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Abstract

This paper deals with the dynamics of the one-parameter fam-
ily of coquaternionic quadratic maps x2 + bx. By making use of
recent results for the zeros of one-sided coquaternionic polynomi-
als, the fixed points are analytically determined. The stability of
these fixed points is also addressed, where, in some cases, due to
the appearance of sets of non-isolated points, a suitably adapted
notion of stability is used. The results obtained show clearly that
this family is not dynamically equivalent to the simpler family
x2 + c previously studied by the authors. Some numerical exam-
ples of other dynamics beyond fixed points are also presented.

1 Introduction

Discrete dynamical systems have played an important role in science, by providing very simple models of time
evolution for phenomena appearing in many different fields, such as biology, demography, ecology, economics,
engineering, finance, and physics.

The dynamics of the quadratic maps in the complex plane, one of the most recognized complex dynamics
families, has been object of intense study in the last decades and is now considered a well-established theory
[5, 26, 28].

The first and natural attempts to extend this theory to higher dimensions were done in a quaternion
framework [6, 7, 10, 18, 20, 21, 22, 25, 29, 35, 36]. The fact that the new results obtained in the quaternionic
context appear to be very closely related to the corresponding ones in the complex case does not mean that the
use of another four-dimensional hypercomplex real algebra may not lead to interesting and surprising results.

One such algebra is the algebra of coquaternions, also known in the literature as split quaternions,
introduced in 1849 by the English mathematician James Cockle [11]. In recent years one can observe
an emerging interest among mathematicians and physicists on the study of these hypercomplex numbers
[1, 2, 8, 9, 17, 19, 23, 24, 27, 30, 31, 32, 34, 37, 33, 39, 40].

According to Avner Friedman [16], “While we can expect that established methods in mathematical sciences
will be of immediate use, the quantitative analysis of fundamental problems in bioscience will undoubtedly
require new ideas and new techniques.”. It is our conviction that the dynamics of coquaternionic maps may
be one such technique. From the richness of results already obtained with some preliminary results, we believe
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2 Dynamics of the coquaternionic maps x2 + bx

that this area of research will be useful for scientists in general, allowing them to compare and recognize the
properties of the time evolution phenomena they study with the characteristics found for the coquaternionic
dynamics. It should be noticed that, since the algebra of coquaternions is isomorphic to the algebra of two-
by-two real matrices, the actual context of this kind of discrete dynamical systems is not as strange as one
may think.

The authors considered in a previous study [13] the family of coquaternionic quadratic maps of the simple
form x2 + c. The fixed points and periodic points of period two of this family of maps were determined and
an interesting feature of the coquaternionic dynamics was observed: the appearance of sets of non-isolated
such points. For this type of sets, the usual concept of stability has to be appropriately adapted. It turns out
that none of the sets of non-isolated fixed points of the map x2 + c are attractive1 (even in this new sense).

As it is well-known, to study the dynamics of complex quadratic maps we only have to consider the
particular family of maps of the form x2 + c, since any quadratic map is dynamically equivalent to a member
of this family. In the coquaternionic case, the situation is totally different.

We first observe that, due to the non-commutativity of the product of coquaternions, the sum of two
mth degree monomials a0xa1x · · · am−1xam and a′0xa′1x · · · a′m−1xa′m can not be written simply in the form
A0xA1x · · ·Am−1xAm and hence, the general expression of a quadratic coquaternionic polynomial is

n∑
j=1

aj0 x aj1 x aj2 +
k∑

j=1

bj
0 x bj

1 + c, n, k ∈ N,

with aji , bj
i and c coquaternions. Not surprisingly, contrary to what happens in the commutative case, no

conjugacy equivalence of a quadratic coquaternionic polynomial to a simple form is available. In this paper we
consider the family of coquaternionic maps of the form x2+bx. It is important to observe that, unless b ∈ R,
this type of map is not conjugate to any map of the form x2 + c, i.e. to the type of map previously studied
[13]. By making use of recent results on the zeros of one-sided coquaternionic polynomials [15], we are able to
fully characterize the sets of fixed points of the map x2 + bx. In particular, we find sets of non-isolated points
with a different nature from the ones obtained for the map x2 + c; in the case of the map x2 + c, the sets
of non-isolated fixed points appear only when c ∈ R and always form hyperboloids (in a certain hyperplane),
while in the present case of the map x2 + bx, for some non-real choices of the parameter b, we obtain lines
of fixed points; and, more interestingly, some of these lines turn out to be attractive sets of points.

The rest of the paper is organized as follows: Section 2 contains a revision of the main definitions and
results on the algebra of coquaternions and on the zeros of unilateral coquaternionic polynomials. Section 3
is dedicated to the determination and stability analysis of the fixed points of the coquaternionic maps x2+ bx
and contains the main results of the paper; Section 4 presents some numerical examples of dynamics beyond
fixed points and Section 5 concludes.

2 Preliminary results

In this section, we briefly revise the main concepts and results, concerning the algebra of coquaternions, needed
for the rest of the paper. More details can be found in previous studies [12, 13, 15].

2.1 The algebra Hcoq

Let {1, i, j, k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to the
multiplication rules

i2 = −1, j2 = k2 = 1, ij = −ji = k.

This non-commutative product generates the algebra of real coquaternions, which we will denote by Hcoq.
We will identify the space R4 with Hcoq by associating the element (q0, q1, q2, q3) ∈ R4 with the coquaternion
q = q0+q1i+q2j+q3k. Given q = q0+q1i+q2j+q3k ∈ Hcoq, its conjugate q is defined as q = q0−q1i−q2j−q3k;
the number q0 is called the real part of q and is denoted by re q and the vector part of q, denoted by vec q, is
vec q = q1i+q2j+q3k. We will identify the set of coquaternions whose vector part is zero with the set R of real

1This is no longer true, however, for the case of periodic points of period two.
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numbers. We call determinant of q and denote by det q the quantity given by det q = q q = q20 + q21 − q22 − q23 .
Not all non-zero coquaternions are invertible. It can be shown that a coquaternion q is invertible (also referred
to as nonsingular) if and only if det q ̸= 0. In that case, we have, q−1 = q

det q .
We also recall the concepts of similarity and quasi-similarity for coquaternions. We say that a coquaternion

q is similar to a coquaternion p if there exists an invertible h ∈ Hcoq such that q = h−1ph. This is an equivalence
relation in Hcoq, partitioning Hcoq in the so-called similarity classes.

We say that two elements p, q ∈ Hcoq are quasi-similar if and only if re p = re q and det p = det q (or,
equivalently, if re p = re q and det(vec p) = det(vec q)). This is also an equivalence relation in Hcoq; the class
of an element q ∈ Hcoq with respect to this relation is denoted by JqK and referred to as the quasi-similarity
class of q. It can be shown that for two non-real coquaternions, the concepts of quasi-similarity and similarity
coincide, i.e. two non-real coquaternions are similar if and only if they have the same real part and the same
determinant. However, if q = q0 ∈ R, then q is only similar to itself but quasi-similar to all the coquaternions
p of the form p = q0 + vec p with det(vec p) = 0. Observe that the quasi-similarity class of a coquaternion q
is given by

JqK =
{
x0 + x1i + x2j + x3k : x0 = q0 and x2

1 − x2
2 − x2

3 = det(vec q)
}

and can, therefore, be identified with a hyperboloid in the hyperplane
{(x0, x1, x2, x3) ∈ R4 : x0 = q0}: a hyperboloid of two sheets if det(vec q) > 0, a hyperboloid of one
sheet if det(vec q) < 0 and a degenerate hyperboloid, i.e. a cone, if det(vec q) = 0.

2.2 Unilateral coquaternionic polynomials

We now present very briefly some results on the zeros of coquaternionic polynomials [15]. We consider only
monic unilateral left polynomials, i.e. polynomials of the form

P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, ai ∈ Hcoq, (2.1)

with addition and multiplication of such polynomials defined as in the commutative case where the variable is
allowed to commute with the coefficients.

Given a quasi-similarity class JqK = Jq0 + vec qK, the characteristic polynomial of JqK, denoted by ΨJqK, is
the polynomial given by2

ΨJqK(x) = x2 − 2q0 x+ det q.

This is a second degree monic polynomial with real coefficients with discriminant ∆ = −4 det(vec q). Hence,
ΨJqK has two complex conjugate roots, if det(vec q) > 0, and is a polynomial of the form (x−r1)(x−r2), with
r1, r2 ∈ R, if det(vec q) ≤ 0. Reciprocally, any second degree monic polynomial S(x) with real coefficients
is the characteristic polynomial of a uniquely defined quasi-similarity class; if S(x) is irreducible with two
complex conjugate roots α and α, then S = ΨJαK; if S has real roots r1 and r2 (with, eventually, r1 = r2),
then S = ΨJqK with q = r1+r2

2 + r1−r2
2 j.

We say that z ∈ Hcoq is a zero (or a root) of the polynomial P if P (z) = 0 and we denote by Z(P ) the
zero set of P , i.e. the set of all the zeros of P .

Given a polynomial P of the form (2.1), its conjugate polynomial is the polynomial defined by P (x) =
xn+an−1x

n−1+ · · ·+a1x+a0 and its companion polynomial is the polynomial given by CP (x) = P (x)P (x).
The following theorem contains an important result relating the characteristic polynomials of the quasi-

similarity classes of zeros of a given polynomial P and the companion polynomial of P [15].

Theorem 2.1. Let P be a polynomial of the form (2.1). If z ∈ Hcoq is a zero of P , then ΨJzK is a divisor of
CP .

It can be shown easily that CP is a polynomial of degree 2n with real coefficients and, as such, considered
as a polynomial in C, has 2n roots. If these roots are α1, α1, . . . , αm, αm ∈ C \ R and r1, r2, . . . , rℓ ∈ R,
where ℓ = 2(n−m), (0 ≤ m ≤ n), then it is easy to conclude that the characteristic polynomials which divide
CP are the ones associated with the following quasi-similarity classes:

JαkK; k = 1, . . . ,m, (2.2a)

2This polynomial is more commonly referred to as the characteristic polynomial of the coquaternion q. Since this polynomial
is an invariant of the class, we find it more convenient to adopt our denomination.
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JrijK; i = 1, . . . , ℓ− 1, j = i+ 1, . . . , ℓ, (2.2b)

with

rij =
ri + rj

2
+

ri − rj
2

j. (2.2c)

We thus have the following result concerning the zero set of P :

Theorem 2.2. Let P be a polynomial of the form (2.1). Then:

Z(P ) ⊆
⋃
k

JαkK
⋃
i,j

JrijK,

where JαkK and JrijK are the quasi-similarity classes defined by (2.2).

We call the classes given by (2.2) the admissible classes (with respect to the zeros) of the polynomial P .
The results given in the following theorem show how to find the set of zeros of P belonging to a given

admissible class [15].

Theorem 2.3. Let P (x) be a polynomial of the form (2.1) and let JqK = Jq0 + vec qK be a given admissible
class of P (x). Also, let A + Bx, with B = B0 + B1i + B2j + B3k, be the remainder of the right division of
P (x) by the characteristic polynomial of JqK.3

1. If detB ̸= 0, then JqK contains only one zero of P , given by z = −B−1A.

2. If A = B = 0, then JqK ⊆ Z(P ).

3. If B ̸= 0,detB = 0 and the equation A + Bx = 0 has a real solution γ0 satisfying

(q0 − γ0)
2 = −det(vec q), (2.3)

then the zeros of P in JqK form the following line in the hyperplane x0 = q0,

L =
{
q0 + αi + (k2α+ k1(q0 − γ0)) j + (−k1α+ k2(q0 − γ0)) k : α ∈ R

}
, (2.4a)

with k1 and k2 given by

k1 = −B0B2 +B1B3

B2
0 +B2

1

and k2 =
B1B2 −B0B3

B2
0 +B2

1

. (2.4b)

4. If B ̸= 0,detB = 0 and the equation A + Bx = 0 has a nonreal solution γ = γ0 + γ1i, then the class
JqK contains only one zero of P , given by

z = q0 + (β + γ1)i + (k2β + k1(q0 − γ0)) j + (−k1β + k2(q0 − γ0)) k,

where

β =
det(vec q) + (q0 − γ0)

2 − γ2
1

2γ1

and k1 and k2 are given by (2.4b).

5. If none of the above conditions holds, then there are no zeros of P in JqK.

In cases (1) and (4), we say that the zero z is an isolated zero of P ; in case (2), we say that the class JqK
(or any of its elements) is a hyperboloidal zero of P and in case (3) we call the line L (or any of its elements)
a linear zero of P .

3Since the product of two polynomials in Hcoq is defined in the usual manner, we can use the “Euclidean Division Algorithm”
to perform the division of two polynomials, provided that the leading coefficient of the divisor is non-singular, which is obviously
the case here.
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3 The map fb(x) = x2 + bx

In a previous paper, the authors studied the dynamics of the family of quadratic coquatenionic maps of the
form x2 + c, with c a coquaternionic parameter.

We are now concerned with the dynamics of a different family of quadratic coquaternionic maps, namely,
the maps x2 + bx, with b a coquaternionic parameter.

We first recall several basic dynamical systems concepts and results which will play an important role in
the remaining part of the paper. Finally, it is worthwhile to mention that, since the algebra of coquaternions is
isomorphic to the algebra M2(R) of 2× 2 real matrices, the research on the iteration of functions defined on
matrix algebras developed by Baptista et al [4] and Serenevy [38] can also be seen — although with a different
approach — as a first and important contribution to the study of the dynamics of coquaternionic maps.

3.1 Preliminaries

Let X be a metric space and f a map from X to itself. We say that (X, f) is a discrete dynamical system. For
k ∈ N0, we denote by fk the k-th iterate of the map f , inductively defined by f0 = idX and fk = f ◦ fk−1,
k ∈ N. For a given initial point x0 ∈ X, the orbit of x0 under f is the sequence

(
fk(x0)

)
k∈N0

. A point

x ∈ X is said to be a periodic point of f with period n ∈ N, if fn(x) = x, with fk(x) ̸= x for 0 < k < n;
in this case, we say that the set {x, f(x), . . . , fn−1(x)} is an n-cycle for f . Periodic points of period one are
called fixed points.

Two maps f : X → X and g : X → X are said to be conjugate if there exists an invertible map ϕ such
that f ◦ ϕ = ϕ ◦ g. In this case, we say that the corresponding dynamical systems (X, f) and (X, g) are
dynamically equivalent, since they share the same dynamical characteristics.

As already referred, in the complex case, any quadratic map, in particular a map of the form x2 + bx, is
conjugate to a map x2 + c, for a suitable c. Since a real number commutes with any coquaternion, it is easy
to recognize that this result still holds for maps of a coquaternionic variable in the particular case where the
parameter b is real. For other types of parameters, however, as the results of the next sections show, the maps
x2 + bx admit behaviors never occurring in the case x2 + c, allowing us to conclude that these two families
of maps cannot be conjugate.

When studying a dynamical system, besides the existence of periodic points of the map, it is also important
to discuss their stability, i.e. to determine if these points are attractive, in the following sense.

Definition 3.1. A periodic point x of period n ∈ N of a map f : X → X is said to be attractive if, given
any x′ sufficiently close to x, the sequence of iterates

(
(fn)

k
(x′)

)
k

converges to x.

A cycle is said to be attractive if all its points are attractive.

3.2 Existence of fixed points

In this section we study the existence of fixed points for the family of coquaternionic quadratic maps of the
form

fb(x) = x2 + bx, (3.1)

with b a non-real coquaternionic parameter.
We start by stating a lemma whose proof is a simple adaptation of the proof of Theorem 3.2 given in a

previous study by the authors [13].

Lemma 3.2. To study the dynamics of the quadratic map fb(x) = x2 + bx, b ∈ Hcoq \R, there is no loss of
generality in assuming that b has one of the following forms:

b = b0 + b1i, b1 > 0,
b = b0 + b2j, b2 > 0, or
b = b0 + i + j.

The results of following lemma show that the choice of the parameter b can be restricted even further.

Lemma 3.3. Let b be a non-real coquaternion with any of the forms referred to in Lemma 3.2. Then, the
dynamical system (Hcoq, fb) is dynamically equivalent to the dynamical system (Hcoq, f2−b).
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Proof. Let x = x0 + x1i + x2j + x3k ∈ Hcoq and consider the involutions [8]

κi(x) = −i x̄ i = x0 − x1i + x2j + x3k,

κj(x) = j x̄ j = x0 + x1i − x2j + x3k,

κk(x) = k x̄ k = x0 + x1i + x2j − x3k.

Introducing the function ϕb : Hcoq → Hcoq, such that ϕb(x) = κ(x) + b − 1, where

κ(x) =


κj(x), if b = b0 + b1i,

κi(x), if b = b0 + b2j,

κk(x), if b = b0 + i + j,

one can easily verify that, for any x ∈ Hcoq, one has (ϕb ◦ fb)(x) = (f2−b ◦ ϕb)(x), which establishes the
result.

As an immediate consequence of the two previous lemmas, we immediately obtain the following important
result.

Lemma 3.4. To study the dynamics of the quadratic map fb(x) = x2 + bx, b ∈ Hcoq \ R, there is no loss
of generality in assuming that b has one of the following forms:

C1 b = b0 + b1i, b0 ≥ 1, b1 > 0

C2 b = b0 + b2j, b0 ≥ 1, b2 > 0

C3 b = b0 + i + j, b0 ≥ 1.

We will refer to the three different forms of the parameter b given above as the canonical forms.

We now observe that the fixed points of the map (3.1) are, naturally, the zeros of the polynomial

Pb(x) = x2 + (b − 1)x. (3.2)

We can make use of Theorem 2.3 to fully discuss the number and nature of zeros of Pb, or, in other words,
to characterize the fixed points of the map fb, for each of the three different canonical forms of the parameter
b referred to in Lemma 3.4. This leads us to the results contained in the following theorem.

Theorem 3.5. Let fb(x) = x2 + bx, with b a coquaternion with one of the forms C1– C3. The fixed points
of the map fb can be characterized as follows.

1. For b of the form C1, there are two fixed points, 0 and 1− b.

2. For b of the form C2, there are two lines of fixed points

L1 =
{

1−b0−b2
2 + αi + 1−b0−b2

2 j − αk : α ∈ R
}

(3.3)

and

L2 =
{

1−b0+b2
2 + αi − 1−b0+b2

2 j + αk : α ∈ R
}
, (3.4)

and, if b0 − b2 ̸= 1, two additional fixed points, 0 and 1− b.

3. For b of the form C3, there is a line of fixed points

L =
{

1−b0
2 + αi + αj + 1−b0

2 k : α ∈ R
}

(3.5)

and, if b0 ̸= 1, two additional fixed points, 0 and 1− b.
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Proof. The companion polynomial of the polynomial Pb given by (3.2) is

CPb
(x) = x2ΨJ1−bK, (3.6)

whose roots, in C, are the double real root 0 together with the roots of ΨJ1−bK. First, observe that 0 and
1−b are always zeros of Pb, and hence J0K and J1−bK are always admissible classes of Pb. The characteristic
polynomial of J0K is simply x2 and so the remainder of the division of Pb(x) by ΨJ0K is the polynomial (b−1)x
i.e. the values of A and B referred to in Theorem 2.3 are given by:

A = 0 and B = b0 − 1 + vec b. (3.7)

As for the characteristic polynomial of J1− bK, we have ΨJ1−bK(x) = x2 − 2(1− b0)x+det(1− b) and so, in
this case, we obtain the following values for A and B:

A = −(1− b0)
2 − det(vec b) and B = 1− b0 + vec b. (3.8)

1. Case b with form C1
In this case, the polynomial ΨJ1−bK has two complex conjugate roots and so there are only two admissible
classes, J0K and J1− bK. Let us now determine the zeros in each of these classes.

(a) Zeros in J0K
In this case, we have from (3.7), B = b0 − 1 + b1i. Since detB = (b0 − 1)2 + b21 > 0, we conclude
that there is only one zero of Pmathsfb in J0K, which is, naturally, x = 0.

(b) Zeros in J1− bK
We have, from (3.8), B = 1− b0 + b1i and so, we have again that detB > 0, showing that there
is only one zero of Pb in J1− bK, which is x = 1− b.

2. Case b with form C2
In this case, the characteristic polynomial ΨJ1−bK has two distinct real roots α∓ = 1− b0 ∓ b2 and the
admissible classes of the polynomial Pb are

J0K, J1− bK,
r

1−b0−b2
2 + 1−b0−b2

2 j
z

and
r

1−b0+b2
2 + 1−b0+b2

2 j
z
.

Note that, if b0 − b2 ̸= 1, we have four distinct admissible classes, whilst if b0 − b2 = 1, the number of
admissible classes reduces to two: J0K and J1− bK. Also, note that, since b ∈ C2,

(b0 − 1)2 − b22 = 0 ⇐⇒ b0 − b2 = 1. (3.9)

(a) Case b0 − b2 ̸= 1

i. Zeros in J0K
In this case, from (3.7), we have B = b0 − 1 + b2j and so detB = (b0 − 1)2 − b22 ̸= 0; see
(3.9). Hence, there is only one root of Pb in J0K, which is x = 0.

ii. Zeros in J1− bK
We have, from (3.8), B = 1− b0 + b2j and, again, the use of (3.9) guarantees that detB ̸= 0.
Thus, there is only zero of Pb in J1− bK, which is is x = 1− b.

iii. Zeros in
r

1−b0−b2
2 + 1−b0−b2

2 j
z

The characteristic polynomial of this class is x2 − (1 − b0 − b2)x and the remainder of the
division of Pb by this polynomial is ((b − 1) + (1− b0 − b2))x = (−b2 + b2j)x, i.e. we have,
in this case

A = 0 and B = −b2 + b2j.

So, B ̸= 0 and detB = 0; also, there exists γ0 = 0 ∈ R such that A + Bγ0 = 0 and condition
(2.3) holds; so we conclude that there is a linear zero of Pb in this class, given by (cf. (2.4)):{

1−b0−b2
2 + αi + 1−b0−b2

2 j − αk : α ∈ R
}
.



8 Dynamics of the coquaternionic maps x2 + bx

iv. Zeros in
r

1−b0+b2
2 + 1−b0+b2

2 j
z

An analysis similar to the previous case leads us to conclude that there is a linear zero of Pb

in this class, given by:
{

1−b0+b2
2 + αi − 1−b0+b2

2 j + αk : α ∈ R
}
.

(b) Case b0 − b2 = 1

In this case, there are only two classes: J0K and J1− bK.

i. Zeros in J0K
The values of A and B for this class are given by (3.7), i.e. are A = 0 and B = (b0−1)+b2j =
b2 + b2j, but contrary to what happened before, we now have (cf. (3.9)) detB = 0. In this
case, there is γ0 = 0 such that A + Bγ0 = 0 and the condition (2.3) is satisfied. Taking into
account the expression of B, we conclude that there is the following linear zero in this class:{
αi + αk : α ∈ R

}
.

ii. Zeros in J1− bK
Following a procedure similar to the one used in the previous case, we conclude that J1 − bK
contains the following line of zeros:

{
1− b0 + αi + (1− b0)j − αk : α ∈ R

}
.

3. Case b = b0 + i + j

In this case, the characteristic polynomial of J1−bK is ΨJ1−bK(x) = (x−(1−b0))
2. Hence, the admissible

classes of Pb are J0K, J1− b0K = J1− bK and J 1−b0
2 + 1−b0

2 jK. Note that, there are three distinct classes
if b0 ̸= 1 and a unique class, J0K, when b0 = 1.

(a) Case b0 ̸= 1

i. Zeros in J0K
In this case A = 0 and B = b − 1 = (b0 − 1) + i + j; since detB = (b0 − 1)2 ̸= 0, B is
non-singular and so the only root of Pb in J0K is x = 0.

ii. Zeros in J1− bK
In this case, A = −det(1 − b) = −(1 − b0)

2 and B = b + 1 − 2b0 = −b0 + 1 + i + j; we
have detB = (1 − b0)

2 ̸= 0 which shows that the only root of the polynomial in J1 − bK is
x = 1− b.

iii. Zeros in J 1−b0
2 + 1−b0

2 jK
The characteristic polynomial of this class is x2 − (1 + b0)x, leading to

A = 0, B = b − b0 = i + j. (3.10)

We have B ̸= 0, B singular, there exists γ0 = 0 such that A + Bγ0 = 0 and condition (3.9) is
satisfied. So we have the following line of zeros:

{
1−b0
2 + αi + αj + 1−b0

2 k : α ∈ R
}
.

(b) Case b0 = 1

In this case, it can easily be shown that there is a line of zeros in J0K given by
{
αi + αj : α ∈ R

}
,

which completes the proof.

Remark 3.6.

1. In case (2), if b0 − b2 = 1, then L1 =
{
− b2 + αi − b2j − αk : α ∈ R

}
⊂ J1− bK and L2 =

{
αi + αk :

α ∈ R
}
⊂ J0K.

2. In case (3), if b0 = 1, then L =
{
αi + αj : α ∈ R

}
⊂ J0K.

We end this section by observing that the determination of periodic points with period n > 1 for the map
fb(x) = x2 + bx is an extremely difficult problem. Note that, even for the case of periodic points of period
two, this corresponds to solving the equation

x4 + x2bx+ bx3 + bxbx+ bx2 + (b2 − 1)x = 0,

and that the main tool that we have used when determining fixed points — Theorem 2.3 — can no longer be
applied, since the polynomial whose zeros we seek to determine are not one-sided polynomials.



M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 9

3.3 Stability of the fixed points

We now want to study the stability of the fixed points determined in the previous section. As we have seen,
and in analogy to what happened in the case of the map x2 + c, we now have a situation which does not
occur in the classical case of the complex quadratic map: the existence of sets of non-isolated fixed points. It
is simple to recognize that points in this type of sets will never be attractive in the usual sense; in fact, since,
given any point in the set, all its neighborhoods always contain other fixed points, it will be impossible to
find a neighborhood of a given point totally formed by points whose dynamics evolve to it. Hence, for sets of
non-isolated fixed points, it becomes necessary to work with a different notion of attractivity [3]. We propose
to adopt the following definition, already used in our previous studies [13].

Definition 3.7. A set F of non-isolated fixed points of the coquaternionic map fb is said to be attractive
if, given any coquaternion x sufficiently close to F , the sequence of iterates

(
fb

k(x)
)
k

converges to a point
belonging to F .

Since there is no appropriate notion of derivative for coquaternionic maps, the natural approach to study
the stability of a given fixed point is to consider the function fb as a function from R4 into R4 and discuss the
magnitude of the modulus of the eigenvalues of the respective Jacobian matrix. As it is well known, if all the
eigenvalues of this matrix have modulus less than one, then the fixed point is attractive and, if there exists
one eigenvalue with modulus greater than one, the point is not attractive. In the case of sets of non-isolated
fixed points, the situation where all the eigenvalues of the Jacobian matrix have absolute value less than one
will never occur, since, as observed before, it is impossible to have attractivity in the usual sense.

In what follows, we will denote by J(x) the Jacobian matrix of the map fb computed at a given point
x = x0 + x1i + x2j + x3k ∈ Hcoq, i.e.

J(x) =


2x0 + b0 −2x1 − b1 2x2 + b2 2x3 + b3
2x1 + b1 2x0 + b0 b3 −b2
2x2 + b2 b3 2x0 + b0 −b1
2x3 + b3 −b2 b1 2x0 + b0

 .

We now consider different cases corresponding to the distinct forms of the parameter b.

1. Case b of the form C1

(a) Fixed point x = 0

The Jacobian of fb at the point x = 0 has eigenvalues λ1 = λ2 = b and λ3 = λ4 = b; since the
conditions b0 ≥ 1 and b1 > 0 imply that |λi| > 1, we conclude that the fixed point x = 0 is not
attractive.

(b) Fixed point x = 1− b

The Jacobian at the point x = 1 − b has eigenvalues λ1 = λ2 = 2 − b, λ3 = λ4 = 2 − b̄, so, we
conclude that x = 1− b is an attractive fixed point for b such that |2− b| < 1.

2. Case b of the form C2
In discussing the case b with the form b = b0 + b2j, b0 ≥ 1, b2 > 0, we make the additional assumption
that b0 − b2 ̸= 1.

(a) Fixed point x = 0

The Jacobian of fb at the point x = 0 has eigenvalues λ1 = λ2 = b0 − b2 and λ3 = λ4 = b0 + b2.
The conditions b0 ≥ 1, b2 > 0 imply that λ3 = λ4 > 1. Hence, we conclude that x = 0 is not an
attractive fixed point.

(b) Fixed point x = 1− b

The Jacobian at the point x = 1−b has eigenvalues λ1 = λ2 = 2− b0− b2, λ3 = λ4 = 2− b0+ b2
and so, we conclude that x = 1−b is an attractive fixed point for b such that |2−b0−b2| < 1 and
|2− b0 + b2| < 1; these conditions, for b0 ≥ 1 and b2 > 0, are equivalent to b2 + 1 < b0 < 3− b2;
see Figure 1.
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(c) Fixed points in the line L1

Let x be any point in the line given by (3.3), i.e. let x be of the form x = 1−b0−b2
2 +αi+ 1−b0−b2

2 j−
αk, with α ∈ R . The eigenvalues of the Jacobian of fb at x are

λ1 = 1, λ2 = 1− 2b2, λ3 = 2− b0 − b2, λ4 = b0 − b2.

and the eigenvalue λ1 = 1 has v1 = (0, 1, 0,−1) as an associated eigenvector.

Let x̃ be a perturbation of x given by x̃ = x+ ε1 v1 + ε2 v2 + ε3 v3 + ε4 v4, where {v1, v2, v3, v4}
is a basis of R4 formed by eigenvectors4 of J(x), with v1 = (0, 1, 0,−1). We have

x̃ = x∗ + ε2 v2 + ε3 v3 + ε4 v4,

where x∗ = x+ε1v1 ∈ L1, due to the expression of v1. Hence, for b = b0+b2j with b0, b2 satisfying
the conditions |1− 2b2| < 1, |2− b0 − b2| < 1, |b0 − b2| < 1, we will have |λi| < 1, i = 2, 3, 4 and
(provided the εi are sufficiently small) the sequence of iterates (fk

b (x̃)) will converge to the point
x∗. We thus conclude that, for values of the parameter b = b0 + b2j with b0 and b2 satisfying the
conditions b0 ≥ 1, b0 − 1 < b2 < 1 – see Figure1 – the line L1 is an attractive set of fixed points.
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Figure 1. Stability regions for the case b with form C2: A
– stability region for the fixed point x = 1− b; B – stability
region for the line of fixed points L1.

(d) Fixed points in the line L2

Let now x be any point in the line (3.4), i.e. let x be of the form
x = 1−b0+b2

2 + αi − 1−b0+b2
2 j + αk, with α ∈ R. In this case, the

Jacobian of fb at x has eigenvalues

λ1 = 1, λ2 = 2− b0 + b2, λ3 = b0 + b2, λ4 = 1 + 2b2.

Since, in this case, we have λ3 > 1 (and also λ4 > 1), we can
conclude that the line L2 is not an attractive set of points.

3. Case b of the form C3
We exclude from our discussion the case where b0 = 1, i.e. only

discuss the case of parameters b of the form b = b0 + i + j with b0 > 1.
(a) Fixed point x = 0

The Jacobian of fb at the point x = 0 has a unique eigenvalue
λ = b0.5 We thus conclude that the fixed point is not attractive.

5In this case, we do not have four linearly independent eigenvectors, but we can consider
a basis of R4 formed by generalized eigenvectors.

Figure 1: Stability regions for the case b with form C2: A – stability region for the fixed point x = 1− b; B –
stability region for the line of fixed points L1.

(d) Fixed points in the line L2

Let now x be any point in the line (3.4), i.e. let x be of the form x = 1−b0+b2
2 +αi− 1−b0+b2

2 j+αk,
with α ∈ R. In this case, the Jacobian of fb at x has eigenvalues

λ1 = 1, λ2 = 2− b0 + b2, λ3 = b0 + b2, λ4 = 1 + 2b2.

Since, in this case, we have λ3 > 1 (and also λ4 > 1), we can conclude that the line L2 is not an
attractive set of points.

3. Case b of the form C3
We exclude from our discussion the case where b0 = 1, i.e. only discuss the case of parameters b of the
form b = b0 + i + j with b0 > 1.

(a) Fixed point x = 0

The Jacobian of fb at the point x = 0 has a unique eigenvalue λ = b0.5 We thus conclude that
the fixed point is not attractive.

(b) Fixed point x = 1− b

At the fixed point x = 1 − b, the Jacobian has a single eigenvalue λ = 2 − b0. Hence, the fixed
point is attractive for 1 < b0 < 3.

4Note that, in the case we are considering, we have four distinct eigenvalues and hence such a basis always exists.
5In this case, we do not have four linearly independent eigenvectors, but we can consider a basis of R4 formed by generalized

eigenvectors.
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(c) Fixed points in the line L

Let x be any point in the line given by (3.5), i.e. let x be of the form x = 1−b0
2 +αi+αj+ 1−b0

2 k.
In this case, the eigenvalues of the Jacobian of fb at x are

λ1 = λ2 = 1, λ3 = 2− b0, λ4 = b0.

Since λ4 > 1, we can conclude that the line L is not an attractive set of fixed points.

Remark 3.8. In the previous discussion, we left out some special cases, namely, the cases where b = b0 + b2j
with b0 − b2 = 1 and the case b = b0 + i + j with b0 = 1. In these cases, when considering the lines of fixed
points, we are faced with a difficulty that does not allow us to fully discuss their stability: the fact that the
Jacobian of fb(x) at any point in one of those lines has λ = 1 as a defective eigenvalue.

4 Numerical experiments

In this section we present the results of some numerical experiments obtained for some specific choices of
the parameter b, which already illustrate the richness of admissible dynamics for the coquatenionic map
fb(x) = x2 + bx.

Example 4.1. Our first example is for the complex parameter value
b = 2.84 + 0.58i. For this specific parameter, the corresponding map fb has two aperiodic coquaternionic
attractors. The first is the circle

C =
{
−1.82731− 0.584057i + q2j + q3k : q22 + q23 = 0.0255611

}
and the second is made up of the following five circles:

C1 =
{
−1.65717− 0.842274i + αj + βk : α2 + β2 = 0.00520474

}
,

C2 =
{
−2.17585− 0.561637i + αj + βk : α2 + β2 = 0.00292192

}
,

C3 =
{
−1.43185− 0.412965i + αj + βk : α2 + β2 = 0.00766025

}
,

C4 =
{
−1.93962− 0.820685i + αj + βk : α2 + β2 = 0.00258121

}
,

C5 =
{
−1.94134− 0.272091i + αj + βk : α2 + β2 = 0.00365608

}
.

This example shows a big difference between the dynamics of coquaternionic maps and the ones for the
complex case: the possibility of coexistence of attractors. It also interesting to observe that the complex
5-cycle

z1 = −1.39283− 0.40758i, z2 = −1.94539− 0.82999i,

z3 = −1.94786− 0.256193i, z4 = −1.65481− 0.85929i,

z5 = −2.20126− 0.556251i,

which is an attractor for the restriction of the map fb to the complex plane, fb|C, looses its stability when
allowing coquaternionic arguments.

Example 4.2. We now consider the case of a parameter of the form C2,
b = 24

10 + 9
10 j. For this parameter value, the lines

L =
{
q0 + αi + (q0 +

1
2 )j + αk : α ∈ R

}
and

L ′ =
{
q′0 + αi + (q0 +

1
2 )j + αk : α ∈ R

}
,

where q0 = 1
40 (−53−

√
129) and q′0 = 1

40 (−53 +
√
129), are attractive sets of periodic points of period two

such that fb(L ) = L ′, i.e. the sets L and L ′ form what we call a 2-set cycle [14].
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Example 4.3. Our last example is again for a parameter value of the form C2, b = 1.375 + 1.1j. In this case,
the map admits the following two hyperbolas

H =
{
−0.458371 + αi − 0.642342j + βk : α2 − β2 = 0.2025

}
and

H ′ =
{
−0.916629 + αi − 0.798567j + βk : β2 − α2 = 0.2025

}
as an attracting 2-set cycle, i.e. H and H ′ are attractive sets of periodic points of period two such that
fb(H ) = H ′.

5 Conclusions

This paper is a first approach to the study of the dynamics of the one-parameter family of coquaternionic
quadratic maps fb(x) = x2 + bx. This may be seen as a continuation of our previous work [13], where the
simpler one-parameter family of maps, fc(x) = x2 + c, was considered.

Recent results for the zeros of one-sided coquaternionic polynomials [15] led us to conclude that this new
family of maps should demonstrate even further the richness of dynamics allowed by the use of coquaternions,
when compared with the complex case.

By making use of the aforementioned results, the fixed points of fb(x) = x2+bx are analytically determined,
with very interesting results: for complex values of the parameter, the fixed points are exactly the ones already
known for the corresponding complex maps; however, for certain choices of non-complex parameter values,
the maps fb have lines of fixed points, something that never happens with the fixed points of the quadratic
maps fc(x) = x2 + c previously studied.

The study of the stability of the fixed points of fb is also addressed, where, in some cases, due to the
appearance of sets of non-isolated points, a suitably adapted notion of stability is used.

Some examples of dynamics beyond fixed points are also presented. These few numerical examples already
show a richness of dynamics compared with the complex case — the possibility of coexistence of attractors,
for example — which makes us to believe that the dynamics of coquaternionic maps is a subject deserving
further investigation.
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