhido em "*Body Sizing*" (b) e o algoritmo da malha escolhido (c).

Details of "Mesh"									
Display		D	etails of "Body S	lizina" - Sizina					
Display Style	Use Geometry Setting		Scone						
Defaults			scope		-				
Physics Preference	e Mechanical		Scoping Method	Geometry Selection	_ C	etails of "Patch (Conforming Method" - Method		
Element Order	Program Controlled		Geometry	1 Body	=	Scope			
Element Size	Default	Ξ	Definition			Scoping Method	Geometry Selection		
± Sizing			Suppressed	No		Geometry	1 Body		
E Quality			Туре	Element Size		Definition			
Inflation			Element Size	4,5 mm		Suppressed	No		
Advanced			Advanced			Mathead	Totals advance		
Statistics			Advanced			Method	letrahedrons		
Nodes	110220		Defeature Si	Default		Algorithm	Patch Conforming		
Elements	76692		Behavior	Soft		Element Order	Use Global Setting		
	a)			b)			c)		

Figura 5.2 - Definições da malha na análise estrutural pré OT efetuada

Com isto, uma vez a malha definida, passa-se para a definição das condições de fronteira. Neste sentido, utilizou-se um apoio cilíndrico fixo radialmente, axialmente e tangencialmente em dois furos (Figura 5.3 (a)). Aplicou-se um carregamento de 1000 N no sentido negativo do eixo Y (Figura 5.3 (b)).

A: bracket_solid_TO Cylindrical Support Time: 1, s 04/10/2022 09:59 Cylindrical Support: 0, m		A: brack Force Time: 1, 04/10/21	re t_solid_TO 5 222 09:58 e: 1000, N nponents: 0,:-1000,:0, N	0
	•			
_				
Details of "Cylind	rical Support"	000000	Scoping Method	Geometry Selection
Scope			Geometry	1 Face
Scoping Method	Geometry Selection		Definition	
Geometry	2 Faces		Туре	Force
Definition			Define By	Components
Туре	Cylindrical Support		Applied By	Surface Effect
Radial	Fixed		Coordinate System	Global Coordinate System
Axial	Fixed		X Component	0, N (ramped)
Tangential	Fixed		Y Component	-1000, N (ramped)
Suppressed	No		Z Component	0, N (ramped)
Sabbicasco			Suppressed	No
	a)			b)

Figura 5.3 - Condições de fronteira. (a) apoio cilíndrico fixo; (b) carregamento aplicado

Os resultados numéricos obtidos nesta fase, antes da *OT*, não são muito significativos, no entanto para registo, a tensão equivalente de *von Mises* máxima foi de 28,81 *MPa* e a sua verificação visual encontra-se na Figura 5.4.

Figura 5.4 - Tensão equivalente de von Mises do bracket original

Deste modo, com a análise estrutural concluída, utilizou-se o algoritmo de otimização topológica para melhorar o modelo. Assim, como fator de penalização escolheu-se 3 e definiu-se como região de exclusão de otimização as faces cilíndricas dos apoios e do carregamento, o restante corpo pode ser otimizado.

Figura 5.5 - Regiões de otimização e exclusão

No sentido da otimização topológica utilizou-se o módulo *"Structural Optimization"*. Relativamente ao objetivo da *OT* definiu-se que seria maximizar a rigidez, pelo que em *ANSYS* escolhe-se minimizar a *compliance* em *"Objective"*. Por último, como constrangimento, pretende-se reter 50% da massa original do *bracket*. Assim, em "*Response Constraint"* escolhe-se o tipo de resposta "massa" e a percentagem a reter "50%".

Deste modo o resultado da *OT*, pode ser verificado na Figura 5.6, onde podemos visualizar também a "árvore" com as definições da análise numérica estrutural e da otimização topológica do lado esquerdo.

Figura 5.6 - Resultado do processo de otimização do bracket

5.2. REMODELAÇÃO DO COMPONENTE FINAL E PREENCHIMENTO COM ESTRUTURAS CELULARES

Com base no resultado da *OT*, remodelou-se o *bracket* para que este tivesse uma geometria aproximada a esse resultado, Figura 5.7.

Figura 5.7 - *Bracket* otimizado remodelado

Após a remodelação preencheu-se o seu interior com as estruturas celulares, perfazendo um total de 144 células unitárias. A Figura 5.8 demonstra como uma célula unitária dá origem a uma estrutura celular e ao seu englobamento num componente final.

Figura 5.8 - Preenchimento do componente final, desde a célula unitária à estrutura celular.

Como referido anteriormente, os modelos das estruturas celulares escolhidos foram: *COMP1_C, TORC1_B* e *COMP1_D.* A Figura 5.9 apresenta o *assembly* das várias células unitárias e a Figura 5.10 mostra o *bracket* remodelado já com o preenchimento das mesmas células. Em relação ao *assembly*, este foi efetuado a partir do *SOLIDWORKS*, onde se criou um ficheiro de "*Assembly*" e adicionou-se o modelo da estrutura celular em questão. Despois, utilizou-se a função "*Linear Component Pattern*", que cria um padrão linear no sentido desejado. Assim, escolheu-se o sentido do eixo dos *XX* e uma distância de 10 *mm*. O valor desta distância é o local onde o próximo componente vai ser posicionado, pelo que a escolha de 10 *mm* implica que o componente seguinte comece onde o anterior "acabou", não existindo folgas entre os mesmos. Utilizou-se a mesma função para os restantes eixos até chegar à geometria desejada. Assim, gravou-se este ficheiro como parte, formato *.prt*, em vez de *assembly*, formato *.asm*, com o objetivo de evitar problemas com os contactos entre faces adiante na análise numérica em *ANSYS*.

Figura 5.9 - Vista de frente do *assembly* dos 3 modelos de estruturas celulares. (a) *COMP1_C*, (b) *COMP1_D*, (c) *TORC1_B*

Figura 5.10 - *Bracket* remodelado com preenchimento parcial de estruturas celulares. (a) preenchimento com células *COMP1_C*, (b) preenchimento com células *COMP1_D*, (c) preenchimento com células *TORC1_B*

5.3. Análise numérica do componente final

De modo a se comparar o comportamento dos componentes relativamente à rigidez e energia de deformação, efetuou-se uma análise numérica utilizando o módulo *Static Structural* do *ANSYS*. A análise relativa ao componente original e ao componente remodelado sem preenchimento de estruturas celulares (sólido) foi feita com a mesma licença que as análises numéricas até aqui realizadas. Por outro lado, para as análises numéricas do componente final com preenchimento de células, uma vez que o número de elementos da malha é exponencialmente superior, foi necessária uma licença profissional do *ANSYS*, cedida pelo Departamento de Engenharia Mecânica da Universidade do Minho.

As condições de fronteira de todas as análises foram as mesmas, apoio cilíndrico fixo em duas faces e um deslocamento igual a -0,5 *mm*. De modo a analisar a rigidez e energia de deformação, durante a análise, retiraramse 30 pontos relativos aos valores do deslocamento e reação nos apoios.

No que toca ao componente final original (pré *OT*), as definições da malha foram as mesmas que na análise estrutural pré *OT*, Figura 5.2. Neste sentido para o modelo remodelado sem preenchimento, utilizou-se um tamanho de malha igual a 4,5 mm, com 54 976 nós e 35 444 elementos. O tipo de malha escolhido foi "*Nonlinear Mechanical*". Para o componente final preenchido com estruturas celulares, definiu-se que os contactos entre células e o *bracket* seriam do tipo *bonded*. Tal como mencionado no capítulo 5.2, uma vez que o ficheiro foi guardado como parte única e não como *assembly*, os contactos foram detetados automaticamente pelo *ANSYS*, o que facilitou este processo.

Figura 5.11 - Tipo de contacto escolhido entre células e componente final

Em relação à malha, adicionaram-se dois métodos do tipo "*Patch Conforming*", uma para o *bracket* e outro para o conjunto das estruturas, onde se escolheu a opção tetraedros. Da mesma forma, refinou-se cada um destes objetos, escolheu-se um "*Body Sizing*" para o *bracket* de 5 *mm* e para as estruturas 0,7 *mm*, Figura 5.12. Este tamanho de elemento tem em conta o tempo computacional uma vez que o número de elementos é pelo menos dez vezes superior do que até então. A Figura 5.13 apresenta o número de nós e elementos dos três componentes

com preenchimento de estruturas celulares. O material utilizado foi a versão não linear do aço estrutural apresentado anteriormente, com um modelo de encruamento bilinear.

			-	
Scope		=	Scope	
Scoping Method	Named Selection		Scoping Method	Named Selection
Named Selection	outside_body		Named Selection	outside_body
Definition		=	Definition	
Suppressed	No		Suppressed	No
Туре	Element Size		Method	Tetrahedrons
Element Size	5, mm		Algorithm	Patch Conforming
Behavior	Soft		Element Midside Nodes	Use Global Setting
a)			b)	
a) etails of "Body Sizi	ing 2" - Sizing	D	b) etails of "Patch Conform	ing Method 2" - Method
a) etails of "Body Sizi Scope	ing 2° - Sizing	D	b) etails of "Patch Conform Scope	ing Method 2" - Method
a) etails of "Body Sizi Scope Scoping Method	ng 2" - Sizing Named Selection	D	b) etails of "Patch Conform Scope Scoping Method	ing Method 2" - Method Named Selection
a) etails of "Body Sizi Scope Scoping Method Named Selection	ing 2" - Sizing Named Selection estruturas_celulares	D	b) etails of "Patch Conform Scope Scoping Method Named Selection	ing Method 2" - Method Named Selection estruturas_celulares
a) etails of "Body Sizi Scope Scoping Method Named Selection Definition	ng 2" - Sizing Named Selection estruturas_celulares	D	b) etails of "Patch Conform Scope Scoping Method Named Selection Definition	ing Method 2" - Method Named Selection estruturas_celulares
a) etails of "Body Sizi Scope Scoping Method Named Selection Definition Suppressed	ing 2" - Sizing Named Selection estruturas_celulares No	D 	b) etails of "Patch Conform Scope Scoping Method Named Selection Definition Suppressed	ing Method 2" - Method Named Selection estruturas_celulares No
a) etails of "Body Sizi Scope Scoping Method Named Selection Definition Suppressed Type	ng 2" - Sizing Named Selection estruturas_celulares No Element Size	E	b) scope scoping Method Named Selection Definition Suppressed Method	ing Method 2" - Method Named Selection estruturas_celulares No Tetrahedrons
a) scope scoping Method Named Selection Definition Suppressed Type Element Size	Named Selection estruturas_celulares No Element Size 0,7 mm	E	b) scope Scoping Method Named Selection Definition Suppressed Method Algorithm	ing Method 2" - Method Named Selection estruturas_celulares No Tetrahedrons Patch Conforming
a) etails of "Body Sizi Scope Scoping Method Named Selection Definition Suppressed Type Element Size Behavior	Named Selection estruturas_celulares No Element Size 0,7 mm Soft	E	b) scope Scoping Method Named Selection Definition Suppressed Method Algorithm Element Midside Nodes	ing Method 2" - Method Named Selection estruturas_celulares No Tetrahedrons Patch Conforming Use Global Setting

Figura 5.12 - Definições da malha dos componentes com preenchimento de estruturas celulares. (a) e (b) definições relativas ao *bracket*, (c) e (d) definições relativas às estruturas celulares

D	etails of "Mesh"		D	etails of "Mesh"		D	Details of "Mesh"		
-	Display		E	Display			Display		
	Display Style	Body Color		Display Style	Body Color	-	Display Style	Body Color	
-	Defaults		E	Defaults			Defaults		
	Physics Preference	Mechanical		Physics Preference	Mechanical		Physics Preference	Mechanical	
	Relevance	0		Relevance	0		Relevance	0	
	Shape Checking	Standard Mechanical		Shape Checking	Standard Mechanical	-	Shape Checking	Standard Mechanical	
	Element Midside Nodes	Program Controlled		Element Midside Nodes	Program Controlled	-	Element Midside Nodes	Program Controlled	
+	Sizing		+	Sizing		Ŧ	Sizing		
+	Inflation		+ Inflation		Ŧ	Inflation			
+	Advanced		+	Advanced		Đ	Advanced		
-	Statistics		E	Statistics			Statistics		
	Nodes	1578913		Nodes	1825467		Nodes	1497423	
	Elements	903706		Elements	929516		Elements	745220	
	Mesh Metric	None		Mesh Metric	None	- L.	Mesh Metric	None	
	a)			b)		c)		

Figura 5.13 - Número de nós e elementos dos modelos com preenchimento de estruturas celulares. (a) *COMP1_C*, (b) *COMP1_D*, (c) *TORC1_B*

Assim, na Figura 5.14 pode-se verificar visualmente a malha aplicada aos três modelos do *bracket* com preenchimento de estruturas celulares, onde se identifica uma malha muito mais refinada para as estruturas celulares.

Figura 5.14 - Representação da malha nos três modelos do componente final com preenchimento de estruturas celulares

5.4. RESULTADOS OBTIDOS

No que diz respeito ao resultado da análise numérica, apresenta-se de seguida a tensão equivalente de *von Mises* para cada um dos modelos, *bracket* original, *bracket* otimizado e *bracket* preenchido com estruturas celulares.

O modelo original obteve uma tensão equivalente de von Mises máxima de 291,57 MPa, Figura 5.15.

Figura 5.15 – Resultado da análise numérica do *bracket* pré *OT*

O modelo otimizado sólido, para as mesmas condições, resultou numa tensão equivalente de *von Mises* máxima de 295,98 *MPa* (Figura 5.16).

Figura 5.16 - Resultado da análise numérica do bracket otimizado

O primeiro modelo, com preenchimento de estruturas *COMP1_C*, obteve uma tensão equivalente de *von Mises* máxima igual a 303,2 *MPa*, Figura 5.17.

Figura 5.17 - Resultado da análise numérica do modelo do bracket com estruturas COMP1_C

O segundo modelo conta com o preenchimento de estruturas celulares do tipo *COMP1_D* e resultou numa tensão equivalente de *von Mises* máxima de 291,36 *MPa*, Figura 5.18.

Figura 5.18 - Resultado da análise numérica do modelo do bracket com estruturas COMP1_D

Por último, o modelo preenchido com estruturas *TORC1_B* resultou numa tensão equivalente de *von Mises* máxima igual a 292,18 *MPa*, Figura 5.19.

Figura 5.19 - Resultado da análise numérica do modelo do bracket com estruturas TORC1_B

Analisando estes cinco modelos, é facilmente verificável que a tensão equivalente de *von Mises* máxima é relativamente próxima entre eles. Do mesmo modo, a distribuição de tensões pelo *bracket* é também semelhante, uma vez que se verifica que a tensão mais elevada tende a aparecer junto dos suportes fixos cilindros e do furo onde o deslocamento foi aplicado. Assim, dados os objetivos deste estudo numérico procedeu-se à análise da rigidez e energia de deformação específicas. Deste modo, utilizou-se o mesmo *script* do capítulo 4.5.1, para se obter os valores destas duas propriedades por modelo, Tabela 5.1. A Figura 5.20 compara os valores das duas propriedades por modelo, onde se verifica um aumento das mesmas nos modelos com preenchimento de estruturas celulares.

Propriedade	Unidade	Modelo Original	Modelo Otimizado	Modelo com COMP1_C	Modelo com COMP1_D	Modelo com TORC1_B
Massa	kg	7,044	4,641	3,745	3,751	3,733
Rigidez	N/mm	317 477	304 409	258 894	260 697	260 307
Rigidez Especifica	N/mm.kg	45 072	65 594	69 131	69 502	69 728
Energia	J	3,38	5,09	5,50	5,51	5,52
Energia	J/kg	0,48	1,10	1,47	1,47	1,48
Especifica						

Tabela 5.1 - Resultados da rigidez e energia de deformação específicas por modelo

Figura 5.20 - Gráfico comparativo da rigidez e energia de deformação específicas por modelo

Assim, tal como referido, o aumento das propriedades específicas e redução significativa da massa entre o *bracket* original e os restantes é compreendido, já que o original foi dimensionado para ter massa em excesso, para que desta forma o tamanho do domínio de *design* da otimização fosse maior. Por outro lado, o aumento de propriedades entre o componente otimizado *versus* o componente preenchido com estruturas celulares é de grande interesse, verificando-se que o componente com a estrutura *TORC1_B* possui o valor máximo tanto de rigidez como de energia de deformação.

6. CONSIDERAÇÕES FINAIS

6.1. CONCLUSÕES

Os transportes desempenham um papel vital na sociedade e na economia, estima-se que o ramo dos transportes consome um terço de toda a energia final da União Europeia. A maior parte dessa energia provém do petróleo. Este facto significa que os transportes são responsáveis por uma grande fatia das emissões de gases com efeito estufa da União Europeia, contribuindo significativamente para as alterações climáticas. A área da aviação (cargas e passageiros) em particular, emitiu cerca de 918 milhões de toneladas de CO₂ em 2019.

Deste modo, a procura de novas soluções de materiais que ofereçam uma diminuição da massa utilizada nos componentes dos transportes torna-se de grande importância. Esta redução da massa tem como consequência veículos mais leves o que fará com que o consumo de combustível seja menor e por isso, uma emissão de gases também inferior.

Esta dissertação procura encontrar geometrias diferentes de estruturas celulares (com célula aberta) com o propósito de reduzir a massa final de um componente, aumentando as suas propriedades específicas como a rigidez e energia de deformação. Neste sentido utilizou-se o algoritmo de otimização topológica para, a partir de um cubo com $10 \times 10 \times 10 \text{ mm}^3$, obter várias soluções de potenciais geometrias de estruturas celulares. Para isto utilizou-se o *software ANSYS* com o módulo "*Structural Optimization*" e o módulo "*Static Structural"* para efetuar as análises numéricas necessárias.

Relativamente à otimização topológica, conclui-se que a escolha do local do carregamento e apoios está diretamente associada com a geometria que resulta do algoritmo, pelo que a decisão destas condições de fronteira são extremamente importantes. O *ANSYS* tem um limite máximo de número de elementos utilizados no *MEF* para a licença de estudante. Uma vez que a malha é uma problemática conhecida na otimização topológica, de modo a se obter geometrias mais bem definidas, faria sentido utilizar este algoritmo numa licença profissional onde nos desse a possibilidade de aumentar o número de elementos.

No que diz respeito à análise numérica, a utilização do modelo de encruamento bilinear foi suficiente para obter resultados satisfatórios. No entanto, no sentido de aproximar os resultados à realidade, seria benéfico utilizar um modelo multilinear com valores obtidos através de testes experimentais. Em relação ao estudo da convergência da malha de cada modelo de estrutura celular, de um modo geral, não resultaram problemas, uma vez que os componentes são relativamente simples.

No que toca aos resultados da análise numérica e especificamente aos valores da rigidez especifica, depreende-se que existem geometrias interessantes, nomeadamente a *COMP1_C*, *COMP1_A* e *TORC1_B*, com valores de 88 052, 78 140 e 70 518 N/mm. g, respetivamente. Com isto, verifica-se que estas três estruturas derivam do modelo 1 do cubo original (carregamento no centro das faces), o que é indicativo de que um apoio central se torna importante nesta propriedade. Por outro lado, todas destas estruturas possuem suportes laterais

103

curvos o que ajuda a resistir ao deslocamento aplicado, resultando num valor de deformação inferior. Conclui-se também que um suporte vertical central geralmente aumenta a rigidez específica da estrutura, uma vez que o deslocamento é aplicado nesse mesmo eixo. Comparativamente ao estudo do capítulo 2.3, é relevante mencionar que a geometria *FCC* é muito semelhante às estruturas que derivaram do *COMP1* e tal como no estudo, estas estruturas obtiveram excelentes valores de rigidez, nomeadamente a *COMP1_A* (a mais semelhante à geometria do estudo) e *COMP1_C*.

No que diz respeito à energia de deformação, obtida através de uma análise elasto-plática e dos valores de força-deslocamento, as estruturas que sobressaem são as *TORC1_B*, *COMP1_D* e *COMP1_B*. Para esta propriedade é importante a forma como a estrutura se deforma, pelo que os valores obtidos das mesmas foram de 107,8 J/kg, 102,1 J/kg e 93,2 J/kg. Isto faz com que estas geometrias sejam relevantes para situações de choque e absorção de energia. No caso dos transportes aéreos, podem ser relevantes para absorver a energia provocada pelo impacto de objetos durante o voo.

Assim, verifica-se que existem várias geometrias interessantes resultantes, com resultados significativos para ambas as propriedades. Todas as estruturas têm uma densidade relativa de aproximadamente 10%, o que significa que a massa de cada célula unitária é reduzida consideravelmente.

Por fim, analisou-se a aplicação de três estruturas resultantes da otimização topológica num componente final, onde fosse possível verificar a interação entre as estruturas e a parte sólida bem como validar a importância das mesmas. Com isto, desenvolveu-se um *bracket* inicial onde foi efetuada uma otimização topológica no sentido de encontrar uma nova geometria para o mesmo. Depois esse modelo foi preenchido com três estruturas celulares diferentes. Durante a análise numérica, devido ao tamanho das estruturas celulares e ao número das mesmas (144), o número de elementos e nós do *MEF* aumentou exponencialmente. Assim, para além de ser necessária uma licença profissional do *software*, de forma a reduzir o tempo de simulação, o tamanho dos elementos da malha escolhido foi de 0,7 *mm*, o que é um tamanho superior ao pretendido inicialmente. Em todo o caso, foi suficiente para obter resultados fiáveis.

Desta forma, o componente inicial tem uma massa de cerca de 7,044 kg, após a *OT* ficou com 4,641 kg, o *bracket* com a estrutura celular *COMP1_C* de 3,745 kg, o *bracket* com a estrutura celular *COMP1_D* de 3,751 kg e por fim o *bracket* com a estrutura celular *TORC1_B* com 3,733 kg. Isto traduz-me numa redução de massa de 47% em relação ao modelo original, o que é natural uma vez que este foi modelado de forma a ter material extra para a utilização do algoritmo de *OT*. Por outro lado, verifica-se uma redução de 19% da massa em comparação com o modelo do *bracket* já otimizado. Em relação às conclusões retiradas das propriedades deste *bracket*, verifica-se que a rigidez e energia de deformação específicas sofrem um aumento no componente que está preenchido com estruturas celulares. Comparativamente ao *bracket* já otimizado por *OT*, a rigidez específica do *bracket* com a estrutura *COMP1_C* aumentou 5,1%, a do *bracket* com a estrutura *COMP1_D* aumentou 5,6% e o *bracket* com a estrutura *TORC1_B* 5,9%. Em relação à energia de deformação específica o aumento foi de 7,6%, 7,7% e 7,9% respetivamente. De referir que os resultados obtidos entre os três componentes preenchidos

com estruturas celulares são muito próximos, o que pode parecer que a geometria da estrutura celular não é tão relevante assim. Este fenómeno pode ser explicado pelo volume escolhido da célula unitária. Um volume inferior, por exemplo de $5 \times 5 \times 5 mm^3$, poderia distinguir os valores obtidos na análise deste tipo de componente final, uma vez que para este caso a geometria torna-se mais importante.

Por outro lado, os aumentos de propriedades específicas são indicativos de que a utilização de estruturas celulares com o fim de redução de massa são um caminho viável.

6.2. Perspetivas e Trabalhos Futuros

Como parte do trabalho futuro a desenvolver, deve-se utilizar um volume da célula unitária inferior ao usado neste estudo numérico, por exemplo de $5 \times 5 \times 5 mm^3$. Esta alteração no volume tem a ver com os valores obtidos no componente final, uma vez que para a análise individual das estruturas é menos relevante. A otimização topológica deve ser feita com um tamanho de malha inferior, no sentido de se obterem geometrias mais bem definidas. Por outro lado, deve-se também criar modelos do cubo original com carregamentos diferentes, tanto na sua grandeza como no local escolhido. Ainda acerca da *OT*, seria interessante executar uma nova análise com a exploração dos diferentes objetivos e definições da mesma, como é exemplo a fator de penalização.

O estudo das propriedades específicas de um componente final com diferentes densidades relativas para a mesma estrutura celular a fim de avaliar o seu comportamento é também importante.

As simulações numéricas executadas neste estudo focaram-se na análise estrutural estática, sendo que seria relevante estudar outros módulos como a análise modal e a análise ao impacto de cada estrutura. O modelo de encruamento utilizado foi o bilinear, no entanto para se obterem valores mais aproximados da realidade deverse-ia executar ensaios laboratoriais para se utilizar os valores num modelo de encruamento multilinear, na análise numérica.

Por fim, desenvolver ensaios experimentais que validem estes resultados é significativamente mais importante do que qualquer outro trabalho futuro, nomeadamente através de ensaios de compressão.

ANEXO A: TABELA COM VÁRIAS PROPRIEDADES DE GEOMETRIAS 3D

	Number of	Number of	Number of				
	faces. f	edges, n	vertices, v	Cell volume	Surface area	Edge length	Comments
Cell shape	(a)	(q)	(c)	(d) (e)	(a) (d) (e)	(b) (c)	(J)
Tetrahedron	4	6	4	0.118/ ³	$\sqrt{3}I^2$	61	Regular
Triangular prism	5	6	9	$\frac{\sqrt{3}}{4} l^3 A_r$	$\frac{\sqrt{3}}{2} l^2(1+2\sqrt{3}A_r)$	$6l(1 + A_r/2)$	Packs to fill space
Square prism	9	12	8	$P^{3}A_{r}$	$2I^2(1+2A_r)$	$8l(1+A_r/2)$	Packs to fill space (cuba is regular)
Hexagonal prism	×	8	12	$\frac{3\sqrt{3}}{2}l^3A_r$	$3\sqrt{3}l^2(1+2A_r/\sqrt{3})$	$12l(1+A_r/2)$	Packs to fill space
Octahedron	8	12	6	0.47113	3.46/ ²	12/	Regular
Rhombic Dodecahedron	12	24	14	2.7913	$10.58l^2$	24/	Packs to fill space
Pentagonal Dodecahedron	12	30	20	7.663l ³	20.646l ²	30/	Regular
Tetrakaidecahedron	14	36	24	11.311	26.80l ²	36/	Packs to fill space
Icosahedron	20	30	12	2.182 <i>t</i> ³	8.6601 ²	30/	Regular

Figura A.1 - Propriedades geométricas de células isoladas [1]

ANEXO B: TUTORIAL DE ANÁLISE NUMÉRICA ESTRUTURAL EM ANSYS

Este tutorial tem como objetivo demonstrar os passos necessários à realização de uma análise numérica não linear, utilizando o módulo *Static Structural* do *software ANSYS*.

De modo a utilizar o módulo *Static Structural* é necessário abrir o *ANSYS Workbench* e selecionar o mesmo através da *toolbox* usualmente apresentada à esquerda da janela, Figura B.1.

Figura B.1 - Janela inicial do ANSYS Workbench

O primeiro passo na análise numérica é a seleção de materiais a serem utilizados nos componentes. Para isto, faz-se duplo clique em *"Engineering Data"*. Tendo em conta que é uma análise não linear, é necessário selecionar materiais que possuam propriedades plásticas definidas. Assim, ao selecionar *"General Non-Linear Materials"* em *"Engineering Data Sources"*, tem-se acesso a uma biblioteca de materiais com as propriedades necessárias. Para esta caso, escolheu-se o material *"Structural Steel NL"* com um modelo de encruamento bilinear, Figura B.2. A escolha de outros modelos de encruamento é também possível.

100is Units Extensi	ons	Jobs Help									
6											
Project 🛷	A2,82,	C2,D2:Engineering Data x									
eering Data 🔛 Engineeri	ing Da	a Sources									
-	Engle	eering Data Sources					* 9	x Tab	le of Properties Row 9: I	Blinear Isotropic Hardening	1
nerties A		A		B	с		D	^	A	B	C
	1	Data Source		1	Location		Description	1	Temperature (C)	Vield Strength (Pa)	Tangent Moduli
lecant Coefficient of T	÷				1.5	manufacturing analyses.		-	ren person e (e) t	2 SE+08	1.455+09
Secant Coefficient of	6	Geomechanical Materials		8	2	General use material samples for	r use with geomechanical models.	-		12,00,00	1,452.405
nstantaneous Coeffick	7	Composite Materials		m		Material samples specific for com	nposite structures.				
: Instantaneous Coeff	9	General Non-Inear Materials				General use material samples for	r use in non-linear analyses				
mperature	0	Evolet Materiak		m		Material camples for use in an ex-	coleit analysis				
ic .		In the production of the state		100		Material samples for use in all ex	to fac many so.				
lasticity	10	Hypercessic Hiddenes		1.7		meterial stress-stram data sampi	es los conventiones de la constante de				
Elasticity	11	Magnetic B-H Curves			×	B-H Curve samples specific for u	ise in a magnetic analysis.				
Emerimental Data	12	Thermal Materials			×	Material samples specific for use	in a thermal analysis.				
Experimental Data	13	Fluid Materials			×	Material samples specific for use	in a fluid analysis.				
t Data	*	Click here to add a new library			_			v			
	Outle	e of General Non-linear Materials					* 8	×			
	-	٨	B	c		D	E	~			
	1	A Contracts of Constral Non-Insar Materials	h Ad	4		Source	Description				
	+	Gasket Non Linear Unicading	~ ~	• •	General Materials N	on-inear.xm	Description	<			
	8	Se Magnesium Allov NL	-	020	General Materials N	on-linear.xml		Cha	rt of Properties Row 9:	Blinear Isotropic Hardenin	
	9	Stainless Steel NL			General Materials N	on-linear.xml		i E			
	-			-			Eatique Data at zero mean stress			Bile	ear Isotropic Harder
	10	Structural Steel NL	÷	e 🕾	General Materials N	on-linear.xml	comes from 1998 ASME BPV Code,				
							Section 8, Div 2, Table 5-110.1				
	11	🗞 Titanium Alloy NL	÷		General Materials N	on-linear.xml		~			
vlin 3 Parameter	Prop	aties of Outloo Pow 10: Structural Steel N					× 8	v	1		
vin 5 Parameter								1			
		A Constant				B		- 2			
	1	Property				value	Unic	3	5		
	2	12 Density			7850		kg m^-3	3			
	3	Isotropic Elasticity						1			
	4	Derive from			Young's Modulus	and Poisson's Ratio		5			
	5	Young's Modulus			2E+11		Pa		/		
	6	Poisson's Ratio			0,3						
	7	Bulk Modulus			1,6667E+11		Pa		··· /		
		Change Mandridge			7,6923E+10		Pa		/		
	8	Silical Ploudus			and the second se			11	/		
	8	B Blinear Isotropic Hardening									
	8 9 10	Silear Houses Silear Isotropic Hardening Yeld Strength			2.5E+08		Pa	- 1	•		

Figura B.2 - Seleção do material em "Engineering Data"

Uma vez o material escolhido, é necessário adicionar uma geometria. O *ANSYS* permite faze-lo de duas formas distintas: desenvolver o *CAD* dentro do ambiente *ANSYS* através do "*SpaceClaim*" ou "*DesignModeler*" ou então importar o *CAD* de um outro *software*. Neste caso a modelação foi efetuada em *SOLIDWORKS* e exportada para o formato *Parasolid Binary* (.x_b). Deste modo, para realizar a importação deve-se clicar com o botão do lado direito do rato em "*Geometry*" -> "*Import Geometry*" e escolher o ficheiro desejado, Figura B.3.

Figura B.3 - Importação de uma geometria CAD

Quando o ficheiro estiver importado deve-se abrir a geometria no "*DesignModeler"*/"*SpaceClaim"* para que se conclua o processo de importação, Figura B.4.

Figura B.4 - Visualização do CAD no SpaceClaim

De seguida, abre-se o ANSYS MECHANICAL através do duplo clique em "Model". É nesta fase que se trata de todas as definições da análise numérica, como sistema de coordenadas, malha, condições de fronteira, solicitações e resultados. Em primeiro lugar atribui-se o material em "Material" -> "Assigment" e define-se o comportamento da rigidez do componente em "Stiffness behavior" -> "Flexible", Figura B.5. A opção escolhida relativamente à rigidez é tal que permite obter dados da deformação durante a análise. A escolha "Rigid body" é feita quando não se esperam deformações no componente e este comporta-se como rígido, sendo que a malha não é criada para este caso.

Figura B.5 - Definição do comportamento do componente em relação à rigidez e seleção do material

Após este passo, cria-se a malha a utilizar na análise numérica, sendo que uma malha refinada e otimizada para o componente é vantajoso. Desta forma, adiciona-se um método para escolher o algoritmo da malha. Neste caso escolheu-se tetraedros como método e "*Patch Conforming Algorithm*". Nas definições gerais da malha escolheu-se "*Nonlinear Mechanical*" como "*Physic Preference*" e um tamanho de elemento igual a 0,2 *mm*, Figura B.6.

Figura B.6 - Definições gerais da malha utilizada

Posteriormente, determinam-se as definições da análise numérica. Em "*Analysis Settings*" -> "*Step controls*" -> "*Define by*" assinala-se "*Substeps*", em "*Initial Substeps*" define-se 50, em "*Minimum Substeps*" 50 e em "*Maximum Substeps*" 100, Figura B.7. A escolha de 50 "*Substeps*" com um "*Step End Time*" igual a 1 *s* permite que a cada 1/50 *s* (0,02 *s*) se obtenha valores de uma dada solução. Em "*Solver Controls*" deve-se ativar a opção "*Large Deflection*", uma vez que se trata de uma análise não linear.

Figura B.7 - Definições da análise numérica

Com isto, define-se de seguida as condições de fronteira, nomeadamente constrangimentos e solicitações. Relativamente ao constrangimento, utiliza-se um suporte fixo na face da base do componente, como demonstra a Figura B.8. Em contrapartida para a solicitação, utiliza-se um deslocamento igual a 0,1 *mm*, Figura B.9.

Figura B.8 - Constrangimento to tipo "suporte fixo" utilizado

Figura B.9 - Solicitação do tipo "deslocamento" utilizada

Por último adicionam-se as soluções desejadas em "*Solution*" -> "*Insert*". Algumas destas soluções são relativas ao deslocamento, deformação, tensão, força de reação, energia de deformação, fatiga, etc. Para esta análise interessa estudar a tensão equivalente de *von Mises* em "*Equivalent Sress*", o deslocamento no eixo dos *YY* em "*Directional Deformation*" e força de reação em "*Force Reaction*", Figura B.10. Em "*Solution Information*" -> "*Solution Output*" -> "*Force Convergence*", pode-se ainda acompanhar a convergência de cada *Substep*, Figura B.11.

🛃 🖸 =	Context					: n13_2 - Mech	anical (Ansys N	lechanical Enb	erprise]								- a ×
File Home	Result Display Selection Automatio	an															~ 🖬 💁
Duplitate Q. Selver	Commands Geletition Commands Geletition Commands Geletition Commands Commands Commands Commands Commands Commands Commands Commands Commands	D images * Section Plane Annotation	1.0 (True Scal Scoped Bodie Carge Ver	v) v s v Geometry	Centours Edges Display	Probe Maximu Minimu	in Snap m	→ Vectors	7 Proportional	NSElement Align Codd Aligned Vector Disple	ied ☐ J ^ Line Form † Solid For V	الله الله الله الله الله الله الله الله	IIX Iso IIX Top IIX Bottom Ceppe	a disosurfece	Vortisheet Oraph Views	Telbular Data	
Outline		×Q	Q 📦	0 🕄 🖏 🖗	- 💠 🍳 (<u>,</u> Q Q	Select	K Moder	10 74) 🗈 🖻 🕻	n 🖬 🐘 -	(* 🌳 🖻	Clipbo	ard+ [Empty]	🐑 Extend -	🤗 Select By	· ě
Arame South South	D System System	 D: n13; Type to Type to Unit MS 21/10/24 21/10/24	e nt Stress wiselent (von-Mi 122 21:20 23 120 21 23 21 23 29 54 54 64 62 62 64 62 62 64 63	(rea) Seres						A						_	Ansys 2022 R1 STUDENT
Details of "Equivalent	Stress" 👻 🕂 🗖	×															Ť
- scope																	A.
Scoping Method	Geometry Selection																
Geometry	Al Bodies							0,000	_	5,800	_	10,000 (mm)				-	~
Definition								_	2,500		7,500						
Type	Equivalent (von-Mises) Stress																
ву	Time	Graph							······································	X Tabula	ar Data						+ 🖬 🗖 🗙
Display Time	Last	Anii	nation	Image:	20 Fran	nes 🔻 2 Si	ec (Auto 🔻	P (0)	S 2	Ti	me (s) 🕍 Mini	mum (MPa)	Maximum	[MPa] M Average	(MPa)		^
Calculate Time History	Yes									1 2	e-002 0,84773	2	116,85	16,565	_		
Identifier		37	4,81							- 2 4	e-002 1.6953		221,47	33.122			
Suppressed	No		900,							4 8	e-002 2,3551 e-002 3,6229		255.47	45,433			
Integration Point Re	sults	-								5 0.	1 4.9735		258.5	80.604			
Display Option	Averaged	M N	200, - / `							6 0,	12 3,8402		255.37	93,006			
Average Across Bodies	s No	_	100 1							7 0.	14 4,8245		260.64	102,36			
Results			· /							8 0.	16 3.7263		259.82	110.14			
Minimum	25.129 MPa	 ✓ 0,8 	m + · · · ·				0.000		0.077	9 0,	18 4,4779		259,25	116,47			
Section Planes	+ 🖡 🗖 :	×		1112 0125	0,575	4,5	0,625	9,75	4,675	10 0.	2 5.5876		266.49	121.36			
i eta de Tra	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					(\$)				11 0.	22 6,9225		258,49	125,4	_		
이 나무 나와 만이 ?	× ** • • • •									12 0,	24 8,329		260,68	128,99	_		×
Pondy												Assessment N	o Soloction	A Matric (mm	ka N c mV mJ	0	

Figura B.10 - Solução obtida para a tensão equivalente de von Mises

Figura B.11 - Gráfico da convergência das soluções

ANEXO C: TUTORIAL DE OTIMIZAÇÃO TOPOLÓGICA EM ANSYS

A realização de uma otimização topológica é feita através do módulo "*Structural Optimization*" do *ANSYS WORKBENCH* (2021) e após uma análise numérica. Assim, escolhendo o módulo na *toolbox* à esquerda, deve-se arrastar o mesmo até ao "*Model*" da análise "*Static Structural*". Deste modo, o *ANSYS* irá interligar dados importantes como os materiais, a geometria inicial e os resultados da análise numérica pré *OT* (Figura C.1).

Unsaved Project - Workbench				- o ×
File View Tools Units Extension	ns Jobs Help			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
a a A / B Project				
Import - 9 Reconnect [] Refresh	Project 🦻 Update Project 📲 ACT Start	Page		
obox • 0 x	Project Schematic			- # X
Analysis Systems				
Coupled Field Harmonic				
Coupled Field Medal	▼ A	• B	• C	
Coupled Field Static	1 🦑 Engineering Data	1 📴 Static Structural	1 🔤 Structural Optimization	
Coupled Field Transient	2 🛷 Engineering Data 🗸 🚽	🗕 🚽 🥏 Engineering Data 🗸 🚽	💶 2 🛷 Engineering Data 🛛 🗸	
Eigenvalue Buckling	Engineering Data	3 🔯 Geometry 🧹 🧹	3 🖸 Geometry 🗸 .	
electric Electric	any card	4 📾 Model 🧹 🗕	4 Model	
Explicit Dynamics		E del Saturo	s 5 del Satur	
B Fluid Flow - Blow Molding (Polyfia		and an and a second	A Column (
Huid How - Extrusion (Polyflow)		o 🕼 Solution 🗸 🗸	o 🕼 Souton 🗸	
Huid How (CFX)		7 😵 Results 🗸 🧹	7 🥑 Results 🗸	
Fluid Flow (Fluent)		COMP1	COMP1-0T-10%	
Fluid Flow (Polyflow)				
Harmonic Acoustics				
Harmonic Response				
Bydrodynamic Diffraction				
Hydrodynamic Response				
Magnetostatic				
Modal				
Modal Acoustics				
Bandom Vibration				
Response Spectrum				
Rigid Dynamics				
State Acoustes				
Static Stututal				
Structural Ontimization				
R Substructure Generation				
1 Thermal-Electric				
Transient Structural				
🖪 Transient Thermal				
Turbomachinery Fluid Flow				
Component Systems				
ACP (Post)				
ACP (Pre)				
Autodyn 🖉				
BladeGen				
CFX				
Chemian				
Fingineering Data				
Ensight (Porte)				
View AL/ Customize				
Pearly				Inh Montor II No DPS Connection Show Progress Show () Messages

Figura C.1 - Janela do ANSYS WORKBENCH com o módulo de OT

De seguida, abre-se o *ANSYS MECHANICAL* clicando em "*Setup*" no módulo "*Structural Optimization*". É nesta janela que se irão definir todas as definições da otimização. Analisando a região à esquerda na Figura C.2, repara-se que toda a informação relativa à análise estrutural feita anteriormente está também aqui presente, desde o *CAD* às definições da malha. Assim, começa-se por definir alguns parâmetros em "*Analysis Settings*", onde se pode alterar valores como o número máximo de iterações e fator de penalidade, importante nesta análise. O fator de penalidade deve ser no mínimo 3, segundo a literatura, pelo que se deixa este valor. É neste ponto que o *ANSYS* permite que seja escolhido o tipo de *solver* a utilizar, entre *OC* e *SCP*, no entanto neste tutorial a opção por defeito "*Program Controlled*" foi escolhida.

Context			Systems 8, C - Mechanical (Jessys Mechanical Enterprise)	- 8 ×
file Home Environment	Display Selection Autom	noite		uidt Launch 🔷 🖗 🐓
Dupicate Q. Solve Solve Solve Fa	Named Selection Commands 🕬 In Coordinate System Comment 🛱 S Remote Point 🔛 Chart 🖶 A Insert	ages * ection Plane Institual Optim Re		
Outline		00	🎇 😘 🔿 - 👶 🖲 🔁 🎯 🚱 Select 🍡 Mode- 🕎 📅 🛅 🛅 🖬 📾 📾 🐨 🖤 📨 🥅 Clipboard- (Empty) 🕰 Extend-	Select By-
Name - Search Outli				
Trojet Torojet T	((3)	C:COMP-01-095 Aralysis Structure, Number, NUA 23/10/00221148		Ansys 2022 m STUDENT
Details of "Analysis Settings"	- 4 🗆 ×			1
Reload Volume Analysis	~			
Reload Volume Fraction	Off			×
Definition			1000 5 000 10 000 (mm)	, 📕
Maximum Number Of Iterations	500.			
Minimum Normalized Density	1.e-003		00(3	
Convergence Accuracy	0.1 %	Graph	→ A □ × Tabular Data	- 4 □ ×
Initial Volume Fraction	Program Controlled	de alter	1	
Penalty Factor (Stiffness)	3.			
Region of Manufacturing Constraint	Include Exclusions			
Region of Min Member Size	Exclude Exclusions			
Region of AM Overhang Constraint	Exclude Exclusions			
Filter	Program Controlled			
Output Controls				
Solver Controls				
Solver Type	Program Controlled			
Section Planes	- 4 🗆 X			
📬 🕼 🗄 🗙 🚳 🗃	۳.			

Figura C.2 - Definições gerais de uma otimização topológica em ANSYS

Desta forma, passando para a definição seguinte, em "*Optimization Region*" são definidas as regiões que devem ser incluídas ou excluídas da otimização. Neste caso, as regiões a excluir estão definidas pelas condições de fronteira em "*Exclusion Region*" -> "*Define by*" -> "*Boundary Conditions*" enquanto as regiões a otimizar são as restantes. Em "*Optimization Option*" deve-se deixar a opção por defeito "*Topology Optimization – Density Based*", Figura C.3.

Figura C.3 - Escolha das regiões de otimização

Seguidamente define-se o objetivo da otimização. Nesta situação, porque se quer aumentar a rigidez, escolhe-se um tipo de resposta "*Compliance*" e um objetivo de "*Minimize*", Figura C.4.

Context	Systems B, C - Mechanical (Anys Mechanical Enterprise)	-	8 X
Lopitiate Q, Souther Solver Solver Solver Solver<			
Outline	Worksheet		• ‡
Name 👻 Search Outli 😪 🖕	Objective		^
Project → ■ Model (49, C1) □ □ □ <td>Right click on the grid to add, modify and delete a row. Enabled Response Type Goal Citeron Formulation Environment Name Weight Multiple Sets Start Step Start Node End Mode Mode 2 Complance Nik Program Controlled Start Structural Nik Enabled 1 1 Nik Nik Nik</td> <td></td> <td></td>	Right click on the grid to add, modify and delete a row. Enabled Response Type Goal Citeron Formulation Environment Name Weight Multiple Sets Start Step Start Node End Mode Mode 2 Complance Nik Program Controlled Start Structural Nik Enabled 1 1 Nik Nik Nik		
Suppressed No			
Normalized Sum No			_ ` `
	Geometry Worksheet		-
	Graph - U X Tabular Data		- 4 🗆 ×
Section Planes • 🖡 🗆 🗙			
CBCS-T-X-A-FF.			
	10 Managaman - Ma Calendian - 🔺 Matrix (annu In-Al		

Figura C.4 - Escolha do objetivo da otimização

O próximo ponto é o de definição do constrangimento sendo que este será restringido pela massa. Para isto, em "*Response*" escolhe-se "*Mass*". A percentagem a reter do modelo inicial é escolhida em "*Percent to Retain*", e neste tutorial definiu-se como 10%, Figura C.5. Esta percentagem pode ser definida de várias formas, por um valor constante como é o caso ou por um intervalo de valores se fosse escolhida a opção "*Range*".

Figura C.5 - Janela referente ao "Response Constraint"

Por último, podem ser adicionados constrangimentos referentes à manufatura ou ao *design*. Uma vez que se deseja que a estrutura final seja simétrica nos três planos, adicionam-se três "*Design Constraint*" para cada um deles. Assim, cria-se um sistema de coordenadas em "*Coordinate Systems*" -> "*Insert*" -> "*Coordinate System*", Figura C.6.

A 25/10/2022 10:39	
inate System	
Insert a Coordinate System object to create a unic	ue local coordinate
system for use with features such as springs, joints	loads, and results.
, system to the time to the to the time of	,
iss F1 for help.	
ordi	25/10/2022 10:39 ordinate System Insert a Coordinate System object to create a unit system for use with features such as springs, joints Press F1 for help.

Figura C.6 - Inserir um novo sistema de coordenadas

Para definir a posição do novo sistema de coordenadas, escolhe-se a sua origem a partir do sistema global de coordenadas em "*Origin*" -> "*Define by*" -> "*Global Coordinates*", com uma distância deste de 5 *mm* do eixo *XX*, 5 *mm* do eixo dos *YY* e -5 *mm* do eixo dos *ZZ*, Figura C.7. Isto fará com que a origem se posicione no centro do *CAD*.

· · · · · · ·		
Details of "Coordinat	e System" 🚥 🗛 🗖	×
 Definition 		^
Type	Cartesian	
Coordinate System	Program Controlled	
APDL Name		
Suppressed	No	
Origin		
Define By	Global Coordinates	
Origin X	5, mm	
Origin Y	5, mm	
Origin Z	-5, mm	
Location	Click to Change	
Principal Axis		
Axis	x	
Define By	Global X Axis	
Orientation About	Principal Axis	~

Figura C.7 - Definições do novo sistema de coordenadas

Assim, como referido adiciona-se um "*Design Constraint*" para cada um dos planos e define-se como sistema de coordenadas o sistema criado anteriormente em "*Location and Orientation*" -> "*Coordinate System*". Em "*Axis*" deve-se selecionar cada um dos planos, sendo estes YZ, XZ e XY (Figura C.8).

Ric Home Environ	text nment Display Selection Automat	Systems II, C - Mechanical (Anny Mechanical Enterprine)	Luide Launch 🔷 🐼 📀
Duplicate Q Solve	Alamed Selection Commands * Ima Secondinate System Comment Sec Secondinate Point Linert Insert	Ar in the second	
Cutine Internet Inter	B S	Conference Sprawery	Select By- Select By- 2022 FR STUDENT
Suppressed	No		
Location and Orientation			
Coordinate System	Coordinate System		
Section Planes	γz rane	0.00 1.000 10.000 (mm) 2.500 7.500	z z x

Figura C.8 - Inserção de um "Design Constraint" do tipo simetria para o plano YZ

ANEXO D: VALORES DO ESTUDO DE CONVERGÊNCIA DA MALHA

Madala	Tamanho Malha	N⁰	Deslocamento	Solver Time
Widdeld	[mm]	Elementos	[mm]	[s]
COMP1_A	0,8	5 849	0,001624	10
	0,7	6 317	0,001627	11
	0,6	7 098	0,001629	13
	0,5	8 820	0,001628	17
	0,4	13 144	0,001630	25
	0,3	25 567	0,001633	46
	0,2	65 857	0,001638	157
COMP1_B	0,8	6 841	0,003125	14
	0,7	6 974	0,003124	14
	0,6	7 777	0,003121	14
	0,5	9 620	0,003124	21
	0,4	14 471	0,003128	27
	0,3	28 018	0,003131	54
	0,2	76 863	0,003137	140
COMP1_C	0,8	9 925	0,001433	22
	0,7	10 123	0,001433	28
	0,6	10 906	0,001437	43
	0,5	12 127	0,001437	33
	0,4	15 633	0,001437	34
	0,3	26 459	0,001438	61
	0,2	65 464	0,001440	152
COMP1_D	0,8	11 450	0,001877	23
	0,7	11 414	0,001879	26
	0,6	11 838	0,001875	23
	0,5	13 021	0,001877	29
	0,4	17 003	0,001884	44
	0,3	30 672	0,001887	74
	0,2	81 290	0,001890	193
COMP2_A	0,8	22 370	0,013611	70
	0,7	22 238	0,013605	89
	0,6	22 405	0,013625	94
	0,5	22 427	0,013599	83
	0,4	24 223	0,013627	95
	0,3	36 556	0,013691	150
	0.2	60 559	0,013749	238

Tabela D.1 - Dados para o estudo da convergência da malha por estrutura celular

COMP2_B	0,8	20 302	0,036536	41
	0,7	20 302	0,036536	42
	0,6	20 334	0,036543	41
	0,5	20 688	0,036545	43
	0,4	24 122	0,036564	50
	0,3	36 909	0,036650	80
	0,2	59 895	0,036761	145
COMP3_A	0,8	7 693	2,151300	749
	0,7	7 693	2,151300	639
	0,6	7 693	2,151300	663
	0,5	8 580	2,095000	1 150
	0,4	14 192	2,178400	1 762
	0,3	30 357	2,279500	2 541
	0,2	78 218	2,334700	7 425
TORC1 A	0,8	3 385	0,002631	7
	0,7	3 493	0,002632	9
	0,6	4 613	0,002632	9
	0,5	7 006	0,002633	13
	0,4	11 690	0,002637	22
	0,3	27 437	0,002641	51
	0,2	73 682	0,002647	123
TORC1 B	0,8	5 117	0,001908	11
	0,7	5 055	0,001907	12
	0.6	5 677	0.001907	15
	0,5	7 569	0,001909	21
	0,4	12 790	0,001912	33
	0,3	28 305	0,001917	64
	0,2	79 600	0,001922	172
TORC2 A	0.8	18 664	0.010302	48
	0.7	18 658	0.010302	58
	0.6	18 747	0.010298	49
	0.5	18 583	0.010298	45
	0.4	20 854	0.010312	49
	0.3	37 141	0.010316	81
	0.2	75 378	0.010352	164
TORC3 A	0.8	13 359	0.019398	38
	0.7	13 359	0.019398	36
	0.6	13 359	0.019391	33
	0.5	13 368	0.019438	36
	0.4	16 830	0.019416	55
	0.3	32 650	0.019499	77
	0.2	73 714	0.019614	173
CORT1 A	0.8	8 204	0.003532	20
<u></u>	0.7	8 585	0.003532	20
	0.6	9 076	0.003532	
	0.5	10 887	0.003532	22
	0.4	16 068	0.003540	20
	0,-	29 753	0.003543	
	0,5	23733	0,0000-0	70
1		/41/14	()()()()	177

	0,7	10 319	0,038801	32
	0,6	10 313	0,038798	33
	0,5	10 434	0,038835	34
	0,4	15 022	0,038901	52
	0,3	29 236	0,039095	97
	0,2	75 175	0,039544	246
CORT3_A	0,8	34 724	0,034401	153
	0,7	34 724	0,034401	128
	0,6	34 724	0,034401	116
	0,5	34 724	0,034401	96
	0,4	34 407	0,034422	113
	0,3	42 482	0,034439	143
	0,2	67 088	0,034439	241

ANEXO E: VALORES DA REAÇÃO NOS APOIOS E DEFORMAÇÃO DO ESTUDO NUMÉRICO POR MODELO

Força_ReaçãoY	DeslocamentoY	Força_ReaçãoY	DeslocamentoY	Força_ReaçãoY	DeslocamentoY
_COMP1_A [N]	_COMP1_A	_COMP1_B [N]	_COMP1_B	_COMP1_C [N]	_COMP1_C
	[mm]		[mm]		[mm]
-	-	-	-	-	-
123	0,0020	66	0,0020	141	0,0020
247	0,0040	132	0,0040	281	0,0040
370	0,0060	198	0,0060	421	0,0060
491	0,0080	264	0,0080	488	0,0080
558	0,0100	330	0,0100	501	0,0100
574	0,0120	395	0,0120	508	0,0120
583	0,0140	459	0,0140	514	0,0140
589	0,0160	521	0,0160	519	0,0160
595	0,0180	580	0,0180	523	0,0180
600	0,0200	634	0,0200	528	0,0200
605	0,0220	683	0,0220	532	0,0220
609	0,0240	725	0,0240	536	0,0240
614	0,0260	756	0,0260	540	0,0260
618	0,0280	777	0,0280	543	0,0280
622	0,0300	789	0,0300	547	0,0300
626	0,0320	797	0,0320	551	0,0320
630	0,0340	804	0,0340	555	0,0340
634	0,0360	809	0,0360	558	0,0360
638	0,0380	814	0,0380	562	0,0380
642	0,0400	819	0,0400	565	0,0400
646	0,0420	823	0,0420	569	0,0420
650	0,0440	827	0,0440	572	0,0440
654	0,0460	831	0,0460	576	0,0460
658	0,0480	835	0,0480	579	0,0480

Tabela E.1 - Valores de força e deslocamento dos modelos COMP1_A, COMP1_B e COMP1_C
662	0,0500	838	0,0500	583	0,0500
666	0,0520	841	0,0520	586	0,0520
669	0,0540	845	0,0540	590	0,0540
673	0,0560	848	0,0560	593	0,0560
677	0,0580	851	0,0580	597	0,0580
681	0,0600	854	0,0600	600	0,0600
685	0,0620	856	0,0620	603	0,0620
688	0,0640	859	0,0640	607	0,0640
692	0,0660	862	0,0660	610	0,0660
696	0,0680	864	0,0680	614	0,0680
699	0,0700	867	0,0700	617	0,0700
703	0,0720	869	0,0720	620	0,0720
707	0,0740	872	0,0740	623	0,0740
710	0,0760	874	0,0760	627	0,0760
714	0,0780	876	0,0780	630	0,0780
718	0,0800	879	0,0800	633	0,0800
721	0,0820	881	0,0820	637	0,0820
725	0,0840	883	0,0840	640	0,0840
728	0,0860	885	0,0860	643	0,0860
732	0,0880	887	0,0880	646	0,0880
736	0,0900	889	0,0900	649	0,0900
739	0,0920	892	0,0920	653	0,0920
743	0,0940	894	0,0940	656	0,0940
746	0,0960	895	0,0960	659	0,0960
750	0,0980	897	0,0980	662	0,0980
753	0,1000	899	0,1000	665	0,1000

Tabela E.2 - Valores de força e deslocamento dos modelos COMP1_D, COMP2_A e COMP2_B

Força_ReaçãoY	DeslocamentoY	Força_ReaçãoY	DeslocamentoY	Força_ReaçãoY	DeslocamentoY
_COMP1_D [N]	_COMP1_D	_COMP2_A [N]	_COMP2_A	_COMP2_B [N]	_COMP2_B
	[mm]		[mm]		[mm]

-	-	-	-	-	-
111	0,0020	19	0,0020	20	0,0020
221	0,0040	39	0,0041	40	0,0040
330	0,0060	58	0,0061	60	0,0061
438	0,0080	77	0,0082	80	0,0081
540	0,0100	94	0,0102	98	0,0101
621	0,0120	109	0,0122	114	0,0121
675	0,0140	123	0,0143	129	0,0141
711	0,0160	134	0,0163	142	0,0162
738	0,0180	144	0,0184	154	0,0182
758	0,0200	154	0,0204	165	0,0202
773	0,0220	162	0,0224	175	0,0222
786	0,0240	169	0,0245	184	0,0242
798	0,0260	175	0,0265	192	0,0263
809	0,0280	181	0,0286	200	0,0283
819	0,0300	187	0,0306	206	0,0303
829	0,0320	191	0,0326	212	0,0323
838	0,0340	196	0,0346	218	0,0343
846	0,0360	200	0,0367	223	0,0364
855	0,0380	203	0,0387	228	0,0384
863	0,0400	207	0,0407	232	0,0404
871	0,0420	209	0,0427	235	0,0424
879	0,0440	212	0,0448	239	0,0445
886	0,0460	215	0,0468	242	0,0465
894	0,0480	217	0,0488	245	0,0485
901	0,0500	219	0,0508	247	0,0505
908	0,0520	221	0,0529	249	0,0526
915	0,0540	223	0,0549	251	0,0546
922	0,0560	224	0,0569	253	0,0566
928	0,0580	226	0,0589	255	0,0586
935	0,0600	227	0,0610	256	0,0606
942	0,0620	228	0,0630	258	0,0627
948	0,0640	230	0,0650	259	0,0647
955	0,0660	231	0,0670	260	0,0667
961	0,0680	232	0,0691	261	0,0687

967	0,0700	233	0,0711	262	0,0708
973	0,0720	234	0,0731	263	0,0728
979	0,0740	234	0,0751	264	0,0748
985	0,0760	235	0,0772	265	0,0768
991	0,0780	236	0,0792	266	0,0789
997	0,0800	237	0,0812	267	0,0809
1 002	0,0820	237	0,0832	267	0,0829
1 008	0,0840	238	0,0853	268	0,0849
1 014	0,0860	239	0,0873	269	0,0870
1 019	0,0880	239	0,0893	269	0,0890
1 024	0,0900	240	0,0913	270	0,0910
1 029	0,0920	240	0,0933	270	0,0930
1 035	0,0940	241	0,0954	271	0,0950
1 039	0,0960	241	0,0974	272	0,0971
1 044	0,0980	242	0,0994	272	0,0991
1 049	0,1000	242	0,1014	273	0,1011

Tabela E.3 - Valores de força e deslocamento dos modelos COMP3_A, TORC1_A e TORC1_B

Força_Rea	Deslocam	Força_ReaçãoY_T	DeslocamentoY_T	Força_ReaçãoY_T	DeslocamentoY_T
çãoY	entoY	ORC1_A [N]	ORC1_A [mm]	ORC1_B [N]	ORC1_B [mm]
COMP3	_COMP3_				
A [N]	A [mm]				
-	-	-	-	-	-
22	0,0020	80	0,0020	112	0,0020
45	0,0040	160	0,0040	225	0,0040
67	0,0060	240	0,0060	336	0,0060
89	0,0080	320	0,0080	447	0,0080
112	0,0100	398	0,0100	554	0,0100
133	0,0120	458	0,0121	640	0,0120
155	0,0140	478	0,0141	685	0,0140
175	0,0160	488	0,0151	725	0,0160
195	0,0180	498	0,0161	757	0,0180

213	0,0200	512	0,0176	783	0,0200
231	0,0220	530	0,0196	804	0,0221
246	0,0240	546	0,0216	821	0,0241
260	0,0260	562	0,0236	837	0,0261
271	0,0280	576	0,0256	850	0,0281
282	0,0300	589	0,0277	862	0,0301
290	0,0320	600	0,0297	872	0,0321
298	0,0340	611	0,0317	882	0,0341
304	0,0360	620	0,0337	891	0,0361
310	0,0380	628	0,0357	900	0,0381
314	0,0400	636	0,0377	907	0,0401
318	0,0420	642	0,0397	914	0,0421
322	0,0440	648	0,0418	921	0,0441
325	0,0460	653	0,0438	927	0,0462
327	0,0480	658	0,0458	933	0,0482
330	0,0500	662	0,0478	939	0,0502
332	0,0520	666	0,0498	944	0,0522
334	0,0540	669	0,0518	949	0,0542
335	0,0560	672	0,0538	954	0,0562
337	0,0580	675	0,0558	958	0,0582
338	0,0600	677	0,0578	963	0,0602
339	0,0620	680	0,0598	967	0,0622
340	0,0640	682	0,0619	971	0,0642
341	0,0660	684	0,0639	975	0,0662
342	0,0680	685	0,0659	978	0,0682
343	0,0700	687	0,0679	982	0,0702
344	0,0720	689	0,0699	985	0,0722
345	0,0740	690	0,0719	989	0,0742
345	0,0760	692	0,0739	992	0,0762
346	0,0780	693	0,0759	995	0,0782
347	0,0800	694	0,0779	998	0,0802
347	0,0820	695	0,0799	1 001	0,0822
348	0,0840	697	0,0820	1 004	0,0842
349	0,0860	698	0,0840	1 007	0,0863
349	0,0880	699	0,0860	1 009	0,0883

Estudo Numérico de Estruturas Celulares com Geometria Adaptada

350	0,0900	700	0,0880	1 012	0,0903
350	0,0920	701	0,0900	1 015	0,0923
351	0,0940	702	0,0922	1 017	0,0943
351	0,0960	703	0,0944	1 020	0,0963
352	0,0980	704	0,0965	1 022	0,0983
352	0,1000	705	0,0987	1 025	0,1003

Tabela E.4 - Valores de força e deslocamento dos modelos TORC2_A, TORC3_A e CORT1_A

Força_ReaçãoY_T	DeslocamentoT_T	Força_ReaçãoY_T	DeslocamentoT_T	Força_Rea	Deslocam
ORC2_A [N]	ORC2_A [mm]	ORC3_A [N]	ORC3_A [mm]	çãoY	entoY
				CORT1	_CORT1_
				A [N]	A [mm]
-	-	-	-	-	-
101	0,0020	86	0,0020	58	0,0020
203	0,0040	172	0,0040	117	0,0040
304	0,0060	257	0,0060	175	0,0060
403	0,0080	341	0,0080	233	0,0080
500	0,0100	422	0,0100	291	0,0100
587	0,0120	498	0,0120	348	0,0120
625	0,0140	552	0,0140	402	0,0140
642	0,0160	586	0,0161	452	0,0160
655	0,0180	614	0,0181	495	0,0180
666	0,0200	637	0,0201	512	0,0200
675	0,0220	658	0,0222	523	0,0221
681	0,0240	675	0,0242	534	0,0241
687	0,0261	690	0,0262	543	0,0261
691	0,0281	702	0,0283	552	0,0281
695	0,0301	712	0,0303	559	0,0302
698	0,0321	721	0,0323	567	0,0322
700	0,0342	729	0,0343	573	0,0342
703	0,0362	736	0,0363	579	0,0362
705	0,0382	743	0,0383	584	0,0382
707	0,0402	750	0,0404	590	0,0403

708	0,0422	756	0,0424	594	0,0423
710	0.0442	762	0.0444	598	0.0443
711	0,0462	768	0,0464	602	0,0463
712	0,0482	774	0,0484	606	0,0483
714	0,0502	779	0,0504	609	0,0504
715	0,0523	784	0,0525	612	0,0524
716	0,0543	788	0,0545	615	0,0544
717	0,0563	793	0,0565	618	0,0564
718	0,0583	797	0,0585	620	0,0584
720	0,0603	801	0,0605	623	0,0604
721	0,0623	805	0,0625	625	0,0624
722	0,0643	809	0,0645	627	0,0645
723	0,0663	812	0,0665	629	0,0665
724	0,0684	816	0,0686	631	0,0685
725	0,0704	819	0,0706	632	0,0705
726	0,0724	822	0,0726	634	0,0725
727	0,0744	825	0,0746	635	0,0745
728	0,0764	828	0,0766	637	0,0765
729	0,0784	831	0,0786	638	0,0785
730	0,0804	834	0,0806	639	0,0805
731	0,0825	837	0,0826	640	0,0825
732	0,0845	839	0,0846	641	0,0846
733	0,0865	842	0,0867	643	0,0866
734	0,0885	844	0,0887	644	0,0886
735	0,0905	847	0,0907	645	0,0906
736	0,0925	849	0,0927	646	0,0926
737	0,0945	851	0,0947	646	0,0946
738	0,0966	853	0,0967	647	0,0966
739	0,0986	855	0,0987	648	0,0986
740	0,1006	857	0,1007	649	0,1006

	Deslocamento	(DeslocamentoY
Força_ReaçãoY	_CORT2_A	Força_ReaçãoY	_CORT3_A
_CORT2_A [N]	[mm]	_CORT3_A [N]	[mm]
-	-	-	-
9	0,0020	91	0,0020
18	0,0040	183	0,0040
26	0,0061	274	0,0061
35	0,0081	364	0,0081
44	0,0101	452	0,0101
53	0,0121	537	0,0122
62	0,0141	567	0,0132
70	0,0161	587	0,0142
78	0,0182	613	0,0157
87	0,0202	645	0,0177
95	0,0222	671	0,0198
102	0,0242	688	0,0219
110	0,0262	699	0,0240
117	0,0282	706	0,0261
124	0,0303	711	0,0282
130	0,0323	716	0,0303
135	0,0343	719	0,0325
140	0,0363	722	0,0346
145	0,0383	724	0,0367
148	0,0404	726	0,0388
152	0,0424	727	0,0409
155	0,0444	728	0,0430
157	0,0464	729	0,0451
159	0,0484	729	0,0472
161	0,0505	729	0,0493
163	0,0525	729	0,0514
164	0,0545	728	0,0535
166	0,0565	728	0,0557

Tabela E.5 - Valores de força e deslocamento dos modelos CORT2_A e CORT3_A

167	0,0586	727	0,0579
168	0,0606	725	0,0602
169	0,0626	724	0,0625
170	0,0646	723	0,0648
170	0,0666	721	0,0672
171	0,0687	719	0,0696
172	0,0707	718	0,0719
172	0,0727	716	0,0743
173	0,0747	714	0,0767
173	0,0768	712	0,0792
174	0,0788	711	0,0816
174	0,0808	709	0,0841
175	0,0829	707	0,0865
175	0,0849	705	0,0890
176	0,0869	703	0,0915
176	0,0889	701	0,0940
176	0,0910	699	0,0966
177	0,0930	697	0,0991
177	0,0950	696	0,1016
177	0,0970	694	0,1042
178	0,0991	692	0,1067
178	0,1011	690	0,1093

ANEXO F: IMAGENS REFERENTES À ANÁLISE NUMÉRICA

Apresentam-se de seguida imagens extra das análises numéricas efetuadas às estruturas celulares, nomeadamente no que respeita à deformação total (elástica + plástica) e ao deslocamento axial (eixo dos YY).

Figura F.1 - Estrutura COMP1_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Figura F.2 - Estrutura COMP1_B. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Estudo Numérico de Estruturas Celulares com Geometria Adaptada

Figura F.3 - Estrutura COMP1_C. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Figura F.4 - Estrutura COMP1_D. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YM)

Figura F.5 - Estrutura COMP2_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Figura F.6 - Estrutura COMP2_B. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YM)

Figura F.7 - Estrutura COMP3_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Figura F.8 - Estrutura CORT1_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Figura F.9 - Estrutura COMP2_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YM)

Figura F.10 - Estrutura COMP3_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos Y)

Figura F.11 - Estrutura TORC1_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YY)

Estudo Numérico de Estruturas Celulares com Geometria Adaptada

Figura F.12 - Estrutura TORC1_B. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YM)

Figura F.13 - Estrutura TORC2_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YM)

Figura F.14 - Estrutura TORC3_A. À esquerda: deformação total. À direita: Deslocamento axial (eixo dos YM)

ANEXO G: SCRIPT EM LINGUAGEM PYTHON UTILIZADO

```
# THIS IS A SCRIPT CREATED TO CALCULATE MECHANICAL PROPERTIES LIKE STIFFNESS
AND ENERGY ABSORPTION IN MULTIPLE MODELS
# THE VALUE OF A COMPONENT STIFFNESS IS THE SLOPE OF A LOAD-DISPLACEMENT CURVE
# THE VALUE FOR THE ENERGY ABSORPTION IS THE AREA BELLOW SUCH CURVE (USED
NUMERICAL METHODS (TRAPEZOIDAL) TO APPROXIMATE THIS VALUE SINCE IT'S AN AREA
INTEGRATION)
from numpy import trapz
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read excel(r'Documents\UM\5º Ano\Dissertação\.py\ansys data.xlsx')
df_density = pd.read_excel(r'Documents\UM\5º
Ano\Dissertação\.py\ansys data densidade.xlsx')
#df = pd.read_excel('ansys_data.xlsx')
#df_density = pd.read_excel('ansys_data_densidade.xlsx')
#-----#
# Mass of each model [kg]
MASS_VALUES = { 'COMP1_A':0.00078928,
               'COMP1 B':0.00079136,
               'COMP1 C':0.00079755,
               'COMP1 D':0.00081983,
               'COMP2 A':0.0007706,
               'COMP2 B':0.00080484,
               'COMP3_A':0.00077698,
               'TORC1_A':0.00080829,
               'TORC1_B':0.0007952,
               'TORC2_A':0.00080781,
               'TORC3_A':0.00080618,
               'CORT1 A':0.00081556,
               'CORT2_A':0.000787,
               'CORT3_A':0.00081162
               }
# Mass per relative density value (for the property vs relative density graph)
MASS_DENSITY = { '10': 0.0007845,
                '20': 0.0015691,
                '30': 0.0023536,
                '40': 0.00313813,
                '50': 0.003922667,
                '60': 0.0047072,
                '70': 0.00549173,
                }
```

```
#-----#
# Function to compute the area bellow the graph (energy - trapezoidal method))
and the slope of the curve (stiffness)
def compute_energy_stiffness(model, mass, load_values, displacement_values):
    energy_absorption = trapz(load_values, displacement_values)*1e-3 #N.mm to
N.m = J
    energy_absorption_specific = energy_absorption/mass # J/kg
    # Slope of the first 5 points (elastic region) to compute the specific
stiffness
    slope, intercept = np.polyfit(displacement_values[0:4],load_values[0:4],1)
    stiffness_specific = (slope/1000)/mass #N/m.kg
    return energy_absorption_specific, stiffness_specific
# Function to create a bar graph with the energy and stiffness values per
model
def bar_graph(models, energy, stiffness):
    #
https://matplotlib.org/3.1.1/gallery/lines_bars_and_markers/barchart.html#sphx
-glr-gallery-lines-bars-and-markers-barchart-py
    x = np.arange(len(models))
    width = 0.35
    fig, ax = plt.subplots()
    rects1 = ax.bar(x - width/2, energy, width, label='Energy [J/kg]')
    rects2 = ax.bar(x + width/2, stiffness, width, label='Stiffness [N/m.kg]')
    ax.set_xticks(x)
    ax.set xticklabels(models)
    ax.legend()
    plt.show()
# Function to plot energy and stiffness values per relative density percentage
def relative_density_graph(density, stiffness, energy):
    fig, ax1 = plt.subplots()
    ax2 = ax1.twinx()
    ax1.plot(density, stiffness, 'g-')
    ax2.plot(density, energy, 'b-')
    ax1.set xlabel('Relative Density [%]')
    ax1.set_ylabel('Stiffness [N/m.kg]', color='g')
    ax2.set_ylabel('Energy [J/kg]', color='b')
```

```
plt.show()
```

```
#-----#
# Creates a list with the model names in the database (ansys_data.xlsx)
num_col = len(df.columns)
model_names = []
for i in range(0, num_col):
   if i % 2 == 0:
       model_names.append(df.columns[i][6:])
# Gets the model names in model names and use the function
compute_energy_stiffness to compute the values
# i = model names and MASS VALUES loop
energy_values, stiffness_values = [], []
for i in range(len(model_names)):
   load_values = df['force_' + model_names[i]]
   displac_values = df['displacement_' + model_names[i]]
   energy absorption specific, stiffness specific =
compute_energy_stiffness(model_names[i], MASS_VALUES[model_names[i]],
load values, displac values)
   energy_values.append(energy_absorption_specific)
    stiffness_values.append(stiffness_specific)
   print(f'Model: {model_names[i]}', '\n',
           f'Energy: {energy_absorption_specific} J/kg', '\n',
           f'Stiffness: {stiffness_specific} N/mm.kg')
   plt.plot(displac_values, load_values, label=model_names[i])
   plt.legend(loc='lower right')
   plt.xlabel('Deslocamento [mm]')
   plt.ylabel('Força [N]')
   plt.title('Força vs Deslocamento')
# Saves the energy and stiffness final values in an excel file
data_tuple = list(zip(model_names, energy_values, stiffness_values))
df_values = pd.DataFrame(data_tuple, columns=['Models', 'Energy',
'Stiffness'])
df_values.to_excel('values.xlsx')
#-----#
# Plots energy and stiffness values per relative density (model n11_1)
density values = [70, 60, 50, 40, 30, 20, 10]
energy_abs_density, stiffness_density = [], []
```

for col, model in zip(range(0, len(df_density.columns)), density_values):

```
load_values_density = df_density['force_' + str(model)]
displac_values_density = df_density['displacement_' + str(model)]
mass = MASS_DENSITY[str(model)]
energy_absorption_specific, stiffness_specific =
compute_energy_stiffness(model, mass, load_values_density,
displac_values_density)
energy_abs_density.append(energy_absorption_specific)
stiffness_density.append(stiffness_specific)
#------#
```

relative_density_graph(density_values, stiffness_density, energy_abs_density)
bar_graph(model_names, energy_values, stiffness_values)
plt.show()

ANEXO H: DESENHO TÉCNICO DO COMPONENTE FINAL

ANEXO I: ARTIGO

Numerical Study of Cellular Structures with Adapted Geometry

Keywords: Cellular Structures; Mechanical Properties; RVE; Topology Optimization

Abstract

Mechanical properties of open-cell cellular structures, such as specific stiffness and specific strain energy, are studied using the concept of Representative Volume Element. To find new cellular structure geometries, the topology optimization algorithm was used. With this, 3 cube models with 3 different load cases resulted in 14 new geometries, all with a relative density equal to 10%. Then an elastic-plastic numerical analysis was applied to each geometry through the Finite Element Method. The results indicate that for a compression load, geometries with higher strut diameter and consequently lower number of struts have better specific stiffness and specific strain energy values. This phenomenon is attributed to the higher cross-section of the struts and cell configuration.

1. Introduction

Nowadays, the worry about sustainability is a must in any scientific field. Thus, the reduction of a component mass, especially in transportation, is proportional to the amount of polluted gas emitted [1]. The constant demand for new lightweight materials with high mechanical properties and the evolution of additive manufacturing made recent discoveries possible. Although cellular structures aren't new, they have been studied vigorously in the last couple of decades, mostly for their unique mechanical properties, including high stiffness and large capacity to absorb impact energy [2]. A cellular structure is made of an interconnected network of solid struts or plates that form the edges and faces of cells [3]. There are mainly two types of cellular structures: a two-dimensional array of polygons called honeycombs and a three-dimensional assembly of polyhedrons packed, usually called foams [3]. The three-dimensional cellular structures are subdivided into two categories, open and closed cells. If the solid of which the foam is made is contained in the cell edges only and so the cells are connected through open faces, they are called open-cell. On the other hand, if the faces are solid too so that each cell is sealed off from its neighbors, it is called closed-cell [3]. The single most important property of a cellular structure is its relative density. In other words, the density of the cellular material ρ^* , divided by the solid material from which the cell is made ρ_s [3]. Usually, cellular structures have a relative density below 0.3, balsa is about 0.25 [4], cork is about 0.14 and some polymeric foams are between 0.05 and 0.2 [3].

The current state of industry requirements and the search for innovative materials and products takes us to different approaches and so the use of computational power is a must. The topology optimization algorithm is a mathematical method that optimizes the distribution of material within a defined domain, by fulfilling given constraints previously established [5]. This method gives the possibility to find new complex geometries that would be otherwise hard to predict by the engineer, by balancing the amount of material with the required strength. In that regard, topology optimization is applied in this numerical study to find optimized cellular structures geometries with good specific mechanical properties like stiffness and strain energy. It's crucial to use a numerical process like the Finite Element Method to characterize, compare and evaluate the viability of any component. With that, this study aims to find new cellular structure geometries through topology optimization and the concept of Representative Volume Element.

2. Description of the method applied

2.1 Starting point

With the idea of finding a representative cell of a more broad cellular structure that could predict its mechanical properties, it was defined that the Representative Volume Element (RVE) concept would be used and only open-cell geometries would be considered. In that regard, a volume *V* of $10 \times 10 \times 10 \text{ mm}^3$, representing one RVE (i.e. one cell), was chosen. Furthermore, a relative density of 10% was defined as a final objective for each geometry.

Knowing that the Topology Optimization (TO) algorithm would be used through the ANSYS software, three cube models with different load application points were idealized, one with load points only in the center of each face, another with load points in the center of each edge and another with load points both on the center of the faces and on the vertexes. In every model, the load area was equal to 4 mm^2 per point. Then, for each of the models, it was developed three load cases, one of pure compression and two of combined loads (compression + torsion and compression + shear), as we can see in Fig. 15.

Fig. 15 - Scheme of the three initial cube models (RVE) and load cases

2.2 Topology Optimization

When utilizing TO it's required to first run a structural numerical analysis so that the algorithm defines critical regions that must have material and regions where the amount of material can be optimized. For that, the Static Structural ANSYS module was used to run a FEM simulation of the three cube models. With that, a pressure load type equal to 200 *MPa* was applied to each load region. *Xiao et al* applied an approximate amount of 250 *MPa* [6]. The chosen material was structural steel, already contemplated in the ANSYS library. The properties of such steel are presented in Table 6.

Property	Value	Unit
Density	7850	kg/m ³
Young's Modulus	200	GPa
Poisson's Ratio	0.3	-
Yield Strength	250	МРа

Table 6 - Material properties used in the numerical study

Concerning the mesh settings of the cubes, a Patch Conforming method with tetrahedrons, a quadratic element order, a Physic Preference - nonlinear mechanical and an element size of 0.35 *mm* was chosen. The geometry element ran by the simulation was SOLID187, which is a superior-order element with 10 nodes, containing 3 degrees of freedom each.

As for the boundary conditions, a fixed support was applied on the load regions of the bottom face. It is possible to analyze in Fig. 16 the load cases and numerical analysis results of each cube model.

Fig. 16 - Load cases and numerical results per cube model (von Mises equivalent stress)

In the sense of the topology optimization algorithm the Structural Optimization module, already implemented on the ANSYS software, was used. This module will utilize preview characteristics from the FEM analysis and the chosen TO settings to optimize each of the cube models. Regarding the topology optimization settings, it was defined that the boundary conditions regions (both the load and support) will be excluded from the optimization, so that all cells have connection points between them when later assembled, while the rest of the domain is free to be optimized. Following the literature, a penalty factor equal to 3 was used [7]. There are a few paths one can take when using topology optimization, in this study since the aim is to study stiffness and strain energy, a minimization of the compliance was chosen. Another relevant setting in TO is the percentage to retain of mass or volume when the optimization is done. For that, a 10% of the original mass was picked. Before running the model it was added a symmetry design constraint in each plane (when adequate), *XY*, *XZ* and *YZ*, with the objective that the obtained geometry is as isotropic as possible. Fig. 17 shows the final general constraints for the topology optimization.

Fig. 17 - Optimization regions, general constraints and TO objective. (a) Model 1; (b) Model 2; (c) Model 3

The numerical steps of topology optimization can be visualized in Fig. 18, where one can see in step 1 the boundary conditions regions with material (defined in the settings) and fundamental regions where the software added material.

Fig. 18 - Topology optimization steps. Example from model 1 - load case: compression

The final geometries obtained through TO, for each model, can be seen in Fig. 19.

Fig. 19 - Resulting geometries after topology optimization

2.3 Redesign

After running the TO algorithm it's reasonable to redesign and rescale each resulting structure. For that, the CAD software SOLIDWORKS 2017 was used, not only to create geometries directly from the ones obtained through TO but also to extrapolate extra possible useful ones. With that, model 1 resulted in seven structures, model 2 in four structures and model 3 in three structures. It is possible to see these geometries in Fig. 20.

Also, a nomenclature was developed for each of the structures, depending on which cube model the geometry was obtained and the load case.

Fig. 20 - Final redesigned cellular structures geometries

^{2.4} Numerical analysis

Although the stiffness of a structure can be studied only by the elastic region of a load-displacement diagram, the strain energy needs the plastic region as well. With that in mind, an elastic-plastic numerical analysis was made with a bilinear isotropic hardening model. For that, the Static Structural ANSYS module was used and a non-linear version of the material utilized before was chosen.

Regarding the mesh, the same as the analysis made to the initial cubes was chosen, except for the element size that varies in each cellular model.

For the sake of being consistent when later comparing cellular geometries, the same conditions were applied to every one of them. A compression response was analyzed through the application of a displacement equal to 0.1 *mm* in one face and a fixed support on the opposite one. With that, Fig. 21 presents the von Mises equivalent stress per cellular structure.

Fig. 21 - Elastic-plastic numerical analysis results (von Mises equivalent stress)

3. Results

Regarding the mass of each model obtained through topology optimization versus the final cellular structure (after redesign), the results are the expected ones, where an approximate 10% relative density was achieved, Table 7.

Cellular Structure	Mass after TO	Mass after	Relative Density [%]
Model	[g]	redesign [g]	
COMP1_A	0,839	0,789	10,1%
COMP1_B	0,839	0,791	10,1%
COMP1_C	0,839	0,798	10,2%
COMP1_D	0,839	0,820	10,4%
COMP2_A	0,862	0,771	9,8%
COMP2_B	0,862	0,805	10,3%
COMP3_A	0,839	0,777	9,9%
TORS1_A	0,825	0,808	10,3%
TORS1_B	0,825	0,795	10,1%
TORS2_A	0,832	0,808	10,3%
TORS3_A	0,792	0,806	10,3%
SHEA1_A	0,813	0,816	10,4%
SHEA2_A	0,839	0,787	10,0%
SHEA3_A	0,813	0,812	10,3%

Table 7 - Structures mass after TO and after the redesign

As for the mechanical properties studied, the stiffness values were obtained through the slope of the elastic region curve in a load-displacement diagram. On the other hand, the strain energy values were obtained through the area below the elastic and plastic regions, using the trapezoidal numerical method. Fig. 22 shows the load-displacement curves for each final cellular structure.

Fig. 22 - Load-displacement diagram

When analyzing Fig. 22, it's clear that models COMP2_A, COMP2_B COMP3_A and SHEA2_A have a gap between them and the rest. The maximum ultimate load of the referred models was only 352 *N* (COMP3_A).

One can obtain the specific stiffness value by dividing the stiffness by the mass of the model. Table 8 shows the stiffness and specific stiffness of each model, where it's possible to see that the structures with the best specific stiffness are COMP1_C with 88 052 N/mm. g, COMP1_A with 78 140 N/mm. g and TORS1_B with 70 518 N/mm. g. Fig. 23 shows a graphical approach of these three models. The structures with the lowest specific stiffness were SHEA2_A with 5 564 N/mm. g, COMP2_B with 12 288 N/mm. g and COMP2_A with 12 292 N/mm. g.

Cellular Structure	Relative Density	Stiffness	Specific Stiffness
Model	[%]	[N/mm]	[N/mm.g]
COMP1_A	10,1%	61 675	78 140
COMP1_B	10,1%	33 047	41 759
COMP1_C	10,2%	70 226	88 052
COMP1_D	10,4%	55 087	67 193
COMP2_A	9,8%	9 472	12 292
COMP2_B	10,3%	9 890	12 288
COMP3_A	9,9%	11 188	14 400
TORS1_A	10,3%	39 843	49 293
TORS1_B	10,1%	56 076	70 518
TORS2_A	10,3%	50 616	62 659
TORS3_A	10,3%	42 876	53 185
SHEA1_A	10,4%	29 171	35 768
SHEA2_A	10,0%	4 379	5 564
SHEA3_A	10,3%	45 085	55 550

Table 8 - Stiffness values obtained

Fig. 23 - Load-displacement diagram for COMP1_A, COMP1_C and TORS1_B

Concerning the strain energy, Table 9 shows the values for each model, as well as the specific strain energy. Structures TORS1_B, COMP1_D and COMP1_B had the maximum values for this property with 107.8 J/kg, 102.1 J/kg and 93.2 J/kg, respectively (Fig. 24). On the other hand, SHEA2_A, COMP2_A and COMP2_B recorded the minimum values of 17.3 J/kg, 25.3 J/kg and 27.0 J/kg.

Cellular Structure	Relative Density	Strain Energy	Specific Strain
Model	[%]	[J]	Energy [J/kg]
COMP1_A	10,1%	0,0632	80,1
COMP1_B	10,1%	0,0738	93,2
COMP1_C	10,2%	0,0562	70,5
COMP1_D	10,4%	0,0837	102,1
COMP2_A	9,8%	0,0195	25,3
COMP2_B	10,3%	0,0217	27,0
COMP3_A	9,9%	0,0281	36,2
TORS1_A	10,3%	0,0589	72,9
TORS1_B	10,1%	0,0858	107,8
TORS2_A	10,3%	0,0664	82,3
TORS3_A	10,3%	0,0712	88,3
SHEA1_A	10,4%	0,0548	67,2
SHEA2_A	10,0%	0,0136	17,3
SHEA3_A	10,3%	0,0718	88,4

Table 9 - Strain energy values obtained

Fig. 24 - Load - displacement diagram for the highest strain energy structures

4. Discussion

As mentioned before, some structures like COMP2_A, COMP2_B, COMP3_A and SHEA2_A have little to no interest in this study, because the ultimate load is low compared to the rest (352 N - COMP3_A). This means that the stiffness and capacity to absorb energy will also be low, even when analyzing the specific property. One can also verify that the geometry of the said structures is alike and that the missing vertical strut at the center is a common factor.

Concerning the specific stiffness, it is noteworthy that of the three structures with the highest value (COMP1_C, COMP1_A and TORS1_B), two have a vertical central strut. On the other hand, some structures, despite not having this central strut, got significant values in stiffness, namely COMP1_A. These structures have in common that the lateral supports are curved, which may explain this fact.

It was also verified that structures without the central vertical support and curved lateral supports, resulted in specific stiffness values much lower than the others, namely: SHEA2_A, COMP2_A, COMP2_B and COMP3_A. The void inside the cell, consequent of the struts connecting only perpendicular faces and not opposite faces, makes the structure prone to deformation.

As for the specific strain energy, as mentioned before, structures TORS1_B, COMP1_D and COMP1_B registered the highest values. Structure COMP1_B becomes interesting because it doesn't have a central strut or curved lateral struts like COMP1_D. When analyzing the five structures with the highest strain energy, one can verify that they include geometries from models 1 and 3 of the original cubes and all three load cases.

Besides the importance of geometry, it was also noticed that although all cellular structures have the same relative density (10%), all geometries with the best mechanical properties have fewer struts but higher diameters per strut.

To evaluate the outcome of all structures regarding both specific stiffness and specific strain energy, the diagram represented in Fig. 25 was made. There are various interesting structures, namely COMP1_C, which has the highest specific stiffness, TORS1_B, which has the maximum specific strain energy, and COMP1_D, which has a good relationship between specific stiffness and specific strain energy.

Fig. 25 - Comparison between specific stiffness and specific strain energy per structure

5. Conclusions

In this research article topology optimization algorithm is used to design different cellular structure geometries. Initially, three cube models with the same volume, different load points and load cases were idealized.

After the application of topology optimization, geometries were extrapolated from the optimized models and redesigned. Then an elastic-plastic numerical study was made. Furthermore, while evaluating mechanical properties, of all fourteen final geometries (with the same relative density), COMP1_C, COMP1_A and TORS1_B registered the highest specific stiffness and TORS1_B, COMP1_D and COMP1_B the highest specific strain energy. It's important to notice that a vertical central strut or lateral curved struts were significantly important for the stiffness. Also, the highest mechanical properties values came from geometries with higher diameter per strut but less number of struts.

This study intends to show first the importance of computational optimization in the search for new complex solutions, otherwise hard to find. On the other hand, it reinforces how relevant cellular structures can be in the search for more sustainable materials with high specific properties.

6. References

- M. Bertram, K. Buxmann e P. Furrer, "Analysis of greenhouse gas emissions related to aluminium transport applications," *The International Journal of Life Cycle Assessment*, vol. 14, p. 62– 69, 2009.
- [2] J. L. J. Y. H. C. D.P. Kou, "Mechanical behavior of open-cell metallic foams with dual-size cellular structure," *Scripta Materialia*, vol. 59, pp. 483-486, 2008.
- [3] L. J. Gibson e M. F. Ashby, Cellular solids, Cambridge: Cambridge Solid State Science Series, 1997.
- M. Borrega Sabate e L. J. Gibson, "Mechanics of balsa (Ochroma pyramidale) wood," *Mechanics of Materials*, vol. 84, pp. 75-90, 2015.
- [5] I. P.Rosinha, K. V.Gernaey, J. M.Woodley e U. Krühne, "Topology optimization for biocatalytic microreactor configurations," *Computer Aided Chemical Engineering*, vol. 37, pp. 1463-1468, 2015.
- [6] Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song e D. Wang, "Evaluation of topology-optimized lattice structures manufactured via selective laser melting," *Materials and Design*, pp. 27-37, 2018.
- F. Jensen, Topology Optimization of Turbine Manifold in the Rocket Engine Demonstrator Prometheus, Luleå: Department of Computer Science, Electrical and Space Engineering, 2018.

BIBLIOGRAFIA

- L. J. Gibson e M. F. Ashby, Cellular solids, Cambridge, United Kingdom: Cambridge University Press, 1997.
- R. J. Pugh, "1 Basic principles and concepts," em *Bubble and Foam Chemistry*, Cambridge , Cambridge University Press, 2016, pp. 1-53.
- [3] A. L. News, 9 Fevereiro 2022. [Online]. Available: https://www.alamy.com/bochum-germany-09th-feb-2022-a-firefighter-covers-a-gas-pump-with-extinguishing-foam-at-the-ruhrschnellweg-servicestation-on-the-a40-a-car-crashed-into-a-gas-pump-which-tipped-over-and-caught-fire-according-to-thefire-department-an.
- [4] S. Urban, "Organic Authority," 22 Outubro 2018. [Online]. Available: https://www.organicauthority.com/buzz-news/what-is-honeycomb.
- [5] Wikipédia, "Rhombic dodecahedron," 5 Agosto 2022. [Online]. Available: https://en.wikipedia.org/wiki/Rhombic_dodecahedron.
- [6] M. Borrega e L. J. Gibson, Mechanics of balsa (Ochroma pyramidale) wood, Massachusetts Avenue, 02139 Cambridge MA, USA: Department of Materials Science and Engineering, Massachusetts Institute of Technology, p. 3.
- [7] ANSYS, "Chart: Young's Modulus vs. Density," [Online]. Available: https://www.ansys.com/academic/educators/education-resources/chart-youngs-modulus-vsdensity. [Acedido em 22 Outubro 2022].
- [8] A. H. Rahman, "Weight Optimization of Main Battle Tank Structures," EFFECTIVENESS OF HONEYCOMB STRUCTURE IN MAIN BATTLE TANK DESIGN, Julho 2013.
- [9] N. Peixinho e M. Machado, "Numerical Simulation of Compressive Response of Open-Cell Aluminum Foams," *Advanced Materials Research Vol. 1016 (2014)*, pp. 156-160, 2014.
- [10] Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song e D. Wang, "Evaluation of topology-optimized lattice structures manufactured via selective laser melting," *Materials and Design*, pp. 27-37, 2018.
- [11] C. Simoneau, P. Terriault, J. Rivard e V. Brailovski, "Modeling of metallic foam morphology using the Representative Volume Element approach: Development and experimental validation," *International Journal of Solids and Structures*, pp. 3633-3641, 2014.
- [12] T. Kanit, S. Forest, I. Galliet, V. Mounoury e D. Jeulin, "Determination of the size of the representative volume element for random composites: statistical and numerical approach," *International Journal of Solids and Structures*, pp. 3647-3679, 2003.

- [13] J. Somnic e B. Jo, "Homogenization Methods of Lattice Materials," *Encyclopedia 2022*, p. 1091–1102, 2022.
- [14] S. R. Goodyear e R. M. Aspden, "Mechanical Properties of Bone Ex Vivo," *Methods Mol Biol.*, pp. 241-257, 2019.
- [15] K. GrilecGojko e M. Miloš, "Aluminium Foams in the Design of Transport Means," *Promet-Traffic & Transportation,* 2012.
- [16] B. Baştürk e M. Tanoglu, "Mechanical and energy absorption behaviors of metal/polymer layered sandwich structures," *Journal of Reinforced Plastics and Composites*, pp. 1539-1547, 2011.
- [17] W. D. Callister e D. G. Rethwisch, Fundamentals of Materials Science and Engineering, United States: JOHN WILEY & SONS, INC., 2008.
- [18] Solidworks, Understanding Nonlinear Analysis, SolidWorks Corporation, 2005.
- [19] W. S. Association, "Yield Strength," 2021. [Online]. Available: https://ahssinsights.org/tag/yield-stress/.
- [20] ANSYS, "Training Manual," em *Chapter 2 Nonlinear Structural*, ANSYS, 2005.
- [21] C. A. G. Moura Branco, Mecânica dos Materiais, Lisboa: Fundação Calouste Gulbenkian, 2011.
- [22] D. A. Andriyana, "Failure Criteria for Yielding," Centre de Mise en Forme des Mat´eriaux, 2008.
- [23] Wikipedia, "von Mises yield criterion," 31 julho 2022. [Online]. Available: https://en.wikipedia.org/wiki/Von_Mises_yield_criterion.
- [24] E. M. Alawadhi, Finite Element Simulations Using ANSYS, Taylor & Francis Group, LLC, 2010.
- [25] ANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, Canonsburg, Pennsylvania: ANSYS, Inc., 2009.
- [26] ANSYS, Fundamental FEA Concepts and Applications, ANSYS. Inc..
- [27] C. UNIVERSITY, "Mesh Convergence: The modern way," 2015. [Online]. Available: https://caeuniversity.com/mesh-convergence-modern/.
- [28] F. Jensen, "Topology Optimization of Turbine Manifold in the Rocket Engine Demonstrator Prometheus," Department of Computer Science, Electrical and Space Engineering, Luleå, 2018.
- [29] "Engineering Product Design," [Online]. Available: https://engineeringproductdesign.com/knowledge-base/topology-optimization/. [Acedido em 5 9 2022].
- [30] M. Bendsøe e O. Sigmund, Topology Optimization Theory, Methods and Applications, Lyngby, Denmark: Springer, 2003.

- [31] O. Sigmund, "On the design of compliant mechanisms using topology optimization," em *Mechanics of Structures and Machines*, 1997, pp. 493-524.
- [32] N. T. Kaminakis e G. E. Stavroulakis, "Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials," *Composites Part B: Engineering,* vol. 43, n° 6, pp. 2655-2668, 2012.