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Abstract

Ansätze for Noisy Variational Quantum Eigensolvers

Simulating quantummechanical systems is one of the main applications envisioned for quantum com-

puters. In contrast with the first algorithms created for this purpose, that were devised to be implemented

in a fault-tolerant quantum computer, the Variational Quantum Eigensolver (VQE) aims to adjust to the con-

straints of Noisy Intermediate-Scale Quantum (NISQ) devices. There is hope that the class of Variational

Quantum Algorithms (VQAs), to which VQE belongs, will be the first to achieve quantum advantage.

The choice of ansatz can dictate the success (or lack thereof) of a VQA: too deep ansätze can hinder

near-term viability, or lead to trainability issues that render the algorithm inefficient. In this context, this

dissertation aimed to analyse different ansätze for quantum chemistry, examining their noise-resilience

and viability in state-of-the-art quantum computers. In particular, dynamic ansätze were explored, and

their performance compared against predetermined ansätze, with a focus on susceptibility to noise.

Multiple variants of VQE, namely Unitary Coupled Cluster Singles and Doubles (UCCSD)-VQE (prede-

termined) and Adaptive Derivative-Assembled Pseudo-Trotter (ADAPT)-VQE (dynamic), were implemented

both in simulators and cloud quantum computers. Using noise models, the impact of several noise sources

on convergence was assessed. Additionally, the importance of the operator pool in ADAPT-VQE was anal-

ysed, and strategies to manipulate the ansatz beyond the ADAPT-VQE algorithm were explored.

Several conclusions could be drawn from this work. Adapting the ansatz to the problem and system

was concluded to be fundamental in avoiding trainability issues, decreasing the circuit depth required

for a given accuracy, and improving noise-resilience (against circuit depth dependent and independent

sources alike). Dynamic ansätze were shown to be capable of enduring significantly larger error rates than

predetermined alternatives, and were thus proved to be better suited for NISQ devices. For 𝐻2, as far

as ground state energy calculations are concerned, ADAPT-VQE was shown to tolerate a 20 times lower

shot count, 150 times larger error rates in state preparations and measurements, and 850 times lower

coherence times than UCCSD-VQE. The difference is expected to increase with the size of the system.

Additionally, it was observed that there is still a margin for improving upon ADAPT-VQE. Further manip-

ulation of the ansatz was shown to be capable of producing yet shallower circuits for the same accuracy.

Using an idea previously proposed in the literature, a more conservative selection criterion was tested.

Additionally, removing operators on the fly based on available data was attempted as a new possibility.

Both approaches were shown to be capable of improving upon the ADAPT-VQE ansatz, resulting in an up

to 35-fold decrease in the error for a similar circuit depth within the first 10 iterations of ADAPT-VQE.

Keywords: adaptive ansätze, quantum chemistry, quantum computing, variational quantum algorithms,

variational quantum eigensolver
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Resumo

Ansätze para Eigensolvers Variacionais Quânticos Ruidosos

Simular sistemas quânticos é uma das mais relevantes potenciais aplicações dos computadores quân-

ticos. Os primeiros algoritmos criados para tal visam implementação em computadores quânticos toleran-

tes a falhas; em contraste, o Eigensolver Variacional Quântico (VQE) procura adaptar-se às limitações dos

dispositivos quânticos ruidosos de escala intermédia (NISQ). Há esperança que a classe de algoritmos

variacionais quânticos (VQAs), à qual o VQE pertence, seja a primeira a alcançar a vantagem quântica.

O ansatz pode ditar o sucesso (ou falta de) de um VQA: a sua profundidade pode impedir a viabilidade

a curto prazo, ou conduzir a problemas de treinabilidade que levam à ineficiência. Neste contexto, esta

dissertação pretendeu analisar diferentes ansätze para química quântica, examinando a sua resiliência

ao ruído e viabilidade em dispositivos contemporâneos. Em particular, exploraram-se ansätze dinâmicos,

cujo desempenho se comparou ao de ansätze predeterminados com foco na suscetibilidade ao ruído.

Diferentes variantes do VQE, nomeadamente UCCSD-VQE (predeterminado) e ADAPT-VQE (dinâmico),

foram implementadas em simuladores e em computadores quânticos. Com recurso a modelos de ruído,

o impacto de diversas fontes de ruído na convergência foi analisado. Inspecionou-se a importância do

conjunto de operadores no ADAPT-VQE, e exploraram-se estratégias adicionais para manipular o ansatz.

Várias conclusões puderam ser retiradas deste projeto. Concluiu-se que adaptar o ansatz ao problema

e ao sistema é fundamental para evitar problemas de treinabilidade, diminuir a profundidade dos circuitos,

e melhorar a resiliência ao ruído (seja a fonte dependente da profundidade do circuito ou não). Mostrou-

se que ansätze dinâmicos toleram taxas de erro superiores aos predeterminados, sendo portanto mais

adequados para dispositivos NISQ. Quanto aos cálculos da energia do estado fundamental, mostrou-se

que, para a molécula𝐻2, o ADAPT-VQE tolera um número de repetições do circuito 20 vezes inferior, taxas

de erro na preparação e medição de estados 150 vezes superiores, e tempos de coerência 850 vezes

inferiores do que o UCCSD-VQE. É expectável que a diferença aumente com o tamanho do sistema.

Adicionalmente, observou-se que há ainda uma margem para melhorar além do ADAPT-VQE. Mostrou-

se que outras formas de manipulação do ansatz são capazes de produzir circuitos ainda menos profundos

para uma mesma precisão. Usando uma ideia previamente sugerida na literatura, tentou-se usar um crité-

rio de seleção mais conservador. Alternativamente, remover operadores com base em dados disponíveis

ao longo da execução foi testado como uma nova possibilidade. Mostrou-se que ambas as estratégias

são capazes de superar o ansatz criado seguindo o protocolo do ADAPT-VQE, resultando num erro até 35

vezes menor para profundidades de circuito comparáveis dentro de 10 iterações do ADAPT-VQE.

Palavras-chave: algoritmos variacionais quânticos, ansätze adaptativos, computação quântica, eigen-

solver variacional quântico, química quântica

viii



Contents

List of Figures xii

Acronyms xx

1 Introduction 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Framework 10

2.1 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Measuring Pauli Strings . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Quantum Simulation and Trotterization . . . . . . . . . . . . . . . . . . 16

2.1.4 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Quantum Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 The Electronic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Finding the Ground State: Classical Approaches . . . . . . . . . . . . . . 25

2.3 Variational Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Variational Quantum Eigensolver . . . . . . . . . . . . . . . . . . . . . 39

3 Static Ansätze for VQE 48

3.1 Problem Agnostic Ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Application to Helium Hydride . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Problem Tailored Ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Application to Molecular Hydrogen . . . . . . . . . . . . . . . . . . . . 61

4 Problem Tailored, Dynamically Created Ansätze: ADAPT-VQE 72

4.1 The ADAPT-VQE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Fermionic-ADAPT-VQE . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



CONTENTS

4.1.2 Qubit-ADAPT-VQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Original Pool Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Fermion Inspired Pools . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Qubit Inspired Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Application to LiH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Evolution of the Optimization . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Application to Molecular Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Bond Dissociation Graph . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.2 Running the Algorithm on Cloud Quantum Computers . . . . . . . . . . . 86

4.4.3 Impact of Thermal Relaxation, SPAM errors, and Sampling . . . . . . . . . 88

4.4.4 Comparison with UCCSD-VQE . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Application to H4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.1 Qubit Pool: Effect of the Jordan Wigner String . . . . . . . . . . . . . . . 95

4.5.2 Fermionic vs Qubit Pools: Performance Comparison . . . . . . . . . . . . 96

5 ADAPT-VQE: Exploring other Pool Options 98

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Analysis of the Qubit Pool Operators . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Analysis of the Qubit-ADAPT-VQE State . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Alternative Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Generalized Singles and Doubles . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Eight Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.3 One Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.4 Two Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.5 Four Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Graphical Analysis of the State Evolution . . . . . . . . . . . . . . . . . . . . . . 108

5.6 General Comparison of Pool Performance . . . . . . . . . . . . . . . . . . . . . 111

6 ADAPT-VQE: Further Ansatz Manipulation 115

6.1 Removing Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.3 Application to LiH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1.4 Application to OH- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Conservative Ansatz Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.1 Comparison with Operator Removal . . . . . . . . . . . . . . . . . . . . 144

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

x



CONTENTS

7 Conclusions and Future Work 150

Bibliography 153

Appendices

A Implementation of Unitary Pauli String Exponentials 162

B Hamiltonian of H2 164

C Adapt-VQE Gradient Formula 167

xi



List of Figures

1 Representation of the state of a qubit in the Bloch sphere. The angles 𝜃 and 𝜑 correspond

to the parameters from equation 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Examples of circuits that perform single-qubit Pauli measurements, drawn in the IBM Quan-

tum Composer [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Examples of circuits that perform a 𝑍 ⊗ 𝑍 measurement, drawn in the IBM Quantum Com-

poser [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Examples of circuits that apply time evolution under simple Hamiltonians 𝐻𝑘 , consisting of

Pauli strings. They apply 𝑒−𝑖𝐻𝑘𝑡 using a parameterized 𝑍 rotation. The circuits were drawn

in the IBM Quantum Composer [41]. . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Representation of a molecule in a coordinate system. Upper case letters (𝐴, 𝐵) represent

nuclei, while lower case ones (i,j) represent the electrons. Similarly, upper case 𝑅 represent

position vectors pointing to nuclei, while lower case 𝑟 represent those pointing to electrons.

A single subscript is used on the position vector when the vectors point from the origin,

while two subscripts are used to represent relative position vectors. In the latter case, the

first and second subscripts indicate where the vector points to and from, respectively (e.g.

𝑟𝑖 𝑗 = 𝑟𝑖 − 𝑟 𝑗 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Typical outline of a variational quantum algorithm. . . . . . . . . . . . . . . . . . . . 35

7 Circuit for preparing the Hartree-Fock reference state, for the𝐻2 molecule. The circuits were

drawn in the IBM Quantum Composer [41]. . . . . . . . . . . . . . . . . . . . . . . 43

8 Circuit with 7 variational parameters for preparing an arbitrary 2-qubit state, drawn in the

IBM Quantum Composer [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Circuit with 6 variational parameters for preparing an arbitrary 2-qubit state, drawn in the

IBM Quantum Composer [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



LIST OF FIGURES

10 Performance of the VQE algorithm along the bond dissociation graph of 𝐻𝑒𝐻+, with and

without sampling noise. The upper plot shows the VQE energy, with and without sampling

noise, plotted against the exact diagonalization energy (which is exact within the basis set

and up to the Born-Oppenheimer approximation and relativistic effects). The lower plot shows

the overlap of the VQE state (with sampling noise) with the ground state obtained by exact

diagonalization. In the cases with sampling noise, 1000 shots were used. 25 points were

used for each interatomic distance; the median was used as the estimator, and the error

bars show the interquartile ranges. The quantum circuits were run on the CIRQ simulator

[22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Performance of the VQE algorithm with the Constrained Optimization By Linear Approxima-

tion (COBYLA) optimizer along the bond dissociation graph of 𝐻𝑒𝐻+, with default hyperpa-

rameters. The upper plot in figure 11a compares the single-run VQE energy with the exact

diagonalization energy, with and without sampling noise (1000 shots). For each interatomic

distance, the same random starting point was used for both cases. The lower plot shows the

overlap of the VQE state, obtained in the simulations with sampling noise, with the ground

state obtained from exact diagonalization. Figure 11b compares the median and the average

of the VQE energy over 15 runs with the exact diagonalization value, in the case where 1000

shots are used per energy evaluation. The quantum circuits were run in the CIRQ Simulator

[22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

12 Performance of the VQE algorithm with the Nelder-Mead optimizer along the bond dissocia-

tion graph of 𝐻𝑒𝐻+, before (12a, 12c) and after (12b, 12d) hyperparameter optimization.

The upper plots in figures 12a, 12b compare the single-run VQE energy with the exact di-

agonalization energy, with and without sampling noise (1000 shots). For each interatomic

distance, the same random starting point was used for both cases. The lower plots show the

overlap of the VQE state, obtained in the simulations with sampling noise, with the ground

state obtained by exact diagonalization. Figures 12c, 12d compare the median and the av-

erage of the VQE energy over 15 runs with the exact diagonalization value, in the case where

1000 shots are used per energy evaluation. The quantum circuits were run in the CIRQ

Simulator [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

13 Evolution of the VQE optimization for 𝐻𝑒𝐻+ at an interatomic distance of 90pm, using three

different IBM Quantum [42] backends: the statevector simulator (with no noise of any kind),

the QASM simulator (with sampling noise) and the Lima device (a 5-qubit Falcon processor).

In the last two cases, 1024 shots were used. The energy is plotted in blue and the overlap

with the true ground state in red; the pale blue line marks the true ground energy. The same

random starting point was used for all backends. The chosen optimizer was COBYLA. . 58

14 Evolution of the VQE optimization for𝐻𝑒𝐻+ at an interatomic distance of 90pm, for different

shot counts and using the Lima device. The remaining conditions (starting point, optimizer)

are the same as in figure 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiii



LIST OF FIGURES

15 Single-run UCCSD-VQE ground energy along the bond dissociation curve of the hydrogen

molecule, obtained using IBMQ [42] simulators. The results plotted in figures 15a-15c, or-

dered by increasing shot count, were obtained using the QASM simulator. The results plotted

in figure 15d were obtained using the state vector simulator (equivalent to infinite shots).

The red and green curves represent the Full Configuration Interaction (FCI) energy and the

Hartree-Fock energy, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

16 Bond dissociation curves of figure 15, zoomed in on the region nearing the equilibrium bond

length. The blue area marks the region of chemical accuracy (error of less than 1kcal/mol). 63

17 Evolution of the UCCSD-VQE optimization for 𝐻2 at an interatomic distance of 0.74Å, using

three different IBM Quantum [42] backends: the statevector simulator (with no noise of any

kind), the QASM simulator (with sampling noise) and the Belem device (a 5-qubit Falcon

processor). In the last two cases, 8192 shots were used. The energy is plotted in blue; the

pale blue region marks the area of chemical accuracy. The same starting point, the Hartree-

Fock reference state, was used for all backends. The chosen optimizer was COBYLA. . . 65

18 Evolution of the VQE optimization under the same conditions of figure 17 (same molecule,

interatomic distance and optimizer), plotted for three different shot counts and two differ-

ent backends. The QASM simulator (18a-18c) portraits the behaviour of an ideal quantum

processor, in contrast with IBMQ Manhattan (18d-18f), a 65-qubit Hummingbird processor. 66

19 Impact of the noise associated with different instructions on the performance of UCCSD-

VQE, using Belem’s noise model from Qiskit’s [3] providers.aer.noise module. The model is

generated automatically from the properties of IBMQ’s [42] device. Each curve represents

the UCCSD-VQE optimization, simulated with a model including the noise associated with the

corresponding instruction exclusively. 8192 shots were used in all curves. The conditions

are the same as those from figure 17 (same molecule, interatomic distance and optimizer). 68

20 Impact of Controlled NOT (CNOT) gate noise on the performance of UCCSD-VQE. The error

in the final energy is plotted as a function of the average CNOT gate error (equal to 1 − 𝐹 ,

where 𝐹 is the average gate fidelity). Twenty runs were used per point; the median was used

as the estimator, and the error bars show the interquartile ranges. The number of shots was

increased to ensure that sampling noise would not be the limiting factor for any gate error.

The conditions are the same as those from figure 17 (same molecule, interatomic distance

and optimizer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiv



LIST OF FIGURES

21 Plots showing the impact of different types of noise on the performance of UCCSD-VQE.

For thermal relaxation, a simple model assuming average gate times and a constant ratio

between the coherence times T1 and T2 was used. Figure 21a shows the evolution of the

error in the energy as a function of these times. For State Preparation and Measurement

(SPAM) noise, the ratio between the probability of measuring 0 after preparing 1 and the

probability of measuring 1 after preparing 0 was fixed (and greater than one, for the model

to be realistic). Figure 21b shows the evolution of the error as a function of these probabilities.

Figure 21c illustrates the impact of sampling noise by plotting the error as a function of the

number of shots. In all of the plots, twenty runs were used per point; the median was

used as the estimator and the error bars show the interquartile ranges. All noise models

were created using Qiskit [3]. The conditions are the same as those from figure 17 (same

molecule, interatomic distance and optimizer). . . . . . . . . . . . . . . . . . . . . . 70

22 Scheme illustrating the ADAPT-VQE algorithm. The green boxes represent processes that

are exclusively classical. The orange boxes represent hybrid processes (that include state

preparations and measurements in the quantum computer). . . . . . . . . . . . . . . 73

23 Evolution of the fermionic-ADAPT-VQE energy and gradient norm along the iterations, for

the lithium hydride (𝐿𝑖𝐻 ) molecule at an interatomic distance of 1.45Å. The convergence

criterion was set to a gradient treshold of 0.01. The Singlet Generalized Singles and Doubles

(SGSD) pool and the COBYLA optimizer were used. The shaded blue area represents the

region of chemical accuracy (error of less than 1kcal/mol). The simulation was done via

matrix algebra, and does not include any type of noise. . . . . . . . . . . . . . . . . . 83

24 Single-run, single-iteration Adaptive Derivative-Assembled Problem-Tailored (ADAPT)-VQE ground

energy along the bond dissociation curve of the hydrogen molecule, obtained using IBMQ

[42] simulators. The results plotted in figures 24a-24c, ordered by increasing shot count,

were obtained using the QASM simulator. The results plotted in figure 24d were obtained

using the state vector simulator (equivalent to infinite shots). The red and green curves

represent the FCI energy and the Hartree-Fock energy, respectively. . . . . . . . . . . . 84

25 Bond dissociation curves of figure 24, zoomed in on the region nearing the equilibrium bond

length. The blue area marks the region of chemical accuracy (error of less than 1kcal/mol). 85

26 Evolution of first the ADAPT-VQE optimization for 𝐻2 at an interatomic distance of 0.74Å,

using three different IBM Quantum [42] backends: the statevector simulator (with no noise

of any kind), the QASM simulator (with sampling noise) and the Belem device (a 5-qubit

Falcon processor). In the last two cases, 8192 shots were used. The energy is plotted in

blue; the pale blue region marks the area of chemical accuracy. The same starting point, the

Hartree-Fock reference state, was used for all backends. The chosen optimizer was COBYLA. 87

xv



LIST OF FIGURES

27 Plots showing the impact of different types of noise on the performance of ADAPT-VQE for𝐻2

at an interatomic distance of 0.74Å. For thermal relaxation, a simple model assuming average

gate times and a constant ratio between the coherence times T1 and T2 was used. Figure

27a shows the evolution of the error in the energy as a function of these times. For SPAM

noise, the ratio between the probability of measuring 0 after preparing 1 and the probability of

measuring 1 after preparing 0 was fixed (and greater than one, for the model to be realistic).

Figure 27b shows the evolution of the error as a function of these probabilities. Figure 27c

illustrates the impact of sampling noise by plotting the error as a function of the number of

shots. Twenty runs were used for each point; the median was used as the estimator (as it

filters out aberrant runs), and the error bars show the interquartile ranges. All noise models

were created using Qiskit [3]. The chosen optimizer was COBYLA. . . . . . . . . . . . 88

28 Evolution of the optimization of the first iteration of ADAPT-VQE (figure 28a) and of the UCCSD-

VQE algorithm, for𝐻2 at an interatomic distance of 0.74Å. IBMQ’s Belem processor was used

in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

29 Comparison of the effect of different types of noise on ADAPT-VQE and UCCSD-VQE for 𝐻2

at an interatomic distance of 0.74Å. The same noise models described in figures 21 and 27

were used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

30 Plots comparing the costs associated with UCCSD-VQE and ADAPT-VQE for a similar final

error, in a setting with no noise other than sampling noise. For each interatomic distance,

10 runs of the algorithms were performed. The median of the errors is plotted in figure 30a.

Figures 30b, 30c, and 30d present respectively the average number of energy evaluations,

measured observables, and total shots per run. The number of shots per Pauli string was

set to 213 and 218 for ADAPT-VQE and UCCSD-VQE respectively. These values were chosen

so that the error was roughly matched between the two algorithms (the average error was

0.00038 a.u. and 0.00039 a.u. by the same order). . . . . . . . . . . . . . . . . . . 93

31 Impact of the Jordan-Wigner string on the convergence of the qubit-ADAPT-VQE algorithm.

The graphs compare the evolution of the error in the energy along the 20 first iterations of

the algorithm, with and without the Z-strings in the pool operators. The molecule in study is

the 𝐻4 molecule at an interatomic distance of 1.45Å. . . . . . . . . . . . . . . . . . 95

32 Evolution of the error in the ADAPT-VQE energy along the evolution of the algorithm for the

Spin-Complemented Generalized Singles and Doubles (SCGSD) pool, the SGSD pool, and

the qubit pool. The molecule in study is the 𝐻4 molecule. . . . . . . . . . . . . . . . 96

33 Circuit for implementing the operator in 5.8 using the ladder-of-CNOTs method explained in

subsection 2.1.3. The circuit was drawn in the IBM Quantum Composer [41]. . . . . . . 107

34 Circuit for implementing the operator in 5.8 using the more efficient method introduced in

[98]. The circuit was drawn in the IBM Quantum Composer [41]. . . . . . . . . . . . . 107

xvi



LIST OF FIGURES

35 Evolution of the 20 first iterations of the ADAPT-VQE algorithm for three different pools: the

XXYX One Pool, the XXYX Two Pool, and the original Qubit Pool (without the Jordan-Wigner

string). The upper plot shows the evolution of the error in the energy. The lower plot shows

the evolution of the total probability amplitude of computational basis states representing

Slater determinants with an altered particle number or 𝑍 spin projection. The molecule in

consideration is the 𝐻4 molecule at an interatomic distance of 1.45Å. . . . . . . . . . 108

36 Evolution of the 20 first iterations of the ADAPT-VQE algorithm for different pools. The upper

plot shows the evolution of the error in the energy. The lower plot shows the number of Slater

determinants in the superposition state with altered particle number, 𝑆𝑧 , or neither. In 36c

and 36d, altered 𝑆𝑍 and particle number correspond to the same colour because the curves

coincide. When the green curve is not visible, it lies under the orange one. The molecule in

consideration is 𝐻4 at an interatomic distance of 1.45Å. . . . . . . . . . . . . . . . . 110

37 Comparison of the convergence of the ADAPT-VQE algorithm using several different One

Pools (figure 37a) and Two Pools (figure 37b) against the full Qubit Pool (without Jordan-

Wigner strings). In figure 37b, a curve corresponding to a One Pool was also plotted for

reference. The error in the energy is plotted as a function of the iteration number. The

molecule in consideration is 𝐻4 at an interatomic distance of 1.45Å. . . . . . . . . . . 112

38 Comparison of the convergence of the ADAPT-VQE algorithm using the Generalized Singles

and Doubles (GSD) Pool and the Eight Pool. The error in the energy is plotted as a function

of the iteration number. The molecule in consideration is 𝐻4 at an interatomic distance of

1.45Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

39 Impact of the choice of pool (between One, Two, Four, and Eight Pools) in the ADAPT-VQE

algorithm, for two different molecules. The error in the energy is plotted against the iteration

number. In figure 39b, the XXYX Four Pool and the Eight Pool correspond to the same color

because the curves coincide. These curves also overlap in some iterations in figure 39a. 114

40 Norm of the selected operator and change in energy in the first ten iterations of ADAPT-VQE.

The molecule in consideration is the 𝐿𝑖𝐻 molecule at an interatomic distance of 1.45Å. The

SGSD pool was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

41 Absolute value of the performance ratio in the first ten iterations of ADAPT-VQE, for the same

pool and molecule as figure 40. The performance ratio at a given iteration corresponds to

the operator added then. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

42 Relevant data structures at iteration 3 of the ADAPT-VQE algorithm, with an additional term

removal feature based on blocking and unblocking operators. The molecule in consideration

is 𝐿𝑖𝐻 , and the pool the SGSD pool. The units of energy, omitted to avoid overcrowding of

the figures, are Hartree throughout the whole chapter. Because the variational parameters

are dimensionless, the gradient shares the energy units. . . . . . . . . . . . . . . . . 122

43 Relevant data structures at iteration 4. . . . . . . . . . . . . . . . . . . . . . . . . . 123

xvii



LIST OF FIGURES

44 Relevant data structures at iteration 7. . . . . . . . . . . . . . . . . . . . . . . . . . 124

45 Relevant data structures at iteration 8. . . . . . . . . . . . . . . . . . . . . . . . . . 125

46 Relevant data structures at iteration 9. . . . . . . . . . . . . . . . . . . . . . . . . . 125

47 Relevant data structures at iteration 11. . . . . . . . . . . . . . . . . . . . . . . . . 126

48 Relevant data structures at iteration 12. . . . . . . . . . . . . . . . . . . . . . . . . 126

49 Relevant data structures at iteration 14. . . . . . . . . . . . . . . . . . . . . . . . . 127

50 Relevant data structures at iteration 3 of the ADAPT-VQE algorithm, with an additional term

removal feature based on a performance penalty. The molecule in consideration is 𝐿𝑖𝐻 , and

the pool the SGSD pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

51 Relevant data structures at iteration 4. . . . . . . . . . . . . . . . . . . . . . . . . . 132

52 Evolution of the relevant data, iteration 5 through 13. On top, we have data on the evolution

of the algorithm and on the selected operators. On the bottom, we have data specifically

regarding operator 25, that was removed at iteration 4. . . . . . . . . . . . . . . . . . 132

53 Relevant data structures at the end of iteration 11. . . . . . . . . . . . . . . . . . . . 135

54 Plot comparing the original ADAPT-VQE and the version with term removal, for LiH at an

interatomic distance of 1.45Å and using the SGSD pool. The error in the energy (top) and

the number of operators in the ansatz (bottom) are plotted against the iteration number. The

shaded blue area on the upper plot marks the error values within chemical accuracy (less

than 1kcal/mol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

55 Plots comparing the energy and energy error in the original ADAPT-VQE and the version

with term removal, for LiH at an interatomic distance of 1.45Å and using the SGSD pool.

The shaded blue areas on the plots mark the values within chemical accuracy both for the

energy (less than 1kcal/mol away from the FCI energy) and the error (less than 1kcal/mol). 139

56 Plot comparing the original ADAPT-VQE and the version with term removal, for OH− at an

interatomic distance of 1.45Å and using the SGSD pool. The error in the energy (top) and

the number of operators in the ansatz (bottom) are plotted against the iteration number. The

shaded blue area on the upper plot marks the error values within chemical accuracy (less

than 1kcal/mol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

57 Plots comparing the energy and energy error in the original ADAPT-VQE and the version with

term removal, for OH− at an interatomic distance of 1.45Å and using the SGSD pool. The

shaded blue areas on the plots mark the values within chemical accuracy both for the energy

(less than 1kcal/mol away from the FCI energy) and the error (less than 1kcal/mol). . . 141

58 Plot comparing the original ADAPT-VQE and the version with term removal, for OH− at an

interatomic distance of 1.45Å and using the Eight Pool. The error in the energy (top) and

the number of operators in the ansatz (bottom) are plotted against the iteration number. The

shaded blue area on the upper plot marks the error values within chemical accuracy (less

than 1kcal/mol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xviii



LIST OF FIGURES

59 Plots comparing the energy and energy error in the original ADAPT-VQE and the version with

term removal, for OH− at an interatomic distance of 1.45Å and using the Eight Pool. The

shaded blue areas on the plots mark the values within chemical accuracy both for the energy

(less than 1kcal/mol away from the FCI energy) and the error (less than 1kcal/mol). . . 143

60 Plot showing the minimum error reached for each ansatz size, for multiple ansatz growth

strategies. The molecule in case is LiH at an interatomic distance of 1.45Å. The SGSD pool

was used. In the points where the green curve, corresponding to conservative ansatz growth,

is not visible, it lies directly under the term removal curve. . . . . . . . . . . . . . . . 144

61 Plot showing the minimum error reached for each ansatz size, for multiple ansatz growth

strategies. The molecule in case is𝑂𝐻− at an interatomic distance of 1.45Å. The Eight Pool

was used. The term removal and conservative ansatz growth strategies correspond to the

same color because the curves coincide. . . . . . . . . . . . . . . . . . . . . . . . 146

62 Plot showing the minimum error reached for each ansatz size, for multiple ansatz growth

strategies. The molecule in case is 𝐻4 at an interatomic distance of 1.45Å. The original

ADAPT-VQE and the version with term removal correspond to the same color because the

curves coincide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xix



Acronyms

ADAPT Adaptive Derivative-Assembled Pseudo-Trotter vii, xv, xvi, xvii, xviii, xix, 6, 7, 8, 9, 36, 72,

73, 74, 75, 76, 82, 83, 94, 96, 97, 98, 99, 112, 113, 115, 116, 117, 118, 119, 122, 123,

130, 131, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 148, 150, 151, 152

ADAPT Adaptive Derivative-Assembled Problem-Tailored xv, xvi, xvii, 7, 8, 9, 72, 75, 76, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 108,

109, 110, 111, 112, 113, 114, 150

BCH Baker–Campbell–Hausdorff 18, 32

CC Coupled Cluster 5, 31, 32, 33, 61, 72

CCSD Coupled Cluster Singles and Doubles 31

CI Configuration Interaction 30, 31

CISD Configuration Interaction Singles and Doubles 31

CNOT Controlled NOT xiv, xvi, 8, 15, 17, 51, 61, 64, 67, 68, 69, 75, 83, 90, 96, 97, 106, 107,

112

COBYLA Constrained Optimization By Linear Approximation xiii, xiv, xvi, 54, 55, 57, 58, 65, 88

FCI Full Configuration Interaction xiv, xv, xviii, xix, 30, 48, 61, 62, 63, 69, 82, 84, 85, 116, 139,

141, 143

GSD Generalized Singles and Doubles xvii, 101, 112, 113

NISQ Noisy Intermediate-Scale Quantum vii, 3, 4, 5, 7, 8, 19, 20, 34, 75, 86, 96, 150, 152

QEB Qubit-Excitation-Based 102, 143

q-UCCD Quantum Unitary Coupled Cluster Doubles 44

QAA Quantum Adiabatic Algorithm 34

QAOA Quantum Approximate Optimization Algorithm 34, 38, 39

QPE Quantum Phase Estimation 4, 33, 34

QUBO Quadratic Unconstrained Binary Optimization 34

xx



ACRONYMS

RDM Reduced Density Matrix 7

SAGSD Spin-Adapted Generalized Singles and Doubles 76

SCF Self-Consistent Field 27, 28

SCGSD Spin-Complemented Generalized Singles and Doubles xvi, 72, 78, 79, 96, 97

SGSD Singlet Generalized Singles and Doubles xv, xvi, xvii, xviii, xix, 76, 78, 79, 80, 83, 96, 97,

116, 117, 122, 131, 136, 137, 139, 140, 141, 144, 148

SPAM State Preparation and Measurement xv, xvi, 8, 9, 19, 20, 21, 33, 57, 61, 70, 71, 88, 89,

90, 91, 150

SVD Singular Value Decomposition 49, 50, 52

UCC Unitary Coupled Cluster 5, 32, 44

UCCGSD Unitary Coupled Cluster Generalized Singles and Doubles 44

UCCSD Unitary Coupled Cluster Singles and Doubles vii, xiv, xv, xvi, 5, 6, 7, 8, 9, 32, 33, 36, 44,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 82, 83, 84, 85, 86, 89, 90, 91,

92, 93, 94, 150

UpCCGSD Unitary Paired Coupled Cluster Generalized Singles and Doubles 44

VCC Variational Coupled Cluster 32

VQA Variational Quantum Algorithm vii, 3, 4, 8, 34, 38, 54, 61

VQE Variational Quantum Eigensolver vii, xiii, xiv, xv, xvi, xvii, xviii, xix, 4, 5, 6, 7, 8, 9, 33, 36,

38, 39, 43, 44, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 108, 109, 110, 111, 112, 113, 114, 115, 116,

117, 118, 119, 122, 123, 130, 131, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145,

147, 148, 150, 151, 152

xxi





1

Introduction

1.1 Context and Motivation

Richard Feynman raised the question,

What kind of computer are we going to use to simulate physics?

, calling attention to the fact that the physical world is quantum mechanical, so quantum physics is

what we are concerned with [25]. So arose the answer: a new kind of computer.

The simulation of a quantum system being a difficult task to perform classically is but a symptom of

the fact that bits, as basic units of information in classical computing, are unfit to describe nature under

the laws of quantum mechanics. Quantum computing was thus born with the purpose of using quantum

mechanics itself to perform computation, replacing bits by their quantum counterparts: qubits. Mak-

ing use of quantum phenomena (namely entanglement; superposition; interference) empowers quantum

computers with the ability to do operations without a classical analogue.

The scaling of the description of highly entangled states using classical data inspired hope that quan-

tum computers would be able to perform tasks that are intractable even to classical supercomputers. The

memory required for storing a general state of a quantum system in a classical computer scales expo-

nentially on the size of the system; in contrast, the scaling is linear on a quantum computer, as seems

intuitive in view of it being such a system itself. In fact, an interesting reason to believe that a quantum

computer may bring advantage is that there is no known classical algorithm that can simulate such a

computer efficiently; representing the state of a few hundred qubits may already require more bits than

the number of atoms in the visible universe [69].

However, this fact does not constitute in itself proof that quantum computers are more powerful than

the classical ones. It is a misconception that quantum computers are exponentially parallel: even though

superposition implies that qubits can be in a linear superposition of states that are exponentially many on

the number of qubits, the information held by this superposition isn’t necessarily accessible. Measuring

the state of the qubits will cause the collapse of the wave function: transforming quantum information

into classical information destroys it irreversibly, unless the measurement reveals no information about

the quantum state it is inflicted upon [64].

Famously, by Holevo’s theorem, the accessible classical information in n qubits is bounded above by

n bits. The fact that the qubits carry more information is to no avail, unless one devises a clever way

of extracting information in an efficient manner. As such, the design of techniques that allow employing
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quantum resources advantageously is all but straightforward; and the quest for quantum algorithms has

developed into a large field of research.

In 1980, Benioff published the first article on quantum computation, a pioneering work describing

a quantum mechanical model of Turing machines [12]. Since then, there has been significant progress.

Notable quantum algorithms were introduced in the following decade, such as Deutsch–Jozsa in 1992 [21]

and Simon’s in 1994 [78]. Albeit not having much practical value, they hold their merit as some of the

first examples of how a quantum computer could offer an exponential speedup over classical computers.

Advantage of practical interest ensued when Shor, inspired by Simon’s proposal, introduced his famous

factoring algorithm [76].

Shor’s algorithm enables a (hypothetical) quantum computer to factor integers in a time polynomial

on their size - an exponential improvement as compared to the best-known classical algorithm for the

task. While this remarkable speedup was not unprecedented, Shor’s algorithm owes its distinct success

to the possible applications of the problem it was created to solve. An efficient factoring algorithm defies

the security of the vastly used RSA cryptosystem, which brought attention to the possible implications

of quantum computers. If resource requirements in what concerns quantum hardware were met, this

algorithm would allow breaking internet security: it manages to solve in a matter of minutes a problem

that would take years for the best-known classical algorithm to solve, and upon the difficulty of which the

RSA algorithm relies [70]. This was a significant landmark, as well as a stronger motivation for developing

the hardware that would pave the way for physically realising these theoretical proposals.

Albeit offering an unarguably less astounding quadratic speedup, Grover’s algorithm [36] for searching

in an unstructured database has also drawn formidable attention. Aside from covering a wide array of

applications, its strength is in offering a provable speedup: evidently, the number of evaluations required

to solve the problem classically has to scale linearly (half of elements in the search space will have to be

checked on average). By offering the uncanny possibility of finding a marked element after a number of

operations that is sub-linear on the size of the search space, Grover’s algorithm also contributed to a build

up of the public reputation of quantum computing as a curious and strange field.

While they seem compelling, these theoretical results are yet to be proven by experimental realization.

Current hardware limitations hinder the implementation of large-scale instances of algorithms such as the

aforementioned ones.

There has been notable progress since the concept of quantum computing was introduced. The first

implementation of an algorithm on a physical quantum computer took place in 1998 [18], and several

proof-of-concept demonstrations of small-scale instances of different algorithms followed. In 2012, Shor’s

algorithm was used to factor N=21 for the first time [58].

However, practical experiments up to now have been limited to toy problems and small, classically

tractable demonstrations. Building a quantum computer capable of outperforming a classical one in tasks

that may be of practical use seems to be strenuous at best, impossible at worse.

The difficulty of building the physical hardware is indissociable from the very same nature on top of

which the concept of quantum computing rests. Quantum mechanical states are very sensitive, causing
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qubits to require close to perfect isolation from the world to store and process information reliably. Building

a quantum computer thus implies granting the proper conditions, i.e. conditions that reduce the coupling

with the surrounding environment to the point that useful computations can be carried. Often, this involves

temperatures near absolute zero and shielding from radiation; this is aggravated by the fact that the

difficulty greatly increases with the system size, preventing large-scale quantum computers to have been

built so far [70].

There is a dichotomy between the scaling of the most compelling quantum algorithms, and the scaling

of the difficulty of building a quantum computer capable of actually bringing them to fruition. In the words

of two prominent French physicists vocally skeptical of quantum computing [37],

...the large-scale quantum machine, though it may be the computer scientist’s dream, is the experi-

menter’s nightmare.

After Shor’s algorithm was discovered, concerns were raised regarding the viability of quantum com-

puting: algorithms built under the assumption of an ideal quantum computer might be rendered useless

by decoherence and other types of noise [52, 86]. In light of the no-cloning theorem [23, 66, 96], that

forbids quantum data from being copied, error correction didn’t seem as trivial as in the classical case.

In 1995, Peter Shor himself recovered some hope with a viable way of realising error correction in

quantum computing [77]. Quantum error correcting codes are of the greatest importance: if error correc-

tion is important for computing in general, it is pivotal for quantum computing in particular. Unfortunately,

the overhead in terms of qubit requirements and number of necessary gates is severe [31].

An error corrected, fault-tolerant quantum computer does not seem to belong to a near future. John

Preskill coined the term Noisy Intermediate-Scale Quantum (NISQ) to describe the current era [69]. The

name encompasses qubit limitations as well as noise and decoherence.

After the promising algorithms of the 1990s shed some light on the potential of a fault-tolerant quantum

computer, there has been a growing effort to build such a device - but that possibility seems at best distant.

In an attempt to make as good use of NISQ computers as possible, the attention shifted in part from the

asymptotic scaling of algorithms to their near-term viability. The focus has widened, and thus, in addition to

creating conceptually advantageous algorithms lacking certainty that they are ever to be implemented, we

now observe a growing dedication to devising algorithms that seem implementable but aren’t necessarily

known to be advantageous. Variational quantum algorithms have emerged.

1.2 State of the Art

VQAs are hybrid quantum-classical algorithms that resemble machine-learning techniques typical to clas-

sical computing. The usual outline involves using a classical computer to find the variational parameters

that minimize a cost function, which is evaluated by the quantum computer. An interesting review of the

structure, applications and challenges of variational quantum algorithms can be found in reference [17].
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The role of the quantum computer in variational algorithms is to prepare trial states using a state

preparation circuit (called ansatz), and measure the expectation value (and possibly the gradients) of

the cost function in those states. The state preparation circuit includes a parameterized portion, the

parameters of which are fed to the quantum computer each iteration by the classical optimizer, which tries

to adjust them in an attempt to find the minimum.

VQAs are currently gathering great interest, seeing that their very nature makes them resilient to

noise: by outsourcing the optimization to a classical computer, they naturally require shallower circuits.

The learning-based approach further aids noise mitigation.

In 2014 the first VQA was proposed and demonstrated experimentally with photonic qubits: the VQE

[67], central to this dissertation. The proposal aimed to address quantum chemistry problems using

near-term quantum computers, in alternative to longer routines (such as adiabatic state preparation in

conjunction with Quantum Phase Estimation (QPE)) that are beyond the capabilities of NISQ devices.

Since it was introduced, the VQE has become an icon of NISQ algorithms, and a lot of research has

been done to further increase its accuracy and decrease its demands on the quantum computer. There

have been improvements on the efficiency of the evaluation of the cost function for chemistry problems in

particular, involving a low rank factorization of the two-electron integral tensor [40]. Interestingly, making

use of the specificity of the chemistry problem seems to allow for a better scaling of the required number of

measurements as compared to general problems [17]. However, more general techniques can evidently be

used to further increase the accuracy of the results; as an example, the readout-error mitigation technique

presented in [13] can help eliminate the noise-induced bias from the expectation value of the cost function.

The qubit requirements can also be reduced: in reference [82] it was highlighted that it is possible

to choose a more compact fermion to qubit mapping instead of the Jordan-Wigner transform employed in

the original article, at the expense of more gates in the circuits.

The optimization itself is a large field of research. While not belonging to the strictly quantum part of

the algorithm, it is naturally affected by quantum noise and its particularities; the performance of classical

optimizers benchmarked with noiseless function evaluations cannot simply be extrapolated to a noisy

scenario. Efforts have been done to find optimizers that decrease the number of calls to the quantum

computer and make convergence more likely in the presence of noise. Meta-learners were used in [95] and

two model-based optimization algorithms were introduced in [83]. These examples are left as a sample

of a much broader set of proposals for improving the optimization.

Finally, we have the ansatz, which plays a fundamental role in the algorithm. It consists of the state

preparation circuit that defines where we will be looking for in the Hilbert space. From the concept alone,

one can conclude that the ansatz should satisfy two crucial aspects: contain the solution, and have a

description that does not scale exponentially with the size of the system. Otherwise, it may jeopardise the

accuracy and efficiency of the algorithm.

In the context of the NISQ era, this key piece assumes an even greater importance: the ansatz cor-

responds to the bulk of the depth of the utilized circuits, which in turn means that the choice of ansatz

might allow or prevent the VQE from being successfully implemented on a given quantum computer.
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Further, it has been shown that an improper ansatz might prevent the optimizer from finding the

solution. As an example, randomly initialized parameterized quantum circuit were shown to cause the

gradients of the cost function with respect to the parameters to vanish exponentially on the size of the sys-

tem, an effect termed as barren plateaus [60]. The effect is not limited to gradient-based optimizers, as

this description might seem to suggest - the result was proven to generalize to other optimization methods

[10]. The vanishing gradients are merely a symptom of a deeper issue regarding the optimization land-

scape. As the size of the Hilbert space grows exponentially on the number of qubits, it is no surprise that a

generic ansatz with polynomially many parameters proves to hinder the performance of the algorithm. The

minimum becomes sharper and sharper amidst a flat landscape, as a result of too much expressibility. A

relationship between expressibility and trainability was derived in [39].

Multiple strategies have been used to address this. Some involve the ansatz and the formulation of

the problem itself: it was shown that shallow ansätze in conjunction with local cost functions circumvent

the issue. For circuits with a depth logarithmic on the number of qubits, the gradient vanishes polyno-

mially at most [16, 87]. Parameter initialization techniques that prevent the algorithm from starting in a

barren plateau have been proposed. Reference [32] does this by limiting the initial effective depth of the

circuit, while in [88] meta-learning via classical neural networks was used to find good parameter initial-

ization heuristics. Layerwise training [79] and correlated parameters [90] were proved to aid in avoiding

barren plateaus during the optimization. As for the classical optimizer, making use of natural evolutionary

strategies in the optimization as a means to avoid barren plateaus was suggested in reference [9].

Another interesing possibility is to leverage problem-specific knowledge to prevent the issue. Consid-

ering that barren plateaus are tightly related to an excess of expressibility, leveraging what is known about

the problem at hand to carefully pick where we will be looking for the solution is of great help. There

is a downside: the priority is placed in tailoring the ansatz to the problem rather than to the quantum

processor. The later seems preferable: in the context of NISQ devices, the focus is usually set on making

the circuit as shallow as possible. Because of this, a popular suggestion was building the ansatz from

the interactions naturally available in the quantum processor - an idea that was introduced in [49] as the

hardware-efficient ansatz. However, compared to these more generic problem agnostic ansätze, those

known as problem tailored or problem inspired have the great benefit of usually being trainable, even

when the parameters are initialized at random [17]. Further, the ansatz circuit being convenient is to no

avail if the optimization process becomes intractable due to requiring exponential precision and function

evaluations to overcome barren plateaus.

The ansatz employed in the original VQE proposal was a problem tailored one: the UCCSD ansatz,

inspired on quantum chemistry and classical variational methods. States are prepared by applying an op-

erator, consisting of an exponentiated sum of single and double fermionic excitations, to a reference state.

A more detailed description of UCCSD can be found in [71]. What is relevant here is that Unitary Coupled

Cluster (UCC) is the natural unitary version of the classical Coupled Cluster (CC) operator, regarded as

the gold standard in classical quantum chemistry methods [11].

Aside from its foundations providing us a motive to believe that the UCCSD ansatz is a good choice,
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both the number of variational parameters and the number of gates necessary for its implementation

scale polynomially with the size of the system. However, implementing it with a quantum circuit implies

using a finite-order Suzuki-Trotter decomposition, which leads to ambiguities in the operator ordering. The

resulting energy variations have been proved relevant at the chemical scale, meaning that the ansatz is not

chemically well-defined [43]. Additionally, it was pointed out in [93] that this ansatz has an unnecessarily

large number of parameters and terms, which then reflect in an optimization more difficult and circuits

deeper than required.

It is fundamental to keep the circuit as shallow as possible. In fact, while UCCSD may avoid the barren

plateaus discussed above, barren plateaus of a different kind were shown to occur as a result of incoherent

noise [92]. In consequence of the output state being less and less pure, the minimum of the cost function

becomes less and less pronounced. While with the noise-free barren plateaus the minimum value of the

cost function was still represented in the optimization landscape, noise-induced barren plateaus might

erase this minimum altogether, with decoherence causing the dilution of the characteristics of the cost

function.

In light of this, efforts have been done to combine problem tailoring with hardware tailoring, in order

to avoid barren plateaus while keeping circuits convenient and shallow. A few suggestions for chemistry

applications follow.

Reference [26] proposed efficient ansätze that respect particle number, total spin, spin projection, and

time-reversal symmetries. The idea is to prevent the ansatz from covering irrelevant subsections of the

Hilbert space, which allows spanning the relevant symmetry subspace with as few variational parameters

as possible. As an example, we can be certain that the ground state will not be found in a region of the

Hilbert space that represents a fermionic state with an incorrect number of particles. The performance of

the algorithm is thus improved by excluding that region from the ansatz altogether.

An interesting hardware-efficient, but problem-tailored ansatz was proposed in [61]. The algorithm,

termed ctrl-VQE by the authors, replaces the traditional quantum circuit ansatz with a quantum control rou-

tine. Directly optimizing the pulses allows for reducing the coherence time requirements without abdicating

the variational freedom.

Finally, there are the dynamically created ansätze, which will be the main focus of this dissertation.

While problem inspired ansätze leverage knowledge on the system, the dynamically created ones collect

this knowledge themselves. In a way, they allow the problem to dictate its own ansatz, by growing it from

scratch in a strongly system-adapted manner. Fermionic operators are added to the ansatz as ‘pieces’

along the evolution of the algorithm; the chosen ones are those that, from informative measurements, are

believed to be the most beneficial.

In 2019, this idea was introduced in [35] as Adaptive Derivative-Assembled Pseudo-Trotter (ADAPT)-

VQE, hereby denoted Fermionic-ADAPT-VQE for clarity against a more recent version. The name was

attributed in light of the selection criterion being derivative-related and the circuits being reminiscent of a

trotterization.

While the UCCSD ansatz is fixed upfront and does not allow decreasing or increasing the precision
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of the result, or the circuit depth, ADAPT-VQE grows the ansatz from zero until a convergence criterion

is met. Numerical results showed that this protocol can match or surpass the accuracy of UCCSD-VQE

with more compact ansätze. In essence, we are trading measurements and optimizations for shallower

circuits, making VQE more NISQ-friendly and bringing us a step closer to solving real problems on quantum

computers.

In 2020 a follow-up article [85] was published proposingQubit-Adaptive Derivative-Assembled Problem-

Tailored (ADAPT)-VQE, a modified version of the algorithm. The difference is in the operators that are avail-

able to choose from. Anti-commutation and preservation of particle number and spin are dispensed with,

allowing the operators to be implemented by shallower circuits. As a consequence, they no longer have

an interpretation as fermionic excitations. This typically results in an increase in the number of variational

parameters and decrease of circuit depth for a given accuracy, as compared to Fermionic-ADAPT-VQE.

Qubit-ADAPT-VQE thus burdens the classical optimizer further, in exchange for shallower circuits.

The Qubit-ADAPT-VQE article also introduced some minimal complete pools whose size scaled linearly

with the number of spin-orbitals (as compared to the quartic scaling of all previous pools). This reduction

in pool size implies a reduction in the number of measurements per iteration. Unfortunately, because

these pools do not respect fermionic symmetries, they are not adequate when ADAPT-VQE is used to solve

for the eigenstates of molecular Hamiltonians.

In September 2021, the article [75] introduced a way of creating symmetry-adapted minimal complete

pools that worked in this type of problems, while also growing linearly on the size of the system. With this,

the article proved that it was possible to significantly reduce the number of measurements per iteration

in ADAPT-VQE, from O(𝑁 8) to O(𝑁 5) (𝑁 the number of spin-orbitals). This brings the measurement

scaling of ADAPT-VQE closer to that of typical VQE routines (O(𝑁 4)).
The ADAPT-V and ADAPT-Vx algorithms introduced in [55] improve the scaling of the number of mea-

surements using a different approach, based on Reduced Density Matrices (RDMs). In ADAPT-V the mea-

surement cost scales like O(𝑁 4), the drawbacks being a larger number of variational parameters and

deeper circuits. ADAPT-Vx, in turn, leads to parameter vector lengths and circuit depths that are barely

over those in ADAPT-VQE, at the expense of a slight measurement overhead as compared to ADAPT-V.

1.3 Objectives

This dissertation is focused on analysing increasingly NISQ-friendly ansatz proposals for variational quan-

tum algorithms in chemistry applications. This encompasses shallower ansätze, as well as improved noise

resilience.

Quantum chemistry and variational quantum algorithms will be reviewed, as well as relevant aspects

of quantum computing.

Instances of VQE with predetermined ansätze, both problem agnostic and problem tailored, will be
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studied, implemented, and simulated. The same analysis and simulation is to be done for dynamically cre-

ated ansätze (fermionic-ADAPT-VQE and qubit-ADAPT-VQE). In all cases, numerical simulation will involve

the study of the impact of noise on the performance of the algorithm. This encompasses sampling noise

as well as coherent, incoherent and SPAM noise, simulated resorting to noise models, and implementation

of small-scale instances in real quantum computers.

The impact of the pool in the ADAPT-VQE algorithm will be analysed by comparing the one from

qubit-ADAPT-VQE, the one from fermionic-ADAPT-VQE, and other options. The impact of the choice of

pool on convergence will be assessed, as well as on the conservation of expectation values of fermionic

observables, which is tightly related to convergence itself.

Finally, approaches will be tested in an attempt of further reducing the ansatz depth required for a given

accuracy. Heuristics for removing operators from the ansatz after their addition will be developed. Addi-

tionally, it will be attempted to grow the ansatz with a slower, more conservative method. Both strategies

will be compared.

1.4 Outline of the Document

The structure of the dissertation is as follows. Chapter 2 explains the fundamental theoretical framework.

Section 2.1 covers the basic concepts of quantum computing, with a focus of the aspects that are relevant

for VQE (quantum expectation estimation, quantum simulation and trotterization, and the limitations of

quantum computers in the NISQ era). Section 2.2 follows with the essential aspects of quantum chemistry,

namely, the context in which the electronic problem arises, and the classical variational approaches that

preceded (and inspired) the proposal of VQE. Finally, section 2.3 explains the context, theory, and methods

that are specific to variational quantum algorithms. The general outline of VQAs is explained in this section,

as well as the specific aspects concerning VQE, such as the quantum circuit representation of fermionic

operators, the possible types of ansatz, the Hamiltonian averaging, and the shot requirements necessary

to achieve chemical accuracy.

Chapter 3 introduces some static ansätze for VQE, with experimental results that illustrate the viability

of the procedure. The first section, 3.1, covers simulations using a problem-agnostic ansatz. The bond

dissociation curve of the helium hydride ion, that was obtained in the first implementation of VQE (in a

photonic chip) [67], is reproduced. A circuit to span the whole state space of 2 qubits was devised, and

the influence of the choice of optimizer and optimization hyperparameters studied. The implementation

was tested both in simulators and real devices (IBMQ [42] backends). Section 3.2 implements VQE with

the UCCSD ansatz, a problem-tailored ansatz, and presents results for molecular hydrogen. Once again,

the implementation was tested in real devices as well as simulators. The influence of sampling noise was

assessed, as well as the influence of CNOT gate errors, and of thermal relaxation and SPAM errors.

The concept of dynamic ansätze is explained in chapter 4, with the introduction of the ADAPT-VQE

algorithm. Several operator pools used in the set of articles concerning this algorithm are explained,

8



1.4. OUTLINE OF THE DOCUMENT

analysed, and compared both in concept and in practice. The algorithm was applied to several molecules

in noise-free scenarios, as well as in real quantum computers. The impact of sampling noise, thermal

relaxation and SPAM errors were once again assessed, and compared with the results from the previous

chapter (for UCCSD-VQE).

Other possibilities of pools, not contemplated in the original ADAPT-VQE articles, are introduced in

chapter 5. The purpose of these new pools is to assess how convergence is affected by the affinity

between pool operators and fermionic excitations, in multiple aspects. The operators in the original pools,

and their effect on the state of the qubits, are analysed as motivation for the definitions of the new pools.

The performance of ADAPT-VQE with the multiple pools is compared, and the composition of the state in

terms of Slater determinants is analysed.

Chapter 6 introduces two additional methods for manipulating the ansatz beyond what is done in

ADAPT-VQE, with the purpose of achieving greater accuracy with shallower circuits. Section 6.1 develops

and applies heuristics for removing operators from the ansatz on the fly, and applies the strategy to multiple

molecules. An alternative procedure, that attempts multiple optimizations per iteration before settling for

a new operator, is explained and tested in section 6.2. The approaches are compared against each other,

and against the original ADAPT-VQE algorithm. The chapter ends with a discussion of the merits and

disadvantages of the different strategies (section 6.3).

Finally, chapter 7 concludes the dissertation with a few considerations about the multiple proposals of

ansätze for VQE. The merits and demerits of each are discussed in light of the state-of-the-art of quantum

computing hardware. Prospects of future work concerning the topics that were covered throughout the

dissertation are discussed.

All the code created for this dissertation and used in obtaining the results presented in this document

can be found online at the GitHub software repository [8].
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2

Theoretical Framework

2.1 Quantum Computing

The purpose of this section is to offer a simple overview of the concepts in quantum computing that are

necessary for the following chapters. A more in-depth explanation on these topics can be found on the book

Quantum Computation and Quantum Information, reference [64], upon which the following was based.

2.1.1 Basic Concepts

2.1.1.1 Pure Single Qubit States

The basic unit of information for classical computing, the bit, undertakes two possible states, usually

labeled 0 and 1. Similarly, the quantum bit, or qubit, is a two-level system. The difference resides in the

quantum mechanical nature of the qubit: while the classical bit is either in state 0 or 1, the quantum bit

can be in a superposition of these two states.

A qubit can be physically implemented by a two-level quantum-mechanical system. Irrespective of the

specific implementation, the state of an isolated qubit can be represented abstractly in Dirac notation as

|𝜓 〉 = 𝛼 |0〉 + 𝛽 |1〉 . (2.1)

In the expression above |0〉 and |1〉 are the computational basis states; they form an orthonormal

basis that spans the state space of the system, a two-dimensional Hilbert space ℋ (a complex vector

space equipped with inner product). By convention,

|0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
. (2.2)

The numbers 𝛼 and 𝛽 are the respective complex amplitudes, related to the respective probability of

occurrence. As discussed previously, even though they characterize the state of the qubit, it is not possible

to discover the values of these numbers with access to a single copy of the state: when a measurement

is done on the computational basis, the outcome will be a computational basis state.

The squared absolute values of the amplitudes correspond to the probability of, upon measurement,

obtaining state |0〉 or |1〉 respectively:

𝛼𝛼∗ = |𝛼 |2 = Probability of |0〉 ,
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𝛽𝛽∗ = |𝛽 |2 = Probability of |1〉 .

Since the probabilities must sum to one, we have a normalization condition that reads

〈𝜓 |𝜓 〉 = |𝛼 |2 + |𝛽 |2 = 1. (2.3)

To describe the state of a perfectly isolated qubit, it thus suffices to specify the corresponding unit

vector inℋ. This can be done by specifying the values of 𝛼 in 𝛽 in equation 2.1 subject to condition 2.3.

The normalization removes one degree of freedom and allows the state to be parameterized by three

real numbers as

|𝜓 〉 = 𝑒𝑖𝛾
(
cos

(
𝜃

2

)
|0〉 + 𝑒𝑖𝜑 sin

(
𝜃

2

)
|1〉

)
.

The parameter 𝛾 is an irrelevant degree of freedom that does not impact any observable. Since the

global phase associated with it is not detectable and lacks physical significance, it can be promptly ignored

and removed from our parameterization altogether, leaving

|𝜓 〉 = cos

(
𝜃

2

)
|0〉 + 𝑒𝑖𝜑 sin

(
𝜃

2

)
|1〉 . (2.4)

With two degrees of freedom, this parameterized expression can now be visualized as lying on the

surface of a sphere. The Bloch sphere depicted in figure 1 is a popular and convenient geometric repre-

sentation of the state of a (pure) qubit.

Figure 1: Representation of the state of a qubit in the Bloch sphere. The angles 𝜃 and 𝜑 correspond to
the parameters from equation 2.4.

A qubit can be acted on by operators that are represented by two-by-two matrices. There are three

matrices of particular importance, the Pauli matrices:
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𝑋 ≡ 𝜎𝑥 ≡
(
0 1

1 0

)
, 𝑌 ≡ 𝜎𝑦 ≡

(
0 −𝑖
𝑖 0

)
, 𝑍 ≡ 𝜎𝑧 ≡

(
1 0

0 −1

)
. (2.5)

Frequently one considers the identity matrix 𝐼 as a Pauli matrix itself, oftentimes denoted 𝜎0. All Pauli

matrices are unitary (𝜎𝑖𝜎
†
𝑖 = 𝜎†

𝑖 𝜎𝑖 = 𝐼 ) and Hermitian (𝜎𝑖 = 𝜎†
𝑖 ).

These four matrices are orthogonal to each other, and together they span the space of the observables

of a qubit. Observables are named so because they are associated with observable physical quantities.

Each projective measurement is associated with an observable, whose eigenvalues correspond to the

possible outcomes of the measurement. These outcomes are always real-valued, which is related to the

fact that all observables are Hermitian.

From definitions 2.2 and 2.5 we can see that the computational basis states are eigenstates of 𝑍 .

Computational basis measurements are projective measurements associated with the observable 𝑍 , and

their possible outcomes correspond to the eigenvalues of the operator. These are the measurements

typically available in quantum computers.

2.1.1.2 Pure Multiple Qubit States

All these ideas generalize to larger systems: the tensor product can be used to obtain a larger vector

space in which the state of the multiple qubits lives. The description grows rapidly: to specify the state

of n qubits, we need 2𝑛 complex amplitudes, that correspond to 2𝑛+1 − 2 real-valued degrees of freedom

after removing those corresponding to the normalization condition and the global phase.

When we havemore than one qubit, measurement outcomes can be correlated beyond what is possible

in classical systems. This is because it is not always the case that an n qubit state can be written in the

form

|𝜓0〉 ⊗ |𝜓1〉 ⊗ ... ⊗ |𝜓𝑖〉 ⊗ ... ⊗ |𝜓𝑛−2〉 ⊗ |𝜓𝑛−1〉 , (2.6)

where the 𝜓𝑖 are the states of the individual qubits. When this is in fact possible, the state is called

separable; otherwise, we say that it is entangled. Entanglement plays a big role in quantum algorithms: it

is an exclusively quantum-mechanical resource and a bedrock for quantum speedup.

For two qubits, the maximally entangled states are the famous Bell states:

��𝜓+〉 = 1
√
2
|01〉 + |10〉 , |𝜓−〉 = 1

√
2
|01〉 − |10〉 ,��𝜙+〉 = 1

√
2
|00〉 + |11〉 , |𝜙−〉 = 1

√
2
|00〉 − |11〉 .

(2.7)

It can be readily seen that the outcome of a (computational basis) measurement done on one of the

qubits fully determines the outcome of a measurement on the other one.
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2.1.1.3 Mixed States

Most of what was discussed so far only holds for pure states - those that are known exactly, and can

be written in the form of equation 2.4. During a computation, one would ideally deal with pure states

exclusively. Unfortunately, this is never the case: there are unknown errors occurring during the state

preparation and the computation itself. The qubits are not fully isolated, as there is always some coupling

with the environment. This results in the system being in a mixed state, a statistical distribution over pure

states. This mixture simply translates lack of knowledge about the system.

States that are not pure cannot be written as in equation 2.4 and cannot be represented in the surface

of the Bloch sphere. The density matrix 𝜌 provides a way to describe a system in a more general state as

𝜌 =
∑
𝑖

𝑝𝑖 |𝜓𝑖〉 〈𝜓𝑖 | . (2.8)

Here the 𝑝𝑖 are the probabilities of occurrence of the respective |𝜓𝑖〉, the possible pure state configu-
rations. The density matrix offers a way to test the purity of the state:

tr(𝜌2) = 1 −→ state is pure;

tr(𝜌2) < 1 −→ state is mixed.
(2.9)

There is also a way of generalizing the geometrical representation of the states: the Bloch ball. We

rewrite the density matrix representing the state as

𝜌 =
𝐼 + ®𝑟 · ®𝜎

2
, (2.10)

where ®𝜎 = (𝑋,𝑌, 𝑍 ). The three-dimensional vector ®𝑟 , with norm lower than or equal to unity, is the

Bloch vector whose coordinates are written in 2.11.(∑
𝑖

𝑝𝑖𝑥𝑖,
∑
𝑖

𝑝𝑖𝑦𝑖,
∑
𝑖

𝑝𝑖𝑧𝑖

)
(2.11)

The sum is over the possibilities of pure states, with 𝑝𝑖 their probabilities and (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) their coor-
dinates on the Bloch sphere. It is easy to verify that, for the special case of pure states, the norm of the

Bloch vector ®𝑟 is 1 and the coordinates are as before. For mixed states, the norm is in [0, 1[: they are
inside the Bloch sphere, in the Bloch ball. The lower the purity, the lower the norm of ®𝑟 . The totally mixed
state lies in the center of the Bloch sphere, representing a complete lack of knowledge about the system.

2.1.2 Measuring Pauli Strings

As it was mentioned before, one can perform a 𝑍 measurement on a qubit. This yields either of the

operator’s eigenvalues, with the respective probabilities depending on the state of the qubit. Repeated

measurements allow obtaining the expectation value of this operator in this specific state, namely
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〈𝜓 | 𝑍 |𝜓 〉 .

It is common for problems to require measurements in bases other than the computational basis; this

can be done with basis rotations. Measuring a generic observable amounts to performing a computational

basis measurement, preceded by the unitary that rotates from the eigenbasis of the desired observable to

the computational basis.

Evidently, in order to be appropriate for an observable 𝐴, the unitary 𝑈 needs to obey the condition

〈𝜓 |𝑈 †𝑍𝑈 |𝜓 〉 = 〈𝜓 |𝐴 |𝜓 〉

for all states |𝜓 〉, so that the requirement can be written simply as

𝑈 †𝑍𝑈 = 𝐴. (2.12)

This generalizes for observables acting on multiple qubits.

Implementing the basis rotation unitary for a generic observable may prove to hinder efficiency. For-

tunately, Pauli measurements in particular are very simple to do.

(a) Circuit to measure 𝑍 .

(b) Circuit to measure 𝑋 . (c) Circuit to measure 𝑌 .

Figure 2: Examples of circuits that perform single-qubit Pauli measurements, drawn in the IBM Quantum
Composer [41].

Circuits for all three types of single-qubit Pauli measurements (𝑍 ,𝑋 ,𝑌 ) are drawn in figure 2. The

circuit in 2a implements the typical computational basis measurement: no basis rotation is necessary.

For𝑋 we can use the unitary𝑈 = 𝐻 as the basis rotation - this is the popular Hadamard gate. The circuit

is represented in figure 2b. Finally, figure 2c implements a measurement of 𝑌 , with the basis rotation

being a rotation around the x axis 𝑈 = Rx(𝜋/2).
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These choices of unitaries are not unique. As an example, using 𝑈 = 𝐻𝑆† for measuring 𝑌 is also

a popular option. One can choose the rotation that is the most convenient, given the operations that can

natively be implemented in the hardware.

As well as single qubit Pauli measurements, one can easily measure Pauli strings. Pauli strings are

observables of the form ⊗
𝜎𝑖 𝑖 ∈ {0, 𝑧, 𝑥,𝑦}. (2.13)

There are multiple ways to perform such measurements. The simplest and most evident one amounts

to performing the individual Pauli measurements and multiplying the outcomes. However, it is possible

to include two qubit gates in addition to the single qubit rotations as a means of reducing the number of

measurements that needs to be performed.

As an example, two versions of circuits to perform a 𝑍 ⊗ 𝑍 measurement are illustrated in figure 3.

(a) Using two single-qubit measurements. (b) Using one single-qubit measurement.

Figure 3: Examples of circuits that perform a 𝑍 ⊗𝑍 measurement, drawn in the IBM Quantum Composer
[41].

The circuit in 3a measures both qubits in the computational basis; the result is then obtained by

multiplying the outcomes. The final value will be in {−1, 1}. The actual value depends on the parity of

the computational basis state that was measured: we obtain 1 if the parity was even, meaning that the

qubits were measured on the same state (|00〉 or |11〉). The outcome is -1 if the parity was odd, meaning
that they were measured on opposite states (|01〉 or |10〉).

In contrast, the circuit in 3b performs only one measurement. A CNOT gate is used to compute and

store the parity of the state of both qubits in the state of the first one alone.

Essentially, for a two-qubit observable 𝐴, we can use an unitary that obeys

𝑈 †(𝑍 ⊗ 𝑍 )𝑈 = 𝐴

and measure both qubis, or use an unitary that obeys

𝑈 †(𝑍 ⊗ 𝐼 )𝑈 = 𝐴

and measure only one of them.
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With this, it has become clear that any Pauli string, i.e. operator of the form of equation 2.13, can

be measured in a quantum computer. This is of great importance, because these Pauli strings span

the space of Hermitian operators, and all observables are Hermitian. As a consequence, all observables

can be written as a linear combination of Pauli strings; and given the linearity of quantum mechanics, all

expectation values of observables can be obtained as a weighed sum of expectation values of Pauli strings.

If we want to measure an observable �̂� , we can start by decomposing it in the form of equation 2.14.

�̂� =
∑
𝑖

ℎ𝑖𝑃𝑖 (2.14)

Here the ℎ𝑖 are real coefficients and the 𝑃𝑖 are Pauli strings (i.e. observables of the form of 2.13). It

is then straightforward to evaluate the desired expectation value: it amounts to measuring the expectation

value of each Pauli string appearing in the decomposition of the observable, and plugging it into formula

2.15.

〈�̂�〉 =
∑
𝑖

ℎ𝑖 〈𝑃𝑖〉 (2.15)

This procedure can be followed for any observable; however, it is only tractable if the observable can

be decomposed into a sum of polynomially-many Pauli strings.

2.1.3 Quantum Simulation and Trotterization

The behaviour of an isolated quantum-mechanical system is dictated by the Schrödinger equation in 2.16.

𝑖ℏ
𝑑

𝑑𝑡
|𝜓 〉 = 𝐻 |𝜓 〉 (2.16)

When the Hamiltonian operator for the system, 𝐻 , is time-independent, this implies that the time

evolution of the wave function has the form presented in 2.17.

|𝜓 (𝑡)〉 = 𝑒−𝑖𝐻𝑡 |𝜓 (0)〉 (2.17)

As it was mentioned before, the simulation of physical systems is one of the most promising applica-

tions of quantum computers, as it is generally a hard task for classical computers. As such, it is important

to know how to simulate this time evolution on a quantum computer.

A general Hamiltonian is not easy to exponentiate - so the question becomes, how do we approximate

the time evolution with sufficient accuracy?

Typically, one deals with special classes of Hamiltonians that allow easy and efficient exponentiation.

A Hamiltonian can be decomposed into a sum of several, simpler terms:

𝐻 =
𝐿∑

𝑘=1

𝐻𝑘 . (2.18)
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And the 𝐻𝑘 may allow easier implementation on a quantum computer - for example, each one may

act only on a small subsystem, or they may have a special form.

In fact, as was discussed in subsection 2.1.2, we know that any Hermitian operator (such as the

Hamiltonian) can be decomposed into a linear combination of Pauli strings. Conveniently, when the 𝐻𝑘

are Pauli strings with real coefficients, it is easy to construct the circuit that applies 𝑒−𝑖𝐻𝑘𝑡 .

(a) Circuit for simulating the time evolution of a system under the Hamiltonian 𝐻𝑘 = 𝑍 ⊗
𝑍 ⊗ 𝑍 ⊗ 𝑍 .

(b) Circuit for simulating the time evolution of a system under the Hamiltonian 𝐻𝑘 = 𝑋 ⊗
𝑌 ⊗ 𝑍 ⊗ 𝑋 .

Figure 4: Examples of circuits that apply time evolution under simple Hamiltonians𝐻𝑘 , consisting of Pauli
strings. They apply 𝑒−𝑖𝐻𝑘𝑡 using a parameterized 𝑍 rotation. The circuits were drawn in the IBM Quantum
Composer [41].

Figure 4 shows two circuits that can be used to implement the exponentiation of two specific 𝐻𝑘 .

The circuit in figure 4a is the simplest one: it implements 𝑒−𝑖𝑡𝑍⊗𝑍⊗𝑍⊗𝑍 . This amounts to applying a

local phase 𝑒−𝑖𝑡 to the computational basis states that have an even parity, and 𝑒𝑖𝑡 to those that have an

odd parity; the drawn circuit does precisely that. The first ladder of CNOT gates computes the parity of

the state and stores it on the last qubit. Then, all that’s left is to apply 𝑒−𝑖𝑡𝑍 to the qubit that holds the

parity, which can be done by rotating it around the 𝑍 axis by an angle of 2𝑡 (i.e. applying the gate Rz(2𝑡)).
Finally, a ladder of CNOT gates is applied to uncompute the parity before the computation proceeds.
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In figure 4b, we have the circuit that implements 𝑒−𝑖𝑡𝑋⊗𝑌⊗𝑍⊗𝑋 . This can be done with minor adjust-

ments to the previous circuit.

Appendix A shows that, when 𝐻𝑘 is a Pauli string, one can write any operator of the form 𝑒𝑖𝑡𝐻𝑘 as

𝑒−𝑖𝑡
⊗

𝑖 𝑃𝑖 =
⊗
𝑖

𝑈 †
𝑖

(
𝑒−𝑖𝑡

⊗
𝑖 𝑍𝑖

) ⊗
𝑖

𝑈𝑖, (2.19)

where the𝑈𝑖 are single qubit unitaries obeying

𝑈 †
𝑖 𝑍𝑖𝑈𝑖 = 𝑃𝑖 .

For any qubit 𝑖, acted on by 𝑃𝑖 in 𝐻𝑘 .

This is the same condition as 2.12: as we did to make Pauli measurements, we need an unitary that

rotates from the eigenbasis of the operator in question to the computational basis.

The form of equation 2.19 is very convenient: it tells us that we can use the circuit for 𝑒−𝑖𝑡
⊗

𝑖 𝑍𝑖 (figure

4a) for implementing any operator of the form 𝑒−𝑖𝑡
⊗

𝑖 𝑃𝑖 (where 𝑃𝑖 ∈ {𝐼𝑖, 𝑍𝑖, 𝑋𝑖, 𝑌𝑖}), as long as we apply
the appropriate

⊗
𝑖 𝑈𝑖 before and

⊗
𝑖 𝑈

†
𝑖 after.

The circuit in figure 4b does precisely that, for the specific case of the Pauli string
⊗

𝑖 𝑃𝑖 = 𝑋 ⊗𝑌 ⊗
𝑍 ⊗ 𝑋 . The employed basis rotations were the same as those from section 2.1.2.

So now we know how to simulate the time evolution under simple Hamiltonians 𝐻𝑘 consisting of a

single Pauli string. However, the end goal is simulating the full Hamiltonian 𝐻 from 2.18. This amounts

to applying 𝑒−𝑖𝑡
∑𝐿

𝑘=1 𝐻𝑘 , but

𝑒−𝑖𝑡
∑𝐿

𝑘=1 𝐻𝑘 ≠
𝐿∏

𝑘=1

𝑒−𝑖𝑡𝐻𝑘

in general. In fact, for two operators 𝐻𝑖 , 𝐻 𝑗 , we can calculate 𝑒𝐻𝑖𝑒𝐻 𝑗 as

𝑒𝐻𝑖𝑒𝐻 𝑗 = 𝑒𝐻𝑖+𝐻 𝑗+ 1
2 [𝐻𝑖 ,𝐻 𝑗 ]+ 1

12 [𝐻𝑖 ,[𝐻𝑖 ,𝐻 𝑗 ]]− 1
12 [𝐻 𝑗 ,[𝐻𝑖 ,𝐻 𝑗 ]]+... . (2.20)

Equation 2.20 is known as the Baker–Campbell–Hausdorff (BCH) formula. We can see that the

product of the exponential series is the exponential series of the sums only in the special case of commuting

operators ([𝐻𝑖, 𝐻 𝑗 ] = 0).

Fortunately, we can use the Trotter formula:

lim
𝑛→∞

(𝑒𝑖𝐻𝑖𝑡/𝑛𝑒𝑖𝐻 𝑗 𝑡/𝑛)𝑛 = 𝑒𝑖 (𝐻𝑖+𝐻 𝑗 )𝑡 . (2.21)

Evidently, it is not feasible to implement the circuit for 𝑛 → ∞. However, we can make 𝑛 finite to

obtain a circuit that approximates the desired time evolution.

𝑒𝑖 (𝐻𝑖+𝐻 𝑗 )𝑡 ≈ (𝑒𝑖𝐻𝑖𝑡/𝑛𝑒𝑖𝐻 𝑗 𝑡/𝑛)𝑛 (2.22)
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Here, 𝑛 is the number of repetitions of the basic unit of our Trotter circuit, and 𝑡/𝑛 is the time step.

We can interpret equation 2.22 as approximating the evolution of a system under (𝐻𝑖 + 𝐻 𝑗 ) for a time
𝑡 with 𝑛 repetitions of the evolution under 𝐻 𝑗 followed by the evolution under 𝐻𝑖 , both always for a time

step of 𝑡/𝑛. We switch between evolving the system under the two elements in the sum repeatedly, with

the duration of this evolution being always less than the actual evolution time.

The larger the number of repetitions 𝑛, the shorter the time step and the better the approximation: in

the limit of 𝑛 → ∞, one would get the exact result. The error in the approximation will depend on the

evolution time; as an example, a Trotter approximation with a single repetition will have an error O(𝑡2)
[64].

2.1.4 Current Limitations

As discussed in the previous chapter, it will likely be a while before a fault-tolerant quantum computer

(FTCQ) is available. Currently, one has to deal with noisy intermediate-scale quantum (NISQ) devices.

These are not error corrected and come with a multitude of limitations, namely:

• Coherent noise.

• Incoherent noise.

• SPAM errors.

A brief analysis of each follows.

2.1.4.1 Coherent Noise

Coherent errors are unitary and don’t undergo fast changes (relative to the gate time); this type of error

has various causes, such as systematic control noise, global external fields, cross-talk, and unwanted

qubit-qubit interactions [33].

For a single qubit, a coherent source of noise could be performing a rotation by an angle of 𝜃 +
𝛿𝜃 instead of just 𝜃 due to miscalibration. For two qubits, a well-known example is the unwanted 𝑍𝑍

interaction in superconducting quantum computers. It can significantly lower the fidelity of two-qubit gates;

as such, it can have a great impact on the performance of the device, and consequently pose a challenge

on the scalability of the architecture [100].

Coherent errors interfere constructively, and may take a significant toll on the computation. In the

worst case scenario, the error rate of coherent noise can scale quadratically both in the number of qubits

and in the length of the circuit [74, 44]. For that reason, it can accelerate the error accumulation rate

and be a challenge in the context of error correction codes. Regardless, there is hope that error correction

can be used to remove undesirable coherence from the noise channel, thus avoiding the possibility that

constructive interference leads to a quadratic scaling of the error rate. For the toric code and a particular
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coherent noise model, it was shown that the logical channel after error correction becomes increasingly

incoherent with the length of the code [44].

2.1.4.2 Incoherent Noise

Unlike coherent noise, incoherent noise can compromise the purity of the state of the qubits, causing it to

become mixed. Incoherent errors may arise for example from microscopic materials defects or unwanted

interactions with the environment [50, 54]. Since it is impossible to have the qubits in perfect isolation

and quantum mechanical systems are fragile, even storing quantum information is a difficult task.

While coherent errors are unitary and preserve the norm of the Bloch vector, incoherent errors can

shrink the Bloch vector. This is a visual translation of the fact that we’ve lost information about the state

the qubits are in; its purity has decreased. Decoherence can destroy superposition and entanglement and

cause us to lose the quantum behaviour of the system, with the information becoming classical [68].

When the errors are incoherent, the worst case scenario error rate scales linearly with the circuit size

(depth and qubits), an improvement against the quadratic scaling of coherent errors [74, 44].

2.1.4.3 State Preparation and Measurement Errors

State preparation and measurement errors are both classical errors, know collectively as SPAM errors.

A quantum computer needs to be able to prepare a fiducial initial state, such as the all-zero state; and

in order to obtain results from the computation, measurements will be necessary as well. Initialization

and measurement are thus two fundamental non-unitary operations that bridge quantum and classical

information, and allow quantum computing to be of use in our classical world.

However, these operations can’t be done perfectly either. The prepared state will likely not be exactly

the one that was intended, and the measurement operation can be faulty as well.

As SPAM errors only occur at the beginning and end of the circuit, they evidently don’t scale with the

circuit depth, which makes them less disruptive. In spite of that, this is a relevant source of noise for

near-term quantum computers, and efforts have been done to find efficient ways of partly mitigating it

[27].

2.1.4.4 Other Challenges

As well as noise, NISQ computers come with severe limitations in qubit count and connectivity. The qubit

requirements of the most promising applications are beyond what is available today; and limited connectiv-

ity demands extra routing operations or teleportation protocols, resulting in an overhead in ancillary qubits,

execution time, and gate depth - each of which aggravates already critical resource requirements.

An additional challenge is that there is always some error when using a quantum computer to evaluate

expectation values. This is not limited to NISQ computers, it is an intrinsic limitation rooted in the nature of

quantum mechanics. The error is associated with quantum projection noise and the always finite number

of shots, and it will always exist, even if its magnitude can be decreased. In algorithms that include

20



2.2. QUANTUM CHEMISTRY

optimizing an expectation value, attention must be paid to this unavoidable source of noise that hampers

the task of the optimizer.

2.1.4.5 Outlook

The performance of the quantum computers available today greatly suffers from coherent and incoherent

noise, SPAM noise and the always-present shot noise.

Even if making a strong simulation of the quantum computer is hard for classical computers, producing

a better approximate solution to a problem may not be so. As such, all sources of noise that contribute to

corrupting the output of the computation may inhibit quantum advantage.

Errors are by no means exclusive to quantum computers; classical computations also suffer from

them. Regardless, a relevant difference resides in the fact that classical information is much easier to

protect and manipulate than quantum information, and error correction itself is a simpler task to perform

on classical data. The viability of classical computations had been proven by as soon as 1956, with a key

result by von Neumann showing that classical computers could be made robust to noise [63].

The noise in quantum computers, along with the increased difficulty of error correction that arises in

dealing with quantum data, brought concern that noise robustness was simply unattainable in quantum

computers [52, 86]. Optimism was brought by the introduction of several error correction codes [77, 81],

followed by several proofs (comprising several error models and error correction codes) of an analogue of

the result obtained by von Neumann for classical computers: the quantum threshold theorem.

According to the quantum threshold theorem, once the physical error rate becomes smaller than a

certain threshold, quantum computations can be made arbitrarily accurate by scaling up the error correc-

tion code [15, 51, 1, 7]. This provides a path to fault-tolerant quantum computing: once the hardware

error rate is under the accuracy threshold for a given quantum error correction code, fault-tolerance has

been achieved.

2.2 Quantum Chemistry

This section aims at providing a light review of the aspects of quantum chemistry essential for the contents

of the dissertation. The book used as a reference, Modern Quantum Chemistry [84], offers a broader and

more in-depth view of the field.

2.2.1 The Electronic Problem

We are interested in studying electronic structure and the quantum mechanical motion of molecular sys-

tems. The objective is to understand the stable configurations of the system and its dynamics, by consid-

ering the interactions between the elements it is comprised of.

A scheme of a simple molecule, at the level of electrons and nuclei, is presented in figure 5.
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Figure 5: Representation of a molecule in a coordinate system. Upper case letters (𝐴, 𝐵) represent nuclei,
while lower case ones (i,j) represent the electrons. Similarly, upper case 𝑅 represent position vectors
pointing to nuclei, while lower case 𝑟 represent those pointing to electrons. A single subscript is used
on the position vector when the vectors point from the origin, while two subscripts are used to represent
relative position vectors. In the latter case, the first and second subscripts indicate where the vector points
to and from, respectively (e.g. 𝑟𝑖 𝑗 = 𝑟𝑖 − 𝑟 𝑗 ).

We are interested in finding (approximate) solutions to equation 2.23, the non-relativistic time-independent

Schrödinger equation.

�̂� |𝜓 〉 = 𝐸 |𝜓 〉 (2.23)

This is an eigenvalue problem.

Here �̂� is the Hamiltonian operator for our molecular system. It is comprised of five terms; a brief

discrimination of each follows. Atomic units are to be used throughout the whole section, so that the

electronic mass and the reduced Planck constant ℏ are both equal to unity. The energy will then be in

Hartrees (1a.u. = 27.2eV). 𝑁 and 𝑀 stand respectively for the number of electrons and the number of

nuclei. The notation regarding position vectors can be understood from figure 5.
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2.2.1.1 Kinetic Energy of the Electrons

The electronic kinetic energy is the sum of the kinetic energies of the individual electrons,

−
𝑁∑
𝑖=1

1
2
∇2
𝑖 .

The simple multiplicative factor is due to the fact that atomic units were used. Here∇2
𝑖 is the Laplacian

operator, involving the second partial derivatives with respect to the coordinates of the electron labeled 𝑖:

∇2
𝑖 =

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝜕2

𝜕𝑧2
.

This term represents the energy associated with the motion of all the electrons in the molecule.

2.2.1.2 Kinetic Energy of the Nuclei

The term associated with the motion of the nuclei, written in 2.24, is similar to the previous one.

−
𝑀∑
𝐴=1

1
2𝑀𝐴

∇2
𝐴 (2.24)

The only difference is that this term comes weighed by a factor of 1
𝑀𝐴

, of the order of 104. This factor,

defined in 2.25, simply accounts for the fact that the mass of the nucleus is different from the mass of an

electron.

𝑀𝐴 =
mass of the nucleus 𝐴
mass of an electron

(2.25)

2.2.1.3 Electron-Nucleus Attraction

What we have left now is the potential energy terms of the Hamiltonian, which include a negative term

(attraction) and two positive terms (repulsion).

The attraction term represents the interaction betweenmolecules of opposite charge, as per Coulomb’s

law; it reads

−
𝑁∑
𝑖=1

𝑀∑
𝐴=1

𝑍𝐴

𝑟𝑖𝐴
. (2.26)

Here, 𝑍𝑎 is the atomic number of the nucleus𝐴. The greater the number, the greater the charge, and

the greater the attraction; the larger the distance between the nucleus and the electron 𝑟𝑖𝐴, the smaller

the attraction.
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2.2.1.4 Electron-Electron Repulsion

This is a positive term, arising from the repulsion between particles of identically negative charge. The

corresponding expression is

𝑁∑
𝑖=1

𝑁∑
𝑗>𝑖

1
𝑟𝑖 𝑗

. (2.27)

Since electrons have unit charge, the only factor here is the distance between them (𝑟𝑖 𝑗 ). The double

sum runs over all distinct pairs of electrons.

2.2.1.5 Nucleus-Nucleus Repulsion

Finally, we have the positive term accounting for the repulsion between positively-charged particles:

𝑀∑
𝐴=1

𝑀∑
𝐵>𝐴

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
. (2.28)

2.2.1.6 Complete Hamiltonian and the Born-Oppenheimer Approximation

Contemplating all terms, the Hamiltonian of the system reads

�̂� = −
𝑁∑
𝑖=1

1
2
∇2
𝑖 −

𝑀∑
𝐴=1

1
2𝑀𝐴

∇2
𝐴 −

𝑁∑
𝑖=1

𝑀∑
𝐴=1

𝑍𝑎

𝑟𝑖𝐴
+

𝑁∑
𝑖=1

𝑁∑
𝑗>𝑖

1
𝑟𝑖 𝑗

+
𝑀∑
𝐴=1

𝑀∑
𝐵>𝐴

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
. (2.29)

Unfortunately, solving the Schrödinger equation 2.23 with the Hamiltonian in 2.29 is not an easy task

- the computational complexity grows quickly with the size of the molecule. Obtaining an exact solution is

only possible in simple cases.

To address this issue, Born and Oppenheimer proposed an approximation in 1927 [14]. The idea

behind the proposal was that, since the mass of the nuclei is significantly larger than that of the electrons,

their motion will be much slower for a comparable kinetic energy. Thus, considering the nuclei to be

stationary seems like a reasonable approximation.

The Born-Oppenheimer approximation then regards the motion of the electrons as occurring in a field

created by the fixed nuclei. In this scenario, because they are not moving (∇2
𝐴 = 0), the nuclei have null

kinetic energy, so that the term 2.24 in the Hamiltonian vanishes. Further, the nucleus-nucleus repulsion

2.28 becomes constant, because their relative position 𝑅𝐴𝐵 is not changing. A constant term represents

only a constant shift in the eigenvalues, and does not affect the eigenstates; as such, we can ignore it as

we are solving the problem, and add it back later.

Now we have

�̂�𝑒 = −
𝑁∑
𝑖=1

1
2
∇2
𝑖 −

𝑁∑
𝑖=1

𝑀∑
𝐴=1

𝑍𝑎

𝑟𝑖𝐴
+

𝑁∑
𝑖=1

𝑁∑
𝑗>𝑖

1
𝑟𝑖 𝑗

. (2.30)
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We call the Hamiltonian in 2.30 electronic Hamiltonian for obvious reasons: it now only concerns the

motion of the electrons. The nuclear coordinates may affect what the solution to the Schrödinger equation

looks like, but the solution itself will be an electronic wave function, that depends explicitly only on the

electronic coordinates.

The approximation allows treating the electrons and nuclei as two decoupled systems, which greatly

simplifies the problem.

2.2.2 Finding the Ground State: Classical Approaches

There is a fundamental principle in quantum mechanics which is widely used in computational chemistry,

be the resources classical or quantum: the variational principle. This principle states that the expectation

value of the Hamiltonian is lower bounded by the eigenvalue corresponding to the ground energy (𝐸0), i.e.

〈𝜓 | �̂� |𝜓 〉 ≥ 𝐸0, (2.31)

assuming that the state is normalized (〈𝜓 |𝜓 〉 = 1). A brief sketch of the proof follows.

We consider {|𝜙𝛼〉} to be the set of eigenstates of the Hamiltonian operator �̂� and denote the eigen-

value of |𝜙𝛼〉 by 𝐸𝛼 , i.e.

�̂� |𝜙𝛼〉 = 𝐸𝛼 |𝜙𝛼〉 , 𝛼 = 0, 1, 2, ...

The eigenvalues are assumed to be ordered (𝛼 < 𝛽 =⇒ 𝐸𝛼 ≤ 𝐸𝛽 ). Since the operator �̂� is

Hermitian, the eigenvalues are real (𝐸𝛼 ∈ ℝ ∀𝛼 ) and the eigenstates are orthonormal (
〈
𝜙𝛼

��𝜙𝛽

〉
= 𝛿𝛼,𝛽 ).

We assume that this set of eigenstates is complete, so that we can write any state |𝜓 〉 in the eigenbasis
of �̂� :

|𝜓 〉 =
∑
𝛼

𝑐𝛼 |𝜙𝛼〉

With this, the expectation value of �̂� reads (using ∗ to denote complex conjugation)

〈𝜓 | �̂� |𝜓 〉 =
∑
𝛼

𝑐∗𝛼 〈𝜙𝛼 | �̂�
∑
𝛽

𝑐𝛽
��𝜙𝛽

〉
=

∑
𝛼,𝛽

𝑐∗𝛼𝑐𝛽 〈𝜙𝛼 | �̂�
��𝜙𝛽

〉
=

∑
𝛼,𝛽

𝑐∗𝛼𝑐𝛽𝐸𝛽
〈
𝜙𝛼

��𝜙𝛽

〉
=

∑
𝛼,𝛽

𝑐∗𝛼𝑐𝛽𝐸𝛽𝛿𝛼,𝛽 =
∑
𝛼

𝑐∗𝛼𝑐𝛼𝐸𝛼 =
∑
𝛼

|𝑐𝛼 |2𝐸𝛼 .

It was previously stated that the eigenvalues are ordered, so that 𝐸𝛼 ≥ 𝐸0 ∀𝛼 ; further, assuming that
the state |𝜓 〉 is normalized, we have ∑

𝛼 |𝑐𝛼 |2 = 1. With this we can conclude the proof:

〈𝜓 | �̂� |𝜓 〉 =
∑
𝛼

|𝑐𝛼 |2𝐸𝛼 ≥
∑
𝛼

|𝑐𝛼 |2𝐸0 = 𝐸0
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Typically, the methods for finding an approximate solution to the ground state of the electronic system

aim to minimize 〈𝜓 | �̂� |𝜓 〉. They differ only in the variational form of |𝜓 〉, a concept identical to that

of an ansatz. It is a guess that fixes the structure of the wave function, but only specifies it up to some

tunable variational parameters. Plugging some test parameters into the variational form, we obtain a fully

specified wave function in which we can calculate the expectation value of �̂� . The task is then reduced to

finding the best parameters: given the variational principle, this is just a minimization problem.

A more thorough overview of the variational principle can be found in reference [34].

2.2.2.1 Self-Consistent Mean Field Methods

Asmuch as the Born-Oppenheimer approximation greatly simplifies our eigenproblem, solving the Schrödinger

equation with the electronic Hamiltonian (equation 2.30) exactly is still out of reach. The problematic term

is now the electron-electron repulsion (expression 2.27), which couples the coordinates of all the electrons.

Finding the exact solution implies dealing simultaneously with the coordinates of them all; decoupling these

variables would allow solving the equation. Such is made possible by the mean-field approximation.

The essence of the mean-field approximation resides in the simplification of the effect of the electrons

in each other: instead of contemplating the sum of all the individual repulsion terms, we assume that

each electron experiences an average potential created by all the other electrons. Each one of them is

considered to be moving in the mean field created by the others.

This gives rise to the operator in equation 2.32.

𝑓 (𝑖) = −1
2
∇2
𝑖 −

𝑀∑
𝐴=1

𝑍𝑎

𝑟𝑖𝐴
+ 𝑣 (𝑖) (2.32)

This operator is just the electronic Hamiltonian in equation 2.30, separated for each electron 𝑖. The

impact of the remaining electrons is contained within 𝑣 (𝑖), an average potential.
At this point we have managed to separate the Schrödinger equation into single fermion equations:

instead of one complicated many-body problem, we face multiple simple one-body problems:

𝑓 (𝑖)𝜒 ( ®𝑥𝑖) = 𝜖𝜒 ( ®𝑥𝑖). (2.33)

This is another eigenvalue equation, thus its form is identical to that of equation 2.23. But it is much

simpler: we now have 𝑓 (𝑖), a one-body operator, instead of the many-body operator �̂� . Instead of the

many-body wave function |𝜓 〉, depending on the coordinates of all of the electrons, we have single-body

wave functions (spin-orbitals) 𝜒 ( ®𝑥𝑖), each of which depends solely on the coordinates of one of them.
If we have N electrons, we have N equations of the form of 2.33. We want to find the eigenvalues

𝜖 and the eigenfunctions 𝜒 ( ®𝑥𝑖) of each operator 𝑓 (𝑖). However, this set of equations is non-linear: for
the 𝑖th electron this operator depends (through 𝑣 (𝑖)) on the wave functions of the other electrons 𝜒 ( ®𝑥 𝑗 ),
which are the solutions of all the other N-1 equations. Thus, the solution must be obtained iteratively.
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The iterative method for solving the equation 2.33 is the Self-Consistent Field (SCF) method. This is

because the convergence condition is the self-consistency of the field.

The variational parameters are contained within the single-particle wave functions, the 𝜒 ( ®𝑥𝑖). We

start with an initial guess for the values of these parameters. With a concrete set of single-particle wave

functions, we are then in place to calculate the average potential that each particle 𝑖 feels (𝑣 (𝑖)). Plugging
the values in the expressions of the operator 𝑓 (𝑖), we get N single-particle equations of the form of 2.33.

These are much simpler to solve than the full Schrödinger equation. The obtained solutions are new

single-particle wave functions 𝜒 ( ®𝑥𝑖). From these we can calculate new average potentials 𝑣 (𝑖), and solve
for the eigenfunctions of the operator 𝑓 (𝑖) once again. The procedure is repeated until self-consistency is
achieved, i.e. the fields 𝑣 (𝑖) stop changing and the trial functions 𝜒 ( ®𝑥𝑖) used to calculate those fields are
also the solutions to the equations written with them. At this point, the trial functions used to construct

the operator 𝑓 (𝑖) are simultaneously its eigenvalues: the field is self-consistent.

2.2.2.2 Variational Form: Hartree and Hartree-Fock Methods

The previous discussion purposefully glossed over what the many-body wave functions look like, and how

they are related to the one-body wave functions. While the essence of SCF methods is similar, they differ

significantly in this one key aspect: the ansatz, i.e. the variational form we choose for the wave functions.

It seems like the simplest approach would be to consider that the many-body wave functions are just

products of one-body wave functions:

𝜓 ( ®𝑥1, ®𝑥2, ..., ®𝑥𝑁−1, ®𝑥𝑁 ) = 𝜒𝛼 ( ®𝑥1)𝜒𝛽 ( ®𝑥2) ...𝜒𝜋 ( ®𝑥𝑁−1)𝜒𝜌 ( ®𝑥𝑁 ). (2.34)

This is what Hartree proposed upon introducing an SCF method. However, the Hartree method does

not provide satisfactory results, because it does not account for a fundamental principle: the antisymmetry

principle.

The antisymmetry principle is a crucial axiom in quantum mechanics. It states that the many-body

fermionic wave function must be antisymmetric under exchange of any two particles, which we can write

as

𝜓 ( ®𝑥1, ..., ®𝑥𝑖, ..., ®𝑥 𝑗 , ..., ®𝑥𝑁 ) = −𝜓 ( ®𝑥1, ..., ®𝑥 𝑗 , ..., ®𝑥𝑖, ..., ®𝑥𝑁 ). (2.35)

Evidently, the Pauli exclusion principle is enforced by the antisymmetry condition 2.35. The condition

is rooted in the indistinguishability of particles. Exchanging indistinguishable, or identical, particles must

result in a physically equivalent state. Such only allows variability up to a global phase. There are two

main types of indistinguishable particles: fermions and bosons, with complex phase factors 𝑒𝑖𝜋 = −1 and
𝑒𝑖2𝜋 = 1 respectively. These factors give rise to the antisymmetric nature of fermionic wave function, and

the symmetric nature of the bosonic wave function.
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In either case, the simplest possible way of combining the individual wave functions, the Hartree

product (definition 2.34), is inadequate. In the scenario we are concerned with (the fermionic one), this

can be dealt with by using antisymmetrized products instead.

𝜓 ( ®𝑥1, ®𝑥2, ..., ®𝑥𝑁−1, ®𝑥𝑁 ) =�������������

𝜒1( ®𝑥1) 𝜒2( ®𝑥1) ... 𝜒𝑁−1( ®𝑥1) 𝜒𝑁 ( ®𝑥1)
𝜒1( ®𝑥2) 𝜒2( ®𝑥2) ... 𝜒𝑁−1( ®𝑥2) 𝜒𝑁 ( ®𝑥2)

...
...

. . .
...

...

𝜒1( ®𝑥𝑁−1) 𝜒2( ®𝑥𝑁−1) ... 𝜒𝑁−1( ®𝑥𝑁−1) 𝜒𝑁 ( ®𝑥𝑁−1)
𝜒1( ®𝑥𝑁 ) 𝜒2( ®𝑥𝑁 ) ... 𝜒𝑁−1( ®𝑥𝑁 ) 𝜒𝑁 ( ®𝑥𝑁 )

�������������
(2.36)

Wave functions of the form of 2.36 are typically called Slater determinants. Matrix determinants are

antisymmetric under exchange of any two rows or columns, making them a natural choice here. For

bosons, one would use matrix permanents.

Slater determinant ansätze were used in the Hartree-Fock method, an updated version of the Hartree

method that accounted for the antisymmetry principle.

As it was mentioned before, the choice of ansatz is what shapes a specific SCF method. The form of

the operator 𝑓 (𝑖) as written in 2.32, and its place in the algorithm, are common to several SCF methods.
The difference is in the potential 𝑣 (𝑖): it will be specific to the assumptions we make about the wave

function, i.e. it depends on how our ansatz looks like. This operator is then used to write Schrödinger-like

one-particle equations 2.33, which means that the chosen ansatz greatly impacts the formulation of our

eigenproblems.

In the Hartree-Fock method, the operator of the form of equation 2.32 is called the Fock operator:

𝑓 (𝑖) = −1
2
∇2
𝑖 −

𝑀∑
𝐴=1

𝑍𝑎

𝑟𝑖𝐴
+ 𝑣𝐻𝐹 (𝑖) (2.37)

The key difference is that the 𝑣𝐻𝐹 (𝑖) term here has a superscript, referring to the fact that the potential

in this operator is the Hartree-Fock potential. The eigenvalue equations 2.33 defined through the Fock

operator are the Hartree-Fock equations.

As an illustration of how the potential changes depending on the ansatz, a shallow, simplified com-

parison of the Hartree and Hartree-Fock potentials follows.

The method proposed by Hartree used the Hartree product as the variational form. This was associ-

ated with a simple potential, consisting of a local operator that accounted solely for the electron-electron

repulsion. In contrast, the potential in Hartree-Fock method includes, in addition to this local operator, an

exchange operator. This is a non-local operator that simply results from choosing Slater determinants as

wave functions: it is an artifact associated with the imposition of the anti-symmetry principle.
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2.2.2.3 Limitations of the Hartree-Fock Method

The Hartree-Fock method simplifies the problem in multiple ways. Demanding that the solution is a Slater

determinant is in itself a restriction that precludes exactness, as is typical of variational methods: the

optimal solution is only guaranteed to be the best within the variational form. What the Hartree-Fock

method does is to find the best solution of Slater determinantal form.

As was discussed before, the motion of the nuclei is neglected (Born-Oppenheimer approximation).

Further, themethod also assumes themean-field approximation, which fails to properly account for electron

correlation outside of antisymmetry.

Finally, even if none of these approximations were used, the exact solution would still be beyond

reach, because for the method to be tractable the basis set must be finite. For the Slater determinants to

constitute a complete N-electron basis, they would have to be built from an infinite basis set of spin-orbitals.

Regardless, the Hartree-Fock method is a cornerstone in quantum chemistry, and its approximate

solution is often used as a starting point in more accurate methods, both in classical and quantum com-

puting.

2.2.2.4 Post-Hartree-Fock Methods

Given the shortcomings of the Hartree-Fock solution, a multitude of more accurate methods has been

proposed to improve upon the Hartree-Fock approximation (at the expense of extra computational cost).

The following abbreviated explanation of post-Hartree-Fock methods is based, not only on the main

reference for this section ([84]), but also on references [71] and [38].

Several relevant simplifications assumed by the Hartree-Fock method were mentioned previously. Of

these, one typically undone by posterior methods is the assumption that the solution is of the form of a

Slater determinant.

To correct for the electronic correlation ignored by the Hartree-Fock method, a typical approach is to

expand the wave function as a linear combination of Slater determinants, rather than a single one of them.

Since the Hartree-Fock solution is a good starting point, the wave function is often described in terms of

excitation operators that will act on this state.

It is useful to define the cluster operator 𝑇 :

𝑇 =
𝑁∑
𝑖=1

𝑇𝑖,

𝑇1 =
∑
𝑖,𝑎

𝑡 𝑖𝑎𝑎
†
𝑎𝑎𝑖

𝑇2 =
∑

𝑖> 𝑗,𝑎>𝑏

𝑡 𝑖 𝑗
𝑎𝑏
𝑎†𝑎𝑎

†
𝑏
𝑎𝑖𝑎 𝑗

...

(2.38)
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The lower case 𝑡 are expansion coefficients. The indices 𝑖, 𝑗 and𝑎,𝑏 run over orbitals that are occupied

and unoccupied (virtual) in the reference state, respectively. The operator 𝑎†
𝑘
is a creation operator, which

creates a fermion in orbital 𝑘 ; 𝑎𝑘 is an annihilation operator, which removes a fermion from orbital 𝑘 .

These operators belong to the second quantization formalism.

The cluster operator consists of a sum of all possible excitation operators 𝑇𝑖 : the one that generates

single excitations from the reference state (𝑇1), the one that generates double excitations (𝑇2), and so forth.

With this operator, it is possible to write the FCI variational form in 2.39.

|𝐹𝐶𝐼 〉 = (1 +𝑇 ) |𝐻𝐹 〉 (2.39)

This is just the Hartree-Fock state acted on by an operator (1 + 𝑇 ); the expansion coefficients will

be the variational parameters. The term 𝑇 |𝐻𝐹 〉 consists of a linear combination of all possible excited

determinants, since the cluster operator includes all possible excitation operators. The FCI state is then a

linear combination of all Slater determinants in the N-electron space formed from the chosen set of spin-

orbitals. The optimal FCI energy 2.40 will be the exact solution within the N-electron subspace spanned

by these determinants. Of course, other than the finite basis set, the solution is also only exact up to the

Born-Oppenheimer approximation.

𝐸𝐹𝐶𝐼 = min
®𝑡

〈𝐹𝐶𝐼 |𝐻 |𝐹𝐶𝐼 〉
〈𝐹𝐶𝐼 |𝐹𝐶𝐼 〉 (2.40)

In short, the inclusion of more Slater determinants increases the variational freedom and improves

the solution. The name configuration interaction arises from the fact that each Slater determinant in the

expansion is associated with a specific electronic configuration (configuration of spin-orbitals). Full refers

to the fact that all excitation operators are included.

Unfortunately, while FCI offers accurate results, it is only tractable for small molecules: the number

of determinants that need to be included in the expansion grows with the factorial of the total number

of spin orbitals. Consequently, even with minimal single electron basis sets, the difficulty of calculations

increases rapidly as the size of the system increases.

To make the calculations tractable, the cluster operator 𝑇 must be truncated.

𝑇 (𝑘) =
𝑘∑
𝑖=1

𝑇𝑖 (2.41)

The operator 𝑇 (𝑘) defined in 2.41 is just the cluster operator from definition 2.38, truncated up to

excitations of order 𝑘 . When a truncated version of the operator is used, only a portion of the Slater

determinants formed from the one-electron basis set will appear in the expansion; the associated method

is simply called Configuration Interaction (CI). The variational form is written as in 2.42.

|𝐶𝐼 〉 = (1 +𝑇 (𝑘)) |𝐻𝐹 〉 (2.42)
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For the specific case that 𝑘 is two, the method is called Configuration Interaction Singles and Doubles

(CISD), because it includes only single and double excitations from the reference state (variational form in

2.43).

|𝐶𝐼𝑆𝐷〉 = (1 +𝑇1 +𝑇2) |𝐻𝐹 〉 (2.43)

Truncating the operator to make the computation tractable results in a few issues. Namely, if we have

two independent, non-interacting subsystems (e.g. two infinitely separated molecules), the CI energy of

the full system will not be the sum of the energies of the subsystems. Because it lacks this property, it is

said that CI is not size-consistent.

A size-consistent version can be created by means of exponentiation. The corresponding method is

called CC; the variational form is written in 2.44.

|𝐶𝐶〉 = 𝑒𝑇 |𝐻𝐹 〉 (2.44)

Once again, the cluster operator 𝑇 is typically truncated at some order of excitation. For the usual

choice that excitations up to order two are included, the method is called Coupled Cluster Singles and

Doubles (CCSD) (variational form in 2.45).

|𝐶𝐶𝑆𝐷〉 = 𝑒𝑇1+𝑇2 |𝐻𝐹 〉 (2.45)

Even when truncated, CC methods don’t suffer from the problem of size-inconsistency. Further, they

have the interesting property that even when the cluster operator𝑇 is truncated up to order 𝑘 , higher-order

excitations occur in the exponential series. However, they have some problems of their own. A relevant

weakness in CC is that the similarity-transformed Hamiltonian 𝐻 for conventional CC (definition 2.46) is

not variational.

𝐻 = 𝑒−𝑇
(𝑘)
𝐻𝑒𝑇

(𝑘)
(2.46)

This is due to the CC expectation value

𝐸𝐶𝐶 = 〈𝐻𝐹 | 𝑒−𝑇 (𝑘)
𝐻𝑒𝑇

(𝑘) |𝐻𝐹 〉 (2.47)

not being symmetric, since

〈𝐻𝐹 | 𝑒−𝑇 (𝑘)
≠ (𝑒𝑇 (𝑘) |𝐻𝐹 〉)†,

which is just a consequence of the operator 𝑒𝑇
(𝑘)

not being unitary. This means that we can’t use

the variational principle 2.31, because the associated expectation value isn’t of the proper form. The

asymmetry of the expectation value impedes the CC energy from being an upper bound to the ground

energy.
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To circumvent this, Variational Coupled Cluster (VCC) has been proposed. This method aims to mini-

mize

𝐸𝑉𝐶𝐶 =
〈𝐻𝐹 | 𝑒𝑇 (𝑘) †

𝐻𝑒𝑇
(𝑘) |𝐻𝐹 〉

〈𝐻𝐹 | 𝑒𝑇 (𝑘) †𝑒𝑇 (𝑘) |𝐻𝐹 〉
. (2.48)

Here, the denominator is not unity because of the non-unitarity of 𝑒𝑇
(𝑘)
. The VCC method is obviously

variational, because the numerator is of the form 〈𝜓 |𝐻 |𝜓 〉; further, much like traditional CC, it is size-

consistent. Unfortunately, the cost of the VCCmethod scales exponentially with the system size, regardless

of the truncation order 𝑘 .

Another approach to make a variational version of VCC is UCC, that replaces the operator 𝑒𝑇 with

another exponential operator, now unitary:

|𝑈𝐶𝐶〉 = 𝑒𝑇−𝑇
† |𝐻𝐹 〉 . (2.49)

The Hermitian conjugate of the operator (𝑇 −𝑇 †) reads

(𝑇 −𝑇 †)† = 𝑇 † −𝑇 †† = 𝑇 † −𝑇 = −(𝑇 −𝑇 †),

which means that this operator is anti-Hermitian, and the commutators between (𝑇 −𝑇 †) and (𝑇 −
𝑇 †)† are all zero. This grants unitarity to the UCC operator.(

𝑒𝑇−𝑇
†
) (

𝑒𝑇−𝑇
†
)†

=
(
𝑒𝑇−𝑇

†
)† (

𝑒𝑇−𝑇
†
)
= 𝐼

Since the UCC operator is unitary, the method is variational, and the UCC energy is an upper bound

to the ground state energy. Finding the UCC ground state then amounts to a minimization problem

(expression 2.50).

𝐸𝑈𝐶𝐶 = min
®𝑡

〈𝐻𝐹 | 𝑒−(𝑇−𝑇 †)𝐻𝑒𝑇−𝑇
† |𝐻𝐹 〉 (2.50)

As usual, the cluster operator should be truncated for the computation to be tractable, so that we get

an UCC operator of the form 𝑒𝑇
(𝑘)−𝑇 (𝑘) †

. For the frequent case that only excitations up to order two are

included (𝑘=2), the method is called UCCSD. This corresponds to the variational form in 2.51.

|𝑈𝐶𝐶𝑆𝐷〉 = 𝑒 (𝑇1+𝑇2)−(𝑇
†
1 +𝑇

†
2 ) |𝐻𝐹 〉 (2.51)

The UCCSD method is variational, size-consistent, and has more Slater determinants contributing to

the wave function than CISD, even though the truncation order of 𝑇 is the same.

In spite of its benefits, the UCCSD ansatz is not used in classical computations because it can’t

be efficiently evaluated. Regardless of the truncation order of the cluster operator, expression 2.50 is

classically intractable, because the BCH expansion for 𝑒−(𝑇−𝑇
†)𝐻𝑒𝑇−𝑇

†
is infinite.
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What is interesting is that while originally the unitary variant of the CC operator was created with the

purpose of obtaining a variational version of CC theory, this unitarity has the convenient side effect of

allowing straightforward implementation of the variational form in quantum computers.

In fact, the UCCSD ansatz was used in the article that introduced the VQE (reference [67]). Further,

this ansatz has inspired many other proposals of variational forms for use in chemistry applications.

2.3 Variational Quantum Algorithms

This section will present the general outline of variational quantum algorithms, as well as the context that

motivated their ingress into the field of quantum computing and prompted their popularity. An overview

of the subject can be found in the article [17], used as the main reference throughout the subsections to

follow.

2.3.1 Motivation

The main incentives for devising variational quantum algorithms are no other than the main limitations of

quantum computers. The problems mentioned in subsection 2.1.4 - reduced qubit count and connectivity;

coherent, incoherent and SPAM noise - currently inhibit quantum hardware from being large enough and

good enough to implement full algorithms. The prospect of a fault-tolerant era in quantum computing

seems distant, if promising.

As it was mentioned before, in 2014 the VQE was proposed as the first algorithm inserting a quantum

computer in an optimization loop and obtaining a solution via the variational principle. The problem it

meant to solve was one familiar to us from the previous section: finding the eigenstates of a Hamiltonian

representing a chemical system.

Variational algorithms were far from the first approach for using quantum resources to solve the

Schrödinger equation. In fact, the problem is strongly tied with the idea of using quantum computers

for the simulation of quantum mechanical systems as proposed by Feynman. Because of the exponential

growth of the classical resources required to describe a molecule as its size grows, the task at hand is an

example of something that quantum computers were created to tackle. And by the time quantum com-

puters were still in the conceptual realm, algorithms were certainly not developed with noise-resilience or

qubit limitations in mind - rather provable speedups.

If fault-tolerant quantum computers were available to us now, the problem could be solved by means

of the QPE algorithm. QPE allows obtaining the eigenvalue of a unitary operator corresponding to an

eigenstate given as input. By applying QPE to the (evidently unitary) time evolution operator 𝑒𝑖𝐻𝑡 , it is

possible to find the energy eigenstates. The only requirement is that we have a way of preparing states

with high overlap with the eigenstates, which can be met by resorting to adiabatic state preparation (ASP).

This procedure of using the QPE routine in combination with ASP was detailed in [94].
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However, this approach does not seem feasible in the NISQ era: employing the QPE routine to solve

relevant problems would require the application of millions to billions of quantum gates [67], implying

a circuit depth beyond what can be endured by near-term quantum computers (given that they’re not

error-corrected, and coherence times are still limiting).

This is where variational hybrid quantum-classical algorithms come in. They resort to the help of a

classical optimizer to spare the quantum computer from bearing the load of the algorithm in full. The goal

is to provide a near-term solution for problems that are classically hard to solve but, hopefully, easy for

quantum computers.

Another good example is the Quantum Approximate Optimization Algorithm (QAOA), a variational algo-

rithm aiming to solve combinatorial optimization problems introduced in [24]. Among the problems suit-

able for QAOA are the Quadratic Unconstrained Binary Optimization (QUBO) problems, of which MaxCut

is a famous example with several real-life applications (ranging from physics to communication networks

and circuit design).

What is interesting is that an infinitely slow adiabatic evolution leading to the solution of the problem

is a special case of the QAOA circuit, in the limit of infinitely many layers. If we allow the QAOA ansatz to

be big enough, there is a performance guarantee based on the adiabatic theorem: the ansatz is sure to

contain the solution.

The QAOA both parallels and contrast with the Quantum Adiabatic Algorithm (QAA), which provides a

more solid solution by relying in full in the adiabatic theorem. QAOA reduces the circuit depth under what

would be necessary for a truly adiabatic evolution, dispenses with the assurance of the adiabatic theorem,

and inserts the circuit in a classical optimization loop, converting some gate parameters to variational

parameters. The hope is that the extra variational freedom may make up for what is lost by using a

shallower circuit.

While the parallel with QAA seems like a good reason to believe the QAOA optimization might be

successful, if one employs a lower number of layers than required by the adiabatic theorem, the theorem

asserts nothing. So against QAA, an algorithm with solid foundations but demanding the unattainable in

the NISQ era, we have QAOA: a NISQ-friendly algorithm of tentative construction.

The priority shift from performance guarantees offered under the assumption of a fault-tolerant sce-

nario to near-term viability is the bedrock of variational quantum algorithms.

2.3.2 Outline

As VQAs might differ significantly in some key aspects and cover a wide variety of applications, quantum

algorithms belonging to this class exhibit great structural affinity among themselves. A high-level, greatly

simplified scheme of the outline of VQAs is presented in figure 6.

The basic idea of VQAs is to use a classical computer to optimize an expectation value measured in a

quantum computer. In the following, the four steps labeled in the scheme will be explained in more detail,

assuming the quantum circuit model.
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Figure 6: Typical outline of a variational quantum algorithm.

1 - Preparation of the Reference State

The quantum part of the algorithm starts with the preparation of a reference state
��𝜓𝑟𝑒 𝑓

〉
. This is the first

portion of the ansatz, and it will typically be a shallow (often constant-depth) circuit with fixed gates and

no variational freedom.

The role of this circuit is to start the computation in a state other than the typical computational basis

state |0...0〉. In the specific case of chemistry applications, this step might be of great importance in

assuring that the computation starts in a state belonging to the correct symmetry subspace dictated by

the problem. For example, it might be desired that the initial state has the correct particle number, and

the correct total spin and 𝑍 spin projection expectation values.

Of course, it isn’t always necessarily the case that a reference state different from the all-zero state is

desired; when such occurs, the reference state preparation step is simply omitted.

2 - Application of the Parameterized Unitary

After the reference state has been prepared, the parameterized portion of the ansatz circuit follows. This

is the part that contains the variational freedom. This is represented in the scheme by the parameterized

unitary 𝑈 ( ®𝜃 ). This notation simply means that, rather than a fully-fixed circuit, a parameterized circuit

is applied in this step. The parameters are considered to be organized into a parameter vector ®𝜃 . After
application of the ansatz, we are left with the parameterized state 𝑈 ( ®𝜃 )

��𝜓𝑟𝑒 𝑓

〉
, which will differ among

iterations (via the dependence on the parameter vector, updated each round).

The complete ansatz then consists of the combination of the circuit that prepares the reference state
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(step 1) with the parameterized circuit (step 2). The specific form of the ansatz greatly depends on the

specifics of the problem and the approach. Ansätze can be labeled into three main categories.

Static, problem agnostic ansätze are those fixed upfront and completely oblivious to the problem.

Ansätze of this type don’t attempt to leverage any sort of previous knowledge about the problem, and don’t

bother spanning specific subspaces in which the solution is expected to be contained. Typically, this

represents a shift of priority from problem-tailoring to hardware-tailoring. The hardware-efficient ansätze,

that attempt to reduce depth by constructing a circuit directly from gates natural to the specific hardware,

belong to this category. Despite the evident advantages of strategies like this one, searching for the solution

in an exponentially big space without an informed choice of variational form creates other problems. Too

much expressibility and too little problem-tailoring lead to barren plateaus in the optimization landscape,

causing the gradients of the cost function to vanish exponentially on the number of qubits and rendering

the full algorithm inefficient.

Static, problem tailored ansätze are also fixed upfront, but they do attempt to leverage information

about the problem at hand. For example, in chemistry, this class includes ansätze that respect symmetries,

be those symmetries generic or specific to the system in study. One can enforce time-reversal symmetry,

as well as spin and particle number conservation. The UCCSD ansatz introduced in the previous section

is an example of an element of this class. While these ansätze don’t typically suffer from barren plateaus

(aside from the noise-induced ones) [17], they have some issues of their own. They are not always easy

to devise, because information about the problem can be limited or, if available, difficult to leverage.

Additionally, they typically correspond to longer ideal circuits (since they’re not developed with shallowness

as the end goal) and even longer transpiled circuits (since the available gates or connectivity are also not

the main concern).

Dynamic, problem tailored ansätze differ from the previous two in an important aspect: they are

not fixed upfront, rather grown on the fly as the algorithm evolves. This implies a very special degree of

tailoring: instead of human fabricated problem tailoring happening beforehand, additional measurements

are used during the computation to gather information about which parameterized gates should be added

to the ansatz at each point. The idea is to optimize, as well as the parameters, the variational form itself,

which is consequently not only tailored to the problem as a whole: it is tailored to each specific instance of

the problem. ADAPT-VQE was the first such ansatz to be introduced in the literature. It grows the ansatz

from scratch by selecting operators from a pool, based on their gradients. Unlike UCCSD, which is tailored

to electronic structure problems in general, ADAPT-VQE is tailored to each specific molecule we might

want to study. The main disadvantage of dynamically created ansätze is that they result in a sizeable

overhead in measurement and optimization costs; however, they have multiple advantages. Their design

is not an issue, because the ansatz structure is dictated by the the problem at hand - one needn’t find a

way to embed information about the problem into the construction of the circuit, because the algorithm

learns how to do that autonomously. The resulting circuit is typically of reduced and controllable depth,

due to the higher degree of customization and the existence of a tunable convergence criterion. Further,

the accuracy can surpass that of fixed-depth problem tailored ansatz circuits.
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3 - Cost Function Sampling

The final step to occur in the quantum computer is the evaluation of the expectation value of the cost

function - i.e., the function whose minimum we want to find - in the trial state that was prepared. This is

the information that will be passed on to the classical computer at the end of each iteration.

The operator whose expectation value we wish to find is typically denoted 𝐻 , because it may corre-

spond to a physical Hamiltonian. However, this ‘Hamiltonian’ can also be fabricated to encode a problem

that does not have any relation to a physical system. Regardless of the interpretation of the operator, we

can view this step as obtaining the expectation value of𝐻 measured in the state𝑈 ( ®𝜃 )
��𝜓𝑟𝑒 𝑓

〉
, abbreviated

to 〈𝐻 〉
𝑈 ( ®𝜃 ) |𝜓𝑟𝑒 𝑓 〉 in figure 6.

It was mentioned in section 2.1 that, in general, obtaining an expectation value implies several mea-

surements. Thus, even though this is not represented on the scheme so as to privilege terseness, the

estimate of the expectation value is obtained by repeating the state preparation and measurements multi-

ple times, and averaging over the results. Even under ideal conditions, sampling entails some noise in the

result: the inevitable quantum projection noise, and shot noise, deriving from the use of a finite number

of repetitions. The accuracy of the result can be increased arbitrarily by increasing the number of shots

(also called repetitions) of the circuit: the error goes with the inverse of the square root of the number of

shots (𝜖 ∝ 1√
𝑁
).

The diagram also disregards the evaluation of more than one expectation value in each iteration.

Oftentimes, the classical optimizer will make multiple calls to the quantum processor before moving on to

the next iteration (i.e. updating the parameters). For example, some optimization methods may require a

few gradient evaluations per iteration. In many relevant cases, this can be done bymeans of measurements

on the quantum computer using the parameter-shift rule [73].

4 - Parameter Vector Update

Finally, we have the step performed by the classical computer: the parameter update.

Based on the expectation value of the cost function (and possibly its gradients) obtained in the state

prepared by the previous parameters, a classical optimizer will decide on the parameters for the next

iteration. This can be done using the method of gradient descent, among others.

After the optimizer decides how to update the parameter vector ®𝜃 , this vector will be fed to the quantum
computer. The effect of this is to instantiate the ansatz, binding the specific parameter values to the gates

occurring in the variational circuit. This will allow the quantum computer to obtain the expectation value

of 𝐻 in the new trial state, which will then be passed on to the classical optimizer, and so on.

The cycle stops when some convergence criterion is met. This is decided by the classical computer. A

common stopping criterion is the absolute change in the value of the cost function between two consecutive

iterations being under a certain threshold.
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2.3.2.1 Variability among VQAs

While the previous succinct explanation focused mostly on the common factors between all VQAs, this

generic scheme embraces considerable diversity. As an example of this, we may compare two VQAs that

were already mentioned in this section: the VQE and the QAOA.

The VQE addresses chemistry problems: its goal is to find the ground state of a system. The cost

Hamiltonian is simply the electronic Hamiltonian of such system, and its expectation value is the energy.

This molecular Hamiltonian only needs to be mapped onto an observable that can be measured in a

quantum computer. As happens in many classical variational algorithms for chemistry, the reference state

is frequently the Hartree-Fock state, and the parameterized portion of the ansatz commonly consists of

circuits that mimic fermionic excitations applied to the reference determinant.

On the other hand, the QAOA aims to solve combinatorial problems; the solution is a classical bit

string, and the cost function is classical. Once again, this function must be represented by a quantum

observable; in this case, the cost Hamiltonian is diagonal and consists of a sum of projectors onto compu-

tational basis states multiplied by the corresponding cost values. The reference state is the homogeneous

superposition of computational basis states, which is the maximum energy eigenstate of another fabri-

cated Hamiltonian called the mixer Hamiltonian. The parameterized portion of the ansatz consists of p

rounds of time evolution under alternating Hamiltonians - this mixer Hamiltonian and the cost Hamiltonian.

These rounds are resembling of a trotterized adiabatic process, except here the evolution times of each

round correspond to independent variational parameters. In the limit that p tends to infinity, we can make

the Trotter steps very small, and the runtime very large (corresponding to a very slow evolution). In this

limit we are certain that the QAOA ansatz contains the solution, because for some variational parameters

the circuit implements the slowest possible adiabatic evolution leading the maximum energy state of the

mixer Hamiltonian to the maximum energy state of the cost Hamiltonian - i.e., the solution.

VQE and QAOA thus have distinct reference states, and the parameterized portion of their ansätze is

even more distinct. Notably, while the VQE ansatz is independent of the Hamiltonian, the QAOA ansatz

depends on it. The cost functions have distinct origins, even though both can be represented by a quantum

observable: the one used in VQE arises from a real system and the one used in QAOA is fabricated to

represent a classical problem. Consequently, there is also a different interpretation for the expectation

values of these functions. The VQE expectation value is the energy of the system in the fermionic state

represented by the state of the qubits; in contrast, the QAOA expectation value is the (weighted) average of

the cost function over the several bit strings (computational basis states) that appear in the superposition

state of the qubits.

Given the classical nature of the problem, the QAOA solution is a single computational basis state (the

one with the highest amplitude), while in VQE the full superposition state is the solution. This is also related

to how we expect these quantum algorithms to bring advantage as compared to classical ones. The hope

for quantum advantage in VQE is rooted in the fact that the classical description of the molecular system

grows exponentially with its size, i.e. VQE attempts to make use of quantum resources for a problem that is
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quantum by nature. In contrast, QAOA attempts to make use of quantum superposition to simultaneously

explore several solutions to a classical problem.

2.3.3 Variational Quantum Eigensolver

As it was explained before, the variational quantum eigensolver was introduced in [67] with the purpose

of finding the ground energy and ground state of a chemical system. The approach can be generalized to

excited states by means of the folded spectrum method [57, 91].

The essential idea behind the algorithm is to use a classical optimizer to find the minimum eigenvalue

of a Hamiltonian, whose expectation value is evaluated in a quantum computer.

The purpose of this section is to explain a few important aspects that have not yet been covered, includ-

ing the representation of the problem and specific details concerning the quantum expectation estimation

in the context of VQE. A deeper overview of the several components of VQE can be found in [59].

2.3.3.1 The Jordan-Wigner Transform

In order to be able to solve a fermionic problem in a quantum computer, we need to be able to encode the

evolution of a fermionic state in the evolution of the state of the qubits through unitary operations. This is

done through a fermion-to-qubit mapping, of which there are several; the most widely used one, and the

one employed in this dissertation, is the Jordan-Wigner Transform [48].

The first thing that should be pointed out is that the state of a fermion cannot in general be described by

a binary variable. For example, the state of a bound electron in an atom depends on the principal quantum

number n, the azimuthal quantum number l, the magnetic quantum number𝑚𝑙 , and the secondary spin

quantum number𝑚𝑠 . Aside from𝑚𝑠 , these quantum numbers are not even binary variables themselves

- and all four are necessary for a complete description. As such, representing the state of a fermion in the

state of a qubit is not feasible.

Another problem is that qubits are distinguishable, while identical fermions are indistinguishable. Even

if the state of a fermion could be fully specified by a binary variable, representing it in the state of a qubit

would not work. As an example, while the two two-qubit states

��𝜓𝑄,1
〉
= |0〉 ⊗ |1〉 ,

��𝜓𝑄,2
〉
= |1〉 ⊗ |0〉

are distinct, they would not be if we were dealing with fermions. Because fermions are identical

particles, exchanging two of them cannot affect any physical process. This is enforced by the antisymmetry

requirement presented in equation 2.35: if we exchange any two fermions, the many-body fermionic wave

function simply flips the sign. Ensuring the antisymmetry of the wave function guarantees that we are not

discerning between states that are not physically distinguishable. For the simple two-body example, if we

have a fermion in a state labeled 0 and one in a state 1 (regardless of what those states are), we can

write the wave function as
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|𝜓𝐹 〉 ∝ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 ,

which has the required property that exchanging the two fermions (putting the fermion to the left of

the tensor product in the state of the one to the right and vice-versa) results in a change of sign, but does

not affect any measurable properties of the wave function. It is easy to see that any expectation value is

left unchanged.

|𝜓𝐹 〉 → − |𝜓𝐹 〉

〈𝜓𝐹 | �̂� |𝜓𝐹 〉 → (− 〈𝜓𝐹 |)�̂� (− |𝜓𝐹 〉) = 〈𝜓𝐹 | �̂� |𝜓𝐹 〉

The two-body example is very simple, but as was discussed, we can write a generic N-body wave

function through Slater determinants, formula 2.36.

All of this trouble to express the many-body fermionic wave function is merely a symptom of the

notation in use being cumbersome for our purpose. By specifying the many-bode wave function in the

basis of tensor products of states of the individual particles, we are distinguishing between what isn’t

physically distinguishable. Because we are discriminating the state of each individual particle, it is then

necessary to remove the redundancy in the notation by enforcing the antisymmetry of the wave function.

This is where the occupation number representation of the second quantization proves useful. In

dealing with identical particles, it seems more natural to specify how many particles are in each state,

rather than which particles are in which state. Instead of having all the work antisymmetrizing the wave

function, it suffices to describe it by enumerating the occupation numbers of each single-particle state

(also called fermionic mode), a formalism which naturally embraces indistinguishability and clears up the

notation. In the previous example, we write

|𝜓𝐹 〉 = |𝑛0 = 1, 𝑛1 = 1〉

to mean that there is a fermion in the state labeled 0 (occupation number 𝑛0 is 1) and another in

the state labeled 1 (occupation number 𝑛1 is 1), without making any reference to which fermion is in

which state. In the case of a bound electron in an atom, we could specify the occupation number of

each spin-orbital (identified by the four quantum numbers n, l, 𝑚𝑙 , 𝑚𝑠 ). In accordance with the Pauli

exclusion principle, each occupation number must be 0 or 1, which can be readily seen from the fact that

the antisymmetry principle 2.35 causes the wave function to vanish if any two fermions occupy the same

state.

The second quantization formalism clears up the notation by relaying the task of ensuring antisymmetry

to the fermionic ladder operators. For any fermionic mode 𝑖, there is the creation operator 𝑎†𝑖 and the

annihilation operator 𝑎𝑖 , which act as
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𝑎†𝑖 |𝑛𝑖 = 0〉 = |𝑛𝑖 = 1〉 , 𝑎†𝑖 |𝑛𝑖 = 1〉 = 0,

𝑎𝑖 |𝑛𝑖 = 1〉 = |𝑛𝑖 = 0〉 , 𝑎𝑖 |𝑛𝑖 = 0〉 = 0.
(2.52)

Attempting to create a fermion in an occupied state or to remove a fermion from an unoccupied state

quenches the wave function.

The ladder operators have to obey the anti-commutation relations:

{𝑎†𝑗 , 𝑎
†
𝑖 } = 0, {𝑎 𝑗 , 𝑎𝑖} = 0, {𝑎 𝑗 , 𝑎†𝑖 } = 𝛿 𝑗,𝑖, (2.53)

where {𝐴, 𝐵} = 𝐴 + 𝐵 is the anti-commutator of operators 𝐴 and 𝐵, and 𝛿 𝑗,𝑖 is the Kronecker delta

(which is 1 if 𝑗 = 𝑖, and 0 if not). The anti-commutation relations in 2.53 enforce anti-symmetry and serve

as the algebraic definition of the fermionic ladder operators.

It should be noted that there is a notion of order at play. For example, if we use |0〉 denote the vaccuum
state (no fermions) and assume 𝑖 ≠ 𝑗 , the expression

𝑎†𝑗𝑎
†
𝑖 |0〉 = −𝑎†𝑖 𝑎

†
𝑗 |0〉

arising from the first anti-commutator in 2.53 states that if we create a fermion in state 𝑖, then one in

state 𝑗 , there is a sign flip as compared to a situation in which fermions are created in the opposite order.

The ladder operators are responsible for this sign flip, which ensures that the anti-symmetry principle is

obeyed; thus, it is to be expected that their mapping to qubit operators will carry this notion of order.

It is now natural to introduce the Jordan-Wigner transform, a mapping from fermions to qubits. We

match qubit states with the occupation number of fermionic modes, and map

𝑎†𝑖 → 𝑒𝑖𝜋
∑𝑖−1

𝑘=1 𝜎
+
𝑘
𝜎𝑘 · 𝜎+

𝑖 ,

𝑎𝑖 → 𝑒𝑖𝜋
∑𝑖−1

𝑘=1 𝜎
+
𝑘
𝜎𝑘 · 𝜎−

𝑖 ,
(2.54)

where the 𝜎+
𝑖 , 𝜎

−
𝑖 are the qubit raising and lowering operators acting on qubit 𝑖, defined by means of

Pauli operators as

𝜎+
𝑖 =

1
2
(𝑋𝑖 − 𝑖𝑌𝑖),

𝜎−
𝑖 =

1
2
(𝑋𝑖 + 𝑖𝑌𝑖).

(2.55)

Evidently, the action of 𝜎+
𝑖 , 𝜎

−
𝑖 on qubit states |0〉𝑖 , |1〉𝑖 is identical to the action of 𝑎†𝑖 , 𝑎𝑖 on the

fermion states |0〉𝑖 , |1〉𝑖 as defined in 2.52.
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𝜎+
𝑖 |0〉𝑖 = |1〉𝑖 𝜎+

𝑖 |1〉𝑖 = 0

𝜎−
𝑖 |1〉𝑖 = |0〉𝑖 𝜎−

𝑖 |0〉𝑖 = 0
(2.56)

For a single fermionic mode, identifying 𝜎+
𝑖 , 𝜎

−
𝑖 with 𝑎†𝑖 , 𝑎𝑖 respectively would suffice. However,

the antisymmetry requirement would not be satisfied, so this simpler mapping would not be fitting in a

multi-mode scenario. That is the purpose of the phase that appears in 2.54.

The operator 𝑒𝑖𝜋
∑𝑖−1

𝑘=1 𝜎
+
𝑘
𝜎𝑘 is typically called the Jordan-Wigner string operator. It can be readily seen

that it adds a phase 𝑒𝑖𝜋𝑁𝑘<𝑖 to the operators acting on qubit 𝑖, where 𝑁𝑘<𝑖 is the number of the occupied

fermionic modes 𝑘 for which 𝑘 < 𝑖. This is crucial for the anti-symmetry requirement, and it is where the

previously mentioned notion of order comes in. We have to establish and be consistent with a sequence,

i.e. choose an order ... < 𝑖 < 𝑗 < ... relating all fermionic modes.

It is easy to see what is the effect of the Jordan-Wigner string by considering the successive creation

of fermions in two different unoccupied modes. When the first fermion is added to the mode with the

lowest index, it affects the string operator of the operator that creates the second fermion, but when the

first fermion is added to the mode with the highest index, the string operator of the operator that creates

the second fermion is left unchanged. This causes the wave function in these cases to differ by a phase

factor 𝑒𝑖𝜋 = −1, as antisymmetry requires: whenever we swap the order of creation of fermions in two

modes, we get a flipped sign.

It is convenient to write the Jordan-Wigner transform 2.54 using Pauli operators. This is easily done

using 2.55 and noting that the effect of the Jordan-Wigner string on operators acting on mode 𝑖 amounts

to adding a minus sign when the parity of the occupation numbers of the modes under 𝑖 is odd. This

parity calculation can be done through a string of Pauli 𝑍 operators.

𝑎†𝑖 →
1
2

𝑖−1∏
𝑘=1

𝑍𝑘 · (𝑋𝑖 − 𝑖𝑌𝑖)

𝑎𝑖 →
1
2

𝑖−1∏
𝑘=1

𝑍𝑘 · (𝑋𝑖 + 𝑖𝑌𝑖)
(2.57)

The formulation of the Jordan-Wigner transform in 2.57 is very convenient for quantum computing

applications.

Finally, it is worth noting that this definition of the Jordan-Wigner mapping is not unique. Often the

roles of the operators 𝜎+
𝑖 and 𝜎−

𝑖 in 2.54 are reversed, causing the empty and occupied fermionic modes

to be represented by qubit states |1〉 and |0〉 respectively (the opposite of what the definitions presented
here lead to).
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(a) OpenFermion [2] orbital ordering. (b) Qiskit [3] orbital ordering.

Figure 7: Circuit for preparing the Hartree-Fock reference state, for the 𝐻2 molecule. The circuits were
drawn in the IBM Quantum Composer [41].

2.3.3.2 Preparation of the Reference State

The reference state used in VQE is typically the Hartree-Fock approximation to the ground state. Because

the computational basis states usually represent the Slater determinants obtained as approximate eigen-

states of the system in performing the self-consistent mean field Hartree-Fock calculations, the reference

state preparation state simply amounts to a O(1) circuit with 𝑁𝑒 parallel Pauli 𝑋 gates, where 𝑁𝑒 is the

number of electrons.

Preparing the reference state amounts to applying Pauli 𝑋 gates on the qubits that, under the Jordan-

Wigner mapping (see 2.3.3.1), correspond to occupied spin-orbitals.

The exact circuit depends on the convention for organizing the spin-orbitals. Figure 7 contrasts the

reference state preparation for the hydrogen molecule in the two software packages used for creating the

circuits: OpenFermion [2], used in conjunction with CIRQ [22], and Qiskit [3].

In the basis set that was always used in the simulations (the STO-3G minimal basis set), 𝐻2 has four

spin-orbitals, so that the electronic states are represented by four qubits.

OpenFermion alternates between 𝛼 (up) and 𝛽 (down) type orbitals. With this ordering, each spatial

orbital is represented by two qubits that are adjacent on the register. Figure 7a shows how to create

the state |0011〉, assuming little endian ordering. Under OpenFermion’s convention, this corresponds to
creating two fermions on the two spin-orbitals associated with the lowest-energy spatial orbital (the orbitals

are assumed to be organized in ascending energy from right to left).

In contrast, Qiskit uses block-wise orbital ordering: all 𝛼 orbitals come first, followed by all 𝛽 orbitals.

This means that the first qubit of the register corresponds to the same spatial orbital as the one in the

middle of the register, with the two representing opposite spins. Figure 7b shows how to create the state

|1010〉 (assuming little endian ordering once again). In spite of the differences in convention, the states
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prepared by circuits 7a and 7b represent the same fermionic state. Evidently, the ansatz and Hamiltonian

averaging must be done in accordance with the chosen convention.

2.3.3.3 Choice of Ansatz

As was discussed, the typical ansätze for VQE are chemistry-inspired. Even though they may not lead to

the shallowest circuits, the fact that they’re tailored to chemistry problems in particular helps create trial

states in the appropriate symmetry subspace. As a consequence, the optimization is helped by the fact

that subspaces where the ground state is sure not to be are entirely avoided. Ansätze that don’t leverage

previous knowledge about the system typically lead to barren plateaus. These trainability issues have been

shown to be a consequence of the choice of ansatz that cannot be helped through the choice of optimizer

[60, 10, 39].

UCC theory enjoys great popularity due to its natural genesis in the context of previous computa-

tional chemistry methods. UCC proposals are also fairly broad, and this class has been expanding as a

consequence of research efforts to make the ansätze more compact and more accurate.

The article [80] explored singlet and pair Quantum Unitary Coupled Cluster Doubles (q-UCCD) ap-

proaches (where the q stands for quantum), which reduce the double excitations appearing in the ansatz

to a smaller subset. Singlet q-UCCD splits the double excitations into singlet and triplet components, and

makes use of symmetry / anti-symmetry to reduce the number of excitation operators. Pair q-UCCD limits

the excitations to those which excite a pair of electrons with opposite spins from one spacial orbital to

another. Both of these ansätze were tested in several systems with results of compelling accuracy, while

reducing the number of two-qubit gates in the ansatz circuit by up to 75%.

A different ansatz termed k-Unitary Paired Coupled Cluster Generalized Singles and Doubles (UpC-

CGSD) was introduced in [53]. k-UpCCGSD consists of k products of unitary paired coupled-cluster double

excitations, as well as all generalized single excitations. Here generalized indicates that virtual-to-virtual

and occupied-to-occupied excitations are also allowed (orbitals are considered virtual or occupied if they

are so in the reference state). The K-UpCCGSD ansatz increases the variational freedom as compared to

the simple pair Unitary Coupled Cluster Generalized Singles and Doubles (UCCGSD) (pUCCGSD) ansatz,

while still enjoying a linear scaling of the circuit depth with the system size. The k-UpCCGSD was shown to

be capable of achieving chemical accuracy with a better resource scaling than UCCSD and UCCGSD (the

generalized version of the former), both of which require an O(𝑁 4) circuit depth, where N is the number

of orbitals.

Changing the form of the ansatz is not the only option. Low-rank decomposition of the basic UCC

operator was used in [62] to reduce the gate complexity of each Trotter step from O(𝑁 4) to O(𝑁 3). By
exploiting the structure and symmetries of the cluster operator and truncating small terms, the depth of

the circuits can be reduced without precluding chemical accuracy.
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2.3.3.4 Hamiltonian Averaging

The part of the algorithm that consists of obtaining the expectation value of the cost Hamiltonian (in this

case a physical Hamiltonian) is typically called Hamiltonian averaging or quantum expectation estimation.

In subsection 2.1.2, a procedure to measure arbitrary observables was outlined; it consisted of de-

composing them as a linear combination of Pauli strings (formula 2.14) and calculating the expectation

value as a weighed average of the corresponding expectation values (formula 2.15). The expectation value

of the Hamiltonian can be obtained exactly this way; the question is whether this can be done efficiently.

Luckily, it is often the case that the Hamiltonian of a physical system can be decomposed as a linear

combination of a polynomial number of Pauli terms. This includes the electronic structure Hamiltonian

(formula 2.30), as well as the Hamiltonians of the Ising and Heisenberg models [67]. The problems

addressed in this dissertation concern electronic Hamiltonians with a number of terms that scales like

O(𝑁 4) on the number of spin-orbitals/qubits 𝑁 [75]. An example of such a Hamiltonian, for the very

simple case of the hydrogen molecule, can be found in appendix B.

While the scaling is polynomial, obtaining the expectation value can still imply a large number of

measurements, especially in chemistry problems which typically require exceptional accuracy. One way

this can be improved is by organizing the Pauli strings appearing in the decomposition of the operator into

commuting groups, that can be measured simultaneously.

As a simple two-qubit example, we can consider the following set of observables.

𝐼 𝐼 , 𝑍𝐼, 𝐼𝑍, 𝑍𝑍

The expectation values of all four terms can be obtained from the same circuit. There are multiple

ways of arranging Pauli strings into commuting groups; for example, if we have the set of observables

𝑍𝐼, 𝐼𝑍, 𝑍𝑍,𝑋𝐼, 𝐼𝑋, 𝑋𝑋,𝑋𝑍, 𝑍𝑋,

we can chose to split the Pauli strings into groups as

{𝑍𝐼, 𝐼𝑍, 𝑍𝑍 }; {𝑋𝐼, 𝐼𝑋, 𝑋𝑋 }; {𝑍𝑋 }; {𝑋𝑍 },

but also as

{𝑍𝐼, 𝐼𝑋, 𝑍𝑋 }; {𝑋𝐼, 𝐼𝑍, 𝑋𝑍 }; {𝑍𝑍 }; {𝑋𝑋 }.

These divisions only exploit qubit-wise commutativity. However, two Pauli strings also commute if they

have non-commuting Pauli operators in an even number of indices. This general commutativity allows us to

further reduce the circuit repetitions that are required to obtain the final expectation value. In our example,

it brings them down to 3
8 as compared to when no grouping is used; we can organize the operators as

{𝑍𝐼, 𝐼𝑋, 𝑍𝑋 }; {𝑋𝐼, 𝐼𝑍, 𝑋𝑍 }; {𝑍𝑍,𝑋𝑋 }.
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Even though this is evidently not the only possibility; we can also have

{𝑍𝐼, 𝐼𝑍, 𝑍𝑍 }; {𝑋𝐼, 𝐼𝑋, 𝑋𝑋 }; {𝑍𝑋,𝑋𝑍 }.

In this example, both options reduce the necessary circuit repetitions by the same amount (assuming

these repetitions are to be distributed equally). However, this is not always necessarily the case. What

is more, the task of finding the optimal partitioning becomes harder the larger the Hamiltonian is, and

taking into account sampling noise complicates the task further. Proposals of grouping strategies can be

found in references [59, 93, 49, 72, 45, 47, 65, 46, 97, 28, 29, 89, 19, 40]. The last article among

these proposed an approach that allows for a cubic reduction in term groupings over previous proposals,

with the drawback of requiring the execution of a linear-depth circuit before the measurement. A table

comparing all these strategies can be found in this same reference.

2.3.3.5 Estimating Shot Requirements

The number of terms in the Hamiltonian decomposition, and the number of commuting groups, are not

the only factors weighing in the shot requirements of VQE. The impact of sampling noise in the error, which

typically also increases with the size of the system, is another relevant aspect. The following estimation of

shot requirements was based on reference [93].

Assuming that the Hamiltonian operator has been decomposed in the form of formula 2.14 and that for

each Pauli string 𝑃𝑖 we use𝑀𝑖 shots, the error coming from the finite number of shots in the expectation

estimation can be written

𝜖2 =
∑
𝑖

|ℎ𝑖 |2𝑉𝑎𝑟 (𝑃𝑖)
𝑀𝑖

.

The variances depend, not only on the Pauli operators appearing in the Hamiltonian, but also on the

particular state. We can bound them as 𝑉𝑎𝑟 (𝑂𝑖) ≤ 1, since any Pauli operator has eigenvalues ±1 and
so will their product.

Without further knowledge about their variance, the best choice is to distribute the shots by the op-

erators in proportion to the norm of their coefficients: 𝑀𝑖 ∝ |ℎ𝑖 |. Assuming this distribution, one can

estimate the necessary number of shots to hit a precision 𝜖 as

𝑀 ≈ (∑𝑖 |ℎ𝑖 |)2
𝜖2

.

The term (∑𝑖 |ℎ𝑖 |)2 will depend strongly on the molecule in study: it will be larger for larger molecules,
requiring a larger number of shots for the same precision if the system size is increased.

Given that chemical accuracy is 1 kcal/mol ≈ 1.59 × 10−3 Hartree, achieving it requires

𝑀 ≈ 0.4 × 106 × (
∑
𝑖

|ℎ𝑖 |)2

46



2.3. VARIATIONAL QUANTUM ALGORITHMS

shots. This is already of the order of 107 to 108 for small molecules like helonium and lithium hydride;

𝐹𝑒2𝑆2, for instance, would require around 1013 shots.

This number of shots needs to be performed every time one needs to evaluate the energy, which

happens many times throughout the optimization. The shot requirements are heavier for larger molecules,

since there are more Pauli strings in the Hamiltonian, larger coefficients |ℎ𝑖 |, and more parameters to

optimize (resulting in more iterations and more function evaluations per iteration being required).

Further, this shot count doesn’t guarantee proper functioning of the optimizer: it ensures that the

difference between the energy estimate and the true energy in a state are within chemical accuracy, but

the final state isn’t necessarily close to the ground state. The error might still be enough to confuse the

optimizer into outputting a wrong guess for the ground state (e.g. by tricking it into an early convergence).
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3

Static Ansätze for VQE

This chapter aims to present the results of VQE simulations with static ansätze. In the first section, an

entirely problem-agnostic ansatz will be applied in searching for the ground state of the helium hydride ion.

The impact of the optimizer, optimization hyperparameters, and noise on performance will be assessed.

In the second section, a problem-inspired ansatz will be applied in searching for the ground state of the

hydrogen molecule. The impact of several types of noise on performance will be analysed.

For creating and executing quantum circuits, CIRQ [22] and Qiskit [3] were used in alternation; the

CIRQ simulator was used as well as IBMQ’s simulators and real quantum computers. Which package and

backend was used in obtaining which results will be clear along the chapter.

When analysing the results, the final VQE energy and state will be compared with those obtained

from performing exact diagonalization on the FCI Hamiltonian. The FCI solution is exact up to the Born-

Oppenheimer approximation, relativistic effects, and the chosen basis set.

3.1 Problem Agnostic Ansätze

As was explained before, problem agnostic ansätze come with several advantages: they don’t demand

previous knowledge about the problem or system, nor a way of leveraging such knowledge. Additionally,

taking the focus away from the problem allows for a more hardware-friendly circuit implementation, which

may decrease the depth of the circuits. The main disadvantage of this type of ansatz is that randomly

initialized parameterized quantum circuits often lead to barren plateaus in the optimization landscape [60].

This section will present simple a example of a problem agnostic ansatz, applied to the helium hydride

ion. An ansatz spanning the whole Hilbert space was created and employed in the simulations; such an

approach is feasible given the dimensionality of the problem. The section contains results from running

the algorithm on the CIRQ simulator and on IBMQ’s backends (simulators or real quantum processors).

3.1.1 Application to Helium Hydride

The purpose of the following is to implement VQE as in the article that originally introduced it [67], which

applied the algorithm to the helium hydride ion using a photonic quantum processor.

In addition to the CIRQ and Qiskit implementations, an independent noise-free version of VQE, based

on matrix algebra, was implemented to verify correctness.

The Hamiltonians for the different bond distances were taken from the article (which in turn obtained

them via the PSI3 computational package [20]), as was the parameterization of an arbitrary 2-qubit state.
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The ansatz employed here searches through the whole Hilbert space, much like the ansatz in the original

article. However, while in the article the parameterization was rewritten into a convenient form that directly

dictated the values of six phase shifters in the photonic chip, here the state preparation was abstracted of

the specifics of any physical implementation and instead mapped to a generic circuit.

3.1.1.1 Preparing an Arbitrary 2 Qubit State

An arbitrary (pure) two qubit state can be written as in equation 3.1.

|𝜓 〉 = 𝛼 |00〉 + 𝛽 |01〉 + 𝛾 |10〉 + 𝛿 |11〉 (3.1)

The computational basis coordinates 𝛼 , 𝛽 , 𝛾 and 𝛿 are complex numbers that fully determine the

state.

Since optimizers typically deal with real variables, it is convenient to rewrite the state using real param-

eters. Further, the degrees of freedom corresponding to the normalization and the global phase should

be removed. With this, the two qubit state can be described by six real variational parameters. A possible

parameterization is presented in 3.2.

|𝜓 〉 = cos
𝜃0
2
cos

𝜃1
2
|00〉 + cos

𝜃0
2
sin

𝜃1
2
𝑒𝑖𝜔1 |01〉 +

sin
𝜃0
2
𝑒𝑖𝜔0 cos

𝜃2
2
|10〉 + sin

𝜃0
2
𝑒𝑖𝜔0 sin

𝜃2
2
𝑒𝑖𝜔2 |11〉

(3.2)

Here, 𝜃𝑖 ∈ [0, 𝜋] and 𝜔𝑖 ∈ [0, 2𝜋]. This was the parameterization used in the original VQE article

[67], and it will be used here as well.

We wish to transform this parameterized description of the state into a parameterized circuit that we

can use as our ansatz. The concept of Schmidt decomposition, presented in theorem 2.7 of reference

[64], is useful here.

If we have a pure state of a composite system 𝐴𝐵,
��𝜓𝐴,𝐵

〉
, then the Schmidt decomposition allows us

to write it as ��𝜓𝐴,𝐵

〉
=

∑
𝑖

𝜆𝑖 |𝑖𝐴〉 |𝑖𝐵〉 , (3.3)

where the |𝑖𝐴〉, |𝑖𝐵〉 are orthonormal states of the systems 𝐴, 𝐵 respectively. They form the Schmidt

basis of the respective system. The 𝜆𝑖 , called Schmidt coefficients, are real non-negative numbers that

satisfy
∑

𝑖 𝜆
2
𝑖 = 1.

We can find the Schmidt decomposition of a two qubit state written in the computational basis (formula

3.1) by using Singular Value Decomposition (SVD). Firstly, we must organize the coordinates into a two-by-

two matrix 𝑀 .

𝑀 =

(
𝛼 𝛽

𝛾 𝛿

)
(3.4)
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This is done by identifying the coordinate of computational basis state |𝑖 𝑗〉 with the matrix entry𝑀𝑖, 𝑗 :

the left qubit, 𝐴, is associated with row indices, and the right qubit, 𝐵, is associated with column indices.

Calculating the scalar product of the state of the composite system with a state of system 𝐴 or 𝐵 (|𝜓𝐴〉
or |𝜓𝐵〉) corresponds to left- or right-multiplying matrix 𝑀 by the bra 〈𝜓𝐴 | or the ket |𝜓𝐵〉, which results
in a linear superposition of the rows or columns of matrix 𝑀 , respectively. Calculating the scalar product

of the state of the composite system𝐴𝐵 with a computational basis state of the same system amounts to

doing both simultaneously, i.e.

〈
𝑖 𝑗

��𝜓𝐴,𝐵

〉
≡ 〈𝑖 |

(
𝛼 𝛽

𝛾 𝛿

)
| 𝑗〉 .

We can now use SVD decomposition to write𝑀 in the more convenient way of 3.5.

𝑀 = 𝑈

(
𝜆0 0

0 𝜆1

)
𝑉 (3.5)

The 𝜆𝑖 are the singular values of matrix𝑀 , non-negative real numbers that we can easily identify with

the Schmidt coefficients of formula 3.3. 𝑈 and 𝑉𝑇 (note the transpose) are two-by-two unitary matrices,

whose column vectors form the Schmidt basis for 𝐴 and 𝐵 respectively.

It will be necessary to create a circuit to implement 𝑈 and 𝑉𝑇 . A generic single-qubit unitary can be

written by means of three rotations, along with a global phase. This is done in 3.7.

𝑈 = 𝑒𝑖𝜃0𝑅𝑍 (𝜃1)𝑅𝑌 (𝜃2)𝑅𝑍 (𝜃3) = 𝑒𝑖𝜃0𝑒
−𝑖𝜃1𝑍

2 𝑒
−𝑖𝜃2𝑌

2 𝑒
−𝑖𝜃3𝑍

2 (3.6)

= 𝑒𝑖𝜃0
©«
𝑒

−𝑖 (𝜃1+𝜃3)
2 · cos

(
𝜃2
2

)
−𝑒

−𝑖 (𝜃1−𝜃3)
2 · sin

(
𝜃2
2

)
𝑒

−𝑖 (−𝜃1+𝜃3)
2 · sin

(
𝜃2
2

)
𝑒

−𝑖 (−𝜃1−𝜃3)
2 · cos

(
𝜃2
2

) ª®¬ (3.7)

The rotation angles can easily be found from this; for example, they can be obtained using the expres-

sions in 3.8, where ∠𝑈𝑖 𝑗 denotes the phase 𝜙 of the complex number 𝜌𝑒𝑖𝜙 in line i and column j of matrix

𝑈 , and |𝑈𝑖 𝑗 | denotes its modulus 𝜌 .

𝜃0 =
∠𝑈00 + ∠𝑈11

2
𝜃1 = −∠𝑈00 + ∠𝑈10

𝜃2 = 2 arccos |𝑈00 | 𝜃3 = −∠𝑈00 + ∠(−𝑈10)
(3.8)

It should be noted that 𝜃0 corresponds to a global phase with no relevance. The only parameters that

are important and should be found are 𝜃1, 𝜃2 and 𝜃3.

A procedure to create a circuit that prepares a state from its four complex coordinates in the computa-

tional basis can now be easily described. Once 𝑈 , 𝑉 , 𝜆0 and 𝜆1 have been found by SVD decomposition

(allowing us to rewrite the coordinate matrix as in 3.5), it can be divided into the three following steps:
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1. Create the state 𝜆0 |00〉 + 𝜆1 |10〉 (from |00〉). This can be done by rotating qubit 𝐴 around the 𝑌

axis by an angle of 2 arccos |𝜆0 |. Because 𝜆20 + 𝜆21 = 1, this is the same angle as 2 arcsin |𝜆1 |.

2. Create the state 𝜆0 |00〉 + 𝜆1 |11〉 (from 𝜆0 |00〉 + 𝜆1 |10〉). This can be done by applying a CNOT,
with qubit 𝐴 as the control and qubit 𝐵 as the target.

3. Create the state𝑈 ⊗𝑉𝑇 (𝜆0 |00〉 +𝜆1 |11〉) (from 𝜆0 |00〉 +𝜆1 |11〉). This can be done by decom-
posing the single qubit unitaries𝑈 and𝑉𝑇 into single qubit rotations, and applying them to qubits

𝐴 and 𝐵 respectively.

Steps 1 and 2 create the state 𝜆0 |00〉 + 𝜆1 |11〉, which is the desired state in the Schmidt basis.

Step 3 rotates each qubit from its Schmidt basis to the computational basis, creating the final state. The

corresponding unitaries are those formed by the Schmidt vectors of the respective qubits.

The outlined procedure leads to the state preparation circuit presented in figure 8. Such an ansatz has

7 variational parameters: one from the rotation on the first qubit in step 1, and 3 from the decomposition

of each of the unitaries in step 3.

Figure 8: Circuit with 7 variational parameters for preparing an arbitrary 2-qubit state, drawn in the IBM
Quantum Composer [41].

One thing that stands out is that there were six variational parameters in the parameterization 3.2.

In fact, there are six degrees of freedom left in a two-qubit state once we remove those corresponding to

the normalization and the global phase. This means that there is a redundant degree of freedom in our

parameterized circuit.

Luckily, this can easily be solved by noting that after the two first steps (i.e. after the CNOT gate), we

have a symmetric state 𝜆0 |00〉+𝜆1 |11〉. This means that the first two parallel Z rotations, with parameters
𝑝2 and 𝑝5 in figure 8, can be merged into a single Z rotation with angle 𝑝2 + 𝑝5 on either of the qubits,

with exactly the same effect.

The final 6-parameter ansatz is presented in figure 9, where the parameter labels were redefined to

run from 𝑝1 to 𝑝6.
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Figure 9: Circuit with 6 variational parameters for preparing an arbitrary 2-qubit state, drawn in the IBM
Quantum Composer [41].

.

In this project’s VQE implementation, the parameters chosen by the optimizer were the ones corre-

sponding to parameterization 3.2. At each step, the parameters output by the optimizer were treated as

follows:

• Calculate the complex coordinates 𝛼 , 𝛽 , 𝛾 , 𝛿 (formula 3.1) from the parameterization 3.2. Organize

them into a two-by-two matrix 𝑀 as in formula 3.4.

• Use SVD to obtain the 𝑈 , 𝑉 , 𝜆0, 𝜆1 that allow rewriting the matrix 𝑀 as in formula 3.5. This was

done using the svd function from SciPy’s [6] linear algebra module.

• Use the three-step procedure outlined before to create the 6-parameter circuit that prepares the

desired state.

3.1.1.2 Bond Dissociation Graph

Before delving into a deeper analysis of the impact of the optimizer and of generic noise in the VQE results,

a simple illustration of the performance of the algorithm is presented in figure 10. This figure shows the

VQE results for the helium hydride ion along its bond dissociation curve, for simulations with and without

sampling noise (and no other types). The Nelder-Mead simplex method from SciPy [6] was used as the

optimizer, with properly adjusted hyperparameters.

It can be seen that the results are mostly consistent from run to run, and even with only 1000 shots

in the expectation estimation the energy is consistently close to the ground energy obtained from exact

diagonalization.

It must be noted that the employed ansatz was overly generic (and overly expressible as a conse-

quence), and it was used along with a completely random starting state. In most runs, the starting state

did not have the correct particle number (among other symmetries) nor appreciable overlap with the ground
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Figure 10: Performance of the VQE algorithm along the bond dissociation graph of𝐻𝑒𝐻+, with and without
sampling noise. The upper plot shows the VQE energy, with and without sampling noise, plotted against
the exact diagonalization energy (which is exact within the basis set and up to the Born-Oppenheimer
approximation and relativistic effects). The lower plot shows the overlap of the VQE state (with sampling
noise) with the ground state obtained by exact diagonalization. In the cases with sampling noise, 1000
shots were used. 25 points were used for each interatomic distance; the median was used as the estimator,
and the error bars show the interquartile ranges. The quantum circuits were run on the CIRQ simulator
[22].
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state. Regardless, the VQE energy points clearly trace out the bond dissociation curve. Further, at any

given point, the final VQE state has an overlap of over 99% with the true ground state.

3.1.1.3 Effect of the Optimizer and Hyperparameters

The role of the classical optimizer is pivotal not only in VQE, but in VQAs in general: a bad optimizer might

hinder the performance of the algorithm. Further, what is a good and a bad optimizer is specific to the

quantum scenario, since noise (be it sampling or others) implies an added difficulty, and one that is not

typically contemplated in benchmarking classical optimizers.

Another relevant factor in the optimization are the hyperparameters - the parameters that control

the learning process. Because optimization-based algorithms are themselves computationally heavy, it

is typically not easy to find the optimal hyperparameters, and they may not generalize from small-scale

instances of the problem.

To illustrate the relevance of all of this, the performance of two different optimizers in obtaining VQE

results (under the same conditions as figure 10) will be compared.

(a) 1 run (b) 15 runs

Figure 11: Performance of the VQE algorithm with the COBYLA optimizer along the bond dissociation
graph of 𝐻𝑒𝐻+, with default hyperparameters. The upper plot in figure 11a compares the single-run VQE
energy with the exact diagonalization energy, with and without sampling noise (1000 shots). For each
interatomic distance, the same random starting point was used for both cases. The lower plot shows the
overlap of the VQE state, obtained in the simulations with sampling noise, with the ground state obtained
from exact diagonalization. Figure 11b compares the median and the average of the VQE energy over 15
runs with the exact diagonalization value, in the case where 1000 shots are used per energy evaluation.
The quantum circuits were run in the CIRQ Simulator [22].

Figure 11 shows the VQE results with the COBYLA (Constrained Optimization BY Linear Approximation)

optimization method. Figure 11a shows the single-run performance of this optimizer with the default
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hyperparameters in the SciPy [6] implementation. In this case, the relevant hyperparameters are the

maximum number of iterations, the final accuracy required for convergence, and the magnitude of initial

changes to the variables. Remarkably, even with the default hyperparameters, the optimizer converges to

a reasonable approximation to the ground state (> 90% overlap) in all but three points. In can be seen that

sampling noise represents a significant challenge to successful convergence: in the few points whose bad

results stand out, the completely noise-free version of the algorithm still outputs an energy that essentially

coincides with the exact value, even though the starting point was the same.

Figure 11b compares the median of the VQE energy against the average for 15 runs, in simulations

with 1000 shots in the quantum expectation estimation. While in some cases they almost coincide, it

is more frequent that the median is a significantly better estimator. This is caused by aberrant runs in

which the optimizer doesn’t successfully converge to the ground state: they are promptly excluded by the

median, while they still weigh in on the average. The robustness of the median causes it to be a suitable

choice here, and this is the estimator that was used in this project whenever the gathered data included

more than one run per point.

Taking the median over as few as ten runs proved to be enough for the COBYLA optimizer (with

default hyperparameters) to output states with over 90% overlap with the solution throughout the whole

bond dissociation curve, which is a solid result considering that the whole Hilbert space is being searched

through and the starting state is entirely random.

In figure 12a, we can see that the performance of the Nelder-Mead optimization method is very dif-

ferent. With the default hyperparameters, Nelder-Mead optimized single-run VQE often fails to converge

to the ground state even without sampling noise. With sampling noise, this optimizer only successfully

converges to the ground state (> 90% overlap) in six of the points. The noise in the data does not allow

statistical filtering to improve upon the single-run behaviour: in figure 12c we can see that neither the

average nor the median allow recovering a reasonable approximation to the ground state. In fact, the two

estimators are always quite close, suggesting that nothing but noise is being recovered.

This poor performance of Nelder-Mead can greatly improve through an adjustment of the hyperpa-

rameters. In this case, the initial simplex is the most relevant. However, the error in parameters/function

deemed acceptable for convergence, and the maximum number of function evaluations, may also pose

too strict or too relaxed requirements for successful convergence. All of these hyperparameters of the

Nelder-Mead optimizer were optimized using COBYLA. In adjusting the initial simplex, a single parameter

affecting the simplex size was used. The impact of this ‘meta-optimization’ is reflected on figure 12b, which

shows that each single run posterior to hyperparameter tuning resulted in an overlap with the ground state

over 98.6%. In 12d, we can confirm that after hyperparameter optimization, Nelder-Mead VQE allows for

statistical treatment: the median is filtering out the aberrant runs, and for each interatomic distance we

obtain an energy that is visibly close to the true ground energy. The median VQE energies clearly trace

out the bond dissociation curve.

Evidently, conclusions regarding which among these two is the best optimizer cannot be drawn from

such scant results. In particular, this example has an overly expressible ansatz that might favour optimizers
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(a) Single run, default hyperparameters (b) Single run, optimized hyperparameters

(c) 15 runs, default hyperparameters (d) 15 runs, optimized hyperparameters

Figure 12: Performance of the VQE algorithm with the Nelder-Mead optimizer along the bond dissociation
graph of 𝐻𝑒𝐻+, before (12a, 12c) and after (12b, 12d) hyperparameter optimization. The upper plots
in figures 12a, 12b compare the single-run VQE energy with the exact diagonalization energy, with and
without sampling noise (1000 shots). For each interatomic distance, the same random starting point was
used for both cases. The lower plots show the overlap of the VQE state, obtained in the simulations with
sampling noise, with the ground state obtained by exact diagonalization. Figures 12c, 12d compare the
median and the average of the VQE energy over 15 runs with the exact diagonalization value, in the case
where 1000 shots are used per energy evaluation. The quantum circuits were run in the CIRQ Simulator
[22].
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with greedier default initial changes to the variables. In fact, it was observed that when narrower ansätze

(covering smaller regions of the Hilbert space) were used, the tendency was reversed. In that case, the

COBYLA optimizer frequently failed unless the initial changes to the variables were greatly decreased.

These examples serve as a demonstration of how the optimization process can affect the performance

of VQE, and how the choice of optimizer and hyperparameters is of the utmost importance.

3.1.1.4 Running the Algorithm on Cloud Quantum Computers

Up to this point, only sampling noise was included in the simulations. Unfortunately, this is not realistic:

real quantum computers suffer from many other sources of noise. A brief examination of the impact of

generic noise on VQE follows.

Figure 13 compares three distinct scenarios: noise-free (13a), sampling noise only (13b), and generic

noise (real quantum computer; 13c).

As expected, in the noise-free scenario, the optimizer has no issue in converging to the ground state. It

stabilizes the energy around the ground energy, and after an uneventful convergence VQE outputs a state

whose overlap with the ground state is around 100%. The effect of adding sampling noise (1024 shots)

can be seen on figure 13b. The curves show less stability, and oscillate more as convergence is reached.

Regardless, the final energy still visibly nears the exact diagonalization value. When the scenario is shifted

to a real quantum processor (figure 13c), all types of noise come into play (decoherence; SPAM noise;

coherent gate errors;...).

The difference between the ideal performance of a quantum processor and a real one is the difference

between figures 13b and 13c. When VQE is ran using IBM Quantum’s Lima device, the energy does not

only oscillate: even when convergence is reached, it seems to have a constant offset from the line marking

the exact diagonalization energy. This is a symptom of noise-induced barren plateaus. Incoherent noise

is capable of decreasing the magnitude of the minimum of the cost function. In the limit that we are left

with the fully mixed state by the end of the circuit, the cost landscape is evidently flat. Before that limit is

reached, noise will simply prevent the optimizer from ever finding the exact diagonalization ground energy,

with a shift that will be the larger the greater the impact of noise.

To better illustrate this, figure 14 shows how the VQE optimization changes as the number of shots is

increased. The same quantum computer was used (IMBQ’s Lima).

In theory, an arbitrary accuracy could be reached by increasing the number of shots. However, these

plots suggest that a plateau is reached after a certain point. In figure 14d, we can see that even with a

4-fold increase in the number of shots, the Lima backend cannot perform as well as an ideal quantum

processor would (13b). While with only 256 shots (14a) the shot count seemed to be the limiting factor in

accuracy, that is no longer the case when it is increased to 8192 shots. At this point, the energy seldom

oscillates from iteration to iteration, and it is evident that the issue goes beyond sampling noise. Evidently,

increasing the shot count only allows us to go so far. A limit will be reached where only improving the

characteristics of the quantum computer, or resorting to a quantum error correction will further improve
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(a) Statevector simulator (b) QASM Simulator

(c) IBMQ Lima

Figure 13: Evolution of the VQE optimization for 𝐻𝑒𝐻+ at an interatomic distance of 90pm, using three
different IBM Quantum [42] backends: the statevector simulator (with no noise of any kind), the QASM
simulator (with sampling noise) and the Lima device (a 5-qubit Falcon processor). In the last two cases,
1024 shots were used. The energy is plotted in blue and the overlap with the true ground state in red; the
pale blue line marks the true ground energy. The same random starting point was used for all backends.
The chosen optimizer was COBYLA.
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(a) 256 shots (b) 1024 shots

(c) 4096 shots (d) 8192 shots

Figure 14: Evolution of the VQE optimization for 𝐻𝑒𝐻+ at an interatomic distance of 90pm, for different
shot counts and using the Lima device. The remaining conditions (starting point, optimizer) are the same
as in figure 13.
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accuracy.
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3.2 Problem Tailored Ansätze

Leveraging problem-specific knowledge to design the ansatz allows narrowing the search space by exclud-

ing regions that are not expected to contain the solution. Such techniques reduce the expressibility of

the ansatz without abdicating precision, because the solution is still contained within the variational form.

Since problem-tailoring is of great importance in preventing barren plateaus, and this trainability issue

renders variational quantum algorithms inefficient, a great part of the research surrounding VQAs is aimed

at developing precise and shallow ansätze of this type.

This section contains the results obtained from applying VQE to molecular hydrogen (𝐻2) both in

simulators and real quantum computers., using a problem-tailored ansatz. The employed ansatz was

UCCSD, introduced in section 2.2. As was explained then, this variational form arises in the context of

conventional CC theory as a natural modification to the non-variational wave form of the latter, which in

turn is the natural size-consistent successor to the Configuration Interaction variational form. While UCCSD

is not classically tractable, the unitarity that forces variationality allows for convenient implementation in

quantum circuits. Due to being unitary and having solid roots in older computational chemistry methods,

the UCCSD ansatz has become a popular choice in VQAs addressing chemistry applications.

3.2.1 Application to Molecular Hydrogen

The UCCSD-VQE algorithm was implemented in this project using CIRQ [22] and Qiskit [3], alternative

software libraries for manipulating and running quantum circuits. Tasks such as obtaining the Hamil-

tonians and performing fermion-to-qubit mappings were done via OpenFermion [2] in the first case and

Qiskit’s chemistry module in the second. In both, the underlying electronic structure information was ex-

tracted from PySCF [5]. Additionally, an independent noise-free UCCSD-VQE based on matrix algebra was

implemented to verify correctness.

Simulations were done to analyse the effect of sampling noise on UCCSD-VQE, as well as of CNOT

gate errors, and of thermal relaxation and SPAM errors, using noise models created in Qiskit. Density

matrix simulations were employed to analyse the purity of the final state, using noise models created from

the specifications of IBMQ [42] quantum processors to mimic their behaviour.

3.2.1.1 Bond Dissociation Graph

Much like in the previous section, we will start with the bond dissociation plots to get a general sense of

performance before delving into the evolution of individual optimizations.

In figure 15, we can see the VQE energies tracing out the bond dissociation curve of 𝐻2. Here, the

simulations include no noise other than sampling.

The effect of the number of shots clearly shows in the results, with the VQE energy getting closer and

closer to the exact diagonalization curve from figure 15a to 15d. In the limit of infinite shots, the VQE

energy essentially matches the FCI result (the observed error was of the order of 10−9).
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(a) QASM simulator, 256 shots (b) QASM simulator, 1024 shots

(c) QASM simulator, 8192 shots (d) Statevector simulator

Figure 15: Single-run UCCSD-VQE ground energy along the bond dissociation curve of the hydrogen
molecule, obtained using IBMQ [42] simulators. The results plotted in figures 15a-15c, ordered by in-
creasing shot count, were obtained using the QASM simulator. The results plotted in figure 15d were
obtained using the state vector simulator (equivalent to infinite shots). The red and green curves represent
the FCI energy and the Hartree-Fock energy, respectively.
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It is interesting to compare the VQE energy with that obtained by performing the Hartree-Fock self-

consistent field calculations. The state resulting from these calculations is the reference state in VQE, upon

which the UCCSD ansatz performs a ‘correction’. It becomes evident that, in the presence of sufficiently

weak noise, optimizing the UCCSD variational form is enough to bring the energy away from the Hartree-

Fock approximation and into the FCI value. The variational freedom takes care of electronic correlation

effects that go unaccounted for in the Hartree-Fock approximation.

(a) QASM simulator, 256 shots (b) QASM simulator, 1024 shots

(c) QASM simulator, 8192 shots (d) Statevector simulator

Figure 16: Bond dissociation curves of figure 15, zoomed in on the region nearing the equilibrium bond
length. The blue area marks the region of chemical accuracy (error of less than 1kcal/mol).

To better analyse the results, figure 16 shows the same plots as figure 15, now magnified around the

equilibrium bond length (the minimum of the curve). In these plots, it is visible that reaching chemical

accuracy requires a considerable number of shots. With only 256 shots (figure 16a), UCCSD-VQE is often

63



CHAPTER 3. STATIC ANSÄTZE FOR VQE

outperformed by the Hartree-Fock approach; when this happens, we know that the UCCSD correction

didn’t at all improve upon the reference state, and the optimization was entirely in vain. 1024 shots (figure

16b) seem to be enough for UCCSD-VQE to consistently beat the Hartree-Fock method, but the single-run

energy is still far from reaching chemical accuracy. In figure 16c, we can see that with 8192 shots, the

energy is already often inside or nearing the region of chemical accuracy, even with a single run (taking

the median over several runs would further refine the result). Of course, in the limit of infinite shots (figure

16d), the performance is nearly perfect.

3.2.1.2 Running the Algorithm on Cloud Quantum Computers

So far, the simulations have included at most sampling noise - but they all assumed ideal behaviour from

the quantum processor. In the previous section, we saw that the performance of the algorithm in real

backends could prove significantly worse because of the other types of noise they inevitably suffer from.

With UCCSD the difference becomes even more relevant, because the circuit is deeper: the 2-qubit ansatz

from the previous section had a single CNOT and a total of only 7 gates. Even for𝐻2, the simplest molecule

possible, implementing the UCCSD operator requires significantly longer circuits.

Figure 17 showcases the evolution of the VQE optimization for a single point (interatomic distance) in

three different scenarios: noise-free (figure 17a), sampling noise only (figure 17b), real quantum processor

(figure 17c). Here, the optimization of a single run was plotted instead of the final results of multiple runs (as

in the bond dissociation graphs) because of the time required to run hybrid algorithms on cloud quantum

computers with fair-share queuing.

The difference between the noise-free and sampling noise only scenarios is already remarkable. While

in the former the energy is fast to stabilize inside the region of chemical accuracy, in the latter the energy

oscillates enough that it’s in and out of the region throughout the whole optimization. Even towards the

last iterations, the energy does not meet chemical accuracy consistently: it is outside the region in the

second-to-last iteration.

However, if sampling noise is significant, it does not come close to the impact of other types of noise.

Figure 17c shows that running the algorithm in IBMQ’s Belem backend, a real quantum processor, does not

allow recovering any valid results. The VQE output energy oscillates about 1 Hartree over the true ground

energy, without being remotely close to reaching chemical accuracy (of the order of the millesimals of

Hartree). This is a sign that quantum information has been washed out by noise. The UCCSD ansatz for

𝐻2, obtained using Qiskit’s variational form and transpiled onto Belem, has 130 CNOTs; the circuit depth

is approximately proportional to the CNOT count. The results show that the circuit in question is too deep

for any meaningful data to be recovered by the end.

An approximate density matrix representing the state at the end of the noisy UCCSD ansatz was

obtained by simulating the algorithm on the QASM simulator, now with a noise model aiming to mimic the

behaviour of the Belem processor. The noise model was obtained from Qiskit [3] and is built from data

concerning the specific backend. This procedure allowed obtaining estimates to the purity of the final state
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(a) Statevector simulator (b) QASM Simulator

(c) IBMQ Belem

Figure 17: Evolution of the UCCSD-VQE optimization for 𝐻2 at an interatomic distance of 0.74Å, using
three different IBM Quantum [42] backends: the statevector simulator (with no noise of any kind), the
QASM simulator (with sampling noise) and the Belem device (a 5-qubit Falcon processor). In the last
two cases, 8192 shots were used. The energy is plotted in blue; the pale blue region marks the area of
chemical accuracy. The same starting point, the Hartree-Fock reference state, was used for all backends.
The chosen optimizer was COBYLA.

65



CHAPTER 3. STATIC ANSÄTZE FOR VQE

and its fidelity with the ideal noiseless output.

The fidelity of the final state with the ideal state was found to be only 0.081, in contrast with its fidelity

with the fully mixed state, which was 0.40. The final purity of the state was found to be around 0.16.

The STO-3G basis set was used; in a minimal basis set (as is the case), 𝐻2 has four spin-orbitals, so that

fermionic states of the molecule were mapped into states of four qubits. This implies a Hilbert space of

dimension 16, so that the purity is lower bounded by 0.0625.

The expectation value of the energy calculated in the fully mixed state was found to be -0.097 Hartree.

In figure 17c, we can see that the energy of the state at the end of the UCCSD circuit in the Belem backend

remains close to that value throughout the whole optimization. The optimizer spends 25 iterations trying

to adjust the parameters that will lead to a minimum of the energy, but it is to no avail: the energy shows

no more than slight deviations from the mean value, with no sign of approaching the ground energy.

(a) QASM Simulator, 256 shots (b) QASM Simulator, 1024 shots (c) QASM Simulator, 8192 shots

(d) IBMQ Manhattan, 256 shots (e) IBMQ Manhattan, 1024 shots (f) IBMQ Manhattan, 8192 shots

Figure 18: Evolution of the VQE optimization under the same conditions of figure 17 (same molecule,
interatomic distance and optimizer), plotted for three different shot counts and two different backends.
The QASM simulator (18a-18c) portraits the behaviour of an ideal quantum processor, in contrast with
IBMQ Manhattan (18d-18f), a 65-qubit Hummingbird processor.

From figure 17, we can already conclude that sampling noise is far from being the limiting factor here.

To further illustrate this, figure 18 compares VQE optimizations using the QASM simulator (with sampling

noise only) and using the Manhattan backend (another real device) for 256, 1024, and 8192 shots.
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The improvement of the VQE performance with increased shot count is evident when the QASM simu-

lator is used: the energy is visibly faster to stabilize. This is to be expected, since here sampling is the only

source of noise. With 256 shots only (figure 18a) the energy shows changes of the order of the centesimals

of Hartree up until the last iterations. With 8192 shots (figure 18c) the energy change is of the order of

the millesimals of Hartree in every iteration from the seventh to the last one (30).

When the Manhattan processor is used, the energy shows the same tendency for stabilization: from

256 shots (figure 18d) to 8192 shots (figure 15c), there is also a decrease in the order of magnitude of

the oscillations in the energy towards the last iterations. However, here, this does not translate into any

significant improvement in accuracy, because the energy is still very far from the ground energy, with an

error of around 1 Hartree. Much like it happened with the Belem backend, the state at the end of the

UCCSD circuit in the Manhattan backend is too corrupted for the optimizer to converge to the ground

state: the energy evaluations are too far from the exact value. The purity is so low that changing the

parameters is barely reflected on the expectation value. We can conclude that the circuits are too deep to

be implemented in these quantum computers.

3.2.1.3 Analysing Noisy Instructions

To better understand which sources of noise were most affecting the algorithm, the noise model emulating

the behaviour of the Belem backend was decomposed into several noise models, each considering only

the noise associated with a specific instruction. UCCSD-VQE was then simulated with each of the noise

models; the results are plotted in figure 19.

The curve that stands out is the one associated with the noise model that isolated CNOT noise. Even

though this model ignored all other sources of noise, the performance is remarkably close to that of the

complete Belem noise model (figure 17c). In here, the error in the final energy is once again close to 1

Hartree; further, the energy barely moves away from the starting energy throughout the whole optimization.

One again, the impact of noise is felt too strongly for any meaningful results to be recovered.

It is not surprising that this is the noisiest gate: it is the only two-qubit gate. In this particular backend

(Belem), the average CNOT gate time is around 550 nanoseconds, while the single-qubit gate time is

typically of the order of tens of nanoseconds. Among the available gates, the CNOT thus corresponds by

far to the biggest cost in circuit depth.

Since the noise associated with CNOT gates is the one that most impacts UCCSD-VQE, it will be

interesting to analyse the relation between the magnitude of CNOT gate errors and the performance of the

algorithm. A graphical representation of the impact of the average CNOT gate error on the final UCCSD-

VQE error can be found in figure 20. To obtain these results, a noise model was created to simulate CNOT

gate errors. This model consisted of a two-qubit depolarizing error, succeeded by single qubit thermal

relaxation errors on the involved qubits.

This is a similar approach to the one employed in Qiskit’s backend noise models, mentioned previously

and used in obtaining the results presented in figure 19. In these noise models, made available by the Qiskit
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Figure 19: Impact of the noise associated with different instructions on the performance of UCCSD-VQE,
using Belem’s noise model from Qiskit’s [3] providers.aer.noise module. The model is generated auto-
matically from the properties of IBMQ’s [42] device. Each curve represents the UCCSD-VQE optimization,
simulated with a model including the noise associated with the corresponding instruction exclusively. 8192
shots were used in all curves. The conditions are the same as those from figure 17 (same molecule, in-
teratomic distance and optimizer).

package, single qubit thermal relaxation errors are created for both qubits using the relaxation parameters

of the backend, and a two-qubit depolarizing error is then added so that the total gate error matches the

experimental value. In our case, the purpose was precisely to vary the gate error, which prevented us

from using it to dictate the characteristics of the depolarizing channel. Instead, the ratio between the gate

error due to the depolarizing channel and due to thermal relaxation was assumed constant. This constant

was set to the average value of this ratio for a real device, Belem (calculated from available data). For

simplicity, all CNOT gates were assumed to behave identically.

Figure 20 suggests that in the case of 𝐻2, the relation between the average CNOT gate error and the

error in the final energy (in atomic units) is roughly linear in the interval of values contemplated in the plot.

When the magnitude of the CNOT error is of the order of 10−2, as is the case for the quantum processors

made available on the cloud by IMBQ [42], the error can reach almost 1 Hartree. For the error in the

UCCSD-VQE energy for this molecule to be under 0.1 Hartree, the CNOT gate error must be of the order

of 10−4.
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Figure 20: Impact of CNOT gate noise on the performance of UCCSD-VQE. The error in the final energy is
plotted as a function of the average CNOT gate error (equal to 1− 𝐹 , where 𝐹 is the average gate fidelity).
Twenty runs were used per point; the median was used as the estimator, and the error bars show the
interquartile ranges. The number of shots was increased to ensure that sampling noise would not be the
limiting factor for any gate error. The conditions are the same as those from figure 17 (same molecule,
interatomic distance and optimizer).

The noise associated with each of the remaining instructions in figure 19 has a significantly lower

impact on the algorithm than the noise associated with the CNOTs. The second worst performance,

already quite better, was associated with the noise model that isolated measurement errors. Such errors

could be partly helped by employing measurement error mitigation techniques. The remaining instructions

considered - namely, reset (preparing the qubits in state |0〉), the identity operation, and the SX and X

gates - are associated with significantly less noise. The final UCCSD-VQE energies obtained with noise

models contemplating each of these instructions are exceptionally close the FCI value as compared to

those isolating CNOT-related noise (mostly) and measurement-related noise (to a lesser degree).

3.2.1.4 Impact of Thermal Relaxation, SPAM errors, and Sampling

Figure 19 analysed noise by dividing it into the instructions it is associated with. However, it is also inter-

esting to analyse it by nature - as it was briefly covered in 2.1.4, there are different types of noise affecting

quantum computers. That is the intent of figure 21: it shows how scaled down thermal relaxation effects
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(a) Thermal relaxation (b) SPAM errors

(c) Sampling noise

Figure 21: Plots showing the impact of different types of noise on the performance of UCCSD-VQE. For
thermal relaxation, a simple model assuming average gate times and a constant ratio between the coher-
ence times T1 and T2 was used. Figure 21a shows the evolution of the error in the energy as a function of
these times. For SPAM noise, the ratio between the probability of measuring 0 after preparing 1 and the
probability of measuring 1 after preparing 0 was fixed (and greater than one, for the model to be realistic).
Figure 21b shows the evolution of the error as a function of these probabilities. Figure 21c illustrates the
impact of sampling noise by plotting the error as a function of the number of shots. In all of the plots,
twenty runs were used per point; the median was used as the estimator and the error bars show the
interquartile ranges. All noise models were created using Qiskit [3]. The conditions are the same as those
from figure 17 (same molecule, interatomic distance and optimizer).
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(from interaction with the environment), SPAM errors (from faulty state preparations and measurements),

and sampling noise (from using a finite number of shots) should individually be for chemical accuracy to

be confidently reached. In each case, all noise sources other than the one being analysed were ignored,

except for sampling noise, that was included in each of the simulations due to being intrinsic to quantum

computing. When fixed, the number of shots was set to 217, chosen to be high enough not to impede

chemical accuracy.

Figure 21a shows the impact of thermal relaxation on UCCSD, by plotting the final energy error as a

function of T1 (the relaxation time) and T2 (the dephasing time). The process of thermal relaxation leads

to the loss or quantum coherence (decoherence), causing quantum information to be irreversibly lost.

Currently, on the quantum computers made available on the cloud by IBMQ, the coherence times are of

the order of 10−4 seconds. In contrast, UCCSD-VQE seems to require them to be of the order of 10−2

seconds to reach chemical accuracy in the middle 50% runs (the runs yielding the energies between the

first and the third quartiles).

Figure 21b showcases the effect of SPAM errors. Chemical accuracy was secured in all runs within

the interquartile range only when the probability of measuring |0〉 after preparing |1〉 reached 4 × 10−4

(with the probability of measuring |1〉 after preparing |0〉, made proportional, at 8× 10−5). For reference,

the recently used Belem backend has average error probabilities around 0.04 and 0.009, respectively -

which amounts to around 100 times more than that.

Finally, figure 21c shows the effect of sampling noise, plotting the error as a function of the number of

shots. The simulations showed that for the 50% center runs to fall inside the region of chemical accuracy,

the number of shots would have to be roughly 80000. Currently, IBMQ limits the shot count on cloud

quantum computers to 8192.

Concluding, when running UCCSD-VQE on IBMQ cloud quantum computers, chemical accuracy is

beyond reach. Achieving it would require a significant improvement of readout and state preparation

errors, thermal relaxation effects, etc. Even the shot count necessary for such an accuracy is 10-fold what

is allowed; of course, this is not a relevant hardware limitation because it would not exist if a dedicated

quantum processor was available. Regardless, it is a good show of how demanding chemistry problems

can be.

It is also worth noting that, throughout the section, we were dealing with the smallest possible molecule.

For bigger molecules, the situation is even worse: they would require more qubits, more shots for the same

accuracy (see 2.3.3.4), deeper circuits, and more variational parameters (leading to a harder optimization).
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Problem Tailored, Dynamically Created Ansätze:
ADAPT-VQE

If predetermined, problem-tailored ansätze already bypass several of the issues that problem-agnostic

ansätze suffer from, dynamic ones reach farther. They are not simply problem-tailored, they are system-

tailored, with all the advantages that arise from that.

This section will introduce and compare two similar dynamically created ansätze (fermionic-ADAPT-VQE

and qubit-ADAPT-VQE), and compare the noise resilience and measurement cost of ADAPT-VQE against

UCCSD-VQE.

The ADAPT-VQE algorithm was implemented in CIRQ [22], in Qiskit [3], and independently using matrix

algebra. In all cases, the OpenFermion [2] software package was used for creation and manipulation of

fermionic operators, along with the corresponding plugin with PySCF [5], an electronic structure package.

The Qiskit implementation used the VQE class from the Aqua module with a personalized ansatz, while in

the CIRQ implementation not only the ansatz but also the Hamiltonian averaging were done from scratch,

with the optimization loop having also been implemented independently up to SciPy’s [6] minimization

function. Qiskit’s noise module was used for the creation of noise models meant to analyse the impact of

noise in the algorithms via simulations.

4.1 The ADAPT-VQE Algorithm

4.1.1 Fermionic-ADAPT-VQE

In 2019, ADAPT-VQE was introduced in [35] with the purpose of creating a more accurate, compact,

and problem-customized ansatz for VQE. This version will hereby be denoted fermionic-ADAPT-VQE to

distinguish it against a more recent version that will be covered shortly.

The idea behind the proposal is to let the molecule in study ‘choose’ its own state preparation circuit,

by creating the ansatz in a strongly system-adapted manner.

Figure 22 shows a schematic outline of the algorithm. The only human role contributing to the creation

of the ansatz is the selection of an operator pool. Any operator in this pool may or may not be a part of

the final ansatz, in its exponentiated and parameterized version. In the numerical simulations presented

in the original article, SCGSD excitations were used. In this context, much like in the unitary version of

CC theory, excitations is used to mean anti-Hermitian sums of excitation and de-excitation operators, that

are mapped to parameterized unitary operators upon exponentiation. The convenience of this form goes

beyond unitarity, as will be seen shortly.
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Figure 22: Scheme illustrating the ADAPT-VQE algorithm. The green boxes represent processes that are
exclusively classical. The orange boxes represent hybrid processes (that include state preparations and
measurements in the quantum computer).

The ansatz is initialized at identity: in the first iteration, the prepared state is simply the reference

Hartree-Fock state. Each iteration adds an operator to the ansatz, along with the corresponding variational

parameter, initialized at zero. Thus, the state preparation circuit and the parameter vector grow from

iteration to iteration.

The criterion for operator selection evidently must tend to choose operators that are more beneficial

for the wave function (i.e. lower the energy more) at a given point. Similarly to a wide class of optimization

methods, the gradient is used as the indicator.

In the beginning of an iteration n, ADAPT-VQE determines the instantaneous rate of change of the

energy with respect to each candidate for variational parameter, associated with each candidate for oper-

ator, evaluated at the point where the parameter will be initialized (zero). The selected operator is the one

which, if added along with the corresponding variational parameter 𝜃𝑖 , has the derivative 𝜕𝐸 (𝑛)

𝜕𝜃𝑖
of greatest

magnitude.

The question is, how can these derivatives be evaluated? Luckily, the convenient form of the operators

offers a solution. For each aspirant ansatz operator 𝑒𝜃𝑖𝐴𝑖 associated with a pool operator 𝐴𝑖 , we can

calculate the energy slope at point 𝜃𝑖 = 0 as

𝜕𝐸 (𝑛)

𝜕𝜃𝑖

�����
𝜃𝑖=0

=
〈
𝜓 (𝑛)

��� [�̂�, 𝐴𝑖

] ���𝜓 (𝑛)
〉
. (4.1)

A sketch of the proof can be found on appendix C.

73



CHAPTER 4. PROBLEM TAILORED, DYNAMICALLY CREATED ANSÄTZE: ADAPT-VQE

The only thing left to explain is when the algorithm terminates: in order to know when to stop adding

operators and growing the ansatz, and finally output an attempted solution, a convergence criterion is

necessary. Theremay be different possibilities, but the one employed in the original article (and reproduced

in this project) was to terminate when the total gradient norm falls below a certain threshold 𝜖. At the

beginning of each iteration, after calculating all of the derivatives, they are used to calculate this norm. If

the norm is still over the threshold, the operator with the highest derivative is added to the ansatz; if not,

the algorithm terminates. Evidently, the lower 𝜖 is, the stricter the convergence requirement, the larger

the final ansatz, and the higher the precision.

We can then summarize the ADAPT-VQE algorithm in 7 steps (as labeled in figure 22).

1. Initialize the ansatz at identity, so that the initial state is simply the Hartree-Fock solution. The

corresponding state preparation circuit consists of 𝑁 parallel Pauli𝑋 gates, where𝑁 is the number

of electrons.

2. Measure the gradient of each operator in the pool on the quantum computer. This can be done

using formula 4.1.

3. Calculate the square norm of the gradient vector. If it is under a predetermined threshold 𝜖, termi-

nate. If not, proceed to the following step.

4. Using the information obtained in step 2, select the operator with the largest gradient and append

it to the ansatz.

5. Initialize the parameter vector with the values from the previous iteration. The newly added varia-

tional parameter should be initialized at zero.

6. Re-optimize all the parameters. This is a typical VQE optimization, with the current ansatz.

7. Move on to the next iteration, going back to step 2.

It should be noted that before these steps take place, one must have done the necessary classical

computations (common to the original VQE) in preparation, to obtain the Hamiltonian operator and the

Hartree-Fock spin-orbitals. Further, one must have chosen the constitution of the pool, and the conver-

gence threshold 𝜖.

Steps 2 and 6 require preparing the ADAPT-VQE state multiple times, and measuring the expectation

value of the Hamiltonian �̂� as well as of the commutators
[
�̂�, 𝐴𝑖

]
. A brief explanation on how this can

be done follows.

In iteration 𝑛, the ADAPT-VQE state is written
��𝜓 (𝑛)〉 = 𝑒𝜃𝑛𝐴𝑛 . . . 𝑒𝜃1𝐴1 |𝐻𝐹 〉. Under the Jordan-

Wigner transform 2.57 the excitation operators𝐴𝑖 are mapped to linear combinations of Pauli strings with

imaginary coefficients. The operators 𝑒𝜃𝑖𝐴𝑖 can then be implemented as explained in subsection 2.1.3.

Along with the preparation of the Hartree-Fock state presented in 2.3.3.2, this tells us how to create the

state preparation circuit.
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The measurements are also straightforward: the Hamiltonian �̂� also consists of a linear combination

of Pauli strings, so that its expectation value can be obtained using the procedure outlined in subsection

2.1.2 (possibly improved with the strategies for grouping commuting operators mentioned in 2.3.3.4).

Since the product of two Pauli strings will also be a Pauli string, measuring
[
�̂�, 𝐴𝑖

]
amounts to defining a

new observable that can be measured in a similar way. In all cases, the different strings can be measured

in parallel, if multiple quantum processors are available.

It is important to note that the pool operators 𝐴𝑖 are basic spin-complemented one and two-body ex-

citations, that are Jordan-Wigner transformed into a linear combination of at most 16 Pauli strings (8 from

each of the two anti-Hermitian two-body excitations with opposite spins), independently of the system size.

Further, the Hamiltonian itself has been decomposed into a sum of polynomially-many Pauli strings (the

number being O(𝑁 4) on the number of spin-orbitals 𝑁 ). The observable corresponding to the commu-

tator
[
�̂�, 𝐴𝑖

]
can then be efficiently measured in a quantum computer. Thus, the extra measurements

of the ADAPT-VQE algorithm do not in principle hinder efficiency, as long as the scaling of the size of the

operator pool is reasonable. In the case considered in the original article, including only excitations up

to order two, this scaling is evidently also quartic on the number of spin-orbitals of the chosen basis set.

The measurements per iteration in ADAPT-VQE thus scale like O(𝑁 8) (instead of O(𝑁 4) like in VQE with
static ansätze). It should be noted that, as mentioned previously, modified variants such as ADAPT-V and

ADAPT-Vx manage to decrease this measurement overhead at the expense of an acceptable increase in

the number of variational parameters and circuit depth [55].

While polynomial, the measurement overhead of ADAPT-VQE as compared to UCCSD-VQE or other

predetermined ansätze is considerable. This is the price to pay for growing the ansatz using a procedure

this customized: to choose the new operator, the gradients of all operators in the pool must be measured.

ADAPT-VQE also implies an overhead in optimizations: instead of a single optimization with a fixed ansatz,

we have multiple optimizations with a growing ansatz. The larger number of optimizations implies in itself

a larger number of energy evaluations, as well as a bigger burden on the optimizer. All this sacrifice is

done in favour of shallower circuits, and in some cases, greater accuracy. The ADAPT-VQE ansatz was

designed to be a NISQ-friendly, high-accuracy ansatz for chemistry applications.

4.1.2 Qubit-ADAPT-VQE

In 2020, Qubit-ADAPT-VQE was proposed in [85] with the purpose of improving upon the previous ADAPT-

VQE algorithm. The entirety of the modification lies in the operator pool.

Spin-complemented fermionic single and double excitations can consist of a linear combination of up

to 18 Pauli strings, and spin-adapted ones of up to 48 Pauli strings. Using the ladder-of-CNOTs imple-

mentation of Pauli exponentials [64], the circuit for one of such operators can require already thousands

of CNOTs when as few as a dozen spin-orbitals are used to describe a molecule, even assuming all-to-all

connectivity.
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Qubit-ADAPT-VQE drastically reduces the circuit depth required for the implementation of each op-

erator, by dispensing with the rigorous representation of fermionic excitations. Instead of using a linear

combination of Pauli strings that respects fermionic symmetries (e.g. particle number), the operators are

broken down into the individual Pauli strings. Because of this, the pool is called qubit pool, whereas the

pool with the proper excitations is called fermionic pool. In addition to the one directly arising from the

decomposition fermionic excitations, the original Qubit-ADAPT-VQE article introduced a few more pools,

which will be covered in the next section.

4.2 Original Pool Choices

This section provides a more thorough description of the different pools used in the original articles: as it

was stated before, they can be of fermion or qubit inspiration. The former take inspiration from fermionic

excitations, and the latter opt for more hardware-friendly operators, that are easier to implement in quantum

computers.

4.2.1 Fermion Inspired Pools

The first ADAPT-VQE article [35] proposed pools with operators of fermionic inspiration. The ansätze

resulting from pools of this type are remarkably similar to the UCCSD operator, in that they also typically

contain exponentiated single and double excitations. Of course, the ordering will usually be different, as

it is dictated by the system in study; further, the number of operators in the ADAPT-VQE will vary (not

only with respect to UCCSD-VQE, but also within the algorithm, depending on the molecule and on the

convergence criterion).

The operators in fermionic pools respect fermionic symmetries: namely, particle number, 𝑆𝑍 and 𝑆2

preservation, and the anticommutation requirement.

A simple𝑁 -order fermionic excitation consists of exciting𝑁 electrons from some𝑁 orbitals to other𝑁

orbitals. Often, generalized excitations are used: this means that we include operators that excite fermions

from occupied orbitals to occupied orbitals, for example, rather than limiting ourselves to occupied-to-virtual

excitations.

The fermionic pools used in this project were taken or adapted from the simulation code of the original

ADAPT-VQE article [35], that can be found in the public GitHub repository [4].

4.2.1.1 Spin Adapted Generalized Singles and Doubles

One option is the SGSD pool, also called Spin-Adapted Generalized Singles and Doubles (SAGSD). This

pool was compared against the qubit-inspired pool of qubit-ADAPT-VQE in the article that introduced the

latter [85].

In this pool, the double excitation operators are split into their singlet and triplet components.
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In the first quantization formalism, spin-adapted single 𝜏1 and double 𝜏2 excitation operators can be

written in the basis of eigenstates of the total 𝑆𝑧 and 𝑆2 operators as:

𝜏1 = |𝑠 = 1/2, 𝑠𝑧 = 1/2〉𝑝 〈𝑠 = 1/2, 𝑠𝑧 = 1/2|𝑞
+ |𝑠 = 1/2, 𝑠𝑧 = −1/2〉𝑝 〈𝑠 = 1/2, 𝑠𝑧 = −1/2|𝑞
− ℎ.𝑐.,

𝜏2,𝐴 = − 2
√
12

(|𝑠 = 1, 𝑠𝑧 = 1〉𝑟𝑠 〈𝑠 = 1, 𝑠𝑧 = 1|𝑝𝑞

+ |𝑠 = 1, 𝑠𝑧 = 0〉𝑟𝑠 〈𝑠 = 1, 𝑠𝑧 = 0|𝑝𝑞
+ |𝑠 = 1, 𝑠𝑧 = −1〉𝑟𝑠 〈𝑠 = 1, 𝑠𝑧 = −1|𝑝𝑞)
− ℎ.𝑐.,

𝜏2,𝐵 = −1
2
|𝑠 = 0, 𝑠𝑧 = 0〉𝑟𝑠 〈𝑠 = 0, 𝑠𝑧 = 0|𝑝𝑞

− ℎ.𝑐.,

(4.2)

where 𝜏2,𝐴 is the triplet operator and 𝜏2,𝐵 is the singlet operator, and ℎ.𝑐. denotes the Hermitian

conjugate of the expression before. Of course, not all sets of four spin-orbitals allow all these excitations.

If 𝑝, 𝑞 or 𝑟 , 𝑠 are spin-orbitals with the same spatial part, then there is only the singlet operator, since

the triplet wave function is symmetric and thus can’t be the spin part of the wave function of two fermions

with the same spatial part (as the antisymmetry principle would not be respected).

Rewriting these operators in the basis of tensor products of single particle 𝑆𝑧 and 𝑆2 eigenstates, and

using the convention that an overbar on the spatial orbital index implies a 𝛽 (down) spin (while no overbar

implies 𝛼 , or up, spin), we get:

𝜏1 = |𝑝〉〈𝑞 |+|𝑝〉〈𝑞 |−ℎ.𝑐.,

𝜏2,𝐴 = − 2
√
12

(
|𝑟𝑠〉〈𝑝𝑞 |+1

2
( |𝑟𝑠〉 + |𝑟𝑠〉) (〈𝑝𝑞 |+〈𝑝𝑞 |) + |𝑟𝑠〉〈𝑝𝑞 |

)
− ℎ.𝑐.,

𝜏2,𝐵 = −1
2
( |𝑟𝑠〉 − |𝑟𝑠〉) (〈𝑝𝑞 |−〈𝑝𝑞 |) − ℎ.𝑐.

(4.3)

And finally, we can transform this into the second quantization formalism to obtain the operators in

4.4.

𝜏1 = 𝑎†𝑝𝑎𝑞 + 𝑎†𝑝𝑎𝑞 − ℎ.𝑐.,

𝜏2,𝐴 =
1

√
12

(
2𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 + 2𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞+

𝑎†𝑟𝑎𝑝𝑎
†
𝑠 𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠𝑎𝑞

)
− ℎ.𝑐.,

𝜏2,𝐵 =
1
2

(
𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 − 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 − 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞

)
− ℎ.𝑐.

(4.4)
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For convenience, the fermionic anticommutation relations 2.53 were used to reorganize the order of

the operators; for this purpose, they are more conveniently formulated as in 4.5.

𝑎†𝑖 𝑎
†
𝑗 = −𝑎†𝑗𝑎

†
𝑖 , 𝑎𝑖𝑎 𝑗 = −𝑎 𝑗𝑎𝑖, 𝑎𝑖𝑎

†
𝑗 = 𝛿𝑖 𝑗 − 𝑎†𝑗𝑎𝑖 (4.5)

The formulation of the pool operators using creation and annihilation operators 4.4 is particularly

useful, as they are directly mapped to qubit operators via the Jordan-Wigner transformation 2.57. The

OpenFermion [2] library allows creating instances of the FermionOperator class directly from expressions

like this one.

Under the Jordan-Wigner transformation, it would appear that each product of four fermionic ladder

operators is mapped to a linear combination of 16 Pauli strings; however, the Pauli strings with real

coefficients don’t change under conjugation and are thus canceled out by the Hermitian conjugate, which

is why adding it forces unitarity in the first place. The Pauli strings with imaginary coefficients simply

switch sign under conjugation, so that each anti-Hermitian sum of four body operators results in a linear

combination of only 8 Pauli strings. As a consequence, the operators in the SGSD pool consist of a linear

combination of at most 48 Pauli strings. Even though the order of the excitations is the same, because of

the anticommutation string, these Pauli strings act on more qubits for larger systems: their length grows

on average linearly with the size of the system. The number of operators in this pool scales as O(𝑁 4),
where 𝑁 is the number of spin-orbitals.

4.2.1.2 Spin Complemented Generalized Singles and Doubles

In the SCGSD pool, each excitation is grouped along with its spin-complement (i.e. the excitation acting

on the opposite spin-orbitals of the same spatial orbitals).

In the first quantization formalism, they can be written

𝜏1 = |𝑝〉〈𝑞 |+|𝑝〉〈𝑞 |−ℎ.𝑐.,
𝜏2,𝐴 = − (|𝑟𝑠〉〈𝑝𝑞 |+|𝑟𝑠〉〈𝑝𝑞 |) − ℎ.𝑐.,

𝜏2,𝐵 = − (|𝑟𝑠〉〈𝑝𝑞 |+|𝑟𝑠〉〈𝑝𝑞 |) − ℎ.𝑐.,

𝜏2,𝐶 = − (|𝑟𝑠〉〈𝑝𝑞 |+|𝑟𝑠〉〈𝑝𝑞 |) − ℎ.𝑐.

(4.6)

And if we transform them into the second quantization formalism, we obtain (using equations 4.5 to

reorder the expressions once again)

𝜏1 = 𝑎†𝑝𝑎𝑞 + 𝑎†𝑝𝑎𝑞 − ℎ.𝑐.,

𝜏2,𝐴 = 𝑎†𝑟𝑎𝑝𝑎
†
𝑠 𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠𝑎𝑞 − ℎ.𝑐.,

𝜏2,𝐵 = 𝑎†𝑟𝑎𝑝𝑎
†
𝑠𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 − ℎ.𝑐.,

𝜏2,𝐶 = 𝑎†𝑟𝑎𝑝𝑎
†
𝑠 𝑎𝑞 + 𝑎†𝑟𝑎𝑝𝑎

†
𝑠 𝑎𝑞 − ℎ.𝑐.

(4.7)
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The operators in this pool consist of a linear combination of at most 16 Pauli strings, whose length also

scales linearly (on average) with 𝑁 , the number of spin-orbitals; and once again, the number of operators

in the pool scales like O(𝑁 4). While the SCGSD pool has more operators consisting of less Pauli strings

on average than the SGSD pool, the asymptotic scaling with the system size remains unchanged between

the two.

4.2.2 Qubit Inspired Pools

The first pools of qubit inspiration to be introduced broke the fermionic excitation operators down to their

constituent Pauli strings. From that, other qubit pools were proposed with the goal of further decreasing

the circuit depth per operator and the size of the pool.

In general, operators in qubit pools don’t respect fermionic symmetries. They usually abdicate of

particle number, 𝑆𝑍 and 𝑆2 preservation, and may also forgo anticommutation.

The pools to follow were presented in the article introducing Qubit-ADAPT-VQE [85].

4.2.2.1 Pauli String Pool

The first pool to be considered in Qubit-ADAPT-VQE, then called simply Qubit Pool, was the one consisting

of all individual Pauli strings appearing in the SGSD pool (or equivalently, the SCGSD one: they result in

the same set of Pauli strings, even if doubles might differ).

As a simple example, we can consider the following (fermionic) single excitation.

0.5𝑎†0𝑎4 + 0.5𝑎†1𝑎5 − 0.5𝑎†4𝑎0 − 0.5𝑎†5𝑎1

This excitation exists (when there are more than 6 spin-orbitals) both in the SCGSD and SGSD pool,

since they don’t differ in single excitations. The two last terms are the Hermitian conjugates of the former

two, and OpenFermion’s [2] orbital ordering was used, so that 0, 1 and 4, 5 are pairs of spin-complements

corresponding to the same spatial orbital. Under the Jordan-Wigner transformation, this becomes

0.25𝑖 · 𝑋0 ⊗ 𝑍1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑌4 + 0.25𝑖 · 𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑌5

−0.25𝑖 · 𝑌0 ⊗ 𝑍1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑋4 − 0.25𝑖 · 𝑌1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑋5.

This excitation then gives rise to four operators in the Qubit Pool:

𝑖 · 𝑋0 ⊗ 𝑍1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑌4, 𝑖 · 𝑋1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑌5,

𝑖 · 𝑌0 ⊗ 𝑍1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑋4, 𝑖 · 𝑌1 ⊗ 𝑍2 ⊗ 𝑍3 ⊗ 𝑍4 ⊗ 𝑋5.

The norm of the coefficients no longer matters because now each Pauli string will have its own varia-

tional parameter.
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The number of Pauli strings per fermionic excitation remains approximately the same on average as

the size of the system grows. Thus, the size of the pool is still O(𝑁 4), 𝑁 the number of spin-orbitals -

albeit with a significantly larger prefactor that implies a larger number of measurements per iteration. The

Qubit Pool operators also act on a number of qubits that grows like O(𝑁 ). However, the circuit depth

associated with each operator is significantly changed (in this case, improved). While SGSD operators

contain up to 48 Pauli strings, each operator in the Qubit Pool consists of a single one. This implies an up

to almost 50-fold reduction in the circuit depth associated with a single operator, and is the motive behind

the Qubit-ADAPT-VQE proposal.

4.2.2.2 Pauli String Pool Without the Jordan-Wigner String

The Qubit-ADAPT-VQE article also introduced a modified version of the Qubit Pool, consisting of the same

operators, now cleared of the Jordan-Wigner string. This is the
∏𝑖−1

𝑘=1 𝑍𝑘 factor that appears in the Jordan-

Wigner mapping (formula 2.57) to account for the anticommutation of fermions. The four operators intro-

duced by the same single fermionic excitation used as an example before would simply be

𝑖 · 𝑋0 ⊗ 𝑌4, 𝑖 · 𝑋1 ⊗ 𝑌5, 𝑖 · 𝑌0 ⊗ 𝑋4, 𝑖 · 𝑌1 ⊗ 𝑋5.

The scaling of the total number of operators in this pool is once againO(𝑁 4), with𝑁 being the number

of spin-orbitals. However, the scaling of the length of the Pauli strings has changed from O(𝑁 ) to O(1).
Without the Jordan-Wigner string, only qubits representing spin-orbitals directly involved in the original

excitations will be acted on by the operators they give rise to. Since the excitations we are considering are

at most doubles, the Pauli strings will have length four at most.

4.2.2.3 Minimal Pools

Finally, the article that introduced Qubit-ADAPT-VQE proposed a way of creating minimal pools containing

operators capable of transforming any real state into any real state. These minimal pools were proven to

be complete and allow convergence when used on random real Hamiltonians. An example of one such

pool is the pool G, presented in the original article and reproduced here in 4.8.

𝐺1 = 𝑖𝑍 ⊗ 𝑌 ⊗ 𝐼⊗(𝑁−2), 𝐺2 = 𝑖𝐼⊗1 ⊗ 𝑍 ⊗ 𝑌 ⊗ 𝐼⊗(𝑁−3),

..., 𝐺𝑁−2 = 𝑖𝐼⊗(𝑁−3) ⊗ 𝑍 ⊗ 𝑌 ⊗ 𝐼⊗1, 𝐺𝑁−1 = 𝑖𝐼⊗(𝑁−2) ⊗ 𝑍 ⊗ 𝑌,

𝐺𝑁 = 𝑖𝑌 ⊗ 𝐼⊗(𝑁−1), 𝐺𝑁+1 = 𝑖𝐼⊗1 ⊗ 𝑌 ⊗ 𝐼⊗(𝑁−2),

..., 𝐺2𝑁−3 = 𝑖𝐼⊗𝑁−3 ⊗ 𝑌 ⊗ 𝐼⊗2, 𝐺2𝑁−2 = 𝑖𝐼⊗𝑁−2 ⊗ 𝑌 ⊗ 𝐼⊗1

(4.8)

The minimal pools proposed scale like O(𝑁 ) on the number of qubits, with a total of only 2𝑁 − 2

operators. This is a remarkable reduction from the quartic scaling from the previous pools: the number

of gradients that must be evaluated per iteration is reduced from O(𝑁 4) to O(𝑁 ).
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The minimal pools allow for a significant decrease in the circuit depth per operator, and can have a

very local structure (as does 𝐺 , that only ever acts on two followed qubits).

Unfortunately, while they work for generic Hamiltonians (such as random real Hamiltonians), they are

not adequate for the specific structure of molecular Hamiltonians that is imposed by fermionic symmetries.

In particular, we can see that none of the operators in the G pool conserves the spin or particle number

in the Hartree-Fock state, which has severe consequences.

The Hartree-Fock state can be written using OpenFermion’s [2] orbital convention as |000...111〉.
Acting on this state with a parameterized 𝑌 rotation acting on qubit 𝑘 that is in a computational basis state

|𝑥〉, we get:

|𝜓 〉 = 𝑒 𝑗𝑌𝑘𝜃 |000...〉 ⊗ |𝑥〉𝑘 ⊗ |...111〉

= cos𝜃 |000...〉 ⊗ |𝑥〉𝑘 ⊗ |...111〉 + (−1)1−𝑥 sin𝜃 |000...〉 ⊗ |1 − 𝑥〉𝑘 ⊗ |...111〉

= cos𝜃 |𝑛〉 + (−1)1−𝑥 sin𝜃 |𝑚〉

Clearly, |𝑛〉 and |𝑚〉 represent computational basis states with a different number of electrons (dif-

ferent number of 1 states). Considering that the Hamiltonian matrix is real and Hermitian, so that

𝐻𝑚,𝑛 = 𝐻𝑛,𝑚, the energy and gradient evaluated in this state are

𝐸 |𝜓 〉 = 〈𝜓 |𝐻 |𝜓 〉 = cos2 𝜃𝐻𝑛,𝑛 + sin2 𝜃𝐻𝑚,𝑚 + 2(−1)1−𝑥 sin𝜃 cos𝜃𝐻𝑚,𝑛,

𝑑𝐸 |𝜓 〉
𝑑𝜃

����
𝜃=0

=
(
2 cos𝜃 sin𝜃 (𝐻𝑚,𝑚 − 𝐻𝑛,𝑛) + 2(−1)1−𝑥 cos (2𝜃 )𝐻𝑚,𝑛

) ����
𝜃=0

= 2(−1)1−𝑥𝐻𝑚,𝑛

Since |𝑛〉, |𝑚〉 correspond to Slater determinants different numbers of electrons, 𝐻𝑚,𝑛 is zero and

the gradient vanishes. Since |𝑛〉 represents the Hartree-Fock state, the lowest-energy Slater determinant,
its energy corresponds to the lowest value in the diagonal of the Hamiltonian. Thus, it is evident that a

single parameterized 𝑌 rotation (acting on the Hartree-Fock state) has null gradient and does not lower

the energy beyond the Hartree-Fock energy.

All operators in pool G are either 𝑌 rotations or conditional 𝑌 rotations, so that the the same applies.

Since all gradients will be zero, the ADAPT-VQE algorithm will be prevented from starting in the first place,

because the selection method will fail. This is a consequence of the minimal pool operators not respecting

particle number and spin symmetries.

For the ADAPT-VQE algorithm to be capable of starting (by adding the first operator to the ansatz),

the pool must include operators that preserve symmetries in the Hartree-Fock state. However, this still

does not guarantee proper convergence; for the ground state to be reached, the pool operators must obey

extra restrictions. An explicit approach for creating symmetry-adapted minimal pools was introduced in

2021 in [75]. Because of the added restrictions, the symmetry-adapted version of the minimal pools can
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actually have less operators than the minimal complete pools presented before. The size of the pool is

still O(𝑁 ), 𝑁 the number of qubits/spin-orbitals. This means that the measurements per iteration scale

as O(𝑁 5) (against O(𝑁 8) in fermionic-ADAPT-VQE or qubit-ADAPT-VQE with the original pools), a more

modest increase against the O(𝑁 4) scaling of static ansatz VQE.

4.3 Application to LiH

In order to analyse the femionic- and qubit-ADAPT-VQE performance, and compare ADAPT-VQE with

UCCSD-VQE, the algorithm was applied to multiple molecules.

𝐿𝑖𝐻 is a molecule represented by 12 qubits in a minimal basis. Its Hartree-Fock ground energy is

significantly distant from the FCI value, and the Hartree-Fock approximation can be significantly improved

upon in this case. Unlike𝐻2, a smaller molecule, more than a single operator is required to reach chemical

accuracy in the case of 𝐿𝑖𝐻 , resulting in a more interesting evolution of the ansatz. While the simulations

are heavier computationally, ADAPT-VQE with a threshold 𝜖 of 0.01 is still viable, and this suffices to

reach an interesting accuracy. Because of this, 𝐿𝑖𝐻 was chosen to test the algorithm in a fully noise-free

scenario.

4.3.1 Evolution of the Optimization

Figure 23 shows the evolution of the ADAPT-VQE algorithm for 𝐿𝑖𝐻 at an interatomic distance of 1.45Å.

It can be seen that the energy reaches chemical accuracy after four iterations; at this point, the ansatz

has 4 spin-adapted operators and the corresponding 4 variational parameters. For reference, the UCCSD

ansatz obtained from OpenFermion [2] has for the same molecule 44 variational parameters and 64

(simple) excitation operators. Evidently, this also corresponds to a greater accuracy than the 4-operator

ansatz of ADAPT-VQE; but in the plot we see that as we let the algorithm evolve further, it manages to

steadily improve the energy estimate. In the original article [35], through simulations including several

molecules, it was shown that ADAPT-VQE is capable of outperforming UCCSD-VQE.
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Figure 23: Evolution of the fermionic-ADAPT-VQE energy and gradient norm along the iterations, for the
lithium hydride (𝐿𝑖𝐻 ) molecule at an interatomic distance of 1.45Å. The convergence criterion was set to
a gradient treshold of 0.01. The SGSD pool and the COBYLA optimizer were used. The shaded blue area
represents the region of chemical accuracy (error of less than 1kcal/mol). The simulation was done via
matrix algebra, and does not include any type of noise.

4.4 Application to Molecular Hydrogen

Like UCCSD-VQE, the Qubit-ADAPT-VQE (with the Pauli string pool cleared of the Z string) was applied

to the hydrogen molecule. The small size of this molecule allows it to be represented by only 4 qubits,

and results in shallower ansätze. Because of this, it was chosen to run the algorithm on real quantum

computers and analyse the effect of noise. Since it is enough to reach chemical accuracy in this case, a

single iteration of ADAPT-VQE was used to obtain the ground state. At this point, there is a single variational

parameter in the ansatz, which can be implemented with a CNOT count and depth of 6 assuming all-to-all

connectivity.

In this section, ADAPT-VQE results will be presented and compared against UCCSD-VQE, with a focus

on noise-resilience and (to a lesser extent) measurement costs.
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4.4.1 Bond Dissociation Graph

(a) QASM simulator, 256 shots (b) QASM simulator, 1024 shots

(c) QASM simulator, 8192 shots (d) Statevector simulator

Figure 24: Single-run, single-iteration ADAPT-VQE ground energy along the bond dissociation curve of the
hydrogen molecule, obtained using IBMQ [42] simulators. The results plotted in figures 24a-24c, ordered
by increasing shot count, were obtained using the QASM simulator. The results plotted in figure 24d were
obtained using the state vector simulator (equivalent to infinite shots). The red and green curves represent
the FCI energy and the Hartree-Fock energy, respectively.

Following the fully noise-free simulation, the bond dissociation graphs of the molecule with sampling

noise will now be analysed. The plots in 24 show the ADAPT-VQE energies along the curve, for different

shot counts; they should be compared with figure 15, that presents the same plots for UCCSD-VQE.

Like before, there is a visible improvement on the performance of ADAPT-VQE with the increase of the

number of shots from figure 24a to figure 24c. In the limit of infinite shots (figure 24d), the error is of the
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order of 10−8 Hartree along the whole curve.

As did UCCSD-VQE, ADAPT-VQE successfully brings the energy into the FCI solution from the Hartree-

Fock approximation (which is the reference state). The extra variational freedom (in this case, a single

variational parameter) seems to be enough to account for electronic correlation.

What is interesting is that ADAPT-VQE clearly suffers less from sampling noise. With only 256 shots

(figure 24a), ADAPT-VQE is visibly closer to the FCI curve than UCCSD-VQE with 1024 shots (figure 15b).

This is not a circuit depth dependent noise source; what causes the UCCSD-VQE performance to be worse

is the extra variational freedom, that results in a more arduous optimization.

(a) QASM simulator, 256 shots (b) QASM simulator, 1024 shots

(c) QASM simulator, 8192 shots (d) Statevector simulator

Figure 25: Bond dissociation curves of figure 24, zoomed in on the region nearing the equilibrium bond
length. The blue area marks the region of chemical accuracy (error of less than 1kcal/mol).

Figure 25 shows the same plots of figure 24, magnified around the equilibrium bond length. This can
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be compared with figure 16, that shows these plots for UCCSD-VQE.

The only scenario in which UCCSD-VQE beats 1-iteration qubit-ADAPT-VQE is the fully noise-free one:

even though it is not visible in the graph, simulations showed that under those circumstances UCCSD-

VQE could achieve a precision of the order of 10−9 Hartree against 10−8 from ADAPT-VQE. However, this

precision is exceedingly high: not only it is not necessary for most applications, it also can hardly be ever

met, considering not only sampling but also other sources of noise prevalent in NISQ devices.

With sampling, regardless of the shot count, single-iteration ADAPT-VQE manages to outperform

UCCSD-VQE. With 256 shots (figures 25a and 16a) and 1024 shots (figures 25b and 16b), the UCCSD-VQE

result does not fall within chemical accuracy in any of the points, while ADAPT-VQE falls within chemical

accuracy in 11 and 13 points respectively. With 8192 shots (figures 25c and 16c), ADAPT-VQE only falls

outside of chemical accuracy in 3 out of 20 points, against 12 out of 20 fails of UCCSD-VQE.

4.4.2 Running the Algorithm on Cloud Quantum Computers

After considering the impact of sampling noise, we can now observe the impact of other types of noise

by analysing the performance of ADAPT-VQE on a real quantum computer. Figure 26 shows the evolution

of the first iteration of ADAPT-VQE in three scenarios: no noise (figure 26a), sampling noise only / ideal

quantum processor (figure 26b), real quantum processor (figure 26c). These can be compared with those

from figure 17, that show the evolution of the UCCSD-VQE optimization for the same three backends.

In the setting with sampling noise only, ADAPT-VQE already outperforms UCCSD-VQE. As it was men-

tioned previously, this is mainly due to the extra strain on the optimization caused by the larger number of

variational parameters and greater expressibility. While ADAPT-VQE stabilizes the energy inside the region

of chemical accuracy after as few as five iterations, UCCSD-VQE is still in and out of this region by the time

convergence is reached, which happens after more than double the iterations of ADAPT-VQE.

When a real quantum computer is used, and the algorithms are exposed to all types of noise, the

difference becomes even sharper. The ADAPT-VQE and UCCSD-VQE optimizations in the Belem processor

will be compared at a later subsection both graphically and numerically.
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(a) Statevector simulator (b) QASM Simulator

(c) IBMQ Belem

Figure 26: Evolution of first the ADAPT-VQE optimization for 𝐻2 at an interatomic distance of 0.74Å, using
three different IBM Quantum [42] backends: the statevector simulator (with no noise of any kind), the
QASM simulator (with sampling noise) and the Belem device (a 5-qubit Falcon processor). In the last
two cases, 8192 shots were used. The energy is plotted in blue; the pale blue region marks the area of
chemical accuracy. The same starting point, the Hartree-Fock reference state, was used for all backends.
The chosen optimizer was COBYLA.
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4.4.3 Impact of Thermal Relaxation, SPAM errors, and Sampling

(a) Thermal relaxation (b) SPAM errors

(c) Sampling noise

Figure 27: Plots showing the impact of different types of noise on the performance of ADAPT-VQE for 𝐻2

at an interatomic distance of 0.74Å. For thermal relaxation, a simple model assuming average gate times
and a constant ratio between the coherence times T1 and T2 was used. Figure 27a shows the evolution of
the error in the energy as a function of these times. For SPAM noise, the ratio between the probability of
measuring 0 after preparing 1 and the probability of measuring 1 after preparing 0 was fixed (and greater
than one, for the model to be realistic). Figure 27b shows the evolution of the error as a function of these
probabilities. Figure 27c illustrates the impact of sampling noise by plotting the error as a function of the
number of shots. Twenty runs were used for each point; the median was used as the estimator (as it filters
out aberrant runs), and the error bars show the interquartile ranges. All noise models were created using
Qiskit [3]. The chosen optimizer was COBYLA.

Figure 27 shows the impact of thermal relaxation, SPAM errors, and sampling noise in ADAPT-VQE.

The circumstances were chosen to meet exactly those from figure 21, that show the same plots from
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UCCSD-VQE. The same models of thermal relaxation, SPAM noise, and sampling noise, created in Qiskit

[3], were used.

From 27a, we can see that the majority of the runs fall inside of chemical accuracy when T1 is greater

than 2×10−5 seconds (with T2 being fixed at 4×10−5s). This condition is actually met by IBMQ’s devices,
that typically offer coherence times of the order of 10−4 seconds.

The impact of SPAM errors can be seen on figure 27b. For the runs within the interquartile range to

fall inside of chemical accuracy, the probability of measuring |0〉 after preparing |1〉 should be 0.06 (with
the probability of measuring |1〉 after preparing |0〉, made proportional, at 0.012). The Belem backend

used to run ADAPT-VQE before nearly meets the requirement, with average error probabilities around 0.04

and 0.009, respectively.

Finally, figure 27c shows that ADAPT-VQE requires no more than 4000 shots to reach chemical ac-

curacy in the middle 50% runs in a sampling noise only scenario. This shot count is actually under the

maximum allowed in IBMQ’s cloud quantum computers.

4.4.4 Comparison with UCCSD-VQE

While the previous ADAPT-VQE results were already compared against those from UCCSD-VQE presented

on subsection 3.2.1.4, it will be interesting to compare them side-by-side.

(a) ADAPT-VQE (b) UCCSD-VQE

Figure 28: Evolution of the optimization of the first iteration of ADAPT-VQE (figure 28a) and of the UCCSD-
VQE algorithm, for 𝐻2 at an interatomic distance of 0.74Å. IBMQ’s Belem processor was used in both
cases.

Figure 28 compares the ADAPT-VQE (figure 28a) and UCCSD-VQE (figure 28b) optimizations, using

the same scale.
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Neither of the algorithms manages to reach chemical accuracy with this backend and shot count, at

least in this particular iteration. Regardless, ADAPT-VQE secures the energy close to the Hartree-Fock

energy, with a final error of the order of centesimals of Hartree. In contrast, the UCCSD-VQE outputs an

energy with an error greater than unity. The appearance of the UCCSD-VQE optimization plot is a symptom

of a noise-induced barren plateau: due to the excessive circuit depth, noise washes away the quantum

information and erases the characteristics of the cost function, causing the optimizer to vainly search

through a flat optimization landscape.

When transpiled onto the Belem backend, the single-iteration ADAPT-VQE ansatz has 12 CNOTs,

against 130 from UCCSD-VQE. This evidently impacts the purity of the state by the end of the circuit.

As was done in the previous chapter, an approximate density matrix representing the state at the end

of the noisy ADAPT-VQE ansatz was obtained by simulating the algorithm on the QASM simulator with a

noise model aiming to mimic the behaviour of the Belem processor.

The fidelity of the final state with the ideal state at the end of the Adapt ansatz was found to be 0.92

(against only 0.081 in UCCSD-VQE), while the fidelity with the fully mixed state was 0.087 (against 0.40).

The final purity of the state was found to be around 0.84 (against 0.16).

Figure 29 compares the noise resilience of ADAPT-VQE and UCCSD-VQE against different sources

(thermal relaxation, SPAM errors, and sampling). The same noise sources were already explored individ-

ually in 21 and 27; however, now the scales were adjusted so that both curves start when ADAPT-VQE is

still outside of chemical accuracy and finish when UCCSD-VQE is already inside.

To reach chemical accuracy in more than 50% of the runs, UCCSD-VQE required roughly 850 times

greater coherence times than ADAPT-VQE. The difference in performance is visible in the plot 29a, with

ADAPT-VQE showing around one order of magnitude greater accuracy for any given value of T1 and T2.

This is a consequence of the greater circuit depth required by the UCCSD ansatz.

Figure 29c shows the impact of sampling noise, and figure 29b the impact of SPAM noise. In order to

reach chemical accuracy in at least half of the runs in the presence of sampling noise exclusively, ADAPT-

VQE required only 5% of the number of shots required by UCCSD-VQE. ADAPT-VQE also tolerated roughly

150 times higher error probability in state preparation and measurements. It is interesting to see how

both of these noise sources have greater impact in the performance of UCCSD-VQE, regardless of being

independent of circuit depth. Once again it becomes clear that more variational parameters and more

variational flexibility also imply an added difficulty in the optimization, especially in the presence of noise.

The noise resilience of ADAPT-VQE against UCCSD-VQE has become evident, but it must be noted that

this is not the only advantage of ADAPT-VQE against UCCSD-VQE: in the original article [35], it was shown

that while the latter often fails to reach chemical accuracy for strongly correlated molecules, ADAPT-VQE

manages to reach it as long as the convergence criterion is sufficiently ambitious. These simulations were

not replicated due to the heavy computational demands involved.
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(a) Thermal relaxation (b) SPAM errors

(c) Sampling noise

Figure 29: Comparison of the effect of different types of noise on ADAPT-VQE and UCCSD-VQE for 𝐻2 at
an interatomic distance of 0.74Å. The same noise models described in figures 21 and 27 were used.
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While the results regarding accuracy and noise-resilience favour the latter, comparing the performance

of UCCSD-VQE and ADAPT-VQE is a delicate matter that goes beyond the impact of noise or the final error

in the energy. There are many different costs at play, and many links between them. ADAPT-VQE requires

evaluating the expectation value of a significantly larger number of observables, because all gradients must

be evaluated each iteration. Additionally, because each iteration requires re-optimizing all the parameters,

there will be a significant accumulated number of optimizations by the end of the algorithm, unlike in

UCCSD-VQE (which requires a single optimization). This makes it seem likely that ADAPT-VQE will imply a

larger number of measurements in total.

However, attention must be paid to the fact that since ADAPT-VQE creates the ansatz from scratch,

most of the optimizations will have a significantly lower number of variational parameters. Because they’re

lower dimensional, these optimizations are likely to be easier, and to require a lower number of function

evaluations (i.e. calls to the quantum computer). Further, in the common case that the final ADAPT-VQE

ansatz includes less variational parameters than the UCCSD ansatz, ADAPT-VQE will tolerate sampling

noise better, and thus require a lower number of shots per term for the same accuracy. Additionally, the

measurement overhead from the gradient measurements may be softened by the existence of common

factors among the Pauli strings that occur in the [�̂�, 𝐴𝑖] observables (and in the Hamiltonian itself). This
allows reusing measurements.

Figure 30 aims to carefully analyse all of the different factors that weigh in on the costs. The number

of shots for each algorithm was chosen so that the precision was matched; this implied a significantly

larger number of shots for UCCSD-VQE (32 times larger, in this case). As explained before, this is due to

the fact that the optimization is higher-dimensional, thus more difficult, and more sensitive to noise.

Figure 30b compares the number of energy evaluations throughout the optimizations. This number is

larger for UCCSD-VQE; once more, we can attribute this to the larger number of variational parameters in

the optimization. However, this plot does not consider the fact that the number of observables measured

in ADAPT-VQE is larger, because the gradients of the pool operators will also be measured in each iteration.

The additional measurements required for the evaluation of the gradients in ADAPT-VQE are factored

in in figure 30c. Here, the number of observables includes all observables measured along a complete run

of either algorithm. For ADAPT-VQE, this includes all energy and gradient measurements; for UCCSD-VQE,

it matches the number of energy evaluations. In both cases, the utilized optimizer was gradient-free, so

that all calls to the quantum computer throughout the optimization consisted of energy evaluations. As

expected, the total number of measured observables was larger for ADAPT-VQE. In this case, the pool had

20 operators, implying an additional 20 observables to be measured each iteration (the [�̂�, 𝐴𝑖]).
Finally, figure 30d compares a very important metric: the total number of shots in a full run. This

number includes all the shots used for the evaluation of all Pauli strings in all observables in all times

they were measured. This plot thus reflects a multitude of factors: it weighs in the fact that UCCSD-VQE

requires more shots per string and more energy evaluations per optimization, as well as the fact that

ADAPT-VQE requires additional measurements per iteration to obtain the gradients. The total number of

shots is the total number of circuits, repeated or not, that have to be executed on the quantum computer.
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(a) Error in the energy (b) Number of energy evaluations

(c) Number of measured observables (d) Total number of shots

Figure 30: Plots comparing the costs associated with UCCSD-VQE and ADAPT-VQE for a similar final
error, in a setting with no noise other than sampling noise. For each interatomic distance, 10 runs of the
algorithms were performed. The median of the errors is plotted in figure 30a. Figures 30b, 30c, and 30d
present respectively the average number of energy evaluations, measured observables, and total shots
per run. The number of shots per Pauli string was set to 213 and 218 for ADAPT-VQE and UCCSD-VQE
respectively. These values were chosen so that the error was roughly matched between the two algorithms
(the average error was 0.00038 a.u. and 0.00039 a.u. by the same order).
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Interestingly, ADAPT-VQE required a smaller number of shots in total than UCCSD-VQE for the same final

error. In addition to implying shallower circuits and a lower number of variational parameters, ADAPT-VQE

does not in this case imply an overhead in measurements as compared to UCCSD-VQE - on the contrary.

It required only a fraction of the number of shots in total (1.7%).

In this example, the fact that sampling noise is better tolerated by ADAPT-VQE allows for a reduction

of the number of shots per Pauli string that compensates for the fact that there will be a larger number

of observables being measured. Additionally, it must be mentioned that as was conjectured before, there

was a significant amount of repeated Pauli strings among these observables. For the molecule in question

(𝐻2), the total number of Pauli strings in the [�̂�, 𝐴𝑖] observables was 152. However, the set of Pauli

strings that were unique among these and that didn’t occur in the Hamiltonian, i.e. the Pauli strings that

should actually be measured, was found to consist of only 24 elements. Evidently, acknowledging this

fact allows for a reduction of the total number of measured Pauli strings, which in turn reduces the total

number of shots. This was already considered in obtaining the results plotted in figure 30d.

Of course, these results should be interpreted with caution: we’re only considering a particular molecule,

and a very small one. As the size of the system grows, so will the number of operators in the pool, in-

creasing the measurement overhead of ADAPT-VQE. The total number of optimizations required for the

same accuracy will grow as well. On the other hand, the difficulty that is brought on by the extra variational

parameters in UCCSD-VQE will also increase with the size of the system. This algorithm will then become

even more sensitive to sampling noise, and thus require an even larger precision on the energy evalua-

tions (which will already require a larger number of shots for the same precision given that the system is

bigger). Additionally, it has been established that ADAPT-VQE is better suited for real quantum processors,

as the resulting circuits are shallower. The most evident benefit of this is that it improves the viability

of the algorithm in near-term devices. But given that additional sources of noise also imply an additional

difficulty in the optimizations, their presence is also likely to benefit the relative performance of ADAPT-VQE

against UCCSD-VQE in what comes to measurement costs. With more qubits and deeper circuits, errors

will accumulate faster, so this is another factor that is affected by the size of the system.

Taking all of this into consideration, it is not certain how the two algorithms will compare in terms of

the total number of required shots for larger molecules and in more realistic settings. Such simulations

were not attempted on account of the prohibitive computational complexity.

4.5 Application to H4

The 𝐻4 molecule is represented by 8 qubits in a minimal basis. While it is already too large a system to

allow for meaningful results to be recovered in real quantum computers, it is still is significantly easier to

simulate classically than 𝐿𝑖𝐻 . Because it allows for more iterations to be simulated in useful time, 𝐻4

was used to analyse the effect of removing the Jordan-Wigner string from the Qubit Pool operators, and to

compare fermionic-ADAPT-VQE against Qubit-ADAPT-VQE.
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4.5.1 Qubit Pool: Effect of the Jordan Wigner String

Figure 31: Impact of the Jordan-Wigner string on the convergence of the qubit-ADAPT-VQE algorithm. The
graphs compare the evolution of the error in the energy along the 20 first iterations of the algorithm, with
and without the Z-strings in the pool operators. The molecule in study is the𝐻4 molecule at an interatomic
distance of 1.45Å.

In one of the Qubit Pools introduced before, the chain of Pauli Z operators responsible for faithful

translation of the anticommutation of fermions into the qubit states was eliminated from these Pauli strings.

The effect of its removal on the convergence of the algorithm for the 𝐻4 molecule is plotted on figure 31.

The plot shows that there is very little variation between qubit pools with and without the Jordan-

Wigner string. This is a remarkable fact. Firstly, it is remarkable because it means that representing the

fermionic anticommutation accurately through the ansatz operators brings no benefit. But most of all, it is

remarkable because it greatly aids in reducing circuit depth, as was explained before. These Z strings are

non-local and act on a number of qubits that scales on average linearly with the size of the system. After

relinquishing them, only the qubits corresponding to the one-body wave functions directly involved in the

excitations will be acted on by the operators. As a consequence, if the employed excitations are at most
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doubles, the pool operators will act on at most four qubits regardless of the molecule in study. We saw

that the circuit depth required per operator will be O(1) instead of O(𝑁 ).

4.5.2 Fermionic vs Qubit Pools: Performance Comparison

The purpose of the qubit pool is to make the ADAPT-VQE algorithm more NISQ-Friendly, in hopes of

enabling an earlier practical implementation. As it was explained in the previous section, the operators in

the qubit pool are in fact implemented by shallower circuits than those in the fermionic pool. However,

because they don’t preserve fermionic symmetries and consist each of a single Pauli string, they are

bound to make convergence slower as a function of the number of iterations. An 𝑁 -operator ansatz from

fermionic-ADAPT-VQE will typically imply a much greater accuracy than an 𝑁 -operator ansatz from qubit-

ADAPT-VQE. However, it will also imply a much longer circuit. In a fair comparison, circuit depth, the

number of variational parameters, and the measurement overhead should all be taken into consideration.

(a) Error as a function of the number of iterations of
the algorithm.

(b) Error as a function of the number of CNOT gates
in the ansatz circuit.

Figure 32: Evolution of the error in the ADAPT-VQE energy along the evolution of the algorithm for the
SCGSD pool, the SGSD pool, and the qubit pool. The molecule in study is the 𝐻4 molecule.

Figure 32 shows the evolution of the error in the ADAPT-VQE energy for three types of pools, two

fermionic ones (SCGSD and SGSD) and the qubit pool.

The energy as a function of the iteration number, which corresponds to the number of operators

in the ansatz, is plotted in figure 32a. As expected, we observe that qubit-ADAPT-VQE requires more

iterations/operators to achieve the same accuracy as fermionic-ADAPT-VQE.

In figure 32b, we can see that the tendency is reversed when we consider the error as a function

of the number of CNOTs in the circuit, to which the circuit depth will be proportional. Qubit-ADAPT-VQE

converges much faster than any of the fermionic pools in this case. Further, the molecule in study (𝐻4)
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is rather small: its representation in a minimal basis set requires only eight spin-orbitals (eight qubits). It

was mentioned before that there is a difference in the scaling of the circuit depth necessary to implement

qubit pool operators (constant) versus fermionic pool operators (linear). As such, the difference is bound

to become even more notable with the increase of the system size (number of molecular orbitals).

However, the error as a function of the number of CNOTs presented in 32b (and, in general, the circuit

depth) does not represent the full picture, because measurement and variational parameter overhead are

not considered. Because the qubit pool consists of fermionic operators broken into their constituent Pauli

strings (and cleared of the anticommutation operator), it is significantly larger. For example, for 𝐻4, we

already have 328 operators in the qubit pool, while SCGSD and SGSD (fermionic pools) have respectively

111 and 66 operators. Since in each iteration the gradients of all the pool operators must be measured, this

represents a sizeable measurement overhead. Further, the scaling of the number of variational parameters

is as in 32a, which means that qubit-ADAPT-VQE will, for a given accuracy, imply a higher-dimensional

(harder) optimization than fermionic-ADAPT-VQE. This implies more effort of the classical optimizer, which

in turn will demand more calls to the quantum computer, resulting in even more measurements being

required.

In essence, Qubit-ADAPT-VQE reduces the circuit depth necessary to reach a certain accuracy, at the

expense of a greater burden on the classical optimizer and extra measurements on the quantum computer.

97



5

ADAPT-VQE: Exploring other Pool Options

In this chapter, ADAPT-VQE will be tested with several pools. The pools will be introduced here and differ

both from the ones used in fermionic-ADAPT-VQE [35] and from the ones used in qubit-ADAPT-VQE [85].

The purpose is to explore the importance of the similitude between pool operators and fermionic

excitations, and investigate the origin of such importance, analysing whether it stems from preserving

quantities such as particle number and spin, from respecting antisymmetry, or from other factors.

The constitution of the ADAPT-VQE state in terms of Slater determinants, as well as the performance

of the algorithm, will be analysed and compared between the different pools.

5.1 Motivation

The operators in the pools from fermionic-ADAPT-VQE are fermionic excitations that, when transformed

into qubit operators, can consist of a superposition of up to 48 Pauli strings, the average length of each

scaling linearly with the size of the system. These operators preserve particle number and spin, respect

fermionic anticommutation, and properly represent fermionic excitations.

In qubit-ADAPT-VQE, the operators are decomposed into the individual Pauli strings, and the Jordan-

Wigner string is removed, causing their length to be independent of the system size. These operators

do not preserve particle number or spin, do not respect fermionic anticommutation, and do not directly

represent any proper fermionic excitation.

In the previous chapter, we saw that while fermionic-ADAPT-VQE converges faster as a function of the

iteration number, qubit-ADAPT-VQE converges faster as a function of circuit depth. The qubit pools have

more operators than the fermionic pools, which implies a higher overhead from measuring the gradients in

each iteration; they will also typically require a larger number of optimizations and variational parameters for

the same accuracy, demanding more effort from the classical optimizer and further increasing the number

of calls to the quantum computer. In compensation for this, qubit pools reduce the circuit complexity of

each operator, and result in shallower circuits for a given accuracy.

In the previous chapter, no options in-between the fermionic-inspired and qubit-inspired pools were

tested. As well as spin-complemented and spin-adapted excitations, simple excitations can be used. These

excitations can themselves be cleared of the Jordan-Wigner string while still preserving particle number

and spin, and representing proper fermionic excitations up to the antisymmetry principle. And further, it

is even possible to create operators that preserve (partially or in full) particle number and spin, but don’t

correspond directly to a specific fermionic excitation.
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In order to assess the relative importance of each of these factors, several other pools are introduced

and tested in this chapter. These pools find an intermediary position between those from fermionic-ADAPT-

VQE and those from qubit-ADAPT-VQE. Because they have more operators than the former and less than

the latter, their overhead due to gradient measurements is in-between these two algorithms; and because

the number of Pauli strings in each operator is lower than in the former and higher than in the latter, the

depth of their circuit implementation finds also an intermediary position.

We will begin by analysing the operators in the pool from qubit-ADAPT-VQE, as well as the impact that

they have on the trial state. This is relevant for the definitions of the pools that ensue. After the pools have

been introduced, the evolution of the state when each is used will be analysed. Finally, the performance

associated with these pools will be compared.

5.2 Analysis of the Qubit Pool Operators

From the Jordan-Wigner transform in definition 2.57 and the fact that excitations are subtracted of their

Hermitian conjugate to assure unitarity of the exponential operators, it is evident that any indices q, p will

be represented by at most two different Pauli strings in the Qubit Pool (without 𝑍 strings):

𝑖 · 𝑌𝑞𝑋𝑝, 𝑖 · 𝑋𝑞𝑌𝑝 . (5.1)

And double excitations, 𝑞, 𝑝, 𝑠, 𝑟 will be represented by at most eight different Pauli strings:

𝑖 · 𝑌𝑞𝑋𝑝𝑋𝑠𝑋𝑟 , 𝑖 · 𝑋𝑞𝑌𝑝𝑋𝑠𝑋𝑟 , 𝑖 · 𝑋𝑞𝑋𝑝𝑌𝑠𝑋𝑟 , 𝑖 · 𝑋𝑞𝑋𝑝𝑋𝑠𝑌𝑟 ,

𝑖 · 𝑋𝑞𝑌𝑝𝑌𝑠𝑌𝑟 , 𝑖 · 𝑌𝑞𝑋𝑝𝑌𝑠𝑌𝑟 , 𝑖 · 𝑌𝑞𝑌𝑝𝑋𝑠𝑌𝑟 , 𝑖 · 𝑌𝑞𝑌𝑝𝑌𝑠𝑋𝑟 .
(5.2)

Apart from the phase factor i, the coefficients do not matter because the final coefficients will be the

variational parameters. These operators consist exclusively of Pauli X and Y operators, and the number of

each is always odd. This is because the other terms are canceled out by the Hermitian conjugate, which

is actually what leads to the unitarity of the exponentiated operators: the coefficient of these terms would

be real.

It was mentioned that single excitations will lead to at most two Pauli strings, and double excitations to

at most eight Pauli strings in the pool. This is because not all sets of spin-orbitals lead to valid excitations.

For example, single excitations will only exist between spin-orbitals of the same type (𝛼 → 𝛼 or 𝛽 → 𝛽).

A similar restriction exists in double excitations; if in a set there is an odd number of 𝛽 orbitals and 𝛼

orbitals (e.g. 𝑝, 𝑞, 𝑟 , 𝑠 are of types 𝛼 , 𝛼 , 𝛼 , 𝛽), no double excitations involving these four orbitals will

exist.
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5.3 Analysis of the Qubit-ADAPT-VQE State

If we use the pool without 𝑍 strings, the 𝑖th operator in the Qubit-ADAPT-VQE pool consists of an expo-

nentiated Pauli string (𝑃𝑖 =
⊗

𝑁 𝜎𝑘 , with 𝑘 ∈ {0, 𝑧, 𝑥,𝑦}) acting on 𝑁 qubits (𝑁 will be two/four for

singles/doubles respectively), multiplied by a real variational parameter 𝜃𝑖 and the imaginary unit i. We

can expand this as

𝑒𝑖𝜃𝑖𝑃𝑖 = 1 + 𝑖𝑃𝑖𝜃𝑖
1

+ (𝑖𝑃𝑖𝜃𝑖)2
2!

+ (𝑖𝑃𝑖𝜃𝑖)3
3!

+ (𝑖𝑃𝑖𝜃𝑖)𝑁
4!

+ (𝑖𝑃𝑖𝜃𝑖)5
5!

+ ...

As do the individual Pauli operators, squared tensor products of them amount to the identity. As such,

(𝑃𝑖)𝑘 is the identity if 𝑘 is even, or simply 𝑃𝑖 if k is odd. As such, we can rewrite the expression into a

simpler form.

𝑒𝑖𝜃𝑖𝑃𝑖 = 𝐼⊗4
(
1 −

𝜃 2𝑖
2!

+
𝜃 4𝑖
4!

− ...

)
+ 𝑖𝑃𝑖

(
𝜃𝑖
1!

−
𝜃 3𝑖
3!

+
𝜃 5𝑖
5!

− ...

)
= 𝐼⊗𝑁 cos𝜃𝑖 + 𝑖𝑃𝑖 sin𝜃𝑖

Operators in the ansatz of Qubit-ADAPT-VQE then act on a computational basis state |𝑛〉 in a very

simple manner.

𝑒𝑖𝜃𝑖𝑃𝑖 |𝑛〉 = cos𝜃𝑖 |𝑛〉 + 𝑖 sin𝜃𝑖𝑃𝑖 |𝑛〉 (5.3)

In the previous section we saw that each 𝑃𝑖 has an odd number of 𝑌 operators. Since |𝑛〉 is a

computational basis state, acting on it with such an operator will introduce a factor of ±𝑖. Other than that,
the effect of 𝑃𝑖 is to flip the states of the four qubits it acts on (it must be remembered that there are no

𝑍 operators in 𝑃𝑖 ). So we can rewrite 5.3 as

𝑒𝑖𝜃𝑖𝑃𝑖 |𝑛〉 = cos𝜃𝑖 |𝑛〉 ± sin𝜃𝑖 |𝑚〉 .

Here, |𝑚〉 = 𝑖𝑃𝑖 |𝑛〉 is a computational basis state that differs from the original (also computational

basis) state |𝑛〉 in and only in the states of the four qubits 𝑃𝑖 acts on. |𝑚〉, |𝑛〉 represent Slater determi-
nants with the same particle number if and only if the qubits acted on by 𝑃𝑖 in |𝑛〉 had an equal number
of |0〉 and |1〉 states.

From this, it’s obvious that all eight Pauli strings acting on the same two/four spatial orbitals (for

singles/doubles respectively) listed in the previous subsection will have the same effect on a given com-

putational basis state, except for a possible phase factor of -1 associated with |𝑚〉. Operators acting on
different indices may bring different Slater determinants (computational basis states) into the superposi-

tion among themselves; operators acting on the same indices will only differ in their impact on the wave

function through interference.
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For example, in the simple case that we have four spin-orbitals and two electrons, the Hartree-Fock

state (using alternate orbital ordering) can be written |0011〉. The impact of each of the eight operators in
the Qubit Pool associated with double excitations is

|0011〉 → cos𝜃 |0011〉 ± sin𝜃 |1100〉 .

The sign is plus for 𝑋𝑋𝑌𝑋 , 𝑋𝑋𝑋𝑌 , 𝑋𝑌𝑌𝑌 , 𝑌𝑋𝑌𝑌 and minus for 𝑌𝑋𝑋𝑋 , 𝑋𝑌𝑋𝑋 , 𝑌𝑌𝑋𝑌 ,

𝑌𝑌𝑌𝑋 .

5.4 Alternative Pools

In order to test the relative importance of bringing new Slater determinants into the superposition versus

manipulating interference effects, as well as the impact of particle number and 𝑍 spin preservation on

convergence, ADAPT-VQE was tested with five other pools. The pools were purposefully defined to facilitate

the analysis of the impact of these factors, separately, on the performance of the algorithm: they were

chosen to have varying degrees of affinity with fermionic excitations. The introduction of each new pool

follows.

5.4.1 Generalized Singles and Doubles

The GSD pool includes the simplest possible generalized excitations (that are not spin-adapted nor spin-

complemented), up to order two. Of course, they’re still forced to be anti-Hermitian.

Single excitations will consist of a linear combination of two two-body operators,

𝑎†𝑝𝑎𝑞 − 𝑎†𝑞𝑎𝑝, (5.4)

and double excitations will consist of a linear combination of two four-body operators,

𝑎†𝑝𝑎
†
𝑞𝑎𝑟𝑎𝑠 − 𝑎†𝑟𝑎

†
𝑠 𝑎𝑝𝑎𝑞 . (5.5)

5.4.2 Eight Pool

The Eight Pool consists of the same operators as the GSD pool, with the Jordan-Wigner string removed

from all operators. It was designated this way because each operator will consist of a linear combination

of at most eight Pauli strings.

As an example, the generalized double excitation defined in 5.5 gives rise to the Eight Pool operator

in 5.6.

𝜏 =𝑖 (−𝑋𝑞𝑋𝑝𝑋𝑠𝑌𝑟 − 𝑋𝑞𝑋𝑝𝑌𝑠𝑋𝑟 + 𝑋𝑞𝑌𝑝𝑋𝑠𝑋𝑟 − 𝑋𝑞𝑌𝑝𝑌𝑠𝑌𝑟

+ 𝑌𝑞𝑋𝑝𝑋𝑠𝑋𝑟 − 𝑌𝑞𝑋𝑝𝑌𝑠𝑌𝑟 + 𝑌𝑞𝑌𝑝𝑋𝑠𝑌𝑟 + 𝑌𝑞𝑌𝑝𝑌𝑠𝑋𝑟 )
(5.6)
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We can factorize the operator as in 5.7.

𝜏 = −𝑖𝑋𝑞𝑋𝑝𝑋𝑠𝑌𝑟 ( + 1 + 𝐼𝑞𝐼𝑝𝑍𝑠𝑍𝑟 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟 − 𝐼𝑞𝑍𝑝𝑍𝑠𝐼𝑟

−𝑍𝑞𝐼𝑝𝐼𝑠𝑍𝑟 − 𝑍𝑞𝐼𝑝𝑍𝑠𝐼𝑟 + 𝑍𝑞𝑍𝑝𝐼𝑠𝐼𝑟 + 𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 )
= −𝑖𝑋𝑞𝑋𝑝𝑋𝑠𝑌𝑟 ( + 1 + 𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 )×

( + 1 + 𝐼𝑞𝐼𝑝𝑍𝑠𝑍𝑟 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟 − 𝑍𝑞𝐼𝑝𝐼𝑠𝑍𝑟 )

(5.7)

From this, we can easily see the effect of 𝜏 on computational basis states. It should be remembered

that states |0〉𝑘 , |1〉𝑘 indicate that the spin-orbital that qubit 𝑘 represents is unoccupied and occupied,

respectively (under the Jordan-Wigner mapping as defined in 2.57). It is also worth noting that since the

qubits with indices 𝑝, 𝑞, 𝑠, 𝑟 are the only ones acted on by the operator, we can ignore the state of the

remaining qubits.

The factorized expression with 𝑍 operators acts as 8 · 𝐼⊗4𝑞𝑝𝑠𝑟 for |1100〉𝑞𝑝𝑠𝑟 and |0011〉𝑞𝑝𝑠𝑟 , and as 0
for the remaining computational basis states. The effect of it is then to block transitions that do not corre-

spond to the proper excitation. Thus, 𝜏 acts on computational basis states |1100〉𝑞𝑝𝑠𝑟 and |0011〉𝑞𝑝𝑠𝑟 to
transform them into +8 |0011〉𝑞𝑝𝑠𝑟 and −8 |1100〉𝑞𝑝𝑠𝑟 respectively, and it acts as identity in the remaining
computational basis states.

The original generalized double excitation in 5.5 acts to excite (or de-excite) electrons from spin-orbitals

𝑟 , 𝑠 to spin-orbitals 𝑝, 𝑞. The Jordan-Wigner transformed operator then has to be faithful to this action;

it can’t e.g. transform |1010〉𝑞𝑝𝑠𝑟 into |0101〉𝑞𝑝𝑠𝑟 , as that would correspond to a different excitation

(𝑞, 𝑠 → 𝑝, 𝑟 ). Such an excitation might even not preserve 𝑆𝑍 . Other transitions might not preserve

particle number: that is the case if |0000〉𝑞𝑝𝑠𝑟 is transformed into |1111〉𝑞𝑝𝑠𝑟 , for example.
In a similar way to how we saw the (exponential) ansatz operators act on computational basis states

when the pool consists of single Pauli strings with imaginary coefficients (equation 5.3), we can see

what the effect of the ansatz operator corresponding to pool operator 𝜏 (associated with the excitation

(𝑟, 𝑠 → 𝑝, 𝑞) and coefficient 𝜃 is. On the computational basis states |0011〉𝑞𝑝𝑠𝑟 and |1100〉𝑞𝑝𝑠𝑟 , it acts
as

𝑒𝜃𝜏 |0011〉𝑞𝑝𝑠𝑟 = − sin(8𝜃 ) |1100〉𝑞𝑝𝑠𝑟 + cos(8𝜃 ) |0011〉𝑞𝑝𝑠𝑟 ,

𝑒𝜃𝜏 |1100〉𝑞𝑝𝑠𝑟 = + sin(8𝜃 ) |0011〉𝑞𝑝𝑠𝑟 + cos(8𝜃 ) |1100〉𝑞𝑝𝑠𝑟 ,

and it has trivial action on the remaining computational basis states.

The Eight Pool operators conserve particle number and 𝑆𝑧 , and properly represent fermionic exci-

tations, up to the anticommutation requirement. This was the pool used in the Qubit-Excitation-Based

(QEB)-ADAPT-VQE introduced in [99], where they called such operators qubit excitations for obvious rea-

sons (they are essentially excitations that don’t respect fermionic antisymmetry).
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5.4.3 One Pools

Pools of this type are a subset of the Qubit Pool (the one without the Jordan-Wigner strings). From any

fermionic excitation, One Pools keep only one Pauli string (from the two in 5.1 or the eight in 5.2, in the

case of single and double excitations respectively).

The One Pools will hereby be denoted after the strings that are kept from double excitations. For

example, if from any four spin-orbital indices 𝑞, 𝑝, 𝑠, 𝑟 only the string 𝑖 · 𝑋𝑞𝑋𝑝𝑌𝑠𝑋𝑟 is kept, the pool will

be called XXYX pool. From single excitations, the string 𝑌𝑞𝑋𝑝 was the one kept always.

This type of pool does not conserve 𝑆𝑧 or particle number, much like the original Qubit Pool. However,

keeping only strings of a specific form greatly limits variational flexibility by narrowing the possibilities of

control over quantum interference effects. As such, One Pools are likely to perform worse.

5.4.4 Two Pools

Two Pools are obtained from the previous One Pools by multiplying each operator arising from a single

excitation by (1 −𝑍𝑞𝑍𝑝 ), and each arising from a double excitation by (1 +𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 ). The effect of this

is to block some improper transitions between Slater determinants. When only two Pauli strings are used

per operator, it is not possible to block them all.

Regarding double excitations, the effect is to avoid those transitions that attempt to act on a set of

four spin-orbitals with an odd number of electrons: the action of Two Pool operators on the eight 4-qubit

computational basis states with an odd number of 1 states is trivial. This is a natural option because it

can be done with a simple parity check.

We can see that (𝐼⊗4𝑞𝑝𝑟𝑠 + 𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 ) is one of the factors appearing in 5.7 that prevents improper

excitations. Without the other factor, not all of them can be prevented. This one only prevents eight

improper transitions between Slater determinants, and allows six improper ones in addition to the correct

two.

In the case of single excitations, the effect is to block those transitions that attempt to act on a set of

two spin-orbitals with an even number of electrons; this is enough to conserve particle number and 𝑆𝑧 . In

fact, the single excitation operators in Two Pools have exactly the same effect on the state as those in the

Eight Pool.

However, aside from single excitations, these quantities are not in general conserved by the operators

in this pool.

5.4.5 Four Pools

Four Pools are obtained from the Two Pools. The operators arising from single excitations are kept as

before, and the ones arising from double excitations are multiplied by an operator of the form (1−𝑍𝑎𝑍𝑏 ).

The indices 𝑎, 𝑏 depend on the type of spin-orbitals (up or down) the operator acts on. The following
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specifies what was the utilized factor for each type of spin-orbitals. Case 𝛼𝛽𝛼𝛽 , for example, is used to

mean that the indices 𝑞, 𝑝, 𝑠, 𝑟 correspond in this order to up, down, up, down spin.

Case A, 𝛼𝛽𝛼𝛽 or 𝛽𝛼𝛽𝛼 :

𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟

Case B, 𝛼𝛼𝛽𝛽 or 𝛽𝛽𝛼𝛼 :

𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝐼𝑝𝑍𝑠𝑍𝑟

Case C, 𝛼𝛽𝛽𝛼 or 𝛽𝛼𝛼𝛽:

𝐼⊗4𝑞𝑝𝑟𝑠 − 𝑍𝑞𝐼𝑝𝐼𝑠𝑍𝑟

Case D, 𝛼𝛼𝛼𝛼 or 𝛽𝛽𝛽𝛽 :

𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝐼𝑝𝑍𝑠𝑍𝑟

𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟

𝐼⊗4𝑞𝑝𝑟𝑠 − 𝑍𝑞𝐼𝑝𝐼𝑠𝑍𝑟

This pool preserves 𝑆𝑧 and particle number, without being completely faithful to a true fermionic

excitation. To see this, we can analyse a specific case of spin-orbitals 𝑞, 𝑝, 𝑠, 𝑟 - e.g. case A. If we had

picked the XXYX One Pool, the corresponding operator in the Four Pool will be

𝑖 · 𝑋𝑞𝑋𝑝𝑌𝑠𝑋𝑟 (𝐼⊗4𝑞𝑝𝑟𝑠 + 𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 )(𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟 ).

It is easy to see that (𝐼⊗4𝑞𝑝𝑟𝑠 + 𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 )(𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟 ) is 0 when this operator acts on any but
four computational basis states of the involved qubits (the state of the remaining qubits is irrelevant):

|0110〉𝑞𝑝𝑠𝑟 , |1001〉𝑞𝑝𝑠𝑟 , |1100〉𝑞𝑝𝑠𝑟 , |0011〉𝑞𝑝𝑠𝑟 .

When we add the variational parameter and exponentiate the operator, it will be a conditional rotation

𝑒𝑖𝜃𝑋𝑞𝑋𝑝𝑌𝑠𝑋𝑟 applied only to these four states.

When acting on |𝑛〉, |𝑛〉 being one of these four computational basis states, this operator rotates it
into a superposition 𝑎 |𝑛〉 +𝑏 |𝑚〉, where |𝑚〉 is the same as |𝑛〉, except qubits 𝑞, 𝑝, 𝑠, 𝑟 have their states
flipped. The new state appearing in the superposition has the same particle number and 𝑆𝑧 as the original

state, e.g.

|0110〉𝑞𝑝𝑠𝑟 → 𝑎 |0110〉𝑞𝑝𝑠𝑟 + 𝑏 |1001〉𝑞𝑝𝑠𝑟 .
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The action of the operator is trivial in the cases were this would not happen - e.g., the action of

𝑒𝑖𝜃𝑋𝑞𝑋𝑝𝑌𝑠𝑋𝑟 in |1000〉𝑞𝑝𝑠𝑟 would be

|1000〉𝑞𝑝𝑠𝑟 → 𝑎 |1000〉𝑞𝑝𝑠𝑟 + 𝑏 |0111〉𝑞𝑝𝑠𝑟 .

The particle number is altered by 2 and 𝑆𝑧 is altered by 1 in the computational basis state |0111〉𝑞𝑝𝑠𝑟 .
The two factors (𝐼⊗4𝑞𝑝𝑟𝑠 + 𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 ), (𝐼⊗4𝑞𝑝𝑟𝑠 − 𝐼𝑞𝑍𝑝𝐼𝑠𝑍𝑟 ) prevent all these improper rotations. However,
they do not prevent transitions that do not correspond to the original excitation. This is the difference

between the Four Pool and the Eight Pool.

For each set of four spin-orbitals 𝑞, 𝑝, 𝑠, 𝑟 of type A, the Eight Pool will have two operators, each

corresponding to specific excitations / de-excitations. The excitation 𝑎†𝑝𝑎
†
𝑞𝑎𝑟𝑎𝑠 − 𝑎†𝑟𝑎

†
𝑠 𝑎𝑝𝑎𝑞 (5.5) would

give rise to an Eight Pool operator that acts non-trivially on two computational basis states:

|0011〉𝑞𝑝𝑠𝑟 → 𝑎 |1100〉𝑞𝑝𝑠𝑟 ,
|1100〉𝑞𝑝𝑠𝑟 → 𝑏 |0011〉𝑞𝑝𝑠𝑟 .

Corresponding to the excitation 𝑟, 𝑠 → 𝑝, 𝑞 and the respective de-excitation 𝑝, 𝑞 → 𝑟, 𝑠. The coeffi-

cients a, b are irrelevant because they will be multiplied by the variational parameter. Another excitation

𝑎†𝑝𝑎
†
𝑠 𝑎𝑟𝑎𝑞 − 𝑎†𝑟𝑎

†
𝑞𝑎𝑝𝑎𝑠 would correspond to an Eight Pool operator that acts non-trivially on two other

computational basis states:

|1001〉𝑞𝑝𝑠𝑟 → 𝑐 |0110〉𝑞𝑝𝑠𝑟 ,
|0110〉𝑞𝑝𝑠𝑟 → 𝑑 |1001〉𝑞𝑝𝑠𝑟 .

Corresponding to the excitation 𝑟, 𝑞 → 𝑝, 𝑠 and the respective de-excitation 𝑝, 𝑠 → 𝑟, 𝑞. In contrast,

there will be a single Four Pool operator acting on these four spin-orbitals. This is the operator we saw

before, with non-trivial action on four spin-orbitals:

|0011〉𝑞𝑝𝑠𝑟 → 𝑒 |1100〉𝑞𝑝𝑠𝑟 ,
|1100〉𝑞𝑝𝑠𝑟 → 𝑓 |0011〉𝑞𝑝𝑠𝑟 ,
|1001〉𝑞𝑝𝑠𝑟 → 𝑔 |0110〉𝑞𝑝𝑠𝑟 ,
|0110〉𝑞𝑝𝑠𝑟 → ℎ |1001〉𝑞𝑝𝑠𝑟 .

This operator corresponds simultaneously to all excitations / de-excitations acting on this set of spin-

orbitals that are possible (i.e. that preserve particle number and 𝑆𝑍 ).

In case D, the One Pool operator yields three operators in this pool. This is because, in the special

case that all orbitals are of the same type, enforcing particle number preservation is enough to ensure

𝑆𝑍 preservation. As a consequence, there are less restrictions in the excitations that are allowed to occur

within these spin-orbitals.
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5.4.5.1 Considerations

Because of the relations between Pauli matrices, the constituents of all of these pools are linear combina-

tions of operators belonging to the original Qubit Pool. As compared to the latter, the number of operators

in any of the One, Two, and Four Pools is decreased almost 8-fold, and almost 4-fold in the Eight Pool.

The operators in these new pools consist of linear combinations of at most one, two, four and eight Pauli

strings, in the same order; the increase in number implies an increase in affinity with proper fermionic

excitations.

It’s important to note that implementing the exponential of a linear combination of𝑁 Pauli strings does

not necessarily correspond to an 𝑁 -fold increase in circuit depth, as compared to the single Pauli strings

in the Qubit Pool. Because they have a very specific form resembling controlled rotations, the exponentials

of these newly introduced pools can be implemented more efficiently than those consisting of linear com-

binations of arbitrary Pauli strings. For example, reference [98] presented circuits for implementing the

exponentiated Eight Pool operators (qubit excitations) with a CNOT count of 13 and depth of 11, against

the 48 CNOT count and depth of the ladder-of-CNOTs [64] method. Figures 33 and 34 exemplify the two

different circuit implementations for a specific operator (the operator in 5.8). The former illustrates the

vanilla approach, while the latter shows the more efficient option.

𝜏 =𝑒−
𝑖𝑡
8 (+𝑋0𝑌1𝑋2𝑋3+𝑌0𝑋1𝑋2𝑋3+𝑌0𝑌1𝑌2𝑋3+𝑌0𝑌1𝑋2𝑌3−𝑋0𝑋1𝑌2𝑋3−𝑋0𝑋1𝑋2𝑌3−𝑌0𝑋1𝑌2𝑌3−𝑋0𝑌1𝑌2𝑌3) (5.8)
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Figure 33: Circuit for implementing the operator in 5.8 using the ladder-of-CNOTs method explained in
subsection 2.1.3. The circuit was drawn in the IBM Quantum Composer [41].

Figure 34: Circuit for implementing the operator in 5.8 using the more efficient method introduced in [98].
The circuit was drawn in the IBM Quantum Composer [41].
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5.5 Graphical Analysis of the State Evolution

Figure 35: Evolution of the 20 first iterations of the ADAPT-VQE algorithm for three different pools: the XXYX
One Pool, the XXYX Two Pool, and the original Qubit Pool (without the Jordan-Wigner string). The upper
plot shows the evolution of the error in the energy. The lower plot shows the evolution of the total probability
amplitude of computational basis states representing Slater determinants with an altered particle number
or 𝑍 spin projection. The molecule in consideration is the 𝐻4 molecule at an interatomic distance of
1.45Å.

Before comparing all of these pools, an illustration of the impact of ‘partial’ conservation of 𝑆𝑧 and

particle number on convergence is presented. Figure 35 shows a comparison of the performance of all

of the pools that do not preserve in full any of these quantities. Other than the evolution of the error, the

plot shows the significance of Slater determinants with altered 𝑍 spin projection and particle number in

the wave function, for all three pools.

Even though the XXYX One Pool contains operators capable of bringing any Slater determinant into

the wave function, it doesn’t seem to be capable of convergence, as the error stabilizes at around 10−3
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Hartree. The same does not happen for the original Qubit Pool: it becomes clear that the different

Pauli string formats are important for indispensable interference effects. However, the efforts to partially

preserve 𝑆𝑧 and particle number in the XXYX Two Pool are clearly rewarded: this pool does not only match

the performance of the Qubit Pool, it surpasses it. The upper and lower plots in figure 35 do indeed

suggest a link between convergence and preservation of these quantities. It seems like wave functions

that are more contaminated by Slater determinants with altered 𝑆𝑧 and particle number imply a slower

convergence.

It is interesting to observe that the curves in the lower plot of figure 35 are non-monotonic. All curves

have a minimum at iteration 13 or 14. It seems as though as while in the beginning it is possible to get

closer to the ground state while decreasing the probability amplitude of Slater determinants with altered

𝑆𝑧 or N, after a point the energy can’t be lowered further without increasing it. Regardless, this increase

quickly comes to a halt, and does not seem to impede convergence.

Figure 36 shows the evolution of the ADAPT-VQE algorithm for four different pools defined in the

previous section: the XXYX One Pool, the XXYX Two Pool, the XXYX Four Pool, and the Eight Pool. The

evolution of the algorithm with the original Qubit Pool (without the Jordan-Wigner string) is also plotted

for reference. Other than the evolution of error, the plots show the evolution of the number of Slater

determinants (computational basis states) in the superposition state, split through three groups: those

with altered 𝑆𝑍 , those with altered particle number, and those with unaltered 𝑆𝑍 and particle number.

The purpose is to contrast the convergence speed against the composition of the state in terms of Slater

determinants.

An interesting aspect all plots have in common is that by the end of these iterations, there are twenty

fully correct Slater determinants in the state. In the case of the Eight Pool (figure 36d), this is enough

to reach a very high accuracy (almost 10−7 Hartree, well inside chemical accuracy, of the order of 10−3

Hartree). Further, this number stabilizes after a certain number of iterations that ranges from 11 (in the

Four Pool, figure 36c) to 15 (in the Qubit Pool, figure 36e); this stabilization does not seem to imply a

stabilization of the error in general. This seems to confirm that the relevant limitation after this point is

not the lack of computational basis states in the superposition that correspond to Slater determinants with

relevance for the ground state, rather the lack of variational freedom with respect to their coefficients.

The error only does seem to stabilize after the 20 correct Slater determinants are reached when the

XXYX One Pool is used (figure 36a). The reason was explained before: while this pool allows for enough

degrees of freedom to bring all necessary Slater determinants into the superposition, it does not allow

for enough degrees of freedom that play with interference effects. Restricting the format of Pauli strings

to XXYX forbids the use of different operators in the same four spin-orbitals that would lead to different

local phases (in this case, the only options are ±1, because the state is real). This should be contrasted
with the results obtained using the original Qubit Pool (figure 36e). The composition of state in terms of

correct and incorrect Slater determinants is remarkably similar between these two pools. However, the

Qubit Pool continues to decrease the error after the number of Slater determinants has stabilized at 20.

This is because the existence of different formats of Pauli strings for the same spin-orbitals (the eight in
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(a) XXYX One Pool (b) XXYX Two Pool

(c) XXYX Four Pool (d) Eight Pool

(e) No 𝑍 Qubit Pool

Figure 36: Evolution of the 20 first iterations of the ADAPT-VQE algorithm for different pools. The upper
plot shows the evolution of the error in the energy. The lower plot shows the number of Slater determinants
in the superposition state with altered particle number, 𝑆𝑧 , or neither. In 36c and 36d, altered 𝑆𝑍 and
particle number correspond to the same colour because the curves coincide. When the green curve is
not visible, it lies under the orange one. The molecule in consideration is 𝐻4 at an interatomic distance
of 1.45Å.
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5.2) empowers ADAPT-VQE with the ability to better control interference effects, and use them to converge:

namely, it can leverage them to decrease the probability amplitude of wrong Slater determinants.

When we compare the XXYX One Pool against the corresponding Two Pool (figure 36b), we can find

a reason for the better performance of the latter: while it does not fully preserve particle number and 𝑆𝑍 ,

it decreases the amount of wrong Slater determinants in the state. While the One Pool finishes with ten

Slater determinants with wrong 𝑆𝑧 and particle number in the state, the Two Pool finishes with only two

of each. The error decreases steadily up until the last iteration. Unlike in the Qubit Pool, the improved

convergence is not due to different operators in the pool implying different local phases; the Two Pool

operators associated with double excitations consist of a linear combination of Qubit Pool operators, but

there is still only one operator for each set of four spin-orbitals (the size of the Two Pool is almost an eight

of the size of the Qubit Pool). The effect of multiplying the individual Pauli strings from the One Pool by

(1+𝑍𝑞𝑍𝑝𝑍𝑠𝑍𝑟 ) is to preserve particle number and 𝑆𝑧 in most computational basis states. While this does

not provide ADAPT-VQE with more control over interference effects, it reduces the presence of incorrect

Slater determinants in the state. Presumably, this decreases the need for the extra options of variational

freedom, leading to improved convergence. In fact, the Two Pool even outperforms the Qubit Pool.

Finally, we can contrast the composition of the state associated with the Four Pool (figure 36c) against

that of the Eight Pool (figure 36d). Their ease of convergence will be compared in the next section.

Both the Four Pool and the Eight Pool preserve 𝑆𝑍 and particle number; the difference is that the

operators in the latter are in direct correspondence with proper fermionic excitations. The former is actually

faster to reach the 20 correct Slater determinants in the state, even though it has less and smaller operators

in the pool (with an almost 2-fold reduction in both the size of pool and the number of Pauli strings per

operator). The reason why this happens is clear from the previous section: the operators in the Four Pool

and in the Eight Pool have non-trivial action on four and two Slater determinants, respectively. This is also

the reason why the number of Slater determinants in the Eight Pool increases at most by two upon the

addition of a single operator.

5.6 General Comparison of Pool Performance

Up to now, we have been analysing the relation between convergence and composition of the state in terms

of Slater determinants. This section will abstract from such details and directly compare the performance

of different pools, in light of the acquired knowledge.

Firstly, figure 37 compares multiple One Pools and multiple Two Pools. The purpose is to verify that

the evolution of the error is not overly dependent on the chosen Pauli string format, and so the results

presented previously for the One, Two, and Four pools constructed from XXYX strings hold in general.

In fact, while there is evidently some variation between pools (because the operators do imply different

local phases), the tendency seems identical between all plotted One Pools (YXXX, XYXX, XXYX, XXXY) and

between all corresponding Two Pools.
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(a) One Pools (b) Two Pools

Figure 37: Comparison of the convergence of the ADAPT-VQE algorithm using several different One Pools
(figure 37a) and Two Pools (figure 37b) against the full Qubit Pool (without Jordan-Wigner strings). In figure
37b, a curve corresponding to a One Pool was also plotted for reference. The error in the energy is plotted
as a function of the iteration number. The molecule in consideration is 𝐻4 at an interatomic distance of
1.45Å.

In figure 37a, we can see that all these four One Pools perform worse than the original, full Qubit

Pool. In fact, all of them seem to nearly stop decreasing the error after around iteration 10, while the Qubit

Pool is steadily improving the approximation to the ground state. This seems to confirm that the different

formats of Pauli string are necessary for interference effects to allow convergence, when a single string is

used per operator.

In contrast with the performance of the One Pools, all the corresponding Two Pools (figure 37b) con-

verge faster than the original Qubit Pool. This does indeed suggest that the preservation of 𝑆𝑍 and particle

number in most computational basis states accelerates convergence in general, regardless of the string

format used to construct the pool.

In figure 38, we can compare the performance of the ADAPT-VQE algorithm with the GSD Pool and

with the Eight Pool. It should be remembered that the difference between the respective operators is that

in the latter, all Jordan-Wigner strings responsible for the anticommutation of fermions are removed. As

such, this figure is comparable with figure 31, that compared the performance of ADAPT-VQE using the

full Qubit Pool with the Jordan-Wigner strings and without them. Once again, removing such strings barely

seems to have an effect on the algorithm.

As happened with the individual Pauli strings from the Qubit Pool, removing the Jordan-Wigner strings

here represents a relevant saving in the circuit depth. Both using the ladder-of-CNOTs method [64] and

using the more efficient method of [98], the scaling of the depth necessary to implement the Eight Pool

and the GSD Pool operators is respectively O(1) and O(𝑁 ), 𝑁 the number of spin-orbitals.
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Figure 38: Comparison of the convergence of the ADAPT-VQE algorithm using the GSD Pool and the Eight
Pool. The error in the energy is plotted as a function of the iteration number. The molecule in consideration
is 𝐻4 at an interatomic distance of 1.45Å.

Finally, figure 39 compares the performance of all four newly introduced pools. The twenty first itera-

tions of ADAPT-VQE for𝐻4 are plotted in 39a and the ten first for 𝐿𝑖𝐻 are plotted in 39b. As expected, the

observed tendency is an improvement of convergence with increased similarity with fermionic excitations.

However, it is interesting to see how the XXYX Four Pool performs similarly to the Eight Pool, even though

the operators consist of half the Pauli strings and the pool has nearly half the operators.

In the case of 𝐿𝑖𝐻 (figure 39b), the curve corresponding to the XXYX Four Pool is not visible because it

lies under the one corresponding to the Eight Pool. In the case of 𝐻4 (figure 39a), the curves only overlap

in some iterations. In most iterations in which this doesn’t happen, the XXYX Four Pool has a visibly better

performance (iterations 7-11 and 17-19). Only in iteration 20 does the Eight Pool ansatz prepare a better

approximation to the ground state.

As there is no clear trend, tests on more molecules would be required to draw conclusions. It seems

possible that as the energy plunges well into chemical accuracy, the Eight Pool allows fine-tuning of the

wave function by allowing selection of specific double excitations, unlike the XXYX Four Pool, which only

guarantees preservation of 𝑆𝑍 and particle number. However, since it allows action on more computational

basis states at once, there is also reason to believe that the XXYX Four Pool may hasten convergence until

points of extreme accuracy. For 𝐻4, this pool outperforms the larger Eight Pool until the error is lowered
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(a)𝐻4 molecule at an interatomic distance of 1.45Å. (b) 𝐿𝑖𝐻 molecule at an interatomic distance of 1.5Å.

Figure 39: Impact of the choice of pool (between One, Two, Four, and Eight Pools) in the ADAPT-VQE
algorithm, for two different molecules. The error in the energy is plotted against the iteration number.
In figure 39b, the XXYX Four Pool and the Eight Pool correspond to the same color because the curves
coincide. These curves also overlap in some iterations in figure 39a.

to under 10−6, which is roughly 0.07% of what is actually necessary to be inside chemical accuracy.
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6

ADAPT-VQE: Further Ansatz Manipulation

This chapter aims to explore the possibility of introducing extra flexibility and deliberation into the evolution

of the ADAPT-VQE ansatz, instead of having it defined by a single criterion of selection.

Two options will be outlined, having in common the intent of keeping the preparation circuit shallower

than ADAPT-VQE (while attempting to avoid a prohibitive number of additional optimizations). The first one

focuses on removing operators from the ansatz along the evolution of the algorithm, with the purpose of

removing the ones that performed worse than expected. The second one attempts to be more conservative

in the addition of new operators, in order to avoid getting bad performing operators in the ansatz to begin

with. The approaches will be compared against each other, as well as against the original ADAPT-VQE

algorithm, for multiple molecules and multiple pools. This comparison will be done by using the different

approaches to obtain ansätze with the same number of operators, and analysing the error resulting from

each in light of the number of optimizations accumulated along the execution (which is strongly related to

the measurement cost).

6.1 Removing Operators

6.1.1 Motivation

The ADAPT-VQE algorithm selects the operators based on a single quantity: the magnitude of the deriva-

tive of the energy with respect to the operator coefficients 𝜃𝑖 , at point zero. This is a convenient selection

method, since the gradient can be measured in a quantum computer. The circuits used for these measure-

ments at a given iteration are barely deeper than the ansatz itself at that same iteration, thus guaranteeing

that the selection method itself isn’t the bottleneck of the algorithm. What is more, there being no further

information, how much an operator is impacting the energy locally, at 𝜃𝑖 = 0, is the best possible indicator

of how much it will have lowered it once it has been added to the ansatz and had its coefficient optimized.

However, this is not a faultless selection method. While it seems likely that the best performing operator

will be among those with the largest gradients, it is certainly possible that its gradient is not the largest

one of all. Conversely, the operator with the largest gradient is not guaranteed to have a great impact on

the energy. It might even be that the derivative of the selected operator was large at 𝜃𝑖 = 0, but upon

optimizing the coefficient and exploring the optimization landscape further, the optimizer will find that the

change in energy quickly comes to a halt, as a local minimum is reached, and return a state with little

energy difference as compared to the previous one. Of course, there is no way to know in advance, and

this criterion allows for a much more informed choice than random selection.
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But in spite of their actual impact on the energy, once they are chosen by their gradient, ADAPT-VQE

simply accepts the operators. The selected operators remain in the ansatz until the algorithm terminates,

regardless of how much they actually lowered the energy. As a consequence, it is possible that some

operators in the ansatz will bring little advantage in converging to the ground state, but nevertheless

contribute to deepen the circuit (placing more demands on the quantum computer) and increase the

number of variational parameters (placing more demands on the classical optimizer, which in turn will

require more function evaluations until convergence, leading to more calls to the quantum computer).

The problem of finding the optimal ansatz is combinatorial in nature. The best solution could be

found by exhaustive search: if we tested all n-operator ansatze that could be formed from the operators

in our pool, we could find the optimal one. Of course, this approach is not viable due to its computational

complexity - hence, ADAPT-VQE settles for a procedure of growing the ansatz that, while not perfect, is

at least tractable. However, there is a lot of space between ADAPT-VQE and a brute-force solution. It is

possible to keep the algorithm tractable, but nevertheless be stricter in allowing the operators to actually

remain in the ansatz, instead of simply keeping them once they are selected.

This subsection builds on the idea of removing bad performing operators from the ansatz along the

execution of the algorithm. An attempted solution to the problem of finding a removal procedure that

reaches a lower error while keeping the optimization overhead to a minimum will be developed.

6.1.2 Heuristics

The heuristics behind removing terms has to address two major points: when to remove operators, and

when to allow them to be added back. If not done carefully, the process can actually harm the evolution of

the algorithm by requiring unnecessarily many additional iterations, and consequently also optimizations

and measurements.

The purpose of the following exposition is to develop a set of rules to remove operators which satisfies

two conditions: resorting exclusively to data that is available during the process of running ADAPT-VQE,

and resulting in a modest overhead in optimization/measurement costs.

6.1.2.1 Removal Criterion

The first question that should be asked is:

When should an operator be susceptible to being removed?

A sensible first answer is when it performs badly, in the sense that it doesn’t lower the energy as much

as it could. However, defining bad performance is in itself cumbersome.

In a realistic run of the algorithm, we never know how far the current energy lies from the FCI ground

energy. As such, we are ignorant of what consists a reasonable change in energy. What is more, reasonable

might depend on the particular choice of pool: naturally, large operators as one encounters in the SGSD

pool will have a greater capacity of changing the energy as compared to the length four Pauli strings in the

qubit pool.
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A natural option is to characterize performance relative to the other operators. Since the operators

used in a particular run all belong to the same pool, the latter problem is solved. However, attention must

be paid to which operators we are using as standard for the comparison.

As the state grows closer to the true ground state, and the energy grows closer to the true ground

energy, there will be a decreasing trend in the impact of the newly added operators on the energy. It

becomes clear that it is not fair to compare an operator to its predecessors in the ansatz: having acted on

a state farther away from the ground state, they were in a better position to lower the energy.

Figure 40: Norm of the selected operator and change in energy in the first ten iterations of ADAPT-VQE.
The molecule in consideration is the 𝐿𝑖𝐻 molecule at an interatomic distance of 1.45Å. The SGSD pool
was used.

This is better illustrated by the plot in figure 40, that shows the change in energy in the first ten iterations

of the ADAPT-VQE algorithm for 𝐿𝑖𝐻 . The change in energy is taken as compared to the previous iteration,

with the energy at iteration 0 taken to be that of the reference state (the Hartree Fock state).

As expected, the tendency is for the impact that the operators have on the energy to decrease signifi-

cantly along the evolution of the algorithm. As such, not lowering the energy as much as its predecessor

seems like a highly inadequate criterion for removing an operator: taking this case, for example, it would

imply removing almost all the operators in the ansatz.

Another, more viable possibility would be comparing two operators by their energy change relative
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to their gradient. After all, by setting it as the selection criterion, we are using the gradient as the sole

indicator of how much we expect a given operator to change the energy. The absolute value of the ratio

between the change in energy caused by an operator and its the gradient seems like an interesting metric

for characterizing the performance of an operator against expected. In addition, the selected gradient

norm has, as does the energy change, a tendency to decrease as the algorithm evolves. This can be

confirmed from figure 40, and understood intuitively: as the possible impact on the energy by the operators

decreases, so does the absolute value of the maximum gradient, as a measure of how much the operator

is affecting the energy at a certain point. Even though, as it was mentioned, the norm of the gradient of

an operator isn’t a rigorous indicator of how much it will impact the energy, this statement certainly holds

in a broad sense, and the tendency is verified in practice.

The norm of the ratio between the energy change produced by an operator and its gradient at the time

it was selected will hereby be denoted performance ratio for simplicity (formula 6.1).

performance ratio =

����energy changegradient

���� (6.1)

For all that was exposed, one could imagine that the performance ratio would facilitate comparing an

operator to its predecessor. However, numerical simulations show that this ratio also has a tendency to

decrease along the evolution of the algorithm. Figure 41 shows its evolution along an ADAPT-VQE run.

Once again, if one took the decrease in this ratio as compared to the previous iteration as the criterion

for removing the operator that was added last, a very large amount of operators would be removed. This

would warrant, for example, removing the operator added at iteration 2. However, this is the second best

performing operator in all ten iterations. The operator added at iteration 7 would also be removed, as there

is a sharp drop in the performance ratio at that iteration; however, the ratio does not go back to previous

values in iterations 8, 9 or 10. Looking at the big picture, it does not seem like operator 7 performed

particularly bad for its position on the ansatz.

It seems therefore difficult to remove operators by comparing them with their predecessors. However,

when we add a new operator to the ansatz, the only information we have available is precisely that regarding

the operators previously added: as for the remainder of the operators in the pool, they were not added to

the ansatz, which means that there is no way to know how much they’re capable of lowering the energy.

The possibility that is left is to compare an operator against its successors. If an operator added to

the ansatz later on has a larger impact on the energy, there is a reason to believe that, up until that point,

it was reasonable to expect changes in energy of at least that order of magnitude.

Of course, this is a simplified view of things: it is also possible that the operators added previously

were necessary for the energy change caused by the new operator to be as large as it was. It is important

to remember that the operators are selected based on their energy gradient taken on the state at the point

at which they are added. So it is even possible that, had the previous operator not been there, the choice

of operator would have been different altogether.
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Figure 41: Absolute value of the performance ratio in the first ten iterations of ADAPT-VQE, for the same
pool and molecule as figure 40. The performance ratio at a given iteration corresponds to the operator
added then.

As a specific example, an operator might add to the state Slater determinants that did not appear in

the superposition before. The term added afterwards can have relied on its impact on those determinants

to change the energy as much as it did. In that case, even if the previous operator performed badly,

removing it from the ansatz would prove to be a bad decision, as the energy would increase significantly

due to the change that this operator produced not on the energy, but on the state.

However, there is an easy way to discover whether removing an older operator is a bad decision:

removing it, re-optimizing the energy, and comparing the increase in energy from removing the operator

with the decrease that had been caused by adding it. If the increase is significantly larger, then the operator

is more important to the ansatz than one could have imagined from its impact on the energy.

It is then interesting to contemplate the possibility of removing an operator at a later iteration, once

a successor has a greater impact on the energy, rather than immediately in the iteration at which it was

added. Looking once again at figure 40, it can be seen that the operator added at iteration 3 has quite

lower an impact on the energy than its immediate successor, added in iteration 4. As much as we don’t
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have a view on how the future operators will impact the energy as the algorithm proceeds, at iteration 4

we can certainly look back at the previous iterations and notice that the third one produced a remarkably

low difference in energy as compared to the fourth one. Looking at the numerical data, one finds that the

energy change of iteration 4 is 739% that of iteration 3.

Considering that removing terms also slows down the evolution of the algorithm, and implies an added

cost in measurements and optimizations, it is important that the criterion for removal is chosen to be strict

enough that reasonably performing operators will not be removed. If operator A is followed by operator B

that produces 101% its energy change, it doesn’t seem fruitful to remove operator A: that would demand

an extra optimization step after removing it, possibly only to add it back to the ansatz soon (how and when

this should happen will be discussed shortly) and re-optimize all the coefficients once more. This would

imply two extra optimizations for little to no gain.

With all of this in consideration, the following rules were chosen as the procedure for removing opera-

tors:

• Upon adding an operator to the ansatz at iteration 𝑗 , compare the resulting energy change Δ𝐸 𝑗

with that of all previous iterations 𝑖 < 𝑗 .

• If an operator added at iteration 𝑖 caused an energy change Δ𝐸𝑖 such that Δ𝐸𝑖 > 𝑟Δ𝐸 𝑗
1, attempt to

remove this operator and re-optimize the coefficients of the ansatz without it. Calculate the energy

change produced by this action, Δ𝐸′𝑖 .

• Compare the increase in energy caused by removing the operator with the decrease that had been

caused by adding it2. If −Δ𝐸′𝑖 > 𝑡Δ𝐸𝑖 , remove the operator.

The parameter r, 0 < 𝑟 < 1, determines what energy change is considered acceptable for pre-

vious iterations when a new operator is added and a new energy change is known of. As mentioned

previously, a value of 𝑟 too close to 1 would often cause the removal process not to compensate its mea-

surement/optimization overhead. In the following results, 𝑟 = 0.5 was used. This means that when an

operator is added to the ansatz and produces a certain change in energy, all its predecessors that lowered

the energy by under 50% of this are liable to be removed.

Once an operator is considered suitable for removal, the parameter 𝑡 > 1 determines the tolerance for

the difference in impact that there might be as a consequence of this operator not being the last one in the

ansatz, and as such affecting the energy also indirectly through its successors. In the simulations, 𝑡 = 1.5

was used. This means that, once the removal has been attempted, an operator is effectively removed if the

increase in energy resulting from removing it is no greater than 150% the decrease in energy that had been

caused by adding it. As explained before, not using this limit would make the process of removing terms

blind to the possibility of operators with little impact in the energy actually being important for the wave

1It should be noted that the Δ𝐸𝑖, 𝑗 are expected to be negative.
2Being caused by the removal of an operator, Δ𝐸 ′

𝑖 will usually be positive.
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function that was built after them. One could also imagine different alternatives: for example, comparing

the change in energy from removing the operator i with the change in energy from adding operator j

instead (removing operator i if −Δ𝐸′𝑖 > 𝑡Δ𝐸 𝑗 ), or the sum of both (−Δ𝐸′𝑖 > 𝑡 (Δ𝐸 𝑗 +Δ𝐸𝑖)), adjusting the
parameter 𝑡 accordingly. In essence, what we want to do is guarantee that the operator is only removed

if there is something to be gained from it; that can be assured in several different ways.

6.1.2.2 Blocking Operators

Once the question of when to add operators has been dealt with, it is important to decide when and where

they will be allowed to be added back to the ansatz.

At the point we’ve removed an operator, we know that even though its gradient was high, it didn’t

impact the energy as much as we could have hoped. Thus, it seems unwise not to make sure it doesn’t

get picked again too soon. This is likely to happen if we use the gradient as the sole selection method.

It is possible that the removed operator doesn’t have the highest gradient anymore, since another

operator has been added to the ansatz and so the state in which we are calculating the gradient is different;

however, in practice, that is seldom the case. Usually, the change that a single operator produces on the

wave function is not enough to cause significant changes to the gradients of the other operators in the

pool. If nothing is done, a removed operator will almost always be added back to the ansatz in the next

iteration, and once again have little impact on the energy. This behaviour is not desirable, as it prevents

the removal of the term from being advantageous at all: once the term is removed, we should be giving the

opportunity of being in the ansatz to other operators, that despite having lower gradients might perform

better.

One solution could be blocking removed operators, taking them off the pool altogether and not al-

lowing them to be added to the ansatz ever again. But this is another extreme that might jeopardize the

performance of the algorithm: as was discussed, as the ansatz evolves, the change in energy produced

by each operator will have a tendency to decrease. What consists a bad performance early on might be a

great one later.

Taking figure 40 once again, we see that while the energy change at iteration 3 is the smallest in the

first 6 iterations, it seems comparable to the change observed in iterations 7 to 10. In fact, the numerical

data shows that all these iterations have associated energy changes of the order of 10−5, with the change

in 3 being the greatest one of all. What is more, it was verified that if the operator added in iteration 3

is removed and added back after a few iterations, the energy change it produces is very similar to the

one it had produced back in position 3 - meaning that even after being removed, it seems like the best

possible addition to the wave function at any of iterations 7 to 10. As an example, removing this operator

and adding it back at iteration 8 would produce an energy change corresponding to 97% the change it had

produced back at iteration 3. Importantly, at this point the removed operator is capable of producing more

than double the change in energy of the operator added to the ansatz in case this one is not allowed to

reenter it at all. This is only due to worsen as the ansatz evolves: the operator that was removed might be
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crucial to convergence after a certain point.

In dealing with terms that have been removed, there are thus two main requirements: they can’t be

allowed to be added back too soon, and they can’t be forbidden from being added back forever.

An approach that seems reasonable is blocking the operators that are removed until an operator is

added that performs similarly. Since operators are removed when they have little impact on the energy

as compared to operators added after them, it seems natural that they would be allowed back once a

newcomer has an impact comparable to the one they had.

There are, however, a few problems with this method, that are better illustrated by an example. The

following is a depiction of the evolution of an actual simulation of ADAPT-VQE with term removal (again

for the LiH molecule at an interatomic distance of 1.45Å, using the SGSD pool). Aside from showing the

drawbacks of blocking operators, this will serve to demonstrate how the term removal procedure flows. The

criterion for removing operators is as defined before, and a removed operator 𝑖 is allowed to be selected

again once an operator 𝑘 added to the ansatz later produces an energy change that is no more than the

double the one operator 𝑖 had produced (Δ𝐸𝑖 < 0.5Δ𝐸𝑘 ).

Figure 42: Relevant data structures at iteration 3 of the ADAPT-VQE algorithm, with an additional term
removal feature based on blocking and unblocking operators. The molecule in consideration is 𝐿𝑖𝐻 , and
the pool the SGSD pool. The units of energy, omitted to avoid overcrowding of the figures, are Hartree
throughout the whole chapter. Because the variational parameters are dimensionless, the gradient shares
the energy units.

Figure 42 represents the relevant data structures at iteration three of the algorithm. The most impor-

tant one is the ansatz, that specifies the current state preparation circuit.

As the name suggests, position represents the position of each operator in the ansatz: the column

labeled with 0 concerns the first operator in the ansatz, the one labeled with 1 concerns the second one,

and so on. The first operator is both the one that was first added and the one that comes first in the circuit.

The index identifies which operator in the pool was selected; what fermionic operator this corresponds

to is irrelevant, as the purpose is just attributing an identifier to each pool operator. For a matter of

simplicity, this identifier is a number rather than a formula.

The first three iterations are uneventful: the criterion for attempting to remove a term is never met. As

can be seen in figure 42, the energy change always decreases from an iteration to the following one. As
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such, no operator is suitable to be removed, and the algorithm proceeds just as the original ADAPT-VQE.

The set of blocked operators is empty.

Figure 43: Relevant data structures at iteration 4.

Finally, at iteration 4 (figure 43), the condition necessary to attempt to remove an operator is met. The

condition reads

Δ𝐸𝑖 > 𝑟Δ𝐸 𝑗 ⇔ −9 > 0.5 × (−62),

which does indeed hold: the operator 191 (j), added in this iteration, produces a change in energy

significantly higher than that of operator 25 (i), added to the ansatz in the previous iteration.

As such, operator 25 is removed from the ansatz, and the coefficients of the remaining operators are

re-optimized. From this, it is possible to calculate the increase in energy caused by removing this operator,

which turns out to be 9 × 10−5 a.u.. The condition for effectively removing the operator reads

−Δ𝐸′𝑖 > 𝑡Δ𝐸𝑖 ⇔ −9 > 1.5 × (−9),

which once again holds. It can be concluded that the impact of this operator in the energy isn’t much

changed by the posterior addition of operator 191 into the ansatz. This will not necessarily always be the

case: sometimes, one might find that removing an operator from the middle of the ansatz will cause a

drastic increase in energy, even if adding that operator in the first place had barely lowered it. This is a

consequence of the presence of the operator in the ansatz being crucial for the impact on the energy of

the next ones, and possibly decisive for their selection.
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By the end of iteration 4 operator 25 is blocked, so as to seek operators that might have a greater

impact on the energy, even if their gradient is lower.

Figure 44: Relevant data structures at iteration 7.

The algorithm proceeds without noteworthy developments until iteration 7. At iterations 5 and 6,

operators 188 and 184 are added. They lower the energy roughly 7 and 4 times more than 25 (the

blocked operator) respectively. This is a sign that the removal was worthwhile. Finally, at iteration 7,

an operator is added that causes a significantly smaller change in energy. The condition for unblocking

operator 25 reads

Δ𝐸𝑖 < 0.5Δ𝐸𝑘 ⇔ −9 < 0.5 × (−4),

so that operator 25 is released and allowed to be selected again in future iterations. The set of blocked

operators is once again found empty.

Unsurprisingly, 25 is the operator selected in the next iteration (iteration 8). It is interesting to note

how the gradient and energy change of this operator are now, at iteration 8 (figure 45), very similar to

those back at iteration 3 (figure 42), when the operator was first added. Despite the position in the ansatz

being changed (from 2 before, to 6 now), the effect of the operator on the ansatz seems to be about the

same.

Since the previous operator (64) had produced an energy change of −4 × 10−5 a.u., roughly half of

that seen in iteration 8, that operator is removed from the ansatz. After re-optimizing the coefficients, the

energy has only increased by 4 × 10−5 a.u., so the algorithm goes forward with the removal. At the end

of iteration 8, operator 64 is blocked.

By this iteration, one can already notice undesirable behaviour. Operator 25 had been removed and

blocked, but hadn’t it been for that, it would precede operator 64. The removal criterion is based on

subsequently added operators, but if they are only added later because they had been removed from an

earlier position in the ansatz, this seems rather inadequate.
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Figure 45: Relevant data structures at iteration 8.

An easy solution for this would be not allowing operators to be removed upon the addition of a previously

blocked operator. However, this is not the only problem with the approach, as will become clear soon.

Figure 46: Relevant data structures at iteration 9.

By iteration 9 (figure 46), operator 59 is added. This operator produces an energy change similar to

the one operator 64, added in iteration 7 (figure 44) and blocked in the ensuing iteration (figure 45). As

such, the operator is unblocked.

Nothing remarkable happens at iteration 10: operator 29 is added, and no operator is suitable to

be removed upon this addition. That changes by iteration 11 (figure 47), when the previously removed

operator 64 is added back to the ansatz. At this point, operator 29 is removed and blocked.

Once again, it should be pointed out that this is really inefficient. Operator 64 had been removed

from being outperformed by an operator that belonged to an earlier point of the ansatz, and this proved
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Figure 47: Relevant data structures at iteration 11.

to be a bad choice: it was added shortly after, with no benefits and a cost of two extra optimization steps.

Now, this very operator causes the same problem: it removes operator 29 from the ansatz, even though

it would have come before it if we hadn’t removed it.

Figure 48: Relevant data structures at iteration 12.

In fact, this operator (29) is unblocked right in the following iteration (iteration 12, figure 48), once

another operator is added (32) that causes about the same impact in the energy. And it will be added

again immediately, by iteration 13. Once again, removing the operator costed us two extra optimization

steps, and had no effect other than moving it a couple of positions forward in the ansatz (with no benefit

in the energy).

At iteration 14 (figure 49), something very interesting happens: the selected operator (35) causes an

energy change of −34×10−5 a.u., a change so large that it is only surpassed by that of iteration 6. Despite
having a lower gradient than any other operator so far, it largely outperforms any of the five last operators,
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Figure 49: Relevant data structures at iteration 14.

with an energy change of up to almost 20 times that of its predecessors.

Thus, unprecedentedly, there are five operators that are liable to be removed. They are removed one

by one, the coefficients being re-optimized each time; and each time, it is verified that the operator can

be effectively removed. This is remarkable: removing these five operators caused an increase in energy

roughly equal to the sum of the decreases that they had individually caused. This means that operator 35,

added only in this iteration, was by far a better candidate to hold position 5 of the ansatz that any of those

in positions 5-9 up to now. However, it was not picked until as late as iteration 14, because its gradient

was not large enough.

Looking at figure 49, and focusing especially on the data regarding the ansatz at the begging of the

iteration, one can notice that operators in positions 6-10 all had very similar gradients upon being selected.

However, there are relevant differences in the energy change that they produced: and in fact, it was the

operator with the lowest gradient among these (35) that caused the greatest change in energy. Moreover,

selected with a gradient of more than double and holding position 5 in the ansatz, operator 25 produced

only a fraction of this energy change. This further highlights the downsides of using the gradient as the

selection method, and proceeding in disregard of the energy change that the selected operator actually

produced.

At this point, we have an ansatz with only 6 operators that prepares a state with lower energy than

any before. It is a significantly closer approximation to the ground state than the ansatz with 10 operators

we had back at iteration 13, despite having a 40% decrease in the number of variational parameters and

(approximately) circuit depth.

But in spite of the the ansatz looking favorable at this point, the way it was reached was certainly not

the best. By iteration 14, three operators (25, 29 and 64) have been removed from the ansatz twice.
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Removing an operator and adding it back represents an overhead in optimization costs (coefficients must

be re-optimized upon removal and upon re-addition), so it is certainly beyond optimal to have them removed

twice.

There could be no greater sign that removed operators are being allowed back into the ansatz too

soon than seeing them removed a second time. In conclusion, it seems that the strategy of blocking them

until a new operator produces a change in energy similar to the one they had produced is not the most

appropriate. After examining this example run, this became exceedingly evident.

This is not quite so unpredictable. After we remove an operator, we know that it didn’t perform as well

as could be expected given its gradient. In a first analysis, blocking it until there is a similar energy change

seems adequate. However, unblocking operators based on the energy change produced by a single new

operator is dangerous: there is the possibility that the new operator also impacted the energy significantly

less than another one with the same gradient could. What is more, once unblocked, the operator will go

back to competing with the remaining operators in the pool on the same standing. The selection method

is still the gradient, so it is likely that it will be picked very soon after it’s unblocked (as did happen multiple

times in the example). The information that an operator had little impact in energy is being underused:

we are only taking it into account to remove and block the operator. Once it is unblocked, we allow it to be

selected again by its gradient, even though we now know that it is an inadequate indicator for that operator

especially.

In the previous exposition, we can see that operator 25, the first being removed (iteration 4, figure 43),

is allowed back into the ansatz by the addition of operator 64 (iteration 7, figure 44). However, operator

64 is later removed, signaling that it is not a good reference for unblocking others. What is more, this last

operator is itself unblocked by the addition of 59 (iteration 9, figure 46), later removed (iteration 14, figure

49). By iteration 14 all the aforementioned operators are removed once again, because an operator with a

smaller gradient turns out to be a far better choice than any of them. However, this operator did not have

a chance to be added to the ansatz before all the removed operators were added again, because they did

still have higher gradients.

This is particularly bad considering how close the gradient of this operator (35) was to that of the bad

performing operators. For example, at iteration 11 (figure 47), previously removed operator 64 is added

back to the ansatz. In this iteration, the gradient of operator 64 is only 107% that of operator 35, the above

average performing one. And even though we have no way of knowing that this operator will perform

so well, we do know that operator 64 did not perform as well as it could be expected from its gradient.

As such, it would definitely be interesting to give an opportunity to others with close, but slightly smaller

gradients.

The goal of removing terms was precisely to explore operators with lower gradients, and this goal is

not being met: blocking removed operators was proved to be an inadequate option. As soon as a bad

performing operator is added to the ansatz, all of the previously blocked ones are unblocked and likely to

be selected.

After this discussion, the solution that seems the most adequate is to somehow change the selection

128



6.1. REMOVING OPERATORS

criterion so as to incorporate information regarding previously removed operators: ideally, an operator that

has been removed would be less likely to be selected than others. Something as binary as blocking and

unblocking operators doesn’t seem to take advantage of the information that we have to the full extent.

6.1.2.3 Performance Penalty

The best way to incorporate extra factors into the selection criterion without drastically changing it would

be to impose a penalty on the gradient of the removed operators. The selected operator would be the

one having the highest ‘effective’ gradient, with this quantity reflecting the below average performance of

those operators that had been previously removed. Instead of just having the operator blocked and later

unblocked, we’d have its effective gradient lower than the actual gradient, in accordance with how poorly

it performed. Evidently, it would be interesting to have some quantification of just how bad the energy

change was, so as to apply a proportional penalty.

The purpose would be signaling to the algorithm that, even if a removed operator has a high gradient,

we know that it doesn’t change the energy as much as one could expect. As such, we want to attempt to

add other operators to the ansatz, even if they have lower gradients, in hope of finding some that have a

greater impact on the energy. The goal is using the knowledge that we now have (regarding the removed

operators) to make a more informed selection: this penalty would be a way of correcting, in part, the flaws

of the gradient as an indicator of the potential energy change. In those cases in which the gradient was a

particularly poor indicator, to the point we removed the operator, the effective gradient would be lowered

accordingly.

The aforementioned performance ratio seems interesting for this purpose. After we select a given

operator and re-optimize the ansatz, we can calculate the associated performance ratio from its gradient

and the resulting energy change (as compared to the previous iteration) from formula 6.1.

The energy change is what we actually want from an operator: that it brings us closer to the ground

energy. As the selection method, the gradient quantifies in a way how much we expect it to change the

energy: we select the operator with the highest gradient hoping that it is also the one with the greatest

impact on the energy. So intuitively, this ratio can be interpreted as something like

performance ratio =
actual performance

expected performance
.

While the performance ratio seems useful and has the nice property of being dimensionless, it doesn’t

allow us in itself to establish a penalty: we don’t know what is a good or bad performance ratio.

Once again, the easiest solution seems to be assessing performance relative to that of the remaining

operators. If we take the average over all known performance ratios (meaning, over the ratios of all of

the operators ever added to the ansatz), we get a very interesting quantity: the average (absolute) energy

change per unit gradient. At last, we know what energy change it is reasonable to expect from an operator

with a given gradient.
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One can then define a dimensionless penalty for removed operators as

penalty =
performance ratio

standard performance ratio
, (6.2)

where the standard performance ratio is our reference - it can just be the average taken over all known

performance ratios. This metric tells us just how below average the performance of the operator was. If

the energy change per unit gradient of the removed operator was half of the average, the effective gradient

will be half of the actual gradient. This ‘sanction’ will prevent it from being selected back into the ansatz

as soon.

As long as there are other operators in the pool that, considering their gradient, will have a greater

impact on the energy assuming that their energy change per unit gradient is average, the removed operator

will not be selected again. Only when, from the gradients of the other operators in the pool and under the

same assumption, we don’t expect that any will impact the energy more, will the removed one be selected.

As it was exposed before in figure 41, the performance ratio has a tendency to decrease along the

iterations; that is why it wasn’t a suitable metric to decide which operators to remove. Taking the average

will already soften this effect: the value will be constantly updated as more performance ratios are known,

and as such will follow their tendency to decrease. To further avoid over-penalizing the removed operators,

it will be interesting to use the moving average, rather than the average, as the standard performance

ratio. This will prevent data from too old iterations to affect the calculation of the penalty.

The window over which we calculate the average shouldn’t fall in the other extreme and be too small. If

we only consider the ratio of two or three of the last added operators, and one of them performs particularly

bad, it will have a significant impact on the average - thus causing the penalty to be too soft, and the

removed operator to be added back too soon. It is better to be cautious, because the resulting optimization

overhead can significantly worsen how fast the algorithm is to converge, by wasting iterations adding and

removing the same operator multiple times. In the following examples, a window of 10 was used.

The final version of the procedure of operator removal can now be stated. The basic algorithm is the

same as the original ADAPT-VQE, except at every iteration 𝑗 , when a new operator is added, the following

must be done:

• Calculate the performance ratio of the new operator (equation 6.1). Store this value (associated

with the operator) and update the standard performance ratio.

• Go through the previous iterations and compare the energy changes produced in them with that

produced in this one. If an operator added at iteration 𝑖 caused an energy change Δ𝐸𝑖 such that

Δ𝐸𝑖 > 𝑟Δ𝐸 𝑗 , attempt to remove this operator and re-optimize the coefficients of the ansatz without

it. Calculate the energy change produced by this action, Δ𝐸′𝑖 .

• Compare the increase in energy caused by removing the operator with the decrease that had been

caused by adding it. If −Δ𝐸′𝑖 > 𝑡Δ𝐸𝑖 , remove the operator. In the following iterations, multiply
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its gradient by a penalty calculated as in equation 6.2. The penalty should be recalculated each

iteration, to use the most recent value of the standard performance ratio.

As it was mentioned before, one should choose 0 < 𝑟 < 1 and 𝑡 > 1. The examples to follow used

𝑟 = 0.5 and 𝑡 = 1.5. The 10-iteration moving average of the performance ratio was used as the standard.

In order to compare this approach with the previous one (blocking / unblocking operators), the exe-

cution of the algorithm will be exemplified for the same test case as before, albeit more succinctly.

Figure 50: Relevant data structures at iteration 3 of the ADAPT-VQE algorithm, with an additional term
removal feature based on a performance penalty. The molecule in consideration is 𝐿𝑖𝐻 , and the pool the
SGSD pool.

At iteration 3 (figure 50), the ansatz is exactly the same as previously (figure 42). Until this point, as

was pointed out before, no operators have met the removal criterion.

The only difference is that now we’re keeping track of the performance ratio of the operators, easily

calculated from their gradient upon being selected and the energy change that they caused (equation 6.1).

This ratio has decreased from iteration to iteration up to now. It was already known that the produced

energy change and the gradient of the selected operator were strictly decreasing until iteration 3, but it is

also interesting to note that the absolute value of the change in energy per unit gradient is also decreasing.

At this point, the standard performance ratio sits at 41 × 10−3. Evidently, it has also been on a

monotonous decrease.

As before, the monotony is broken at iteration 4 by an operator that impacts the energy significantly

more than its predecessor. We attempt to remove it and do so successfully, as the impact in the energy is

still low after the addition of the last operator.

But now we don’t ‘block’ operator 25: we just mark its bad performance, and keep a note that it

should be penalized in the following iterations.

The developments of iterations 5 to 13, with a focus on the penalized operator, are represented in

figure 52.
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Figure 51: Relevant data structures at iteration 4.

Figure 52: Evolution of the relevant data, iteration 5 through 13. On top, we have data on the evolution of
the algorithm and on the selected operators. On the bottom, we have data specifically regarding operator
25, that was removed at iteration 4.
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The relevant static data regarding this operator are simply the energy change it produced and its

performance ratio. The energy change is only presented for its relevance here, in the context of analysing

and comparing the changes produced by different operators; it is not directly used by the algorithm. Only

the performance ratio is used in calculating the penalty.

The rest of the data concerning operator 25 changes from iteration to iteration. In each of them,

equation 6.2 is used to calculate the penalty to apply to its gradient. The gradient is then multiplied by this

penalty to obtain the effective gradient. This is, as should, lower than the original value: we know that this

operator produced an energy change per unit gradient under average, and want to use that information to

make a more informed selection. As such, we lower its gradient by exactly how under average the energy

change by unit gradient was.

As can be seen from the figure, the gradient itself might suffer slight changes, but these changes are

not very relevant. What changes significantly is the penalty, as the standard performance ratio decreases

with the addition of new operators. In the iterations that immediately follow its removal, this penalty greatly

damages the effective gradient of the operator, causing it to be as low as 2.4 (7.9% of the actual gradient)

in iteration 5. This is because all operators added so far impacted the energy much more in proportion to

the gradient than operator 25. As such, it is interesting to attempt adding other operators rather than this

one into the ansatz, despite them having lower gradients: they might produce a greater energy change per

unit gradient. This is, as discussed, the purpose of the penalty. Even though we didn’t block operator 25,

the lowered effective gradient postponed it being selected to the ansatz a second time.

At iteration 5, the selected operator is 191, with a gradient of 28 × 10−3, 93% of the gradient of the

removed operator. Adding this operator with a slightly lower gradient proved profitable: it produced an

energy change almost seven times bigger than that of the sanctioned operator. Operator 184 follows in

iteration 6, with a gradient of 73% that of the removed operator. Once again, it outperforms it, impacting

the energy roughly four times more.

From iteration 7 to 10, that changes: the selected operators not only have lower gradients, but also

lower impacts on the energy than the removed operator. Accordingly, their performance ratio is below

average. One can see that, as a consequence, the standard performance ratio (as the 10-iteration moving

average) is significantly decreasing: it goes from 30 at the beginning of iteration 7 to 19 at the end of

iteration 10.

The decrease softens the penalty on operator 25, but it’s not enough to have it selected again yet.

Even though there are 4 iterations in a row with less beneficial operators, the 10-iteration moving average

of the performance ratio is still quite over that of the removed operator (because of the previous operators).

That causes the algorithm to still ‘have hope’ that a better operator with a lower gradient will be found.

That is actually the case. By iteration 11, operator 35, with a gradient of 13 (only 43% that of operator

25), is selected and lowers the energy by −34× 10−5 a.u. - an almost fourfold improvement as compared

to operator 25.

Obviously, there was no way to know beforehand which operators were going to be a better addition

to the ansatz: all operators added in iteration 7 through 11 had very similar gradients, and before adding
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them, that is all the information we had about them. However, there was a great disparity in the energy

changes they produced, as we had seen before.

We now see that adding poorly performing operators 59, 29, 64 and 32 (iterations 7-10) was a ‘nec-

essary evil’: there was no other way to find operator 35 in iteration 11 than to test them all.

This time, it was in fact avoided to add operator 25 to the ansatz too soon. We managed to find better

operators not only in the iterations immediately after (5 and 6) but also in iteration 11, still before adding

operator 25 once again. This didn’t happen with the blocking / unblocking heuristic, in which the addition

of a single operator with a poor impact on the energy was enough to allow adding the removed operator

back to the ansatz. With the performance penalty, it was indeed accomplished that more operators were

given a chance to before the re-addition of 25.

Finally, at iteration 13, the removed operator 25 is added back to the ansatz. This is allowed by

the eased penalty (from the decrease of the performance ratio), and the fact that the gradients of the

not-yet-selected operators in the pool are lower now.

It should be noted that, having the purpose of illustrating the addition of operators, figure 52 glosses

over the fact that some of the operators added in iterations 5 to 13 are later removed from the ansatz.

By the time operator 25 is added, operators 29, 32, 59 and 64 have been removed and have a sanction

associated with their gradient. Because their gradient and performance ratio are lower than those of

operator 25, their effective gradient is significantly lower. Even if they all belong to the set of penalized

operators, they are penalized differently according to how they performed, which is a way of putting to use

all the information we have.

Once operator 35 is added and outperforms many of its predecessors (iteration 11), the ansatz and

the set of penalized operators is as represented in figure 53.

Interestingly, this is a very similar ansatz to that obtained in the end of iteration 14 using the blocking

/ unblocking heuristic. However, it took us three less iterations to get to it (11 now against 14 then) to

get there, because we didn’t waste time removing and adding operators multiple times. Previously, three

iterations had been spent adding back operators that had been removed recently and would be removed

again soon. What is more, there is an extra optimization per removed operator, meaning that we saved a

total of six optimizations by improving how and when the operators are added back to the ansatz.

There is additional interesting information in figure 53. For example, it can be seen that the average

performance ratio of the operators in the ansatz is 179% the average taken over all the operators we

have information about (in the ansatz or penalized). In particular, it is surprising how under average the

performance ratio of the penalized operators is: each of them has a ratio at least five times lower than any

of the operators in the ansatz. These operators change the energy very little in proportion to their gradient

as compared to the other ones. Because their gradient is misleadingly high, the gradient as a selection

method recognizes them as good options; but for our purpose (lowering the energy) they are not. Actually,

all five operators that were removed and penalized produce together an energy change of −21 × 10−5

a.u.. This is only 62% of the energy change of the worst operator in the ansatz alone. Even though they

represent about five times the cost in terms of the number of variational parameters and circuit depth,
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Figure 53: Relevant data structures at the end of iteration 11.

they are together quite less important for lowering the energy than any single operator still in the ansatz

by iteration 11.

All of this is a good indicator that we have picked interesting heuristics for removing operators and

handling them afterwards. However, the exemplification of a few iterations is not enough to say that the

procedure is sound.

It should be asked whether the advantage of removing terms is limited to certain molecules and/or

operator pools.

The simple Qubit Pool that results from using all tensor products of Pauli operators occurring in the

fermionic excitations (with or without the anti-commutation string) is redundant, and therefore not a suitable

choice here. We would often find that we removed an operator only to add one with almost exactly the same

effect on the state and energy. Regardless, this pool is also excessive and was proven to be significantly

larger than necessary for convergence. As for all the other pools, there seems to be no reason to believe

that they would not allow for removing terms.

With a reasonable choice of pool, there are still two possibilities for the procedure not being advanta-

geous.

The most obvious one is the energy change in any given iteration not being significantly higher than that

of any of the previous iterations. In case the removal condition is never verified, never will it be attempted

to remove an operator. In this case, there is no benefit to the version of ADAPT-VQE with term removal, but

there is also no extra cost in optimizations or measurements. If this happens, the algorithm perform exactly

the same with and without term removal. However, it seems highly unlikely: even in the small example

that was used before multiple terms were suitable to be removed. In a minimal basis, the representation of
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LiH has only 12 spin orbitals; bigger molecules will have more spin orbitals, and as a consequence more

operators in the pools to choose from. It is also likely that there will be more operators with comparable

gradients, in which case the selection using the gradient seems even less fitting. Additionally, only 10

iterations were considered, which is a fairly small number; in larger molecules, more iterations will be

necessary to reach a low error, comprising more possibilities for removing terms.

There is, however, another possibility: having the condition for operator removal verified, but upon

removal, seeing the energy increase to the point that it doesn’t compensate to go through with the removal.

It was a part of the method presented in this chapter that, upon removing an operator, it should be verified

that the removal did not produce an increase in energy over 150% the decrease that the operator had

caused in the first place - thus avoiding to remove an operator that did not impact the energy much, but

was an important part of the variational wave function once other operators were added.

Up to this point, that was never the case. In the example presented before, with lithium hydride,

every time the removal condition was met the removal came to fruition. Each time, removing the operator

produced a very similar change in energy to that observed when adding it. However, this shouldn’t be

taken for granted, as there is no reason to believe it should always be the case.

If we attempt to remove an operator and optimize the parameters of the wave function without it, only

to conclude that it should not be removed on account of the energy having increased by too much, then

we have absolutely no gain to compensate for the extra optimization step. Of course, this is a necessary

evil because we can’t know in advance what will happen. In this scenario, operator removal brings only

extra cost to the algorithm, but this extra cost does not increase maximum requirements in what comes

to circuit depth or number of variational parameters.

In order to better assess the performance of ADAPT-VQE with term removal, the next few subsections

aim to present graphical results for four different molecules, and different pools.

6.1.3 Application to LiH

The first example will be the one used in the previous subsection to illustrate the result of the different

heuristics: LiH at an interatomic distance of 1.45Å, with the SGSD pool.

In figure 54, we can compare the performance of the original ADAPT-VQE with the version allowing

term removal according to the method outlined before.

It is difficult to compare the two approaches, for in each iteration they may differ both in the number of

operators in the ansatz and the number of optimizations performed so far. Since currently the bottleneck

of these hybrid algorithms concerns the quantum computers, it was privileged to contrast clearly the

maximum number of operators in the ansatz, which is closely related to the maximum circuit depth.

The number of operators also corresponds to the number of variational parameters, and thus sets the

dimensionality of the optimization.

As such, the plot contemplates 10 iterations of the original ADAPT-VQE procedure, and as many

iterations of the version with term removal as occur before an iteration finishes with 11 operators. This
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Figure 54: Plot comparing the original ADAPT-VQE and the version with term removal, for LiH at an
interatomic distance of 1.45Å and using the SGSD pool. The error in the energy (top) and the number of
operators in the ansatz (bottom) are plotted against the iteration number. The shaded blue area on the
upper plot marks the error values within chemical accuracy (less than 1kcal/mol).
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means that none of the iterations included for the term removing version ended with an ansatz having more

elements than the ansatz of the original ADAPT-VQE protocol did by iteration 10. This can be confirmed

in the bottom plot, that represents the number of operators in the ansatz.

Evidently, the original ADAPT-VQE outperforms the version with term removal in any given iteration:

the latter ‘wastes’ iterations removing terms. However, the iteration count is not in itself an interesting cost

metric.

In what concerns maximum circuit depth, we can expect a similar cost from the 10 iterations of the

original protocol as from the 18 of the version with term removal. Of course, there might be small variations

arising from the difference between the circuits that implement the different excitations. What is more, the

particular architecture of the quantum computer will have an influence. Qubit connectivity will play a big

role: operators that represent excitations between spin-orbitals corresponding to qubits that are directly

connected will naturally be implemented by shallower circuits. However, there is no reason to believe that

those variations would benefit either procedure. As such, assuming an average circuit depth per operator

seems reasonable.

The maximum number of variational parameters is also matched between the 10 iterations of the

original ADAPT-VQE and the 18 iterations of the version with term removal. This represents a similar

maximum level of effort required of the classical optimizer, which in turn is related to the number of calls

to the quantum computer (an optimization with more variational parameters will in principle require more

energy evaluations).

It is interesting to notice how removing terms helps reaching a higher accuracy than that obtained by

iteration 10 of the original ADAPT-VQE, even though the maximum ansatz size and number of variational

parameters are matched. Numerically, we find that by the time the ansatz has 10 operators, the original

ADAPT-VQE has reached a state with an energy approximately 3.9 × 10−4 a.u. over the ground state

energy. For contrast, the version with term removal has an error of only 6.1 × 10−5 a.u. - only 16%, all

the while keeping the maximum requirements on the quantum computer and the classical optimizer. The

extra cost comes in the number of measurements and optimizations, which does not affect how viable the

implementation is.

In figure 55, the energy and error plotted against the number of operators are shown. In the case

of the term removing version, the ansatz in consideration for each operator number is the last occurring

ansatz of that size. As before, to allow a fair comparison, iterations were only considered up until (and

excluding) the first one ending with 11 operators.

These graphs do not have present the extra cost in measurements and optimizations brought on by

term removal; however, it is interesting to note how it is possible to reach a lower error with more compact

ansätze. The version of ADAPT-VQE with term removal manages to find better ansätze for any number

of operators larger than two. What is more, as it was mentioned before, the maximum demands on the

quantum computer and the classical optimizer in obtaining either curve are identical.
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(a) Energy plotted against the number of operators
in the ansatz.

(b) Error plotted against the number of operators in
the ansatz.

Figure 55: Plots comparing the energy and energy error in the original ADAPT-VQE and the version with
term removal, for LiH at an interatomic distance of 1.45Å and using the SGSD pool. The shaded blue
areas on the plots mark the values within chemical accuracy both for the energy (less than 1kcal/mol
away from the FCI energy) and the error (less than 1kcal/mol).

6.1.4 Application to OH-

The second example is OH− at an interatomic distance of 1.45Å. At first, the same pool will be used:

the SGSD pool. In the STO-3G minimal basis set, the pool for this molecule contains exactly the same

excitations (in terms of operator representation) as the one for LiH. This is because they have the same

number of spin orbitals and we are considering all generalized excitations, so that the particle number is

irrelevant in creating the pool. Evidently, what differs is the spatial part of the orbitals each qubit represents;

and because the Hamiltonian is different, the cost function is different altogether.

Using the same pool for a different molecule allows obtaining some more insight as to how general

the success of the method for removing terms is. After this, a different pool will be tested, to further test

generality of the procedure.

As before, the plot in figure 56 illustrates the evolution of the two versions of the algorithm (with and

without term removal). Once more, both were allowed to grow the ansatz until an iteration finished with

10 operators in it.

Again, we see that by the time the size of the ansatz is matched between the two, the version with term

removal has reached a lower error. It takes 15 iterations to get there, meaning that there were 5 operators

removed in total. At this point, all operators which removal was attempted were in fact removed, because

the condition to effectively remove a term was never violated. Removing an operator always resulted in

about the same energy change as it had caused back in the iteration in which it was added.

The original ADAPT-VQE finishes with a 10-operator ansatz that prepares a state with an energy 9.7×
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Figure 56: Plot comparing the original ADAPT-VQE and the version with term removal, for OH− at an
interatomic distance of 1.45Å and using the SGSD pool. The error in the energy (top) and the number of
operators in the ansatz (bottom) are plotted against the iteration number. The shaded blue area on the
upper plot marks the error values within chemical accuracy (less than 1kcal/mol).
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10−7 a.u. away from the FCI ground energy. As for the version with term removal, its final 10-operator

ansatz is associated with an error of only 2.7 × 10−8 a.u. - only 2.8%.

(a) Energy plotted against the number of operators
in the ansatz.

(b) Error plotted against the number of operators in
the ansatz.

Figure 57: Plots comparing the energy and energy error in the original ADAPT-VQE and the version with
term removal, for OH− at an interatomic distance of 1.45Å and using the SGSD pool. The shaded blue
areas on the plots mark the values within chemical accuracy both for the energy (less than 1kcal/mol
away from the FCI energy) and the error (less than 1kcal/mol).

The energy plotted as a function of the number of operators in the ansatz is in figure 57a (the ansatz

considered for each size was once again the last ansatz of that size). Interestingly, it seems like those

iterations in which the energy does not change much as compared to the surrounding ones (iterations 4

and 5) are entirely avoidable. One could have imagined that the slowdown was inevitable, and that no

operator would be capable of changing the energy more than the one chosen. However, this is not the

case. Better choices of operators can help convergence be significantly faster as a function of the ansatz

size.

In figure 57b, we can remark on how the version with term removal succeeds in finding a better ansatz

for many numbers of operators. Interestingly, in contrast with what happened for LiH, one can see that

the 7 and 8-operator ansätze are very comparable between the two versions of the algorithms. This is a

sign that, for those numbers of operators, the simple gradient-based selection is nearly optimal.

In the following, results will be presented for the same molecule, but using the Eight Pool introduced in

the previous chapter. The purpose is verifying whether the success of removing terms might be dependent

on the pool; once the fermionic anti-commutation strings are removed and simpler operators are used,

results might differ.

In figure 58, we can see that significant advantage can be achieved with this pool as well. By iteration

16 of ADAPT-VQE with term removal, we have a 10-operator ansatz that prepares a state with an energy
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Figure 58: Plot comparing the original ADAPT-VQE and the version with term removal, for OH− at an
interatomic distance of 1.45Å and using the Eight Pool. The error in the energy (top) and the number of
operators in the ansatz (bottom) are plotted against the iteration number. The shaded blue area on the
upper plot marks the error values within chemical accuracy (less than 1kcal/mol).
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7.4 × 10−6 a.u. away from the ground energy - only 4.6% of the error of the 10-operator ansatz that the

original ADAPT-VQE algorithm has reached by iteration 10 (1.6 × 10−4 a.u.).

(a) Energy plotted against the number of operators
in the ansatz.

(b) Error plotted against the number of operators in
the ansatz.

Figure 59: Plots comparing the energy and energy error in the original ADAPT-VQE and the version with
term removal, for OH− at an interatomic distance of 1.45Å and using the Eight Pool. The shaded blue
areas on the plots mark the values within chemical accuracy both for the energy (less than 1kcal/mol
away from the FCI energy) and the error (less than 1kcal/mol).

In figure 59, we can see that removing terms allows reaching a better ansatz for any number of

operators after six. The difference in energy seems small on 59a, which is a consequence of the linear

scale being unfit for showing the small but important changes that the energy suffers by the last iterations;

once the error is plotted on a logarithmic scale (figure 59b), the difference becomes evident.

6.2 Conservative Ansatz Growth

An alternative approach to removing operators is to attempt to be more cautious in adding them to the

ansatz in the first place. Once again, the idea is not to fully trust the gradient norm as an indicator of the

possible impact on the energy. However, here the correction is done preemptively, rather than after the

operators have been added to the ansatz.

Instead of blindly accepting the operator with the highest gradient into the ansatz in each iteration,

this approach tests several operators before settling for one. At each iteration, the N operators with the

highest gradients are independently added to the ansatz, and their coefficients are optimized. In the end,

only the one that lowered the energy the most is effectively added. In the simulations to follow, 𝑁 = 5 was

used. Evidently, this implies a 5-fold increase in the number of optimizations that must be performed.

This method was employed in QEB-ADAPT-VQE [99].
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6.2.1 Comparison with Operator Removal

6.2.1.1 Application to LiH

In order to compare these three approaches (original; term removal; conservative ansatz growth), simula-

tions involving three different molecules were done.

Figure 60: Plot showing the minimum error reached for each ansatz size, for multiple ansatz growth
strategies. The molecule in case is LiH at an interatomic distance of 1.45Å. The SGSD pool was used.
In the points where the green curve, corresponding to conservative ansatz growth, is not visible, it lies
directly under the term removal curve.

Figure 60 shows the familiar example of 𝐿𝑖𝐻 , now complete with all three ansatz growing approaches.

It is remarkable how similarly the term removal and conservative ansatz growth strategies perform. The

latter is significantly behind at iteration 6, but recovers immediately after; further, even this difference

would be effaced if one allowed a greater N in the strategy. In the other iterations, only one of the curves

is visible because they overlap.
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The figure does not show the extra overhead in the optimizations. As for the conservative ansatz

growth strategy, it is straightforward that it implies a 5-fold increase in the total number of optimizations.

The term removal version is not as easy to analyze, because the number of optimizations depends on the

number of terms that were removed. In this case, term removal implied 16 extra optimizations to achieve a

10-operator ansatz. So the total number of optimizations for the original ADAPT-VQE, the version with term

removal, and the version with conservative ansatz growth was respectively 10, 26, and 50. The maximum

circuit depth, as well as the maximum number of variational parameters, are roughly the same for all. The

term removal and conservative ansatz growth strategies achieve a greater accuracy for comparable circuit

depth.

6.2.1.2 Application to OH-

Figure 61 presents the results for a different molecule (𝑂𝐻−) and a different pool (the Eight Pool). The

term removal curve coincides with the conservative ansatz growth curve. Here the original ADAPT-VQE,

the version with term removal, and the version with conservative ansatz growth required respectively 10,

22, and 50 optimizations. The maximum circuit depth, as well as the maximum number of variational

parameters, are again roughly the same for all. By the end, for the same size of ansatz, the term removal

and conservative ansatz growth strategies reach an error of only 4.6% that of the original ADAPT-VQE

algorithm.

6.2.1.3 Application to H4

Figure 62 presents the results for yet another molecule, 𝐻4. Interestingly, the results are very different

here - the term removal version is not visible, but now because it lies directly under the original ADAPT-VQE

curve. There are two terms that fit the criterion for being removed, but on the last step of the removal

procedure, it is verified that removing them causes a significantly larger increase in the energy than the

prior decrease. Remarkably, by the end, conservative ansatz growth results in an error of only 0.3% that

of the other strategies (original ADAPT-VQE and term removal).

Here, the optimizations required were 10 for ADAPT-VQE, 12 for the term removal version, and 50

for the conservative ansatz growth. As much as attempting to remove terms does not improve accuracy,

there is barely an optimization overhead. Additionally, the tendency in this graph it is not as clear as before

in what comes to determining the success of the conservative ansatz growth strategy: through the first

10 iterations, there are many in which it actually corresponds to a greater error than the original ADAPT-

VQE, despite the sizeable optimization overhead. There is a sharp drop in the error by iterations 9 and

10, seeming to hint that the procedure might become more advantageous as the algorithm evolves; but

unfortunately, the simulations become increasingly expensive computationally as more terms are added.

This behaviour was also not encountered in simulating any other molecule, which complicates the task of

determining whether conservative growth is indeed advantageous when term removal fails.
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Figure 61: Plot showing the minimum error reached for each ansatz size, for multiple ansatz growth
strategies. The molecule in case is 𝑂𝐻− at an interatomic distance of 1.45Å. The Eight Pool was used.
The term removal and conservative ansatz growth strategies correspond to the same color because the
curves coincide.
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Figure 62: Plot showing the minimum error reached for each ansatz size, for multiple ansatz growth
strategies. The molecule in case is 𝐻4 at an interatomic distance of 1.45Å. The original ADAPT-VQE and
the version with term removal correspond to the same color because the curves coincide.

Table 1 presents a succinct comparison of the three ansatz growth strategies, for the case of the

three systems analysed in this subsection. The final error is used as the figure of merit for characterizing

performance, and the number of optimizations for characterizing measurement and optimization costs.
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System
𝐿𝑖𝐻 𝑂𝐻− 𝐻4

Method |Δ𝐸 | # Opts |Δ𝐸 | # Opts |Δ𝐸 | # Opts
(×10−5) (×10−6) (×10−7)

Original 39.0 10 160.2 10 2166.5 10
Term Removal 6.1 26 7.4 22 2166.5 13
Conservative 6.1 50 7.4 50 5.8 50

Table 1: Summary of the performance of the three methods for manipulating the ansatz (original ADAPT-
VQE, term removal, conservative ansatz growth). The table presents the absolute error in the energy and
the accumulated number of optimizations at the point a 10-operator ansatz is reached. The data concerns
the three systems explored in this subsection (𝐿𝑖𝐻 , 𝑂𝐻−, and 𝐻4) with the considered pools (SGSD,
Eight Pool, and SGSD, respectively). The units of energy are Hartree, as always.

6.3 Discussion

Conservative ansatz growth seems like a solid procedure for creating compact ansätze. Unlike term re-

moval, it has guarantees in what comes to maximum circuit size: at any level of accuracy, the maximum

size of the ansatz is the current one. By being cautious with growing the ansatz, it is possible to burden

the classical optimizer with the compensation of decreasing circuit depth. Further, growing the ansatz

conservatively is viable even when the term removal procedure fails at the third step.

On the other hand, term removal has its advantages. By only removing terms after they are outper-

formed by their successors, the procedure avoids an overhead in optimizations at every single iteration.

Extra optimizations only occur when there is a good chance that they are in fact benefiting for the ansatz,

which results in a more modest overhead in total optimizations. Further, as the algorithm evolves, this sav-

ing becomes more and more rewarding; in the results presented before, even when limiting the maximum

number of operators in the ansatz to 10, the term removal version matched or surpassed the accuracy of

the version with conservative growth (with 5 optimizations per step) for 𝑂𝐻− and 𝐿𝑖𝐻 , for ansätze with

up to only 10 operators. This suggests that the conditions for removing a term are met sufficiently often

that the size of the ansatz necessary for a given accuracy can be kept as modest with term removal as

with conservative ansatz growth.

Further, it is expected that as the size of the system grows, testing a relevant portion of the operators

in the pool per iteration will become harder and harder: larger molecules imply larger pools. In the cases

presented here, testing the five operators with largest gradient in each iteration (𝑁 = 5) corresponded to

testing up to 7.6% of the operators in the pool, which is a significant portion. If we increase 𝑁 to always

account for the same portion of the pool, we will have an added cost in optimizations that increases with the

system size. In contrast, term removal is size-agnostic, because it will attempt to remove under-performing

operators, rather than find out in advance which they are. Removing operators after they’re outperformed

(instead of testing several a priori) can keep the ansatz compact as other operators are explored, while

saving on the extra optimizations.
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What is more, because removed operators are penalized, they will not be added too soon after they’re

removed. In contrast, when the conservative ansatz growth procedure finds an operator that performs

very poorly, it will likely still attempt to add it in the next iteration, instead of giving the opportunity to other

operators with lower gradients. This approach does not attempt to leverage any information regarding

the performance of the operators that was obtained in the previous iterations, which may prevent it from

exploring more advantageous candidates and ‘clog’ several of the 𝑁 attempts per iteration with operators

that were already shown to perform badly.

Of course, removing terms is always more fallible than growing the ansatz conservatively. If, as hap-

pened with 𝐻4, term removal consistently fails on step 3, there is absolutely no added benefit to the

procedure, only extra cost.

149



7

Conclusions and Future Work

The purpose of this dissertation was to explore several proposals of ansätze for the Variational Quantum

Eigensolver in chemistry applications, with a focus on the noise-resilience that is paramount in improving

short-term viability of the algorithm.

Ansätze can be split into three broad classes: predetermined and problem agnostic; predetermined

and problem tailored; dynamic and problem-tailored. An ansatz from each class was implemented, and

each was tested both in simulators and in real quantum computers made accessible on the cloud by

IBMQ [42]. The effect of sampling noise, decoherence, SPAM errors and generic noise was analysed

via simulations on different backends and creation of noise models. With this, we could compare the

noise-resilience of different type of ansätze. In particular, the effect of noise on the predetermined UCCSD

ansatz (considered a ‘gold standard’ in quantum chemistry) and the dynamic ansatz built in the ADAPT-

VQE algorithm (a more recent proposal) was compared.

The benefits of ADAPT-VQE became evident in our simulations. For the 𝐻2 molecule, a 1-operator

qubit-ADAPT-VQE ansatz was only surpassed by UCCSD-VQE in a fully noise-free scenario, when even

sampling noise was removed from the simulations. Such scenario would be no less than impossible

to actually create, even if we had an ideal quantum processor available (which is far from reality). Two

unavoidable factors, quantum projection noise and a finite number of shots, are enough to deteriorate

the performance of UCCSD-VQE significantly. In the presence of generic noise, the difference between

UCCSD-VQE and ADAPT-VQE became even more pronounced.

Problem-tailored (but predetermined) ansätze already help avoid some problems that arise in the

context of problem-agnostic ansätze, barren plateaus being one example. This notwithstanding, dynamic

ansätze are one step ahead: in addition to being problem-tailored, they are system-tailored, which brings

along an array of benefits. Ansätze grown from scratch, like the one from ADAPT-VQE, can provide high-

accuracy results with shallower circuits and less variational parameters than any predetermined alternative.

Both of these factors increase the noise-resilience of VQE, resulting in it being an even more NISQ-Friendly

algorithm when dynamic ansätze are used.

The choice of operator pool in ADAPT-VQE is the part of the algorithm that implies the biggest human

involvement. In order to assess its importance, ADAPT-VQE was simulated resorting to a variety of pools

in addition to those originally proposed. The constitution of the superposition state in terms of Slater

determinants was analysed along with ease of convergence, and the relative importance of fermionic

antisymmetry, preservation of quantities such as particle number and spin, and similarity with fermionic

excitations for the success of the pool was explored.

This analysis allows us to conclude that there is a delicate balance between choosing operators that
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respect fermionic symmetries, and choosing operators that can be implemented by shallow and conve-

nient circuits. The former helps decrease the number of iterations and variational parameters, while the

latter can reduce the circuit depth; but the two are tightly interwoven, and the problem at hand is to find

the optimal compromise. Regardless, there seem to be aspects in which being faithful to the proper rep-

resentation of fermionic operators brings no advantage, and we find that relinquishing them lowers costs

free of negative repercussions. This is the case of anticommutation: relinquishing such principle eases,

from linear to constant (on the size of the system), the scaling of the average circuit depth required to

implement an operator, with no observable negative effect on the success of the algorithm.

Independently of the pool choice, there are also possibilities of improvement through additional ma-

nipulation of the ansatz. No selection criterion is unerring; but adjustments and corrections can aid in

preventing the misuse of circuit depth on portions of the ansatz that bring little benefit. Two approaches

were analysed to address this. Heuristics for removing operators from the ansatz along the evolution of the

algorithm were developed. The main goal was keeping the ansatz shallow without hindering the efficiency

of the algorithm by incurring in unnecessary measurements and optimizations, a consequence we showed

could be brought about by an unpolished strategy. The second attempted strategy was simpler, consisting

of testing the parallel addition of distinct operators to the ansatz per iteration, only to choose and add the

best performing one.

The first strategy (term removal) was compared against the second one (conservative ansatz growth),

with the original ADAPT-VQE as a reference. Tests encompassed simulations with several molecules and

pools. Both strategies were shown to be able to bring a significant reduction to the circuit depth required to

achieve a given accuracy. Term removal seems to have a more modest optimization overhead, since it only

entails extra optimizations when it can sense that they may be advantageous, unlike conservative ansatz

growth, which performs a constant number of optimizations per iteration irrespective of the evolution of

the algorithm. Despite the reduced number of additional optimizations, removing terms proved to be often

capable of maintaining the maximum ansatz depth as shallow as conservative ansatz growth. Further, the

term removal procedure seems in principle to be unaffected by the size of the pool, unlike conservative

ansatz growth. The portion of the pool we can test with a constant number of allowed optimizations per

iteration will become smaller and smaller as the size of the system increases, leading to a degradation

of the performance of the conservative ansatz growth strategy. However, this method is safer than term

removal, as it does not rely on the evolution of the algorithm or on the characteristics of the commutator

between operators to keep the ansatz compact. In one of the tested molecules, 𝐻4, the term removal

procedure was incapable of changing the evolution of the ADAPT-VQE algorithm for the better. For this

molecule, the success of conservative ansatz growth was also less clear; in spite of this, for the maximum

simulated ansatz size (twenty operators), it did achieve a lower error.

Variational quantum algorithms are a recent class, created specifically in the context of near-term

quantum computing. VQE was the first algorithm of this class, proposed in 2014 [67]; ADAPT-VQE in-

troduced the possibility of using dynamic ansätze for chemistry applications in 2019 [35], with further

developments in 2020 [85] and September 2021 [75] bringing remarkable decreases in both the size of
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the pool and the circuit depth per operator.

The dates of these proposals speak already of the novelty and intensity of the research around vari-

ational quantum algorithms in general and dynamic ansätze in particular. For the former case, noise-

resilient optimization strategies, improved ways of measuring relevant observables, and strategies for

avoiding barren plateaus are doubtlessly of great interest. For the latter, and more relevant in the context

of this dissertation, methods for developing and manipulating ansätze on the fly can certainly be expanded

and improved upon.

The proposals of dynamic ansätze explored in this project were mainly directed at chemistry applica-

tions; it would be interesting to generalize the algorithm to other areas, such as nuclear and condensed

matter physics, or even mathematics and machine learning. Since in ADAPT-VQE the specifics of the

problem are tied to the content of the operator pool, the algorithm must be formulated differently for

other problems. Further, recent results showed that the size of the pool can be significantly decreased

by leveraging the characteristics of the specific molecule. We can speculate that, in general, leveraging

problem-specific knowledge in the creation of the set of operators that serve as ‘pieces’ in the construction

of the ansatz may allow for improving results and decreasing the measurement costs in the creation of

adaptive wave functions.

Even within chemistry problems, ADAPT-VQE could be further explored. For example, pools could be

chosen taking into account the native interactions and the connectivity of the device, with the purpose

of obtaining a more hardware-friendly ansatz. Mappings other than Jordan-Wigner could be employed,

changing the formulation of the problem, affecting the gradient measurements, the operator pool, and the

qubit requirements, among other aspects.

And finally, as it was explored here, manipulating the ansatz beyond the steady addition of operators of

ADAPT-VQE can improve the approximation to the solution while keeping the ansatz compact, by keeping in

it only the most important operators. Removing terms or testing several per iteration are merely examples

of what can be done. It would be interesting to test and compare these approaches on more molecules

and pools, and for longer runs.

Explored or unexplored, there are many options and possibilities in designing ansätze for the variational

quantum eigensolver - even more when we expand the scope to variational quantum algorithms in general.

Finding increasingly more compact and convenient state preparation circuits is a fundamental piece in the

pursuit of a chance at quantum advantage with variational quantum algorithms: if they are naturally NISQ-

friendly, they can become even more so through a refinement of the ansatz. A proper choice can decrease

the depth of the required circuits, facilitate the task of the classical optimizer, increase the chances of

convergence, and reduce the number of calls to the quantum computer. All efforts done to improve the

ansatz pave the way for the success of general variational approaches to quantum algorithms.
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A

Implementation of Unitary Pauli String
Exponentials

We wish to obtain a circuit to implement 𝑒−𝑖𝑡𝐻𝑘 for 𝐻𝑘 a Pauli string (
⊗

𝑖 𝑃𝑖 , 𝑃𝑖 ∈ {𝐼𝑖, 𝑍𝑖, 𝑋𝑖, 𝑌𝑖}). This
can be done from the circuit used for𝐻𝑘 =

⊗
𝑖 𝑍𝑖 . The latter, as it was explained in subsection 2.1.3, only

needs to apply a phase shift conditional on the parity of the computational basis states. In that section, a

simple circuit that fit the purpose was presented, consisting of two ladders of CNOT gates (for computing

and subsequently uncomputing the parity) and a single-qubit rotation.

The circuit for 𝐻𝑘 =
⊗

𝑖 𝑃𝑖 can be obtained by a simple modification. For any qubit 𝑖 acted on by 𝑃𝑖
in 𝐻𝑘 , we find a basis rotation 𝑈𝑖 that obeys

𝑈 †
𝑖 𝑍𝑖𝑈𝑖 = 𝑃𝑖

The unitary 𝑈𝑖 will be different from the identity for any qubit that is acted on by a Pauli operator 𝑃𝑖
different from 𝑍𝑖 . Examples of 𝑈𝑖 include the Hadamard gate (for 𝑃𝑖 = 𝑋𝑖 ) and a rotation around the X

axis by 𝜋/2 (for 𝑃𝑖 = 𝑌𝑖 ).

This allows us to rewrite the expression as

𝑒−𝑖𝑡𝐻𝑘 = 𝑒−𝑖𝑡
⊗

𝑖 𝑃𝑖 = 𝑒−𝑖𝑡
⊗

𝑖 𝑈
†
𝑖 𝑍𝑖𝑈𝑖

Decomposing the exponential series, we obtain

=
∞∑
𝑛=0

(−𝑖𝑡
⊗

𝑖 𝑈
†
𝑖 𝑍𝑖𝑈𝑖)𝑛

𝑛!

= 𝐼1 ⊗ 𝐼2 ⊗ 𝐼3 ⊗ 𝐼4 − 𝑖𝑡
⊗
𝑖

𝑈 †
𝑖 𝑍𝑖𝑈𝑖 +

(𝑖𝑡)2
2

(
⊗
𝑖

𝑈 †
𝑖 𝑍𝑖𝑈𝑖)2 + ...

Using the properties of the tensor product ((𝑎 ⊗ 𝑏) (𝑐 ⊗ 𝑑) = 𝑎𝑐 ⊗ 𝑏𝑑) and the fact that the 𝑈𝑖 are

unitary (𝑈 †
𝑖 𝑈𝑖 = 𝑈𝑖𝑈

†
𝑖 = 𝐼 ), we can isolate an exponential series with argument free of the 𝑈𝑖 :

⊗
𝑖

𝑈 †
𝑖

( ∞∑
𝑛=0

(−𝑖𝑡
⊗

𝑖 𝑍𝑖)𝑛

𝑛!

) ⊗
𝑖

𝑈𝑖 =
⊗
𝑖

𝑈 †
𝑖

(
𝑒−𝑖𝑡

⊗
𝑖 𝑍𝑖

) ⊗
𝑖

𝑈𝑖

So concluding, we have the identity

𝑒−𝑖𝑡
⊗

𝑖 𝑃𝑖 =
⊗
𝑖

𝑈 †
𝑖

(
𝑒−𝑖𝑡

⊗
𝑖 𝑍𝑖

) ⊗
𝑖

𝑈𝑖
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And we can apply any operator of the form 𝑒−𝑖𝑡
⊗

𝑖 𝑃𝑖 by applying the circuit for 𝑒−𝑖𝑡
⊗

𝑖 𝑍𝑖 , preceded

and succeeded by single qubit rotations.
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B

Hamiltonian of H2

This appendix contains the Hamiltonian of the 𝐻2 molecule at an interatomic distance of 0.37Å, obtained

via OpenFermion [2]. The utilized basis set was sto-3g. Because it is a minimal basis set and no approxi-

mations were used, the molecule is represented by four spin-orbitals/qubits.

The choice to present the Hamiltonian of the simplest molecule was made due to the quartic growth

of the number of terms with the number of orbitals: the Hamiltonian of a molecule such as 𝐿𝑖𝐻 would

already have almost two thousand operators.

The molecular Hamiltonian in the second quantization formalism is the following:

0.7151043390810812+
𝑎†0𝑎0 · (−1.2533097866459773)+
𝑎†1𝑎1 · (−1.2533097866459773)+
𝑎†2𝑎2 · (−0.47506884877217576)+
𝑎†3𝑎3 · (−0.47506884877217576)+
𝑎†0𝑎

†
0𝑎0𝑎0 · 0.3373779634072241+

𝑎†0𝑎
†
0𝑎2𝑎2 · 0.09060523100759854+

𝑎†0𝑎
†
1𝑎1𝑎0 · 0.3373779634072241+

𝑎†0𝑎
†
1𝑎3𝑎2 · 0.09060523100759854+

𝑎†0𝑎
†
2𝑎0𝑎2 · 0.09060523100759854+

𝑎†0𝑎
†
2𝑎2𝑎0 · 0.3318557006754069+

𝑎†0𝑎
†
3𝑎1𝑎2 · 0.09060523100759854+

𝑎†0𝑎
†
3𝑎3𝑎0 · 0.3318557006754069+

𝑎†1𝑎
†
0𝑎0𝑎1 · 0.3373779634072241+

𝑎†1𝑎
†
0𝑎2𝑎3 · 0.09060523100759854+

𝑎†1𝑎
†
1𝑎1𝑎1 · 0.3373779634072241+

𝑎†1𝑎
†
1𝑎3𝑎3 · 0.09060523100759854+

𝑎†1𝑎
†
2𝑎0𝑎3 · 0.09060523100759854+

𝑎†1𝑎
†
2𝑎2𝑎1 · 0.3318557006754069+

𝑎†1𝑎
†
3𝑎1𝑎3 · 0.09060523100759854+

𝑎†1𝑎
†
3𝑎3𝑎1 · 0.3318557006754069+
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𝑎†2𝑎
†
0𝑎0𝑎2 · 0.3318557006754069+

𝑎†2𝑎
†
0𝑎2𝑎0 · 0.09060523100759854+

𝑎†2𝑎
†
1𝑎1𝑎2 · 0.3318557006754069+

𝑎†2𝑎
†
1𝑎3𝑎0 · 0.09060523100759854+

𝑎†2𝑎
†
2𝑎0𝑎0 · 0.09060523100759854+

𝑎†2𝑎
†
2𝑎2𝑎2 · 0.348825752245232+

𝑎†2𝑎
†
3𝑎1𝑎0 · 0.09060523100759854+

𝑎†2𝑎
†
3𝑎3𝑎2 · 0.348825752245232+

𝑎†3𝑎
†
0𝑎0𝑎3 · 0.3318557006754069+

𝑎†3𝑎
†
0𝑎2𝑎1 · 0.09060523100759854+

𝑎†3𝑎
†
1𝑎1𝑎3 · 0.3318557006754069+

𝑎†3𝑎
†
1𝑎3𝑎1 · 0.09060523100759854+

𝑎†3𝑎
†
2𝑎0𝑎1 · 0.09060523100759854+

𝑎†3𝑎
†
2𝑎2𝑎3 · 0.348825752245232+

𝑎†3𝑎
†
3𝑎1𝑎1 · 0.09060523100759854+

𝑎†3𝑎
†
3𝑎3𝑎3 · 0.348825752245232

Once we apply the Jordan-Wigner transformation 2.57 to obtain a Hamiltonian acting on qubits, we

obtain:

−0.09706626816762856+
−0.04530261550379927 · 𝑋0𝑋1𝑌2𝑌3+
0.04530261550379927 · 𝑋0𝑌1𝑌2𝑋3+
0.04530261550379927 · 𝑌0𝑋1𝑋2𝑌3+

−0.04530261550379927 · 𝑌0𝑌1𝑋2𝑋3+
0.17141282644776898 · 𝑍0+
0.1686889817036120 · 𝑍0𝑍1+
0.12062523483390417 · 𝑍0𝑍2+
0.16592785033770344 · 𝑍0𝑍3+
0.17141282644776903 · 𝑍1+
0.16592785033770344 · 𝑍1𝑍2+
0.12062523483390417 · 𝑍1𝑍3+

−0.22343153690813572 · 𝑍2+
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0.174412876122616 · 𝑍2𝑍3+
−0.22343153690813572 · 𝑍3
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C

Adapt-VQE Gradient Formula

This appendix will show how the gradient formula from Adapt-VQE can be derived.

First of all, it is important to remember that the pool operators 𝐴†
𝑖 are anti-hermitian:

𝐴†
𝑖 = −𝐴𝑖

This condition forces the unitarity of their parameterized and exponentiated versions that will actually

appear in the ansatz. Since the variational parameters 𝜃𝑖 are real, we can see that(
𝑒𝜃𝑖𝐴𝑖

)†
= 𝑒−𝜃𝑖𝐴𝑖

We want to calculate the derivative of the energy with respect to each possible variational parameter

𝜃𝑖 , as an indicator of how much the corresponding operator will impact the energy. For the 𝑖th operator,

this derivative can be calculated as

𝜕

𝜕𝜃𝑖

〈
𝜓 (𝑛)

��� 𝑒−𝜃𝑖𝐴𝑖 �̂�𝑒𝜃𝑖𝐴𝑖

���𝜓 (𝑛)
〉

=
〈
𝜓 (𝑛)

��� 𝑒−𝜃𝑖𝐴𝑖 (−𝐴𝑖)�̂�𝑒𝜃𝑖𝐴𝑖

���𝜓 (𝑛)
〉
+

〈
𝜓 (𝑛)

��� 𝑒−𝜃𝑖𝐴𝑖 �̂�𝐴𝑖𝑒
𝜃𝑖𝐴𝑖

���𝜓 (𝑛)
〉

=
〈
𝜓 (𝑛)

��� 𝑒−𝜃𝑖𝐴𝑖 [�̂�, 𝐴𝑖]𝑒𝜃𝑖𝐴𝑖

���𝜓 (𝑛)
〉

All operators will be initialized with null coefficients: when a new operator 𝑒𝜃𝑖𝐴𝑖 is added to the ansatz,

the corresponding variational parameter 𝜃𝑖 is set to zero. Thus, the relevant derivative is that calculated

at this point, and we obtain 4.1 as desired.

𝜕𝐸 (𝑛)

𝜕𝜃𝑖

�����
𝜃𝑖=0

=
〈
𝜓 (𝑛)

��� [�̂�, 𝐴𝑖

] ���𝜓 (𝑛)
〉

(C.1)

The expectation value of the commutator can be measured efficiently on the quantum computer.

Given that �̂� is hermitian and 𝐴𝑖 is anti-hermitian, we can also write the commutator in 4.1 as〈
𝜓 (𝑛)

��� [�̂�, 𝐴𝑖]
���𝜓 (𝑛)

〉
=

〈
𝜓 (𝑛)

��� �̂�𝐴𝑖

���𝜓 (𝑛)
〉
−

〈
𝜓 (𝑛)

���𝐴𝑖�̂�
���𝜓 (𝑛)

〉
=

〈
𝜓 (𝑛)

��� �̂�𝐴𝑖

���𝜓 (𝑛)
〉
−

(〈
𝜓 (𝑛)

��� �̂� (−𝐴𝑖)
���𝜓 (𝑛)

〉)†
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=
〈
𝜓 (𝑛)

��� �̂�𝐴𝑖

���𝜓 (𝑛)
〉
+

(〈
𝜓 (𝑛)

��� �̂�𝐴𝑖

���𝜓 (𝑛)
〉)†

= 2𝑅𝑒
〈
𝜓 (𝑛)

��� �̂�𝐴𝑖

���𝜓 (𝑛)
〉

In the sampling noise free, matrix algebra based simulations, formula C.2 was used instead of 4.1.

𝜕𝐸 (𝑛)

𝜕𝜃𝑖

�����
𝜃𝑖=0

= 2𝑅𝑒
〈
𝜓 (𝑛)

��� �̂�𝐴𝑖

���𝜓 (𝑛)
〉

(C.2)
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