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A B S T R A C T

The demand for online games has risen over the years, expanding multiplayer support for new and different game
genres. Among them are Massively Multiplayer Online games, one of the most popular and successful game
types in the industry. Nowadays, this industry is thriving, evolving alongside technological advancements and
producing billions in revenue, making it an economic importance. However, as the complexity of these games
grows, so do the challenges they face when constructing them.

This dissertation aims to implement a distributed game, through a proof of concept or an existing game, using a
distributed architecture to acquire knowledge in the construction of such complex systems and the effort involved
in dealing with consistency, maintaining communication infrastructure, and managing data in a distributed way.
It is also intended that this project implements multiple mechanisms capable of autonomously helping manage
and maintain the correct state of the system.

To evaluate the proposed solution, a detailed analysis is carried out with performance benchmark analysis,
stress testing, followed by an examination of its security, scalability, and distribution’s resilience.

Overall, the present research work allowed for a greater understanding of the technologies and approaches
used in constructing a gaming system, establishing a new set of development opportunities to be further investi-
gated upon the constructed solution.

Keywords: Massively Multiplayer Online Games, Distributed System, Gaming Architecture, Online Game,
Game Server, Interest Management, Synchronization, Scalability, Networking, Replication, Consistency Control

c



R E S U M O

A procura por jogos online aumentou ao longo dos anos, expandindo o suporte multiplayer para novos e difer-
entes géneros. Entre estes estão os jogos Massively Multiplayer Online, um dos tipos de jogos mais populares
e bem-sucedidos na indústria. Atualmente, esta indústria está a prosperar, evoluindo com os avanços tecnológi-
cos e gerando milhares de milhões em receita, tornando-se uma importância económica. Porém, à medida que
a complexidade destes jogos aumenta, também aumenta os problemas encontrados durante a sua construção.

Esta dissertação tem como objetivo implementar um jogo distribuído, através de uma prova de conceito ou um
jogo existente, usando uma arquitetura distribuída a fim de adquirir conhecimento na construção destes sistemas
complexos e o esforço envolvido em lidar com consistência, manter a infraestrutura de comunicação e gerir
dados de maneira distribuída. Para isto, é pretendido que este projeto também implemente vários mecanismos
capazes de, forma autônoma, ajudar a gerir e manter o correto estado do sistema.

Para avaliar o solução proposta, uma análise detalhada é realizada sobre o desempenho, segurança, escala-
bilidade e resiliência da distribuição do sistema.

De forma geral, o presente trabalho de pesquisa permitiu uma maior compreensão das tecnologias e aborda-
gens utilizadas na construção de um sistema de jogos, estabelecendo um novo conjunto de oportunidades de
desenvolvimento a serem investigadas sobre a solução construída.

Palavras-Chave: Jogo MMO, Sistema Distribuído, Arquitetura de Jogo, Jogo Online, Servidor de Jogo,
Gestão de Interesse, Sincronização, Escalabilidade, Rede, Replicação, Controlo de Consistência
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1

I N T R O D U C T I O N

A Massive Multiplayer Online Game (MMOG), also commonly denominated as Massive Multiplayer Online (MMO),
is an online game with often hundreds or thousands of players playing simultaneously on the same server. Such
games are a thriving business, being one of the most famous World of Warcraft (WoW). Due to their complexity
and magnitude, they can create tremendous processing loads and network traffic (Hu et al. (2006); Chen et al.
(2005); Suznjevic and Matijasevic (2012)), making scalability an enormous challenge when creating this type of
game.

Traditionally, multiplayer games have used a client-server communication architecture. Although having a lot
of advantages and simple to secure, it is also a source of many drawbacks, which will later be discussed into
further detail, being one of the most critical the fact that it isn’t scalable. Many researchers have been studying
alternative architectures, such as Peer-To-Peer, which solves the problem of scalability but brings others, such
as the lack of centralized power to maintain consistency. Even though there are various architectural options
for the construction of a distributed game, the game itself has to be considered when selecting them due to its
characteristics and requirements.

In addition, to successfully create a distributed game, the architecture alone is not sufficient to maintain the
correct distribution and management of the information across all participants. For this, there are several strate-
gies, algorithms, and mechanisms that a game system can implement to maintain the correct game state while
distributed.

1.1 O B J E C T I V E S

Given the extensive research regarding the development of gaming architectures and their mechanisms, the
formal objectives of this work are:

• Acquisition of skills in the analysis and design of multiplayer game systems;

• Identify common development strategies and approaches utilized in multiplayer game development;

• Select appropriate technology to develop concerning the game at hand, and necessary mechanisms to
ascertain consistency, synchronization, and playability;

• Develop a multiplayer game system based on the selected technology as a result of compliance with the
third objective, as a prototype of the distributed game system;

1



1.2. Methodology 2

• Understand the effort faced in the development of scalable and network resistance applications for multi-
player game;

• Evaluate the constructed system’s aspects of performance, scalability, security and distribution.

1.2 M E T H O D O L O G Y

After reflection and research, it was pertinent to conduct the work following the research methodology Research
Onion. The Research Onion diagram represented in Figure 1, and developed by Saunders (Mark N.K. Saunders
(2019)), is used recurrently to describe the issues underlying the choice of data collection techniques and analy-
sis procedures that occur during an investigation. It describes the issues that an investigator must respond to in
such a way as to define a coherent and complete methodology for its investigation, beginning from the outermost
layers to the core. According to the diagram, six different divisions are identified, these being: Philosophies,
Approaches, Chosen methods, Strategies, Temporal horizon, and Techniques and procedures.

Figure 1: Research Onion Diagram. source: Mark N.K. Saunders (2019)

Following this diagram, the first question is related to the philosophy’s identification. This work followed the
Realism philosophy, since objects exist independently of our knowledge about their existence, and that the
senses show us that it is reality, it is the truth. The work also faces epistemology, which is based on observable
phenomena and which are likely to be studied through data and facts (Mark N.K. Saunders (2019)).

The research’s topic addressed consists of developing and implementing a multiplayer game system, which
aimed to distribute a game and evaluate its capabilities. Chosen the topic, a bibliographic review was held
with the research topic following a Deductive approach, which involves the development of a theory and strategy
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research that subjects the theory referred to a rigorous test through a series of propositions (Mark N.K. Saunders
(2019)). In this approach, when confirming that premises are true, it is confirmed that the conclusion is correct.

Referring to the methodological choice, it was used the concurrent mixed methods study research design,
which involves the separate use of quantitative and qualitative methods within a single phase of data collection
and analysis (single-phase research design).

The research strategy followed the form of Case Study due to the development of detailed and intensive
knowledge of one case, which the same is obtained through the use of appropriate techniques. Therefore, an
investigation occurs at the same time as the production process, where it is considered as a tool for the resolution
and simplification of problems (Mark N.K. Saunders (2019)).

Finally, the temporal horizon of this study was transversal, which represents a study of a particular phe-
nomenon at a specific time, set by the University of Minho.

1.3 S T R U C T U R E

The remainder of this work is structured as follows. Chapter 2 examines common game design principles used
in most multiplayer games, along with several key concepts of mechanisms used in their design and construction.
Then, it finishes with the discussion of several architectures used to construct an MMO and a comparison of their
characteristics.

Chapter 3 starts by addressing the game developed, used as the object of distribution in the system, and
also provides some key insights to consider in its distribution. Furthermore, it presents the proposed architec-
ture selected to develop, explaining how it works, the different components, roles, and capabilities. Lastly, it
describes the implementation of the system developed, giving detail about its workflow, functionalities, structure,
and application and game protocols.

Chapter 4 discusses the results acquired from the system’s analysis through multiple experiments conducted.
It also presents the dissertation’s conclusions through a retrospective assessment of the realized work and raises
some issues for future work.

Finally, Chapter 5 concludes the document, giving an overview of the central findings of the research and its
limitations, presenting as well future work as a complement to the work studied in this document.



2

S TAT E O F T H E A R T

This chapter provides an understanding of basic concepts in a multiplayer game that is independent of the archi-
tecture chosen to do it on. Furthermore, explains some mechanisms used in distributed gaming architectures to
achieve a functional multiplayer game. Moreover, it analyzes key issues to the understanding and construction
of distributed gaming systems. Afterward, discusses the various architectures used to develop MMO games and
some other approaches.

2.1 M M O G S

A video game is an electronic game involving interaction from the user via an interface or an input device, giving
them visual feedback as their interactions are processed by the game. Games can also be multiplayer, meaning
more than one person can play the game simultaneously, this is possible by either playing locally (on the same
machine) or online (over the internet). Players can compete against other players, in teams, or even against the
game, meaning Artificial Intelligence (AI). These games can be non-networked, such as in shared screen games,
or networked, allowing players to play together over a greater distance, entering the MMOGs.

Massively Multiplayer Online Games or MMOGs are, as the name suggests, games that are played by a
massive number of players simultaneously online. Usually, these games take place in a single shared virtual
gaming environment that, after downloading the game software, players can enter. The game world is often
persistent, meaning immutable and always present, running independently from the existence of active players.
However, it can also be instantiated, being created for temporary necessity and disposed of afterward.

The explosive growth of MMOGs has prompted many game designers to build online multiplayer modes into
many traditionally singleplayer games, and today represent a billion dollars business 1, being also used in simula-
tion and for military purposes. The first MMOGs were the evolution of multi-user dungeons (MUD), a very limited
text-based game 2. This was a very simple text-oriented game because the computational power and bandwidth
were very limited at the time (late 1970s). Nowadays MMOGs offer complex 3D graphics and a massive virtual
world to explore.

Early MUDs were very modest applications based on a Client-Server architecture. However, with the increas-
ing complexity of games and players’ interactions, these systems could not keep up. Even though computers
were in a high development to become more powerful and faster, it still was a far too great load of messages

1 https://www.statista.com/statistics/346515/leading-f2p-mmo-games/
2 https://pt.wikipedia.org/wiki/Multi-user_dungeon
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2.2. Design principles of an MMOG 5

to be treated by a single machine. Nowadays we continue to use this same client-server architecture, but with
clusters of servers that can handle that same load of messages to process.

As MMOGs are resource-intensive and complex, resulting in a lot of problems and complications along the
way of production and still afterward, make them a very popular research topic in distributed architecture stud-
ies. Developing an MMOG takes a lot of time and resources, because of this a lot of work is put into them in
order to achieve an optimized result. For this, there is intensive research put into developing better and more
efficient ways to distribute the load among the network, while guaranteeing some level of availability, security,
and performance.

As result, the majority of research found has been focused on improving the existing Client-Server architecture
that is predominant in much of the MMOG still today. This research has also been focused on developing a more
efficient way to distribute the server architecture and the communication between various parts that form the
system, to increase the amount of load that it can handle. Another major part of the research done for MMOG is,
so far, mostly for academic studies 3, focused on replacing outdated systems for a distributed architecture, such
as Peer-to-Peer (P2P), in new and innovative ways. These architectures try also to eliminate the need for such a
big and expensive cluster of servers, which are not affordable for most start-up companies developing products
that depend on having them. There is also interest in developing relatively low complexity architectures that may
catch the interest of developers that prefer Client-Server architecture due to its overall simplicity, and incentivize
them to use these alternative systems.

2.2 D E S I G N P R I N C I P L E S O F A N M M O G

The core premise in most multiplayer games is that the player plays the role of a character in a fictional world,
taking on missions or quests, completing objectives, or slaying enemies, alone or as part of a group, requiring
him to traverse different parts of the world, engaging with various players or Non-Player Character (NPC)s, while
being rewarded with money or experience points, which allows the character to evolve, get new abilities and so
on (Knutsson et al. (2004)). Despite the variation of the game premise, there are some basic concepts that every
multiplayer online game follows, independently from the game or architecture chosen to develop it on. Subtracting
this superficialities, this section goes into further detail on the concepts involved and execution patterns in the
design of a multiplayer game.

2.2.1 Game States

In most modern multiplayer games, the game world is usually made of four object types (Knutsson et al. (2004)):
(1) immutable objects, such as the terrain or landscape objects, usually designed by a game artist, not changing
during any state of the game; (2) characters or avatars (Suznjevic et al. (2009)), controlled by the player; (3)
mutable objects, such as weapons, tools, food, or even landscape information, for example, players can interact
with food on the ground and eat it, changing the food’s position and deleting its object after the player is done

3 http://vast.sourceforge.net/relatedwork.php

http://vast.sourceforge.net/relatedwork.php


2.2. Design principles of an MMOG 6

Figure 2: Object types and interactions. source: Yahyavi and Kemme (2013)

eating it; (4) NPC, such as villagers or characters, are part of the simulation taking a role in the game world and
are not controlled by players but by automated algorithms. In Figure 2 it is shown an example of these different
object types.

These interactions controlled by the player, also called player interactions (Knutsson et al. (2004)), are usually
confined to three types: (1) player update, consisting of interactions with the game world that only affect himself.
Depending on the game, player updates may contain his position in the game world, the state of his character,
such as health, money, abilities, items, etc. A character can be permanent until the removal of the player from
the game or instantiated for a specific purpose and then deleted; (2) player-object interaction, is an interaction
between players and mutable objects, including NPCs, in the game world; (3) player-player interaction, is an
interaction between players and other players in the game world, for example, trading an item with someone
would change both players’ inventory and fighting another player would change both of their player objects’
health.

These types of interactions are important when dealing with concurrent and conflicting updates due to their
importance over others. Cheat prevention techniques are only applied to certain types of interactions (Knutsson
et al. (2004)) that might benefit a player over others, for example, a player giving himself great amounts of in-
game currency out of thin air, or instantaneously kill all other players in the game world. In First-Person Shooter
(FPS) games, proof-cheating is crucial when dealing with player interactions, much advantage can be taken from
these, such as a player allowing himself to see other players through walls. Combined with architecture features,
MMO games are coordinated through either a centralized or a distributed structure. These differ in the location
wherein the game state is maintained, and the mechanism used to achieve synchronization. As such, these
mechanisms may vary depending on the architecture (Hsu and Kuo (2003)) and the results they are trying to
achieve, as discussed ahead.

2.2.2 Game Replication

In a multiplayer game, when a player enters the game, they receive the information needed to create an instance
of the game environment based on the server’s simulation and its current game states. It is a combination of
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local resources oriented through remote information. Both entity states are managed under the Client-Server
architecture by the server, which determines the game state based on client inputs and tells them of the new
calculated game state. Thus, an instance of their character is created on their local game environment, which
the player can control through input messages. This is because, for each mutable object and character presented
on the local game world, there is also an authoritative copy called the primary or master copy, which remains in
the simulation of the server.

For most game engines first, there is an alteration on the primary copy (server’s object) and then on the
secondary copy (player’s local object) (Yahyavi and Kemme (2013)). For a player to make an update on their
copy they first have to send an update message to change the authoritative copy, and then the holder decides
whether or not to accept the update received and send the updated object (or just components of what is needed
to change the object) to all of those who have the secondary copy. However, under a distributed system each
player retains its own entity status, tells other players of its decisions, and addresses any issues of consistency
without the use of any centralized authority. Another difference between them is that in a centralized system each
client sees only a partial vision of the game world (only the server sees it entirely), while in a distributed system
each player manages his own world.

Apart from persistent player states and immutable objects, most game states are rebuilt at some point later
(Knutsson et al. (2004)), an example of this is the eventual depletion of food that a player can grab from the ground
or the finite number of enemies a player can kill in the game world without replenishment through respawn. For
this to happen, these examples also require a follow up message to be sent, by the holder, to every player in the
game world, in order to see these changes happen locally on the clients.

2.2.3 Game Latency Tolerance

Latency is referred to as the interval between the execution of an update to the primary copy of the object and
the replica receiving an update to the object. This latency depends, as it will be addressed, on the architecture
and the delays in networking.

As there are immense types of multiplayer games, the player tolerance for network latency varies from these
types. What for some games can be considered crucial, to others may not be as important for an optimal
gameplay. Higher latencies than the game acceptable limits can harm game playability and customer retention.
The gameplay and architecture have a huge impact on the latency and its tolerance. Thus, an architecture is
only viable if it fulfills the criteria of game latency. Most games can usually accommodate latencies of between
100 and 300 milliseconds, although there are exceptions that have higher latency tolerance.

Some examples of latency requirements’ variation are FPS and Real-Time Strategy (RTS) games (Yahyavi
and Kemme (2013); Armitage (2003)). In an FPS game, the gameplay is centered on simple and short-lived
actions, focused on the direct control of the player’s avatar, and as result, this type of games can only tolerate low
latencies. An example of this is Quake 3 with a latency requirement of fewer than 180 milliseconds (Armitage
(2003)). Yet, games such as RTSs can tolerate lower responsiveness because their core gameplay is focused on
strategy rather than direct interaction. Usually in this type of games the player commands the character to make



2.3. Foundations and Key Issues in a Gaming System 8

long and lasting actions, and in most cases, the movement type and/or actions are limited options or pre-planned,
making it a predictable interaction, where their ordered execution is more important.

2.3 F O U N D AT I O N S A N D K E Y I S S U E S I N A G A M I N G S Y S T E M

This section introduces general concepts, execution patterns, and mechanisms used to achieve a functional
game when implementing a distributed game architecture. In Figure 3 it is shown an overview of the various
components of the a multiplayer game system sample which some are discussed in this chapter.

Figure 3: Multiplayer game components. source: Yahyavi and Kemme (2013)

2.3.1 Communication

As previously mentioned, a multiplayer game needs to share information across all participants in order to mirror
the game in every instance being run. Figure 4 shows an example of the process that multiplayer games perform
to receive and treat game information. This process is explained following an example of player replication from
Node A to Node B, through player state messages.

In order to share information between nodes, a multiplayer game has to employ transport layer protocols,
such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Different protocols implement
different rules in how information should be transmitted across the network. For example, some ensure the
reliability of message delivery while others focus on fast delivery. Therefore, these must be used depending
on the information sent since the choice between them, in turn, impacts other aspects of game design and
implementation. For instance, using a transport layer that does not ensure reliability will make the information
susceptible to being lost along the way. This missing information can affect the mirroring of the game, potentially
causing some problems, which can be only be solved by implementing mechanisms capable of handling such
events, as will be discussed in this chapter. Nevertheless, considering that information between Node A and
Node B is ensured, the transport layer protocol sees that the player state from Node A arrives at Node B.

Upon receiving a player state, Node B adds it to a message queue, which is a sophisticated protocol that
guarantees a message is received and correctly processed. MMO games tend to implement a priority system in
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Figure 4: Layers of a node.

the message queue, processing specific messages that are more crucial to the game’s well-functioning first, and
then the rest.

To share information across the network, the game must format data in a way that can be used by a transport
layer protocol. The process is called serialization, which converts an object into a stream of bytes with the main
purpose of saving its state. In addition, the process can be reversed, called deserialization, which restores
the object to its original format. This process is executed by a data encapsulation library that covers high-level
(serialization) and low-level (deserialization) conversions. So, when Node B receives a player state message,
and the message queue sees fit to process it, the data encapsulation library uses deserialization methods to
transcribe it into usable game information. Finally, using a procedure call, the information is passed onto the
game logic that handles and applies it to the game. Thus achieving a replication of the player between the two
nodes.

2.3.2 Bandwidth Requirements

Bandwidth requirements for MMO games can be determined based on the average message size, number of
players, and update rate (Suznjevic and Matijasevic (2012); Chen et al. (2006)), considering also it’s architecture.
The more players active, the more bandwidth the overall system will require. Therefore, games with thousands
of players, will require high bandwidth to support high amounts of players taking place in one location. Moreover,
events in the game world like raids, battles against other players, which require/attract many players or increase
the world activity in general, can cause spikes in the requirement of a higher bandwidth size. Game servers also
deal with these spikes by over-provisioning (Yahyavi and Kemme (2013)).

Fast-paced games like an FPS, such as Halo 3, while not holding as much players in one place, will require a
higher update rate, as shown in Figure 5. This, consequently, increases the bandwidth requirements, since more
messages are transmitted across the nodes. In general, due to the limited bandwidth resources from clients,
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Figure 5: Bandwidth requirements of games. source: Harcsik et al. (2007)

games tend to compress data packet in order to cover more people. As data packets tend to be very small and
have high heterogeneity, classical compression shows little efficiency. A much more effective way to compress
the data packets is a clever content consideration. This can be translated into only sending relevant changes
since the last update (delta synchronization) or applying a round down of the values, since most values that need
to be exact on the server state, don´t need the same accuracy on the client side.

2.3.3 Frame Rate

In relation to the synchronization, games implement a discrete event loop (Yahyavi and Kemme (2013)), also
referred to as a frame, which represents all events executed between the last event loop execution and now. The
frequency of updates is also referred to as frame rate in Bharambe et al. (2008), and Hsu and Kuo (2003) states
that a game’s loop should be executed 30 times per second in order to maintain real-time property. However
this is not always needed, allowing for the possibility of even lower frame rate. Note that a game’s frame rate
is separate from the screen it is being displayed on (graphical frame rate) as a display has its own frequency (
or "refresh rate"), measured in Hertz (Hz). A decrease in the frame rate can be explained by an increase in the
necessary computation needed to be calculated and executed in a determined loop. When games demonstrate
low frame rates the gameplay experience can degrade or even become unplayable. For fast-paced competitive
games, such as FPSs, it is required from the server to run at high frame rates for fast and deterministic responses.

2.3.4 Interest Management

In most MMO games, players do not need to know the activities of all other users in the game, who may be far
away from what the player can see. The communication of an MMO game network is expected to contain only
the critical information to save as much bandwidth as possible for scalability reasons. Interest Management (IM)
(Smed et al. (2002b); Yahyavi and Kemme (2013)) is an important mechanism used to reach this goal, serving
as a filter to remove irrelevant messages. It can minimize network traffic and reduce the burden on the client
and on the server. The general idea is that in a multiplayer game, players have restricted vision and movement
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capabilities, which does not require them to know everything happening inside the game world. As result many
games show a fraction of the game world to the player, limiting the data that they can access to only receive the
game states relevant to them. Thus, IM is important for scalability, because it minimizes the number of messages
that the protocol should send out to make the player’s game world consistent, keeping the network overhead low.

Figure 6: In hide-and-seek, the seeker is not aware of the hider because the hiding person’s nimbus is smaller
than the seeker’s. However, because of the seeker’s nimbus being larger and overlapping the hider’s
focus, the hider can see the seeker. source: Smed et al. (2002b)

The calculation of IM is centered on the space-based aura-nimbus model (Benford and Fahlén (1993)) that
in turn corresponds to the system’s sensing capabilities that is being modeled. Aura also called area of interest,
is the area around the player’s character, in IM the areas are always symmetric (Smed et al. (2002a)), meaning
if the they overlap, then both entities receive messages from each other. Furthermore, the aura can be split
into a nimbus and a focus, which represent, respectively, the observed object’s perceptivity and the observer’s
perception, meaning in order for a player to gain awareness of the other, their focus must overlap with them. This
filter is very critical to games like FPSs because it would not be fair if two players could not see each other if
looking directly at each other. An example of IM is shown in Figure 6.

Figure 7: Different game zoning mechanisms. source: (Yahyavi and Kemme (2013))

The most commonly used mechanism for IM is Zoning (Yahyavi and Kemme (2013)). It works by partitioning
the game world into smaller sections, denominated regions, or zones. This partitioning has different approaches,
shown in the Figure 7 and also discussed in Chen et al. (2005), which can result in the different shapes and how
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they are mapped. Zones can also be totally different instances, and in that case, players must migrate to a new
zone, often in a different server. This migration can also be transparent thus not affecting the player’s experience.

2.3.5 Consistency Control

Event ordering, consistency, and synchronization form the backbone of any distributed system (GauthierDickey
(2004)). In a distributed architecture such as a multiplayer game, concurrent and possibly conflicting updates
can be made on different machines in different orders depending on when it is received, resulting in inconsistent
states. These inconsistencies exist due to the execution of simultaneous and overlapping updates, for which
mechanisms are put in place to avoid or correct these events. For example, if two players try to finish off an
enemy at the same time, a consensus must be reached and then both players should see the same order of
events happen in their local simulation of the game. This consensus is reached depending on the architecture
and the algorithm implemented. In a client-server system the server will receive both events, determine in which
order to execute them and share the results with all replicas in the network. Peer-to-Peer usually reaches the
consensus by assuming one of the two is correct propagating their outcome or assigning a leader to take charge
of that task.

Consistency requirements may vary widely depending on events type of events in the game and their variation
in complexity (Bharambe et al. (2008)). These may represent different object and interaction types (Zhang and
Kemme (2011)), implementing different levels of consistency, by various mechanisms, ranging from no consis-
tency to exact consistency, impacting the synchronization as well. For example, frequently executed actions (at
real-time) might not require a high level of consistency if they can be easily repeated. Some further examples of
the mentioned various can be seen in Table 1, enumerating different Quake commands. In this case, consistent
real-time events are the most challenging events as they have both strict timeliness and consistency require-
ments. Furthermore, in many MMOs there are objects considered to be valuable that can be sold or traded for
real money (Yahyavi and Kemme (2013)). This makes consistency control a critical requirement for this type of
games.

Event Type Event Description Event Property
Move event An avatar moves to a new position Real-time
Fire event An avatar fires a rocket Consistent real-time

Impact event The rocket impacts and detonates Consistent real-time
Damage/Die event An avatar takes damage and possibly die Consistent

Spawn event An avatar is reborn in a random part of the map Consistent

Table 1: Command classifications for Quake. source: (Hsu and Kuo (2003)

Stale views are also a problem of consistency state in MMOGs. As mentioned before, architectures that
implement the client-server solution have to replicate the game from the primary copy on the server. This solution
also requires that all updates must be first executed on the primary copy and then distributed among all clients.
Although this simplifies consistency management, replicas will only receive the new update sometime after it
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has occurred in the server. During this waiting period replicas are stale, and players might initiate invalid update
requests to the primary copy, based on these stale values. For example, as explained in Varvello et al. (2011),
in the game Second Life, on a crowded region, players have an inconsistent view of their neighbor’s’ avatars,
meaning they see them at a wrong location. Ideally, the primary copy would directly send updates to all replicas
in order to minimize staleness. However, this is expensive and other methods may be employed that may increase
the latency and staleness experienced by the replicas.

However, inconsistent states can also be the result of packet loss, due to most games using unreliable UDP
messaging protocol where message loss can occur. The solution is to use a reliable TCP messaging protocol.
Still, they contribute to a delay in communication, as shown in Kim et al. (2005), thus it should only be used for
important messages, that everyone must receive and execute, like a message to spawn a player in their local
simulation of the game world. UDP messages should only be used when it is not important if some packets are
lost, such as movement.

Several consistency techniques are introduced to the game to hide inconsistencies and staleness. These
typically fall under two categories: Predictive Contract Mechanism (PCM) and multi-resolution simulation (Yahyavi
and Kemme (2013)). Dead reckoning is the most commonly used PCM, which will be explained further over.
Moreover, these techniques can also hide the packet loss, for example, if dead-reckoning is introduced correctly
into the game implementation, this loss of information may become invisible to the player (Mauve et al. (2004);
Yahyavi and Kemme (2013); Smed et al. (2002b)).

2.3.6 Dead Reckoning

Figure 8: Illustration of Dead reckoning. The real movement is represented by the gray arrows, the predicted
movement is represented by the black arrows, and the dotted lines represent a shift of position (or
"warp") caused by an update message. source: Smed et al. (2002a)

As stated before, reducing the packet update rate when possible, can lower the bandwidth requirements
and improve the scalability of the platform. However, in doing so the player’s game state is left susceptible
to differ from the correct state. To keep consistency or an approximation of consistency, the game somehow
must counteract the absence of data between packet updates. Dead reckoning (Smed et al. (2002b)) comes
to play when the deviation threshold is exceeded. Its methods utilize the object’s parameters such as position
and velocity to predict one’s events based on some rules. The same concept can be used to predict the data
coming from other clients, allowing to extend the period between transmission of messages and at the same
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time, eliminate the network latency at the cost of data consistency. A use case of this is a character moving at a
fixed velocity, until its velocity vector changes it will not send further updates.

Dead reckoning involves two segments: the prediction technique and the convergence technique ((Smed
et al. (2002b)). To calculate the predicted state, dead reckoning uses the prediction technique which uses the
object’s last position, until new data is received. Depending on it, the prediction may be far off from what it
should be, affecting all the next predictions. The most used technique is derivative polynomials, which vary in
order. A low order derivative polynomial, such as zero-order, only transmits the position, which is not helpful for
objects with velocity. On the other hand, a high-order derivative polynomial, such as second-order, considers the
position, velocity, and acceleration of the object. This is the most commonly used technique. However, higher-
order derivatives trade low computational burden, due to additional terms, for higher accuracy which ends up
consuming limited bandwidth resources. In order to balance both, hybrid systems can dynamically change from
second-order to first-order when it sees fit. An example would be, the object’s acceleration is constantly changing,
making it very improbable to apply the correct value to the prediction technique. Furthermore, the source node
can transmit only absolute positions instead of transmitting higher polynomial terms.

Figure 9: Illustration an example of dead reckoning. The black circles correspond to the data received regarding
the object position p and velocity v at a certain time t, while the white circles represent the corresponding
position of the object at a certain time. At the instant t = 2 when the direction of the object is expected
to be (4, 4), new data is obtained that the real position of the object was (3, 1) and the velocity was (4,
2) at time t = 1 due to latency. Rather than to automatically "warp" the entity to its newly predicted
position (7, 3), a convergence point at 0.5 seconds later is determined from the new predicted path. In
doing so, the entity is moved smoothly, during the convergence period, along the linear converge path
to the newly predicted path, continuing it later on and consequently avoiding intensive jitter. source:
Smed et al. (2002b)

The convergence technique is used when new information about the object’s position is received and must
be applied, so in order to help smooth the transition and avoid jitter (when moving), this algorithm is applied.
The predicted position of the object may differ from the based position sent by the source code whenever a
node receives an update message. Depending on the distance between the current prediction position and the
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position received, the convergence algorithm can opt for interpolation or direct change to the new position. The
easiest approach for convergence is zero-order, in which the object is simply moved to the new predicted position,
however, this may be visible to the player being seen as jitter. Linear convergence would be a better method (Hsu
and Kuo (2003)). This method determines a future convergence point through a path from where the object is
and where it must be. The object is then moved along the direct path. Although, being a more transparent
method, it still creates some problems, such as unnatural curves. Curve-fitting techniques can be applied to
resolve them, smoothing out these movements. However, the higher-order it is the more computational power it
will require from the application.

2.3.7 Lag Compensation

Contrary to a singleplayer game, multiplayer games have to constantly deal with several problems caused by
network-based communications. For instance, packets sent over the network take a certain amount of time to
travel between the server and the client. Therefore, every client will ultimately have a different network latency
on the server, which may vary due to other traffic that the client machine may sustain over time. This delay can
cause logical problems in the game, worsening as the latency increases. For example, Player A sees Player B
and shoots them at a given time, sending the shot information to the server. However, while the packet is on
its way, the server continues to simulate the world, allowing Player B to move to a new location. When the shot
message is received on the server, a few milliseconds later, the server uses the information to verify if Player A
has indeed hit Player B. However, since the server simulation has moved on from when Player A shot Player B,
the server won’t detect the hit, even though Player A aimed precisely at Player B. Consequently, this results in a
massive problem affecting the game’s fairness and player experience. Due to this, having low latency is a huge
advantage, especially in fast-paced games where several messages are being created and sent. Yet, achieving
it at all times may be difficult for clients with limited resources, making the game’s actions unfair.

To cope with these problems, architectures that contain a central arbiter can use techniques such as Lag
Compensation, which are invisible to the client, and provide fairness for players with slower connections. Lag
compensation works by storing all recent player positions for a certain amount of time and creating a history of
what occurred until now. If a user command, sensitive to the time in which it occurred, is executed, then Lag
compensation will estimate at what given time the action happened through the following equation:

CommandExecutionTime = CurrentServerTime − PacketLatency − ClientViewInterpolation

This equation accounts for the interpolation delay applied to movement messages on the client’s application
and the packet travel time, removing them from the server’s current time to obtain the time that Player A shot
Player B on the server. Concluding the command execution time, the central arbiter moves all other players back
to where they were when the command was executed, running the command and correctly detecting if Player A
hit Player B. This way, no matter the time the command arrives at the central arbiter, the hit is always accurately
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calculated. After the command has been processed, the players are reverted to their original positions, and the
game can continue normally.

Figure 10: Illustration and example of lag compensation of a user with 200 ms delay when they hit a player. The
red wireframe shows the remote player position when the user shot them. The player on the left is the
player object that continued to move while the shot command traveled to the server, which is why
it is ahead. The blue wireframe represents the player on the server when the user has executed the
command. source: Valve® (2021)

Ultimately, Lag Compensation makes the game fairer for Player A but can also cause other problems. For
example, after Player B has moved behind a wall, they could still get shot a fraction of a second later by Player
A, even though they thought they were safe. This is the resultant trade-off of lag compensation, which may seem
partially unfair to Player B. However, it would be considerably worse if Player A were to miss a shot deemed
unmissable.

2.3.8 Synchronization

Synchronization is the foundation of a multiplayer online game (Hsu and Kuo (2003)). It is responsible to maintain
a consistent game base, allowing the players to play the game without occurring any strange behavior. Moreover,
the implement synchronization algorithm is an important factor on other key issues such as scalability, cheat-
proofing, etc.

Conservative Algorithms

Conservative algorithms solve the synchronization issue through directly preventing out-of-order events (Cronin
et al. (2003b)). A common conservative algorithm used is lockstep synchronization (Steinman (1995)). This is
the simplest technique available, used in military simulations (Mauve et al. (2004)). Lockstep synchronization
consists of no member (or in the case of an authoritarian server, server/host) will advance its simulation until
all players’ commands are received (Cronin et al. (2003a)), shown in Figure 11(a). This prevents out-of-order
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events from even being generated, making it impossible for inconsistencies to ever occur since no member of
the network has performed calculations to advance its simulation.

Another conservative algorithm is bucket synchronization (Steinman (1995)). The principle of bucket syn-
chronization, also designated as local-lag in (Diot and Gautier (1999)) which consists of artificially delaying the
updating of the game world until a short fixed-length of time has passed, shown in Figure 11(b). The value of this
latency must be chosen to allow enough time for updates to be received in the different recipients of the network.

Still today many FPS games use this algorithm. A use case of this algorithm is in Cronin et al. (2003b), where
the authors apply this principle to a fully replicated game. In the described game, it is given enough time for the
state update to reach remote peers through delayed the update of the state by a fixed period of 100 milliseconds.
While these algorithms perform poorly in fast-paced games such as FPSs, these may still be adequate to more
slow-paced games such as RTSs, due to being design as a turn-based game. This makes it so that each player
has to wait for every other player to complete their turn, allowing them then to advance in the simulation.

Figure 11: Conservative Algorithms. source: Hsu and Kuo (2003)

While these algorithms allow fairness despite latency variations and give more control over update dissemi-
nation costs, it comes at an unacceptable trade-off in multiplayer games because it is impossible to maintain a
correlation between the wall-clock time and the simulation time (also referred to as Global Virtual Time (GTV) or
game time (Hsu and Kuo (2003)).

Optimistic Algorithms

Optimistic algorithms resolve the synchronization issue by using a mechanism that detects and corrects incon-
sistencies in the state, and keeps a consistent rate of simulation. These algorithms execute events optimistically,
updating the game simulation, before knowing if all earlier events have arrived, and then correct inconsistencies
when their state is wrong. These algorithms are far better suited for more complicated interactive situations that
multiplayer games can introduce. The strategy is to use dead reckoning to correct it in case of a wrong prediction,
rollbacking the wrong predictions and updating the simulation with the correct states.

To evaluate optimistic algorithms, there are three factors to take into account (Cronin et al. (2003b)): (1)
Overhead: penalty paid for rollback. (2) Memory Usage: memory required to store the backup game states. (3)
Complexity: complexity to fix inconsistencies detected on the game state.

TimeWarp synchronization (TWS) (Steinman et al. (1998)) consists of doing a snapshot of the game state at
each execution and if an event prior to the last executed event is received then it is issued a rollback to a previous
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game state, as shown in Figure 12(a). When in rollback, first the game state is restored to the previous snapshot,
then all events that occurred between the current execution time and the snapshot time are re-executed, including
the last command. This rollback also dispatches anti-messages to cancel previously produced events that now
have become invalid. When a client receives them, it triggers their own rollback, which in turn triggers even
more anti-messages, and so on. Clearly, this considerable size of messages may congest the network creating
problems, as stated before. Servers may tie up processing these anti-messages instead of processing the
execution of the game state. However, there are breathing algorithms (Steinman (1993)) developed to attempt to
solve this problem alongside the excessive rollbacks by restricting the number of commands that can be executed
optimistically. Instead of a fully optimistic execution, breathing algorithms limit their optimism to events only within
the event horizon.

Trailing state synchronization (TSS) (Cronin et al. (2001)), shown in Figure 12(b), developed for Quake and
introduced in (Smed et al. (2002a)) implements rollback intelligently to avoid high memory and processor over-
heads visible on TWS. Instead of keeping snapshots at every command, TSS keeps a fixed number of copies
of the game world. When rollbacks are required, instead of copying the game state from a snapshot taken just
prior to the conflicting command, this algorithm copies the game state from a secondary copy (named Trailing).
The reason for this is because the secondary copy is trailing the primary copy (named Leading), meaning it is
behind. This makes it so the secondary copy has more time to reorder commands and that it does not have the
inconsistency that must be repaired. In other words, the leading state, which has the shortest synchronization
delay, is used to render the current events to the clients, while the trailing states are used to detect and correct
inconsistencies in the game state, copying the states from the trailing to the leading state and then performing
all commands between the inconsistency point and the present point.

Figure 12: Optimistic Algorithms. source: Hsu and Kuo (2003)

This actually means that TSS does not resolve the problem of rollback originated from TWS. This means that
it will only have better performance than TWS when the following two situations are evident: (1) The game state
is very expensive to hold the snapshot. (2) The gap between the delay of the state is small.



2.3. Foundations and Key Issues in a Gaming System 19

2.3.9 Security and Cheating

Online security is not only something most of us use on a daily basis but also a major topic nowadays. This can
also be said about the gaming industry. Game websites often report cyber attacks and warn about misbehavior
and cheating in online gaming. Kirmse and Kirmse in Kirmse and Kirmse (1997) identify two security goals for
online games: (1) Protect sensitive information, such as credit card numbers. (2) Provide a fair playing field,
through anti-cheating measures. Safety and security also are important issues inside the game world. However,
anti-cheating measures do not fall under the scope of this document, for that see Sanderson (1999).

Online cheaters are usually motivated by vandalism or dominance (Moraal (2007)). Gauthier in GauthierDickey
et al. (2004), distinguishes cheats into three different categories: protocol-level cheats, game-level cheats, and
application-level cheats, affecting confidentiality, integrity, and availability. Pritchard (Pritchard (2000)) and Kirmse
(Kirmse (2000)), also go over some of the common methods used in online cheating. Protocol-level cheats
occur by modifying the protocol. This can be achieved by the cheater through focusing on the network and
eavesdrop, injecting, delaying, or even dropping messages. They can for example, “listen” passively to the
private communications that they are only supposed to forward. There are five common protocol-level cheats
(Neumann et al. (2007)): (1) Fixed-Delay cheat adds a fixed-time delay to all outgoing packets. This makes it
so they can react faster to actions, in the game world, than every other player. A protocol that eliminates the
possibility for this type of cheats can be seen in (GauthierDickey et al. (2004)). However, these can generate
delays in bandwidth use creating another set of problems to be dealt with. (2) Timestamp cheat sends wrong
timestamps on actions so those same actions can favor them in relation to other players. (3) Suppressed Update
cheat, suppresses updates of any intended actions, while still receiving updates from others. (4) Inconsistency
cheat sends different updates of their actions to different players. This makes the rest of the players have a
game world out of sync, with possibly strange behaviors. (5) Collision cheat retrieves unauthorized information
from shared updates sent by other players. On the other hand, game-level cheats occur by violating the rules of
the game. For example, moving long distances in an instant, that normally would take some time to accomplish.
This type of cheats affects mostly P2P solutions, while in client-server solutions players can benefit from a trusted
server to manage the game states making it very difficult for cheaters to alter them. Furthermore, application-
level cheats materialize by modifying the code of the game. The cheater can also reverse-engineer the game
application to obtain more information on how it works. A common use of this cheat is modifying the graphics
engine so that walls become invisible, or even highlight enemy players through walls and other visual barriers,
making it easy for cheaters to know where players are. For this type of cheats, both client-server and peer-to-peer
have the same level of vulnerable status.

To prevent cheating, there are two approaches to be considered (Yahyavi and Kemme (2013)): (1) Cheating-
resistant systems. (2) Cheating-evident systems. Cheating-resistant systems basis on preventing cheating from
happening, through various means and services. Some of these services are player authentication, accountabil-
ity of their actions, information and communication confidentiality, application integrity, and tamper-proof devices.
Cheating-evident systems basis on detecting cheaters and punish them accordingly.
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Furthermore, software and network traffic are the only vulnerable places in a multiplayer online game. Design
defects can also create loopholes that cheaters can use to exploit the game. For example, in a system where
each client trusts every other client on the network, receiving updates and implementing them blindly. The game
is clearly unshielded and susceptible to client authority abuse. In this system, a compromised client can, for
example, alter the game state as they please and the rest of the clients will accept this information as correct.
In addition, heterogeneity of network environments in distribution can be the source of unexpected behavior,
such as “features” that only become visible when the latency is extremely high or when the server is under a
denial-of-service (DNS) attack.

2.4 A R C H I T E C T U R E S

This section gives an introduction of architectures in MMO games. The three most common architectures today
are Client-Server (CS), Multi-Server (MS), and Peer-To-Peer architectures (P2P), shown in Figure 13. All these
different architectures try to attain scalability by different means (Pellegrino and Dovrolis (2003)). The server-
based architectures achieve it by increasing the number of resources through clustering servers to distribute the
load. In P2P architectures each peer that joins the network helps to distribute the load.

Figure 13: Topology for Multiplayer Online Game systems. source: Hsu and Kuo (2003)

In a more game-related overview, as shown in the examples below in the Figure 14, these different gaming
architectures maintain the game world in different ways. In a CS architecture, the server is responsible for
maintaining the entire game world and its correct execution. In an MS architecture, the game world is maintained
as separate instances of the game world and/or partitioned into multiple different, or parallel, worlds spreading
the users over them. In a P2P architecture, each peer holds a part of the world acting as region servers for other
players (Hsu and Kuo (2003)).
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Figure 14: Different maintained game worlds. source: Yahyavi and Kemme (2013)

2.4.1 Client-Server Architecture

Client-Server architecture is the most common architecture for networked multiplayer games (Hsu and Kuo
(2003)), being the most popular architecture for MMOGs since the first developed. In this architecture, the server
is designated as the holder of the master copies of the game world, which other players connect to, receiving the
necessary information about the game world to replicate the simulation locally. In some systems, the player is
also the host providing the same central server authority upon other recipients in the network (Moraal (2007)).

The basis of this architecture is the following, each player sends updates (actions) to the server, which are
used to update the simulation. This makes conflicts easy to resolve due to being a single authoritarian execution.
After the simulation’s update, the server sends back the updated game state to the players who then apply it to
their local game world.

A CS architecture, having a centralized authoritarian server provides a high level of control over the game
world (Yahyavi and Kemme (2013); Hsu and Kuo (2003)) because it completely controls the game state. This
architecture has the following key characteristics:

Single game state on the server. Since all participants receive information directly from the server, global
consistency is guaranteed since it is based on a single authoritarian server. Moreover, the server introduces a
natural synchronization among all recipients, displaying the same game state at the same time. Participants can
go temporarily out of sync, which affects the consistency of the local game state, but will never affect the rest
of the network since after reconnecting the local game state is corrected by incoming updates from the server.
This architecture is usually simple to implement, but is also less efficient and not scalable, as even well-equipped
servers can only support a limited number of users until their limited bandwidth runs out (Hsu and Kuo (2003)).
The capacity that a server has is defined by a fixed number of clients that a single machine can handle, related to
the game in hand. To increase this capacity, more servers need to be added to the network so the workload can
be balanced between them. As this enters on multi-servers, this topic will be continued in Section 2.4.2, which
discusses the multi-servers’ characteristics.

Easy to update. Used mostly in games with a static or persistent game world, this architecture allows to easily
change, update, and have control over any certain update because the game rules and logic are handled solely
by the server. That is, when a new update is to be implemented, only the server has to be updated. However, the
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client software in MMOGs is not often as naive as in more traditional client-server applications. These may have
some data on the player-side to help lower requests and interactions from the client with the server, creating the
need for this client-side data to also be updated when game rules are modified. Still, some small updates may
be only needed on the server and not on the client. For bigger sized changes, both server and client software
have to be updated.

One governing authority. As every command must go through the server and then be sent back to everyone
in the network, this makes it a natural governing authority to prevent cheating, especially because a reasonable
part of the game is controlled by the server and thus trustworthy. This also allows the server to authenticate the
requests made by clients, certifying that all requests executed by the server are legal and allowed in relation to
who requested them.

Limited scalability and load flexibility. However, since the server must collect all the messages sent from the
clients, execute all the updates and resolve all the conflicts for the game to be updated, this causes the load to
be solo handled by the server. Clearly, this forms a natural bottleneck. The overall amount of data expected to
be transmitted and evaluated takes additional time as the number of participants increases. Once the servers
reach their maximum capacity on the CPU, storage, and bandwidth, the game state computations and/or its
distribution will be affected, causing it to possibly slow down or to even completely stop. Consequently, this
reduces playability for players. As solution clients can implement prediction techniques to mask this inconsistency
of constant updates from the server.

Single point of failure. Due to being a centralized system, based on a single authoritarian server, in case of
failure all participants, being dependent on it, will be disconnected from the collapsing network, interrupting the
game and losing non-persistent game states (Moraal (2007)). Consequently, a CS architecture is less robust than
a distributed system because of its single-point-failure (failure of the server). While this issue can be addressed
by adding backup servers, for the eventuality of the main server going offline, this can however lead to more
complexities and costs, further reducing its scalability and viability. This can make the network very fragile, even
more in MMOGs that require high availability. Frequent complaints from MMOGs’ players is the unavailability,
often because servers are unstable or even down (Yahyavi and Kemme (2013)).

2.4.2 Multi-Server Architecture

A Multi-Server architecture or server-cluster (Chen et al. (2005)) consists of a group of connected servers. Usu-
ally, large game companies maintain such server farms to provide service for many clients (Knutsson et al.
(2004)). Depending on the Multi-Server architecture the application may work in different ways, these variations
can be categorized into two categories. The first category consists of a basic Client-Server architecture but with
an increased number of resources, meaning servers. Here the entire game world is mirrored across several
servers. Each server follows the traditional Client-Server architecture and is responsible for its own complete
copy of the game world and a different set of clients, usually defined by where they are located in the real world
and/or where they have a better connection. In most games there is usually no need for communication between
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these servers, making it also impossible for players to communicate or even interact with players from other
servers.

In the second category, the game world is partitioned into several regions and given to servers to maintain.
However, in contrast with the first, this category servers may communicate between themselves. As referred
before, regions are kept separated in different servers, but all players continue to be in the same game world and
may interact with each other if they are in the same region. Most architectures only give one region to a server
to handle, however, some also allow one server to handle more if its current region load is low. This creates
a problem if one of the regions suddenly becomes overloaded. For this, schemes to dynamically load-balance
regions have been presented (Pellegrino and Dovrolis (2003)), allowing to allocate overloaded regions to new
servers.

To allow this free movement between regions (servers), the system requires the support of a hand-off mecha-
nism that allows this movement (Yahyavi and Kemme (2013)). This mechanism can be transparent through the
use of elements of the game to mask the transition. It is used as a player approaches the edge of the region
and tries to cross it. In doing so, the mechanism will send the necessary information to the correspondent server
and when the transition is complete the player may walk freely and interact with the players in the newly entered
region. Although it allows free movement this system also brings new challenges to be tackled, such as the
flocking of players in a single region.

A Multi-Server architecture inherits the benefits of the CS architecture while improving on its problems (Hsu
and Kuo (2003)). This architecture has the following key characteristics:

Scalable cluster of servers. Contrary to the CS architecture, in this architecture, there is a cluster of servers
that is scalable. The bottleneck from the large computational power required, used for an increase of users and
objects in the game world referred to previously in CS, is eliminated by distributing the computational load over
the multiple servers in the cluster. To increase the capacity of the system machines can be added to a cluster of
servers. Companies try to predict accurately the capacity that will be needed from the cluster because adding
new machines will require some time to reconfigure the server cluster, which makes it not very flexible. If they
predict too much load, they will end up with more capacity than needed resulting in wasted money. If they predict
too little, their servers will be unable to handle the load, making the game unplayable, and likely fail on the market.

Efficient synchronization. This architecture allows the game world to be divided into different regions or zones,
and each instance is maintained by a different server, consequently supporting a higher number of players
simultaneously. However, this brings new challenges to the architecture. The main drawback is that in most
games, people from different servers cannot play together, being isolated from each other. This is because, by
separating in instances, it forces players to only interact with others that share the instance of the game world.
Allowing players to migrate to other zones can be a complex system to implement and requires attention to
maintain game state consistency. In the case of the players flocking in a region, the corresponding server will
only be able to handle a limited number, creating a problem for the remaining players. A solution to this would be
to have more servers handling the same region.
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Large costs. A major drawback of this architecture is setting up and maintaining server farms, making it only
a viable option for companies with funds, preventing start-up or small game companies from entering the MMO
game market (Hsu and Kuo (2003)).

2.4.3 Peer-To-Peer Architecture

In a Peer-To-Peer gaming architecture, each node acts both as a server and a client, meaning each peer is
responsible for executing its own game simulation, updating, and disseminating game updates to other peers
(Neumann et al. (2007)). Due to the lack of central authority upon the clients, these networks are not very
popular. Furthermore, it is hard to maintain state consistency among players, prevent cheating and regulate
access.

In a P2P architecture, due to the elimination of the central authoritative server and the distribution of the load
over all users in the network, new characteristics appear, being the following:

Scalability and flexibility. As there is no need to send updates to a central server and from the server to
the peers, updates are directly sent between peers, achieving low latency. Moreover, each peer in the network
helps to distribute the computational power by the players, through contributing in CPU, storage, and bandwidth
resources, making game updates between themselves. The more players in the game who are involved, the
greater the network load will be. This removes the need for large server-side bandwidth and reduces the need for
powerful central server clusters, thus lowering the cost to maintain them. However, it may lead peers to surpass
their bandwidth capacities in cases where they need to send updates to far too many peers. For example, if a
game world is too overcrowded.

Low cost for running the game. As mentioned before, P2P architectures use the participants’ resources that
are active on the network. In doing so, the need for major infrastructure investments to keep servers running is
not required. In the case of MMOGs, it is challenging to make them solely from a P2P system. There would have
to be some sort of central server in effect to maintain order and consistency, but because of the low complexity
and low workload, it will most certainly not be a big expense.

Robustness. Due to all participants being equivalent, independent and having the necessary information to
compute the state of game at any time, makes the P2P architecture very robust (Neumann et al. (2007)). If a
peer node fails, the rest of the network will continue to operate normally. However, this is not the case in all P2P
architectures, nevertheless it is a common advantage in a P2P approach. In MMOGs this will also mean that the
game will always be available.

No easy identifiable global game state. As a result of a distributed game state, in P2P systems it is very hard
to ensure a consistent game state between peers, as there are multiple peers handling the same objects simulta-
neously and there is no particular entity that holds the entire game state. For these systems, it is required some
form of synchronization between clients to ensure that each copy of the state is the same. Without synchroniza-
tion clients’ game, states would diverge over time due to network delays and their characteristics. Some studies
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achieve global consistency (Hampel et al. (2006)), however, it only works properly in systems where games are
at a low scale.

No governing authority to counter cheating. Cheating in P2P architectures is a sophisticated problem (Moraal
(2007)) because part of the virtual world and game logic is run on the player’s peer node. This allows players to
make their own decisions without there being some sort of authority to check its legally, making it easy to cheat.
This means that peers cannot be regarded as trustworthy and that special mechanisms must be developed to
ensure that compromised peers cannot endanger the consistency or stability of objects and network traffic. In
P2P other mechanisms have to be implemented in order to defend against cheating, such as those mentioned
in Section 2.3.9. However, it is unclear, whether cheating without any kind of a global monitor can be completely
removed (Neumann et al. (2007)).

2.4.4 Comparison

Here it is discussed the different characteristics of each of the previously described architectures. A summary of
comparison is provided in Table 2.

Peer-to-Peer Multi-Server Client-Server
Robustness Good Medium Poor
Scalability Good Medium Poor

Delay Good Medium Poor
Consistency Poor Medium Good
Cheat-proof Poor Medium Good

Commerciality Poor Medium Good

Table 2: Characteristics of the three architectures’ systems.

Robustness. In a CS architecture, due to being a centralized system, all participants are dependent on it.
Consequently, it is the less robust of all of the three architectures. Contrary to CS, in a P2P architecture, all
participants are independent, equivalent, and have the necessary information to compute the state of the game
at any time, resulting in a very robust system.

Scalability. CS has poor scalability due to just being able to hold a fixed number of players. A solution for
this is to add new machines to the network of servers to increase the number, forming a Multi-Server. However,
maintaining these farms of servers is costly. P2P architecture has the highest potential for scalability as each peer
connected to the network contributes with CPU, storage, and bandwidth resources, distributing the computational
power by the clients.

Delay. In a CS architecture, the server must collect all the messages sent from the clients and execute all the
updates, resolving conflicts and updating the simulation, only then sends updates to the clients. As the number
of players goes up there is more information to be received, handled, and sent to the clients. This can cause
delays in the response time since the bandwidth’s limit is reached. In a Multi-Server architecture, the load can
be balanced between all servers. In P2P architectures, the delay of messages is very small as peers connect
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directly to each other. This means that in contrast to CS, the messages do not have to be relayed from a central
server.

Consistency. A CS architecture, having a centralized authoritarian server provides the highest level of control
over the game world and naturally guarantees global consistency. This architecture is usually simple to implement
in comparison with P2P architectures, but it is also less efficient in the resources used. In a P2P architecture is
very complicated to maintain consistency as everyone can change the primary copy, leading to inconsistencies.

Cheat-proof. In a CS architecture, a server manages all updates, thus verifying if a player is following the game
rules and correct them if not. As the server is owned or controlled by the developers, players cannot tamper with
it, being regarded as trustworthy. In contrast, P2P systems are very hard to prevent from cheating because all
peers have the game logic locally, being able to change it as they please and propagate it through the network.
Due to this, P2P networks are more susceptible to protocol-level cheats, since peers are involved in message
routing, which the same cannot be said about server-based architectures where each player communicates only
with the server. The same can be said about game-level cheats because there is no governing authority that
handles all actions and can reject them if they should not be possible. In P2P solutions, game-level cheats can
be partly avoided by randomly assign items to peers, as done in Moraal (2007) where peers have no say about
what aspects of the game state they are responsible for. Some other approach is to replicate over multiple peers
the state of all objects and make them check every update its legality.

Commerciality. Server-based architectures (Client-Server and Multi-Server) are very easy to commercialize
and exploit (Yahyavi and Kemme (2013)). A lot of MMOGs nowadays present a monthly subscription fee in order
to have access to the game. Due to being centralized, it is very easy to implement this business model, as the
game company owns or controls the servers. In order to play, users will have to request the servers to join, easily
controlling who has access to them. In P2P architectures this is not as feasible due to being very hard to enforce.
Users can simply form their own network. However, there are solutions (Moraal (2007)), such as having a central
server that manages users’ accounts and guarantees that the network is accessed only by users who have paid.
Still, since the client software contains all of the game logic and the server will be technically simple, the system
would be extremely susceptible to piracy.

2.4.5 Hybrid Architecture

When examining the upsides and downsides of both CS and P2P architectures, one can doubt whether both
architectures can be merged in a way that provides all the advantages that both offer with none of the downsides.
Studies have been made, proposing various combinations of these two architectures, as shown in Figure 15.

The approaches can be divided into several categories according to what is being handled by the P2P system.
Yahyavi in Yahyavi and Kemme (2013) classifies them as: (1) Cooperative message dissemination: the game
state is maintained by one or multiple servers, however, the update dissemination uses a P2P approach. In
this system, the players normally send their actions’ requests directly to the server, which executes them. Then,
the peer uses a P2P multicast mechanism to update every peer on the network. (2) State distribution: the game
state is distributed among the peers. Each player can hold primary copies of the game objects, making them also
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Figure 15: Some examples of hybrid approaches. source: Yahyavi and Kemme (2013)

responsible for executing the player’s actions. However, part or all of the communication between peers can be
managed by the servers. Furthermore, the servers are also responsible for authentication and admission control.
Clearly, distributing the cost of state execution among clients, makes the approach highly scalable. (3) Basic
server control: both message dissemination and state distribution are done only through the P2P overlay. In this
approach, the servers’ main role is to keep highly sensitive data, for example, the players’ state and progress,
user logins, and payment information. Still, in some games, servers may also have additional roles to fulfill, such
as coordinate interactions between peers and performing admission control to enter or leave the game session.

However, creating an ideal combination with all the benefits and no downsides is difficult because these
disadvantages are almost mutually exclusive. In a CS architecture, the main disadvantages come from being
based around a central server. The cost of maintaining, the limited scalability and flexibility of the network, and
a single point of failure are truly the most problematic factors on this architecture. While in P2P architectures
much of its downsides occur by not having a central server. With this comes no referee to counter cheating and
it becomes very difficult to maintain a consistent game state throughout the entire network.
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This does not necessarily imply that merging P2P aspects with client-server’s is never advantageous, much
of the disadvantages from p2p architectures do not always apply to all games. Some games may offer some
simplicity or specific elements that make them not susceptible to these downsides. For example, games that do
not need to pass over the game state from one instance to another or games with a small number of players. It
might not be viable to completely remove the central server in MMOGs, and it is likely better to keep the complete
game state in the server (Moraal (2007)). What can be used in a P2P manner depends on the game’s specifics.
In some games’ systems, P2P can be even used in other ways, for example, in WoW, P2P systems are used to
distribute software updates to the clients.

2.4.6 Decentralized Virtual Environments

Decentralized virtual environments have been explored in the past (Barrus et al. (1996); Frécon and Stenius
(1998); Hu et al. (2006)), to provide scalability and bandwidth savings for online games. MiMaze (Gautier and
Diot (1998)) was one of the first attempts to design a fully distributed (i.e., serverless) online game. It uses an
unreliable communication system that is based on Real-time Transport Protocol (RTP) (Casner et al. (2003))
over UDP/IP multicast (SE (1998)). Each player has an entire replication of the virtual world on their machine
(as opposed to having just a partial view), and multicasts their actions to all other players. This technique can
be considered as P2P since each player communicates their actions directly to the other players. Based on
how nodes connect to each other, fully-distributed peer-to-peer gaming solutions overlays are generally divided
into two types: structured overlays or unstructured overlays. Some of these types of architectures are shown in
Figure 15.

Structured P2P Game Architecture

Structured P2P systems use a deterministic protocol to form a specific graph structure, which consists of the
determination of the connections between peers. The core of several of these architectures uses a Distributed
Hash Table (DHT) as the underlying mechanism for game state distribution and update dissemination. Players
subscribe to receive updates from different game regions, which are mapped locations in the DHT, and the
protocol guarantees that a node is able to route messages to every other node and/or find an object in the
network overlay. This is done by exchanging O(log(N)) messages, where N is the number of nodes. To help the
lookup, key-based routing mechanisms are provided, these services are comparable to a hash table, however
differing since the (key, value) pairs are scattered around the nodes in the network. These protocols can also,
with low overhead, introduce or exclude nodes from the overlay. Some known examples of these P2P substrates
are, Pastry (Rowstron (2001)) and Chord (Stoica et al. (2002)). DHT uses these substrates for the fundamental
mechanism. Knutsson, in Knutsson et al. (2004) presents a peer-to-peer solution for MMOGs based on Pastry.

In some MMOGs, a common approach to creating these hierarchical overlays is to divide the game into
regions and assign a super-peer that acts as a regional server. Players can then exchange updates with the node
responsible for that region. However, structured P2P games can be problematic. One key issue is distributing the
load when the number of players becomes high in a certain region. There are approaches that can be taken into
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Figure 16: Illustration of Pastry message routing. source: (Yahyavi and Kemme (2013))

consideration to resolve this, such as load-balanced trees (Yamamoto et al. (2005)) and the sub-server approach
(Lee and Sun (2006)). With load-balanced trees, the responsible node builds a delivery tree among the players
in the region and uses the tree to deliver events for the region. With the sub-server approach, the responsible
node subdivides its region into smaller areas and assigns an area server for each of these pieces, resulting in a
three-level hierarchy.

An additional alternative to this somewhat top-down hierarchy is to instead create a bottom-up hierarchy based
on event scoping (GauthierDickey et al. (2005)). The players join at the leaves of the tree, which is the smallest
scope, and players within the small scope exchange game update directly. Furthermore, this approach uses
a cryptographic protocol that orders local events and prevents cheating (GauthierDickey (2004)). When events
occur at larger scopes, they are delivered to all affected nodes using the scoped tree.

Unstructured P2P Game Architecture

Unstructured P2P systems do not use deterministic algorithm used to arrange and optimize connections between
peers in the network. In other words, it lacks a global mechanism, such as DHT, that would manage and maintain
the overlay. The network connections are generally established by probabilistic mechanisms or at random, with
the goal of achieving a suitable overlay. For example, a mechanism that has a greater probability of connecting
peers semantically close. Usually, the lookup on this network is performed in a probabilistic way.

Also, redundancy measures have been introduced to help speed up the such as content replication or flooding,
described in Leontiadis et al. (2006); Sozio et al. (2008); Costa et al. (2003). An example of this is, if a peer
wants to find a piece of data in the network, a query has to be created and flooded through the network in order
to reach as many peers as possible that share the data. However, in these networks, the queries may not always
be resolved. Popular content is likely to be easily available to several peers, but if the content to be looked for is
a rare or not popular data shared by no more than a few other peers, then it is very likely that the search will be
unsuccessful. Flooding also causes a high amount of signaling traffic in the network, thus such networks usually
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have very poor search efficiency. Some popular unstructured P2P networks are Napster (David (2016)), Gnutella
(Taylor and Harrison (2009)) and KaZaA (Liang et al. (2004)).



3

A R C H I T E C T U R E A N D I M P L E M E N TAT I O N

This chapter describes the approach used to develop the distributed game and it’s implementation. It begins by
describing the game developed and providing various insights into its requirements in order to work correctly in
a distributed manner. Going further, this chapter introduces the selected network architectural approach and the
capabilities it provides. Additionally, the system’s implementation is explained, describing the functionalities, the
communication workflow, the various structural components, and lastly, the system and game protocols.

3.1 G A M E D E V E L O P E D

Since well-documented, open-source, and relatively simple MMO games are hard to stumble upon, it was chosen
to develop a game from scratch using free game-making tools available. Constructing the game allowed to
keep things simple and build it as seen most desirable in order to allow for an easy adaption and integration of
network modules or for further expansion of the game’s functionalities, to create new exciting problems to be
explored. Moreover, it helped tremendously during the distribution process to already know how the game and
its components worked due to building them.

The constructed game is called DummyGuys and was made in Unity1, using mainly C# language. This game
is heavily inspired on Fall Guys2 due to its popularly at the time of researching a game to distribute. Its popularity
also sparked others to take interest in developing games around the same concept and art style as Fall Guys, for
example, Dani (2020) and Sykoo (2020).

DummyGuys is an MMO of the Battle Royale genre. This type of games traditionally involves dozens or
hundreds of players, enclosed in a big map area, fighting for survival, alone or in teams, against other players,
with the winner being the last team or player alive (last-standing-man3), with some famous examples being Apex
Legends4, PUBG5, and Fortnite6. DummyGuys is a slight variation of this. It introduces up to 60 players to
a small map with a series of obstacle courses that players must go through in order to reach the finish line
and win. The players’ actions are bound to running, jumping, and diving movements, whereas player-on-player

1 A cross-platform game engine. - https://unity.com/
2 https://www.fallguys.com/en-US
3 Multiplayer deathmatch gameplay mode is featured in some FPS games and is also the essence of battle royale games. games.
4 https://www.ea.com/games/apex-legends
5 https://na.battlegrounds.pubg.com/
6 https://www.epicgames.com/fortnite/en-US/home
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interactions consists of pushing and grabbing each other, and, occasionally, bumping or blocking other players
with their bodies. Collision with players or other objects can cause the player’s character to be knocked out,
transition into a ragdoll state, where they can’t move until the character gets back up again.

The several obstacles in the game describe a stable and predictable movement, represented in the world as
boulders, moving walls, blades, etc., each with a different movement type. When players collide with them, they
may be pushed off map, which results in being respawned at the latest checkpoint they have passed. So, players
must avoid these obstacles in order to win, as being struck by one them may considerably waste their time when
competing to reach the end of the course as soon as possible.

Some of the game aspects to take into consideration when selecting an appropriate approach for its distribu-
tion, are the following:

• The game’s synchronization consists of ensuring that the game state (race started, slots available, etc.),
the players state (ragdolled, position, rotation, etc.), and the obstacles state (position and rotation) are the
same on all simulations of the game;

• Systems like the finish line and checkpoint system are dependent on the player position. So, it is one of
the most crucial attributes of the player’s character;

• The character’s state is vulnerable to cheating since it is controlled by a user;

• Events such as, players finishing the race or pushing and grabbing each other can happen simultaneously,
requiring an agreement protocol to guarantee the same results on all instances of the game in order to
achieve consistency;

• The game represents fast-paced and short-lived interactions, such as an FPS game, resulting in a low
tolerance to the latency.
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3.2 A P P R O A C H

For the distribution of the game developed, this document proposes a hybrid architecture approach (based on
the hybrid architectures mentioned in Section 2.4.5) with the introduction of some adaptations to fit the game’s
requirements already discussed.

Figure 17: Architecture overview.

The hybrid architecture is comprised of two components: (1) P2P network paired with a (2) central server,
represented in Figure 17. Their roles in the system are designed as follows:

P2P Network. The P2P network represents the clients in the game session who communicate directly with
each other, disseminating their player state to the rest of the peers in the network. Thus keeping it updated
on all simulations as new actions are created and shared. The clients themselves are not responsible for the
distribution of the game state, nor events. Their responsibility is only to themselves, meaning they can only
control and be responsible for their player state, having no authority towards others. Since they do not participate
in disseminating player states from other clients, nor game events, clients cannot harm others by sharing false
information. However, adopting this approach causes the system to lose any cost savings from using the clients’
bandwidth and computational resources to share or calculate these events.

Central Server. To ensure security in the network, it is employed a central server that also provides consistency
and authority over all clients. The server has a great deal of power in the system because the ultimate goal of
most games is to acquire or control the game state, whether that is a treasure, power, or the lives of other
players. Anytime the players’ actions interact with the game state or other players, the server acts as the arbiter,
ordering state-changing events and issuing game state updates, assuring that every client’s simulation follows
the same outcome. In addition, player states are monitored by the server so it can keep up and, possibly, detect
inconsistencies. Apart from this, the central server is also responsible for registering and managing clients, and
when necessary, evicts them from the network if it detects they misbehaved.

In conclusion, the proposed architecture provides a distribution model that makes use of client resources
to take the load off the central server while also providing inconsistency detection, network management, and
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cheat-resistance, to which P2P is vulnerable. Lastly, revising the previously mentioned DummyGuys aspects,
the current architecture presents the following capabilities:

• The architecture maintains control over important popular states, such as game state and obstacles state,
and shares them with the clients, ensuring synchronization and consistency.

• Although player states are disseminated by clients, these are monitored by the server, which ensures their
validity. Also, this allows for the implementation of proof-cheating mechanisms.

• The central server can act as an arbiter in events, such as players finishing the race at the same time
or pushing and grabbing each other simultaneously, requiring an uncomplicated agreement protocol and
ascertaining consistency on the outcome.

• The direct dissemination of player states results in low latency travel, especially compared to regular a CS
architecture, which helps fulfill the small tolerance requirement from the game.
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3.3 I M P L E M E N TAT I O N

The constructed system is comprised of two applications, GameClient and GameServer, corresponding, respec-
tively, to the client and the server referred in the previous Section 3.2. Seeing that the game was developed in
Unity, both applications are also constructed in Unity.

Considering the game’s specific communication requirements, the system supports three transport proto-
cols: TCP, UDP and IP Multicast using UDP, which their use in the system is explained in Section 2.3.1. Both
applications follow an asynchronous communication with multiple blocking sockets for receive, that using a multi-
threaded solution, achieve a responsive effect on both server and client. The messages treatment is handled by
a multi-receiver, first-in-first-out message queue. When messages are received, they are handled on a separate
thread, which adds them to the message queue to be processed sequentially.

An application-specific protocol is a particular set of permitted message sequences specific to the game,
which facilitates its operation (Anthony (2016)). The specific game application protocol to this system requires
the following activity sequence:

• The game server is started and runs continuously as a service;

• A user starts an instance of the game client when they wish to join in;

• The user chooses an alias name, commonly known as username, and other information;

• The client connects to the server and shares their information;

• The server directs the client to an available lobby, which their information is propagated to a group of
clients as part of a list of players;

• The server selects a random map to play and starts the race;

• The game is played. The server mediates events and keeps track of the game state to determine their
outcome and if the game has ended, sharing game information with the clients. The client also propagates
their gameplay moves (player states) to the other clients, so their simulation can be updated;

• The clients are notified of the game result by the server;

• The client’s connection to the server is closed.

Each of these operations involves sending messages between the system’s components to update the game
state and synchronize the behavior. These messages are sent to each connected client and server in rapid
succession. These contain a careful selection of content to send as little as possible, specific to a task. Therefore,
the message processing is performed contextually based on the message type code. Depending on the transport
layer protocol used to share them, additional mechanisms are implemented at the game level (depending on the
application) to take care of latency, message sequence, or message loss. Moreover, a broader explanation of the
system protocols and workflow of the multiplayer game is provided in Section 3.6 and Section 3.7, respectively.
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3.3.1 GameClient - Client Application

GameClient application is the executable of the user’s application, which they use to play the multiplayer game.
This application interprets the user’s interactions and expresses them in the game. It also exchanges messages
with the server and other clients in the game session, applying them to the game to achieve a mirrored simulation.
Furthermore, to help the application achieve from the problems described before, some mechanisms at the game
level are implemented, for example, entity interpolation, player replication, game tick system, dead reckoning, etc.

Figure 18: Client application main menu (mockup).

Figure 18 shows the mockup of DummyGuys’ main menu. To participate in the game, the user presses the
Play! button, initiating the connection process to the server. Nevertheless, the user must define the server port
and IP address beforehand, using the User Interface (UI) provided, so the application knows who to contact and
exchange messages. The user can also change their username and color applied to their character in the game
world. While playing the game, the user can press the escape key to bring up the options menu. There, the user
can exit the game or change settings such as the graphic’s quality or audio volume.

If the client is disconnected from the server, another menu pops up, alerting them, which then leads them back
to the main menu. Similarly, in case the client application crashes or closes while connected to the server, if not
correctly disconnected, a heartbeat mechanism on the server notifies it. This prompts the server to remove the
client from the connections and the game world, also informing the rest of the clients in the network of the client’s
disconnection.
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3.3.2 GameServer - Server Application

GameServer application is the executable of the DummyGuys’ server that starts its service of accepting con-
nections, managing clients, and exchanging messages. The server is a console application, shown in Figure 19
because it provides a simple user interface and requires little to no user interaction. Additionally, a console appli-
cation requires fewer implementation resources since it removes unnecessary functionalities, such as rendering
objects, generating lighting, and effects or graphics.

Figure 19: Server console application.

The server is event-driven, relying heavily on the client’s messages. Each event is modeled as a separate
activity, which is initiated when the relevant action is detected. Sockets are used to receive activities, invoking
a handler to treat them. In addition to many user activity events, which start when a specific user event occurs,
for example, when the player tries to push another player in the game world, there are also timer-based events,
such as race start countdown.

The server allows for multiple game sessions to be created and run simultaneously, independently and isolated
from one another, called rooms. Each of these rooms has different clients inside it, which are not allowed to com-
municate between them. This is because, while in the same machine, rooms have little to no communication with
each other and need little to no access to information not explicitly owned to them. Therefore, they become clear
candidates for units of parallelization. A good solution would also be to separate them into different machines.
However, for a simpler study of testing the system’s capabilities, workload caused by clients, and maintaining
a well-functioning distributed game, it was decided to keep everything in the same machine. Additionally, it is
inside them the game state and events are managed on the server application. Moreover, rooms are created
at the start of the server or on-demand. Still, these are kept dormant until the server has notified them of their
necessity.

Clients enter rooms, routed through a matchmaking mechanism after successfully joining the server. Each
client on the system is associated with an id, taking different ids in the server and the room (explained further
ahead). Seeing that clients do not have persistent data such as an account, and the server game worlds are
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instantiated on command and discarded afterward. Therefore, the system does not integrate any persistence
mechanisms in case of failure.

Figure 20: Server properties file.

Lastly, the server application uses an external I/O file, called server.properties (shown in Figure 20), at its start-
up. The data contained in it controls specific functionalities, which are used to configure the server when required.
For example, when the DEBUG variable is true, the server ceases to execute additional verifications and other
implemented processes, only needed when running on a normal execution. This file was indispensable when
making tests during development and analysis since it avoided building different versions of the same system
only to change some values or test new mechanisms.
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3.4 C O M M U N I C AT I O N

Following the very same communication workflow explained in Section 2.3.1, this section presents the mecha-
nisms constructed and used in the system for the Transport Layer Protocol, Message Queue, and Data Encap-
sulation communication layers.

3.4.1 Transport Layer Protocol

Given the need for networking reliability in most information sent and the need for fast delivery in others, it
makes the decision of what transport layer protocol to use very important and dependent on the specific game
information at hand. UDP is ideal for sending fast game updates, but messages are not guaranteed to arrive
at the recipient. In contrast, TCP guarantees message delivery, but its speed is considerably slower and more
expensive because of its use of ACK packets and their round-trip times. Furthermore, considering that the system
needs to share the same information with all clients and the required bandwidth to do so when holding a large
number of players in the room, Multicast (Network-Layer Multicast) shows itself as a viable option to implement.
Therefore, the transport layer protocols implemented and their use in the system are as follows:

• Client-Client - Multicast with peers inside the room.

• Client-Server - TCP with the server and room, Multicast and UDP when in a room.

Client-Client communication is characterized by only using Multicast due to the client being the only one
responsible for disseminating their player state with other clients. Since player state messages represent fast-
paced, short-lived actions created several times per second, there is no problem losing some. So, UDP is more
than sufficient for its dissemination. However, in conjunction with the fact that each client has to share their player
state with every other client in the game makes Multicast more suitable, providing a more efficient way for clients
to communicate directly with each other.

Client-Server communication employs all three communication channels due to the high variation in the rele-
vance of messages sent between them and the number of recipients that need them. For instance, for the server
to connect with a client and receive their information, it uses TCP due to the transmission of critical data. Without
the arrival of this information at the server, the client would not successfully connect. On the other hand, UDP is
used for less critical messages, and with a high creation rate, that does not affect the system if they are lost from
time to time. Lastly, Client-Server communication also uses Multicast to take advantage of the fact that clients
already use it to share player state messages. This way, the server can also receive and monitor these packets,
allowing an efficient way of sending other necessary messages to all clients.

As a result of the implementation, the server maintains one TCP socket for listening to clients’ connection
requests, two others per connected client (TCP and UDP), and another per room to Multicast. On the client-
side, clients maintain only three sockets, TCP, UDP, and Multicast, where the TCP and UDP are only used to
communicate with the server (and room) while multicast is used for both clients and server.
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Upon receiving data on these sockets, a check on the received message length is performed. On the TCP
socket, receiving a zero-byte message (as opposed to no message) implies that in the context of the communi-
cation logic of this system, the connection has been lost. On the UDP and Multicast socket, receiving a four-byte
message (as opposed to no message) is also taken to imply that the connection has been lost. If sockets happen
to receive a message, its bytes are copied to an array, and in order to continue reading data from the stream,
stream.BeginRead7 asynchronous read operation is called. The copied data is then given to the system’s mes-
sage queue for processing.

3.4.2 Message Queue

As mentioned, messages upon being received create a thread to process the data received without blocking
the main thread of the receive loop. Due to this, messages are concurrent, needing to assess the game logic
and write data in shared memory. Although writing in shared memory from different threads can work, it is also
problematic to implement and very error-prone. In addition, Unity does not allow Unity components, such as
GameObjects 8, which makes up the player’s character or everything else in the game world, to be accessed
from outside the main thread. Therefore, it was decided not to pursue these more concurrent solutions.

To facilitate the messages’ proper treatment, the system implements MessageQueuer, which allows a received
message to schedule their treatment to be run on the same specific thread, avoiding unforeseen errors. This
thread is Unity ’s Update9 loop, which permits GameObjects to be accessed.

MessageQueuer is used by every component in the system that handles the treatment of network data,
namely server, room, and client. Although structured slightly differently on the server (and therefore in the
room), it follows the same basis. On the client, MessageQueuer holds a list of Actions10 that each update is
iterated and executed all code inside. New Actions are stored when information is received. To add them, the list
of Actions inside MessageQueuer is locked and then adds them. When it is time to update, all code meant to run
on the main thread (Unity ’s Update loop) is executed using UpdateOnMain, shown in Figure 21. The process
is accomplished by locking the list of Actions and copying its contents to a new list. The list of Actions is then
cleared and unlocked to add more Actions over time, while the copied list is iterated, executed and then emptied
on the next run.

7 https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.beginread?view=net-6.
0

8 https://docs.unity3d.com/ScriptReference/GameObject.html
9 https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

10 An Action delegate is an encapsulated method that returns no value, or a void encapsulated method. - https://docs.
microsoft.com/en-us/dotnet/api/system.action-1?view=net-5.0

https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.beginread?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.beginread?view=net-6.0
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-5.0


3.4. Communication 41

Figure 21: MessageQueuer update method.

On the server, MessageQueuer still has the responsibility to run all Actions on the main thread, but it does
not store them. Since the server has multiple rooms, receiving and treating incoming messages, to not mix
Actions from different sources, they are stored in the separate MessageQueue classes. Therefore, each room
and server will create a MessageQueue and add it to a list of MessageQueues in MessageQueuer, which it goes
through to execute all Actions inside. Moreover, since the system has multiple rooms going dormant after the
game instance has finished, if the Actions of each room and the server are separate it creates a better approach
to clearing them later. This is because a MessageQueue can be easily removed from MessageQueuer.

Furthermore, these Actions are simple processes, such as add, remove, modify and update, with as much
little data to handle as possible. Intensive processes are avoided from being executed using a lock. When
such operations are required, they are run asynchronously to avoid disrupting the system and, possibly, other
active game instances. It is the case for loading a game scene on the server. This task is heavy since the
application has to instantiate multiple game scene objects and scripts while other game instances are running.
By processing it asynchronously, the scene’s load process does not put at risk the correct behavior of the server.

3.4.3 Data Encapsulation

For the data encapsulation approach, the system uses Packet, which allows for low-level data to be converted
into high-level data (bytes) and vice-versa. The following Figure 22 and Figure 23 show an example of the read
and write process when dealing with a packet. Since Packet inherits from iDisposable11, the system manually
disposes of it when it has finished using the class for the message. For this, a packet instance is defined inside
a using block, which disposes of it afterward.

Figure 22 shows the Add method that converts a given attribute to a list of bytes and adds it to the packet
buffer. After inserting the values, the buffer length is inserted at the beginning of the packet using InsertLength.
This way, when the message is received, the recipient can handle the data correctly.

11 https://docs.microsoft.com/en-us/dotnet/api/system.idisposable?view=net-6.0

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable?view=net-6.0
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Figure 22: The following serialization example shows the creation of a player state message on the client. After
being constructed, a client send data method is called (MulticastUDPData) to transmit the data
through the appropriate socket.

Figure 23: The following deserialization example shows the treatment of player state messages on both client
and server. After its contents are retrieved, they are given to a Procedure Call (PlayerMovement) that
applies them to the corresponding player character inside the game world.

For the deserialization, Figure 23 shows the various Get methods that convert the bytes received back to their
original format. These methods must consider the object they are trying to retrieve from the packet. For example,
GetInt tries to get an integer by reading 4 bytes inside the packet’s array. Therefore, the complete process needs
to regard the order in which objects were written in the packet, as seen comparing Figure 23 with Figure 22.
Otherwise, it won’t successfully retrieve them.

A system as complex as a multiplayer game requires a lot of information to be shared and synced. Therefore it
requires a lot of different types of messages, holding just the necessary data to realize a specific task. Additionally,
the system needs to know the packet content, its order, and its task. To accomplish this, all packets in the system
are identified through an integer inserted at the beginning of its content. So, using this integer as an identifier,
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the system knows the packet’s contents and order. However, from a programmer’s view, it is hard to identify a
message through a simple integer, especially considering that there are various types of messages. Thus, it was
used enums, shown in Figure 24.

Figure 24: System’s packet types.

Additionally, it is used a dictionary, denominated packetHandler, containing all packet types and the designated
method for proper treatment of its contents. Therefore, upon receiving a message, the system reads the packet
id and uses the packetHandler to connect it to the correct method and treat it correctly. If a message received
has no id, it is deemed garbage and immediately discarded. Since the server only deals with incoming messages
from the client, its packetHandler only needs to contain enums from the client’s packets. However, since clients
deal with incoming packets from both the server and other clients, its packetHandler needs to have values from
both enums. Initially, this would have caused conflicts because enums start at zero, resulting in two different
packets with the same id. Thus, client packets begin on the eighteenth, corresponding to the seventeen distinct
server packets ids plus one, as shown in Figure 24.

Finally, apart from the information needed for a specific task, packets also contain the room’s id (if sent from
the server) or the client’s id (if sent from a client), as seen in both Figure 22 and Figure 23. Therefore, packets
are auto-contained and possess all the necessary data to identify which information was sent or requested and
who sent it.
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3.5 A R C H I T E C T U R E

This section explains the GameServer ’s and GameClient ’s various components, shown in Figure 25 and Fig-
ure 26, that make up the network and game logic. These two layers were kept separate, providing a clean
development method by successfully abstracting critical communication problems, such as consistency and re-
liability issues from the game logic code. It also represents a good practice since most MMO game companies
have big teams working simultaneously at different levels of the game. Thus, a game programmer should be able
to work abstracted from the network domain, and a network programmer should be able to work unconcerned
with the game domain. Moreover, each component of the applications represents clear competencies and in-
teractions, implemented by a set of clearly defined protocols, making it possible to develop, update or adapt
components independently. These components can be counted up to four critical models, being the following:

• Server, contained in GameServer, is responsible for handling new client connections and managing the
server service;

• Room, contained in GameServer, is responsible for managing a room’s state, events, and messages;

• Client, contained in GameClient, is responsible for managing a client’s state, events, and messages;

• Game, contained in both GameServer and GameClient, is responsible for the game logic, state progress,
and direct connection between the logical and physical (in the game world scene) game.
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Figure 25: GameServer class diagram overview.
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Figure 26: GameClient class diagram overview.
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3.5.1 Server

Figure 27: Server model’s class diagram overview.

The Server model contains the server’s main logic, which initiates all its processes and configurations needed
for correct behavior. Without this model, all other models inside the GameSever application would not issue, and
its service would not start.

ServerController is used to initiate the server, using its LaunchServer method when the GameSever applica-
tion is launched. First, this method retrieves the data from the already mentioned server.properties file and saves
it in ServerData to later configure the server. Then, it initiates the Server, which contains the server’s logic and
information needed for its network components, such as rooms and ports being used. When initiated, it creates
a fixed number of rooms and assigns them a multicast address and port available in the network.

TCP is used to handle incoming new connections from clients, which prompts the creation of a NewConnection
that handles the connection process for each of them. This process involves an exchange of messages that the
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server creates by using ServerSend ’s various methods. Since all the game logic is implemented in the room, the
server only handles new connections and directs them to the available rooms (matchmaking), keeping the tasks
that has to handle and send at a minimum.

3.5.2 Room

Figure 28: Room model’s class diagram overview.

Seeing that in Room, everything game-network-related takes place in the server, most of the messages and
interactions involving clients are calculated here. Room holds the main logic of a server’s room, controlling the
game session configurations, information, and room state (RoomState), which can be translated into the following
states: dormant, looking, textitfull, playing, and closing. Moreover, Room has a dictionary of clients connected to
it, each represented by a Client. This class holds all information in the server about one particular client and the
character representing them in the game world. Therefore, this class is used for tasks, such as instantiating the
client’s character and directing the player state messages received to the player object.

To transmit information, the room uses Multicast with the multicast address and port assigned by the server
to open a socket to Multicast with all clients inside the room. To communicate with the clients, using the TCP and
UDP sockets, it uses TCP and UDP that each Client contains. Ultimately, all messages received on the room
end up at MessageQueue to be later be processed, invoking a RoomHandle’s method to unpack the message
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content and then apply it to the game through procedure calls. In contrast, to create messages using game data,
the room uses methods from RoomSend and afterward transmits them in the appropriate socket using send data
methods, such as SendTCPData, SendUDPData, etc., shown in Figure 28.

3.5.3 Client

Figure 29: Client model’s class diagram overview.

The Client model contains all the network logic of the GameClient application. NetworkManager initiates the
process of connecting the client to the server when the user presses the application’s play button. Given the IP
address and port, the information from the UI is passed onto Client, using Connect method to let it know where
the client has to connect.

Client contains the main network logic and stores information, such as the multicast address and port used for
the room communication. If other clients join the room, when the client is already connected to it, they will store
their information in a dictionary of Peer. Peer contains all necessary information about one particular peer in the
room, which the client can use, for example, to instantiate their character in the game world, according to their
information. Furthermore, as Client treats messages, it has a packetHandler dictionary and a MessageQueuer
class to store and process them. To unpack incoming messages, the client uses ClientHandle to process the
data accordingly and then passes it to procedure calls that apply it to the game. Moreover, for the client to share
information with the server and peers, it uses ClientSend ’s various methods to create messages. To transmit
them, TCP, UDP, and Multicast classes contain the sockets, which the clients choose to use based on the
aspects of the message, as already explained in Section 3.4.1.
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Before the client can connect to the server, it needs to generate a Guid to serve as their identifier inside it. The
reason for the use of a Guid instead of a normal integer is because it produces a statistically unique sequence.
Therefore, every client in the system is distinctively identified, avoiding situations where clients have the same
id, which would cause several issues. This identifier is the Id value in ClientInfo. This class stores important
information about the client’s information in the server for multiple purposes. For instance, Id identifies the client
in the server and in packets sent, while Color defines the color of the client’s character in the game world.

3.5.4 Game

Figure 30: Game model’s class diagram overview.

The Game model, isolated from the network logic, holds the game logic and components that make up the logical
game entity in the applications. The model shown in Figure 30 represents the Game model of the GameClient
application since it has the full capabilities implemented on the Game model. On the GameServer application,
Game model follows the same structure but without RemotePlayer and UI objects. The difference can be seen
better in Figure 25.

This model consists of two vital components: the characters and the game scene. The characters are divided
into two different types, the local player (Player ) and the remote player (RemotePlayer ). Even though they seem
similar, both describe a different logic behind their behavior, as discussed ahead.

MapController class is an internal logical entity representing the game and its state. In conjunction with the
game scene, instantiated in Unity, MapController updates the game, advancing the simulation of each loop,
triggering events and determining their outcome, changing the game state, and synchronizing the clients. This
class stores the list of players and their characters. It also is directly connected to the session’s Room, using its
procedure calls (in RoomSend) to share events across the room network. Moreover, MapController stores other
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various GameObjects, such as spawn points used for instantiating the players at the correct position at the start
of the game session. When the game is about to start, Countdown starts a countdown, which reaching zero
triggers the race’s start event in MapController.

GameLogic stores the game session settings, such as tick rate and player interaction, defined by the room, and
all game clients must follow. Most importantly, it stores the simulation’s game tick and clock, although managed
by MapController. The game tick creates the basis for game consistency and synchronization while the game
clock controls all obstacles in the game world. Every obstacle object in the game world implements Obstacle and
can adopt different behaviors, shown in Figure 30, dependent on the game clock value to move. For instance, if
its value is continuously increasing, the obstacles perform their movement behavior as implemented. Otherwise,
if the game clock stops advancing, so do all the obstacle objects.

Moreover, Checkpoint is used for the checkpoint system in the game, where each checkpoint object, when
touched by a client, triggers a checkpoint event in MapController. This way, the game keeps track of every client’s
last checkpoint and uses it when a player requests or needs to respawn. FinishLine is used on the finish line
object when touched by a player, triggers an event in MapController to check if the client has qualified or not.

Lastly, the Game model employs UI elements (only on the client-side) to inform the user about the system
and game. These are controlled by UIManager, which has various methods to control the information displayed
on the screen, such as game information, menus, and player information. Also, it retrieves information from
Analytics (in Utils model) to display relevant information when debugging, such as ping, bytes/sec, and packets
uploaded or downloaded per second. Finally, ConsoleToGUI translates logs from the game engine, which are
not visible on the game build, to a GUI window, allowing for proper debugging while developing the system.
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Player

Figure 31: Player model’s class diagram overview.

The player’s character represents the user’s actions in the game world. This object poses one of the most
substantial difficulties in distributing a multiplayer game, dependent on the architecture, transport protocol, and
gameplay.

Player handles incoming game data from the network layer, intended for the local player. It controls the
networked side of player behavior, the main component of the player replication mechanism. PlayerState, Sim-
ulationState, and ClientInputState are also used for the replication system, corresponding to data packs stored
or sent over the network. PlayerController only handles the player’s behavior at the game level. These are the
different types of movement behaviors and actions executed by the user, gathered from PlayerInput that reads
the input data generated from the user and send it to PlayerController. These two classes act as an interface
between the player object and the human player controlling it.

When a player collides with an object, it can lead them to transition into ragdoll state, meaning they can’t
control the character until it gets up. The transition from animated to ragdoll state, and vice-versa, is managed
by RagdollController. When initialized, the various ragdoll bodyparts are created and stored in an array of
BodyParts. RagdollController also controls the force applied to the ragdoll when hit and the time it needs to get
back up. Lastly, it also ensures that the necessary actions for the transition from ragdoll to animated state are
met, such as arranging a proper location to position the player object and then get up.
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Remote Player

Figure 32: RemotePlayer model’s class diagram overview.

Remote players are not controlled by the local user but instead by the user’s peers, which typically are on
a remote machine. These objects represent most of the players in the game simulation of a client application.
Contrary to the local player’s object, their movement is not dependent on physics. Instead, these are highly
dependent on information sent over the network to function. This information is given to the RemotePlayer,
which handles all the networked side of the object’s behavior, just like in the local player. The received information
composes a PlayerState, which holds all the necessary information about a player state. Interpolator uses these
player states to replicate the original player movement.

Similar to the local player’s RagdollController, RemoteRagdollController creates an array of BodyPart classes
that compose a ragdoll and control its state. However, some of its functions were removed and solely follow
the information received. For example, the get-up process and calculated position to stand up are controlled by
foreign data and not by the physics of the local player’s simulation.
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3.6 A P P L I C AT I O N P R O T O C O L S

This section explains the application protocols that facilitate the game’s operation, from a client being connected
to the server, playing the game, and being disconnected from the server.

3.6.1 Messages

The protocols involve exchanging messages between the client and the server. Before getting into their proper
explanation, this section goes through the multiple types of messages employed while also describing their use
and the transport layer protocol employed:

Server messages:

• TCP accept - Sent to the client trying to connect to the server to notify them the server accepted their
connection;

• TCP refuse - Sent to the client trying to connect to the server to notify them the server refused their
connection.

Room messages:

• TCP startGame - Sent to the client to notify them the game has started;

• TCP endGame - Sent to the client to notify them the game has ended;

• TCP map - Sent to the client to notify them of the map to load;

• TCP joinedRoom - Sent to the client to notify them they have joined the room;

• TCP playerJoined - Sent to the client to notify them a client has joined the room;

• TCP playerLeft - Sent to the client to notify them a client has left the room;

• UDP playerCorrection - Sent to the client to notify them of a correction that must be applied;

• TCP playerGrab - Sent to the client to notify them they have grabbed a player or they have been
grabbed;

• TCP playerLetGo - Sent to the client to notify them they have let go of a player or they have been let
go;

• TCP playerPush - Sent to the client to notify them they have pushed a player or they have been
pushed;

• TCP playerRespawn - Sent to the client to notify them their character was respawned;
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• TCP playerFinish - Sent to the client to notify them a player has finished the race;

• Multicast serverTick - Sent to the clients to notify them of the game tick;

• Multicast serverClock - Sent to the clients to notify them of the game clock;

• UDP pong - Sent to the client to notify them of their ping.

Client messages:

• TCP introduction - Sent to the server requesting to connect;

• Multicast playerMovement - Sent to the server and the clients indicating the client’s player state;

• TCP playerRespawn - Sent to the server requesting respawn of their character;

• TCP playerReady - Sent to the server indicating the client is ready to start the game session;

• TCP playerGrab - Sent to the server requesting to grab a player;

• TCP playerLetGo - Sent to the server requesting to let go a player;

• TCP playerPush - Sent to the server requesting to push a player;

• UDP ping - Sent to the server requesting a pong message.

3.6.2 New Connections

Figure 33: New Connection Process.

For a user to play the game, they has to join the server by introducing themselves in order to create their Client
class on the server. For this, the system has implemented the following TCP-based process, represented in
Figure 33, to successfully connect them to the server. This process consists of the following:

• The client sends a requestJoin packet, creating a NewConnection on the server meant to handle the
client’s messages as they try to connect, representing the client on the server until they have successfully
joined a room.
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• Once a NewConnection is created, it immediately tries to respond to the incoming TCP connection by
sending an accept packet, informing the client that they have reached the server and that it is waiting for
their detailed information to be sent over.

• Upon receiving this message, the client sends an introduction packet holding the information needed
to represent the client on the server, such as Id, Username, and Color, completing the exchange of
messages for the client’s introduction.

However, the server still has to validate the information received. This consists of checking if the client Id
is not already in the system and if the rest of the variables are valid. If the contents are acceptable, the client
proceeds to the next phase, matchmaking. In case the information sent over is not in compliance with what was
already mentioned, the server automatically assumes something is wrong with the client, and terminates their
connection attempt by sending an additional refused packet, disconnecting them from the server.

3.6.3 Matchmaking

Even after connecting to the server, clients cannot play right away. They still have to join a room where the game
session takes place. This happens through matchmaking, which consists of connecting players to an available
online game session. There are many ways to go about implementing it, such as allowing players to connect and
create a session at their will, or doing it for them. The constructed system follows the second option, where the
matchmaking algorithm implemented instructs the server to find an available room and directs the clients to it.

This mechanism consists of checking the room state, previously mentioned as RoomState. If a room is in
the looking state, it means it is not full and the game session has not yet started, allowing for the client to join
in. Since the server has a limited number of rooms, no room will be found if all them are full, which results
in the client being disconnected from the server. However, if it does find one, the server transfers the client
connection (NewConnection) to the room. Afterward, the client is notified of the room’s information by receiving
a joinedRoom packet, which they use to connect to it.

Going on a more commercial route, a good way to implement matchmaking is by having a game instance per
server and a discovery server that directs clients to an available game instance. This removes the load (CPU and
bandwidth) of directing clients from the same machine that runs the game, which increases the server availability
to receive and manage connections due to having a lower load. An example of this is Unity ’s hosting platform,
Multiplay 12, which has multiple game servers that are kept dormant or running at low tick speeds until needed.
After identifying a suitable group of clients, a matchmaker server searches for a server to host the game session.
When one is acquired, the matchmaker sends the server’s details to the clients, which they use to connect to it.

Lastly, the constructed matchmaking system does not allow for grouping, which could, optionally, be a good
feature to implement. It would provide the possibility to introduce a ranking system centered on the player’s skill,

12 https://docs.unity.com/multiplay/

https://docs.unity.com/multiplay/
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if the game allowed, such as CS:GO13 and Rocket League14 have. Another alternative could be to group clients
by similar ping to assure better connection and fairness in latency.

3.6.4 Join Room

The first interaction involving the room and the client happens when the server notifies the room that a client is
going to be directed to it, awaking the room if dormant and setting its state to looking. Following this, the room
adds a Client to its dictionary of clients, storing their information gathered from the server during the introduction
process. Apart from the information sent by the client, the room assigns them an id (integer between 1 and 60),
corresponding to their id inside the room (clientRoomId). All game packets sent by the clients inside the room
use this id, instead of the Guid id previously mentioned. Considering the high amount of players that a room can
hold and that each player sends messages like player states every second, sending their Guid id, a heavy object,
would create a substantially higher bandwidth requirement. Moreover, the integer id is only used in events inside
the room, where every client must take a unique slot between 1-60. So, two players with an equal id are never
simultaneously in the same room.

After the client’s information is stored on the room, they receive a joinedRoom packet containing the informa-
tion about the room they have been directed to, such as the room’s multicast address and port. At this point, only
the client’s TCP channel is connected to the room (transferred from the introduction). However, upon receiving
a joinedRoom packet, the client proceeds to also connect their Multicast and UDP sockets to the room’s IP ad-
dress and port. Thus having all transport layer protocols initiated and ready to send/receive data, completing the
connection setup between the room and client.

Using TCP, the room sends multiple playerJoined packets containing the existing members inside the room to
the client. This way the client is aware of all the clients already inside the room and their information. Oppositely,
the room also sends the new client’s information to every client inside it, by sending a playerJoined packet. In
conclusion, all clients in the room end up being aware of every other client.

Lastly, upon adding a new client to the network, the room checks if the number of clients inside it has
finally reached the room’s maximum capacity, which by default is 60 players, although changeable in thee
server.properties file. If the room happens to reach the maximum allowed capacity, it changes the state to
full, so no more clients join in, and initiates the process starting the game session.

3.6.5 Room Start and End

The game session initiation process starts by choosing a random map where the game session takes and then
instantiates it. The instantiating process is managed by PhysicsSceneManager, in the Utils model, which is re-
sponsible for creating and destroying scenes in the game server application. The game’s worlds, also known as
scenes, are loaded in Additive mode, which Unity uses to allow multiple parallel scenes to run simultaneously

13 https://pt.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
14 https://www.rocketleague.com/
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while staying independent and isolated from each other. This way, the system can instantiate as many game
world instances as it needs in order to have one per active room. After the scene has been created, PhysicsS-
ceneManager assigns it to the room that requested it. To retrieve the scene generated, PhysicsSceneManager
issues a Coroutine15 that waits for one frame to pass so that Unity can load the game scene and assign it to a
room.

After receiving the scene template, the room instantiates the client’s characters in their corresponding spawn
id, and sets up the necessary game components. After the scene has been setup and is ready to start the game,
the room sends a map packet to the clients, containing the map index, which in turn they will use to instantiate
the game world in their application. When every client has finished setting up their game world instance, they
send a playerReady packet to the server, informing the room that they are ready for the game to start. After all
players have sent this packet, the room begins the game session by sending a startGame packet to every client,
and setting its state to playing.

Lastly, when the race has finished, the room sets its state to closing and sends a endGame packet to let
the clients know that the game has ended. On the client application, this stops the game and shows the race
result. Additionally, it starts a timer that will disconnect the client from the room and lead them to the main menu.
Meanwhile, the room waits for every client to disconnect and then resets itself, issuing the deletion of the game
scene and the associated values no longer needed. Furthermore, it closes the Multicast socket and returns its
state to dormant until asked to house a new group of clients, starting the process all over again.

15 A coroutine allows taks to be stretched across many frames. - https://docs.unity3d.com/Manual/Coroutines.
html
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3.7 G A M E P R O T O C O L S

One of the most complex tasks that the system faces is the game’s distribution. To better understand it, the
multiple gaming mechanisms implemented in both server-side and client-side of the system are briefly introduced,
which together achieve and keep the game operational, assuring consistency, synchronization, and playability
across all game simulations. Additionally, since most implemented processes represent complex solutions to
complex problems, they each have a separate session detailing their use and construction.

3.7.1 Server-side protocol

Figure 34: Server-Client message system overview, adapted from Valve® (2021).

During the race, both the clients and the server communicate with each other by sending small data packets at a
high frequency, around 30 packets per second, depending on the tick rate. Using a custom logic timer developed,
both reliably simulate the game in discrete time steps, called ticks. For each tick, there is an update of the
simulation. By default, the time step is 33 ms, which correlates to 30.30 ticks simulated per second. However,
this can be overwritten through the TICKRATE property in the server.properties file. The tick, or game tick,
remains at zero until the race has begun. Considering packets take a certain amount of time to travel between
the client and the server, it results in having the tick on the server a little bit ahead of the clients’ tick since it is the
server that starts the race by sending a startGame packet. Therefore, the server always deals with messages
behind its time, as shown in Figure 34.

Although running at the same tick rate, simulations may fall out of sync. So, every time the tick is updated, the
server sends a serverTick packet containing the current, correct tick to be applied on the client simulation, en-
suring synchronization across all members. Moreover, using the game clock system mentioned in Section 3.5.4,
the server sends a serverClock packet each second containing the game clock. So, in case that the client’s
game clock is wrong, it will accelerate or slow down to reach the correct value that was read from the server’s
packet. This strategy, although minor, provides a centralized, efficient and easy way to control all obstacles
through the game clock. The need for the server to individually send an obstacle state to every obstacle object
is also removed, hence lowering the average network load.

In each tick, the server: processes incoming packets, runs a physical simulation step, checks the game
rules, and updates the game objects. The synchronization algorithm adopted by the server follows an optimistic
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algorithm in its execution, which means the server will continuously update the game simulation, even before
knowing if messages from all clients have arrived for the current game tick. This is because messages from
clients can arrive late or drop on certain occasions, so it would heavily impact the system if the server had to wait
for them, becoming even worse if one of the clients were to have high latency. This way, the server only updates
the clients’ state when a message has arrived, detecting inconsistencies and sending a playerCorrection packet
when necessary. Apart from the game state updates and requests, the server remains silent in the absence of
inconsistencies.

Moreover, the optimistic algorithm can cause a few problems, where the player state received in the server is
not processed at the same game tick it was made. Therefore, the server’s game simulation could be different,
which is not fair for the client since it can lead to a different result from what it should be. Additionally, since
DummyGuys basis on fast-paced player actions, even a delay of a few milliseconds can cause the message to
arrive later than other clients, despite occurring at the same time. Therefore, low latency is a significant advantage
but not always achievable. Both issues are an enormous problem for actions sensitive to the players’ state, such
as grabbing players, which directly affects the game’s playability and fairness between players. Therefore, the
server has also implemented lag compensation, which solves both problems.

3.7.2 Client-side protocol

Figure 35: Client-Client message system overview, adapted from Valve® (2021).

Sharing the same logic, clients follow the game rules provided by the server, such as tick rate, updating the game
simulation with a time step of 33ms. To inform all the client’s peers and the server of their state, each client sends
a playerMovement packet containing their player state every tick. Seeing that the game simulation advances 30
times per second, every client will have 30 new states. So, whenever something happens on the server, there will
be a corresponding player state to each tick. Furthermore, these messages reach them after a certain amount
of time, and since both clients and the server won’t wait for all clients to send an update message, the game
simulation may be ahead when it arrives. So, the client’s peers will always deal with messages behind their time,
as shown in Figure 35. To solve this, the client employs entity interpolation on the remote players to counteract
the difference and ascertain good game playability.

In case a player state messages received from the client on the server represents misbehavior, they will
receive a playerCorrection packet to execute the correction of the player state in their game instance. Since
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these corrections may be in the past due to the travel time, the player may need to roll back their state to correct
themselves. Moreover, since clients can crash at any given moment to let the server know of such events,
each client on the server has a heartbeat mechanism, which also helps the server from allocating resources
where they aren’t needed. Similarly, each client also has an away from keyboard (AFK) timer to check if player
messages are kept from being disseminated, threatening the system’s synchronization.

Clients only control the state of their player object. Everything else, such as player respawn, is handled
by the server. A client can only initiate the action by sending a request message to the server. In this case, a
playerRespawn packet requesting their character’s spawn back inside the map, which, in turn, the server validates
and informs them of the outcome. Similarly, the server also controls actions such as grabbing and pushing
players. This is because giving clients the authority to be the judge, jury, and executioner of events involving
other clients would make them susceptible to cheating exploitation. Therefore, clients only make requests to the
server by sending playerGrab, playerPush, playerLetGo packets and waiting for the outcome of the requested
actions.

The absence of control and dependence can be felt by players when responses take a long time to arrive,
creating a feeling of an unresponsive world towards the players. As such, the client implements a less dumb-
client design, compared to a CS architecture design, employing client-side protocols to help make it resilient to
the network-based communication problems, such as latency and dropping of messages. Additionally, to fake
the client’s involvement in server events, the game client fakes them. For instance, when a player passes a
checkpoint, the server registers it as their new checkpoint, and in case of requesting respawn, they will spawn
there. In contrast, the client does not take part in the process. It only provides player states that permit the server
to deduct if the client has passed through the checkpoint. Therefore, the user is clueless if they went through
a checkpoint or not. To solve this, the game client provides visual aid, such as particle effects, to seem like
something happened on the client-side of things.

3.7.3 UDP Pong - Protocol Design

Since UDP is connectionless, to maintain a connection between the client and the server, the system has set up a
ping mechanism, which begins when a client joins a room. This mechanism consists of a continuous exchange of
messages between them, and it is implemented on the client’s application Client and server’s application Client,
respectively. This system works by having the client send a ping packet to the server each second, storing the
current time (pingTimeSent shown in ), and waiting for the packet to be echoed back. Seeing that machines
can be in different time zones, the current time is captured in the system using UtcNow16, which expresses the
Coordinated Universal Time (UTC).

16 https://docs.microsoft.com/en-us/dotnet/api/system.datetime.utcnow?view=net-6.0
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Figure 36: Ping message.

The ping message is received on the server through the UDP socket corresponding to the client, and a handler
on RoomHandle is invoked, which in this case is Ping (shown in Figure 36). This method prompts the room to
send a pong packet to the client using the UDP socket. When the client receives the server’s ping response
(pong packet), the Pong handler on ClientHandle is issued to treat the message (shown in Figure 37). This
method calculates the client’s ping from the difference between the current time and the time in which the client
sent a ping packet to the server (pingTimeSent), resulting in the time, in milliseconds, that it takes for a message
to reach the server and come back to the client, called ping or round trip time (RTT).

Figure 37: Ping calculation.

In addition, this ping/pong system allowed for a heartbeat mechanism in every client inside the room, shown in
Figure 38. This system consists of a periodic signal used to monitor the connection between a manager (server)
and an agent (client), helping the server automate the cleanup process when a connection between them is lost.
Since the ping/pong system already does that, the heartbeat mechanism was built on top of it. It works by having
a timer set to 0 every time a message arrives. If the client stops sending packets, this timer will eventually reach
the timeout value, set to 10 seconds by default, which prompts the server to assume the client has crashed or
lost connection. Therefore, the server disconnects the client and informs the rest of the clients by sending a
playerLeft packet. Additionally, if a client disconnects during a game session, the server removes their character
from the game world.
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Figure 38: Heartbeat timer.

3.7.4 Tick based system

As aforementioned, for the game to progress, it needs to implement equations of motion using a numerical
integrator, where everything is tied to the tick. Having a numerical identifier for each update allows for the
synchronization of multiple game instances. This is because the system has an attainable value related to the
game state it is on, which helps enforce the same state across all game instances in the network during the
entirety of the game’s duration. Despite being important in syncing the state, the game tick is also crucial in
identifying when a determined action occurred and allows for the integration of supplementary mechanisms to
help the game keep consistency. These being: client reconciliation, entity interpolation, lag compensation, and
client monitoring.

The logic behind the tick system, shown in Figure 39, is implemented on the server’s MapController. The
client application follows the same basis with a few logical modifications due to their different roles in the system.
For example, the client does not use SendServerTick method, which sends a serverTick packet to every client
in the room. Only the server has this role in the system.

Figure 39: Game Update.
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Game Tick

The tick is contained in GameLogic class and is updated every loop using SetTick(tick + 1), shown in Figure 39.
The game tick is updated at the end of Update after the code needed for the current game update has been
executed. Then, the new tick is used to identify the next game simulation. Furthermore, the tick is only updated
if the game race has started (IsRunning=true) since it is not meant to progress without the game. Addition-
ally, the update loop manually updates the scene physics simulation. This is accomplished through physicsS-
cene.Simulate(...), which only targets the room’s scene, which is defined as physicsScene, leaving the rest of
the scenes, not owned to it, untouched. Typically, the physics simulation is automatic. However, to ensure that
the physics do not perform without the tick, it was practical to put it on a manual step, which permits a more
controlled update of the physics simulation towards the game.

Logic Timer

Implementing a game tick can be a trivial process, but there are many ways to update it. The simplest way is
updating the tick with delta time, like 1/60th of a second. However, the update rate would only match clients with
60 Hz monitors. A better option is to use fixed delta time, which using the render framerate, makes the simulation
behave the same way from one execution to the next, without any potential for different behaviors. Nevertheless,
having physics tied to the render framerate is also a massive limitation and not always practical. For instance,
if VSync were off, the rate would fluctuate, and since the game requires messages for each frame, it would,
naturally, happen to create a lot of them if it reached a high frame rate.

The correct solution is having the best of both. This means the update method would have the ability to render
at different frame rates and a fixed delta time value for the physics simulation. Unity offers this solution, having
the Update loop, which uses the frame rate, and another specifically for the physics update called FixedUpdate17,
which uses a fixed delta time. However, FixedUpdate is unstable due to depending on the Update loop, which is
susceptible to frame drops.

The solution found to be appropriate was to implement a custom loop that allows for a more predictable
behavior of the physics simulation. To function correctly, every object dependent on the physics behavior, such
as players, must implement it. Otherwise, they would follow a different update rate that even if events were to
occur simultaneously, they would have different ticks, resulting in inconsistency problems.

17 https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
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Figure 40: Logic Timer.

Figure 40 shows the main logic of the custom loop implemented, called LogicTimer. This loop takes a given
action, which in this case is the update function of an object, and after a given time, as passed, it executes its
contents on Unity ’s main thread. To know if an update is due, the custom loop continuously adds elapsed ticks to
the _accumulator since the last loop. Additionally, it checks if the fixed delta time has passed, which corresponds
to the ticks that must execute in one second (tick rate). When this is true, it means an update of the physics
simulation is due, prompting the execution of the _action and rewinding the _accumulator a step back for the
next update. The _accumulator is not set to zero because it can have some unsimulated time left over when the
update was executed. This way, the time left over in the _accumulator is passed to the next loop, which considers
as time already passed.

Tick rate

The tick rate is essentially the server’s equivalent of a client’s frame rate, absent from the rendering system, used
by LogicTimer to know at what rate to update the game simulation. By default, the system’s tick rate is set to
30 (ticks per second). This value was selected considering the number of messages each tick and the precision
needed for the game simulation.

Although a higher tick rate increases the simulation precision, it eventually becomes futile to have such accu-
racy for this game. In relation with an FPS game, such as CS:GO, that uses a tick rate of 66, it requires a certain
precision to determine if a shot has hit a player in the far distance. However, it is not the case in this particular
game. Players are big capsules and can only grab or push each other when in direct contact, which gives a large
margin of error. Additionally, considering the number of messages created per tick and the resources needed to
send it and process it, it was chosen to set the tick rate to 30. A considerably smaller value than CS:GO’s tick
rate, but sufficient during development and analysis.
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3.7.5 Entity Interpolation

By default, each client receives around 30 player state messages per second from each of their peers. If the
clients were to update and render the characters of the remote players upon receiving a new player state, the
movement of these objects would look jittery. This is because, even though clients are receiving the data as
fast as possible, the network makes no guarantees that the packets sent arrive nicely spaced apart from each
other, much less in the same order they were sent in. Thus, the system has implemented entity interpolation,
which essentially interpolates the player’s object at a given delay. By going back in rendering time, these objects
take longer to reach the intended state, allowing for new messages to arrive and for the object’s state to be
continuously interpolated between the two latest received states. For example, with 30 player state messages
sent every second, a new player state will arrive around every 33 milliseconds. So by shifting back the render
time by 33 milliseconds, the entities on the game client will always be able to be interpolated between the last
received state and the state before that.

Figure 41: PlayerState Class.

The entity interpolation is implemented on the Interpolator class and used by the RemotePlayer, previously
shown in Figure 32. Additionally, only the client application uses this mechanism. To achieve the intended
capabilities, the Interpolator buffers every player state received into a list. These player states contain the values
shown in Figure 41, which upon arrival are translated into a PlayerState. Since packets can be jittered due to
the network, clients may receive two packets on some frames and none in others, which ultimately causes the
received packets to be out-of-order. As result, when buffering a new player state, the list of received player states
is iterated through, using the new player state tick as the index until its ordered place in the list is found.

Figure 42 shows the update loop of the entity interpolation, that since it does not rely on physics like the local
player, uses Unity ’s Update loop. In each update loop, the Interpolator iterates every player state in the list,
checking if the game tick is equal or in front of it. If this is true, it signifies it is time for the player state to be
applied to the remote player’s character. To interpolate the player state, the Interpolator uses from, which is the
state the player is currently on, and to, which is the state where the player needs to transition, shown in Figure 42.
For this to work, the mechanism needs to correctly calculate the time interval for the transition between these
states.

As aforementioned, the communication between two nodes in the network ends in dealing with packets con-
taining information from the past. Considering the packet travel time and potential loss, the mechanism’s default
interpolation period lerp is 100 milliseconds (lerpPeriod=0.1f). This way, even if a packet is lost or delayed, there
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Figure 42: Interpolator’s update loop.

are always two other valid player states to interpolate between, keeping a continuous and stable interpolation to
the naked eye. Nevertheless, if more than two states in a row are lost, resulting in at least 99 milliseconds of
silence, the interpolation won’t, possibly, work. This is because it runs out of buffered states until the next one
arrives at the 129 milliseconds mark. Therefore, if the player state does not arrive, it will result in a jump of a
player state, which in some cases can create some strange behaviors in the movement of the player. This is
because, the Interpolator will use a simple, and linear extrapolation instead of interpolation. Interpolation is done
by adding points between data to smooth it, while extrapolation is done by assuming the values based on data.

When interpolating between states, the Interpolator calculates the lerp amount based on the time period
needed to reach the desired target state, as shown in the following equation.

timeToReachTarget = ((to.tick − f rom.tick) ∗ secPerTick) + lerpPeriod

This translates that to calculate the lerp amount, the system needs to get the difference between the ticks
where the entity needs to be (to state) and where the entity is (from state), converting them into the seconds
using 1/tickrate. After having the time interval to transition between states, it is added the lerpPeriod to
account for the problems mentioned before.

Apart from the calculation of position and rotation, the character’s animated state and ragdoll state may also
need updating. This is accomplished by comparing the current animation and ragdoll state against the ones on
the new player state. If an update is due, the SetAnimation and SetRagdoll methods, in the RemotePlayer, are
called.

Moreover, this mechanism is highly sensitive to the game tick, as without regulation from the server, the client’s
tick would completely fall out of sync and break the mechanism. For instance, if Client 1 is behind the server’s
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simulation and Client 2 is ahead, if Client 1 sends a player state, then Client 2, being ahead of the server’s game
tick, would not consider any of these old states from the Client 1.

3.7.6 Player synchronization

The player synchronization tends to be one of the most complex tasks in most multiplayer games since it is
responsible for the correct representation of the player in the game world of all networked instances, controlling
its information, movement behavior, actions, and correction. Before going into its explanation, there is to note
that this mechanism is implemented in the player’s object, more specifically in Player, already discussed in
Section 3.5.4.

Replication

The player replication model implemented is based on a decentralized design with server monitoring. This
algorithm sends each tick a player state message to every node in the network, through Multicast, including the
server. This message is the same to both the server and the clients because the algorithm basis on the client
application having complete control over their player state inside the game world. However, this poses a threat
to the system’s security since users can cheat through their player state. Therefore, the server monitors these
player states.

The replication process starts on the client’s application Player, shown in Figure 43, where PlayerInputs cap-
tures the user’s inputs for every tick (currentInputState), and ProcessInput shares them with PlayerController to
be processed, updating the current player state. Concluding the calculation of the new state, the client sends
a playerMovement packet to everyone, containing the tick and player state. Additionally, the inputs and player
state are also buffered in simple circular arrays (simStateCache and inputStateCache) using the tick as the index,
calculated through (tick % CACHE_SIZE). Since the physics tick rate is 30, the buffers will have 1024 elements,
giving the system around 34 seconds of space, which is considerably more than it needs. Moreover, these are
stored because they will be needed for reconciliation when a the server detects a misbehavior, as explained
ahead.

The client’s peers use this message to update the remote player object while the server uses it to monitor the
client. The server asserts authority over the client’s player state by checking its contents’ validity and sending
a playerCorrection packet if detected problems. This validation is focused on a cheater axis and consists of
checking the tick and the player position. First, the server checks if the game tick on the message does not
surpass the server’s game tick, which would indicate that the client is tampering with their game’s tick rate to
update their simulation faster than other players for its character to react faster. Secondly, the server checks if
the player position in the game world does not clip through any static object, such as walls or floor. This is done
using CapsuleCast 18, which casts a capsule (the actual physical object of the player) against the scene objects
on the received position and rotation. If the player is found to be inside the scene objects, it indicates the client
may be tampering with the game’s collision objects or player state positions. These cheating processes represent

18 https://docs.unity3d.com/ScriptReference/Physics.CapsuleCast.html
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Figure 43: Player update on the server.

two common ways that players tend to alter the game’s simulation. Although it only runs two verifications, this
system allows for further expansion to encompass more problems, which the player state may be susceptible in
the system.

If the player state is within parameters, it is applied to the character. Furthermore, player state messages
can arrive shuffled at the server. For instance, if a player state with tick 17 arrived at the server and is declared
correct, later all other messages containing a player state behind tick 17 are also considered correct. Therefore,
the server does not consider checking any other player state messages which occurred before tick 17.

Reconciliation

The reconciliation process begins when the client receives a playerCorrection packet due to the server detect-
ing misbehavior. This message is stored in Player as serverSimulationState, which only considers the latest
correction issued by the server. Therefore, if serverSimulationState has a stored correction with tick 17 and a
new correction state is received with a lower tick, it is discarded. This is because there is no point in making
corrections behind other corrections.

In each loop of the Player’s update method, the serverSimulationState is checked to see if a player correction
has arrived, as shown in Figure 44. If one is found, the Reconcile method is called, initiating the reconciliation
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Figure 44: Player update on the server.

process. Once started, Reconcile checks if the correction state is in a tick ahead of the last corrected state,
or else, it would be futile to correct it. Afterward, it searches for the buffered inputs and player states, saved
during replication, with the correction state tick as the index, calculated through (tick % CACHE_SIZE). In case
that cache data is missing, for either input or player state, the current player state is immediately snapped to the
correction state, but maintains the current tick. Additionally, the last corrected state is also updated, ending the
reconciliation process and continuing the game simulation normally.

If the inputs and simulation state are in cache, the player object is still snapped to the correction state as
before, but its tick is also set to the correction tick. However, since this correction is in the past, for instance, on
tick 20, and the client’s simulation is on tick 25, the Reconcile has to simulate all player states until it reaches
tick 25 in order for the player object to match the current simulation. Having all the necessary stored inputs and
states, this process is easily executed, shown in Section 3.7.6.
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Figure 45: Player Reconciliation.

The rewindTick corresponds to the player tick while the simulationTick corresponds to the simulation tick and
where the client needs to go, which the method tries to reach by continuously updating the player. Inside the
while, the inputs and state corresponding to the player’s current tick are searched inside the arrays. Using the
inputs, the client calculates the player state for that given tick and substitutes the player state buffered in the
array. This is because, now that the player object is set to the correct and different player state, all the next player
states will, potentially, be different. Therefore, the stored states (in the arrays) are substituted by the new ones.
After this, the rewindTick is updated, signifying that the player has moved a simulation frame, and the process is
repeated until the player finally reaches where the simulation currently is (simualtionTick).

This correction of different positions and rotations on the player object might be noticeable to the user, appear-
ing glitchy and jittery in the game world. Because of this, the player object was constructed in a way to avoid the
user from viewing it on certain occasions. The player object is comprised of two main objects: the actual physics
object of the player, which is invisible, and the visual object with the model of the player. When a correction is
due, the physics object is immediately corrected to the correct state, but since the model object is only used for
visual purposes, it is smoothed into the correct state, allowing for the best of both. However, there are exceptions,
where if the correct position or rotation value is too distant ( two meters in this game’s case) from what the player
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is currently on, the player model is also snapped to it. Otherwise, it would also look strange to see the player
model slide into a new and distant position/rotation without the client’s inputs to justify it.

Alternative

Another approach for the replication system would be following a more centralized and server authoritative design.
This consists of the server mirroring the entire player state of the client in its game simulation to assess if the
state on the client is correct. This requires the client to send two different messages: one for the server, which
contains the inputs, the resulting player state (from the inputs), and the tick, and another for the clients, which
has only the player state and tick. Further than this, the algorithms would be the same, storing inputs and player
states for reconciliation.

Both algorithms advance their simulation independently from the server, meaning the actions of the local
player take place immediately in the simulation, removing the problem of the game feeling unresponsiveness or
laggy. Additionally, the server can still achieve consistency across the network by checking the client’s states as
they arrive. However, the alternative approach needs the client’s player state to be identical on the server, or else,
the client receives a correction. The implemented system follows a looser approach, verifying only two aspects
focused on cheating. These two algorithms show a trade-off of more grip over the player state to a more open
and less resource-intensive approach.

It was chosen not to implement this alternative approach because the number of resources needed to function
is higher. This is due to each received player state requiring the server to process its inputs, simulate physics,
and compare the resulting player state with the client. Additionally, the player movement and interactions are
incredibly physics-based, which is never good when distributing games over the network. Collisions between
players are dependent on information from both clients’ simulations, which sends player states. This causes
them to collide with each other at different times due to packet travel time and entity interpolation applied on
the remote player. Since the alternative approach relies on the server’s physics simulation to be identical to the
client’s simulation, it creates a problem where the collision on the client is irrefutably different from the one on
the server’s, especially considering that the server does not use an entity interpolation on any player object. All
of this makes the player replication extremely hard to maintain (from the server’s perception) in the alternative
approach because it will lead to a lot of correction messages issued.

Due to this, the current implementation of player replication was chosen to stay, relying mainly on the client’s
resources for the player’s calculations. Ultimately, this is considered an enormous amount of load (CPU and
bandwidth) taken of the server, especially considering the number of players connected per room. Moreover,
this load removal is seen in the difference of complexity between the Player classes on the client and the server,
shown in Figure 31. Nevertheless, the server still checks for potential cheating from the clients and allows room
for improvement. Lastly, this system continues to allow the server to be a mediator in the system for events
involving player-on-player interactions, controlling the outcome.
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3.7.7 Lag Compensation

The following mechanism is implemented in LagCompensation and is only present on the server. This mecha-
nism allows to backtrack the player’s characters in order to provide fairness in actions sensitive to position and
time, such as grabbing or pushing players. However, actions are only allowed to be backtracked if they occurred
in the near past.

This mechanism works by storing a list of records corresponding to the player’s former and current states,
each represented as a PlayerRecord, and in a dictionary. This dictionary is initiated after every player has been
instantiated in the game world, to hold all current players. To keep the records updated, the mechanism is called
on MapController ’s update, previously shown in Figure 39, to update the current player states for each tick of the
simulation tick.

Once called, LagCompensation goes through every player in their dictionary, checking if they are still in Map-
Controller ’s player dictionary because clients could happen to be disconnected and removed from the game. If
the player is in the game, their current state is added to their respective list of records. Additionally, LagCompen-
sation goes through every record inside their list to confirm if all states contained in it occurred during the last
second. This is because the lag compensation mechanism saves records only for a short period of time, else
it would require a lot of memory. It only stores records for one second because it is the maximum time set that
lag compensation is allowed to backtrack a player. LagCompensation knows to eliminate player records if the
difference between their tick and the game is higher than one. There is to note that the maximum time allowed
can be changed. However, a higher allowed time translates into more memory and CPU being used due to more
actions needing to be backtracked, which results in more records being stored and checked.

The other part of the lag compensation is to use these records to backtrack the players when the room
receives a player-on-player interaction, such as playerPush and playerGrab packets, which are passed down to
MapController to be handled by LagCompensation. Actions like playerLetGo packets are not sensitive to position,
so the server only checks if the player is grabbing someone and, if valid, accepts their request. The process
of calculating and setting the players’ positions is called backtracking and consists of four LagCompensation
methods, being the following: Backtrack, Backup, BacktrackPlayer, and Restore.

• Backtrack initiates the process of backtracking players, given the player id and tick to where it needs to
transition. It checks if the player exists in the game world and if the action happened a second ago. If this
is valid, it calls for Backup and BacktrackPlayer methods for every player in the simulation.

• Backup adds a player’s current state to the backup records’ dictionary, which is used to store the players’
states before being backtracked.

• BacktrackPlayer backtracks a player to the intended state, relative to the tick that the action took place.
To achieve this, it gets the player state from their list of records. If it does not find it, it tries to get the
state closest to the intended tick by looping through their records again and finding the record with the
smaller tick difference. If a record still hasn’t been found, the mechanism gives up on backtracking that
player and moves on to the next one to do the same process until all players have been checked. If
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the mechanism does manage to find a suitable record, the player character is interpolated to the state it
was at that given tick. This calculation is similar to the one on the entity interpolation system and takes
into account the interpolation delay added that a local player adds to the remote player on their client
simulation by applying 0.1 seconds to their opponents’ state (due to entity interpolation). Otherwise, the
player on the server would not be interpolated to the same place as it was in the client’s simulation. This
method completes the backtracking of every player involved, allowing the MapController to execute the
verifications needed to validate grab or push actions.

• Restore sets the player’s character back to their former state (before being backtracked) through the
backup records’ dictionary. This finishes the lag compensation process and allows for the correct continu-
ation of the game simulation on the server.



4

A N A LY S I S A N D D I S C U S S I O N

4.1 A N A LY S I S

This section describes the experiments executed with the proposed solution in order to evaluate the game’s
server behavior and non functional aspects, namely the performance, scalability, and security. Moreover, the
study extends to the distributed game’s perceived resistance to the network communication problems.

Realistic setups for these system types have characteristics similar to online transaction processing (OLTP),
where the input is external to the application triggered by the client’s system, so it doesn’t match most traditional
benchmarking methodologies used. Most information and events are generated by human users, making the
system’s state and behavior highly dependent on them. Therefore, a large-scale research on these applications
involves hundreds or even thousands of clients, exceeding most university-level laboratory setups. Due to these
factors, it becomes difficult to automate the benchmarking process and compare results across runs. To deal
with these issues, the experimental setup and experiments run are explained in the next section.

4.1.1 Experiments And Experimental platform

The assessment of performance and scalability involves multiple clients to examine and understand the system’s
behavior under load. The scalability assessment presents an even large number of clients to determine the
system’s limits. The work is conducted on a cluster of 131 servers, Intel(R) Core(TM) i3-4170 3.70GHz, with
the Ubuntu 20.04 LTS (YAML) operating system and connected to a private 1000Mb/s Ethernet network. The
experiment, uses only four nodes, where one is dedicated to the DummyGuys’ server (GameServer ), and the rest
is used as a client cluster (multiple GameClient in each machine). Measurements are performed by instrumenting
the code and alterations of the server.properties file, configuring the server as needed for the experiments. For
processes created in the server and their usage, the top tool is used, which provides a dynamic real-time view
of the measurements. For the measurements of network traffic, bandwidth usage, etc., the iftop and vnStat
monitoring tools are used.

It is found that in all experiment cases (related to performance and scalability), a few seconds of execution
time is enough to capture the behavior of the game server. So, each experiment had a duration of one minute
and is executed multiple times to verify their consistency. Also, the initialization time for the runs is excluded. The

75
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results portrayed in the following graphics solely represent the values captured during in-game. Nevertheless,
information about other states is discussed when relevant. Lastly, these experiments use bots to populate the
server and estimate a load proportional to actual players playing the game.

For the assessment of security, the system’s architecture and implementation are explained, revealing the
natural level of security it provides. Furthermore, it is laid out where the system provides security to the clients
and game state authority, while also mentioning potential risks.

For the assessment of the distributed game resilience, the system is submitted to networking constraints, re-
sembling a real gaming scenario and some extreme case scenarios. These aspects are latency, packet loss, out-
of-order packets, and packet jitter. The experiments are conducted on a personal computer, Intel(R) Core(TM)
i7-6700HQ 2.60GHz, connected to a private 100Mb/s Ethernet network. Both server and clients are executed
on the same machine. This experiment only needs two players to test all game protocols. Measurements are
obtained with Clumsy 1, a third-party tool, which works by selecting inbound or outbound packets to capture. This
selection is given by a filter, predefined by the program or inserted by the user, composed of the port, IP address,
or a combination of the two, and available in TCP or UDP sockets. Using this filter, the program only affects the
information contained in it, leaving the rest untouched.

Each run of the experiments lasts a different time period, since it is necessary to play the game and assess
certain events under the conditions to obtain the results. These experimental runs are also executed multiple
times to verify the consistency of the results.

4.1.2 Performance

Performance metrics: Although the interest is mainly on the game server, the game client is occasionally moni-
tored to help assess the server measurements. On the server it is studied, the number of incoming and outgoing
messages to determine bandwidth requirements of the system, the request processing time to show how com-
putationally intensive the game is, the impact of tick rate, the number of client requests received and processed
in each server time–slot, etc. On the client it is studied, the incoming and outgoing bandwidth requirements (for
verifying the server’s measurements), the request rate to the server, and the response time from the server.

1 https://jagt.github.io/clumsy/

https://jagt.github.io/clumsy/
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Figure 46: Server incoming network throughput per client. Dots represent the average for each run.

Bandwidth Requirements: Figure 46 shows the per player incoming network throughput in the server. It
is seen that on average, each player sends about 2,285 Bytes/sec. Moreover, this throughput on the server
is dependent of the number of players. This is due to the more players in the network, which results in more
messages/requests being sent to the server. Additionally, the incoming packet size does not vary with the
number of players, and therefore it is not plotted.
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Figure 47: Server outgoing network throughput per client. Dots represent the average for each run.

Figure 47 shows the per client outgoing network throughput at the server for different numbers of total players.
Although small, it is noticeable that the average throughput increases as more players are introduced to the
system. Since the outgoing packet size does not vary with the number of players, the increase of outgoing
throughput of the server can only be justified by more messages being sent each second. Figure 48 shows the
average number of responses sent by the server. It shows a linear growth of messages, indicating the same
conclusion. This increase is the result of more players interacting, meaning more corrections and responses to
their requests. Furthermore, with every client comes more UDP (and TCP) connections constantly sending ping
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packets, increasing the number of messages. Lastly, brief bursts of packets are inevitable while in a room that is
waiting for clients to join (not shown). These events correlate to the server sending packets to the newly joined
clients about all clients already in the room. As more join, the bigger the bursts are.
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Figure 48: Server packets sent per second.

The minimum packet size sent is 8 bytes, corresponding to the pong packet from the server, used in the
ping-pong mechanism. The maximum packet size contains 49 bytes, which corresponds to the playerCorrection
packet sent by the server to correct a player when it detects a misbehavior in the player state. Moreover, while
the server has to deal with much more information and share various events, the client has fewer messages that
on average, are smaller in comparison with the server’s. Nevertheless, the range between the minimum and
maximum packet size of the client is similar to the server’s. This is because of the playerMovement packet that,
since the player replication is based on the client’s application, forces them to send all information needed for the
whole replication process, increasing the client’s requirements.

In conclusion, the results show that the network throughput is not a problem, staying relatively small, and
that a single 1 Mbps Ethernet connection could support hundreds of players. However, the same cannot be
said about the incoming network throughput that with 20 players, reaches around 46 KB/sec, where 98% is
coming from multicast. Furthermore, due to the use of multicast, a client receives roughly the same amount of
data as the server, which can be especially impactful to the clients since these tend to have limited resources.
Nevertheless, data suggests that a user with 1 Mbps Ethernet connection could still run the game with up to 30
players. However, when trying to scale beyond that, it may be required more resources.
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Figure 49: Server incoming request rate (request/s) per client.

Server Request and Response Rate: Figure 49 shows the average number of requests received by the
server. It is noticeable that, as expected, the number of requests per second increases linearly with the number
of players. Figure 50 shows the number of requests that are processed per second at the server. The average
number of requests/sec processed increases linearly with the number of players indicating that the server is not
saturated. Due to this, it can be concluded that the scalability of the server is limited, as it will eventually become
saturated with messages.
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Figure 50: Server request process rate per client.

Client Received Response rate: Figure 51 shows the results from the server response rate measured at
the clients using the ping mechanism on the client. Its value includes the server’s processing time plus the
transmission time. The average response time (from Figure 51) is 33-34 ms, indicating that clients receive server
replies at a fast pace. Moreover, results show that response times may present a high variation with maximum
values in the range of 67 ms and minimum values of 16 ms. Still, the minimum and maximum values remain
constant throughout the player increase. These results are explained by the occasional loss of messages or
multiple pong messages received at the same second. Additionally, the ping tends to spike momentarily at 200
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Figure 51: Server response rate (replies/s) at the client application.

ms when the server or client loads the game scene. However, this depends on the number of clients that the
client cluster machine has, due to having to instantiate a scene per client, which impacts the machine.
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Figure 52: Server average processor usage per room.

Server Load: Figure 52 shows the measurements from the CPU usage of rooms in the server. These rooms
remain empty and active with no clients inside it, showing the processor utilization needed just to update the
game world. In order to obtain these results, the dormant optimization was deactivated, making the rooms
generate and run the game world when initiated. The figure indicates a low increase of resource consumption.
Furthermore, Figure 52 provides a frame of reference to the server’s load without an active room, showing that
the processor’s usage offset that the application uses just by running is 0.3%.
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Figure 53: Server average processor usage per client.

Figure 53 shows the average CPU usage of players in the server. In conjunction with Figure 52, the overall
results indicate that apart from the clients messages/requests, a room has a small number of tasks to perform
each loop, having a low resource consumption. Moreover, since the server is a console application it does not
have to render objects, generate lighting, effects or graphics, reducing even more the resources used. Since
most of the room events are connected to the clients, it is expected that they bring a high load to the server’s
processor, specially because most of the information being sent in the system is player states and the server
has to validate them. Lastly, comparing the resource usage from the player object in the client application and
in the server (not shown) indicates that the chosen algorithm for player replication removed a big percentage of
workload of the server, which was part of the reason for its implementation.
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Figure 54: Server average processor usage by tick rate.

Server Tick Rate: Figure 54 shows the average processor utilization in the server depending on the tick rate
and having a single room with 10 players. As expected, there is an increase of CPU usage with a higher tick rate,
specially, with 120 ticks/sec that uses almost double the CPU power of 30 ticks/sec. Since the tick rate controls
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the simulation update rate and the number of messages sent each second to match the simulation update, the
higher the tick rate goes, the more updates need to be processed.

Figure 55 shows the average number of messages sent to the server depending on the tick rate. It indicates
that part of the processor load comes from having to treat messages from clients, which increases heavily with
the tick rate. It is seen that the amount of messages more than triples from 30 to 120 ticks/sec. Consequently,
this increase of messages uses more bandwidth (not shown) from the system.
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Figure 55: Server average number of packets received by tick rate.

4.1.3 Scalability

Up until now, the system was studied under a normal execution of up to 20 players. In this section, Figures 56-59
present the results of the system with a substantially higher number of players to evaluate scalability. Since
each room was designed to sustain a maximum of 60 players, additional rooms were added to support more.
Therefore, beyond 60 players, these are divided evenly across rooms. For instance, 90 players corresponds to 2
rooms with 45 players each. Furthermore, the study is bound by the number of players that each machine can
instantiate, which during the experiments was 40 players, resulting in a total of 120 players.
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Figure 56: Server incoming network throughput per client.

Figure 56 describe the measurements of the incoming and outgoing network throughput of the server, respec-
tively. It is found that these aspects continue to increase linearly with the number of players. However, when the
server reaches 120 players, the bandwidth drops to around 127 KB/sec, when it should be around 217 KB/sec.
This is due to client machines needing to instantiate 40 client applications each to reach the 120 players, which
they cannot handle since it creates a lot of information to process. As result, their applications start to lag and
send less messages, resulting in the decrease seen from 90 to 120 players.
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Figure 57: Server outgoing network throughput per client.

Figure 57 shows the measurements of the outgoing network throughput of the server. It follows a linear growth
until 60 players. Furthermore, between 60 and 90 players there is a bigger increase of outgoing messages. This
is because to accommodate 90 players, two rooms are needed. As result, this creates another multicast channel
with more tick and clock messages to keep the second room synchronized. Therefore, resulting in a bigger jump
of bandwidth used, even with players lagging on their machines. Additionally, the same would be seen going
beyond 120 players.
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Figure 58: Server execution time breakdown.

Figure 58 shows the measurements captured from the server’s CPU. Through the execution time breakdown,
it is seen that the idle time is still high at 120 players, while processing time is low, allowing further expanding the
amount of messages treated. Therefore, it can be concluded that the server can support hundreds of players and
their messages. Although it was found that the server can handle these high amounts of messages, expanding
as needed, the client machine used cannot (not shown). So, trying to reach a number of players any higher than
120 will result in multiple disconnections due to failing to send messages to the server in time.

Another factor influencing the system’s scalability is tick rate. Figure 59 shows the disconnection rate of
players depending on the tick rate. This experiment runs on a normal execution of the game with 120 players.
As expected, a higher tick rate leads to a higher disconnection rate. Most players disconnect as soon as the
race starts due to the client cluster machine instantiating multiple game scenes at once, affecting the machine’s
performance. Therefore, when 40 players try to do this all at once (in the same machine), they are unable to
send messages. Even if these manage to not be disconnected at the beginning of the game, they may still be
disconnected later because of having the client machine generate and process a lot of messages, which in time
will become backed up, resulting in more disconnections until the client machine can tolerate the amount of load
being created. Additionally, the opposite happens when lowered the tick rate. However, it is not recommended
due to affecting the simulation’s precision and the player’s experience, and therefore it wasn’t plotted in Figure 59.
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Figure 59: Server disconnection rate.

Lastly, the difference between the server’s scalability comparing a small and big map was also tested. How-
ever, since the server’s load comes almost entirely from clients and not the game world update, the data did not
indicate a significant influence and therefore, it is not shown.

4.1.4 Security

Security metrics: Taking a pragmatic approach, the assessment of security follows the examination of the two
security goals for online games described in Kirmse and Kirmse (1997). These are (1) client information and
(2) anti-cheating measures. However, since the game-server doesn’t have an account or verification system, it
does not save sensitive data about clients. Therefore, client information is not considered for the system at hand,
which consequently makes this system’s security assessment focused solely on the anti-cheating measures that
it naturally provides.

At the protocol level, the system’s architecture doesn’t allow clients to eavesdrop on messages not intended
for them because, while P2P, clients on this system are not part of the dissemination process of messages that
are not their own. Therefore, it impedes the possibility of clients harming others by sending messages about
other objects or actions, which would result in the creation of inconsistencies across clients and overload the
server with correction messages. Moreover, clients only know the player details about other clients, such as
clientRoomId, Username and Color, and not their client information, such as address and port. Since clients are
the only responsible entity in the architecture for sharing their player state, it creates the possibility for an exploit,
such as Lag Switch2, which unfortunately is irremediable. Nevertheless, to help combat it, the server implements
an away from keyboard (AFK) timer, which in case a client stops sending player state messages for a determined
time, they will be removed from the network. Therefore, the server forces them to send messages to it, which

2 Lag Switch (or Artificial Lag) is when, in P2P, the stream of data between one or more players gets slowed or interrupted,
causing movement to stutter and making opponents appear to behave erratically to other clients, while their client queues up
the actions performed.
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since the application uses multicast, they will also end up sending to the other clients listening to the multicast
address of the room the client is in.

At the game level, the game-server has the authority over the player game state, such as if they have finished,
passed a checkpoint, respawned, or grabbed someone. Therefore, it is concluded that the game server highly
restrains the cheating problems at the game level. Moreover, since player states come from distrusted clients, the
server ascertains security by monitoring, identifying, and correcting information coming from the clients that could
be altered to their advantage. If they are caught misbehaving, the room issues a correction to be immediately
implemented on the game client, asserting a correct state throughout the game session. However, the monitoring
process is narrow, consisting only of checking the tick and if they are inside a wall.

4.1.5 Resilience

Resilience metrics: To study the influence of poor network conditions on the multiplayer game, the effects of
latency, jitter, packet loss, and out-of-order packets are applied and measured. While the study doesn’t provide
a way to quantify the player’s perceptions on the gameplay quality exhibited, comments and observed trends
during and after the user studies are presented.

Latency: With the insertion of latency, the gameplay was somewhat sluggish when the delays induced on
the client’s connection were as low as 75 ms, being more impactful at latencies over 100 ms. However, the
experiments showed that latency did not affect the local player, even at 200 ms. Since the player replication
relies mainly on the client’s application to function, being independent of the server’s responses, it was found that
it made them, for the most part, unaware of the delay in the game. Nevertheless, latency became clear when
interacting with players or respawning (controlled by the server), which depending on the delay, took longer to
happen. The most subjective impact was during the continuous variation of latencies, also known as packet jitter.
It made other players start to teleport and, on some occasions, the local player would go into ragdoll state (due
to colliding with someone) or be pushed for no apparent reason (at least from the client’s perception).

Packet Loss: The examination of packet loss in the system showed that a player could occasionally notice
a short strange behavior when induced to loss rates of at least 3%, becoming more noticeable at 10%. How-
ever, it was found that packet loss does not prove to impair the game’s consistency since most messages are
retransmitted due to TCP. For instance, when a player falls off the map, it takes a few milliseconds longer to be
respawned. But since it uses TCP, it continues to occur, even if taking a bit longer, due to the need for retransmis-
sion. Even in messages that use UDP, which are not retransmitted, game protocols such as entity interpolation
are implemented to take care of the problem of missing information by masking the loss.

Moreover, it was found that only when adding a loss rate of 60%, the entity interpolation of the remote players
starts to break, aggravating as it goes higher. However, it is only spotted if remote players are not following a
linear movement. These occurrences appear only in more complex behaviors, such as when a player drastically
changes directions. So instead of following the original movement, the entity interpolation continues to move
forward due to extrapolation since it is missing messages. Later, when a message is received, it quickly shifts to
the correct position. Furthermore, as expected, players start to disconnect when induced to a loss rate of 100%.
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This is due to the clients failing to send their ping messages to the server, which makes the server think they
have crashed, removing them from the connections and game session.

Packet duplication and out of order: Lastly, the insertion of packet duplication and out-of-order packets in
the system was also carried out. It is found that both do not affect the game content at all due to the game
protocols implemented. For instance, even though entity interpolation is highly dependent on foreign information,
where the ordered execution of states is fundamental, it contains countermeasures to fight these conditions, such
as ordering the buffering player states received on a list. Similarly, pushing and grabbing still results in the same
outcome since the server is the one who decides what happens.

In summary, players should avoid servers with latency over 180 ms and packet loss levels over 5%. Neverthe-
less, servers that do not meet these criteria may still not significantly affect the player’s performance. However,
it does make the gameplay experience less enjoyable, which at least partially defeats the purpose of playing
games in the first place.
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4.2 D I S C U S S I O N

The first purpose of this study was to identify the performance, scalability, and security of the distributed archi-
tecture constructed. The second purpose of the study was the resilience that the system, under normal and
poor circumstances of a network communications-based system, can maintain the distributed game at a certain
quality that does not affect the playability. For this study, a discussion of significant findings discovered during
and after the analysis is included here, also providing future research possibilities to pursue.

4.2.1 Performance

The analysis of the system allowed to study the server’s behavior and performance under a reasonable player
size of 20. It was concluded that most workload comes from the player’s logic and that the player replication
implemented led to a low processor utilization on the server because of only using the client’s resources. Fur-
thermore, the server’s outgoing bandwidth depends on the amount of induced interactions from the clients but
still does not exceed a few Bytes/s and kept constant with a fairly small increase due to sending ping messages
to clients. The server’s incoming bandwidth increased, also linearly, reaching a higher number of 46 KB/s, which
is not an issue for modern systems, hence it can support hundreds of players.

Moreover, it was concluded that Multicast allowed a good server performance while increasing the number
of players in the study. However, because clients use Multicast to share information about their player states,
it doesn’t allow them to choose the amount of information to send each peer. Therefore, they end up sending
the same amount of data to their peers and server, even when it is not needed. As discussed in Section 2.3.4,
clients do not need to know every bit of information at all times, which could be the case in this game. It could be
theorized that using interest management (IM), the bandwidth requirement would diminish considerably. Going
forward, a solution to explore would be to remove Multicast and implement regular UDP between peers, reducing
the bandwidth requirements of the clients and hopefully covering more users with lower available resources.

Additionally, the overall resources used by the system could be lower if a Reliable User Datagram Protocol
(RUDP)3 protocol was used instead of TCP and UDP, as the assumptions made in Huh (2018). A RUDP based
scheme, would be more efficient than using TCP, and would scale better because TCP will always handle out-
of-other packets, meaning it won’t deliver more messages until everything else has been received in an orderly
fashion. This could be rather detrimental to the performance of a reasonably sized multiplayer game such as
this, which in most cases it is not needed. Additionally, RUDP schemes handle out-of-order packets when strictly
required, avoiding the TCP problem of holding messages until the one in front is confirmed to be received.

4.2.2 Scalability

To evaluate the scalability, the system has undergone experiments with a higher number of players, reaching
120 total. The server can hold hundreds of clients since its CPU usage is still minimal with 120 players. However,

3 https://en.wikipedia.org/wiki/Reliable_User_Datagram_Protocol

https://en.wikipedia.org/wiki/Reliable_User_Datagram_Protocol
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the bandwidth used continues to grow linearly with the number of players introduced. This analysis supports
the hypothesis that a limiting factor in the server’s scalability is the eventual extinguishment of both CPU and
bandwidth resources. Regardless, due to the lack of resources, the experiments cannot confirm it.

Furthermore, reducing the tick rate can be a viable option to improve the system’s scalability since it decreases
the load on the server. However, it can be detrimental to the simulation precision and the player experience.
Another solution to the system’s scalability may be server clustering, which achieves it through adding more
resources. This implementation could feature the limitation of executing a certain number of rooms or clients per
machine. Moreover, it would be valuable to look at micro-service architectures that incorporate multiple small
services, which are very scalable and highly modular, to help the system achieve better results.

Lastly, to all benchmarking efforts, the work done does not capture every aspect of the server behavior, given
the bots used are not actual human players. While these proved to produce load on the server in order to study
it, they did not allow, for instance, to observe the trade-off of lag compensation in the server because they do
not possess AI for grabbing and pushing other bots. However, the data gathered is a decisive first step towards
understanding and quantifying the problems faced in scaling a multiplayer game system.

4.2.3 Security

The proposed architecture provides a limiting window to the client’s ability to disrupt the system due to their role in
it. This is supported by the fact that the clients cannot harm others by disseminating false information. However,
the use of Lag Switch cannot be avoided due to using a P2P system to disseminate player states. Although the
implementation deals with this exploit, it is also limited.

Furthermore, the study was extended to the security at the game-level, where the server provides security
and control over important game state events, such as respawn and player-on-player interaction, having also
full authority over their dissemination to every single client. During development its importance was shown to
be crucial in the game’s well-functioning, suggesting the assumptions discussed in Yahyavi and Kemme (2013),
wherein large games there is a need for a central governing authority.

Although the player replication implemented proved to be a good choice for scalability, having the client control
their state, made the game’s security susceptible to cheating since players can still cheat in their simulation and
send wrong information to the server. Even though the game server focuses on detecting client inconsistencies, it
still leaves room for improvement since the detection is limited to a few key points. A more effective way would be
to prevent these misbehaves from being sent to the server in the first place. However, for a more comprehensive
examination of this, it would be required anti-cheating software on the game client, which falls out of the scope.
Therefore, it would be interesting for future research to understand what techniques and tools are used to help
prevent cheating in multiplayer games.
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4.2.4 Resilience

The data collected during the several user studies indicates that latency affects the system and agrees with
assumptions made before about the game’s low tolerance to latency. Added latencies between 50 and 100 ms
showed to have nearly equal low influence on the game, yet noticeable, while in the range of 100 (above) and
180 ms latency had taken impact on the game’s performance. However, the player performance remained the
same due to the replication system relying solely on the client’s application. Similarly, packet loss does not affect
player performance and has an insignificant influence on the game since most mechanisms can mask this loss
of information under normal conditions. Similarly, results from packet duplication and out-of-order suggest that it
does not affect the system at all due to the mechanisms implemented.

The general study exhibited how few game components are affected by poor network conditions when mecha-
nisms to lessen the high dependency on foreign information are implemented. Consequently, the client’s applica-
tion requires less resources from the server, doing more with what it has, and lowering the per-client requirements
of the system.

Moreover, the experiments showed the importance of the order the messages arrive at the server for actions
such as pushing players. During the analysis it was shown a reason for implementing lag compensation. This
is because, before, if two players were to push each other at the same tick, the message arriving first was the
one that decided who gets to do the action and who cannot (because they were pushed and transitioned into
ragdoll state). This proved to be unfair, and therefore it was changed to consider both actions instead of only the
first. Moreover, these slight changes in the fairness of game outcomes can highly affect the players’ enjoyment.
Although it hasn’t been considered the player’s perception in the scope of implementing these alterations in the
system, it would be interesting for future work to do so as to know if their implementation is required.



5

C O N C L U S I O N

5.1 C O N C L U S I O N S

This research aimed to investigate and construct a multiplayer game system, taking into account the technologies,
strategies, and mechanisms used in the industry, and afterward evaluate its performance, security, scalability, and
network resilience generated from the solution.

The initial study of relevant literature showed that Massive Multiplayer Online games (MMOG) are a thriving
business industry with a range of problems and challenges. Most MMOGs exclusively use client-server (CS)
architectures due to their simplicity. However, due to the lack of scalability, there has been increasing interest
in designing peer-to-peer (P2P) (structured or unstructured) and Hybrid architectures for these types of games.
So, these architectures are discussed and compared against each other concerning their robustness, scalability,
delay, consistency, cheat-proof, and commerciality for a better understanding of their capabilities and the lack
of. Furthermore, an overview of some of the core elements in multiplayer games is made to understand how
depending on the game it can influence the appropriate architecture. Many techniques are also proposed to
solve the problems of consistency, synchronization, and playability in a distributed game. However, while some
of these can be applied to multiple architectures, many are dependent on the underlying architecture. The
exploration and study of these architectures, protocols, and strategies used to create MMO games aimed to
build a foundation on multiplayer games in the effort to better select a solution to distribute the game at hands.

The game developed, DummyGuys, has a Hybrid architecture model that attempts to combine features from
CS and P2P architectures. It consists of two applications, GameServer and GameClient, and allows for multiple
game sessions to be run at the same time while staying independent and isolated from each other. To commu-
nicate, it employs TCP, UDP and IP Multicast using UDP, which was found to be helpful in the dissemination of
information to several clients. The applications’ structure follows the division of network and game logic to provide
a clean development method by successfully abstracting basic communication problems, such as consistency
and reliability issues, from the game logic code. Lastly, to ensure that the distributed game performs correctly,
the system also implemented numerous protocols to achieve a functional game with consistency, synchronization
and good playability.

The system’s capabilities are studied through a series of experiments with a set of appropriate methodological
approaches. The performance is examined through experiments with up to 20 players (bots). The results indicate
a continuous increase of incoming bandwidth with the introduction of clients. The incoming required bandwidth
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per player is constant and in the order of a few Bytes/s, whereas the outgoing bandwidth per user depends on
the total number of players and the induced interactions, but does not exceed a few Bytes/s also. Thus, current
network connections on the game server can support hundreds of clients. Additionally, the processing load on
the server proved to be mostly caused by the players, but continued to be small due to the player replication using
mostly the client’s resources. Moreover, the use of client-side metrics is proposed, such as the server response
rate and the average response time, for evaluating the overall server performance. To better understand the
implication of the performance results, future studies could address experiments with actual players.

Further experiments with a higher number of players are executed to examine the system’s scalability, showing
that the system can handle hundreds of players. However, resources on the server are finite, and their use
continues to grow linearly with the number of players. So, their maximum capacity will be met at some point.
However, this could not be tested due to the limited resources at hand. Therefore, further research is needed to
determine under what conditions the system reaches the maximum load possible. Lastly, a few solutions to the
scalability problem are suggested to be considered for future work.

For the security assessment, both the system’s architecture and implementation are analyzed. The client’s
role in the system denies the possibility of harming other clients since they can only share information about
themselves and are not part of the dissemination process to other clients. Also, the most vulnerable point of the
system is the information sent from the client that cannot be trusted, hence it is examined. Additionally, being a
central arbiter with authority over the clients, the server provides an easy and secure way to control and manage
the game state and events.

Lastly, under poor network conditions, the system continues to function normally and provide a good player
experience. Latency between 50 and 100 ms has limited influence on the game, while 180 ms shows to be more
noticeable and impact player experience. However, the player behavior is not affected due to its implementation
relying only on the client’s application. Packet loss is found to have no actual effect on the player experience
since most messages are re-transmitted, still it can be noticeable by players. Similarly, packet duplication and
out-of-order seems to not affect the system due to the various game protocols implemented, which have counter-
measures to such events.

5.2 L I M I TAT I O N S

Due to using IP Multicast (Network-Layer Multicast), the current system does not consider the network layer.
This is because IP Multicast requires all the routers in the path of the multicast packets to have multicast routing
configured. However, since we are trying to use public internet, we don’t own or control the routers. Therefore,
use of IP Multicast was solely due to being an extremely efficient way to share information in one-to-many
destinations.

Furthermore, to simplify the system and help in testing, the rooms were integrated into the server application,
allowing one server application to have multiple rooms. However, this is not the most desirable outcome when
developing an MMO server. It is preferred that rooms are kept separate, in different Virtual Machines (VM) or
physical machines, and that a discovery server directs the clients to the ones available. Regardless, the rooms,
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even if in the same application, were designed and constructed to be fully autonomous and self-contained, which
helps for future development following this approach.

In all benchmarking experiments, the work conducted does not capture every aspect of the server behavior,
given the restricted bots’ behavior used. Therefore, the information gathered from these metrics does not state
the entirety of the game server. However, they provided a decisive first step towards understanding and quanti-
fying the system’s behavior. Additionally, the number of clients used in the study was limited to what the three
client machines used allowed, representing 120 players in total.

Lastly, while the system employs several mechanisms to ascertain consistency, synchronization, and playabil-
ity, many challenges have not been addressed in this document, such as cheating, persistence, and availability,
because it falls out of the scope of the document or were not seen to be necessary.

5.3 F U T U R E W O R K

The work carried out leaves some opportunities that would be beneficial to investigate or develop in the future.
Thus, it is suggested the following work proposals:

• Investigate and implement an Reliable User Datagram Protocol (RUDP) following an ACK (acknowledg-
ment) or NACK (negative acknowledgment) communication protocol to compare and assess reliability,
resource usage, and speed with a TCP and UDP scheme;

• Investigate the micro-services-oriented architecture advantages and applicability to large-scale games,
followed by an implementation;

• Investigate cheating in multiplayer games and measures to prevent it, such as encryption layer under
packet communication sockets and anti-cheating software, followed by an implementation in the system
constructed in this work;

• Analyze the constructed system in an actual context using actual human players or bots with an AI similar
to human player behavior;

• Address the aspects of persistence and availability in multiplayer games on the solution constructed, which
would require a further expansion of the system and game functionalities.
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