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ABSTRACT

Tumour cells exhibit a preference for glycolytic metabolism for energy production, even in the
presence of oxygen, a phenomenon denominated “Warburg effect”. Tumours have high glycolytic rates
leading to an increase in lactate produced, which is transported to the tumour microenvironment via
monocarboxylate transporters (MCTs), thus contributing to increased proliferation, migration and survival
of tumour cells. The role of MCTs is poorly understood in esophageal cancer. The main objectives of this
work are to explore the role of MCTs in this type of cancer, by characterizing their expression in
oesophageal carcinoma tissues and correlate their expression with metabolic markers and assess the
clinical-pathological impact; and to characterize the expression of MCTs and metabolic markers in
oesophageal squamous cell carcinoma cell lines and the effects of MCT down-regulation evaluating cell
viability and glucose consumption and lactate efflux. To achieve our objectives, we performed a detailed
characterization of the expression of MCTs and other metabolic markers in a clinical series of two
histological types of esophageal cancer, oesophageal squamous cell carcinoma (OSCC) and oesophageal
adenocarcinoma (OAC). Expression of MCTs was subsequently correlated with CD147 and with clinical
data. Then a metabolic characterization of squamous cell carcinoma cell lines of the esophagus was
performed and the effect of inhibition of MCTs in these cell lines was evaluated by levels of biomass and
cellular metabolism.

This study showed that tumour location and age are important factors for low survival in
adenocarcinoma. Gender is a factor of low survival for esophageal carcinoma. It also showed that the
expression of MCT1 and MCT4 in the plasma membrane is more evident in squamous cell carcinoma
than in adenocarcinoma and that for squamous cell carcinoma, MCT4 and CA IX can be considered
prognostic factors for low survival. In vitro studies have shown that the dual silencing of MCT1 and MCT4
leads to a decrease in cell viability but had little effect on glucose consumption and lactate production.
However, further studies will be needed to observe what this dual inhibition may cause in proliferation
and migration. Only in this way will it be possible to know if MCTs could be rational therapeutic targets
for use in this type of cancer.

The results obtained in this study intend to contribute to a better understanding of role of MCTs,

and to open new therapeutic possibilities for esophageal cancer.

KEYWORDS: MONOCARBOXYLATE TRANSPORTERS — “WARBURG EFFECT"” — OESOPHAGEAL CANCER — OESOPHAGEAL

ADENOCARCINOMA — OESOPHAGEAL SQUAMOUS CELL CARCINOMA
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RESUMO

As células tumorais recorrem ao metabolismo glicolitico para a producdo de energia, um
fendmeno conhecido como “Efeito de Warburg”. Os tumores apresentam elevadas taxas glicoliticas
levando a um aumento do lactato produzido, que € transportado para o microambiente tumoral através
dos transportadores de monocarboxilatos (MCTs), contribuindo assim para um aumento da proliferacao,
migracao e sobrevivéncia das células tumorais. O papel dos MCTs ¢ pouco esclarecido em cancro de
esofago. Os objetivos deste trabalho consistem em explorar os MCTs neste tipo tumoral, caracterizando
a sua expressao em tecidos e correlacionar a sua expressao com marcadores metabolicos e avaliar o
impacto clinico-patoldgico, caracterizar também a expressdo dos MCTs e de marcadores metabdlicos em
linhas de carcinoma escamoso do esdfago e ver os efeitos da inibicdo dos MCTs avaliando a viabilidade
celular, o consumo de glicose e producao de lactato. De forma a alcancar 0s nossos objetivos, primeiro
foi realizada uma caracterizacdo detalhada da expressdo dos MCTs e outros marcadores metabdlicos
numa série clinica de dois tipos histolégicos de cancro de esdfago, o carcinoma escamoso do eséfago
(OSCC) e 0 adenocarcinoma do esdfago (OAC). A expressao dos MCTs foi posteriormente correlacionada
com a CD147 e com os dados clinicos. Foi feita a caracterizacdo metabdlica de linhas celulares de OSCC
e observado o efeito da inibicdo dos MCTs nessas linhas celulares ao nivel da biomassa e metabolismo
celular.

Este trabalho evidéncia que a localizacdo tumoral e a idade sao fatores importantes para a baixa
sobrevivéncia no OAC, ja o género, € um fator de baixa sobrevivéncia para o OSCC. Também demonstrou
que a expressdo do MCT1 e do MCT4 na membrana plasmatica é mais evidente no OSCC do que no
OAC e que para este mesmo subtipo histologico o MCT4 e o CAIX podem ser considerados fatores de
prognostico para uma baixa sobrevivéncia. Estudos /n vitro, demonstram que o silenciamento duplo do
MCT1 e do MCT4 levam a uma diminuicdo na viabilidade celular, no entanto pouco afetam o seu
consumo de glucose e producao de lactato. No entanto, serao necessarios mais estudos para observar
0 que esta dupla inibicdo podera provocar a nivel da proliferacao e migracdo, s6 assim se podera saber
se 0os MCTs poderao ser um possivel alvo terapéutico para ser usado neste tipo de cancro.

Os resultados obtidos neste estudo pretendem contribuir para uma melhor compreensédo dos

mecanismos de acao dos MCTs, e abrir novas possibilidades terapéuticas para o cancro do esofago.

PALAVRAS-CHAVE: TRANSPORTADORES DE MONOCARBOXILATOS — “EFEITO DE WARBURG” — CANCRO DO ESOFAGO —

ADENOCARCINOMA DO ESOFAGO — CARCINOMA DE CELULAS ESCAMOSAS DO ESOFAGO
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1.INTRODUCTION

1.1 Cell metabolism

Metabolism is described as a series of cellular activities in which many metabolic pathways
cooperate to convert nutrient molecules into other macromolecules required for specialized functions and
to obtain chemical energy for vital processes. In mammalian cells, the metabolic response requires a
permanent coordination of cell activity, including cell proliferation with nutrient availability, hormonal and
stress signalling and with regulation of energy homeostasis. In normoxic condictions, carbohydrates are
transformed into glucose that is converted into pyruvate in the processes called glycolysis. Pyruvate is
then converted into acetyl coenzyme-A (CoA) that is metabolized in the tricarboxylic acid (TCA) pathway
producing most of the ATP (adenosine triphosphate) by the oxidative phosphorylation (OXPHOS). On the
other hand, under hypoxia, the glucose is converted into lactate, producing less ATP but in a faster way
(1,2). Increased cell proliferation is characteristic of tumour cells, thus, proliferating tumour cells present
an altered metabolism, contrasting to normal cells that rely primarily on mitochondrial oxidative

phosphorylation for energy production (1).

1.2 Tumour cell metabolism

Carcinogenesis is a complex, multifactorial and a multistep process, described as ‘somatic
evolution’, since it requires the acquisition of many biological capabilities in evolution of a normal cell to
a malignant state (3,4). The somatic evolution from early carcinogenesis to invasive carcinoma arises as
an adaptive mechanism, generating a characteristic phenotype which confers a selective growth that is
an advantage to tumour cells. Most of the alterations observed by Hanahan and Weinberg during
carcinogenesis have been postulated as hallmarks of cancer and comprise alterations at molecular,
biochemical and functional level (4). As a consequence of these alterations cancer cells have a behaviour
that allow them to have a limitless replicative potential, in which result in the following features: sustaining
proliferative signalling, evading growth suppressors, avoiding immune destruction, enabling replicative
immortality, tumour-promoting inflammation, activating invasion and metastasis, inducing angiogenesis,

genome instability and mutation, resisting cell death, and deregulating cellular energetics (Figure 1).
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Figure 1 - Integrative view of the ten hallmarks of cancer. Although through various mechanistic strategies, tumour cells
acquire the same set of functional capabilities during the cancer development which constitute the hallmarks of cancer (4).

The chronic and uncontrolled cell proliferation that represents the cancer cells involves
deregulated control of cell proliferation and adjustments of energy metabolism. These adjustments
represent important problems in cellular metabolism since proliferating cells must balance the divergent
catabolic and anabolic requirements of sustaining cellular homeostasis while duplicating cell mass, and
thus engage in a metabolic program distinct from that of the normal tissue from which they arise (1,4).
Proliferating cells have ability to acquire necessary nutrients due to the excess of bioenergetic needs,
from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build
new biomass. These needs result from alterations in intracellular and extracellular metabolites that
accompany cancer-associated metabolic reprogramming. Altering intracellular and extracellular
metabolites will have profound effects on gene expression, cellular differentiation and the tumour
microenvironment. In view of the changes in the metabolism of the carcinogenic cells, Pavlova and
Thompson (5), organized the known cancer-associated metabolic changes into six hallmarks: deregulated
uptake of glucose and amino acids, use of opportunistic modes of nutrient acquisition, use of
glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, increased demand for
nitrogen, alterations in metabolite-driven gene regulation, and metabolic interactions with the

microenvironment (Figure 2).
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The metabolic alterations and adaptations of cancer cells have been studied over the past
century. These alterations create a phenotype that is capable to fulfil the bioenergetics demands of cancer
cells that are associated with proliferation (5,6). The two principal nutrients that cells use for growth and
survival are glucose and glutamine. The catabolism of glucose (glycolysis) and glutamine (glutaminolysis)
helps sustaining the function of TCA uninterruptedly (5,7) (Figure 3). In glycolysis, glucose is converted
into pyruvate, that is oxidized via pyruvate dehydrogenase (PDH) to the two-carbon unit acetyl-CoA, and
subsequently combined with the four-carbon oxaloacetate to generate citrate or can serve as an
anaplerotic substrate when converted to oxaloacetate by the enzyme pyruvate carboxylase (PC). In
glutaminolysis, the conversion of glutamine to glutamate via glutaminase (GLS), can also support
anaplerosis via production of a-ketoglutarate (aKG) (7,8). So, the controlled oxidation of carbon skeletons
of glucose and glutamine allows the cell to capture their reducing power either in the form of NADH and

FADH, transferring the electrons to the electron transport chain to feed ATP generation (1,8,9).
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Figure 3 — TCA Cycle. Pyruvate produced by glycolysis and glutamate produced by glutaminolysis can be metabolized by the
TCA cycle (8).

In contrast to normal differentiated tissues, most cancer cells rely more on glycolysis for ATP
production independently on the oxygen availability in the extracellular microenvironment (Figure 4).
Reprogramming of energy metabolism by cancer cells elucidate part of the explanation for Warburg's
observations. Otto Warburg (10) stated that tumour cells, even in the presence of oxygen, have a high
rate of glycolysis and do not take advantage of the bioenergetic benefits offered by the coupling of
glycolysis to the TCA cycle. This phenomenon is designated by “Warburg effect”. As a result, tumour cells
convert most of the incoming glucose into lactate (around 85%) rather than metabolizing pyruvate,
produced by glycolysis, in the mitochondria through oxidative phosphorylation (around 5%) (11,12). As
a result of misinterpretation, Warburg and other investigators, thought that this phenomenon was caused
by an “irreversible injury of respiration” and subsequently were less efficient in producing ATP from the
phosphorylation of glycolysis (10). Nevertheless, recent investigations have shown that tumour cells have
a functional mitochondria and therefore are capable to preform OXPHQOS, since the depletion of
mitochondrial DNA leads to a decrease in tumorigenic potential of cancer cell lines (13,14). So, it is
possible to say, that the Warburg effect is a regulated metabolic feature and it is beneficial during a time

of high proliferation.
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Figure 4 - Schematic representation of glucose metabolism in differentiated tissues (left panel), normal proliferative tissues
and tumour cells (right panel) (11).

Tumour cells present a metabolic flexibility in which aerobic glycolysis and mitochondria can
cooperate during cancer progression (15,16). Recent studies demonstrate that there is not only a direct
link between the Warburg effect and mitochondrial defects, but also there is oncogenic activation and
mutation in signalling pathways that regulate glucose uptake, namely PI3K/Akt/mTOR pathway (11,17).
Additionally, selection of the glycolytic phenotype in tumour cells can be mediated by the action of
transcription factors (12,17,18), like the hypoxia-inducible factor (HIF-1a) (19-21), MYC (19), Ras and
pb3 (21-23).

The dependence of tumour cells on the increased glucose uptake has proved useful for tumour
detection and monitoring, with this phenotype serving as the basis for the clinical [F] fluorodeoxyglucose
positron emission tomography (FDG-PET) imaging technique (Figure 5). FDG injected into the
bloodstream is taken up by glucose transporters (GLUT) on the cell surface and then phosphorylated by
hexokinases (HK) to form FDG-phosphate where is no further metabolized and becomes trapped within
the cells. Accumulation of the radioactive glucose analogue is then detected by PET, which is able to

detect tumour cells and distinguish them from normal tissue (24).



Figure 5 - Positron-emission tomography imaging with *fluorodeoxyglucose of a patient with lymphoma. The mediastinal
nodes (purple arrow) and supraclavicular nodes (green arrows) show high uptake of 18fluorodeoxyglucose (FdG), showing that
tumours in these nodes have high levels of FdG uptake. The bladder (yellow arrow) also has high activity, because of excretion
of the radionuclide (24).

The proliferation state of cancer cells leads to a development from a normal epithelium to an
interstitial neoplasia that is characterized by an uncontrolled cell proliferation that progresses to a
carcinoma /n sifu. The glycolytic phenotype that characterizes tumour cells results from the hypoxia that
exerts a selective pressure for up-regulation of glycolytic pathway even in the presence of oxygen (24).
Tumour cell population that possesses this glycolytic phenotype, have a powerful proliferative advantage,
which it is able to alter the intracellular pH in a way that is harmless to itself, but toxic to other phenotypes.
This environmental change leads to cellular acidosis, through increased concentration of lactate,

contributing therefore to an invasive phenotype through (Figure 6) (11,12,17,24).
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Figure 6 - Schematic representation of the cell-microenvironment interactions associated with the carcinogenesis process.
Normal epithelial (grey), hyperproliferative (pink), hypoxic (blue), glycolytic (green) and motile cells (yellow) (24).
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In normoxic conditions, cells utilize oxygen for energy production through OXPHOS. However, in
conditions of hypoxia, i.e., presence of low oxygen levels, cells have the capacity to adapt. This adaptation
consists in an adaptive response including metabolic alteration, angiogenesis and erythropoiesis. Several
studies demonstrate that hypoxia-inducible factors (HIFs) mediate this adaption to the hypoxic
microenvironment (1,20). Under these conditions, the activation of HIF1-a leads to increasing
upregulation of genes that are involved in glycolysis, including glucose transporter 1 (GLUT 1) in order to
increase the glucose uptake, hexokinase Il (HK 1l) which catalyse the initial step of glycolysis and lactate
dehydrogenase A (LDH-A) that converts the pyruvate into lactate. HIF1 also promotes induction of
pyruvate dehydrogenase kinase (PDK), a negative regulator of pyruvate dehydrogenase (PDH) that
catalyses the conversion of pyruvate to acetyl-CoA (6-8,25,26). The increase in lactate production
amongst the diminished vascular dispersion of CO, contributes to hypoxic acidosis, namely to the acid-
resistant phenotype. In order to ensure the regulation of the pH, HIF1-a induces the expression of specific
genes that have the task of regulating the pH. These regulators can be carbonic anhydrase IX (CAIX) and
monocarboxylate transporters (MCTs), among others (27,28). CA IX is a hypoxic marker and a prognostic
indicator which performs the reversible conversion of CO, to bicarbonate and proton, contributing to
acidification of tumour microenvironment and consequently to control of intracellular pH (29,30). This
upregulation reduces electron flux through OXPHOS and subsequently reduces oxidative stress resulted
from mitochondrial metabolism (31). MCT4 is up-regulated in hypoxia and cooperates with MCT1 in the
efflux of generated lactate. In fact, MCT4 will not only be important for the acid-resistant phenotype, but
also for the hyper-glycolytic phenotype in the way that, by exporting newly formed lactate, will allow
continuous conversion of pyruvate to lactate and, therefore, continuous aerobic glycolysis (32,33).

The increasing in the glycolytic phenotype of cancer cells leads to acute and chronic acidification
of the tumour microenvironment. The principal culprits for this acidification of the extracellular
environment are the monocarboxylate transporters, that co-transport H+ and lactate. It is known that
cellular acidosis is associated with the aggressive behaviour of cancer cells, i.e., proliferation, increased
survival, migration, invasion, angiogenesis and radioresistant (34), making lactate a key player in cancer
(24,35,36). Since lactate produced by glycolytic tumour cells has an important role in tumour
microenvironment, being associated to poor prognosis, disease-free and overall survival in human cancer,
it is possible to say that it plays an active role in progression of malignant diseases. Lactate concentrations
can be associated with radioresistance, this feature could be due to the antioxidant properties of lactate,
making it a suitable candidate as a diagnostic and prognostic indicator for a wide variety of tumours

(37,38).



Additionally, hypoxia inducible gene expression can be regulated by lactate and pyruvate, and
this is completely independent from hypoxia conditions, since it occur by stimulating the accumulation of
HIF1-a (39). This indicates that the hyper-glycolytic phenotype is stimulated by lactate, providing a positive
feedback.

Although glucose is the major source of lactate in most solid tumours, it is important to note that

other cancer pathways rather than glycolysis can contribute to lactate production, such as glutaminolysis
(7,25).
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1.3 Role of MCTs in cancer metabolism

Lactate is the monocarboxylic acid that can be formed as end-product of glycolysis and its
intracellular accumulation results in acidification of the cytosol and inhibition of phospho-fructokinase-1
(PFK-1) and consequently glycolysis (41). In order to stop this cellular acidification, the monocarboxylate
transporters (MCTs) are needed, since they are essential for the maintenance of the pH balance (42).
The efflux of lactate is particularly important for high glycolytic cells such as most cancer cells, white and

red blood cells, and tissue skeletal muscle (43).

1.3.1 The MCT family

Solute Carrier Family 16 (SLC16) is the name of the monocarboxylate transporters family and it
is composed by 14 members and encoded by the SLC16 gene family. As shown in Figure 8 the
identification of the 14 members was identified by a sequence homology whose predicted phylogeny and
the analysis provides valuable information regarding the functional clustering of the human MCT family
(44). It is possible to see that MCT1-MCT4 are associated in the same cluster, presenting high homology,

and they are the only isoforms that have been demonstrating to transport monocarboxylic acids.
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MCTs have 12 transmembrane domains with the N- and C-termini located in the cytoplasm (45).
The transmembrane domains (TMDs) are highly conserved between isoforms with the greatest sequence
variations observed in the C-terminus and the large intracellular loop between TMDs 6 and 7, which has
a range of 29-105 amino acid residues (46). This observed variability is common to transporters with
12 TMDs and it is thought that these sequence variations are related to substrate specificity or regulation
of transport activity (45,46). Topological prediction has been experimentally confirmed only for MCT1 in
erythrocytes (Figure 9), nevertheless, analysis of the deduced amino acid sequences of the other MCT

orthologs reveals a similar predicted topology (45).
CD147
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Figure 9 - The proposed topology of the monocarboxylate transporter (MCT) family members (45).

1.3.2 MCT isoforms

MCT1 is the most well-studied and functionally characterized member of the MCT family. This is
due to the fact that MCT1 is the only monocarboxylate transporter expressed in human erythrocytes and
it has the broader tissue distribution, it also has a wider range of substrates when compared to the other
family members (44,47). MCT1 has an ubiquitous distribution and catalyses the cellular uptake and efflux
of monocarboxylates such as pyruvate (Km 0.6-1 mM), L-lactate (Km 2.2-4.5 mM), propionate (Km 1.5
mM), acetate (Km 3.7 mM), acetoacetate (Km 5.5 mM), L-B-hydroxybutyrate (Km 8.1-11.4 mM) and D-
B-hydroxybutyrate (Km 8.1-10.1 mM) and is mostly responsible for lactate uptake for oxidation in red
skeletal muscles and heart or efflux in glycolytic cells, such as erythrocytes, according to the substrate
concentration and pH gradient (44,45,47). This transporter functions as a proton-dependent
cotransporter/exchanger and transport across the membrane occurs by ordered sequential binding with
association of a proton followed by lactate binding (48).

MCT?2 isoform has higher affinity for lactate and pyruvate than MCT1. So, when expressed in the

same tissue MCT1 and MCT2 are located in distinct cells, as they have been suggested to play different
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roles in metabolic shuttles (49,50). This MCT is located principally in tissues that have high requirements
of lactic acid for use as a respiration fuel, like neurons, or for gluconeogenesis, like the liver parenchymal
cells and the kidney proximal convoluted tubules (47).

MCT3 is the only MCT that have a confined expression, being expressed in the RPE and choroid
plexus epithelia where it is located on the basal membrane in contrast to MCT1 which is found on the
apical membrane (47).

MCT4 is mostly expressed in tissues that rely on glycolysis such as white skeletal muscle fibers,
astrocytes, white blood cells, chondrocytes, and some mammalian cell lines (44). It was characterized
by heterologous expression in Xenopus laevis oocytes, exhibiting the highest Km values for most
substrates and inhibitors when compared to MCT1 and MCT2 (45). As mentioned above, hypoxia is
known to be a regulator of MCT expression, and MCT4 was described to be regulated by the hypoxia
inducible factor-1a (HIF-1ax)(51).

Membrane expression of MCTs is necessary for their activity (monocarboxylates efflux/uptake),
however they do not present glycosylation, a characteristic phenomenon of membrane spanning proteins.
This is why MCTs have the need of being associated with other glycosylated membrane proteins in the
plasma membrane, namely CD147 also known as basigin or EMMPRIN, which belongs to the
immunoglobulin superfamily and is a broadly distributed plasma membrane protein (52,53). MCT1, 3
and 4 require association with the mature glycosylated form of CD147 protein, while MCT2 isoform
requires the association with integral membrane glycoprotein gp70 or EMBIGIN (52). CD147 is important
for MCT membrane location and activity and it was already demonstrated that MCT1 and MCT4 regulates
the maturation and trafficking to the plasma membrane of CD147. This contributes to the malignant
phenotype since MCT contribution is not limited to the transport of monocarboxylates (lactate) and the
regulation of pH, they may have an indirect role in tumour growth and angiogenesis (45,54-56). Some
studies indicate the existence of a cofactor that is responsible for the localization of MCTs on the plasma
membrane and that they are active, in tissues that do not possess CD147. CD44 may be another
chaperone for MCT expression at the plasma membrane, leading to an important role in cancer

progression and tumour cell chemoresistance (57).

1.3.3 MCT in cellular homeostasis

Monocarboxylate transporters passive, bidirectional symporters that are associated to energy
metabolism and intracellular pH (pH) regulation, since they assure the continuous transporting of lactate,

avoiding cellular acidosis and guarantee the flux of glycolysis (Figure 10) (58,59). As already known,
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MCTs are more involved in the export of lactic acid than pH, regulation, since they are not activated by
the pH change. Nevertheless, several studies have demonstrated that inhibition of MCT1 leads to a
decrease in intracellular pH in several melanoma and neuroblastoma cell lines at a low tumour-like
extracellular pH, this induced a decrease in cell viability (60,61). Additionally, down-regulation by short
interference RNA (siRNA) of MCT1 and MCT2 in malignant human glioma cells caused a decrease of 0.6

units in the intracellular pH and rapid cell death (62). Gerlinger et al. (63) reported that de down-
regulation of MCT4 decreased pH,, cellular ATP and survival of two clear cell renal cell carcinoma (ccRCC)

cell lines. Almost all cancer cells are known to express both MCT1 and MCT4, so it is not a surprise that
when MCT1 or MCT4 are inhibited, there may not be a marked decrease on the intracellular pH. Still,
the combination of silencing both MCTs resulted in an increase in the intracellular proton concentration,
leading to a decrease in the intracellular pH (64). Carbonic anhydrases (CA), are proteins that have an
important role in the H/lactate transport facilitation (29). Probably, CAs in close region of MCTs are able
to function as “H- -distributing antennas” that help in the dissipation of local protons and facilitate the

import or export of lactate (30,65,66).

Figure 10 - Generalised model of tumour generated acidity and pH regulation (67).

1.3.4 MCT regulation

Little is known about the regulation of MCT expression in different tissues. MCT1 is the most
widely expressed member of its family in normal and cancer tissues, including head and neck and lung
(68), breast (35,69), osteosarcomas (70), glioma (71), gastrointestinal stromal tumours (GIST) (72),
cervix (73) and colorectal (74) cancers. Depending on the physiological and pathological conditions MCTs
expression can vary. Several studies report that altered MCT expression is a result of changes in MCT

substrate concentration and/or signals arising from changes in cellular metabolism (75). MCTs are
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regulated at various points up to the functional protein, including both transcriptional and post-
transcriptional level which affects protein amounts, as well as, by regulators of transporter activity, like
chaperone proteins. MCT expression appears to be regulated in a tissue specific manner (46,75).
Hypoxia is known to induce the glycolytic phenotype it is also associated with the alteration of the
expression of MCTs (32,68,76-79). Studies suggest that the increase in neuronal, astrocytic and
endothelial MCT1 expression, observed after permanent occlusion of the left middle cerebral artery, is
mediated by HIF-1a, the major transcriptional regulator of adaptation to hypoxic stress (80). Nevertheless,
this view was questioned by Ullah and collaborators who, after performing functional studies with MCT1,
MCT2 and MCT4 promoters, demonstrated that only MCT4 promoter was activated by hypoxia and that
this response was mediated by HIF-1a (32). Additionally, MCT4, but not MCT1, was shown to be up-
regulated by hypoxia in trophoblast cells (76), in human bladder cancer cells (81) and in C6 glioma cells
(82). However, there is evidence that describes a hypoxia mediated increase in both MCT1 and MCT4
and decrease in MCT2, with MCT1 and MCT4 change being HIF-1a-dependent (78). A recent study
demonstrated that there is an up-regulation of MCT1 expression in presence of hypoxia, still, this

regulation was independent of HIF-1a, but dependent of p53 status (79).

1.3.5 MCT inhibitors

Due to their association with specific glycosylated molecular chaperones, MCTs can be targeted at
the plasma membrane, in order to stop their transport activity. Thus, they are attractive targets for
systemic therapy. Identification of MCT inhibitors was achieved during characterization of MCT1, as the
most studied MCT isoform (45). A great number of MCT1 inhibitors are known and can be divided into

three categories:

1. Bulky or aromatic monocarboxylates which are competitive inhibitors, including 2-oxo-4-
methylpentanoate, phenyl-pyruvate and derivatives of o-cyanocinnamate, as oa-cyano-4-
hydroxycinnamate (CHC) (45).

2. Arange of amphiphilic compounds with different structure including bioflavonoids (e.g. quercetin
and phloretin) and anion transport inhibitors such as 5-nitro-2-(3-phenylpropylamino)-benzoate
(NPPB) and niflumic acid (45).

3. Stilbenedisulphonates (e.g. 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS)) (45).

4. Irreversible inhibitors, such as p-chloromercuribanzene sulphonate (pCMBS) and amino reagents

(e.g. pyridoxal phosphate and phenyl-glyoxal) (45).
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Though these inhibitors have a good capacity to inhibit MCTs, there are not specific to the MCT

isoforms, in other words these inhibitors have different affinities for the different MCT isoforms (Table 1).

Table 1 - Inhibitors of monocarboxylate transporters.

MCT Isoform Inhibitor References

CHC (42,83)

MCT1 pCMBS (84)
DIDS (42,85)
MCT2 CHC (42,83)
CHC (42,83)

pCMBS (84)

MCT4 Fluvastatin (86)

Atorvastatin (86)

Lovastatin (86)

Simvastatin (86)

As already mentioned, none of the MCT classical inhibitors is either MCT specific or MCT isoform
specific. Therefore, to investigate the role of MCT in cellular function, MCT specific inhibitors should be
used. The pharmaceutical company AstraZeneca, developed a new set of immunodulatory compounds

as potent and selective inhibitors of MCT1 activity in human activated and rat T cells (87,88).

1.3.6 MCTs as a therapeutic target in cancer

Since the metabolic phenotype of cancer cells is the basis for several mechanisms of tumour
resistance to traditional therapy several anticancer strategies targeting tumour metabolism have been
explored (Figure 11). Metabolic strategies include indirect targets that consist in signalling pathways that
regulates cellular metabolism altered in cancer, and direct targets such as metabolic enzymes (6).

The acid-resistant phenotype that cancer cell present is essential for their survival. However this
phenotype gives some problems to the cell when it concerns the pH regulation, therefore it is essential
that pH regulators, like Na+/H+ exchanger (NHE1) and CAs, exist (30). Even though MCTs do not regulate
the intracellular pH in a direct way, as it was mentioned above, they are considered pH regulators, since

they regulate acidic environment of cancer cell in an indirect way. MCTs perform a double role in the
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adaptation to hypoxia, they export lactate, that is important for the maintenance of the glycolytic
phenotype, and they regulate the pH, that is essential for the acidic-resistant phenotype. So, if MCTs were
inhibited there will be a direct effect on cell pH regulation and glycolytic rates, therefore having an
important effect on cell viability. Thus, targeting these transporters will comprise the perfect phenotype

that cancer cells have acquired (30).
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Figure 11 - Schematic representation of metabolic targeting tumour strategies (6). 5-FU - 5-fluorouracil; akKG - o-
ketoglutarate; ACLY - ATP citrate lyase; CA - carbonic anhydrase; CINN - a-cyano-4-hydroxycinnamate; DCA -
dichloroacetate; FASN - fatty acid synthase; G6P - glucose-6-phosphate; Glut — glucose transporter; HK — hexokinase; IGF1
— insulin-like growth receptor 1; IGF1R - IGF1 receptor; LDH - lactate dehydrogenase; Mal — malate; MCT — monocarboxylate
transporter; NHE1 - Na+/H+ exchanger 1; OAA - oxaloacetate; PDH - pyruvate dehydrogenase; PDK - pyruvate
dehydrogenase kinase; PEP — phosphoenol pyruvate; PK — pyruvate kinase; R5P - ribose 5-phosphate; TCA - tricarboxylic
acid cycle.

1.4 Oesophageal cancer

1.4.1 Epidemiology and pathology

Oesophageal cancer (OC) is the eight most common cancer worldwide (composing 3% of all
cancers) and the sixth most common cause of cancer-related death with 400 000 deaths in 2012 ( 4.9%
of all cancers deaths) (89). This neoplasia is comprised principally by two main subtypes: the
oesophageal adenocarcinoma (OAC) and the oesophageal squamous cell carcinoma (OSCC). Other

subtypes are mainly carcinomas, such as leiomyosarcomas, lymphomas and small cell carcinoma, and
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represent less than 10% of all cases (90-92). Benign tumours of the oesophagus are extremely rare
(about 1% of all oesophageal tumours) and normally they are asymptomatic (93). This malignancy has a
poor prognosis, since the 5-year survival is around 15%-25% (94). This dreadful prognosis appears to be
more related to the features of the esophagus and due to the fact that the tumour is usually identified in
its last stages (95).

The main subtypes of this neoplasia have different incident rates. Oesophageal squamous cell
carcinoma represents almost 87% of all cases of cancer of the oesophagus, with 398 000 diagnosis of
the total number of oesophageal cancer (89,96) and has a high-incidence in eastern Asia, the “Asian
Oesophageal Cancer Belt” (Fig. 12 a), in eastern and southern Africa and in south America (96,97),
however its incidence has been decreasing over the years. On the other hand, oesophageal
adenocarcinoma has a higher prevalence in western populations, like America, Europe and Australia (Fig.
12 b) (96). These geographical divergencies are due to several human behaviours and comorbidities that
may lead to the formation of this malignancy.

Oesophageal cancer continues to be a male dominant disease, being two to three times more
common in SCC, generally, this male predominance is even more marked in AC subtype (98-100). This
male predominance is still a mystery since there is no consensus regarding this huge gender difference
in this type of cancer, nevertheless, recent studies have demonstrated that severe reflux in men may be
a contributing factor (100). Another hypothesis is the influence of sex hormones. Studies suggest that
there is an androgenic effect and a estrogenic effect regarding the ratio male-to-female of 4.4 (101). This
theory is supported by the by sex steroid hormone involvement in the inflammatory process, since there
are associations between testosterone and inflammatory markers, sex steroid hormone receptor protein
expression in esophageal cancer tissue, and lower rates of AC among men with prostate cancer, who are
likely to receive anti-androgen therapies (100,101). Supporting this data, a small hospital-based study
reported high levels of testosterone in adenocarcinoma cases than in controls (102). There is also been
reported positive associations for free androgens in Barret's metaplasia, in two studies of oesophageal
adenocarcinoma (103).

Squamous cell carcinoma of the upper and middle thirds of the esophagus arise from the
stratified squamous epithelial lining of the oesophagus (92) this occurs when oesophageal mucosa is
exposed to repeated damage, which result in changes to the squamous oesophageal mucosa leading to
a squamous hyperplasia that precedes to low-grade and high-grade squamous dysplasia, which then
develops into invasive cancer (96). Adenocarcinoma of the distal esophagus develops from exposition to

repeated damage resulting in a metaplastic epithelium (Barrett oesophagus - were the squamous
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epithelium is replaced by columnar glandular cells) that is transformed through low-grade and high-grade

dysplasia to invasive cancer (96).
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Figure 12 - The global annual incidence of OSCC and OAC (96).

1.4.2 Risk factors

The patterns of oesophageal cancer are very different at a geographical level. Although the
mechanism of oesophageal tumorigenesis is not fully understood, there is several factors that are known

to increase the probability of developing this neoplasia. Some of these factors are shared by the two main
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subtypes and others are specific for each histological type. Table 2 summarizes the main risk factors that

contribute to the development of oesophageal cancer.

Table 2 - Risk Factores that affect the development of oesophageal malignancies (98).

Rizk factors ESCC EAC
Tobacco smoking e e
Excess alcohol consumption e e
Barrott's ssophagus NS e
Reflux (GERD) symptoms NS e
Obasity NS e
Excess energy consumption NS +
Excass fat consumption NS -
Povarty + NS
Low education level + NS
Excess intake of hot beverage - M3
[thermal injury)
H. pylori infection® Protactive® Protective®

+++, Very strong effect; ++ moderate sffect; +, some effect. EAC,
asophageal adenocarcinoma; ESCC, esophageal squamous cell carci-
noma; GERD, gastroesophageal reflux dissase; NS, not significant
"Role of Helicobactar pylori infection as a risk factor affecting esoph-
ageal carcinoma was cited from sources other than *.

1.4.3 Diagnosis and treatments

Due to the muscular and expansive features of the oesophagus, the symptoms associated to
developing malignancy are mistaken with symptoms of a cold or a sore throat and normally patients tend
to ignore until it is too late and when the tumour is detected it has reached a relatively locally advanced
or metastatic stage. The normal warning signals that something is not right include difficulty swallowing
(dysphagia) or pain when swallowing (odynophagia), involuntary and progressive weight loss, and
hoarseness or cough; cough can signify laryngeal nerve involvement or aspiration (96).

The most used diagnosis tool for oesophageal cancer is endoscopy, although it is not the best
examination. Endoscopy can be improved with the use of Lugol’s iodine dye (where it can be used in a
chromoendoscopy). This dye will help in the identification of early OSCC or by using narrow-band imaging,
in which light of specific wavelengths is used to improve the resolution of the surface mucosa (92,96).
During the examination if the endoscopist find erosions, ulcers, strictures, or metaplasia, he has to decide
if the origin of these changes is nonneoplastic or neoplastic (104). The endoscopist will perform a biopsy,
if there is a suspicion of a neoplastic origin. A biopsy can reach a level of confidence of 96% if a minimum
of 8 biopsy are taken from the margins and the centre of the lesion (96,104).

Staging of a neoplasia is essential in order to establish the appropriate treatment choices for
oesophageal cancer. The staging for oesophageal cancer should be performed according the tumour-

node-metastasis (TNM) classification (Figure 13), apart from the TNM classification there’s three other
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classifications that depend on the mode of staging: clinical or radiological staging (c stage), pathological
staging (p stage) determined after primary surgery or endoscopy for localized disease or pathological

staging after neoadjuvant therapy (yp stage) (96).
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Figure 13 - Tumour-node-metastasis categories. Tumour classification according to the tumour-node-metastasis (TNM)
categories. T refers to the size of the primary tumour and whether it invades the nascent tissue as shown. N refers to lymph
node involvement: NO describes no regional lymph node metastasis; N1 describes regional lymph node metastases involving
one or two nodes; N2 describes regional lymph node metastases involving from three to six nodes; and N3 describes regional
lymph node metastases involving seven or more nodes. M refers to distant metastasis and is categorized as MO (no distant
metastasis) or M1 (distant metastasis). HGD, high-grade dysplasia; Tis, cancer in situ.

After the TNM stage is defined, the patient will be presented with a multidisciplinary tumour
conference, were the best treatment will be decided. This decision is based on the localization of the
disease, if the patient gave locoregional (stage 1-3) disease or if he has metastasis (stage 4). When the
neoplasia is locoregional, patients are classified as: (1) medically fit and receptive to surgery,
chemotherapy, or chemoradiation; (2) medically unfit or unreceptive for surgery but medically fit for
chemotherapy or chemoradiation; or (3) unfit for either surgery, chemotherapy, or chemoradiation (Figure

14) (96,105).
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Figure 14 - An algorithm for the management of localized oesophageal cancer. The algorithm depicts the treatment options
for early-stage and locally advanced oesophageal squamous cell carcinoma (OSCC) and oesophageal adenocarcinoma (OAC),
in the absence of metastasis. EUS, endoscopic ultrasonography (96).

1.4.1 Oesophageal cancer metabolism

The presence of metabolic remodelling has been described in oesophageal carcinomas
(106,107). Several studies have been drawing attention to the role of key metabolic enzymes and their
association with aerobic glycolysis in OC, trying to provide a new molecular therapeutic targeting in
adenocarcinoma and squamous cell carcinoma of the oesophagus (108-110). The studies focus on the
importance of GLUT1 (108,111), LDH-A (112), pyruvate kinase (PKM2) (108,113), CA1X (109,114) and
HIF1-a (110,115) in the metabolic remodelling of oesophageal cancer . However, there are few studies

that characterized the role of MCTs on the survival and progression of oesophageal tumours.

1.5 Rationale and Aims

Since the expression and activity of MCTs is unknown in oesophageal carcinomas, the main aim
of this work was to explore the role of MCTs in this type of cancer, by characterizing their expression in
oesophageal carcinoma tissues and correlate their expression with metabolic markers studied and assess
the clinical-pathological impact. The second aim was to characterize the expression of MCTs, CD147 and
metabolic markers in oesophageal squamous cell carcinoma cell lines and the effects of MCT down-

regulation evaluating cell viability and glucose consumption and lactate efflux.
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Thus, the specific aims were:
- Characterization of the expression of MCTs and other metabolism-related markers in a series
of human oesophageal carcinomas tissue by Immunohistochemistry and cell lines by

immunofluorescence and Western Blot.

- Evaluation of the effects (cell viability and metabolism) of MCT inhibition in oesophageal

squamous cell carcinoma cells. Cell viability was assessed by sulforhodamine-B assay and cell

metabolism (glucose consumed and extracellular lactate) was measured using colorimetric kits.
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2.MATERIALS AND METHODS

2.1 Protein expression assessment in human samples

2.1.1 Tissue samples

A series of paraffin-embedded oesophageal carcinomas tissue samples were obtained from
Hospital de Cancer de Barretos, Sdo Paulo, Brasil. This series was composed by 45 cases of oesophageal
adenocarcinoma and 50 cases of oesophageal squamous cell carcinoma. This study was approved by

the Local Ethical Committee and the samples were unlinked and unidentified from their donors.

2.1.2 Immunohistochemistry

Immunohistochemistry is a technique based on the principle of antibody-antigen interaction that
allows the detection of target proteins in biological tissues. The antibody-antigen interaction is visualized
using a chromogen, in which the enzyme conjugated to the antibody cleaves a substrate to produce a
colour precipitate at the location of the interest protein.

Protein expression of MCT1, MCT2, MCT4, CD147, GLUT-1, HKIl and LDH-A was evaluated by
immunohistochemistry (IHC) in representative 4um-thick tissue sections of human oesophageal samples.
Each slide was dewaxed in an oven at 80°C for 10 minutes, washed for 5 minutes in three consecutive
xylol baths, hydrated with decreasing concentrations of ethanol and finally placed in water. Subsequently,
the antigenic recovery was carried out in a water bath at 98°C for 20 minutes in specific buffer, followed
by a cooling-off period of 20 minutes. Each slide was washed twice in TBS 1x buffer for 5 minutes, and
then the inactivation of endogenous peroxidases was carried out with 3% H.O, solution, diluted in
methanol. The immunohistochemical reactions of MCT1 and CD147 were performed with the Lab Vision
UltraVision ONE Detection System: HRP Polymer (Thermo Fisher Scientific) polymer system, according
to the manufacturer's instructions. The reactions for MCT2, MCT4 and GLUT1 were performed with the
Lab Vision UltraVision Large Volume Detection System: anti-Polyvalent, HRP (Thermo Fisher Scientific),
based on the streptavidin-biotin peroxidase principle, following the manufacturer's recommendations.
Reactions of HKIl and LDH-A followed the avidin-biotin peroxidase principle, using R.T.U. Vectastain Elite
ABC Reagent (Vector Laboratories), according to the manufacturer's instructions. To visualize the
reactions, the Liquid DAB + Substrate Chromogen System (Dako) was used as the chromogen, following

the manufacturer's instructions. Finally, the slides were stained with Mayer's Hematoxylin (Dako) and
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mounted with Entellan mounting medium (Merck). As a negative control, the primary antibodies were

replaced with an appropriate universal negative control antibody (N1698 and N1699, Dako). Squamous

cell carcinoma tissue of the oral cavity was used as a positive control for MCT1, MCT4, HKII and LHH-A.

Normal kidney tissue as a positive control of MCT2, normal colon tissue as a positive control for CD147,

placenta as a positive control for GLUT1, normal stomach tissue for CAIX, tumoral colon tissue for PDK

and glioblastoma for HIF 1-a.. Details of the immunoreaction are summarised in the table 3.

Table 3 - Details about the immunohistochemical procedure used to visualize the different proteins

Positive Primary antibody
Protein Antigen Retrieval
Control Dilution Company
MCT1 Oral Squamous Cell | Citrate Buffer (0.01M, 1:300, overnight, room AB3538P
Carcinoma pH=6.0), 98°C, 20 min temperature Chemicon International
sc-50322
Citrate Buffer (0.01M, 1:200, 2 hours, room
MCT2 Kidney Santa Cruz
pH=6.0), 98°C, 20 min temperature
Biotechnology
MCT4 Oral Squamous Cell | Citrate Buffer (0.01M, 1:500, 2 hours, room sc-50329 Santa Cruz
Carcinoma pH=6.0), 98°C, 20 min temperature Biotechnology
sc-71038
EDTA (1 mM, pH=8.0), 1:500, overnight, room
CcCD147 Colon Santa Cruz
98°C, 20 min temperature
Biotechnology
Citrate Buffer (0.01M, 1:500, 2 hours, room ab15309
GLUT1 Placenta
pH=6.0), 98°C, 20 min temperature Abcam
HKII Oral Squamous Cell | EDTA (1 mM, pH=8.0), 1:1000, 2 hours, room ab104836
Carcinoma 98°C, 20 min temperature Abcam
LDH-A Oral Squamous Cell | EDTA (1 mM, pH=8.0), 1:500, 2 hours, room ab101562
Carcinoma 98°C, 20 min temperature Abcam
Citrate Buffer (0.01M, 1:2000, 2 hours, room ab15086
CA IX Stomach
pH=6.0), 98°C, 20 min temperature Abcam
sc-28783
Tumor tissue of Citrate Buffer (0.01M, 1:250, 2 hours, room
PDK Santa Cruz
colon pH=6.0), 98°C, 20 min temperature
Biotechnology
EDTA (1 mM, pH=8.0), | 1:200, overnight, room 610958 BD
HIF1-a Glioblastoma
98°C, 20 min temperature BIOSCIENCES
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2.1.3 Evaluation of the immunoreactions

Immunostained tissue was evaluated semi-quantitatively, by a pathologist, considering the
intensity of staining for each region determined above. The score for immunoreactive extension was as
follows: score 0 (0% of immunoreactive cells); 1 (<5% of immunoreactive cells); score 2 (5-50% of
immunoreactive cells) and 3 (>50% of immunoreactive cells). Cellular localization of staining (cytoplasm
/ plasma membrane) of the studied markers was also evaluated. Staining intensity was scored as: O:
negative; 1: weak; 2: intermediate; and 3: strong. The final score was defined by the sum of these semi-

quantitative parameters and grouped as negative (score 0-2) and positive (score 3-6).

2.2 Cell lines and cell culture

In the present study, the human oesophageal squamous cell carcinoma cell lines KYSE-30 and
KYSE-410 were used.
Cells were cultured in RPMI-1640 medium supplemented with 10% of Fetal Bovine Serum (FBS), 1% of
antibiotic solution (Penicillin-Streptomycin solution). They were incubated at 37°C under a humified
atmosphere with 5% of CO,, in an incubator. The maintenance of cell culture was done in 25 cm? culture
flasks (T25 flasks). The exponential growth phase was achieved by subculture, when 80% confluence was

reached, by treatment with 0.05% TrypLE Express solution.

2.3 Protein expression in oesophageal carcinoma lines

2.3.1 Total protein extraction

For the expression analysis of proteins in basal conditions, cells were grown in 25 cm? culture
flask at a confluence of 80%. Later, cells were harvested with lysis buffer (1% Triton-X100; 1% NP-40;
0.1mM EDTA; 50mM Tris-HCI, pH=7.5; 150mM NaCl), afterwards, protease inhibitors were added, and
cells were homogenized and put in ice for 10 minutes. After that, homogenized samples were centrifuged
(13000 rpm, 15 minutes, 4°C) and the supernatants were stored at -80°C until quantification and

analysis.
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2.3.2 Protein quantification

Protein concentration was determined using the Bradford assay and a protein standard, the
Bovine Serum Albumin (BSA) protein. Diluted BSA standards (0.1 pL; 0.25 pL; 0.5 pL; 1 pL; 5 pL) and
Bradford reagent were prepared according to the standard protocol. In a 96-well plate, 200 uL of Bradford
reagent was added to the standards of BSA standards or 2 pL of samples of total protein extracts and
finally, 98 uL of PBS was added. After incubation at room temperature for 5 minutes, absorbance was
measured at 590 nm using the SkanltTM software. The protein concentrations of total protein extracts

were obtained using the standard curve with the absorbance of BSA standards versus its concentration

in ug/mL.

2.3.3 Western Blot assay

After total protein extraction and protein quantification described above, samples were analysed
by a Western Blot assay. For that purpose, 20 ug of total protein samples were mixed with Laemmli
Sample Buffer (final volume 40 uL) and denatured at 95°C for 5 minutes, followed by a short spin. After
protein denaturation, samples were separated by electrophoresis on 10% polyacrylamide gel (resolving
gel solution: 375 mM Tris-HCI pH 8.8 SDS 0.4%, 15% glycerol, 0.1% TEMED, 0.05% APS; stacking gel
solution: 125 mM Tris-HCI pH 6.8 SDS 0.4%, 0.1% TEMED, 0.05% APS). Molecular weight marker
(Thermo Scientific) was used in all the blots to access protein size. The electrophoresis was performed
in a Mini-Protean Tetra System (Bio-Rad) electrophoresis system at 100 V per gel, using the running
buffer (0.025 M Tris base, 0.192 M Glycine, 0.1% SDS). The proteins separated in the polyacrylamide
gel were then transferred to a nitrocellulose membrane previously hydrated with transfer buffer (0.025 M
Tris base, 0.192 M Glycine, 0.1% SDS, 20% methanol). Electrotransfer occurred in a Mini-Protean Tetra
System (BioRad) at 54 mA for half an hour. Membranes were rinsed with PBS and blocked in TBS-T (TBS
with 0.1% Tween-20) containing 5% non-fat dry milk (Molico) for 1 hour at room temperature to block non-
specific binding sites. Then, membranes were washed with TBS-T and incubated with the specific primary
antibodies diluted in TBS-T with 5% non-fat dry milk or 5% BSA, overnight at 4°C, with agitation in a Roller
Mix. After overnight, membranes were washed two times for 5 minutes and once for 15 minutes with
TBS-T to remove excess of unbound antibody followed by incubation with appropriate secondary
antibodies diluted in TBS-T during 1 hour at room temperature, with agitation in a Roller Mix. Membranes
were washed two times for 5 minutes and once for 15 minutes with TBS-T and protein immunodetection
was revealed by chemiluminescence detection kit (BioRad), using the ChemiDoc XRS (BioRad). The

intensity of bands was quantified using the ImageJ software and -actin was used as internal control. The
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results of three independent experiments were quantified, and correspondent values were divided by the

B-actin value. All primary antibodies and secondary antibodies and their dilutions used in this study are

listed in Table 4.

Table 4 - Details of primary and secondary antibodies used in Western blot analysis

Size Primary antibody Secondary antibody
Protein
(kDa) Company (reference) dilution (dilution 1:5000)
MCT1 40-48 sc-365501 1:500 (5% BSA) Anti-mouse
MCT2 40-43 SC-166925 1:200 (5% milk) Anti-mouse
MCT4 43 sc-50329 1:500 (5% milk) Anti-rabbit
CD147 45-65 Sc-71038 1:500 (5% milk) Anti-rabbit
GLUT1 45-55 ABCAM 15309 1:500 (5% BSA) Anti-rabbit
HKII 102 ABCAM 104836 1:2000 (5% milk) Anti-mouse
LDH-A 35 Sc-137243 1:200 (5% milk) Anti-mouse
CAIX 50 ABCAM 15086 1:2000 (5% BSA) Anti-rabbit
PDK 43-55 sc-28783 1:200 (5% milk) Anti-rabbit
HIF1-a 120 BD BIOSCIENCES 610958 1:500 (5% milk) Anti-mouse
B - actin 43 sc-1616 1:300 (5% milk) Anti-mouse
2.3.4 Immunofluorescence

Protein expression of MCT1, MCT2, MCT4, CD147, GLUT-1, HKII, LDH-A, CAIX, PDK and HIF1-
a in cell lines was evaluated by immunofluorescence. IF is a laboratory technique that uses fluorochromes
to identify the presence of antibodies that are bound to specific antigens. These fluorochromes allow the
visualization of the target distribution in the sample under a fluorescent microscope.

For the expression analysis of proteins at basal conditions, cells were grown in glass coverslips
(4x1074 cells/well cells/coverslip). Twenty-four hours post cell seeding, the cell culture medium was
removed, and the cells were rinsed with PBS 1x. Then, the cells were fixed and permeabilized with cold
methanol for 20 minutes and each coverslip was washed with PBS-TWEEN 0.05% 2 times, 5 minutes
each. After that, the cells were blocked with 5% BSA for 30 minutes and finally the cells were ready for
the immunostaining. The primary antibodies were diluted in 5% BSA (according to manufacturers’
instructions) and then added to the coverslips and incubated overnight at 4°C. After incubation, the cells
were washed with PBS-TWEEN 0.05% 2 times, 5 minutes each, in order to remove the primary antibody.

From this point on, the coverslips must be covered from light. Next, the secondary antibody (also diluted
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in 5% BSA) was added to the cells and incubated for 1h at room temperature. Subsequently, the cells
were washed again with PBS-TWEEN 0.05% 2 times, 5 minutes each. Finally, a drop of mounting medium
(containing antifade agent and DAPI) was placed on each coverslip and the cells were ready to be
visualized on a fluorescence microscope. All primary antibodies and secondary antibodies and their

dilutions used in this study are listed in Table 5.

Table 5 - Details of primary and secondary antibodies used in Immunofluorescence analysis

Primary antibody Secondary antibody
Protein
Company (reference) dilution (dilution 1:500)

MCT1 CHEMICON AB35388 1:200 (5% BSA) Anti-rabbit
MCT2 Sc-166925 1:200 (5% BSA) Anti-mouse
MCT4 sc-50329 1:500 (5% BSA) Anti-rabbit
CD147 sc-71038 1:500 (5% BSA) Anti-mouse
GLUT1 ABCAM 15309 1:500 (5% BSA) Anti-rabbit

HKII ABCAM 104836 1:750 (5% BSA) Anti-mouse
LDH-A sc-137243 1:200 (5% BSA) Anti-mouse
CAIX ABCAM 15086 1:2000 (5% BSA) Anti-rabbit

PDK 5c-28783 1:200 (5% BSA) Anti-rabbit
HIF1-a BD BIOSCIENCES 610958 1:500 (5% BSA) Anti-mouse

2.4 Silencing of MCT1 and MCT4 in oesophageal cell lines

Short (or small) interfering RNA is a tool for inducing a short-term (2-4 days) silencing of gene
expression. It targets a specific mRNA and damages it.

Downregulation of MCT1 and MCT4 was performed in both oesophageal squamous cell
carcinoma cells, using short interfering RNA (siRNA) (Invitrogen). A control group was also performed,
using scrambled siRNA (Invitrogen) and another one without any siRNA or scrambled siRNA. For that,
different silencing mixes were prepared in Opti-MEM medium (GIBCO, Invitrogen), including specific
siRNA for MCT1 and MCT4 and lipofectamine RNAIMAX reagent (Invitrogen), according to manufacturers’

instructions. Ten minutes later, the previous mixtures were distributed in different wells (6-well plate) and
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cells were seeded in antibiotic-free medium (KYSE-30: 5 x 1075 cells/well; KYSE-410: 4 x 1075

cells/well). Twenty-four hours after transfection, the medium was replaced by a fresh complete medium.

2.5 Cell viability assay

Cell viability was assessed using the Sulforhodamine B (SRB)-based assay. The Sulforhodamine-
B has the ability to bind to basic amino-acid residues under acidic conditions. The binding of SRB is
stoichiometric, so the amount of dye extracted from the strained cells is directly proportional to the cell
mass.

Non-silenced and silenced KYSE-30 and KYSE-410 were plated in 48-well plate, at a cellular
density of 5,3x10™4 cells/well for KYSE-30 and 4,67x10"4 cells/well for KYSE-410 and allowed to
adhere overnight in antibiotic-free RPMI 1640 medium. After that, cells were incubated for an additional
period of 24 hours. At 48h post-silencing, cells were washed with PBS 1X and, then, incubated with 10%
of trichloroacetic acid (TCA) (Sigma-Aldrich), for 1 hour at 4°C. Wells were rinsed, three to four times,
with tap water, and allowed to dry overnight. On the next day, cells were incubated with Sulforhodamine
B (SRB) (Sigma-Aldrich) for 30 minutes, at room temperature, and, then, wells were rinsed, four times,
with acetic acid (1%). When wells were completely dried, cells were incubated with 10mM of Tris-base
(Sigma-Aldrich) for 5 minutes, at room temperature, under shacking. The absorbance was measured, at
490nm using the SkanltTM software. The range of silencing used was between 48h-96h, being 48h of
silencing the time Oh for the first SRB assay, 72h of silencing the 24h the second SRB assay and 96h of
silencing the 48h of the last SRB assay.

2.6 Metabolism assay (glucose consumption and lactate production)

Metabolic activity of OSCC cells was evaluated through quantification of extracellular glucose and
lactate, using different colorimetric assays. Non-silenced and silenced KYSE-30 cells (5.3x10™M
cells/well) and KYSE-410 (4.67x10™4 cells/well) were seeded into 48-well plates and incubated in
antibiotic-free RPMI 1640 medium, for 24 hours. At 48h post-silencing, aliquots of supernatants (20 pl)
were harvested for glucose and lactate (Spinreact SA) quantification. 200ul of working solution was mixed
with 2l of each sample. Blank contained 100ul of working solution and 2pl of PBS 1x. The mixture was

homogenized and incubated for 10min at room temperature and then measured at 490nm using the
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SkanltTM software. All results were normalized for total cell biomass, using the SRB assay described

above.

2.7 Statistical analysis

Data from human tissues was analysed using the SPSS statistical software (version 25, SPSS
Inc). Comparison of expression of the different markers of oesophageal squamous cell carcinoma and
oesophageal adenocarcinoma tissues was evaluated for statistical significance using the Pearson’s chi
square (x2) test with the threshold for significance being p<0.05. Analysis of associations between the
expression of different markers in both subtypes of oesophageal cancer and the clinical pathological data
were assessed using a Pearson’s chi square (x2) test. For association with survival a Kaplan Meier curve
with Cox regression was performed. For the in vitro studies, the GraphPad prism 6 software was used,

with the Student’s t test, considering significant values p<0.05.
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3.RESULTS

3.1 Analysis of MCTs, CD147 and metabolic markers in samples of

oesophageal carcinomas

3.1.1 Characterization of expression of MCT1, MCT4, CD147 and other metabolic markers in

oesophageal tissue

A total of 95 oesophageal carcinoma samples and 20 normal tissue samples were assessed for
different metabolic markers (MCT2, HKII, LDH-A, GLUT-1), MCT1, MCT4 and their chaperone CD147
(Figures 15, 16 and 17).

Normal tissue was negative for MCT2, MCT4, PDK, CA IX and HIF1-a. The rest of the markers
expression was present in at least one normal sample (Table 6).

Regarding the expression in the carcinoma samples, it was possible to observe that only MCT?2
was negative in all samples of carcinomas. PDK obtained a negative expression in squamous cell
carcinoma but not for the adenocarcinoma tissues (p=0.456). On the other hand, HIF1-a was negative
for the adenocarcinoma tissues but not for the squamous cell carcinoma tissues (p=0.266). Samples
were positive for all the other markers for the SCC tissues and for the AC tissues (MCT1 (p<0.008), MCT4
(p<0.001), CD147 (p<0.001), HK Il (p<0.001), LDH-A (p<0.001), GLUT1 (p<0.001) and CA IX (0.085))
(Table 6).

Table 6 - Expression of MCTs, CD147 and key metabolic markers in SCC and AC tissues.

MCT1 MCT4 CD147 HK Il LDH-A GLUT 1 PDK CAIX HIF1-a
Total n
Positive Positive Positive Positive Positive Positive Positive Positive Positive
(%) (%) (%) (%) (%) (%) (%) (%) (%)
Non-
neoplastic 20 6(30) 0 3(19) 1(5) 1(5) 10 (50) 0 0 0
SCC 50 25 (50) 23 (46) 41 (82) 40 (80) 33 (66) 40 (80) 0 10 (20.4) 2(4)
AC 45 9 (20) 8(17.8) 25 (55.6) 41 (91.1) 31 (68.9) 14 (31.1) 1(2.2) 6(13.3) 0
P 0.008 0.000 0.000 0.000 0.000 0.000 0.456 0.085 0.266
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Figure 15 - Immunohistochemical expression of MCT1, MCT4, CD147, HK II, LDH-A and GLUT1 in oesophageal squamous
cell carcinoma tissues (representative of the different scores). Pictures were taken at 400x magnification

32



Positive 3+ 2+ 1+ Negative
Tl 2 i A % 505 B

2w

Faas

MCT1

MCT4

CD147

HK1I

LDH-A

GLUT 1

Figure 16 - Immunohistochemical expression of MCT1, MCT4, CD147, HK I, LDH-A and GLUT1 in oesophageal
adenocarcinoma tissues (representative of the different scores). There was no 3+ case for MCT1. Pictures were taken at 400x
maghnification.
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Figure 17 - Immunohistochemical expression of MCT2 in oesophageal adenocarcinoma (OAC) tissues and oesophageal
squamous cell carcinoma (OSCC) tissues (representative of the different scores). There were only negative cases for this
marker. Pictures were taken at 400x magnification.
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3.1.2 Evaluation of associations between MCTs and metabolic markers in oesophageal tissue

Concerning MCTs and their chaperone CD147, there was an association between MCT1 and
CD147 (p <0.023) for squamous cell carcinoma but not for the adenocarcinoma samples (Table 7). For

MCT4 and CD147 there were no correlation between the two proteins in any of the samples (Table 8).

Table 7 - Association between monocarboxylate transporter (MCT) 1 and CD147 expressions in oesophageal carcinoma

samples
cD147 CcD147
SCC TotalN AC Total N
Positive (%) p Positive (%) P
MCT1 0.023 MCT1 0.260
Negative 25 17 (68) Negative 36 18 (50)
Positive 25 24 (96) Positive 9 7(78)

Table 8 - Association between monocarboxylate transporter (MCT) 4 and CD147 expressions in oesophageal carcinoma

samples
cD147 CD147
SCC TotalN AC Total N
Positive (%) P Positive (%) p
MCT4 0.112 MCT4 0.206
Negative 27 20(74.1) Negative 37 19(51.4)
Positive 23 21(91.3) Positive 8 6 (75)
3.1.3 Association between clinic-pathological data and MCTs and metabolic markers in

oesophageal tissue

To understand if the MCTs and their chaperone can be a relevant clinical marker, the association
of the expression of MCT1, MCT4 and CD147 with the clinical pathological data (Tables 9 and 10) was
performed using a statistical analysis. Only MCT4 (p = 0.043) and CA IX (p = 0.006) had a significant
association with patient survival for squamous cell carcinoma (Figure 18). For MCT1, CD147 and the
other markers no significant associations were observed between their expression and overall survival of
the patient’s (Appendix I).

In order to know if any of the parameters of the clinical data could be a prognostic factor for each
subtype, a statistical analysis was performed. Within all parameters, only tumour localization (p = 0.000)
and age (p = 0.022) were relevant for adenocarcinoma (Figure 19), gender was the only parameter that

had significance for squamous cell carcinoma (p=0.001) (Figure 20). Even though lesion size (p= 0.055)
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did not present any significant association, the value of pwas very close to the significant value (p< 0.05)

(Figure 20).

Table 9 - Clinical pathological data of patients with oesophageal squamous cell carcinoma and their associations with MCT1,
MCT4 and CD147

Clinico-pathological Data Total N MCT1 MCT4 CD147
For Squamous Cell Carcinoma Positive (%) P Positive (%) p Positive (%) P
Squamous Cell Carcinoma 50 25 (50) 23 (46) 41 (82)
Age 1 0.152 0.452
>61 31 16 (51.6) 12 (38.7) 24 (77.4)
<61 19 9 (47.4) 11 (57.9) 17 (89.5)
Gender 0.349 0.578 0.216
Male 45 24 (53.3) 21(46.7) 38 (84.4)
Female 5 1(20) 2 (40) 3 (60)
Tumour size 0.252 0.536 0.716
>4 29 17 (58.6) 13 (44.8) 23(79.3)
<4 21 8(38.1) 10 (47.6) 18 (85.7)
Tumour localization 0.156 0.901 0.481
Proximal and/or middle 12 4(33.3) 5(41.7) 11(91.7)
Middle 15 6 (40) 7 (46.7) 11(73.3)
Distal and/or middle 20 13 (65) 10(50) 16 (80)
Metastasis 8 7 (87.5) 0.410 4 (50) 0.620 7(87.5) 1

Table 10 - Clinical pathological data of patients with oesophageal adenocarcinoma and their associations with MCT1, MCT4

and CD147
Clinico-pathological Data Total MCT1 MCT4 cD147
For Adenocarcinoma N Positive (%) P Positive (%) p Positive (%) P
Adenocarcinoma 45 9(20) 8(17.8) 25 (55.6)
Age 0.461 0.456 0.545
>61 26 4 (15.4) 4(15.4) 13 (50)
<61 19 5(26.3) 4(21.1) 12 (6.2)
Gender 1 0.357 0.642
Male 40 8 (20) 8 (20) 23 (57.5)
Female 5 1(20) 0 2 (40)
Tumour size 1 0.600 0.760
>4 18 4(22.2) 3(16.7) 11 (61.1)
<4 27 5(18.5) 5(18.5) 14 (51.9)
Tumour localization 0.436 0.855 0.481
Proximal and/or middle 1 0 0 1 (100)
Middle 4 0 1(25) 3(75)
Distal and/or middle 35 9(25.7) 7 (20) 20 (57.1)
Metastasis 6 0 0.298 2(33.3) 0.327 4 (66.7) 1
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Figure 18 - Overall survival for MCT4 and CA IX in patients with oesophageal squamous cell carcinoma. (p < 0.05)
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3.2 Characterization of metabolic behaviour of squamous cell carcinoma

cells

3.2.1 Characterization of expression of MCT1, MCT2, MCT4, CD147 and other metabolic

markers in Squamous Cell Carcinoma cell lines

Western blotting and immunofluorescence were performed to assess the expression of MCTs,
CD147 and other metabolism-related markers (GLUT1, HK Il, PDK, LDH-A, CA IX and HIF1-a) in KYSE-
30 and KYSE-410 oesophageal squamous cell carcinoma cell lines. Total protein extracts from KYSE-30
and KYSE-410 oesophageal squamous cell carcinoma cell lines were profiled, and Western blot analysis
demonstrated that KYSE-30 and KYSE-410 cells expressed both MCT1 and MCT4 (Figure 21), however,
KYSE-30 expressed more MCT1, MCT4 and CD147 then KYSE-410. Functional MCT transporter
complexes require association with ancillary proteins. As stated above, it was reported that CD147 forms
complexes with MCT1 and MCT4, which is essential for MCT membrane expression and catalytic activity
(53,116). Thus, expression of CD147 was also evaluated. Western blot analysis demonstrated that both
KYSE-30 and KYSE-410 cells expressed CD147 (Figure 21). Both high glycosylated (HG) CD147 and low
glycosylated (LG) CD147 were detected in the blots. Both cell lines express all the metabolic markers that

were analysed (Figure 22).
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Figure 21 - Western blot analysis of MCT1, MCT4 and CD147 in SCC cell lines. B-actin was used as internal loading control.
Results of the Western blot are representative of at least three independent extractions, each one in triplicate.
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Figure 22 - Western blot analysis of metabolic markers in SCC cell lines. B-actin was used as internal loading control. Results
of the Western blot are representative of at least three independent extractions, each one in triplicate.

KYSE-30 and KYSE-410 cells were also analysed for MCT1, MCT2 MCT4, CD147, and metabolic
markers, like GLUT 1, HK II, PDK, LDH-A, CA IX and HIF1-a by immunofluorescence. All the proteins
were present in both cell lines (Figures 23, 24, 25 and 26). MCT1 and MCT4 were expressed in the
cytoplasm of both cell lines, however, a plasma membrane expression of MCT4 was only observed in
KYSE-30 and KYSE-410 cells (Figure 23 and 24). CD147 was markedly expressed in the plasma
membrane of both cell lines and it was possible to see the merge of MCT1 with CD147 and MCT4 with
CD147, which is in accordance to the literature (Figure 23 and 24). Regarding the glycolytic marker,
GLUT 1, HK Il and LDH-A, they were all expressed on both cell lines. GLUT 1 is highly express in the
plasma membrane and in accordance with the Western blot. HK I, LDH-A and PDK are expressed in the
cytoplasm, as expected (Figure 25 and 26). The pH regulator, CA IX, was expressed in both cell lines
(Figure 25 and 26), with a more marked expression on the plasma membrane of KYSE-410 (Figure 26).

Concerning HIF1-a, since the cells were not exposed to conditions of hypoxia, this marker appears on

the cytoplasm and not on the nucleus (Figure 25 and 26).
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KYSE- 30

MCT1 + DAPI MCT4 + DAPI

CD147 + DAPI CD147 + DAPI

MCT1 + CD147 + DAPI MCT4 + CD147 + DAPI

Figure 23 - Expression of MCT1, MCT4 and CD147 in KYSE-30 cell line by immunofluorescence. Plasma membrane staining
was observed. MCT1 merged with CD147 and the same occur for MCT4 and CD147.

39



KYSE-410

MCT1 + DAPI MCT4 + DAPI

CD147 + DAPI CD147 + DAPI
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Figure 24 - Expression of MCT1, MCT4 and CD147 in KYSE-410 cell line by immunofluorescence. Plasma membrane
staining was observed. MCT1 merged with CD147 and the same occur for MCT4 and CD147.
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CA IX + DAPI

HIF1 - a + DAPI

Figure 25 - Immunofluorescence expression of metabolic markers in KYSE-30 cell line.
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Figure 26 - Immunofluorescence expression of metabolic markers in KYSE-410 cell line.
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3.3 Effect of MCT1 down regulation in cellular metabolism behaviour of

glycolytic squamous cell carcinoma cells

In order to demonstrate the importance of the role of MCT1 expression in squamous cell
carcinomas, as a mediator of lactate efflux in glycolytic tumour cells, down-regulation of MCT1 was
performed using a small interference RNA (siRNA) for MCT1. Down-regulation of MCT1 in both cells was

confirmed by Western blot (Figure 27).
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Figure 27 - Down-regulation of MCT1 expression in KYSE-30 and KYSE-410 cells with siRNA. A) Representative blot for
siMCT1, MCT4 and the loading control 8 — Actin. B) Levels of MCT1 protein expression in KYSE-30 and KYSE-410 cells
transfected with siMCT1. Ctr: control, Scr: scramble RNA; si: short interference RNA for MCT1.

3.3.1 Effect of MCT1 down regulation on cell viability and cell metabolism of SCC cells

Cellular viability and cellular metabolism were assessed in order to demonstrate the role of MCT1
in performing the lactate efflux in cells and to see if inhibition of this protein had any effect on cell viability.
For that, scramble (scr) and siMCT1 were stimulated for 48 hours and the cell biomass, the extracellular
amounts of glucose and lactate were quantified. As we can see in Figure 28, down-regulation of MCT1
did not lead to a significant decrease on cell viability. The lactate efflux was not affected, since there was
not a decrease when in the siMCT1 is compared with the scramble (Figure 29 and 30). The most probable
explanation is there is a mechanism of compensation, since as it was demonstrated in the Western blot,

even though MCT1 is down-regulated, MCT4 is expressed in the silenced cells.
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Figure 28 - Effect of MCT1 down-regulation on total cell biomass of KYSE-30 and KYSE-410 cells after 48 hours. Results
are the mean + SEM of at least three independent experiments, each one in triplicate.
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Figure 29 - Cellular metabolism of KYSE-30 siMCT1 cells. Results are representative of three independent experiments with
mean + SEM, each one in triplicate.
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Figure 30 - Cellular metabolism of KYSE-410 siMCT1 cells. Results are representative of three independent experiments
with mean + SEM, each one in triplicate.

44



3.4 Effect of MCT4 down-regulation in cellular metabolism behaviour of
glycolytic squamous cell carcinoma cells
In order to demonstrate the importance of the role of MCT4 expression in squamous cell

carcinomas, as a mediator of lactate efflux in glycolytic tumour cells, down-regulation of MCT4 was

performed used a small interference RNA (siRNA) for MCT4. Down-regulation of MCT4 in both cells was

confirmed by Western Blot (Figure 31).
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Figure 31 - Down-regulation of MCT4 expression in KYSE-30 and KYSE-410 cells with siRNA. A) Representative blot for
MCT1, siMCT4 and the loading control $ — Actin. B) Levels of MCT1 protein expression in KYSE-30 and KYSE-410 cells
transfected with siMCT4. Ctr: control, Scr: scramble RNA; si: short interference RNA for MCT4.

3.4.1 Effect of MCT4 down-regulation on cell viability and cell metabolism of SCC cells

Cellular viability and cellular metabolism were assessed in order to demonstrate the role of MCT4 in
performing the lactate efflux in cells and to see if inhibition of this protein had any effect on cell viability.
For that, scramble (scr) and siMCT4 were stimulated for 48 hours and the cell biomass, the extracellular
amounts of glucose and lactate were quantified. As we can see in figure 32, down-regulation of MCT4 did
not lead to a significant decrease on cell viability. The lactate efflux was not affected, since there was not
a decrease when in the siMCT1 is compared with the scramble (Figure 33 and 34). The most probable
explanation is there is a mechanism of compensation, since as it was demonstrated in the Western blot,

even though MCT4 is down-regulated, MCT1 is expressed in the silenced cells.
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Figure 32 - Effect of MCT4 down-regulation on total cell biomass of KYSE-30 and KYSE-410 cells after 48 hours. Results
are the mean + SEM of at least three independent experiments, each one in triplicate.
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Figure 33 - Cellular metabolism of KYSE-30 siMCT4 cells. Results are representative of three independent experiments with
mean + SEM, each one in triplicate.
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Figure 34 - Cellular metabolism of KYSE-410 siMCT4 cells. Results are representative of three independent experiments
with mean + SEM, each one in triplicate.
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3.5 Effect of double MCT down-regulation in cellular metabolism behaviour
of glycolytic squamous cell carcinoma cells
Since there was no decrease in cell viability or any decrease in extracellular lactate when the cells
were silenced for MCT1 or MCT4, a double MCT down-regulation was performed using a small

interference RNA (siRNA) for MCT1 and MCT4. Down-regulation of MCT1 and MCT4 in both cells was
confirmed by Western Blot (Figure 35).
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Figure 35 - Down-regulation of MCT1 and MCT4 expression in KYSE-30 and KYSE-410 cells with siRNA. A) Representative
blot for siMCT1, siMCT4 and the loading control § — Actin. B) Levels of MCT1 protein expression in KYSE-30 and KYSE-410
cells transfected with siMCT1 and siMCT4. Ctr: control, Scr: scramble RNA; si: short interference RNA for MCT4.

3.5.1 Effect of double down-regulation on cell viability and cell metabolism of SCC cells

Scramble (scr) and siMCT1 + siMCT4 were stimulated for 48 hours and the cell biomass, the
extracellular amounts of glucose and lactate were quantified. In Figure 36 it is possible to see that when
both MCTs are down-regulated the cell viability decreases. Glucose consumption and lactate efflux were
slightly affected on KYSE-30 (Figure 37). It seems that the glucose consumption and lactate efflux of
KYSE-410 were not affected by the down-regulation of both MCTs (Figure 38). Thus, MCT1 and MCT4

down-regulation was not enough to impair the glycolytic rates.
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Figure 36 - Effect of MCT1 and MCT4 down-regulation on total cell biomass of KYSE-30 and KYSE-410 cells after 24 hours.
Results are the mean + SEM of at least three independent experiments, each one in triplicate.
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Figure 37 - Cellular metabolism of KYSE-30 siMCT1 + siMCT4 cells. Results are representative of three independent
experiments with mean + SEM, each one in triplicate.
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Figure 38 - Cellular metabolism of KYSE-410 siMCT1 + siMCT4 cells. Results are representative of three independent
experiments with mean + SEM, each one in triplicate.
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4.DISCUSSION

Oesophageal cancer is the most frequent malignancy worldwide and the sixth leading cause of
cancer-related death (117). Among the different tumour histologies of this cancer, oesophageal squamous
cell carcinoma and oesophageal adenocarcinoma are the most frequent (96). This neoplasia can be
detected by endoscopy followed by biopsy of suspicious areas for histopathologic diagnosis. Early-stage
tumours may be suitable for endoscopy resection, while locally advanced cancers are treated with
chemotherapy, chemoradiotherapy, surgical resection or combination of these (118,119). Under this
regime, the prognosis for patients with this cancer remains poor with 5-year survival rates estimated at
15-25% (94). Thus, exploitation of new molecular targets becomes crucial for this neoplasia.

Reprograming of energy metabolism is an hallmark of cancer cells (4). As stated by Otto Warburg,
cancer cells depend on glycolysis for the production of ATP even in aerobic conditions (10). The metabolic
phenotype will lead to an accumulation of lactic acid and protons, that will provoke a change in
intracellular pH. In order to avoid this problem, monocarboxylate transporters (MCTs) export the
accumulated lactate across the plasma membrane, thereby protecting themselves from cellular acidosis
(24). By inhibiting the lactate transport, the intracellular pH will increase and this will lead to a reduction
in tumour angiogenesis, invasion and metastasis (120,121). Thus, inhibition of lactate efflux in tumour
cells will cause internal acidification presenting an attractive therapeutic approach.

The present study demonstrated that tumour localization can be a low survival factor in the
adenocarcinoma subtype. When the adenocarcinoma affects the middle part of the oesophagus the
patient has a low probability of survival, nevertheless, it is very rare this subtype affecting only the middle
part of the oesophagus, since it is more predominant in the distal part of the oesophagus. The oesophagus
is an organ that is not supported by other organs in the human body and due to that features, the
localization of the neoplasia is important. As it was seen above the main treatments for this cancer include
chemoradiotherapy, neoadjuvant chemoradiotherapy and surgery and depending on the characteristics
of the patient and of the neoplasia these treatment options could reduce the health-related quality of life
(HRQoL). So, if the neoplasia is situated in the middle of the oesophagus and it needs a surgical approach
this will lead to another problem, since the tissue of the oesophagus has its own characteristics like, the
peristaltic movements that aid in the transport of food into our stomach. If part of this tissue is removed
there will be a problem when it concerns connection of the part that was removed, and this could lead to
a decline in the HRQoL. Another feature that has been demonstrated to be a poor prognostic factor is the

age. Patients that are older than 61, have little chance of survival, because elderly patients have more
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difficulty in leading with the disease and the aggressive treatments, since they normally are physically
and mentally worn out. For squamous cell carcinoma, only gender was demonstrated to be a low survival
prognostic factor, however this results do not correlate with the existing data, since there’s a higher
prevalence of the disease in males than in females and that may be because of the sex hormones that
have an protective effect on women (100). So, this result is being since this series of tissue have very
small number of women and this produces this sort of variation on the results. Even though it is not
statistically significant, the lesion size seems to be related with a poor outcome in squamous cell
carcinoma, this has some truth, since if the lesion has a bigger size, the damage that will provoke will be
bigger.

The presence of metabolic remodelling has been described in oesophageal carcinomas
(106,107). Several studies have been drawing attention to the role of key metabolic enzymes and their
association with aerobic glycolysis in OC, trying to provide a new molecular therapeutic targeting in
adenocarcinoma and squamous cell carcinoma of the oesophagus (108-110). The studies focus on the
importance of GLUT1 (108,111), LDH-A (112), CA IX (109,114) and HIF1-a (110,115) in the metabolic
remodelling of oesophageal cancer. Regarding to the expression of MCTs and the analysed metabolic
markers, our results showed that MCT1, MCT4, CD147, HKII, LDH-A, GLUT1 and CA IX were associated
with both histological subtypes since their expression was positive. PDK expression was only positive for
adenocarcinoma and HIF1-a was positive for squamous cell carcinoma. However, MCT2 was not
associated with either subtype of oesophageal cancer. Our results show that only MCT4 and CA IX can
be considered has a poor prognostic factors for squamous cell carcinoma. Even though in our results,
the other markers did not have any statistical significance the metabolic markers that were analysed were
very importantly expressed in the two tumor types, but because the expression was almost ubiquitous, it
was not possible to draw a differential meaning between them and the biological behaviour of the tumors.
Nevertheless, there is some literature that demonstrates that these markers can be used has indicators
of poor prognosis. A study of Huhta ef @/ showed that there is an increase in markers of tumour
metabolism that occurs during carcinogenesis and leads to the progression of adenocarcinoma and that
MCT1 and MCT4 are prognostic factors for OAC (122). Regarding CD147 expression, a meta-analysis
performed by Wang et a/ indicate that high CD147 expression in patients with oesophageal cancer was
associated with worse survival outcomes and common clinicopathological indicators of poor prognosis
(123). Li and colleagues have demonstrated that the expression of LDH-A may be a prognostic indicator
for poor survival in OSCC patients (124). In other solid tumours, the study of GLUT-1, CAIX and HIF-1a

in tissues has received much attention to understand how they correlate with malignancy progression.
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Concerning GLUT1 expression, its expression was considered a poor survival marker for oesophageal
squamous cell carcinoma (125) and oesophageal adenocarcinoma (126), however our study
demonstrated that GLUT1 was not significantly express in both carcinomas types. Carbonic anhydrase IX
is strongly expressed in oesophageal tissues and it appears to facilitate metastasis leading to a worse
prognostic (109,114), and this is in concordance with this study. HIF1-a has an increased expression in
oesophageal squamous cell carcinoma and it has an important role in the malignant features of OSCC
resulting in a significant poorer radiochemotherapy outcomes and 2-year overall survival (108,110,115);
however, in our casuistic, HIF1- o was not significantly express in both carcinomas types.

Characterization of cellular localization for MCTs expression is not always assessed in the
literature. As it is known, MCTs are important mediators of intracellular homeostasis, through the
intracellular pH regulation and maintenance of glycolytic activity. Thus, their plasma membrane
expression in tumour cells is essential for their functions (44). When analysing the immunohistochemistry
data, it is possible to verify that the squamous cell carcinoma has a more glycolytic profile than the
adenocarcinoma, and this is in accordance with the immunofluorescence and Western blot of the studies
in vitro. These findings suggest that MCT1 and MCT4 are responsible for the maintenance of glycolytic
acidic-resistant phenotype in squamous cell carcinoma, by the efflux of lactate. The adenocarcinoma,
even though it is not so glycolytic it still expresses all the proteins that were tested. This study also
demonstrated that MCT1 and MCT4 are present in higher amounts in the plasma membrane. So, we
verified that MCT1 and MCT4 plasma membrane was associated with CD147 expression and it was
observed that several cases of squamous cell carcinoma samples presented plasma membrane
expression comparable to MCT1 expression.

Overall, these results show that MCT1 and MCT4 have an important role in the efflux of lactate
that is associated to the glycolytic acid-resistance phenotype of the squamous cell carcinoma of the
oesophagus.

As stated before, there are various types of inhibitor of MCTs, however there is no specific inhibitor
for each MCT isoforms. Thus, specific MCT1 and MCT4 inhibition is important to demonstrate the role of
MCT1 and MCT4 in the lactate efflux and their pH regulation and understand its potential effects on cell
viability. The results herein obtained have shown that MCT 1 inhibition did not lead neither to a decrease
on cell viability nor a decrease in lactate efflux. This could be due to the fact that the expression of MCT4
was untouched even though MCT1 was inhibit. Consequentially, if we assume that MCT4 was expressed,
this means that the transport of lactate to out of the cell was still happening, since MCT4 was active.

Since the lactate efflux was still occurring, the regulation of the intracellular pH was being maintained and
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therefor the cells were still viable. The same phenomenon did occur when MCT4 was inhibited, since the
expression of MCT1 was unaffected by the inhibition of the other isoform, and therefore the mechanism
of compensation was still occurring leading to the continuous lactate efflux and pH regulation. As the
inhibition of a single MCT isoform did not lead to a decrease in lactate efflux and cell viability, the next
step was to attempt a double inhibition, i.e., both MCT1 and MCT4 were inhibited. When this inhibition
occurred, it was possible to see a dismal decrease in the cell viability, although it was not statistically
significant for both cell lines of squamous cell carcinoma tested. Regarding the lactate efflux, there was
a small decrease for KYSE-30, but was not significant. Even though both MCT forms were inhibited there
was still a continuous lactate efflux. This phenomenon may be due to the fact that lactic acid can also
diffuse across the membrane as a weak acid, and it does not matter if the lactate transporters are
inhibited (30). A model for lactate transport proposed by Michels and co-workers (127), suggests that a
lactate transport system with variable stoichiometry can efficiently transform free energy existing in the
form of a lactate chemical-potential gradient into a proton-motive force. This model is based upon the
general model of carrier mediated proton-substrate cotransport proposed by Rottenberg (128). Lactate is
envisioned as having an acidic proton that dissociates with a pH, in the physiological range. At low external
pH, the lactate is uncharged, and the mode of transport is represented by the stoichiometry H:/ L. In
other words, the transport of a single lactate molecule is tightly coupled to the transport of a single proton.
At higher external pH, the lactate proton dissociates, and the transport stoichiometry becomes (H),L-.
Basically, when the MCTs are silenced, the intracellular pH will decrease leading to a the cellular acidosis,
however when this happens lactic acid transforms into a permeant acid, this condition could promote a
slow but continuous extrusion of lactic acid from the cellular space to allow the maintenance of glycolysis
(30,129).

In conclusion, our study demonstrated that decreased expression of MCT1 and MCT4 is
responsible for decreased cell viability. However, further studies will be needed to observe what this dual
inhibition may cause in proliferation and migration, only in this way will it be possible to know if MCTs

could be a possible therapeutic target for use in this type of cancer.
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5.CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Carcinogenesis is a multistep process marked by the reprograming of cellular energy metabolism
of cancer cells (4). MCTs are key players in high glycolytic metabolism and acid resistant phenotype
allowing the transport of formed lactate couple to a proton (42). This work reveals some poor survival
factors for each histological subtype of oesophageal cancer and that MCT4 is a prognostic factor for
squamous cell carcinoma. After analysing the metabolic characterization, it is possible to affirm that the
squamous cell carcinoma presents a more glycolytic phenotype than the adenocarcinoma, which is
supported by the /n vitro studies. Regarding MCT inhibition, only in the inhibition of both MCT isoform
was a slight decrease in cell viability.

Despite the findings of the present work, many questions remain to be answered, thus, additional
experiments need to be carried out in the near future to complement this work.

To complement the results obtained in oesophageal carcinoma tissues, it would be important to
investigate the expression of MCTs in hypoxic regions and characterize in vitro its metabolic behaviour in
hypoxia.

Additional /in vitro studies for oesophageal adenocarcinoma cell lines, in order to see if this
histological type has the same metabolic behaviour as the oesophageal squamous cell carcinoma cell
lines. MCT1 activity inhibition, with specific MCT1 inhibitors (developed by AstraZeneca), will be important
to confirm the results obtained in this work. It would be interesting performing functional assays like cell
migration, cell proliferation and apoptosis, to see how inhibition of MCTs would affect these aspects of

tumoral cells.
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