
Software Impacts 13 (2022) 100359

R
a

b

c

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Categorical Attribute traNsformation Environment (CANE): A python
module for categorical to numeric data preprocessing
Luís Miguel Matos a,∗, João Azevedo c, Arthur Matta c, André Pilastri c, Paulo Cortez a,

ui Mendes b

ALGORITMI Centre, Minho University, Guimarães, Portugal
ALGORITMI Centre, Minho University, Braga, Portugal
EPMQ, CCG ZGDV Institute, Guimarães, Portugal

A R T I C L E I N F O

Keywords:
Data preprocessing
CANE
Python programming language
Machine learning

A B S T R A C T

Categorical Attribute traNsformation Environment (CANE) is a simpler but powerful data categorical prepro-
cessing Python package. The package is valuable since there is currently a large range of Machine Learning
(ML) algorithms that can only be trained using numerical data (e.g., Deep Learning, Support Vector Machines)
and several real-world ML applications are associated with categorical data attributes. Currently, CANE offers
three categorical to numeric transformation methods, namely: Percentage Categorical Pruned (PCP), Inverse
Document Frequency (IDF) and a simpler One-Hot-Encoding method. Additionally, the CANE module is well
documented with several code examples that can help in its adoption by non expert users.

Code metadata

Code metadata description Information

Current code version 2.2.1.2
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-122
Permanent link to Reproducible Capsule https://codeocean.com/capsule/9329576/tree/v1
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Python 3.6+
Compilation requirements, operating environments & dependencies CANE requires bounded-pool-executor; numpy; pandas; pqdm; python-dateutil; pytz;

tqdm; typing-extensions; sklearn; and pyspark
If available Link to developer documentation/manual https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-

Environment
Support email for questions luis.matos@dsi.uminho.pt

1. Categorical attribute transformation environment (CANE)

Currently, Machine Learning (ML) is impacting the world due to the
availability of big data (e.g., via digital sensors), computational power
and sophisticated algorithms to process such data (e.g., Deep Learning)
[1]. Several popular and powerful ML algorithms (e.g., Deep Learning,

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail address: luis.matos@dsi.uminho.pt (L.M. Matos).

Support Vector Machines) can only process numerical data. Since real-
world applications often generate categorical features, when employing
such ML algorithms there is a need to preprocess the data attributes by
adopting a categorical to numeric transformation or encoding. Several
state-of-the-art ML works (e.g., [2–4]) tend to assume the simpler One-
Hot Encoding (1H) method when handling categorical data, which can
https://doi.org/10.1016/j.simpa.2022.100359
Received 29 June 2022; Received in revised form 5 July 2022; Accepted 5 July 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100359
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100359&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-122
https://codeocean.com/capsule/9329576/tree/v1
https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment
https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment
mailto:luis.matos@dsi.uminho.pt
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:luis.matos@dsi.uminho.pt
https://doi.org/10.1016/j.simpa.2022.100359
http://creativecommons.org/licenses/by/4.0/


L.M. Matos, J. Azevedo, A. Matta et al. Software Impacts 13 (2022) 100359
produce computational issues in terms of memory and processing effort,
particularly when there is a high cardinality [5]. The Categorical
Attribute traNsformation Environment (CANE) Python module was
created to address this issue. CANE offers three simple but effective
methods to transform categorical data into numeric values for ML and
Deep Learning projects, namely:

• One-Hot encoding (1H) — The most popular categorical to
numeric transform. The method encodes categorical values into
a binary vector with 𝐿 levels, where 𝐿 is the number of distinct
attribute levels (the cardinality). For instance, the attribute color
with 𝐿 = 3 levels {‘‘blue’’,‘‘red’’,‘‘yellow’’} would be transformed
into: ‘‘blue’’ → (1,0,0); ‘‘red’’ → (0,1,0); and ‘‘yellow’’ → (0,0,1).
Since this transform can be applied to virtually any domain, it is
the default encoding assumed by most ML tools. One advantage
of the CANE implementation of the 1H method is that it allows a
fast parallel computing of the transform by encoding each data at-
tribute in a distinct core, thus making use of multi-core machines.
Another CANE advantage is that it allows the user to easily name
each 1H binary column by using a full name (e.g., ‘‘Blue’’,
‘‘Red’’) or a suffix (e.g., ‘‘color_blue’’ and
‘‘color_red’’ for the suffix ‘‘color’’). Currently, the 1H
transform works with the Pandas Dataframe format.

• Inverse Document Frequency (IDF) — proposed by [6] and
also explored in [7–9], it is a fast data transformation process
that transforms a categorical value into a single numeric value
according to the following equation:

𝐼𝐷𝐹 (𝑡) = 𝑙𝑛(𝑁
𝑓𝑡

) (1)

where 𝑁 denotes the total number of instances (values), and 𝑓𝑡
is the number of occurrences of level 𝑡 in the training data. When
using this transform, a closer numeric value to 0 means that the
level is more frequent in the data. The higher the value, the less
frequent the level is, with the less frequent levels being grouped
closer. Similar to the 1H method, the IDF CANE implementation
allows a multi-core execution (one core for each data attribute).
Moreover, the IDF allows to work with two popular data Python
formats, the Pandas Dataframe and also Spark Dataframe.

• Percentage Categorical Pruned (PCP)— This preprocessing was
first introduced in [5] and it works by first sorting the feature
levels according to their frequency values. The least frequent
levels (summing up to a threshold percentage of 𝑃 ) are merged
into a single category denoted as ‘‘Others’’. After this preprocess-
ing method, the one-hot (1H) encoding is applied by using the
reduced set of levels, which includes the most frequent levels
and the ‘‘Others’’ label. The main goal of the PCP transform is
to substantially reduce the input memory and processing require-
ments while keeping the most relevant levels. In [5], the PCP
effect was exemplified by considering a city attribute from a
mobile marketing performance task. A small pruning threshold
value was adopted (𝑃 = 10%), allowing a reduction of 94% in the
number of binary inputs (10,690 for 1H and just 689 for PCP).
Despite this reduction, the PCP based predictive model (based on
a deep learning model) achieved the same predictive performance
level when compared with its 1H version but required much less
computational effort during the training. Another demonstration
is here presented (Fig. 1) for a product quality type from the
textile industry. In this example, the vertical dashed line shows
the effect of using a threshold of 𝑃 = 30%, allowing to reduce
from 239 (standard 1H) to 40 (PCP) binary inputs (83% in terms
of reduction of encoded binary levels). Currently, the PCP trans-
formation uses the Pandas Dataframe format and also includes
a multi-core distribution (executing one attribute per core). We
highlight that the PCP implementation is exclusive to the CANE
Python package.

Fig. 1. Example a Product Quality Type attribute reduction that is obtained when
using PCP and P = 30% (vertical dashed line).

Table 1
CANE computational execution values (in seconds) when using a synthetic dataset.

Method Single Core Multi-core

1H 16.22 24.12
PCP 37.93 22.74
IDF 74.82 31.62

2. CANE impact and computational performance

CANE was used in several scientific studies as a means of reducing
the number of inputs (after the categorical to numeric transform)
to feed predictive ML models. Diverse real-world applications were
addressed, including mobile performance marketing [5,9], Industry 4.0
anomaly detection [4,10] and quality prediction [8,11]. As a conse-
quence of the adoption of CANE python package, the aforementioned
studies have observed a reduced computational effort when prepro-
cessing categorical data. Moreover, these transformations were applied
to distinct ML algorithms, resulting in more efficient ML implementa-
tions (requiring less memory and computational training effort) while
keeping high predictive performances. Moreover, the CANE python
package,1 has obtained a total of 76,765 downloads2 since June 2020.

To demonstrate the computational effort required by the tool, we
created a synthetic dataset with 129 attributes and 161,000 records.
Each attribute includes 5 distinct levels with different frequencies: ‘‘a’’
– 70,000; ‘‘b’’ – 50,000; ‘‘c’’ – 30,000; ‘‘d’’ – 10,000; and ‘‘e’’ – 1000.3
The computational experiments assumed the Pandas Dataframe format
and were executing using a 2,3 GHz Intel Core i9 machine with a
total of 16 cores. Table 1 presents the measured computational effort
(in terms of time elapsed) when assuming a pruning threshold value
of 𝑃 = 5% and two execution scenarios (single core and when using
10 cores). Both PCP and IDF show significant improvements in the
computational performance when a multi-core setting is adopted. As
for the 1H execution, it is more efficient when adopting a single core
setting. This behavior is due to the final multi-core 1H aggregation
operation that joins the distinct binary matrices (one for each core) into
a single binary Dataframe and that is rather computationally expensive.
Nevertheless, we expect that the multi-core 1H Spark version (to be
addressed in future work) will produce computationally faster results
when compared with its single core version.

1 Publicly available at https://pypi.org/project/cane.
2 On June 29𝑡ℎ 2022 according to https://pepy.tech/project/cane.
3 A smaller dataset code demonstration of this example is presented at

https://codeocean.com/capsule/9329576/tree/v1.
2

https://pypi.org/project/cane
https://pepy.tech/project/cane
https://codeocean.com/capsule/9329576/tree/v1


L.M. Matos, J. Azevedo, A. Matta et al. Software Impacts 13 (2022) 100359

w
s
t
m
w
(
L
(
w
s
1
T
r
t
c
t
I
r
i
p
t
a
l

3

a
f
o
m
i
e
c
t
i
u
t
t
o
c
(
r

D

c
i

A

4

Table 2
CANE results for a real-world mobile marketing dataset (best values in bold).

Method Preprocessing time (s) Training time (s) # Numeric inputs Reduction ratio (%) AUC

1H 163.66 54.98 8,449 0.0 0.89
PCP 10.04 10.66 954 89.7 0.88
IDF 27.70 8.90 11 99.8 0.73

Another CANE value demonstration example is presented in Table 2,
hich corresponds to the results that were obtained when using a

ample of the data used in [5]. In this example, the dataset con-
ains 10 input categorical features related with a mobile performance
arketing domain (e.g., user city). The goal is to predict if a user
ill buy a product (the conversion result) after seeing a mobile ad

binary classification task). The prediction classifier is based on a Deep
earning model, namely a multilayer perceptron with 9 hidden layers
as described in [5]). Using different testing time periods, three runs
ere executed on the same computational server (i9 Intel machine,

ingle core execution), with the Deep Learning model being fit with
0,000 training examples and tested with another 5000 instances. In
able 2, the obtained results are presented as the average of the three
uns. The 1H encoding results in a very high number of inputs (8449)
hat substantially affects the preprocessing and ML training time. In
ontrast, the IDF and PCP (𝑃=10%) CANE methods generate a substan-
ially lower number of inputs, as shown in the columns # Numeric
nputs and Reduction Ratio (when compared with 1H, in %). This
eduction impacts in the computational effort, which is much lower
n terms of the preprocessing and training tasks. As for the predictive
erformance, measured in terms of the Area Under Curve (AUC) of
he Receiver Operating Characteristic (ROC) curve, quality results were
chieved, particularly for the PCP method (only one percentage point
ower when compared with the 1H based model).

. Future work

CANE is a relatively new Python module, having its lifetime spanned
cross two years. The module was created to solve the issue of trans-
orming high cardinality categorical data into numeric values, which
ften occurs in real-world applications, such as mobile performance
arketing [5]. The main focus was to implement several preprocess-

ng methods (e.g., PCP) that allow non expert ML users to more
asily preprocess categorical data attributes to be used in ML appli-
ations. The initial version of CANE only handled the PCP and IDF
ransformations [5,7]. Since then the number of CANE features has
ncreased (e.g., simpler 1H encoding, multi-core implementations, IDF
sing Spark implementation, Transformation hashmap translations). In
he future, we wish to add further capabilities to the module by handing
he Spark Dataframe format for the PCP and 1H methods (currently
nly Pandas Dataframe is addressed). We also aim to optimize the
ode to be effective and efficient when processing big data datasets
e.g., millions of records with several features), which are common in
eal-world projects.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

The authors are grateful for project NORTE-01-0247-FEDER-017-
97, supported by Norte Portugal Regional Operational Programme

(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement,
through the European Regional Development Fund (ERDF). This work
was also supported by FCT Fundação para a Ciência e Tecnologia,
Portugal within the Project Scope: UID/CEC/00319/2019. The authors
are also grateful for all the contributors that assisted in making CANE
more intuitive.

References

[1] Adnan Darwiche, Human-level intelligence or animal-like abilities? Commun.
ACM 61 (10) (2018) 56–67, http://dx.doi.org/10.1145/3271625.

[2] Manxing Du, Radu State, Mats Brorsson, Tigran Avanesov, Behavior profiling
for mobile advertising, in: Proceedings of the 3rd IEEE/ACM International
Conference on Big Data Computing, Applications and Technologies, BDCAT 2016,
Shanghai, China, December 6-9, 2016, 2016, pp. 302–307, http://dx.doi.org/10.
1145/3006299.3006339.

[3] Weinan Zhang, Tianming Du, Jun Wang, Deep learning over multi-field categor-
ical data, in: European Conference on Information Retrieval, Springer, 2016, pp.
45–57.

[4] Diogo Ribeiro, Luís Miguel Matos, Guilherme Moreira, André Luiz Pilastri,
Paulo Cortez, Isolation forests and deep autoencoders for industrial screw
tightening anomaly detection, Comput. 11 (4) (2022) 54, http://dx.doi.org/10.
3390/computers11040054.

[5] Luís Miguel Matos, Paulo Cortez, Rui Mendes, Antoine Moreau, Using deep
learning for mobile marketing user conversion prediction, in: International Joint
Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19,
2019, IEEE, 2019, pp. 1–8, http://dx.doi.org/10.1109/IJCNN.2019.8851888.

[6] Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J.G.B. Campello,
Barbora Micenková, Erich Schubert, Ira Assent, Michael E. Houle, On the
evaluation of unsupervised outlier detection: measures, datasets, and an empirical
study, Data Min. Knowl. Discov. 30 (4) (2016) 891–927, http://dx.doi.org/10.
1007/s10618-015-0444-8.

[7] Luís Miguel Matos, Paulo Cortez, Rui Mendes, Antoine Moreau, A comparison
of data-driven approaches for mobile marketing user conversion prediction, in:
Ricardo Jardim-Gonçalves, João Pedro Mendonça, Vladimir Jotsov, Maria Mar-
ques, João Martins, Robert E. Bierwolf (Eds.), 9th IEEE International Conference
on Intelligent Systems, IS 2018, Funchal, Madeira, Portugal, September 25-27,
2018, IEEE, 2018, pp. 140–146, http://dx.doi.org/10.1109/IS.2018.8710472.

[8] Rui Ribeiro, André Pilastri, Carla Moura, Filipe Rodrigues, Rita Rocha, José
Morgado, Paulo Cortez, Predicting physical properties of woven fabrics via
automated machine learning and textile design and finishing features, in:
Ilias Maglogiannis, Lazaros Iliadis, Elias Pimenidis (Eds.), Artificial Intelligence
Applications and Innovations, Springer International Publishing, Cham, 2020, pp.
244–255.

[9] Pedro José Pereira, Paulo Cortez, Rui Mendes, Multi-objective grammatical evo-
lution of decision trees for mobile marketing user conversion prediction, Expert
Syst. Appl. 168 (2021) 114287, http://dx.doi.org/10.1016/j.eswa.2020.114287,
URL https://www.sciencedirect.com/science/article/pii/S0957417420309891.

[10] Gonçalo Fontes, Luís Miguel Matos, Arthur Matta, André Pilastri, Paulo Cortez,
An empirical study on anomaly detection algorithms for extremely imbalanced
datasets, in: Ilias Maglogiannis, Lazaros Iliadis, John Macintyre, Paulo Cortez
(Eds.), Artificial Intelligence Applications and Innovations, Springer International
Publishing, Cham, 2022, pp. 85–95.

[11] Luís Miguel Matos, André Domingues, Guilherme Moreira, Paulo Cortez, An-
dré Luiz Pilastri, A comparison of machine learning approaches for predicting
in-car display production quality, in: Hujun Yin, David Camacho, Peter Tiño,
Richard Allmendinger, Antonio J. Tallón-Ballesteros, Ke Tang, Sung-Bae Cho,
Paulo Novais, Susana Nascimento (Eds.), Intelligent Data Engineering and
Automated Learning - IDEAL 2021 - 22nd International Conference, IDEAL
2021, Manchester, UK, November 25-27, 2021, Proceedings, in: Lecture Notes
in Computer Science, vol. 13113, Springer, 2021, pp. 3–11, http://dx.doi.org/
10.1007/978-3-030-91608-4_1.
3

http://dx.doi.org/10.1145/3271625
http://dx.doi.org/10.1145/3006299.3006339
http://dx.doi.org/10.1145/3006299.3006339
http://dx.doi.org/10.1145/3006299.3006339
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb3
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb3
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb3
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb3
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb3
http://dx.doi.org/10.3390/computers11040054
http://dx.doi.org/10.3390/computers11040054
http://dx.doi.org/10.3390/computers11040054
http://dx.doi.org/10.1109/IJCNN.2019.8851888
http://dx.doi.org/10.1007/s10618-015-0444-8
http://dx.doi.org/10.1007/s10618-015-0444-8
http://dx.doi.org/10.1007/s10618-015-0444-8
http://dx.doi.org/10.1109/IS.2018.8710472
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb8
http://dx.doi.org/10.1016/j.eswa.2020.114287
https://www.sciencedirect.com/science/article/pii/S0957417420309891
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://refhub.elsevier.com/S2665-9638(22)00072-0/sb10
http://dx.doi.org/10.1007/978-3-030-91608-4_1
http://dx.doi.org/10.1007/978-3-030-91608-4_1
http://dx.doi.org/10.1007/978-3-030-91608-4_1

	Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing
	Categorical attribute transformation environment (CANE)
	CANE impact and computational performance
	Future work
	Declaration of competing interest
	Acknowledgments
	References


