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A B S T R A C T

Categorical Attribute traNsformation Environment (CANE) is a simpler but powerful data categorical prepro-
cessing Python package. The package is valuable since there is currently a large range of Machine Learning
(ML) algorithms that can only be trained using numerical data (e.g., Deep Learning, Support Vector Machines)
and several real-world ML applications are associated with categorical data attributes. Currently, CANE offers
three categorical to numeric transformation methods, namely: Percentage Categorical Pruned (PCP), Inverse
Document Frequency (IDF) and a simpler One-Hot-Encoding method. Additionally, the CANE module is well
documented with several code examples that can help in its adoption by non expert users.
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1. Categorical attribute transformation environment (CANE)

Currently, Machine Learning (ML) is impacting the world due to the
availability of big data (e.g., via digital sensors), computational power
and sophisticated algorithms to process such data (e.g., Deep Learning)
[1]. Several popular and powerful ML algorithms (e.g., Deep Learning,
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Support Vector Machines) can only process numerical data. Since real-
world applications often generate categorical features, when employing
such ML algorithms there is a need to preprocess the data attributes by
adopting a categorical to numeric transformation or encoding. Several
state-of-the-art ML works (e.g., [2–4]) tend to assume the simpler One-
Hot Encoding (1H) method when handling categorical data, which can
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produce computational issues in terms of memory and processing effort,
particularly when there is a high cardinality [5]. The Categorical
Attribute traNsformation Environment (CANE) Python module was
created to address this issue. CANE offers three simple but effective
methods to transform categorical data into numeric values for ML and
Deep Learning projects, namely:

• One-Hot encoding (1H) — The most popular categorical to
numeric transform. The method encodes categorical values into
a binary vector with 𝐿 levels, where 𝐿 is the number of distinct
attribute levels (the cardinality). For instance, the attribute color
with 𝐿 = 3 levels {‘‘blue’’,‘‘red’’,‘‘yellow’’} would be transformed
into: ‘‘blue’’ → (1,0,0); ‘‘red’’ → (0,1,0); and ‘‘yellow’’ → (0,0,1).
Since this transform can be applied to virtually any domain, it is
the default encoding assumed by most ML tools. One advantage
of the CANE implementation of the 1H method is that it allows a
fast parallel computing of the transform by encoding each data at-
tribute in a distinct core, thus making use of multi-core machines.
Another CANE advantage is that it allows the user to easily name
each 1H binary column by using a full name (e.g., ‘‘Blue’’,
‘‘Red’’) or a suffix (e.g., ‘‘color_blue’’ and
‘‘color_red’’ for the suffix ‘‘color’’). Currently, the 1H
transform works with the Pandas Dataframe format.

• Inverse Document Frequency (IDF) — proposed by [6] and
also explored in [7–9], it is a fast data transformation process
that transforms a categorical value into a single numeric value
according to the following equation:

𝐼𝐷𝐹 (𝑡) = 𝑙𝑛(𝑁
𝑓𝑡

) (1)

where 𝑁 denotes the total number of instances (values), and 𝑓𝑡
is the number of occurrences of level 𝑡 in the training data. When
using this transform, a closer numeric value to 0 means that the
level is more frequent in the data. The higher the value, the less
frequent the level is, with the less frequent levels being grouped
closer. Similar to the 1H method, the IDF CANE implementation
allows a multi-core execution (one core for each data attribute).
Moreover, the IDF allows to work with two popular data Python
formats, the Pandas Dataframe and also Spark Dataframe.

• Percentage Categorical Pruned (PCP)— This preprocessing was
first introduced in [5] and it works by first sorting the feature
levels according to their frequency values. The least frequent
levels (summing up to a threshold percentage of 𝑃 ) are merged
into a single category denoted as ‘‘Others’’. After this preprocess-
ing method, the one-hot (1H) encoding is applied by using the
reduced set of levels, which includes the most frequent levels
and the ‘‘Others’’ label. The main goal of the PCP transform is
to substantially reduce the input memory and processing require-
ments while keeping the most relevant levels. In [5], the PCP
effect was exemplified by considering a city attribute from a
mobile marketing performance task. A small pruning threshold
value was adopted (𝑃 = 10%), allowing a reduction of 94% in the
number of binary inputs (10,690 for 1H and just 689 for PCP).
Despite this reduction, the PCP based predictive model (based on
a deep learning model) achieved the same predictive performance
level when compared with its 1H version but required much less
computational effort during the training. Another demonstration
is here presented (Fig. 1) for a product quality type from the
textile industry. In this example, the vertical dashed line shows
the effect of using a threshold of 𝑃 = 30%, allowing to reduce
from 239 (standard 1H) to 40 (PCP) binary inputs (83% in terms
of reduction of encoded binary levels). Currently, the PCP trans-
formation uses the Pandas Dataframe format and also includes
a multi-core distribution (executing one attribute per core). We
highlight that the PCP implementation is exclusive to the CANE
Python package.

Fig. 1. Example a Product Quality Type attribute reduction that is obtained when
using PCP and P = 30% (vertical dashed line).

Table 1
CANE computational execution values (in seconds) when using a synthetic dataset.

Method Single Core Multi-core

1H 16.22 24.12
PCP 37.93 22.74
IDF 74.82 31.62

2. CANE impact and computational performance

CANE was used in several scientific studies as a means of reducing
the number of inputs (after the categorical to numeric transform)
to feed predictive ML models. Diverse real-world applications were
addressed, including mobile performance marketing [5,9], Industry 4.0
anomaly detection [4,10] and quality prediction [8,11]. As a conse-
quence of the adoption of CANE python package, the aforementioned
studies have observed a reduced computational effort when prepro-
cessing categorical data. Moreover, these transformations were applied
to distinct ML algorithms, resulting in more efficient ML implementa-
tions (requiring less memory and computational training effort) while
keeping high predictive performances. Moreover, the CANE python
package,1 has obtained a total of 76,765 downloads2 since June 2020.

To demonstrate the computational effort required by the tool, we
created a synthetic dataset with 129 attributes and 161,000 records.
Each attribute includes 5 distinct levels with different frequencies: ‘‘a’’
– 70,000; ‘‘b’’ – 50,000; ‘‘c’’ – 30,000; ‘‘d’’ – 10,000; and ‘‘e’’ – 1000.3
The computational experiments assumed the Pandas Dataframe format
and were executing using a 2,3 GHz Intel Core i9 machine with a
total of 16 cores. Table 1 presents the measured computational effort
(in terms of time elapsed) when assuming a pruning threshold value
of 𝑃 = 5% and two execution scenarios (single core and when using
10 cores). Both PCP and IDF show significant improvements in the
computational performance when a multi-core setting is adopted. As
for the 1H execution, it is more efficient when adopting a single core
setting. This behavior is due to the final multi-core 1H aggregation
operation that joins the distinct binary matrices (one for each core) into
a single binary Dataframe and that is rather computationally expensive.
Nevertheless, we expect that the multi-core 1H Spark version (to be
addressed in future work) will produce computationally faster results
when compared with its single core version.

1 Publicly available at https://pypi.org/project/cane.
2 On June 29𝑡ℎ 2022 according to https://pepy.tech/project/cane.
3 A smaller dataset code demonstration of this example is presented at

https://codeocean.com/capsule/9329576/tree/v1.
2
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Table 2
CANE results for a real-world mobile marketing dataset (best values in bold).

Method Preprocessing time (s) Training time (s) # Numeric inputs Reduction ratio (%) AUC

1H 163.66 54.98 8,449 0.0 0.89
PCP 10.04 10.66 954 89.7 0.88
IDF 27.70 8.90 11 99.8 0.73

Another CANE value demonstration example is presented in Table 2,
hich corresponds to the results that were obtained when using a

ample of the data used in [5]. In this example, the dataset con-
ains 10 input categorical features related with a mobile performance
arketing domain (e.g., user city). The goal is to predict if a user
ill buy a product (the conversion result) after seeing a mobile ad

binary classification task). The prediction classifier is based on a Deep
earning model, namely a multilayer perceptron with 9 hidden layers
as described in [5]). Using different testing time periods, three runs
ere executed on the same computational server (i9 Intel machine,

ingle core execution), with the Deep Learning model being fit with
0,000 training examples and tested with another 5000 instances. In
able 2, the obtained results are presented as the average of the three
uns. The 1H encoding results in a very high number of inputs (8449)
hat substantially affects the preprocessing and ML training time. In
ontrast, the IDF and PCP (𝑃=10%) CANE methods generate a substan-
ially lower number of inputs, as shown in the columns # Numeric
nputs and Reduction Ratio (when compared with 1H, in %). This
eduction impacts in the computational effort, which is much lower
n terms of the preprocessing and training tasks. As for the predictive
erformance, measured in terms of the Area Under Curve (AUC) of
he Receiver Operating Characteristic (ROC) curve, quality results were
chieved, particularly for the PCP method (only one percentage point
ower when compared with the 1H based model).

. Future work

CANE is a relatively new Python module, having its lifetime spanned
cross two years. The module was created to solve the issue of trans-
orming high cardinality categorical data into numeric values, which
ften occurs in real-world applications, such as mobile performance
arketing [5]. The main focus was to implement several preprocess-

ng methods (e.g., PCP) that allow non expert ML users to more
asily preprocess categorical data attributes to be used in ML appli-
ations. The initial version of CANE only handled the PCP and IDF
ransformations [5,7]. Since then the number of CANE features has
ncreased (e.g., simpler 1H encoding, multi-core implementations, IDF
sing Spark implementation, Transformation hashmap translations). In
he future, we wish to add further capabilities to the module by handing
he Spark Dataframe format for the PCP and 1H methods (currently
nly Pandas Dataframe is addressed). We also aim to optimize the
ode to be effective and efficient when processing big data datasets
e.g., millions of records with several features), which are common in
eal-world projects.
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