
1

Providing Trusted Execution Environments using
FPGA

Sérgio Pereira, David Cerdeira, Cristiano Rodrigues, Sandro Pinto

Abstract—Trusted Execution Environments (TEEs) drastically
reduce the trusted computing base (TCB) of the systems by
providing a secure execution environment for security-critical
applications that are isolated from the operating system or
the hypervisor. TEEs are often assumed to be highly secure;
however, over the last few years, TEEs have been proven weak,
as either TEEs built upon security-oriented hardware extensions
(e.g., Arm TrustZone and Intel SGX) or resorting to dedicated
secure elements were exploited multiple times. In this paper,
we propose a novel TEE design, named Trusted Execution
Environments On-Demand (TEEOD), which leverages the re-
configurable logic of FPGA-SoCs to dynamically provide secure
execution environments for security-critical applications. Unlike
other TEE designs, ours can provide high-bandwidth connections
and physical on-chip isolation while providing configurable hard-
ware and software TCBs. We implemented a proof-of-concept
(PoC) implementation targeting an Ultra96-V2 platform. The
conducted evaluation demonstrated TEEOD can host up to 6
simultaneous enclaves with a resource usage per enclave of
7.0%, 3.8%, and 15.3% of the total LUTs, FFs, and BRAMS,
respectively.

I. INTRODUCTION

Security is becoming paramount for IoT end-to-end solution
designs [1]. One well-established strategy to provide increas-
ing integrity and confidentiality for applications, from the edge
to the cloud, relies on Trusted Execution Environments (TEE).
TEEs drastically reduce the trusted computing base (TCB)
of the systems by providing a secure execution environment
for security-critical applications that are isolated from the
operating system or the hypervisor [2]. Applications loaded
onto the TEE are guaranteed to run and process data in a secure
environment, also known as enclaves, isolated from the rest of
the host system, i.e., the rich execution environment (REE).
We depict this definition in Figure 1. Private user data is stored
in a secure storage area, and sensitive functions are executed
inside a TEE without interference from the REE. Therefore,
even if attackers have full control over the REE, in principle,
they cannot corrupt or leak data processed and stored inside a
TEE.

One of the most common TEE design approaches is to cre-
ate a virtual secure processor in the main application processor
by leveraging specific security-oriented hardware extensions.

Sérgio Pereira, David Cerdeira, Cristiano Rodrigues and Sandro Pinto are
with Centro ALGORITMI, Universidade do Minho, Guimarães (PORTU-
GAL). Email: sergio.pereira@dei.uminho.pt; david.cerdeira@dei.uminho.pt;
id9492@alunos.uminho.pt; sandro.pinto@dei.uminho.pt

This work has been supported by FCT - Fundação para a Ciência e
Tecnologia within the R&D Units Project Scope UIDB/00319/2020 and grants
SFRH/BD/145209/2019, SFRH/BD/146231/2019 and 2020.08729.BD.

Intel SGX [3] and Arm TrustZone [4] are prominent examples
of such technologies, widely used in the context of cloud
and mobile applications, respectively. However, both of these
approaches yield different weaknesses. TrustZone and SGX
have been successfully attacked multiple times, with highly
damaging impacts across various platforms, casting doubts
on the effectiveness of the security guarantees that existing
commercial TEEs can, in practice, provide [5]–[8].

An alternative approach that has also been taken by industry
to provide a TEE relies on dedicated external secure elements.
Google’s Titan [9] and Apple’s T2 [10] implements a secure
element by externally mounting a dedicated security processor
next to the main CPU. While dedicated secure elements
provide strong isolation between the REE and the TEE, the
off-chip communication fabric is physically exposed to an
attacker, making it vulnerable to probing attacks [11]. Fur-
thermore, the slow communication interface between the two
domains, e.g., SPI communication for Google Titan, limits the
applicability to use cases with high-bandwidth requirements
(e.g., Digital Rights Management services).

We introduce a novel TEE design aiming at disrupting the
way TEEs are being built and deployed. We propose a newly
refined TEE approach, named Trusted Execution Environ-
ments On-Demand (TEEOD), which leverages reconfigurable
FPGA technology to provide additional security guarantees
for security-critical applications. TEEOD implements secure
enclaves in the programmable logic (PL) by instantiating a
customized and dedicated security processor per application
on a per-need basis. The main reason why the PL is seen as a
suitable enabler for this purpose is that it is physically isolated
from the would-be malicious main CPU. Therefore, the PL
can act as a TEE as long as proper control mechanisms are
implemented to regulate arbitrary accesses. The TEEOD APIs
are compliant with the GlobalPlatform API specifications to
provide interoperability while deploying and managing legacy
trusted applications (TAs). To demonstrate the practicability of
TEEOD in real-world applications, we conducted the evalua-
tion on a Xilinx Zynq UltraScale+ MPSoC development board
(Ultra96-V2), focusing on hardware costs and performance.
The assessed results demonstrate that TEEOD can run up to 6
enclaves simultaneously, with a resource usage per enclave of
7.0%, 3.8%, and 15.3% of the total LUTs, FFs, and BRAMS.
TEEOD outperforms the requirement of 2 simultaneous active
TAs from the standard GlobalPlatform specification.



Hardware Protected Hardware Resources

Trusted Execution Environment

Trusted OS

Trusted 
App

Trusted 
App

Trusted 
App

Rich Execution Environment

Rich OS

Untrusted 
App

Untrusted 
App

Untrusted 
App

Fig. 1. Overview of a TEE example. On the right side the TEE (blue),
the trusted area where trusted applications execute. On the left side the
REE (orange), the untrusted area where typically a rich OS and untrusted
applications execute.

II. THREAD MODEL AND REQUIREMENTS

A. Threat Model

Our threat model is mainly inspired by the TEE attack
scenarios defined by Cerdeira et al. [12], i.e., we consider that
an attacker can take control of the REE and the interfaces to
the TEE components. Additionally, we consider that the secure
world software in TrustZone is malicious. This way an attacker
has full access to the platform’s buses, taking into account that
the hard CPU available in the Processing System (PS) can
access them. Of particular importance is that an attacker may
try to reconfigure the FPGA hardware; however, it’s possible to
guarantee that the bitstream installed in the FPGA is authentic
and cannot be replaced, by continuously monitoring for any
backdoor activity (e.g., JTAG and FPGA configuration ports)
[13], [14]. In addition, we consider that TEEOD TAs can be
malicious, and once deployed in the system, they may try to
steal security-sensitive data from other TAs or otherwise attack
the host platform by attacking secure devices or accessing
protected memory regions.

B. TEEOD Requirements

A TEE must provide a set of essential security features [15].
These features encompass the main building blocks to build
secure execution environments for performing security-critical
operations and data processing.

Isolation from the REE. TEEOD must provide isolation from
the REE executing in the PS. This requirement prevents mali-
cious untrusted applications from accessing and compromising
TAs (executing in TEEOD).

Isolation from other TAs. TEEOD must provide isolation
between multiple TAs. This requirement prevents malicious
or buggy TAs from accessing and compromising other TAs.

Application management control. TEEOD must only in-
stantiate and allow modifications of TAs from pre-approved
trusted sources. This requirement provides confidence in the
trustworthiness of TAs.

Identification and binding. TEEOD must leverage SoC built-
in mechanisms for binding data to the platform, thus pre-

venting malicious agents from accessing data outside of the
platform.

Trusted storage. TEEOD must guarantee the integrity, confi-
dentiality, and device binding of data belonging to TAs and the
TEE. This requirement enables TAs to securely store secrets
or other security-critical data in a secure memory area.

Trusted access to peripherals. TEEOD must provide the
ability to securely pair devices and TAs, thus allowing for
trustworthy interaction between them.

State of the art cryptography. TEEOD must feature crypto-
graphic algorithms (e.g., AES, RSA, ECC) and commonplace
cryptographic primitives such as random number generation
(RNG) and monotonic time stamps. This requirement guaran-
tees that the mechanisms built atop TEEOD are resilient to
known cryptographic attacks and weaknesses.

III. DESIGN

A. Design Principles

In light of the aforementioned threat model and require-
ments, we relied on a set of principles to guide our design.
These design principles intend to avoid widely-known secu-
rity pitfalls that have affected TEE systems, i.e., TrustZone-
assisted TEEs, over the years.

We followed a set of architectural principles aiming at
distributing responsibilities of system components, their level
of privilege concerning other components, and how and when
these components interact with other parts of the system. As
found in the literature [7], [16], shared hardware resources
have repeatedly been leveraged to extract the secrets and
manipulate core TA functionality. Sharing the software runtime
has also lead to the compromise of critical security functions
[17]. In TEEOD, we strive to avoid sharing hardware and
software resources. In addition, we adopt the principle of
least privilege, i.e., each component is given as little privilege
as needed to perform its functions. For example, in TEEOD,
TAs cannot arbitrarily access the main memory. The same
happens for the interaction between components, where each
component has well-defined and carefully designed inter-
faces so that unexpected interactions between components do
not compromise system security.

B. Design Overview

In the TEEOD architecture, TEEs are materialized through
secure enclaves instantiated on the reconfigurable hardware.
These enclaves can host custom accelerators or soft generic
processors depending on user requirements. For the sake of
this project, we emphasize the design implications of soft-
processors as enclaves, in an effort to foster portability and
interoperability among legacy TAs. So, the use case for custom
accelerators is currently out-of-scope. From the point of view
of the REE application, the flow follows the default RPC-
model, i.e., the client application issues the request and waits
for the reply from the TA.

2



PS 

REE
PL
TEE

TE
E 
Pe
ri
ph
er
al
s

TE
E 
Ma
na
ge
r 
Ag
en
t

DDRAM

TA
 #
2 

Bi
na
ry

TA
 #
1 

Bi
na
ry

TA
 #
0 

Bi
na
ry

Shared Memory

TA
 #
3 

Bi
na
ry

Rich OS Components

REE 
Communication 

Agent

TEE Client API

Public Device 
Drivers

Client
Application(s)

Normal REE 
Application(s)

Public Peripherals

TEE Communication Agent

TA Loader Agent

Enclave #0
soft processor

TC
M 

(B
RA
M)

Ma
il
bo
x

INT
RST

TEE Internal
Core API

Enclave #1
soft processor

TC
M 

(B
RA
M)

Ma
il
bo
x

INT
RST

TEE Internal
Core API

Enclave #3
soft processor

TC
M 

(B
RA
M)

Ma
il
bo
x

INT
RST

TEE Internal
Core API

Enclave #2
soft processor

TC
M 

(B
RA
M)

Ma
il
bo
x

INT
RST

TEE Internal
Core API

Fig. 2. Representation of the TEEOD Architecture. On the left side (orange), the untrusted applications and the rich components. On the right side (turquoise),
four secure enclaves. Of which three of them are occupied and the other one, ”Enclave #3”, is available to be used. At the bottom (grey), the shared memory
and the CM area where the TAs binaries are placed.

C. Trusted Applications Life-cycle

Trusted Applications Initialization. For an REE application to
communicate with a particular TA, it needs first to call the TEE
Client API to connect with the TEEOD. Then, TEEOD checks
if the TA was already loaded to an available enclave. If the TA
is not loaded, TEEOD copies the target TA binary to a private
Tightly-Coupled Memory (TCM) available per enclave. Once
the loading process is complete, TEEOD marks the enclave as
taken and the TA as properly loaded.

Trusted Applications Execution. First, the REE sends the
information that wants to communicate with the desired TA,
and TEEOD signals the enclave through an interruption,
notifying that a new message package has arrived. Next, TA
performs the command requested by the REE. After that, the
TA handles the command, and notifies the TEEOD that it has
finished the requested command by clearing a shared register.
Finally, the TA goes back into the wait for interrupt (WFI)
state.

Trusted Applications Finalization. Once the session between
the REE application and the TA completes, i.e., calling the
close session function provided by the TEE Client API,
TEEOD notifies the TA that the session shall be closed. This
notification is similar to sending any other message to the
TA. After the TA processes the command, TEEOD clears
the memory region of the enclave, hard resets the soft-core
and cleans its microarchitectural states, marks the enclave as
available, ensuring no information is leaked while running a
new TA in that enclave.

D. Shared Memory Management

Shared Memory is a block of memory that is shared between
the TEE and the REE and it is typically used to transfer large
blocks of data between them. Shared memory communication
is handled by the REE CA, i.e., it is responsible for first
allocating the requested memory. Then, provide the address

and size of the shared memory area in use. The communication
handling of the shared memory’s pointer and size is made by
the same mechanism as any other type of message.

IV. POC IMPLEMENTATION

In this section, we describe the PoC implementation of
the TEEOD architecture. We first explain the implemented
hardware blocks and then we overview the TEE Client API
and the TEE Internal Core API implementation.

A. TEE Hardware Blocks

The current PoC implementation takes advantage of het-
erogeneous multiprocessing (PS+PL) architectures. TEEOD is
mostly implemented on the PL, and expects the REE to run
in the processor core of the PS. As illustrated in Figure 2, the
main hardware blocks are TEE Manager Agent IP, TA Loader
Agent IP, TEE Communication Agent IP, soft processors for
the enclaves, and BRAMs for TCM of the soft processors.

TEE Manager Agent IP. The TEE Manager Agent IP (TEE
MA) is responsible for controlling the execution of TA Loader
Agent IP and TEE Communication Agent IP. These modules
are responsible for managing the allocation and release of
enclaves, as well as the correct execution of each TA. TEE
MA keeps track of the available enclaves, where each enclave
is identified by the address of the respective private TCM.
TEE MA also saves the UUID of each running TA and the
respective enclave. Implemented as an AXI4 Slave IP, the TEE
MA shares with the REE the following registers: address, size,
and UUID of the intended TA; status register to indicate the
state of loading of the TA. Once the TA MA selects a free
enclave, it sends the address (addr src output register) and size
(size output register) of the intended TA to the TEEOD Loader
Agent IP, as well as the TCM address of the chosen enclave
(addr dst output register). After the TEEOD Loader Agent IP
completes the transfer of the TA binary to the chosen enclave,
the TEE MA marks the enclave as taken and communicates to

3



the TEE Communication Agent IP that the TA was currently
loaded and can start to communicate. If the TA is already
loaded to an enclave, TEE MA skips the loading request
process. Each enclave has a reset signal that is connected to the
TEE MA, so the TEE MA has full control over the enclaves.

TA Loader Agent IP. The TA Loader Agent IP is responsible
for loading TAs to the private memory of the enclave. The
TAs binaries are stored in a large block of physical-contiguous
memory, which is created at boot time by the rich OS
(Linux) using the contiguous memory allocator (CMA). When
a specific TA is needed, a region of memory within this
physical-contiguous area is allocated to load the TA binary. Per
TEE Manager Agent request, the TA Loader Agent receives
the base address as well as the size of the region where
the target TA encrypted binary is located. Then it triggers
high-bandwidth directed memory access (DMA), loading the
TA binary from the DDRAM to the target private enclave
TCM, without any PS intervention. In the current TEEOD
implementation, binaries are in plaintext and not signed. We
did not implement the authentication, encryption, and trusted
storage mechanisms. In the near future, we will extend the
TEEOD to include all these security-related features.

TEE Communication Agent IP. The TEE Communication
Agent (TEE COMM) is responsible for enabling communica-
tion between REE and TEE. It has a message box (Mailbox)
for each active enclave. Enclaves do not access mailboxes
from other enclaves, respecting the ”Isolation from other TAs”
requirement. TEE COMM has also an interrupt signal wired
to each enclave to notify the enclave whenever there is a
new available message. Once the TEE COMM receives a
communication package from the REE application, it waits
for the TEE MA to reply, carrying information about the
enclave in use. With this information, the TEE COMM sends
the package to the mailbox of the target enclave and sends
an interrupt signal to the enclave. Once the enclave clears the
interrupt, TEE COMM copies the enclave’s mailbox back to
the REE’s shared mailbox, thus ending the communication
between REE and TEE.

Enclaves. Enclaves are individual modules built around a
dedicated lightweight soft processor (e.g., Cortex-M1), private
BRAMs to store the TA code, mailboxes to receive and
transmit information with REE, a shared memory space, and
two interrupts: reset (RST signal) and TEE communication
interrupt (INT signal). The interrupt reset is connected to the
TEE Manager Agent IP and the TEE communication interrupt
is connected to the TEE Communication Agent. When the
RST signal is down, the enclave runs the TA present in
the private BRAM. Whenever it receives the INT signal, the
enclave leaves the WFI state and enters in the interrupt service
routine (ISR). At the ISR, the enclave fetches all the registers
available in the mailbox. Depending on the operation id reg-
ister, the enclave executes different operations. After executing
the target operation, the enclave clears the interrupt and enters
back into the WFI state.

B. TEE Internal Core API

The Internal Core API is the API that is exposed to TAs
running in the secure area. The TEE Internal API consists of
four major parts: (i) Trusted Storage API for Data and Keys;
(ii) Cryptographic Operations API; (iii) Time API; and (iv)
Arithmetical API. From the GlobalPlatform TEE Internal Core
API Specification, we have only implemented the necessary
features to successfully run a simple trusted application i.e.,
some functions of the Trusted Storage API and some functions
of the Cryptographic Operations API.

C. TEE Client API

The TEE Client API describes and defines how a client
running in an REE should communicate with the TA running
inside the TEE. To identify a TA to be used, the client
provides a UUID. All TA’s exposes one or several func-
tions. Those functions correspond to a so-called commandID
which is also sent by the client. From the GlobalPlatform
TEE Client API Specification, we have implemented the
following APIs: TEEC OpenSession, TEEC InvokeCommand,
TEEC CloseSession. The TEEC OpenSession API opens a
new Session between the CA and the specified TA and
communicates to the TEE COMM the operation id. The
TEEC InvokeCommand API invokes a command within the
specified Session. This API is also responsible for allocating
a portion of the shared memory if the param type argument
points to an address of a shared buffer.

V. EVALUATION

To evaluate TEEOD, we have deployed our prototype on
an Ultra96-V2, a development board based on the Linaro
96Boards Consumer Edition (CE) specification. The Ultra96-
V2 features a Xilinx Zynq UltraScale+ MPSoC ZU3EG with
2 GB DDR4 SDRAM. All FPGA modules were implemented
in Verilog-HDL, using Xilinx Vivado tool. Figure 3 depicts the
block diagram of the developed system. The diagram shows
the necessary blocks to implement a TEE with one enclave.
The enclave features a UART peripheral. The soft processor
embedded in the enclaves is an ARM Cortex-M1. This core is
very similar to the Cortex-M0, highly optimized for FPGA
implementation. Cortex-M1 is available as free to use via
ARM DesignStart FPGA.

According to GlobalPlatform specification, a compliant TEE
shall be able to host TAs with the minimum binary TA code
of 64 kiB. For the sake of this evaluation, we configured the
TCM of each enclave to 64 kiB and 8 kiB of shared memory.

A. Synthesis Results

We synthesized the TEEOD design onto the Zynq Ul-
traScale+ ZU3EG with up to four enclaves. We evaluated
the hardware logic required for each TEEOD design case
by assessing the number of LUTs, flip-flops (FFs), digital
signal processors (DSPs), and block RAMs (BRAMs). The
synthesis results are shown in Table I. Comparing the re-
source utilization per design, we observe that each enclave
adds to the system an average of 7.0% (5000/70560) of the

4



Enclave_0

BRAM_PORTA

M03_AXI

uart_rtl

BRAM_PORTA1

In0[0:0]

s_axi_aclk

s_axi_aresetn1

aux_reset_in

ext_reset_in

Enclave_0_Memory

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

PS_block

S_AXI_HPC0_FPD

BRAM_PORTA

M00_AXI

M02_AXI

pl_clk0

pl_resetn0

peripheral_aresetn[0:0]

Shared_Memory

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

TEEOD_Comm_Agent

tee_communication_agent_v1.0 (Pre-Production)

S00_AXI

S01_AXI

reg0_intr
s00_axi_aclk

s00_axi_aresetn

s01_axi_aclk

s01_axi_aresetn

TEEOD_Loader_Agent

BRAM_PORTA

M00_AXI

s_axi_aclk

s_axi_aresetn

Din[15:0]

trigger

doneaddr_destiny[31:0]

size[31:0]

addr_source[31:0]

TEEOD_Manager_Agent

security_monitor_v1.0 (Pre-Production)

S00_AXI

done_cpy

addr_src[31:0]

addr_dest[31:0]

size[31:0]

strt_cpy

cma_config[15:0]

rst_enclave

s00_axi_aclk

s00_axi_aresetn

uart_rtl

Fig. 3. TEEOD’s block diagram with one enclave (Xilinx Vivado simplified view, i.e., clocks and resets hidden). ”Enclave 0” is connected to a UART
peripheral and two BRAMs. One to implement the shared memory mechanism and the other one to work as TCM, holding the TAs binary.

TABLE I
SYNTHESIZED RESULTS OF FOUR TEEOD DESIGN CASES

Resources 1 Enclave 2 Enclave 3 Enclave 4 Enclave
LUT 9845 (13.95%) 14844 (21.0%) 20146 (28.55%) 24963 (35.37%)
LUTRAM 807 (2.80%) 987 (3.4%) 1171 (4.0%) 1355 (4.7%)
FF 11532 (8.17%) 17034 (12%) 22735 (16.11%) 28026 (19.85%)
BRAM 34 (15.7%) 68 (31%) 102 (47.22 %) 136 (62.96%)
DSP 3 (0.83 %) 6 (1.6 %) 9 (2.5%) 12 (3.3)%
IO 2 (2.4%) 2 (2.4%) 2 (2.43%) 2 (2.4%)
BUFG 3 (1.53%) 4 (2 %) 4 (2 %) 4 (2%)

total LUTs, 0.6% (180/28800) of the total LUTRAMs, 3.8%
(5500/141120) of the total FFs, 15.3% (34/216) of the total
BRAMs, and 0.9% (3/360) of the total DSPs. The most used
resource for enclave synthesis is BRAM. This could become a
bottleneck for the scalability of the TEEOD solution, limiting
the number of active enclaves and TAs at a specific point in
time. However, according to GlobalPlatform specification, a
compliant TEE shall be able to host two TAs at the same
time. So, in its current form and targeting the Ultra96-V2,
TEEOD can run up to 6 enclaves without running out of
BRAM resources. This is enough to comply with the standard
GlobalPlatform specification. For future work, we will study
how to securely attribute regions of main memory to enclaves,
thus improving the scalability of the TEEOD solution.

B. Performance Analysis

We next evaluated TEEOD in terms of performance. To
obtain experimental results, each of the experiments was
repeated 100 times. The power-saving mode was turned off
and the CPU frequency was set to the maximum value to
minimize variation between experiments.

First, we measured the execution time of the open session
operation (TEEC OpenSession) when a TA of 64 kiB is not
loaded, which took about 54.4 milliseconds on average. Then,
we measured the to open a session, of the same TA, when it is
already loaded on one enclave. In this case, the execution time
was 31.1 microseconds, 3 orders of magnitude shorter when
compared to the previous case, because TEEOD keeps track
of the available TAs and so does not need to load it again.

Next, we measure the execution time of the two differ-
ent mechanisms present in the invoke-command operation

(TEEC InvokeCommand). In the first scenario, arguments are
only passed through the message box. We test a simple TA
that returns a value, provided by the CA, incremented by one.
To evaluate communication via shared memory, in the second
scenario we test a TA whose invoke-command outputs a 16-
byte array to shared memory. We observe that the first scenario
takes 201.0 microseconds on average to execute while the
second one takes 327.05 microseconds on average.

Lastly, we tested the duration of the close session operation
(TEEC CloseSession). This operation took 40.1 microseconds
to complete, which is the time of the REE to notify the TEEOD
to close the session and receive a reply of whether it went right
or wrong. All close session-related operations, i.e., operations
to clear the enclave, are performed in a parallel way and
obfuscated from the REE’s point of view.

VI. RELATED WORK

There are several security-oriented hardware architectures
that have been leveraged to assist and facilitate the deployment
of TEE systems.

CPU-Extensions. One common TEE design approach relies
on dedicated CPU extensions, e.g., Intel SGX [18] and Arm
TrustZone [4]. This approach adds hardware into the CPU
to support isolation between execution environments, and the
main advantage is lowering costs by reusing the CPU to
execute in more than one security state. SGX has have been
leveraged to implement confidential computing architectures
in the cloud, while TrustZone has found mainstream adoption
in the mobile industry, providing a secure environment for
third-party security sensitive operations [19]. However, due to
the high number of disclosed vulnerabilities and attacks both
in TrustZone [12], [19] and SGX [5], [6], the real security
guarantees of these technologies have been put into question.

On-Chip Secure Processors. On-Chip secure processors have
also been used to provide a secure execution environment. This
way a secure processor is built into the SoC with dedicated
memory, addressing the concerns of sharing hardware re-
sources with the main CPU. Examples of such technology in-
clude Apple’s SEP [20], Qualcomm’s SPU [21], Intel ME [22],

5



and HECTOR-V [11]. Typically, on-chip secure processors
just provide a single TEE, limiting the broad applicability of
the technology for several applications.

External Secure Processors. Google’s Titan [9] and Apple’s
T2 [10] are external dedicated security processors mounted
externally to the SoC. Other external security environments
include Amazon’s Graviton [23], which uses a GPU to isolate
security sensitive operations from the main CPU; HETEE [24]
which uses the PCIe connections to securely link untrusted
CPUs to trusted isolated CPUs that interface with high-
performance hardware peripherals; and TPM [25], commonly
used security chips that store secretes and perform crypto-
graphic operations used for attestation.

FPGA-based TEEs Recently, FPGAs start being used to
instantiate isolated environments for performing both software
and hardware security sensitive operations. Recently, FPGAs
start being used to create isolated environments for performing
both software and hardware security sensitive operations.
Developed in the same time window, BYOTEE [26] provides
a very similar solution to TEEOD. Despite the common
similarities, we highlight the (i) lack of legacy GP support (ii)
the trust on the firmware of each enclave to load respective TA,
and (iii) inter-enclave communication as the major architec-
tural/implementation differences. ShEF [14] and MeetGo [27]
propose mechanisms to securely load custom hardware designs
onto a remote FPGA. Additionally, the hardware executes
securely in an environment where a malicious agent cannot
interfere with the operation or steal secrets. Ambassy [28]
instantiates secondary TEEs in the FPGA to execute hardware
versions of TAs, converted through HLS. These new TEEs are
managed by the primary TEE executing in the Arm TrustZone
(secure world) and are intended for third-party developers
to execute their applications. AMBASSY runs the software
applications as hardware bitstreams, imposing to the user the
need to translate software applications to hardware logic. This
can hamper interoperability and legacy support of existing
TAs. In contrast, in TEEOD, a software TA can execute
transparently, as long as it is compliant with standard Global
Platform internal APIs.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed TEEOD, a novel TEE design that
leverages reconfigurable FPGA technology. TEEOD imple-
ments secure enclaves in the PL by instantiating a customized
and dedicated security processor per application on a per-need
basis. We implemented a PoC implementation on an Ultra96-
V2 platform and conducted experiments that demonstrated
TEEOD is able to host up to 6 simultaneous enclaves. In
the future work, we expect to implement local TA attestation,
support the loading of encrypted TAs, improve scalability, and
leverage dynamic partial reconfiguration (DPR) technology to
instantiate and free resources of the enclaves.

REFERENCES

[1] S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi, “Securing the internet
of things (iot): A security taxonomy for iot,” in Proc. of Trust-
Com/BigDataSE, 2018.

[2] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in Proc. of USENIX Security, 2016.

[3] “Intel 64 and ia-32 architectures software developer’s manual,” 2021.
[Online]. Available: https://cdrdv2.intel.com/v1/dl/getContent/671200

[4] “Security technology building a secure system using trustzone
technology (white paper),” 2009. [Online]. Available: https://developer.
arm.com/documentation/PRD29-GENC-009492/c/System-Security

[5] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
in Proc. of USENIX WOOT, 2017.

[6] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in Proc. of USENIX Security, 2018.

[7] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “CacheKit: Evading
memory introspection using cache incoherence,” in Proc. of S&P.

[8] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel SGX,” in Proc. of European Workshop on Systems Security. ACM,
2017.

[9] S. Johnson, D. Rizzo, P. Ranganathan, J. McCune, and R. Ho, “Titan:
enabling a transparent silicon root of trust for cloud,” in Proc. of Hot
Chips, 2018.

[10] “Mac models with the apple t2 security chip,” 2021. [Online].
Available: https://support.apple.com/en-us/HT208862

[11] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “Hector-v: A
heterogeneous cpu architecture for a secure risc-v execution environ-
ment,” in Proc. of the 2021 ACM Asia Conference on Computer and
Communications Security, 2021.

[12] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in Proc. of S&P, 2020.

[13] E. Peterson, “Developing tamper-resistant designs with ultrascale and
ultrascale+ FPGAs.” [Online]. Available: {https://docs.xilinx.com/v/u/
en-US/xapp1098-tamper-resist-designs}

[14] M. Zhao, M. Gao, and C. Kozyrakis, “Shef: Shielded enclaves for cloud
fpgas,” CoRR, 2021.

[15] Global Platform, “Introduction to Trusted Execution Environments,”
2018. [Online]. Available: {https://globalplatform.org/}

[16] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
perils of security-oblivious energy management,” in Proc. of USENIX
Security Symposium, 2017.

[17] Quarkslab, “A Deep Dive Into Samsung’s TrustZone
(Part 3),” 2020. [Online]. Available: {https://blog.quarkslab.com/
a-deep-dive-into-samsungs-trustzone-part-3.html}

[18] Intel, “Intel Software Guard Extensions,” 2019. [Online]. Available:
{https://software.intel.com/en-us/sgx/}

[19] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computer Surveys, vol. 51, no. 6, 2019.

[20] T. Mandt, M. Solnik, and D. Wang, “Demystifying the secure enclave
processor,” Black Hat Las Vegas, 2016.

[21] Qualcomm, “Qualcomm Secure Processing Unit SPU230 Core
Security Target Lite,” 2019. [Online]. Available: {https://www.
commoncriteriaportal.org/files/epfiles/1045b pdf.pdf}

[22] J. O., “Getting Started with Intel Active Management Technology (Intel
AMT),” 2019. [Online]. Available: {https://software.intel.com/en-us/
articles/getting-started-with-intel-active-management-technology-amt}

[23] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in Proc. of USENIX OSDI, 2018.

[24] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang,
J. Ying, L. Zhang, and D. Meng, “Enabling rack-scale confidential
computing using heterogeneous trusted execution environment,” in Proc.
of IEEE Transactions on Circuits and Systems for Video Technology,
2020.

[25] Trusted Computing Group, “TPM Main: Part 1 Design Principles,
Version 1.2, Revision 116 ed.” 2011.

[26] M. Armanuzzaman and Z. Zhao, “Byotee: Towards building your own
trusted execution environments using fpga,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.04214

[27] H. Oh, K. Nam, S. Jeon, Y. Cho, and Y. Paek, “Meetgo: A trusted
execution environment for remote applications on fpga,” IEEE Access,
2021.

[28] D. Hwang, S. Yeleuov, J. Seo, M. Chung, H. Moon, and Y. Paek,
“Ambassy: A runtime framework to delegate trusted applications in
an arm/fpga hybrid system,” IEEE Transactions on Mobile Computing,
2021.

6


