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Modelling and optimization of a controller for a fuel cell with application in electric vehicles  

ABSTRACT 

Nowadays, the transportation sector is reaching a decisive point. The electric vehicles are supporting the 

reduction of CO2 emissions, but advanced technologies must emerge to have a boost in the transition to 

fully emission-free vehicles. Fuel cells are considered the next big evolution due to their efficiency and low 

environmental impact, achieving high power density which is a key feature of the automotive industry that 

always tries to save up space and weight for other necessary components. 

This dissertation intends to study all the working principle of the fuel cell and the required components to 

make it work in the case of vehicle applications. For this, the starting point is to collect information and 

test data from a low-volume production vehicle that has an FC System. These data will be analyzed to 

develop a simulation model that can replicate the behavior of the FC System. Thus, the Simulink Design 

Optimization was used to estimate the model parameter values that meet the design requirements and 

increase the model accuracy, using two nonlinear least square optimization methods (Trust Region 

Reflective and Levenberg Marquardt). The method that presented the best results allowed to study and 

develop a model that incorporates all the control of the FC System. This second model, the Fuel Cell 

Control Unit model, involved two versions: one based on a classical control algorithm (based on equations) 

and another with an Artificial Neural Network control algorithm. 

Several tests were performed on the FC System model and the controller model, evaluating their output 

and determining the error between the model response and the corresponding data of the production 

vehicle. In addition, the tests took into account the comparison between the two versions of the fuel cell 

control unit with the selection of the version that showed the lowest RMSE value. 

The results achieved for the FC System and for the controller are satisfactory, presenting similar behavior. 

By comparing the obtained results to the verified on the available data of the production fuel cell electric 

vehicle, they reflect the fuel cell stack voltage and resistance, under the same working conditions. 
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Modelação e otimização de um controlador para uma célula de combustível com aplicação 

em veículos elétricos 

RESUMO 

Atualmente, o setor de transportes está a chegar a um ponto decisivo. Os veículos elétricos estão a apoiar 

a redução das emissões de CO2, mas tecnologias mais avançadas devem surgir para impulsionar a 

transição para veículos totalmente livres de emissões de gases poluentes. As células de combustível a 

hidrogénio são consideradas a próxima grande evolução devido à sua eficiência e baixo impacto 

ambiental, alcançando alta densidade de potência, que é uma característica fundamental da indústria 

automóvel, que tenta sempre reduzir espaço e peso para outros componentes necessários. 

Nesta dissertação é estudado todo o princípio de funcionamento da célula de combustível a hidrogénio 

e os componentes necessários para o seu funcionamento no caso de aplicações em veículos. Para isso, 

o ponto de partida é coletar informações e dados de teste de um veículo de baixo volume de produção 

que possui um sistema de célula de combustível a hidrogénio. Estes dados são analisados para 

desenvolver um modelo de simulação que possa replicar o comportamento do sistema de célula de 

combustível a hidrogénio. Assim, foi utilizado o Simulink Design Optimization para estimar os valores dos 

parâmetros do modelo atendendo aos requisitos de projeto e que aumentem a precisão do modelo, 

utilizando dois métodos de otimização por mínimos quadrados (Trust Region Reflective e Levenberg 

Marquardt). O método que apresentou melhores resultados, permitiu estudar e desenvolver um segundo 

modelo que inclui todo o controlo da célula de combustível e os seus componentes. Este segundo modelo, 

possui duas versões, com um algoritmo de controlo clássico (baseado em equações) e com um algoritmo 

de controlo que recorre a uma rede neural artificial. Foram realizados vários testes ao modelo do sistema 

da célula de combustível e ao seu controlador, avaliando os seus outputs e o erro entre a resposta do 

modelo e os respetivos dados do veículo de produção. Além disso, os testes levaram em consideração a 

comparação entre as duas versões da unidade de controlo de célula de combustível, selecionando a 

versão que apresentou o menor valor de RMSE. Os resultados obtidos para o sistema de célula de 

combustível a hidrogénio e para o controlador são satisfatórios, apresentando comportamento 

semelhante. Comparando os resultados obtidos com os verificados nos dados disponíveis do veículo em 

estudo, eles refletem a tensão e a resistência da célula de combustível, sob as mesmas condições de 

funcionamento. 

 

Palavras-chave: Controlador, FCCU, Sistema de célula de hidrogénio, célula de hidrogénio, Simulink  



 

vii 
 

TABLE OF CONTENTS 

Acknowledgments ............................................................................................................................... iii 

Abstract............................................................................................................................................... v 

Resumo.............................................................................................................................................. vi 

Table of contents ............................................................................................................................... vii 

Figure index........................................................................................................................................ ix 

Table index ........................................................................................................................................ xii 

List of abbreviations and acronyms .................................................................................................... xiii 

1 Introduction ............................................................................................................................... 1 

1.1 Background......................................................................................................................... 1 

1.2 Motivation ........................................................................................................................... 3 

1.3 Goals and objectives ............................................................................................................ 3 

1.4 Outline ................................................................................................................................ 4 

1.5 Continental Engineering Services ......................................................................................... 4 

2 Literature Review ........................................................................................................................ 6 

2.1 Fuel Cell ............................................................................................................................. 6 

2.2 Fuel Cell Types .................................................................................................................... 7 

2.3 Fuel Cell System ............................................................................................................... 10 

2.3.1 Internal Fuel Cell System ........................................................................................... 10 

2.3.2 External Fuel Cell System ........................................................................................... 22 

2.4 Powertrain architectures .................................................................................................... 25 

2.5 Fuel Cell modelling and control strategies .......................................................................... 27 

2.5.1 Fuel Cell modelling .................................................................................................... 27 

2.5.2 Control strategies ...................................................................................................... 31 

3 Fuel Cell System Modelling ....................................................................................................... 36 

3.1 Production vehicle and dataset introduction ....................................................................... 36 



 

viii 
 

3.2 Model development ........................................................................................................... 42 

4 Fuel Cell Control Modelling ....................................................................................................... 57 

4.1 Introduction....................................................................................................................... 57 

4.2 Classical control algorithm development ............................................................................ 59 

4.3 Neural Network control algorithm development .................................................................. 61 

4.4 Control logic development ................................................................................................. 66 

4.5 FCCU testing ..................................................................................................................... 69 

5 Conclusions ............................................................................................................................. 79 

Bibliography ..................................................................................................................................... 81 

Appendix 1 – Measured attributes related to the FC System .............................................................. 86 

 



 

ix 
 

FIGURE INDEX 

FIGURE 1 - CES LOGO. .................................................................................................................................................. 5 

FIGURE 2 - SCHEMATIC OF AN INDIVIDUAL FUEL CELL (EG & G SERVICES ET AL., 2000) ............................................................ 7 

FIGURE 3 - NASA PC17 C ALKALINE FUEL CELL (COHN, 1965). .......................................................................................... 8 

FIGURE 4 - PROTON EXCHANGE MEMBRANE FUEL CELL ESSENTIAL COMPONENTS (VISHNYAKOV, 2006). ..................................... 11 

FIGURE 5 - FUEL CELL POLARIZATION CURVE (EG & G SERVICES ET AL., 2000). ..................................................................... 16 

FIGURE 6 - EXPANDED VIEW OF A SIMPLE FUEL CELL UNIT IN A FUEL CELL STACK (CODINA, 2017). ............................................. 19 

FIGURE 7 - EXPANDED VIEW OF A PHYSICAL UNIT CELL (MARUO ET AL., 2017)....................................................................... 20 

FIGURE 8 - MICROSCOPICAL VIEW OF CROSS-SECTION OF THE MEMBRANE ELECTRODE ASSEMBLY (MARUO ET AL., 2017). ............. 20 

FIGURE 9 - FRONT (TOP) AND REAR (DOWN) VIEW OF THE BIPOLAR PLATE (MARUO ET AL., 2017). ........................................... 21 

FIGURE 10 - EXPANDED VIEW OF FUEL CELL STACK (MARUO ET AL., 2017). .......................................................................... 21 

FIGURE 11 - LONG-HAUL HEAVY DUTY VEHICLE FUEL CELL SYSTEM (JAMES ET AL., DOE HYDROGEN AND FUEL CELLS - FUEL CELL 

SYSTEM ANALYSIS, 2021). ................................................................................................................................. 22 

FIGURE 12 - FUEL CELL SUB-SYSTEMS (MARUO ET AL., 2017). ........................................................................................... 23 

FIGURE 13 - DC/DC CONVERTER (LEFT) AND ELECTRIC MOTOR WITH DC/AC CONVERTER (OLSZEWSKI, 2007). .......................... 23 

FIGURE 14 - AIR COMPRESSOR (LEFT) (KERVIEL ET AL., 2018) AND HYDROGEN EJECTOR (RIGHT) (CLARK & KNIGHT, 2005). .......... 24 

FIGURE 15 - FCCU BASED ON INFINEON MCU (TANAKA, 2020). ....................................................................................... 25 

FIGURE 16 - FULL FUEL CELL POWERTRAIN ARCHITECTURE (YU ET AL., 2022). ....................................................................... 25 

FIGURE 17 - FUEL CELL + BATTERY HYBRIDIZATION POWERTRAIN ARCHITECTURE (YU ET AL., 2022). .......................................... 26 

FIGURE 18 - FUEL CELL + ULTRA-CAPACITATOR HYBRIDIZATION POWERTRAIN ARCHITECTURE (YU ET AL., 2022). .......................... 26 

FIGURE 19 - DYNAMICAL MODEL OF FC SYSTEM IMPLEMENTED ON MATLAB/SIMULINK (BAO ET AL., 2006). ........................... 28 

FIGURE 20 - FC SYSTEM MODEL IN GT-SUITE SOFTWARE (WANG & XU, 2019). ................................................................... 29 

FIGURE 21 - SCHEMATIC OF THE FC SYSTEM HYBRID MODELLING MODEL (LU, 2013). ............................................................ 30 

FIGURE 22 - MODEL STRUCTURE TO ESTIMATE CELL PARAMETERS (SURYA ET AL., 2021). ........................................................ 30 

FIGURE 23 - VOLTAGE COMPARISON OF THE MODEL DEVELOPED BY (SURYA ET AL., 2021). ..................................................... 31 

FIGURE 24 - ALGORITHM OF THE CONTROL LOGIC IMPLEMENTED ON A TOYOTA FC VEHICLE PROTOTYPE (NAGANUMA ET AL., 2012).

 ..................................................................................................................................................................... 32 

FIGURE 25 - PART OF THE DYNAMIC ANN WITH TWO NEUROS AND TWO INPUTS/OUTPUTS (HATTI & TIOURSIB, 2009). ............... 32 

FIGURE 26 - ARCHITECTURE OF A FEEDBACK AND FEEDFORWARD CONTROL (DAUD ET AL., 2017) ............................................. 33 

FIGURE 27 - FC SYSTEM AND CONTROL LOGIC DEVELOPED BY GÓMEZ ET AL. (2021). ............................................................. 34 

FIGURE 28 - FAST AND SLOW DYNAMICS APPLIED TO DIFFERENT CONTROLLERS (GÓMEZ ET AL., 2021). ...................................... 35 

FIGURE 29 - WLTP CLASS 3 CYCLE (TUTUIANU ET AL., 2013) ............................................................................................ 37 

FIGURE 30 - THE TEST VEHICLE IN ARGONNE NATIONAL LABORATORY (LOHSE-BUSCH ET AL., 2018). ........................................ 38 

FIGURE 31 - POWERTRAIN ARCHITECTURE AND MEASUREMENTS (LOHSE-BUSCH ET AL., 2018). ............................................... 39 

FIGURE 32 - TEST DATA EXAMPLE  (LOHSE-BUSCH ET AL., 2018). ....................................................................................... 39 

FIGURE 33 - CONFIGURATION OF FC SYSTEM IN TOYOTA MIRAI (MARUO T. ET AL., 2017)...................................................... 40 



 

x 
 

FIGURE 34 - WATER RECIRCULATION IN HUMIDIFIER-LESS SYSTEM (NONOBE, 2017). ............................................................. 40 

FIGURE 35 - CONVENTIONAL FLOW FIELD STRUCTURE (LEFT) / 3D TOYOTA FLOW FIELD STRUCTURE (RIGHT) (NONOBE, 2017). ...... 41 

FIGURE 36 - TOYOTA FC SYSTEM COMPRESSOR (LEFT) AND RECIRCULATION PUMP (RIGHT) (NONOBE, 2017). ............................ 41 

FIGURE 37 - COMPLETE FC SYSTEM OF THE TOYOTA MIRAI (NONOBE, 2017). ..................................................................... 42 

FIGURE 38 - FC SYSTEM MODELLING OPTIONS. ................................................................................................................ 43 

FIGURE 39 - INITIAL FC SYSTEM MODEL. ........................................................................................................................ 44 

FIGURE 40 - EXAMPLE OF CONTROL EQUATION TO DETERMINE REQUIRED AIR FLOW USING FIXED LAMBDA FACTOR. ...................... 45 

FIGURE 41 - RELEVANT OPERATING CONDITIONS OF THE FC SYSTEM ON THE TOYOTA MIRAI. ................................................... 46 

FIGURE 42 - FORCING HYDROGEN PRESSURE (LEFT) AND LOAD APPLICATION (RIGHT). .............................................................. 47 

FIGURE 43 - MEASURED INITIAL OUTPUTS FROM THE MODEL. ............................................................................................. 47 

FIGURE 44 - INITIAL I-V CURVE OF THE MODEL (X AXIS IS FC CURRENT AND Y AXIS IS FC VOLTAGE). ........................................... 48 

FIGURE 45 - CUSTOM FC STACK PARAMETRIZATION. ........................................................................................................ 48 

FIGURE 46 – THEORETICAL EQUATIONS (LEFT) AND EMPIRICAL EQUATIONS (RIGHT) FOR VOLTAGE LOSSES EQUATIONS. .................. 49 

FIGURE 47 - MEMBRANE RESISTANCE CALCULATION. ........................................................................................................ 49 

FIGURE 48 - PARAMETRIZED MODEL. ............................................................................................................................. 50 

FIGURE 49 - PARAMETER ESTIMATOR APP. ...................................................................................................................... 50 

FIGURE 50 - PARAMETER ESTIMATOR CONFIGURATION. ..................................................................................................... 51 

FIGURE 51 - INITIAL STATE OF THE OPTIMIZATION PROBLEM. .............................................................................................. 52 

FIGURE 52 - RESULTS USING THE TRUST REGION REFLECTIVE ALGORITHM. ............................................................................. 53 

FIGURE 53 - RESULTS FOR THE LEVENBERG MARQUARDT ALGORITHM. ................................................................................. 53 

FIGURE 54 – BEST RESULTS FOR RESISTANCE OPTIMIZATION – LEFT BEFORE AND RIGHT AFTER OPTIMIZATION. .............................. 55 

FIGURE 55 - FINAL I-V CURVE OF THE MODEL (X AXIS IS FC CURRENT AND Y AXIS IS FC VOLTAGE).............................................. 55 

FIGURE 56 - INTERACTION BETWEEN FC SYSTEM MODEL AND FCCU. .................................................................................. 58 

FIGURE 57 - CLASSICAL CONTROL ALGORITHM STRUCTURE. ................................................................................................ 60 

FIGURE 58 - 3D LOOK UP TABLE FOR DETERMINING "V_FC_OVERVOLTAGE". ....................................................................... 60 

FIGURE 59 - 2D LOOK UP TABLE FOR DETERMINING "LAMDA_FACTOR". ............................................................................... 61 

FIGURE 60 - CLASSICAL CONTROL ALGORITHM DEVELOPED IN SIMULINK. .............................................................................. 61 

FIGURE 61 – ARTIFICIAL NEURAL NETWORK CONTROL ALGORITHM DEVELOPED IN SIMULINK. .................................................... 62 

FIGURE 62 – ARTIFICIAL NEURAL NETWORK TRAINING USING DEEP LEARNING TOOLBOX IN MATLAB. ....................................... 63 

FIGURE 63 - NEURAL NETWORK STRUCTURE FOR TRAINING IN MATLAB. ............................................................................. 63 

FIGURE 64 - SENSOR SIGNAL FILTERING USING "DATA CLEANER TOOLBOX". .......................................................................... 64 

FIGURE 65 - PID CONTROL LOGIC STRUCTURE IMPLEMENTED ON SIMULINK. .......................................................................... 66 

FIGURE 66 - PID CONFIGURATION WINDOW. .................................................................................................................. 67 

FIGURE 67 - PID TUNER APP AND SIGNAL WITH OVERSHOOT AND DELAY............................................................................... 68 

FIGURE 68 - PID TUNER APP AND SIGNAL SMOOTHED AND FASTER RESPONSE. ....................................................................... 68 

FIGURE 69 - COMPLETE MODEL DEVELOPED IN SIMULINK. ................................................................................................. 69 

FIGURE 70 - FUEL CELL CURRENT DEMAND FOR TESTING. ................................................................................................... 69 

FIGURE 71 - CONTROL ALGORITHMS RESPONSE AND CORRESPONDING DATA FOR AIR FLOW. ..................................................... 70 



 

xi 
 

FIGURE 72 - CONTROL ALGORITHMS RESPONSE AND CORRESPONDING DATA FOR AIR PRESSURE. ................................................ 71 

FIGURE 73 - CONTROL ALGORITHMS RESPONSE AND CORRESPONDING DATA FOR HYDROGEN PRESSURE. ..................................... 72 

FIGURE 74 - CONTROL ALGORITHMS RESPONSE AND CORRESPONDING DATA FOR RECIRCULATED HYDROGEN FLOW. ...................... 72 

FIGURE 75 – FCCU RESPONSE (CLASSICAL CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE AIR FLOW. ............................. 73 

FIGURE 76 - FCCU RESPONSE (CLASSICAL CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE AIR PRESSURE. ........................ 74 

FIGURE 77 - FCCU RESPONSE (CLASSICAL CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE HYDROGEN PRESSURE. .............. 74 

FIGURE 78 - FCCU RESPONSE (CLASSICAL CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE RECIRCULATED HYDROGEN. ........ 75 

FIGURE 79 - FCCU RESPONSE (ANN CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE AIR FLOW. .................................... 75 

FIGURE 80 - FCCU RESPONSE (ANN CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE AIR PRESSURE. .............................. 76 

FIGURE 81- FCCU RESPONSE (ANN CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE HYDROGEN PRESSURE. .................... 76 

FIGURE 82 - FCCU RESPONSE (ANN CONTROL ALGORITHM) AND MODEL RESPONSE FOR THE RECIRCULATED HYDROGEN. .............. 77 

 



 

xii 
 

TABLE INDEX 

TABLE 1 - COMPARISON OF DIFFERENT TYPES OF FUEL CELLS ................................................................................................. 8 

TABLE 2 - FUEL CELLS ADVANTAGES AND DISADVANTAGES .................................................................................................... 9 

TABLE 3 - MAIN PARAMETERS OF THE TEST VEHICLE (TOYOTA MIRAI) (LOHSE-BUSCH ET AL., 2018). ......................................... 36 

TABLE 4 - WLTP DRIVING CYCLES (TUTUIANU ET AL., 2013). ............................................................................................. 37 

TABLE 5 - RESULTS FOR THE EMPIRICAL VALUES ................................................................................................................ 54 

TABLE 6 - RESULTS OF EACH OPTIMIZATION ALGORITHM .................................................................................................... 54 

TABLE 7 - MAIN ACTUATORS AND SENSORS IDENTIFIED IN THE FC SYSTEM ............................................................................ 57 

TABLE 8 - COMPARISON BETWEEN CONTROL LOGIC OPTIONS. ............................................................................................. 58 

TABLE 9 - TRAINING RESULTS FOR THE NEURAL ARTIFICIAL NETWORK OF HYDROGEN/ANODE PRESSURE. ...................................... 64 

TABLE 10 - TRAINING RESULTS FOR THE ARTIFICIAL NEURAL NETWORK OF AIR/CATHODE FLOW. ................................................. 65 

TABLE 11 - TRAINING RESULTS FOR THE ARTIFICIAL NEURAL NETWORK OF AIR/CATHODE PRESSURE. ........................................... 65 

TABLE 12 - TRAINING RESULTS FOR THE ARTIFICIAL NEURAL NETWORK OF HYDROGEN RECIRCULATED FLOW. ................................ 65 

TABLE 13 - RMSE VALUES BETWEEN CONTROL ALGORITHMS AND DATA. .............................................................................. 70 

TABLE 14 - RMSE VALUES BETWEEN FCCU VERSION AND DATA. ........................................................................................ 77 

 

 



 

xiii 
 

LIST OF ABBREVIATIONS AND ACRONYMS 

AFC Alkaline Fuel Cell 

AC Alternate Current 

ANN Artificial Neural Network 

ANNC Artificial Neural Network Controller 

CES Continental Engineering Services 

DC Direct Current 

DMFC Direct Methanol Fuel Cell 

EV Electric Vehicles 

ECU Engine Control Unit 

FC Fuel Cell 

FCCU Fuel Cell Control Unit 

ICE Internal Combustion Engines 

IEA International Energy Agency 

LM Levenberg Marquardt 

ML Machine Learning 

MCU Micro Control Unit 

MPC Model Predictive Control 

MCFC Molten Carbonate Fuel Cell 

NEDC New European Driving Cycle 

ODE Ordinary Differential Equations 

TRR Trust Region Reflective 

PAFC Phosphoric Acid Fuel Cell 

PID Proportional Integrative Derivative 



 

xiv 
 

PEMFC Proton Exchange Membrane Fuel Cell 

RMSE Root Mean Square Error 

SOFC Solid Oxide Fuel Cell 

SVM Support Vector Machine 

WLTP Worldwide Harmonised Light-Duty Vehicles Test Procedure 

 

 



 

1 
 

1 INTRODUCTION 

The dissertation is the final curricular unit of the master’s degree in Systems Engineering, from 

Universidade do Minho, whose purpose is to promote initiative, decision making, creative and critical 

thinking. The dissertation consists of a research and development work lasting six months with a private 

entity that supports the present project. 

 

1.1 Background 

The continuous growth of the world population has led to a rapid increase in the use of energy that comes 

from hydrocarbon sources (fossil fuels), which are reaching their exploitation limit (Alanne, 2019). After 

the industrial revolution, it was noticed an increase in the energy consumption and this led to a direct 

increase of the Greenhouse gases, mainly carbon dioxide (CO2) (Martinez, 2005). Greenhouse gases play 

an important role in regulating the planet Earth temperature. Without these gases, all the infrared 

radiation, which comes from the sun, would be reflected directly into the universe, leading to a drastic 

decrease in the average temperature of the Earth (Hertzberg et al., 2017). Due to the increase in CO2 

concentration, a lot of radiation is reflected and maintained within the atmosphere, increasing the 

temperature of the planet, causing drastic climate changes (Hertzberg et al., 2017). The demand for 

using renewable and clean energy sources has increased in the last years as a way to combat the 

consumption of fossil fuels, to respond the demand for energy consumption (Radcliffe, 2018). 

The International Energy Agency (IEA) has reported a long-term goal of 50% reduction in the global average 

emissions by the year 2030 (Scott & Gössling, 2021). In the last year, 2021, the consumption of oil 

derived fuels has increased to almost pre-Covid-19 levels, as stated in the IEA report (Ibrahim et al., 

2021),  with 60% of the oil production being consumed by the transport sector. Within that, automobile 

brands were forced to develop new powertrains, to meet with the new emissions regulations. Some 

strategies have been adopted developing engine downsizing technologies and hybrid vehicles in the last 

decade, but CO2 emissions are not reducing as expected (Namar et al., 2021). The reduction of pollutant 

gases emitted by vehicles has not decreased the overall CO2 emissions and automotive developers are 

taking new approaches to develop cars that do not rely only on fossil fuels (Wang et al., 2022). 

In the last decade, almost all automobile brand have introduced several models of Electric Vehicles (EV) 

on the market and this has highlighted even more peaks in electrical energy consumption, increasing the 
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demand for fossil fuels in order to meet the extra power grid load, since it is not ready to respond to such 

a high demand for EVs (Hartmann & Özdemir E., 2011). 

This type of vehicles presents disadvantages from an end-user point of view, relatively to conventional 

Internal Combustion Engines (ICE) vehicles, such as long charging time, low range, high acquisition cost 

and also low energy density of the batteries representing in some cases more than 28% of the total weight 

of the vehicle (Gelmanova et al., 2018). 

Vehicles that rely on H2 use a Fuel Cell (FC) to convert chemical energy into electrical energy, which in 

turn is consumed by electric motors to move the vehicle according to the drivers input. This type of 

vehicles is complemented with a small battery pack which helps supplying energy to the engine in case 

of an unexpected power request from the driver (Yoshida & Kojima, 2015). 

This new technology also has advantages from a cost perspective view in relation to EV due to the 

difference in battery size, reducing the consumption of chemical compounds such as lithium, cobalt, and 

nickel, as well the cost of battery replacement for the end-user. In the last decade, several studies have 

been carried out to understand the impact that FC vehicles and EV will have in the future, reducing CO2 

emissions. A studied conducted by Thomas (2009), forecasts the impact on CO2 emissions by vehicle 

powertrain architecture, comparing ICE, EV, FC and hybrid technologies, concluding that the use of EV 

and FC are the key to massively reduce Greenhouse Gases in the present century. Furthermore, Pollet et 

al. (2019) developed a studied that focuses on the cost and reliability of FC, concluding that the cost and 

reliability will match the conventional ICE vehicle in this decade. However, the main disadvantage of FC 

vehicles are the fuelling stations. Charging EV, even nowadays, is not properly easy due to the low number 

of chargers and problems in their operation. The H2 fuel stations are complex and costly to implement, 

and these are the main reasons that justify the low number of refuelling stations (with a target of 3000 

by the year 2030) (Staffell et al., 2019). 

The use of H2, as a fuel source, is of significant importance because it addresses the problem of 

greenhouse gas emissions without the disadvantages of EVs, making it the fundamental chemical 

compound to achieve the goals of European Union till 2050 in the context of decarbonization of the energy 

and transport sectors (European Commission, 2012). 
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1.2 Motivation 

The interest in this technology as a response to the future clean mobility by automotive manufactures has 

also the interest from Tier 1 technology suppliers such as Continental Engineering Services (CES), to 

develop powertrain models that can simulate real operating conditions of all components in a system 

level modelling acting as a base model to test new solutions and specific working conditions.  

System level modelling allows to explore the global behaviour of a large physical system without being 

completely specified and does not require a detailed knowledge of each part of the system. This type of 

holistic simulation allows to simulate technology concepts and study early development phases of the 

project. 

In this perspective, CES, together with the author of this dissertation, are interested in exploring this 

technology and developing a model that simulates the real operation of an automotive fuel cell and studies 

its control logic, serving as a base model for future developments of advanced control strategies and 

predictive models of degradation of components and reliability of the fuel cell. 

 

1.3 Goals and objectives 

The main objective of this work is to develop a model in Simulink, an add-on present in MATLAB software, 

that represents the real working behaviour of a fuel cell system (FC System). An initial theoretical model 

and data from a vehicle with a fuel cell are the initial point to develop this work. The data obtained, by a 

governmental entity, through tests on a dynamometer, will be used to reflect the behaviour of the FC 

System to a Simulink model.  

The work comprises the following tasks to achieve the objective: 

I. Study and understand the theoretical fuel cell operation 

II. Study and understand the fuel cell system for vehicles applications 

III. Study and understand fuel cell control strategies 

IV. Analyse test data from a fuel cell vehicle 

V. Problem formulation and necessary requirements 

VI. Model construction and evaluation 

VII. Control algorithm and logic construction and evaluation 

VIII. Test control strategies and evaluate their application and results 
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After all of the tasks being completed, the final model should be ready to be used, by the private entity 

that supports this project, to develop advanced control strategies and evaluate their performance as 

needed. 

 

1.4 Outline 

This work comprises six chapters. To understand the working principle of an FC, a brief literature review 

will be done in Chapter 2, explaining the various types of FC and which ones are applied to vehicles, 

system architecture and all necessary components. In addition, a review on the modelling strategies that 

can be implemented to the FC and controller will be performed. 

In Chapter 3 the model of the FC is described. To model the FC stack, MATLAB and Simulink will be used 

to develop a model that is based on the available data. These data were obtained by a governmental 

entity that carry over multiple tests to a production FC vehicle on a dynamometer. The expected result is 

to simulate the real working operation of the FC System, mainly obtained similar voltage and resistance 

signals. To develop that model, a base example model will be used and with the test data and specification 

data from the production vehicle, the model will be modified and optimized to match the same FC working 

principle present in the vehicle. 

After the development of the model, which contains all the components related to the fuel cell, it is 

possible to model a control strategy for the FC, described in Chapter 4. Two control strategies will be 

implemented, to control all the main components, based on real sensors according to specific inputs. 

In Chapter 5, the conclusions of this work will be presented, as well as proposals for improvements and 

future work. 

 

1.5 Continental Engineering Services 

The present dissertation was developed on a research and development partnership between 

Universidade do Minho and Continental Engineering Services with the aim to achieve the defined goals. 

Continental Engineering Services, CES, – a subsidiary of the Continental – was founded in 2006 to provide 

engineering services to industries. It started its activity in two German cities (Frankfurt and Nuremberg), 

and currently has more than 20 locations worldwide.  
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The work carried out at CES focuses on automotive electronics, driveline and chassis technology, as well 

as electric mobility and autonomous driving. In addition, they are also working on adapting automotive 

technologies to a wide spectrum of industrial applications. The work at CES ranges from consulting 

concept studies to carrying out prototypes and small series, having control of the entire product 

development process. 

CES presents itself as the best partner in engineering solutions within the automotive sector as well as 

for all industries. In Portugal, it is headquartered in Porto, launched in 2019 and currently has more than 

200 employees. 

 

Figure 1 - CES logo. 
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2 LITERATURE REVIEW 

In this chapter a literature review at the state of the art will be carried over, investigating critical topics 

that are essential to understand the behaviour of the fuel cell and the controller that controls all the 

necessary components. Also, a review on methods that are crucial to develop the project were taken into 

account that will be used to develop the model on MATLAB. 

 

2.1 Fuel Cell 

In 1838, Sir William Grove, who was a British physicist discovered the first fuel cell. It was made of sheet 

iron, copper, porcelain plates and a solution of sulphate of copper and dilute acid, that with a proper 

assembly, it would generate a small voltage with the reaction between two gases (Grove, 1839). Many 

years later, in 1930s, Thomas Bacon developed, with success, the first stationary fuel cell capable of 5kW 

using hydrogen and oxygen as fuel (Cohn, 1965). The race to space and the moon in the mid of 20th 

century paid much attention to fuel cells because they made it possible to produce electrical energy, 

when it was needed, based on chemical energy, according to the physical conditions of the universe. It 

was in the project Gemini from NASA that fuel cells were implemented to solve a real problem and made 

possible for a human being to go to the space and moon several times (Cohn, 1965). In the 1990s, fuel 

cells were being applied to vehicles, such as batteries, but were never successful because their limitations 

in range and system size.  On the other hand, low fuel prices have encouraged people to buy ICE vehicles. 

A fuel cell consists of two electrodes, called anode and cathode, which are wrapped around, and an 

electrolyte as presented in Figure 2. On the anode side, fuel (H2, methanol, natural gas, etc) is supplied 

in the form of gas and a chemical reaction occurs that detaches electrons from the chemical molecule, 

resulting in a proton. The electrons travel through a conductor and will eventually feed an electrical circuit, 

giving part of their energy, and returning to the cathode side. At the cathode, air is being supplied from 

the atmosphere and the O2 molecules will react with the electrons and hydrogen protons, resulting in the 

formation of H2O. This is the basic dynamics of the fuel cell and will be discussed in depth in the next 

sections, focusing on the types of fuel cells, how they are composed, and how to control the variety of 

parameters and components (EG & G Services et al., 2000). 
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Figure 2 - Schematic of an Individual Fuel Cell (EG & G Services et al., 2000) 

 

2.2 Fuel Cell Types 

Fuel cells can have multiple applications according to the fuel type present on the anode side, resulting 

in multiple arrangements of components and materials for their operation. The six main groups of fuel 

cells according to their electrolyte type are the following: Proton Exchange Membrane Fuel Cell (PEMFC), 

Solid Oxide Fuel Cell (SOFC), Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), Direct Methanol 

Fuel Cell (DMFC) and Molten Carbonate Fuel Cell (MCFC).  

Each type of electrolyte will determine the chemical reactions that take place on the anode and cathode 

sides, oxidation, and reduction reactions respectively. Therefore, the electrolyte also defines the fuel type, 

operating temperature and conditions required to operate the fuel cell, such as start-up and fuel pre-

processing processes.  

Low temperature FC, such as PEMFC, PAFC, DMFC and AFC require the fuel that enters on the anode 

must be pure H2 for the oxidation reaction to take place. On the other side, high temperature FC like 

MCFC and SOFC can be fed with other fuels containing CO or CH4 and due to the high operating 

temperature, part of these fuels is converted to H2 internally. Table 1 provides a simple overview of the 

main specifications by FC type and also the main disadvantages and advantages of each one on Table 2 

(Codina, 2017). 
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Table 1 - Comparison of different types of fuel cells 

 PEMFC SOFC AFC PAFC MCFC DMFC 

Electrolyte material Polymer 
Zirconium dioxide 
and Yttrium oxide 

Potassium 
hydroxide 

Phosphoric Acid 
Potassium 

lithium carbonate 
Polymer 

Electrode material Carbon Calcium titanate Nickel Carbon Nickel Carbon 

Operating temperature (ºC) 50-100 500-1050 50-150 200 650 50-100 

Oxidation reaction (Anode) 
𝐻2
→ 2𝐻+ + 2ⅇ− 

𝐻2 + 𝑂
2−

→ 𝐻2𝑂 + 2ⅇ
− 

2𝐻2 + 4𝑂𝐻
−

→ 4𝐻2𝑂
+4ⅇ− 

𝐻2
→ 2𝐻+ + 2ⅇ− 

𝐻2 + 𝐶𝑂3
2−

→ 𝐻2𝑂 + 𝐶𝑂2
+ 2ⅇ− 

𝐶𝐻3𝑂𝐻 + 𝐻2𝑂
→ 6𝐻+ + 6ⅇ−

+ 𝐶𝑂2 

Reduction reaction 
(Cathode) 

1

2
𝑂2 + 2𝐻

+

+ 2ⅇ− → 𝐻2𝑂 

1

2
𝑂2 + 2ⅇ−

→ 𝑂2− 

𝑂2 + 2𝐻2𝑂
+ 4ⅇ− → 4𝑂𝐻− 

1

2
𝑂2 + 2𝐻

+

+ 2ⅇ− → 𝐻2𝑂 

1

2
𝑂2 + 𝐶𝑂2

+ 2ⅇ− → 𝐶𝑂3
2− 

3

2
𝑂2 + 6𝐻

+

+ 6ⅇ− → 3𝐻2𝑂 

Ion charge carrier 𝐻+ 02− 𝑂𝐻− 𝐻+ 𝐶𝑂3
2− 𝐻+ 

Fuel 𝐻2 
𝐻2, 𝐶𝐻4 and 

𝐶𝑂 
𝐻2 𝐻2 

𝐻2, 𝐶𝐻4 and 
𝐶𝑂 

𝑀ⅇ𝑡ℎ𝑎𝑛𝑜𝑙 

External reforming of fuel Yes No Yes Yes No Yes 

Power capacity output (kW) 1-250 5-5000 1-100 100-1000 100-2000 < 1 

Use 
Electricity and 

Heat 
generation 

Electricity, Heat 
and steam 
generation 

Electricity 
generation 

Electricity and 
Heat generation 

Electricity, Heat 
and steam 
generation 

Electricity 
generation 

Efficiency (%) < 40 60 - 85 50 - 60 45 - 85 40 - 85 20 - 25 

 

NASA in the Gemini project used an AFC (Figure 3) for its space operation due to its low temperature 

behaviour, high efficiency, and considerable power output for the requirements of the lunar module. It 

was possible to control the power output based on H2 and O2 inputs and produce potable water for the 

astronauts (Cohn, 1965). 

 

Figure 3 - NASA PC17 C Alkaline Fuel Cell (Cohn, 1965). 

In mid-1960s this development was very expensive, so it led to the exploration of other types of FC and 

other applications as well. For the automobiles, PEMFC are the main focus due to their high-power output, 
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reliability, low temperature, fast start-up, good efficiency and absence of pollutant gas emissions 

(Costamagna, 2001). 

The first application of an FC to an automobile was made in 1993 during the New Generation of Vehicles 

program, an partnership between California Environmental Legislations and the United States of America 

with the support of three main automobile manufactures, began to explore the application of a PEMFC in 

the transportation sector, developing the first prototypes of FC powered vehicles and also the composite 

materials needed to manufacture the FC (Costamagna, 2001).   

Table 2 - Fuel cells advantages and disadvantages 

Type Advantages Disadvantages 

PEMFC 
- Quick system start-up and shutdown 
- Portable applications 
- Electrolyte is very resistive to gas crossover 
- High power density 
 

- Expensive catalyst (platinum) 
- Difficulties in thermal management 

SOFC 
- Fuel flexibility 
- Nonprecious metal catalyst 
- Solid electrolytes allow various shapes of cells 
- High quality heat waste for cogeneration 

- High temperature causes material problems such as thermal expansion 
- Sealing issues 
- Limited range of material selection 
- Relatively expansive components and fabrication 

AFC 
- High efficiency 
- Low manufacturing and operation costs 
- Mature technology 

- Electrolyte is a corrosive liquid 
- Complex system configuration 

PAFC 
- Mature technology 
- Cogeneration of heat  
- Excellent reliability and long-term running 
- Relatively inexpensive electrolyte 

- Slow reduction in the cathode side 
- Electrolyte is a corrosive liquid 
- Complex system configuration 

MCFC 
- Fuel flexibility 
- Non-precious metal catalyst 
- High quality waste heat for cogeneration 
- High efficiency 

- Corrosive and mobile electrolyte 
- High temperature results in degradation and reliability issues 
- High contact resistance and cathode resistance limit power density 

DMFC 
- Simple structure 
- Good for low power/long operation hours 

- Poor cell efficiency 
- Poor power density 

 

Other types of FC, such as MCFC and SOFC are being used in the energy system due to the very high-

power output and the ability to use multiple fuels, taking advantage of their high operating temperature 

and reforming the fuel to convert it to H2. The steam generation can also be used to generate power using 

steam and gas turbines in power plants to maximize the FC efficiency (Choudhury et al., 2013). 

In the next sections, only PEMFC will be evaluated because of its applicability to automotive vehicles and, 

all of the production vehicles, to date, use this type of FC. 
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2.3 Fuel Cell System 

The fuel cell system is composed by multiple elements, which have specific functions to achieve 

maximum efficiency of the system. PEMFCs used in automobiles can be separated into two systems: 

• Internal system that handles the chemical reactions inside the fuel cell stack, 

• External system that supplies the fuel and air to the fuel cell stack. 

The internal system handles the electrochemical, thermodynamics and kinetics of the reactions occurring 

inside the fuel cell stack. For the internal system to work, the external system must supply the main 

energy sources, being H2 and air for this specific type of FC, in addition to maintaining an optimal 

operating temperature. 

2.3.1 Internal Fuel Cell System 

An electrochemical device, such as a fuel cell, allows the generation of electric energy from a chemical 

reaction as long as H2 and air is supplied. The collisions between H2 and O2 molecules result in a reaction 

where H2 is oxidized, producing water and heat, as verified in Equation (1) (Kabza, 2016). 

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂 (1) 

 

In an atomic scale, the hydrogen – hydrogen bonds and oxygen – oxygen bonds are broken and hydrogen 

– oxygen bonds are formed resulting in energy release in the form of heat. For these bonds to break and 

form, the transfer of electrons between molecules must take place. Capturing these electrons, while they 

are being transferred between the molecules, results in a continuous electric current through a conductor. 

To capture the electrons, it is necessary to spatially separate the reactants H2 and O2 so that the transfer 

of electrons, necessary to complete the bounding and formulate water, occurs over an extended length 

scale, and can be harnessed as an electrical current (Kabza, 2016). 

Separating the reactants, the overall reaction is divided into two electrochemical reactions called H2 

oxidation (Equation (2) and O2 reduction (Equation (3)) (Kabza, 2016). 

H2 → 2H+ + 2e− (2) 

1

2
𝑂2 + 2𝐻

+ + 2ⅇ− → 𝐻20  (3) 
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By spatially separating these reactions, the electrons are forced to flow through an external circuit 

(resulting in an electrical current) and do work in electronic circuits before they can complete the reaction. 

This separation is achieved using an electrolyte, which is a material that allows ions (negative or positive 

charged atoms) to flow through, but not electrons, called proton exchange membrane (Kabza, 2016).  

Electrons flow through the electrodes, which are made of a conductor material that will eventually lead 

the electrons to an electric load. Figure 4 presents the structure of a PEMFC that exemplifies the working 

concept of a spatially separate chemical reaction. On the anode side the oxidation reaction takes place, 

the electron is collected by the anode plate, and the proton passes through the electrolyte membrane. 

On the cathode side the reduction reaction takes place formulating water combining the proton, electron 

and O2 (Kabza, 2016). 

 

Figure 4 - Proton exchange membrane fuel cell essential components (Vishnyakov, 2006). 

In order for these reactions to take place at the anode and cathode, a special arrangement of a catalytic 

layer combined with a gas diffusion layer is responsible for the electron collection and oxidation and 

reduction reactions. 

The reaction between these elements is categorized as an exothermic reaction, where the enthalpy 

change is negative, resulting in the release of heat. Therefore, Equation (1) verifies the following condition: 

𝛥𝑟𝐻 < 0, where the reaction enthalpy of hydrogen oxidation (𝛥𝑟𝐻) is equal to the enthalpy of water 

formation (∆𝑓𝐻2𝑂) (Kabza, 2016).  

The energy content of any fuel is described by its heating value that specifies the amount of heat released 

during the consumption of that fuel. In this case, water can be formed either in the gaseous or liquid 

state, corresponding to the higher heating value (HHV) and lower heating value (LHV), respectively 
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Equations (4) and (5) corresponding to the enthalpy of the reaction, since water is the only by product in 

this case (Kabza, 2016). 

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂(𝑔)      − ∆𝑓𝐻2𝑂 = 𝐻𝐻𝑉 =  285.83 𝑘𝐽𝑚𝑜𝑙−1 (4)  

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂(𝑙)      − ∆𝑓𝐻2𝑂 = 𝐿𝐻𝑉 =  241.82 𝑘𝐽𝑚𝑜𝑙−1 (5) 

 

These values are obtained under standard thermodynamic conditions (temperature of 25ºC and pressure 

of 100kPa) and are specified in thermodynamic tables (such as JANAF thermochemical tables) that 

present entropy, enthalpy, Gibbs free energy, specific heat and other factors over a range of temperatures 

for all species present in the reaction (O'hayre et al., 2016). 

The enthalpy represents the energy that the reaction will produce, but it is also important to evaluate the 

net energy of the reaction, which is the exploitable energy potential to produce electrical energy. This net 

energy is reflected in the change of Gibbs free energy, denoted as G, which combines enthalpy and 

entropy (a measure of disorder in a system) of the reaction. Furthermore, the Gibbs free energy can be 

useful to determine the spontaneity of a reaction. In this case, if ∆𝐺 = 0 then no electrical work can be 

extracted from the reaction (Kabza, 2016). On the other hand, if ∆𝐺 > 0 then external work must occur 

for the reaction occur, which is the case of an energetically unfavourable reaction. Finally, if ∆𝐺 < 0 then 

the reaction occurs spontaneously, being an energetically favourable reaction, possible to extract further 

energy from it (Kabza, 2016). 

Gibbs free energy can be described by the Equation (6), where H is the enthalpy, S is the entropy and T 

is the temperature. The entropy of water formation can be found in thermodynamic tables for each 

physical state and temperature (Kabza, 2016).  

∆𝐺 = ∆𝐻 − ∆𝑆 ∗ 𝑇 (6) 

 

Therefore, the Gibbs free energy for each physical state are the following: 

∆𝐺𝑓𝐻2𝑂(𝑔) =  −228.57 𝑘𝐽𝑚𝑜𝑙
−1  𝑜𝑟  ∆𝐺𝑓𝐻2𝑂(𝑙) = −237.13 𝑘𝐽𝑚𝑜𝑙

−1   

 

These values represent the energy that can be converted into electrical work. The electromotive force of 

any electrochemical device is defined by the following Equation (7): 
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𝐸0 = −
∆𝐺

𝑛∗𝐹
  (7) 

 

Where n is the number of exchanged electrons in the chemical reaction, being in this case two, and F the 

Faraday constant, resulting in the following electromotive force: 

𝐸𝑔
0 = 1.184 𝑉 𝑜𝑟 𝐸𝑙

0 = 1.229 𝑉  

 

These values are the theoretical maximum voltages that can be obtained from the electrochemical 

reaction of H2 and O2. Besides that, it makes sense to evaluate two other voltage points from an efficiency 

point of view. If all the chemical energy of hydrogen (heating value) were converted into electrical energy 

(impossible to happen due to thermodynamic laws) the cell voltage would be as follows: 

𝐸𝐿𝐻𝑉
0 =

𝐿𝐻𝑉

2 ∗ 𝐹
= 1.253 𝑉  𝑜𝑟  𝐸𝐻𝐻𝑉

0 =
𝐻𝐻𝑉

2 ∗ 𝐹
= 1.481 𝑉  

 

At this point it is important to evaluate the cell voltage considering the pressure of reactants on each side 

of the fuel cell. The Nernst equation considers not also the temperature, but also the pressure of H2 and 

O2 representing a correction to the initial electromotive force equation. The Nernst equation is described 

in Equation (8) where 𝐸0 is the electromotive force value, R is the universal gas constant, n is the number 

of exchanged electrons, F is the Faraday constant and 𝑝𝐻2 , 𝑝𝑂2, 𝑝𝐻2𝑂 correspond to the partial pressure 

of hydrogen, oxygen and water, respectively (Kabza, 2016). 

𝐸 = 𝐸0 +
𝑅 ∗ 𝑇

2𝐹
∗ ln (

𝑝𝐻2 ∗  𝑝𝑂2
1/2

𝑝𝐻2𝑂
) 

(8) 

 

This equation reflects how the electrochemical cell voltage varies as a function of reactant concentrations 

(due to pressure) and temperature making it the fundamental centrepiece of fuel cell thermodynamics. 

To evaluate the impact of pressures in the fuel cell voltage, a simple example can be elaborate considering 

the following situations: 
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1. The fuel cell operates below 100ºC so that liquid water is produced, room temperature is 

25ºC, hydrogen pressure is 3atm, air pressure is 5atm (21% of the air is oxygen) and the 

resultant water is evacuated at 1atm. The following voltage would be verified at the 

electrodes: 

𝐸 = 1.229 +
8.314 ∗ 298.15

2 ∗ 96485
∗ ln(

3 ∗  (5 ∗ 0.21)
1
2

1
) = 1.2434 𝑉 

 

2. The fuel cell operates below 100ºC so that liquid water is produced, room temperature is 

25ºC, hydrogen pressure is 1atm, air pressure is 1atm (21% of the air is oxygen) and the 

resultant water is evacuated at 1atm. The following voltage would be verified at the 

electrodes: 

𝐸 = 1.229 +
8.314 ∗ 298.15

2 ∗ 96485
∗ ln(

1 ∗  (1 ∗ 0.21)
1
2

1
) = 1.2189 𝑉 

 

Pressurizing the hydrogen and air is beneficial for increasing the fuel cell voltage, but not so much for all 

the extra work of pressurizing the fuel cell stack (only 25.45mV increase), on the case of an open circuit, 

meaning that is useless to pressurize the fuel cell stack when there is no current flow. From a 

thermodynamic perspective it is not worth the extra complexity for such a low increase. But fuel cells 

must produce electricity to drive a load, and for that three major performance problems occurs, and it 

significantly decreases the cell voltage when the electrical circuit is close (O'hayre et al., 2016).  

As soon as electrons and protons begin to move, multiple voltage losses are verified at different current 

demands (O'hayre et al., 2016). This voltage losses are nonlinear functions of the load/current and are 

the following: 

1. Activation polarization losses – These are caused by electrochemical reaction kinetics. In 

the electrodes, where the reduction and oxidation reactions occur, hydrogen and oxygen 

molecules break their chemical connections and form ions, these are considered to be in 

their activated state. To convert a molecule into an ion, in an electrochemical reaction, 

there is certain delay, and this impacts the rate at which electrons can flow, resulting in a 

decrease of voltage. These losses, verified at low currents, can be determined by the Tafel 
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equation, where 𝛼 is the electrons transfer coefficient, 𝑖 the current and 𝑖0 is the exchange 

current density determined by the electrode’s material and design: 

𝑉𝑎𝑐𝑡 = 
𝑅∗𝑇

𝛼∗𝐹
∗ ln (

𝑖

𝑖0
)  (9) 

 

2. Ohmic polarization losses – On the other hand, ohmic losses represent all losses related 

to the movement of the charges (electrons and ions) across the internal fuel cell system. 

The flow of electrons through the electrode materials and contact pads represents an 

electrical resistance. In short, the membrane that allows the flow of protons varies its 

resistance as a function of humidity and material characteristics. The total resistance (Ω) 

increases proportionally to the current, as verified by Equation (10): 

𝑉𝑜ℎ𝑚 = 𝑖 ∗ Ω  (10) 

 

3. Concentration polarization losses – In the anodic catalytic layer a concentration gradient 

is formed on its surface when the reactants reach the electrodes. When the reaction starts, 

the reactants are consumed, resulting in a reduction of the concentration surrounding the 

electrodes. There is a loss of voltage due to the inability to maintain the initial 

concentration, meaning that the reactant is being consumed faster than it can reach the 

surface, a phenomenon verified at high current densities. Equation (11) describes this 

loss through the parameter 𝑖𝐿 which indicates the current density at which the 

concentration of reactants is lower than the necessary. 

𝑉𝑐𝑜𝑛𝑐 =
𝑅 ∗ 𝑇

𝑛 ∗ 𝐹
∗ ln (

𝑖𝐿
𝑖𝐿 − 𝑖

)   
(11) 

 

These losses are often reflected in a polarization curve or current-voltage curve graph, as shown in Figure 

5, describing the impact of these losses to the ideal voltage (determined according to the Gibbs free 

energy). Its magnitude of impact can vary according to the characteristics of material, design of the fuel 

cell and operating conditions. This curve can be determined with the Butler Volmer equation or through 

testing the fuel cell (O'hayre et al., 2016). 
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Figure 5 - Fuel Cell polarization curve (EG & G Services et al., 2000). 

In addition, fuel cells have two limiting conditions when operating at transient loads. One of them is related 

to the capability of evacuating the product, water, from the catalytic layer. The gas diffusion layer has two 

main functions: to proportionally distribute the reactants through the catalytic layer and to remove water 

from the fuel cell. If the liquid water accumulates in the catalytic layer, it will eventually block the reactant 

supply and cause the fuel cell performance to deteriorate, because the concentration at the electrodes is 

significantly lower, and therefore the gas diffusion layer must be designed to remove all the water as 

quickly as possible to maximize the fuel cell performance at transient loads (O'hayre et al., 2016). 

The other limiting factor is the lack of reactants, which means that at transient loads it may occur that 

the reactants may not reach the gas diffusion layer in time and the catalytic runs out of reactants (because 

of the high consumption rate), reducing the fuel cell performance and affecting its life duration. To solve 

this problem one solution is to maintain a minimum level of reactants inside the fuel cell (O'hayre et al., 

2016). 

A common parameter for determining the excess of reactant within the anode and cathode is the lambda 

factor that represents the stoichiometry number to maximize fuel cell efficiency. This value reflects the 

rate at which a reactant is provided to a fuel cell to the rate at which it is consumed (for anode and 

cathode) (O'hayre et al., 2016). 

𝜆 =
𝑛̇𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑

𝑛̇𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
> 1  (12) 

 

Equation (12) represents how this parameter is determined according to the molar flow (𝑛̇) provided and 

consumed. Maintaining this value above one guarantees the excess of reactant on both sides of the fuel 

cell. To determine the flow provided, the sensors can be used to read the inlet flow to both sides of the 
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fuel cell or alternatively based on the Faradays law of molar flows (𝑛̇) that determines the consumed flow 

of reactants based on the current: 

𝑛̇𝐻2𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
=

𝐼

2𝐹
  (13) 

𝑛̇𝑎𝑖𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =
𝐼

4𝐹 ∗ 𝑥𝑂2
  

(14) 

 

For the cathode side, it is necessary to specify the amount of oxygen content in air (𝑥𝑂2). The numbers 

2 and 4 in these equations mean the number of electrons exchanged per mole of hydrogen and oxygen, 

respectively. Considering the molar masses (𝑀) of the reactants, the molar flow can be converted into 

mass flow: 

𝑚̇𝐻2𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
= 𝑛̇𝐻2𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

∗ 𝑀𝐻2  

𝑚̇𝑎𝑖𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑛̇𝑎𝑖𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 ∗ 𝑀𝑎𝑖𝑟 

 

Appling the same principles it can be calculated the amount of water produced: 

𝑛̇𝐻2𝑂𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 =
𝐼

2𝐹
 

𝑚̇𝐻2𝑂𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 𝑛̇𝐻2𝑂𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ∗ 𝑀𝐻2𝑂 

 

These parameters help understanding the actual operation of the fuel cell, but as with any energy 

conversion device, efficiency is of great importance. In determining the efficiency, two central concepts 

are taken in account: the ideal efficiency and the real efficiency. Efficiency (ℰ) describes the amount of 

useful energy that can be extracted from the process relative to the total energy used in a specific process: 

ℰ =
𝑢𝑠ⅇ𝑓𝑢𝑙 ⅇ𝑛ⅇ𝑟𝑔𝑦

𝑡𝑜𝑡𝑎𝑙 ⅇ𝑛ⅇ𝑟𝑔𝑦
 

 

On the case of fuel cells, ideal efficiency is related to the thermodynamic efficiency and is the ratio 

between enthalpy (or heating value) - ∆𝐻 - and Gibbs free enthalpy (∆𝐺): 
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ℰ𝑡ℎ𝑒𝑟𝑚𝑜𝐿𝐻𝑉 = 
∆𝐺𝑓𝐻2𝑂(𝑔)

𝐿𝐻𝑉
=
−228.37

−241.82
= 94.5% 

ℰ𝑡ℎ𝑒𝑟𝑚𝑜𝐻𝐻𝑉 = 
∆𝐺𝑓𝐻2𝑂(𝑙)

𝐻𝐻𝑉
=
−237.13

−285.83
= 82.9% 

 

These values reflect the theoretical maximum efficiency possible for a fuel cell, according to the physical 

state of the produced water (O'hayre et al., 2016). 

The real fuel cell efficiency takes into account all the problems discussed above that impact its 

performance. Thus, to determine it, thermodynamic efficiency voltage efficiency and fuel efficiency should 

be taken into account, (O'hayre et al., 2016).  

1. Thermodynamic efficiency, as stated above, reflects how not all the enthalpy contained in 

the hydrogen can be useful. 

2. Voltage efficiency relates the ideal cell voltage (𝐸) to the real operating cell voltage (𝑉): 

ℰ𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =
𝑉

𝐸
 

 
 

3. Fuel efficiency, not discussed so far, accounts for the hydrogen provided to the fuel cell 

that does not participate in the electrochemical reaction. Some of the provided fuel may 

undergo side reactions or flow through the fuel cell without ever reacting. This efficiency 

is determined with the ratio of hydrogen used by the cell to generate electric current, and 

the total hydrogen provided to the fuel cell (𝜐𝑓𝑢𝑒𝑙) specified in mol/s, but it is also possible 

to relate this factor to the stoichiometric value if the fuel cell control operates based on 

that parameter: 

ℰ𝑓𝑢𝑒𝑙 =

I
𝑛 ∗ 𝐹
𝜐𝑓𝑢𝑒𝑙

=
1

𝜆
 

 

The final fuel cell efficiency is described by the following equation that takes into account all the losses 

related to it: 

ℰ𝑟𝑒𝑎𝑙 = ℰ𝑡ℎ𝑒𝑟𝑚𝑜 ∗ ℰ𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ∗ ℰ𝑓𝑢𝑒𝑙 
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One single unit of a fuel cell produces a maximum of 1.24V, as stated on the previous section. For vehicle 

and many other applications, a much higher voltage is required to achieve the desired power level for the 

application. To solve this problem multiple fuel cells units are stacked in series forming a fuel cell stack 

(O'hayre et al., 2016).  

 

Figure 6 - Expanded view of a simple fuel cell unit in a fuel cell stack (Codina, 2017). 

In Figure 6 a stack of 3 cells in series is described. In this case the flow of hydrogen is distributed 

horizontally through the plates that contain the gas diffusion layer and the catalytic material. Air or oxygen 

is distributed on the opposite direction, vertically. In cell number 3 is described how the Figure 4 is 

assembled on a stack, Plate L corresponds to the cathode side components, MEA to the membrane and 

Plate R to the anode side components. The flow of electrons is collected at the extremes of the stack 

(electrodes). 

Physically all these parts are built together or independently depending on the manufacturing process 

and the materials used. To demonstrate the assembly of these components in a real application, private 

companies have benchmarked a fuel cell powered vehicle and dismantle it to give insights on how the 

fuel cell stack is assembled and how everything is manufactured. 
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Figure 7 - Expanded view of a physical unit cell (Maruo et al., 2017). 

Figure 7 represents the actual fuel cell module that a specific vehicle uses. After the manufacturing 

process, using, in this case, for the semi bipolar plates - forming and titanium coating, for the membrane 

electrode assembly – platinum, cobalt and Nafion for the gas diffusion layer, micro porous layer (MPL) 

and membrane respectively, it is possible to have a complete unit in only 3 parts (membrane, gasket and 

bipolar plate). 

 

Figure 8 - Microscopical view of cross-section of the membrane electrode assembly (Maruo et al., 2017). 

At a microscopic level, it is possible to understand how the membrane electrode assembly works, 

represented in Figure 8. It is a symmetrical sheet that has stacked all the necessary components for the 

anode and cathode side. It is also important to understand how air/oxygen and hydrogen reaches the 

gas diffusion layer.  
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Figure 9 - Front (top) and rear (down) view of the bipolar plate (Maruo et al., 2017). 

With a front and rear view of the bipolar plate (Figure 9) it is possible to understand how the air/oxygen 

and hydrogen are distributed by the gas diffusion layer. In the front view, the cathode side (in the upper 

left), at the oxygen out (in the bottom right), at the oxygen in passage there are thin guides that insert 

air/oxygen into the gas diffusion layer. In the rear view, the same design is applied to the fuel in and out 

passages. Note that the air/oxygen passage area is larger than the fuel passage and this is because of 

the higher flow required on the cathode side due to only 21% of air is oxygen. There are also coolant 

passages to remove heat from the bipolar plate generated in the membrane due to the chemical reaction. 

In this way, fuel cells can have hundreds of volts. For example, the Toyota Mirai from year 2021 has a 

fuel cell of 330 units generating a nominal voltage of 330V resulting in a power output of 128kW.  

 

Figure 10 - Expanded view of fuel cell stack (Maruo et al., 2017). 

Figure 10 represents all the fuel cell stack assembly, including the unit cells that are stacked in series, 

the housing that incorporates all the cells, at the end of the housing a manifold is bolted that will seal the 
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stack and guide all the essential fluids. At the top there is a voltage control unit that monitors the individual 

cell voltage for forward diagnostics and control of the fuel cell. In applications where more power is 

needed, for example in heavy duty vehicles, and it is not versatile continuing to make a series of unit cells 

due to fluid distribution issues, it is possible to place a parallel of multiple stacks or series and parallel to 

achieve the desired power output. 

 

Figure 11 - Long-haul heavy duty vehicle fuel cell system (James et al., DOE Hydrogen and Fuel Cells - Fuel Cell System Analysis, 2021). 

In the example of Figure 11 a complete fuel cell system is represented that has a parallel of 2 stacks in 

series resulting in a system output of 760V and 348kW of power. On the right side it is explained how 

the fuel cells are eletrically connected and on the left how the entire system interconnects with the 

multiple components (James et al., 2021). 

2.3.2 External Fuel Cell System 

Fuel cells require a complex system to operate at the most efficient point for different applied loads. This 

requires multiple components to supply the necessary hydrogen and air corresponding to the dimension 

and rate of the load. 
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Figure 12 - Fuel Cell sub-systems (Maruo et al., 2017). 

These components are organized into subsystems that have a specific function to control their individual 

components and are in sync with the other subsystems. In Figure 12 the fuel cell stack is at the center 

of the figure and the multiple subsystems around it controlling the specific components for cooling, air 

supply, hydrogen supply and energy control. 

The EV control system contains all the components related to electrical energy conditioning and 

management. It is responsible for controlling all the parameters related to the battery, fuel cell and 

electrical motor status, such as voltage, available current, and demanded power, power split, signal 

conditioning, electrical frequency, and many others. Fuel cells produce electrical current at an unstable 

voltage. The voltage varies along with the requested power, from the energy management, and other 

physical inputs to the fuel cell (Zenith, 2007). 

 

Figure 13 - DC/DC converter (left) and electric motor with DC/AC converter (Olszewski, 2007). 

Many components of the vehicle and fuel cell system operate on direct current but with a stable voltage, 

while others work on alternating current, such as the motor. For each case, two different types of power 

conditioners are needed: 
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1. In the case of Direct Currents (DC), DC/DC converters are used to boost the fuel cell 

voltage to a stable voltage matching the voltage of the battery and other components 

(Figure 13 - left). 

2. For Alternating Currents (AC), the inverter converts the DC current of the fuel cell to the 

desired current frequency and amplitude. This is necessary because electric motors 

operate under AC currents (Figure 13 - right).  

These power conditioners processes entail a reduction in efficiency as well, ranging from 2% to 6% (Zenith, 

2007). 

The fuel cell needs pressurized air due to the mechanical properties of the membrane and to increase its 

power output. To achieve this, an electric compressor (Figure 14 - left) is used to raise the air intake 

pressure by up to 2-5 times the atmospheric pressure. The increase in pressure translates into an 

increase in temperature of the air due to thermodynamic properties. An intercooler is used to remove 

heat from the air, increasing the efficiency of the air supply system (O'hayre et al., 2016). 

 

Figure 14 - Air compressor (left) (Kerviel et al., 2018) and hydrogen ejector (right) (Clark & Knight, 2005).  

The hydrogen is stored in tanks with pressures of up to 700 bar in order to contain the maximum possible 

amount of hydrogen. To match the required pressure at the fuel cell intake a pressure regulating valve 

maintains a stable required pressure (1-4 bars) and the ejector (Figure 14 - right) feeds the intake with 

the required hydrogen flow. The hydrogen pump recirculates the unreacted hydrogen back to the intake, 

maximizing the hydrogen reaction (O'hayre et al., 2016). 

As the fuel cell efficiency is not 100%, some produce energy is released in the form of heat. The cooling 

system has the function to maintain a stable operation temperature of the fuel cell, removing heat to the 

atmosphere (O'hayre et al., 2016). 

All these subsystems need to be controlled in a synchronized environment and that is the task of the Fuel 

Cell Control Unit (FCCU). This component, also present in most of the actual vehicles that rely on 

combustion engines, has the job of generating electrical signals for the multiple actuators, receiving 
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signals from all the sensors and determining the optimal conditions for the current state of the fuel cell, 

preventing any damage operating point. Figure 15 presents an example of a FCCU, that consists of a 

board with multiple electrical components and a Micro Control Unit (MCU) that contains all the logic and 

programming of the control structure (Tanaka, 2020). 

 

Figure 15 - FCCU based on Infineon MCU (Tanaka, 2020). 

 

2.4 Powertrain architectures 

At a higher level, the fuel cell system is just a part of the powertrain block. The powertrain is made up of 

all elements that convert, store and produce energy to move the vehicle. The layout of all components 

follows the technical requirements for the powertrain concept, for example: fuel consumption, drivability, 

homologation, performance, thermal, functional safety, costs, etc (Hick et al., 2020). 

Some examples of the main powertrains applied to fuel cell vehicles are as follows: 

1. Full fuel cell – these types of vehicles only use fuel cells to power the transmission system, being 

the simplest configuration composed of the fuel cell system, DC/DC converter, inverter, and the 

electric motor. This simplistic approach has the characteristics of being easy to control making it 

a good application in low-speed vehicles such as forklifts, small buses, and marine vehicles (Yu 

et al., 2022). 

 

Figure 16 - Full fuel cell powertrain architecture (Yu et al., 2022). 

2. Fuel cell + battery hybridization – the hybrid power system composed of fuel cell and batteries is 

the most common architecture used in vehicle applications. The use of batteries allows to have 
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a component with high energy density, which enables the possibility of energy regeneration under 

certain conditions. It can be organized into two architectures, the first is the battery connected 

directly to the DC bus and the other is the battery connected to the DC bus, but after the DC/DC 

converter as show in Figure 17 (Yu et al., 2022). 

 

Figure 17 - Fuel cell + battery hybridization powertrain architecture (Yu et al., 2022). 

3. Fuel cell + ultra-capacitor hybridization – Similar to the previous architecture, this setup uses an 

ultra-capacitor instead of a battery, having advantages in faster charge/discharge and longer life 

cycle. These advantages allow for a more efficient power recovery and better dynamic response 

to instantaneous high-power demand. The use of ultra-capacitators represents a high economic 

development cost, therefore this setup is only used for prototypes and racing applications (Yu et 

al., 2022). 

 

Figure 18 - Fuel cell + ultra-capacitator hybridization powertrain architecture (Yu et al., 2022). 
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2.5  Fuel Cell modelling and control strategies 

Recently, considerable progress has been made in modelling and simulation of FC, reflecting the 

importance of having accurate models to understand the behaviour of FC under different operating points 

and also, assess potential improvements of the different components and design control solutions. In the 

following, a literature review on how to model the FC and the control strategies of FC will be addressed. 

2.5.1 Fuel Cell modelling 

The internal behaviour of a FC is very complex due to the different and tightly coupled phenomena that 

occur simultaneously within a cell: fluid-dynamics phenomena, electrochemical reactions, proton 

transport through proton-conductive polymer membrane, electron conduction though electrically 

conductive cell components, water transport and heat transfer. 

Modelling is necessary to describe these fundamental phenomena in each subsystem of the FC System 

to evaluate steady-state and dynamic responses. All these complicated processes that take place within 

the FC System make the modelling task particularly challenging. Several articles on the literature can be 

found on ways to model complete FC Systems or individual models for each subsystem.  

These models are then used to predict FC performance under different operating conditions, optimize 

and design control strategies, and also to evaluate improvements in particular components (Nehrir & 

Wang, 2009). 

There are several types of FC models that, depending on the purpose, serve to evaluate different 

parameters and development topics. 

A first type of models is focused on a specific part of the FC, for example membrane, gas diffusion 

channels, catalyst layer and helps study in depth the working conditions of that particular component. 

The second type of model includes a complete working unit cell that can be explored to study phenomena 

such as the electrochemical reaction, water transport, heat dissipation and other topics.  

A more complex model of this type is a FC stack model, which considers the arrangement of more than 

one cell to supply the required power demand. At a higher level are system level models that include the 

complete FC stack and all the auxiliary components that make up the FC system. These higher-level 

models may use empirical functions that describe the behaviour of a component and avoid including the 

full specification of the component, which will have a lot of computational power impact when simulating 

(Yao et al., 2004). 
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As the focus of this dissertation is to study system level modelling of the FC system, only literature 

describing system level modelling techniques will be addressed. 

Typically, system level models are combined parameter models used to evaluate FC behaviour under 

different operating conditions and to design controllers. A system model is one in which the dependent 

variables of interest are a function of time. This translates into solving a set of ordinary differential 

equations (ODE). Pukrushpan et al. (2004) developed a system level model that includes the fuel cell 

stack, hydrogen supply, air supply, cooling, and humidification systems. All of the system equations are 

based on physical, chemical and thermodynamic equations (equations similar to those described on 

previous subsections) that represent the nine states of the system at the current simulation time but only 

obtaining theoretical results (Pukrushpan et al., 2004).  

A few years later, a more complex and accurate model (Figure 19) was developed by Bao et al. (2006), 

where a complete FC System could represent 9 states out of 10 very accurately compared to data 

obtained from a prototype FC System (Bao et al., 2006).  

 

Figure 19 - Dynamical model of FC System implemented on MATLAB/Simulink (Bao et al., 2006). 

The development of this type of mathematical based models is time consuming and requires many 

technical details about each component that can only be obtained when the physical characteristics are 

known.  

In recent years, other types of modelling strategies have emerged. One of them is the use of dedicated 

software that has the capability to design an FC System based on pre-defined components and dynamics, 

which, through parameters, can be adjusted to behave as expected. This type of software allows a deeper 
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development and study of the overall system without specifying equations for all the necessary 

components. Wang and Xu (2019) have used GT-Suite software, a licensed product of Gamma 

Technologies, to model a complete FC System that can be integrated into a powertrain model (Figure 

20). This powertrain model simulates all the dynamics of the vehicle in real cenarios, allowing to simulate 

homologation drive cycles, such as the  Worldwide Harmonised Light-Duty Vehicles Test Procedure 

(WLTP), and evalute overall performance factors (Wang & Xu, 2019).  

 

Figure 20 - FC System model in GT-Suite software (Wang & Xu, 2019). 

The work presented by Wang and Xu (2019) evaluates the hydrogen consumption of two different 

powertrain architectures, with different control strategies, under various driving cycles and scenarios 

concluding that a plug-in fuel cell vehicle has lower hydrogen consumption and overall better performance 

when compared to the same powertrain architecture without plug-in capability. The use of dedicated 

software is a powerful tool to simulate and optimize complete vehicles under real driving scenarios (Wang 

& Xu, 2019). 

Other approaches, as the one developed by Lu (2013), uses a hybrid model. Part of the model is the 

mathematical model developed by Pukrushpan et al. (2004) and an empirical model. These empirical 

model use Support Vector Machine (SVM) to determine empirical values (seven values) that correct the 

output of the mathematical model and approximate its behaviour according to real bench test dataset, 

taken from a prototype FC System developed by Ford Engineering (Lu, 2013). 
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Figure 21 - Schematic of the FC System hybrid modelling model (Lu, 2013). 

The mathematical model, developed by Pukrushpan et al. (2004) is inside the box △ 𝑉 and the empirical 

model inside the box 𝑉0 (Figure 21). Both models work together to determine the fuel cell voltage, with 

the empirical model correcting the error of the mathematical model. The result of the overall model shows 

a 99% accuracy of the output signal, compared to the bench test dataset of the FC System (Lu, 2013). 

This strategy shows a quick way to develop models that can be representative of multiple FC System after 

being calibrated, speeding up the development process. 

Another successful strategy using MATLAB and Simulink is presented by Surya et al. (2021) that applies 

Machine Learning (ML) techniques to estimate cell parameters based on a NASA dataset (Surya et al., 

2021). 

 

Figure 22 - Model structure to estimate cell parameters (Surya et al., 2021). 

The available NASA dataset provides information on voltage response to load and temperature variation. 

A cell model was developed containing a standard electronic circuit of a cell. The model parameters were 

calibrated, using various algorithms (Artificial Neural Networks (ANN), SVM, linear regression), to match 

the voltage of the dataset, reducing the error (Surya et al., 2021). 
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Figure 23 - Voltage comparison of the model developed by (Surya et al., 2021). 

The result of this strategy is shown in Figure 23, achieving the desired error of less than 0.2V difference 

between the model and the dataset (Surya et al., 2021). 

All the presented modelling strategies are considered to be a different possible approach to develop the 

FC System model that will be the base for the control strategy development and study. 

2.5.2 Control strategies 

The control of the FC System can be divided into two categories: 

• The control algorithm that determines the target values for the actual state of the FC System, 

such as target pressure and flows of the respective reactants. 

• The control logic that converts that target value into physical movement of the actuators (valves, 

compressor speeds, injectors, etc). 

For the first topic, essentially there are two types of control algorithm: the classical mathematical 

algorithm and the application of ML techniques. For the second topic several options can be found from 

the classical Proportional Integrative Derivative (PID) control to Model Predictive Control (MPC) and ANN.  

The overall control of the FC System is composed by these two control types that are programmed into 

the FCCU (Figure 15) presented in the previous section. 

Related to the first topic, a well established and studied algorithm published by Naganuma et al. (2012) 

represents the classical mathematical control. This algorithm was developed and tested in prototypes, 

built by Toyota, that use a FC System. The diagram of the Figure 24 shows how the optimal air quantities 

are calculated, based on measured FC System status, such as FC temperature, and request power (FC 

power demand) (Naganuma et al., 2012). 
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Figure 24 - Algorithm of the control logic implemented on a Toyota FC vehicle prototype (Naganuma et al., 2012). 

Similar algorithms are presented for other physical quantities, such as hydrogen flow and pressure 

(Naganuma et al., 2012). Other articles have studies of the same type of algorithms, such as Qi et al. 

(2019) who implemented mathematical equations to develop the control algorithm achieving surprising 

results suing only simulation strategies based on specification parameters of an FC System. These classic 

mathematical control algorithms are well known for being implemented in Engine Control Units (ECU) 

that control ICEs (Qi et al., 2019).  

Other strategies such as ANN have been studied, as the presented by Hatti and Tioursib (2009), that 

evaluates the use of a dynamic ANN, a neural network that accepts perpetual novelty (data that is always 

changing), and never finishes learning.  

 

Figure 25 - Part of the dynamic ANN with two neuros and two inputs/outputs (Hatti & Tioursib, 2009). 

The algorithm strategy presented in Figure 25 is based on supervised training and achieves a very good 

controller response with low error. Note that this model is tested in simulation environments only (Hatti 

& Tioursib, 2009). 
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For the second topic, control logic, many articles can be found in the literature because they are related 

to the general control theory applied on the vast majority of the electronic topics.  

Combining control logic and FC System can be found in an article developed by Daud et al. (2017) which 

summarizes most of the literature that combines these two topics. Daud et al. (2017) evaluates multiple 

control logics, developed by other authors, applied to a particular sub-system of the FC System or to all 

of the FC System. This study evaluates the application of the major control logics: classical PID, ANN and 

MPC, having in consideration limiting conditions of the FC such as reactant starvation and flooding (Daud 

et al., 2017). 

Classical control with PID has two types of implementations and is the most common type of control logic 

used to obtain better fuel cell performance. In feedback control, the control variable is measured (through 

sensors in the FC System) and compared with its desired value or set point (value generated by the 

control algorithm) and the error is fed back into the system via the action of the manipulated variable 

(acting directly on the actuators of the FC System), which is proportional to the error (proportional, P), 

the sum of recent errors (integral, I) and the rate of change of the error (derivative, D). In feed-forward 

control, the error is fed via a manipulated variable that is also an upstream variable so that anticipated 

disturbance of the upstream variable to the system is compensated beforehand. The two options are 

presented in Figure 26 where the block “Process” corresponds to a Plant, being in this case a specific 

actuator of the FC System (Daud et al., 2017). 

 

Figure 26 - Architecture of a feedback and feedforward control (Daud et al., 2017) 

The use of this type of control logic proves to be a good and fast response control logic for multiple control 

variables of the FC System. A good calibration of the control parameters is crucial for its performance, 

representing an effective solution for simulating and early phases of prototyping (Daud et al., 2017). 
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Other control logic that can be used is ANN control, where the neural network is trained by input (value 

determined by the control algorithm) and output data (corresponding value that goes for the actuator) 

(Daud et al., 2017). Neural networks are known to have a fast response, an overall very good performance 

when well trained and can be implemented in a short time for testing (Krizhevsky et al., 2017). 

Daud et al. (2017) evaluated multiple articles that implemented ANN in FC Systems and concluded that 

it shows a better performance compared to the classical PID control logic, but only if there is data available 

for training. Training an ANN in this configuration requires that all the control logic equations have been 

developed or any other control logic is implemented to capture the required data (Daud et al., 2017). 

A more advance type of control logic is the MPC controller. This controller requires to develop a model of 

the FC System so that it can make predictions of how the FC System reacts to a change in the actuators, 

solving an optimization problem, based on a cost function while running. Several implementations of this 

controller have been made, representing the most effective control logic, but it requires considerable 

computational resources (Daud et al., 2017). 

The authors Gómez et al. (2021) developed a model consisting of two MPC controllers (Figure 28) that 

control an FC System (Figure 27) and is tested under the New European Driving Cycle (NEDC) driving 

cycle. 

 

Figure 27 - FC System and control logic developed by Gómez et al. (2021). 

The block “Optimal setpoint generator” is where all the control algorithms are located, based on look-up 

tables to reduce the computation time (Gómez et al., 2021). 
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Figure 28 - Fast and slow dynamics applied to different controllers (Gómez et al., 2021). 

Fast dynamics correspond to variables that change physical state very quickly, such as pressure and flow 

of reactants, which must be controlled very precisely to prevent starvation and flooding phenomena. 

The slow dynamics represents the inverse, it controls variables such as fluid temperature and air humidity 

(Gómez et al., 2021). 

Both MPC controllers have an objective function that maximizes the system efficiency. The MPC predicts 

the impact of a shift on a manipulated variable (an actuator) based on a representative model of the FC 

System that is developed specifically for the MPC. The solver chooses the best solution corresponding to 

the cost function, also respecting constrains of the optimization problem (Gómez et al., 2021). 

This controller significantly reduces hydrogen consumption, increasing the FC System efficiency as 

expected, but due to its complexity and computational time required to solve the optimization problems 

while controlling the FC System, it shows a 30% delay in the response to a power request (Gómez et al., 

2021).  

 

 

 



 

36 
 

3 FUEL CELL SYSTEM MODELLING 

In this chapter the model of the FC System is developed using a base model that represents the theoretical 

operation of the FC System. In addition, available information about an FC System from a vehicle that is 

in the production phase will be used, as well as a dataset collected by Argonne National Laboratory that 

tested the vehicle on a dynamometer, measuring all variables related to the powertrain, performance 

evaluation in driving cycles and efficiency metrics. This information and dataset will be used to model the 

real behaviour of the FC System in the base model, implementing essential modifications and optimizing 

the system. 

 

3.1 Production vehicle and dataset introduction 

Argonne National Laboratory, based in Chicago, USA is an entity that focuses on research in engineering 

and science fields of multiple topics. The “Transportation and Power Systems Division” department 

carried out a research work on the Toyota Mirai 2016 with the aim of studying its powertrain behaviour 

under multiple conditions and driving cycles (Lohse-Busch et al., 2018). 

The Toyota Mirai is a dominant fuel cell hybrid electric vehicle, following a powertrain architecture shown 

in Figure 17 and its relevant specifications in Table 3 (Lohse-Busch et al., 2018). 

Table 3 - Main parameters of the test vehicle (Toyota Mirai) (Lohse-Busch et al., 2018). 

Vehicle specification 

Vehicle type Fuel Cell with battery hybrid 

Brand / Model / Start production date Toyota / Mirai / 2016 

Battery capacity / type / voltage 1.6kWh / Nickel-metal hydride / 244.8V 

Fuel Cell power / number of cells / voltage 113kW / 370 cells / 248V 

Hydrogen storage pressure / weight 700bar / 5kg 

Maximum range 502km 

Hydrogen consumption 0.8kg/100km 

Weight 1850 kg 
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The WLTP driving cycles are chassis dynamometer tests to determine emission and fuel consumption for 

light-duty vehicles, divided by power-to-mass ratios, as shown in Table 4 (Tutuianu et al., 2013). 

Table 4 - WLTP driving cycles (Tutuianu et al., 2013). 

Category Power-to-Mass Ratio (PMR) 

(W/kg) 

Maximum speed (km/h) 

Class 3B PMR > 34 V_max ≥ 120 

Class 3A - V_max ≤ 120 

Class 2 34 ≥ PMR > 22 - 

Class 1 PMR ≤ 22 - 

 

As the Toyota Mirai is a class 3 vehicle (PMR = 62.8), the test data respects the profile in Figure 29, 

representative of real driving conditions such as urban, suburban, main road and highway (Tutuianu et 

al., 2013). 

 

Figure 29 - WLTP class 3 cycle (Tutuianu et al., 2013) 

The test procedure consists of placing the vehicle on the chassis dynamometer (Figure 30) and following 

the target speed of the graph, simulating multiple accelerations and decelerations. The data is collected 

with multiple sensors, mainly: speed, pressure, flow, temperature, current and voltage sensors, with more 

than 400 attributes (measured at the points in Figure 31) describing the behaviour of the entire 

powertrain, in which the relevant aspects related to the FC System are described at Appendix 1 – 

Measured attributes related to the FC System and exemplified in Figure 32 (Lohse-Busch et al., 2018). 
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Figure 30 - The test vehicle in Argonne National Laboratory (Lohse-Busch et al., 2018). 

The FC System peak efficiency is 63.7%, meaning that 63.7% of the consumed hydrogen generates 

electric power and the rest is lost through heat release. After an analysis of the test report done by 

Argonne, the following conclusions can be taken during the WLTP driving cycle test: 

• No power comes from the fuel cell stack while the vehicle is stopped. 

• Battery power is used for electric launch. 

• The fuel cell stack provides most of the power during acceleration. For example, during one 

acceleration, 15 kW of power comes from the fuel cell stack and 5 kW of power comes from the 

battery. Another case is that 20 kW power comes from the fuel cell stack and 10 kW power comes 

from the battery. 

• The fuel cell will recharge the battery when the traction power required is low. 

• When traction power is low, the vehicle will operate as a battery electric vehicle. 

• The fuel cell stack provides the power to cruise at steady state speed and the battery is inactive. 

• The fuel cell stack will shut down when there is too much regenerative braking power. However, 

when regenerative braking power is low, the fuel cell stack still provides some power to charge 

the battery. 
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Figure 31 - Powertrain architecture and measurements (Lohse-Busch et al., 2018). 

 

Figure 32 - Test data example  (Lohse-Busch et al., 2018). 

To model this FC System, it is important to gather knowledge about its components and specifications. 

Thus, similar to the structure and components presented in Section 2.2.2, the FC System present in the 

Toyota Mirai is represented in Figure 33. 



 

40 
 

 

Figure 33 - Configuration of FC system in Toyota Mirai (Maruo T. et al., 2017). 

This FC System does not require humidifiers (a component that adds humidity to the reactants to manage 

the water content within the stack) for the cathode and anode sides of the stack due to its water 

management strategy and gas diffusion layer properties. 

The water generated, due to the chemical reaction, is stored downstream of the cathode and returned 

upstream through an internal circulation inside the anode as exemplified in Figure 34. This is achieved 

by the fact that air and hydrogen flow are in opposite directions to facilitate the water circulation. The 

complex 3D mesh gas diffusion layer promotes the oxygen diffusion into the catalyst layer using 

turbulence (Figure 35).  

 

Figure 34 - Water recirculation in humidifier-less system (Nonobe, 2017). 
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Figure 35 - Conventional flow field structure (left) / 3D Toyota flow field structure (right) (Nonobe, 2017). 

 

 

Figure 36 - Toyota FC System compressor (left) and recirculation pump (right) (Nonobe, 2017). 

Two other important components to consider are the compressor on the cathode side and the 

recirculation pump, on the anode side. The compressor is a roots type with 6 helical lobes with a 

maximum speed of 12500rpm and 20kW of power output. The recirculation pump is also a roots type 

with 2 straight lobes with a maximum speed of 6200rpm and 420W of power output. Both compressor 

and pump are electrically powered with dedicated DC/AC inverter (Nonobe, 2017). 

The membrane of the FC Stack is the crucial part of the FC System, which defines requirements for the 

FC System, such as in this case not using humidifiers. The specification of the membrane is important 

to determine the cell voltage, mainly its thickness, density and current density. The Toyota Mirai has a 

membrane co-developed in conjunction with GORE, a company that focuses on the development and 

production of fibres, medical, biopharmaceutical and electrochemical products. Zhao et al. (2007) in 

conjunction with GORE, have study the various types of membranes to date, exploring their specifications 

and applications. The GORE-Select membrane has multiple applications (being that a posssible derivation 

of this membrane is used in the Toyota Mirai FC Stack) with the following thickness ranges available: 
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• Membrane: 25 ≤ µm ≤ 250 

• Gas diffusion layer: 210 ≤ µm ≤ 430 

In addition, other important information about the FC Stack can be found in James et al. (2017), a report 

on the general development around the topic of fuel cells, setting out the following specification: 

• Active area: 237m2 

• Maximum current density: 1.9A/cm2 

• Maximum power density: 1.295mW/cm2 

• Density: 2039kg/m3. 

 

 

Figure 37 - Complete FC System of the Toyota Mirai (Nonobe, 2017). 

The entire FC System is contained within a package to minimize space usage (see Figure 37), and a 

boost converter is used to raise the voltage off 247V to 650V. 

After gathering all the necessary information and analysing the dataset, the next step is to implement all 

the necessary modifications to a theoretical model available on Simulink. 

 

3.2 Model development 

In this section, the model will be developed, which basically consists of converting an existing theoretical 

model to one that represents the real behaviour of a FC System (in this case, the one present in the 

Toyota Mirai). The development of the model will allow the study and development of advanced control 
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strategies and prediction models on the degradation of components, being essential to define 

requirements to validate the final model. 

The requirements defined for the final model are the following: 

• The FC System must have an architecture of a real FC System 

• The FC Stack must have similar output voltage to the real FC System 

• The FC Stack must have similar output resistance to the real FC System 

Based on the literature review, a first diagram was made to understand the multiple pads in order to 

model the FC System. In Figure 38, three options are represented, where the first one consists of making 

a black box type model that, as inputs and outputs, uses Model Based Calibration toolbox from MATLAB 

or develops a neural network. This approach was discarded because in this type of models, the 

development might be accelerated in some cases, but in the end, there is no physical understanding of 

what is happening inside the black box. The third option was also discarded because developing a model 

from scratch, at a developer level, requires a good knowledge of this particular FC System, which is not 

possible. This type of model would be the best representation of the FC System, if direct contact with the 

developers were possible, ending with a well-defined model and accurate physical understanding of every 

component behaviour. The second option, the one that was chosen, represents a well studied option by 

Surya et al. (2021) and Lu (2013) that consists of starting from a known physical model and modify it as 

much as possible, parametrizing the components with the gathered information, and optimizing its 

behaviour via optimization of empirical values. 

 

Figure 38 - FC System modelling options. 

The initial model, represented at Figure 39, was obtained from a Simulink custom library available on 

CES private servers. The “Membrane Electrode Assembly” block represents the FC Stack, and the entire 
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model represents the FC System. This custom model represents a standard FC System that is different 

on many aspects from the one found on the Toyota Mirai. 

The main differences are the following: 

• FC Stack uses theoretical equations to determine cell voltage 

• FC Stack has different specifications (number of cells, area, thickness of membrane, etc) 

• Compressor, in the oxygen source block has completely different specifications 

• Recirculation pump, in Recirculation block, has completely different specifications 

• On both sides (anode and cathode) it uses humidifiers 

• Membrane water management strategy requires expelling all the water produced by the chemical 

reaction, not taking advantage of it to humidify the membrane. 

 

Figure 39 - Initial FC System model. 

Other differences can be found such as pressures, flows, lambda factors, load application that depend 

on the used control strategy. In this case, each component is individually controlled through equations 

(Figure 40) similar to the ones described in Section 2.2. 



 

45 
 

 

Figure 40 - Example of control equation to determine required air flow using fixed lambda factor. 

The differences in control strategy have no impact on the modelling of the FC System, because it is 

possible to force the model to respect the data from the tests, putting apart the control strategy and 

focusing on the component parametrization and FC Stack calibration. 

The first step to develop the model is to get the necessary data from the test and run the model on the 

Toyota Mirai under the same conditions as the FC System to check for differences related to the voltage 

and resistance values. 

The plots in Figure 41 refer to relevant operating conditions in which the FC System of the vehicle was 

working under the WLPT driving cycle. This is the data that will be used to force the model to operate 

under the same conditions as the FC System vehicle. 
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Figure 41 - Relevant operating conditions of the FC System on the Toyota Mirai. 

In the case of the Toyota Mirai, the measured pressures for air and hydrogen are relative, meaning that 

it measures the pressure at a given location relative to the atmospheric pressure. Notice that the pressure 

and flow data are the main conditions to force the model to run on the same conditions as the FC System 

of the vehicle. For the required power of the FC Stack, that is done via current (also referred as load), 

multiplying this load by the corresponding voltage leads to an output power. These four important data 

(air pressure, hydrogen pressure, air flow, current) can guarantee that the FC System will operate under 
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the same conditions as found in the vehicle. The corresponding output as defined in the requirements 

can be seen in the membrane resistance and voltage plots of Figure 41. Thus, the main objective is to 

have a model whose output is as close as possible to these data points.  

To develop the model using this data, it is possible to read a data point at a given time and force a 

component to have the same physical response. Figure 42 shows how the data is read from the 

Workspace and is applied directly to a component, forcing its physical state. 

   

Figure 42 - Forcing hydrogen pressure (left) and load application (right). 

Analysing the behaviour of the simulation running up to a time of 250 seconds, it is clear that the 

theoretical equations have very different representation for determination of voltage and resistance. This 

can be seen on Figure 43 where the voltage values and profile are very different from the expected, as 

well as for the resistance of the membrane (compare to membrane resistance and voltage plots of Figure 

41). 

  

Figure 43 - Measured initial outputs from the model. 

Before making any modification or optimization to the model, the I-V curve should be analysed. Figure 44 

shows how this curve behaves, being a useful data for future comparison after all the necessary 

implementations have been made. 
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Figure 44 - Initial I-V curve of the model (X axis is FC current and Y axis is FC voltage). 

At this stage, it is possible to conclude that under the same conditions of the FC System present on the 

Toyota Mirai, the FC System of the initial model has a completely different behaviour, showing a very high 

voltage and resistance. The next step is to evaluate the necessary modifications to components and FC 

Stack that do not match the information presented in Section 4.1, about the specifications of the FC 

System. 

Maintaining the same approach of using data to impose a physical state allows to test modifications at 

the FC Stack and optimize its behaviour. After implementing all the necessary component 

parametrizations, such as: FC Stack configuration, water management strategy, humidifiers removal, 

compressor map estimation, recirculation pump configuration and general component specifications 

based on the information gathered and thermodynamic approaches (Figure 45), the strategy tested by 

Lu (2013) and Surya et al. (2021) can be applied, which consists of using empirical values to calibrate 

the FC Stack response. 

 

Figure 45 - Custom FC Stack parametrization. 
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A set of six empirical values (alpha and alpha1 to apha5) was implemented in the equations (15) and 

(16) that determine the voltage losses for activation and concentration, similar to those implemented by 

Lu (2013). On Figure 46 it is represented the code in Matlab that allows to declare these losses equations, 

where can be seen the the theoretical equations (on the left) and the empirical equations (on the 

right).This six empirical values will allow to calibrate the FC Stack and match the voltage response of the 

FC Stack of the vehicle. 

𝑏 =

{
 

 
−𝑅𝑢 ∗ 𝑇𝑠𝑡𝑎𝑐𝑘
2 ∗ 𝑎𝑙𝑝ℎ𝑎3 ∗ 𝐹

, 𝑖𝑐ⅇ𝑙𝑙 > 0.38 ∗ 𝑖𝐿

−𝑅𝑢 ∗ 𝑇𝑠𝑡𝑎𝑐𝑘
2 ∗ 𝑎𝑙𝑝ℎ𝑎 ∗ 𝐹

, 𝑖𝑐ⅇ𝑙𝑙 ≤ 0.38 ∗ 𝑖𝐿

 

 

(15) 

 

𝑉𝑐𝑜𝑛𝑐 =

{
 
 

 
 −𝑅𝑢 ∗ 𝑇𝑠𝑡𝑎𝑐𝑘
2 ∗ 𝑎𝑙𝑝ℎ𝑎4 ∗ 𝐹

∗ (
𝑖𝑐ⅇ𝑙𝑙

𝑖𝐿
)
𝑎𝑙𝑝ℎ𝑎5

, 𝑖𝑐ⅇ𝑙𝑙 > 0.38 ∗ 𝑖𝐿

−𝑅𝑢 ∗ 𝑇𝑠𝑡𝑎𝑐𝑘
2 ∗ 𝑎𝑙𝑝ℎ𝑎1 ∗ 𝐹

∗ (
𝑖𝑐ⅇ𝑙𝑙

𝑖𝐿
)
𝑎𝑙𝑝ℎ𝑎2

, 𝑖𝑐ⅇ𝑙𝑙 ≤ 0.38 ∗ 𝑖𝐿

 
(16) 

 

 

 

Figure 46 – Theoretical equations (left) and empirical equations (right) for voltage losses equations. 

For the membrane resistance it is important to know that it is calculated based on the thickness of the 

membrane and the thickness of the gas diffusion layer (attribute t_membrane and t_gdl in Figure 47). 

These two values must be optimized to match the resistance response of the FC Stack of the vehicle. 

 

Figure 47 - Membrane resistance calculation. 

The parametrized model is shown in Figure 48, including all the necessary changes to match the 

specifications of the FC System in the vehicle and a custom code was developed for the FC Stack, taking 

into account the water management strategy and the implementation of empirical values (block 

“MEA_Code”).  
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Figure 48 - Parametrized model. 

Simulink has an app called “Parameter Estimation” (Figure 49) that allows to estimate values and 

approximate the model response to an expected response. 

 

Figure 49 - Parameter estimator app. 

The app has the option to select the parameters to be estimated, select where the signal will be measured 

in the model and for that signal the expected result – data points. To solve the optimization problem 

multiple methods are available and specific algorithms for each method. The following optimization 

methods are presented in the documentation of the app (Coleman et al., 2022): 

• Nonlinear least squares - lsqnonlin 

• Gradient descent - fmincon 

• Pattern search - patternsearch 

• Surrogate optimization - surrogateopt 
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• Simplex search - fminsearch 

The choice of the optimization method should be in sync with the desired cost function to be minimized. 

In this case, it makes sense to choose the cost function – root mean squared error, to heavily penalize 

larger error residuals, because there is a large nominal voltage error between the model output and the 

data points. Thus, the most appropriate method is the Nonlinear least squares method, also 

recommended by Simulink documentation for this specific type of cost function, since it is an algorithm 

to determine the best fit to data. The Nonlinear least squares method implemented in Simulink has two 

algorithms available (Coleman et al., 2022): 

• Trust Region Reflective (TRR) 

• Levenberg Marquardt (LM) 

It is advised in the documentation to test each algorithm and verify which gives the best result (Coleman 

et al., 2022). 

First, the parameters must be specified in the parameter estimator app (Figure 50). The boundary 

equations for each of the 5 empirical parameters define that they must be positive and non-zero, with an 

approximation to the initial value of 1. The measured output signal must also be defined as the voltage 

signal, and at the same time the corresponding expected voltage signal. To run the optimization, the 

model must have the same run time as the expected voltage signal. For computation reasons it was 

decided to run only 450 seconds out of the 700 seconds to speed up the optimization process. 

 

Figure 50 - Parameter estimator configuration. 



 

52 
 

Then, the app performs an initial check to evaluate the initial state of the optimization problem. Figure 

51 shows the measured signal from the vehicle data (blue line) and the simulated signal from the model 

(red line). When comparing the initial state of the model, with that of Figure 43, it is clear the impact of 

the changes made in the components and in the FC Stack parametrization, verifying that the voltage 

signal at the beginning was very high and now is very low. 

 

Figure 51 - Initial state of the optimization problem. 

The first optimization attempt was made using the Trust Region Reflective algorithm, and an initial RMSE 

of 664.7 was determined for the first iteration. After 35 iterations and a run time of 63 hours, the results 

were acceptable, having an RMSE value of 1.25 and a wave form very similar to the vehicle FC System 

data. The results, presented in Figure 52, show the estimated curve after of the Trust region reflective 

optimization procedure. As can be seen, it seems to be a good fit of the data, obtaining a small value for 

the RMSE. 
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Figure 52 - Results using the Trust region reflective algorithm. 

Running the optimization, under the same conditions as the previous one, but using the Levenberg 

Marquardt method, an initial value of 420.623 was obtained for RMSE in the first iteration. 

 

Figure 53 - Results for the Levenberg Marquardt algorithm. 

In this case, after 32 iterations and a run time of 75 hours, the RMSE value converged to 3.09. This 

algorithm presented a longer computation time with a higher RMSE value. Despite these results being 
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satisfactory, the Trust Region Reflective algorithm managed to obtain better results (less error) with less 

computational time. 

Table 5 - Results for the empirical values 

Empirical 

values 

Initial 

value 

Final value 

(TRR Algorithm) 

Final value  

(LM Algorithm) 

alpha 1 0.1372 0.1342 

alpha1 1 0.0597 0.0003 

alpha2 1 41.206 9.5507 

alpha3 1 0.1454 0.1393 

alpha4 1 0.3261 1.7556 

alpha5 1 6.4216 0.4119 

 

Table 5 shows the final values for each empirical value obtained in each optimization algorithm. Some 

values are similar but in the case of stack_alpha1, stack_alpha2 and stack_alpha5 very distinct values 

were found by the algorithms and this affects the behaviour of the FC System, having a more accurate 

output in the case of the values determined by Trust Region Reflective algorithm. 

Table 6 - Results of each optimization algorithm 

Algorithm Final 

RMSE 

Total iterations Total run time 

TRR 1.2464 35 63 hours 

LM 3.0893 32 75 hours 

 

When analysing the performance of the algorithms, Table 6 shows that Trust Region Reflective achieved 

more accurate results in less time. After these optimization results for the output voltage of the FC System, 

it was decided to use the empirical values determined by Trust Region Reflective algorithm. 

The same strategy was used to reduce the error for the membrane resistance but using specific 

boundaries for each attribute. 
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In Figure 47 it is clear that the membrane thickness, gas diffusion layer thickness and area of the 

membrane are the attributes that have direct impact in the resistance calculation. Since the area and 

membrane thickness are constant, the only attribute that can be determined is the gas diffusion layer 

thickness. This attribute has known boundaries of 210 ≤ µm ≤ 430, and having the same approach as 

done for the voltage, it was possible to optimize the output of the resistance values as showed on Figure 

54. 

  

Figure 54 – Best results for resistance optimization – left before and right after optimization. 

Using the Trust Region Reflective algorithm, the obtained RMSE value is 5.2 with a thickness of 219.642 

µm. In the case of using the Levenberg Marquardt algorithm the obtained RMSE is 8.9 with a thickness 

of 243.729 µm. Again, in this case, the Trust Region Reflective algorithm provides better results.  

Comparing the initial state, in Figure 43, it is clear how close the resistance is to the desired value. To 

better optimize the resistance calculation, several proprieties of the membrane must be known and how 

the vehicle control unit determines its value. Only in this case would be safe to develop a model and, if 

necessary, implement empirical values, doing the optimization process at the end. These results show a 

difference of less than 0.02 Ohm (as seen on Figure 54), an acceptable tolerance. 

 

Figure 55 - Final I-V curve of the model (X axis is FC current and Y axis is FC voltage). 
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One of the main characterizations of the FC Stack is the I-V curve (Figure 55). When comparing this final 

I-V curve with the previous one (Figure 44), differences in the shape and voltage values can be seen within 

a more acceptable range as showed in Figure 5, with the three losses very well defined. 
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4 FUEL CELL CONTROL MODELLING 

In this chapter it will be presented the development of the control unit that has two main parts: the control 

algorithm and the control logic, that work together to control the FC System model; and all the necessary 

components that are within it. An approach based on available data will be formulated to develop both 

control blocks allowing to test the response of it and compare it with the available data. 

 

4.1 Introduction 

After modelling the complete FC System, now it is possible to model and test control strategies. As stated 

on the Section 2.5.2, the control strategy is composed of two parts: the control algorithm and the control 

logic. The first step is to identify which are the control variables and sensors that quantify a physical state 

in the FC System. For this control development only the stated actuators and sensors in Table 7 will be 

considered, these being the most important control properties in the FC System.  

The second step consists of building the control algorithm to determine the required physical state (set 

point) and then build the control logic, which will actuate the components to meet the determined set 

point. 

Table 7 - Main actuators and sensors Identified in the FC System 

Side Actuators Sensors 

Anode • Pressure regulating valve 

• Recirculation pump 

• Pressure sensor 

• Mass flow sensor 

Cathode • Air compressor 

• Pressure relief valve 

• Mass air flow sensor 

• Pressure sensor 

 

 Furthermore, it is important to understand the dynamics between the controller and the FC System. 

Figure 56 illustrates the overview of the complete model, where the current is the load required for the 

FC System and the FCCU receives a measurement signal of this current. 
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Figure 56 - Interaction between FC System model and FCCU. 

In this step, the FCCU must calculate the ideal physical quantities of air and hydrogen required and 

convert them to the corresponding actuator signal, which is sent to the FC System model. The loop ends 

by feeding back to the FCCU the corresponding measured value of the physical quantity in the FC System. 

The options presented for the control algorithm in the literature review, referring the mathematical control 

algorithm and the ANN option will be implemented and studied, the first option representing the classical 

methodology, and the ANN a new emerging approach in vehicle control algorithms. 

For the control logic, three approaches were presented in the literature review and are summarized in 

Table 8. 

Table 8 - Comparison between control logic options. 

Control logic Advantages Disadvantages 

PID 

• Simplistic and easy-to-interpret 

control 

• Good response and accuracy 

when well tuned 

• Rapid implementation and 

calibration of parameters for an 

initial testing phase 

• Good for SISO systems 

• MIMO systems only with multiple 

PID logic 

• Does not directly respect 

constraints 

• Does not work properly on non-

linear systems 

• Slow acting and not accurate 

when tuned incorrectly 

• Difficulty in correctly tuning the 

parameters for high dynamic 

system 

ANNC 
• Fast response 

• Low computational power 

• Easy implementation 

• Low precision and accuracy 

• Data availability for training the 

neural network at every possible 

situation 
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MPC 

• Good for MIMO systems 

• Respects constraints 

• Works on non-linear models 

• Easy implementation 

• Requires a model to predict the 

future state 

• Needs a lot of computational 

power 

 

The ANNC and MPC options were discarded due to, in the first case, there is no data available about the 

signal that goes to the actuators, and for the second option, due to its complexity to develop the prediction 

model of the FC System. In an initial phase of development, an MPC controller was tested, controlling 

hydrogen and air pressure, but it was abandoned because it took a long time to simulate, due to the FC 

System model using SimScape components, and requiring a continuous type of simulation, forcing the 

MPC working in a continuous mode. For these reasons, PID control logic is the one that best fits due to 

its effective and simple implementation, speeding up the development and testing of the model.  

 

4.2 Classical control algorithm development 

Usually, for most production vehicles, the control algorithms are derived from equations and calibrated 

with dedicated tools. Such example is shown in Figure 24 as a set of equations and calibrated look up 

tables (via for example Model Based Calibration Toolbox from MATLAB). 

The development of this type of control algorithm starts with the definition of a structure with equations 

and calibrated look up tables. As reviewed in the literature, the study by Naganuma et al. (2012) 

represents a control algorithm that was developed during the development of a prototype vehicle. This 

control algorithm uses the standard theoretical equations that are forward calibrated with look up tables, 

and the look up tables are calibrated by exprimentation. 

Thus, to develop this control algorithm, the first step was to identify the main equations that determine 

the required air and hydrogen pressures and flows. With these equations based on theoretical behaviour, 

a structure was developed respecting a flow of calculus that corrects the response of these equations. 

Figure 57 presents this structure, taking as inputs the power demand and fuel cell temperature (yellow 

circles at the top left).  
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Figure 57 - Classical control algorithm structure. 

Each block represents a set of equations or 3D look up tables, and the main parameters to offset the 

theoretical behaviour of the equations to the real behaviour are the “V_FC_Overvoltage” (Figure 58) and 

“Lambda_factor” (Figure 59).  

The outputs represented with green circles, in Figure 57, are the main outputs to determine the actuators 

effort (managed by the control logic), respecting the architecture of Figure 56. The algorithm was then 

implemented in Simulink (Figure 60) that interacts in series with the control logic, controlling the FC 

System model.  

 

Figure 58 - 3D look up table for determining "V_FC_Overvoltage". 
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Figure 59 - 2D look up table for determining "Lamda_factor". 

 

Figure 60 - Classical control algorithm developed in Simulink. 

 

4.3 Neural Network control algorithm development 

To develop a control algorithm using neural networks it was decided to use an ANN for each physical 

state. So, on this case, four ANN are needed to be trained and tested in order to evaluate the best 

configuration for the final control algorithm. Using power as an input, the same input as the classical 

control algorithm, each ANN would determine the corresponding quantity of each reactant (Figure 61). 
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Figure 61 – Artificial neural network control algorithm developed in Simulink. 

The “Deep Learning Toolbox” from MATLAB allows to train ANN with different learning algorithms and 

layer sizes. To understand which the best configuration for each ANN is, a training structure was defined 

to select the lowest RMSE option.  

There are three learning algorithms available: 

• Levenberg-Marquardt backpropagation 

• Bayesian Regularization backpropagation 

• Scaled conjugate gradient backpropagation 

These algorithms were tested with different layer sizes, ranging from 2 to 30 layers. To evaluate the 

randomness of the seed (initial random values of the weights that are established at the beginning of the 

training session), each combination of algorithm and layer size was tested three times and the average 

of the RMSE was considered as the final result. Through this strategy, each ANN was trained 36 times, 

with a limit of 1000 epochs, to evaluate the configuration that presents lowest RMSE. 

Figure 62 shows the toolbox used, exemplifying a train session using “Levenberg-Marquardt 

backpropagation” algorithm and 20 hidden layers. The ANN structure is presented in Figure 63 and has 

the corresponding number of layers on the hidden layer. 
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Figure 62 – Artificial neural network training using Deep Learning Toolbox in MATLAB. 

 

Figure 63 - Neural network structure for training in MATLAB. 

Following the structure of Figure 61, the input data is the power demand in kW and the output is the 

corresponding physical state. Since this data are a quantity measured by sensors and do not follow any 

particular statistical distribution, it is necessary to smooth the frequency of oscillation of each physical 

state measured. 
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Figure 64 - Sensor signal filtering using "Data Cleaner toolbox". 

In the case of the anode inlet pressure, corresponding to the hydrogen pressure, Figure 64 shows how 

these oscillations are smoothed after applying a Gaussian filter with a smoothing factor of 0.02. The same 

procedure was done to the remaining attributes – Air pressure, air flow, hydrogen recirculated flow, 

applying the best fit to smooth out high oscillations and not lose information. 

Since all the attributes were treated, the next step would be to train each NN individually and collect the 

results, which are exposed from Table 9 to Table 12, with the ANN names corresponding to the 

corresponding Simulink block in Figure 61. In each table, the best result is marked with a green colour. 

Table 9 - Training results for the neural artificial network of hydrogen/anode pressure. 

NN_Anode_press 

Layer size 
Levenberg-Marquardt 

backpropagation 

Bayesian Regularization 

backpropagation 

Scaled conjugate gradient 

backpropagation 

2 6.757 

NAN 

7.946 

10 6.436 6.74 

20 7.058 6.477 

30 6.753 7.93 



 

65 
 

 

Table 10 - Training results for the artificial neural network of air/cathode flow. 

NN_Compressor_Air_Flow 

Layer size 
Levenberg-Marquardt 

backpropagation 

Bayesian Regularization 

backpropagation 

Scaled conjugate gradient 

backpropagation 

2 11998.333 

NAN 

12328.554 

10 38089.667 12743.333 

20 10294.667 10551.333 

30 8502.864 9832.333 

 

 

Table 11 - Training results for the artificial neural network of air/cathode pressure. 

NN_Cathode_press 

Layer size 
Levenberg-Marquardt 

backpropagation 

Bayesian Regularization 

backpropagation 

Scaled conjugate gradient 

backpropagation 

2 259.75 

NAN 

268.797 

10 194.583 240.93 

20 205.257 212.05 

30 194.41 212.1 

 

 

Table 12 - Training results for the artificial neural network of hydrogen recirculated flow. 

NN_Recirculated_Hydrogen_Flow 

Layer size 
Levenberg-Marquardt 

backpropagation 

Bayesian Regularization 

backpropagation 

Scaled conjugate gradient 

backpropagation 

2 4520.267 

NAN 

13966,211 

10 4399.389 4672.556 
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20 3774.711 3605.189 

30 3868.822 3117.4 

 

In the case of using the “Bayesian Regularization backpropagation” algorithm, the toolbox was not able 

to train the ANN in a range of 1000 epochs (marked in the table with NAN) and the option of training with 

longer epochs was abandoned. The other algorithms presented acceptable results for this stage of 

development. 

 

4.4 Control logic development 

After the development of the control algorithm, the control logic is the module that will connect the control 

algorithm with the developed FC System model. The control logic approach decided is using PID to control 

each actuator of the FC System.  

PID, as stated on the literature review, are the most known control logic used due to its simplicity and 

effectiveness. In MATLAB, the implementation of PID control logic can further simplified with auto tuning 

calibration options. The PID control acts on the error, which is the difference between the request or 

setpoint and the measured process variable. The difference between these two values gives an error and 

the PID will increase or decrease its effort on the output signal based on the dimension of this error. 

 

Figure 65 - PID control logic structure implemented on Simulink. 

The example in Figure 65 calculates this error on the block behind the PID block. In the PID block, the 

proportional, integrative, and derivative coefficients are requested to determine the behaviour of the effort 

in the output signal (Figure 66). 
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Figure 66 - PID configuration window. 

The option to tune this parameter avoids long calculation times and trial and error to determine the 

coefficients. Using the “PID Tuner” app, the initial behaviour of the PID is shown in Figure 67, presenting 

overshoot and long time to react. 
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Figure 67 - PID Tuner app and signal with overshoot and delay. 

By adjusting the response time and the transient behaviour it is possible to obtain a more stable and 

faster response signal as shown in Figure 68. 

 

Figure 68 - PID Tuner app and signal smoothed and faster response. 

This procedure of coefficient calibration was performed for each actuator, in a total of 4 implementations 

of PID control logic for each version of the FCCU (the classical control algorithm and the ANN control 

algorithm). 
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The final model is presented in Figure 69, where the FCCU (composed by the control algorithm and 

control logic, including the capability to switch between the two versions of the control algorithm) and the 

FC System model developed in the previous chapter are identified. 

 

Figure 69 - Complete model developed in Simulink. 

 

4.5 FCCU testing 

To test the FCCU and the FC System, it needs to be stimulated with a current demand. For this, a test 

cycle of 400 seconds was selected as shown in Figure 70. 

 

Figure 70 - Fuel Cell current demand for testing. 
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With the selected model input, the simulations were executed for both versions of the FCCU. The results 

evaluated were the outputs from the control algorithm and control logic, also taking into account the FC 

System model response. 

The first test intends to evaluate the control algorithm strategies by comparing the output with the 

corresponding available data. For this, the simulation was carried out and the comparison of the results 

obtained is presented in the graphs (Figure 71 to Figure 74). For each graph, the yellow line represents 

the data measured from the sensor on the vehicle, the blue line the output from the classical control 

algorithm and the red line the output of each ANN control algorithm. 

In addition, the error between the control algorithm and the data, the RMSE value, was determined as 

shown in Table 13. 

Table 13 - RMSE values between control algorithms and data. 

Attribute RMSE (ANN vs Data) RMSE (Classical control vs Data) 

Air flow 66.386 318.254 

Air pressure 6.978 1.511 

Hydrogen pressure 11.942 27.842 

Recirculated hydrogen 14.403 264.532 

 

 

Figure 71 - Control algorithms response and corresponding data for air flow. 
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For the air flow in Figure 71, the classical control shows a wave form very similar to the data curve, with 

slightly higher values throughout the test. The ANN shows an opposite response, having very similar 

values to the data, but with a smoother wave form. Both algorithms show output values very close to the 

measured data, although the ANN shows a lower RMSE value (66.386) when compared to the classical 

control. 

 

Figure 72 - Control algorithms response and corresponding data for air pressure. 

The air pressure (in Figure 72) shows the same behaviour, but the data obtained from the vehicle has a 

step type of wave form, suspecting that it could be obtained from a communication port. The important 

thing is that both algorithms show close relation between them and are in sync with the data values 

having both low RMSE values, with classical control indicating the lowest. 
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Figure 73 - Control algorithms response and corresponding data for hydrogen pressure. 

For the hydrogen pressure (Figure 73) the data shows a very oscillating behaviour (due, for example, to 

a very sensitive sensor) and none of the algorithms were able to replicate this behaviour. The closer 

response is from the ANN with an RMSE of 11.942. 

 

 

Figure 74 - Control algorithms response and corresponding data for recirculated hydrogen flow. 

 

Comparing the curves for the recirculated hydrogen flow (Figure 74) a notable difference between the 

classical control algorithm and the ANN control algorithm is verified. The closest behaviour to the data is 
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the ANN control algorithm and shows a wave form similar to the classical control algorithm, but with 

lower values. In this case, clearly the ANN has the best result. 

In addition, it is important to evaluate the model response and the control logic response against the data. 

For that, a set of graphs was made, for each version of the FCCU, showing the control algorithm response, 

control logic response, model response and the corresponding data attribute.  

Figure 75 to Figure 78 show the control algorithm version for each version of the FCCU. Each graph has 

four plotted lines, the black line (signal) represents the output of the PID control logic that goes directly 

to the component (air compressor, pressure valves or pump). The red line represents the measured data 

from the vehicle, the green line represents the requested quantity, which is the output of the control 

algorithm, and the blue line the output of the FC System model. 

 

Figure 75 – FCCU response (classical control algorithm) and model response for the Air flow. 
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Figure 76 - FCCU response (classical control algorithm) and model response for the Air pressure. 

 

Figure 77 - FCCU response (classical control algorithm) and model response for the Hydrogen pressure. 
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Figure 78 - FCCU response (classical control algorithm) and model response for the recirculated hydrogen. 

 

The same procedure was carried out for the ANN version of the FCCU, and the next four pictures (Figure 

79 to Figure 82) were obtained.  

 

Figure 79 - FCCU response (ANN control algorithm) and model response for the Air flow. 
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Figure 80 - FCCU response (ANN control algorithm) and model response for the Air pressure. 

 

Figure 81- FCCU response (ANN control algorithm) and model response for the Hydrogen pressure. 
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Figure 82 - FCCU response (ANN control algorithm) and model response for the recirculated hydrogen. 

The RMSE values were calculated for each version of the FCCU and presented in Table 14.  

Table 14 - RMSE values between FCCU version and data. 

Attribute RMSE (ANN PID vs Data) RMSE (Classical control PID vs Data) 

Air flow 66.385 192.865 

Air pressure 15.422 98.382 

Hydrogen pressure 10.383 67.044 

Recirculated hydrogen 0.000202 0.003 

The green line on each graph represents the requested physical quantity of air or hydrogen, this 

corresponds to the control algorithm response. The signal of the control logic is the black line and cannot 

be directly compared to any of the available data. On this case, the correct comparison to do is between 

the FC System response (blue line corresponding to the measured value of sensors on the FC System 

model) and the data. Also, in this case the RMSE values were calculated to have a clear understanding 

of the best FCCU versions. 

Discussing the results of Figure 75 and Figure 79, the air flow plots, the control logic signal (black line) 

is more stable in the ANN version, resulting in a very stable FC System model response (blue line). For 

the classical control algorithm version, the very oscillation behaviour could be a not well calibrated PID, 

meaning that it must be forward calibrated. Having a look at the RMSE values, also the ANN version has 

smallest error, almost 7 times less. 
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For the air pressure (Figure 76 and Figure 80) the same oscillation behaviour is verified for the control 

logic response in the classical control algorithm. The ANN has a stable and accurate signal with an RMSE 

value of 10.383. 

For the hydrogen pressure (Figure 77 and Figure 81) the ANN version also has the lowest RMSE value 

showing a notable bias on the initial seconds, due to an unexpected behaviour of the control logic that 

could be solved with advanced calibration of the PID. 

The last attribute, recirculated hydrogen presented in Figure 78 and Figure 82 shows a similar trend. In 

this attribute, the classical control algorithm version of the FCCU performs worse than the ANN version. 

In both cases, the control logic (PID) shows an exceptional tracking of the requested value. It is safe to 

assume that the control logic in this case, for both versions, is well calibrated and the verified error comes 

from the control algorithms with the ANN showing the lowest RMSE. 
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5 CONCLUSIONS 

This dissertation aims to develop of a model that includes the FC System and the FCCU models that can 

be used for by CES in forward testing and development of functions needed for future projects. The initial 

established goals were all fulfilled during the development of the project. 

The development of the FC System model involved the use of optimization techniques that allowed 

meeting the initial requirements for the model, the main one being the replication of results. 

The optimization of the FC System model uses the available data of air and hydrogen flow and pressure 

with the corresponding current and resistance values. In order to the estimation of empirical values, the 

Simulink design optimization using the TRR and LM algorithms was used. The lowest error was achieved 

with the TRR algorithm for both cases of voltage (RMSE value of 1.2464) and resistance (RMSE value of 

5.2).  

The model can successfully replicate the voltage but for the optimization results for the membrane 

resistance should be taken in account, since the results achieved can satisfy the initial requirements of 

the experimentation. 

Respecting the FCCU model two versions were developed, one with the classical control algorithm and 

PID control logic, and other with ANN control algorithm and PID control logic. The interaction between 

the two models (FC System and FCCU) was a success, allowing to test both models solely with load 

application from the data. The model has four outputs (air and hydrogen flow and pressure) and for each 

output the RMSE values were determined, with the ANN version revealing 66.385 for air flow, 15.422 for 

air pressure, 10.383 for hydrogen pressure and 0.000202 for recirculated hydrogen. On every output 

the RMSE values of the ANN were significantly lower than the classical control algorithm version. 

Clearly the version with ANN control algorithm shows a better performance both in accuracy and 

simulation performance, due to the fact that was trained with the data from the vehicle. The classical 

control algorithm shows inferior results mainly because the structure of equations may not match the 

exact one programmed on the vehicle FCCU (information that could not be obtained) and the look up 

tables could be forward calibrated to match the expected behaviour. 

Forward development could be made if time and computational power was not a constraint, allowing to 

do tasks such as: 

• Development of membrane resistance prevision code 
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• Better calibration of look up tables for classical control algorithm 

• Better calibration of PIDs for control logic 

• Continue to develop of the MPC controller 

Overall, the project was successfully developed, now assisting on the study of powertrain models and 

functions that are needed to develop FC Systems, FCCU, diagnostic functions, testing, DC/DC converters 

and powertrain architectures. 

  



 

81 
 

BIBLIOGRAPHY 

Alanne, K. a. (2019). An overview of the concept and technology of ubiquitous energy. Applied energy, 

pp. 238-302. 

Bao, C., Ouyang, M., & Yi, B. (2006). Modeling and control of air stream and hydrogen flow with 

recirculation in a PEM fuel cell system. International journal of hydrogen energy, 31(13), 1879-

1895. https://doi.org/doi:10.1016/j.ijhydene.2006.02.031 

Choudhury, A., Chandra, H., & Arora, A. (2013). Application of solid oxide fuel cell technology for power 

generation—A review. Renewable and Sustainable Energy Reviews, 20, 430-442. 

Clark, T., & Knight, B. (2005). Development of Sensors for Automotive Fuel Cell Systems. DOE Hydrogen 

Program, 1005-1011. 

Codina, A. C. (2017). System Level modelling of fuel (Master's thesis). Chalmers University of Technology. 

Cohn, E. M. (1965, January 1). NASA's fuel cell program. Advances in Chemestry, pp. 1-8. 

Coleman, T., Branch, M. A., & Grace, A. (2022). Optimization toolbox. For use with MATLAB. User’s guide 

for MATLAB. The MathWorks, Inc. 

Costamagna, P. S. (2001). Quantum jumps in the PEMFC science and technology from the 1960s to the 

year 2000: Part II. Engineering, technology development and application aspects. Journal of 

power sources, 102(1), 253-269. 

Daud, W., Rosli, R., Majlan, E., Hamid, S., Mohamed, R., & Husaini, T. (2017). PEM fuel cell system 

control: A review. Renewable Energy, 113, 620-638. 

https://doi.org/http://dx.doi.org/10.1016/j.renene.2017.06.027 

EG & G Services, Ralph M. Parsons Company, & Science Applications International Corporation. (2000). 

Fuel Cell Handbook. DIANE Publishing. 

European Commission. (2012). Energy: roadmap 2050. Directorate-General for Energy. 

https://doi.org/https://doi.org/10.2833/10759 

Gelmanova, Z. S., Zhabalova, G. G., Sivyakova, A., G., Lelikova, N., O., . . . Kamarova, S. N. (2018). 

Electric cars. Advantages and disadvantages. In Journal of Physics: Conference Series, 1015(5). 



 

82 
 

Gómez, J. C., Serra, M., & Husar, A. (2021). Controller design for polymer electrolyte membrane fuel cell 

systems for automotive applications. International journal of hydrogen energy, 46(45), 23263-

23278. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.04.136 

Grove, W. (1839). On voltaic series and the combination of gases by platinum. The London, Edinburgh, 

and Dublin Philosophical Magazine and Journal of Science, 14, 127-130. 

Hartmann, N., & Özdemir E., D. (2011). Impact of different utilization scenarios of electric vehicles on 

the German grid in 2030. Journal of power sources, 196(4), 2311-2318. 

Hatti, M., & Tioursib, M. (2009). Dynamic neural network controller model of PEM fuel cell system. 

International Journal of Hydrogen Energy, 34(11), 5015-5021. 

https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.12.094 

Hertzberg, M., Siddons, A., & Schreuder, H. (2017). Role of greenhouse gases in climate change. Energy 

& Environment, 28(4), 530-539. 

Hick, H., Küpper, K., & Sorger, H. (2020). Systems Engineering for Automotive Powertrain Development. 

Cham, Switzerland: Springer International Publishing. 

https://doi.org/https://doi.org/10.1007/978-3-319-99629-5 

Ibrahim, I. A., Ötvös, T., Gilmanova, A., Rocca, E., Ghanem, C., & Wanat, M. (2021). Global Energy 

Review. Kluwer Law International BV. 

James, B. D., Huya-Kouadio, J. M., & Houchins, C. (2017). DOE Hydrogen and Fuel Cells Program 

Review. Fuel Cell Systems Analysis. 

James, B. D., Huya-Kouadio, J. M., & Houchins, C. (2021). DOE Hydrogen and Fuel Cells - Fuel Cell 

System Analysis. Strategic Analysis Inc. 

Kabza, A. (2016, November 9). Fuel cell formulary. Retrieved from kabza: http://www.kabza.de/ 

Kerviel, A., Pesyridis, A., Mohammed, A., & Chalet, D. (2018). An Evaluation of Turbocharging and 

Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles. MDPI Applied Sciences. 

https://doi.org/10.3390/app8122474 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional 

neural networks. Communications of the ACM, 60(6), 84-90. 



 

83 
 

Lohse-Busch, H., Stutenberg, K., Duoba, M., & Iliev, S. (2018). Technology assessment of a fuel cell 

vehicle: 2017 Toyota Mirai (No. ANL/ESD-18/12). Argonne National Lab, (ANL), Argonne, IL 

(United States). 

Lu, J. (2013). Modelling and Control of Proton Exchange Membrane Fuel Cell. Doctoral dissertation. 

James Cook University. 

Martinez, L. H. (2005). Post industrial revolution human activity and climate change: Why The United 

States must implement mandatory limits on industrial greenhouse gas emmissions. Journal of 

Land Use & Environmental Law, 403-421. 

Maruo, T., Toida, M., & Ogawa, T. (2017). Development of Fuel Cell System Control for Sub-Zero. SAE 

International. 

Maruo, T., Toida, M., Ogawa, T., Ishikawa, Y., Imanishi, H., & Mitsuhiro, N. I. (2017). Development of 

fuel cell system control for sub-zero ambient conditions. SAE Technical Paper., 1(1189). 

https://doi.org/doi:10.4271/2017-01-1189. 

Naganuma, Y., Manabe, K., Imanishi, H., & Nonobe, Y. (2012). Development of system control for rapid 

warm-up operation of fuel cell. SAE International Journal of Alternative Powertrains, 1(1), 365-

373. https://doi.org/doi:10.4271/2012-01-1230. 

Namar, M. M., Jahanian, O., Shafaghat, R., & Nikzadfar, K. (2021). Engine Downsizing; Global Approach 

to Reduce Emissions: A World-Wide Review. HighTech and Innovation Journal, 2(4), 384-399. 

Nehrir, M. H., & Wang, C. (2009). Modeling and control of fuel cells: distributed generation applications. 

John Wiley & Sons. 

Nonobe, Y. (2017). Development of the Fuel Cell Vehicle Mirai. IEEJ TRANSACTIONS ON ELECTRICAL 

AND ELECTRONIC ENGINEERING, 12(1), 5-9. https://doi.org/DOI:10.1002/tee.22328 

O'hayre, R., Cha, S. W., Colella, W., & Prinz, F. B. (2016). Fuel cell fundamentals. John Wiley & Sons. 

Olszewski, M. (2007). DC-DC Converter for fuel cell and hybrid vehicles. U.S. Department of Energy. 

Pollet, B. G., Kocha, S. S., & Staffell, I. (2019). Current status of automotive fuel cells for sustainable 

transport. Current opinion in Electrochemistry, 16, 90-95. 

Pukrushpan, J. T., Peng, H., & Stefanopoulou, A. G. (2004, March). Control-oriented modeling and 

analysis for automotive fuel cell systems. Journal of Dynamic Systems, Measurment and Control, 

126(1), 14-25. https://doi.org/https://doi.org/10.1115/1.1648308 



 

84 
 

Qi, Y., Espinoza-Andaluz, M., Thern, M., Li, T., & Andersson, M. (2019). Dynamic modelling and 

controlling strategy of polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 

45(54), 29718-29729. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.09.178 

Radcliffe, J. C. (2018). The water energy nexus in Australia–the outcome of two crises. . Water-Energy 

Nexus, 1(1), 66-85. 

Scott, D., & Gössling, S. (2021). Destination net-zero: what does the international energy agency roadmap 

mean for tourism? Journal of Sustainable Tourism, 30(1), 14-31. 

Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., & Ward, K. R. (2019). The 

role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 

12(2), 463-491. 

Surya, S., Saldanha, C. C., & Williamson, S. (2021). Novel Technique for Estimation of Cell Parameters 

Using MATLAB/Simulink. Electronics, 11(1), 117-119. 

https://doi.org/https://doi.org/10.3390/electronics11010117 

Tanaka, S. N. (2020). Fuel cell system for Honda CLARITY fuel cell. ETransportation, 3(100046). 

Thomas, C. S. (2009). Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, 

biofuels, fuel cell electric vehicles, and battery electric vehicles. International Journal of hydrogen 

energy, 34(23), 9279-9296. 

Tutuianu, M., Marotta, A., Steven, H., Ericsson, E., Haniu, T., Ichikawa, N., & Ishii, H. (2013). 

Development of a World-wide Worldwide harmonized Light duty driving Test Cycle (WLTC). WLTP 

DHC. 

Vishnyakov, V. M. (2006). Proton exchange membrane fuel cells. Vacuum, 80(10), 1053-1065. 

Wang, S., & Xu, Y. (2019). Battery Electric Vehicle with a Fuel Cell - A System Study of Propulsion 

Concepts and Scenarios. Masters Thesis. Chalmers University of Technology. 

Wang, Y., Biswas, A., Rodriguez, R., Keshavarz-Motamed, Z., & Emadi, A. (2022). Hybrid electric vehicle 

specific engines: State-of-the-art review. Energy Reports, 8, 832-851. 

Yao, K. Z., Karan, K., McAuley, K. B., Oosthuizen, P., Peppley, B., & Xie, T. (2004). A review of 

mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. 

John Wiley. https://doi.org/https://doi.org/10.1002/fuce.200300004 



 

85 
 

Yoshida, T., & Kojima, K. (2015). Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen 

society. The Electrochemical Society Interface, 24(2), 45. 

Yu, P., Li, M., Wang, Y., & Chen, Z. (2022). Fuel Cell Hybrid Electric Vehicles: A Review of Topologies and 

Energy Management Strategies. World Electric Vehicle Journal, 13(9), 172. 

https://doi.org/https://doi.org/10.3390/ 

Zenith, F. (2007). Control of fuel cells. Doctoral dissertation. Norwegian University of Science and 

Technology. 

Zhao, T., Kreuer, K. D., & Van Van Nguyen, T. (2007). Advances in Fuel Cell. Elsevier. 

 

 



 

86 
 

APPENDIX 1 – MEASURED ATTRIBUTES RELATED TO THE FC SYSTEM 

ID Name Units 

6  Cell_Temp_C ºC 

7  Cell_RH_per % 

8  Cell_Press_inHg inHg 

10  GaseousFuel_VehDelivery_Press__psi Psi 

11  GaseousFuel_Low_Flow__gps g/s 

13  GaseousFuel_High_Flow__gps g/s 

15  Exhaust_Bag Boolean 

25  FC_Out_Curr_Hioki_analog10hz__I2__A A 

26  FC_Out_Volt_Hioki_analog10hz__U2__V V 

27  FC_Out_Power_Hioki_analog10hz__P2__kW kW 

28  Pumps_H2_Water_Curr_Hioki_analog10hz__I4__A A 

29  Pumps_H2_Water_Power_Hioki_analog10hz__P4__W W 

38  FC_Out_Hioki_IH2__Ah Ah 

39  FC_Out_Hioki_WP2__Wh Wh 

40  Pumps_H2_Water_Hioki_U4__V V 

41  Pumps_H2_Water_Hioki_IH4__Ah Ah 

42  Pumps_H2_Water_Hioki_WP4__Wh Wh 

51  FC_converter_input_voltage_EV__V V 
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52  FC_converter_output_voltage_EV__V V 

53  FC_air_compressor_motor_torque_EV__Nm Nm 

85  FC_smoothed_value_of_barometric_pressure_FC__kPa kPa 

86  FC_stack_internal_resistance_FC__ohm Ohm 

87  FC_exhaust_drainage_valve_driving_request_FC Booelan 

88  FC_hydrogen_injector1_injection_request_FC Booelan 

89  FC_hydrogen_injector2_injection_request_FC Booelan 

90  FC_hydrogen_injector3_injection_request_FC Booelan 

91  FC_high_range_hydrogen_pressure_FC__MPa MPa 

92  FC_low_range_hydrogen_pressure_FC__kPa kPa 

93  FC_medium_range_hydrogen_pressure_FC__MPa MPa 

94  FC_smoothed_value_of_hydrogen_pump_motor_temp_FC__C ºC 

95  FC_smoothed_value_of_medium_range_hydrogen_pressure_FC__kPa kPa 

96  FC_target_low_range_hydrogen_pressure_FC__kPa kPa 

117  Pedal_accel_position_vsCAN2__per % 

119  FC_current_vsCAN3__A A 

120  FC_smoothed_value_of_fc_voltage_vsCAN3__V V 

121  FC_hydrogen_pump_revolution_vsCAN3__rpm Rot/min 

122  FC_target_low_range_hydrogen_pressure_vsCAN3__kPa kPa 

123  FC_smoothed_value_of_low_range_hydrogen_pressure_vsCAN3__kPa kPa 
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124  FC_hydrogen_pump_consumption_power_vsCAN3__W W 

125  FC_mass_airflow_value_target_vsCAN3__NLpm l/min 

126  FC_air_compressor_revolution_vsCAN3__rpm Rot/min 

127  FC_smoothed_value_of_fc_stack_air_pressure_at_fc_stack_intlet_v kPa 

128  FC_smoothed_value_of_fc_stack_air_temperature_at_fc_stack_intle ºC 

129  FC_smoothed_value_of_intake_air_temperature_vsCAN3__C ºC 

130  FC_target_fc_stack_air_pressure_at_fc_stack_inlet_vsCAN3__kPa kPa 

131  FC_smoothed_value_of_fc_stack_coolant_temp_at_radiator_outlet_v ºC 

133  FC_water_pump_consumption_power_vsCAN3__W W 

133  FC_water_pump_revolution_vsCAN3__rpm Rot/min 

136  FC_voltage_before_boosting_vsCAN3__V V 
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