
Universidade do Minho
Escola de Letras, Artes e Ciências Humanas

Sérgio Rosa Pereira

Automated web scraping and data
visualisation for tourism based on
popular accommodation platforms

October 2022U
M

in
ho

 |
 2

02
2

Sé
rg

io
 R

os
a

Pe
re

ira
Au

to
m

at
ed

 w
eb

 s
cr

ap
in

g
an

d
da

ta
 v

is
ua

lis
at

io
n

fo
r

to
ur

is
m

 b
as

ed
 o

n
po

pu
la

r
ac

co
m

m
od

at
io

n
pl

at
fo

rm
s

Sérgio Rosa Pereira

Automated web scraping and data
visualisation for tourism based on
popular accommodation platforms

Master dissertation
Master’s in Digital Humanities

Dissertation supervised by:
Professor Doutor Sérgio Adriano Fernandes Lopes
Professora Doutora Sílvia Lima Gonçalves Araújo

Universidade do Minho
Escola de Letras, Artes e Ciências Humanas

October 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and

good practices internationally accepted are respected, regarding author copyrights and related

copyrights.

Therefore, the present work can be utilized according to the terms provided in the license below.

If the user needs permission to use the work in conditions not foreseen by the licensing indicated,

the user should contact the author, through the RepositóriUM of University of Minho.

License provided to the users of this work

Attribution-NonCommercial-NoDerivatives
CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/

ii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my parents for all the support given during my academic journey.

I also wish to express my sincere thanks and appreciation to my supervisors Dr. Sílvia and Dr.

Sérgio, for the opportunity to participate in this project and for all the help and feedback given

during its course.

Lastly, I also want to thank all my friends and colleagues, for accompanying and assisting me

throughout all these years.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process

leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of

Minho.

iv

ABSTRACT

AUTOMATED WEB SCRAPING AND DATA VISUALISATION FOR TOURISM BASED ON

POPULAR ACCOMMODATION PLATFORMS

The project developed is part of “Programa INTERREG V A España – Portugal (POCTEP)”, on which

several entities collaborate in cross-border projects, with the main goal of securing the

sustainability, innovation and efficient management of tourism resources in Portugal and Spain,

while also harmonising the use of technology in the tourism sector.

Through web scraping and data visualisation techniques, information regarding tourists and their

destinations was extracted from online platforms, being then organised and interpreted, in order

to obtain useful insights. With the Python programming language as this project’s main pillar, an

automated web scraping tool was designed, with a custom user interface to facilitate access. Then,

after the cleaning of data using regular expressions and text replacement, several graphs were

conceived, followed by a data visualisation dashboard which also allows interaction with those

graphs. In the end, the whole process was automated, allowing this method to periodically monitor

the targeted tourism areas with efficiency.

Thus, through this self-sufficient competitive vigilance system, an effective management of the

tourism sector resources can be ensured.

KEYWORDS: Web Scraping; Tourism; Python; Data Visualisation; Data Science.

v

RESUMO

WEB SCRAPING E VISUALIZAÇÃO DE DADOS DE TURISMO AUTOMATIZADOS, COM

BASE EM PLATAFORMAS POPULARES DE ALOJAMENTO

O projeto desenvolvido faz parte do “Programa INTERREG V A España – Portugal (POCTEP)”, no

qual diversas entidades colaboram em projetos transfronteiriços, com o principal objetivo de

assegurar a sustentabilidade, inovação e gestão eficiente dos recursos turísticos em Portugal e

Espanha, harmonizando também o uso da tecnologia no setor turístico.

Através de técnicas de web scraping e de visualização dados, foi extraída de plataformas turísticas

informação relativa aos turistas e aos seus destinos turísticos, sendo então organizada e

interpretada, de forma a obter as suas perceções. Com a linguagem de programação Python como

o principal pilar deste projeto, uma ferramenta de web scraping automatizada foi criada, com uma

interface de utilizador customizada, para facilitar o acesso. Então, após a limpeza dos dados

usando expressões regulares e substituição de texto, vários gráficos foram concebidos, seguidos

de uma dashboard de visualização de dados que também permite interação com esses dados. No

fim, o processo todo foi automatizado, permitindo que este método analise periodicamente as

áreas-alvo de turismo com eficácia.

Assim, através deste sistema de vigilância competitiva autossuficiente, uma gestão eficiente dos

recursos do sector turístico pode ser assegurada.

PALAVRAS-CHAVE: Web Scraping; Turismo; Python; Visualização de Dados; Ciência de Dados.

vi

CONTENTS

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES ... i

ACKNOWLEDGEMENTS .. ii

STATEMENT OF INTEGRITY ... iii

ABSTRACT .. iv

RESUMO .. v

LIST OF ACRONYMS .. viii

LIST OF FIGURES ... ix

LIST OF LISTINGS ... xi

1. INTRODUCTION ... 1

1.1. CONTEXT - POCTEP ... 1

1.2. MOTIVATION .. 1

1.3. OBJECTIVES ... 2

1.4. RESEARCH APPROACH .. 2

1.5. DOCUMENT STRUCTURE .. 3

2. STATE OF THE ART ... 4

2.1. TOURISM .. 4

2.1.1. TOURISM IN PORTUGAL .. 4

2.1.2. TECHNOLOGY IN TOURISM ... 5

2.1.3. COVID AND TOURISM .. 6

2.2. WEB SCRAPING ... 7

2.2.1. THE IMPORTANCE OF DATA .. 7

2.2.2. BIG DATA AND PREDICTIVE ANALYTICS .. 8

2.2.3. PREDICTIVE ANALYTICS IN PORTUGUESE TOURISM ... 9

2.2.4. WEB SCRAPING DEFINITION .. 10

2.2.5. WEB SCRAPING SOFTWARE TOOLS ... 10

2.2.6. PROBLEMS IN WEB SCRAPING .. 11

2.2.7. WEB SCRAPING IN TOURISM ... 12

2.3. DATA VISUALISATION ... 13

3. METHODOLOGY ... 14

3.1. TOURISM PLATFORMS ... 14

3.1.1. BOOKING.COM .. 14

3.1.2. TRIPADVISOR ... 14

3.1.3. AIRBNB .. 15

3.2. TOURISM INDICATORS ... 15

vii

3.3. SOFTWARE TOOLS USED .. 16

3.3.1. PYTHON ... 16

3.3.2. JUPYTER NOTEBOOK ... 16

4. IMPLEMENTATION ... 17

4.1. DATA EXTRACTION ... 17

4.1.1. LIBRARIES AND PACKAGES .. 18

4.1.2. WEB SCRAPING METHOD .. 21

4.1.2.1. FIRST EXTRACTION: GENERAL RESULTS ... 21

4.1.2.2. SECOND EXTRACTION: INDIVIDUAL RESULTS .. 35

4.1.2.3. THIRD EXTRACTION: USER COMMENTS ... 39

4.2. GRAPHICAL USER INTERFACE ... 41

4.3. DATA CLEANING ... 49

4.4. DATA VISUALISATION ... 51

4.4.1. LIBRARIES AND PACKAGES .. 52

4.4.2. CREATING GRAPHS .. 52

4.4.3. INTERACTIVE DASHBOARD .. 68

4.5. AUTOMATION .. 75

4.6. PROBLEMS ENCOUNTERED .. 80

5. CONCLUSION ... 83

BIBLIOGRAPHIC REFERENCES ... 84

viii

LIST OF ACRONYMS

API - Application Programming Interface

CSS - Cascading Style Sheets

CSV - Comma-separated values

DDoS - Distributed Denial-of-Service

GPS - Global Positioning System

GUI – Graphical User Interface

HTML - Hypertext Markup Language

HTTP -- Hypertext Transfer Protocol

ICT - Information and Communications Technology

IDE - Integrated development environment

IP - Internet Protocol

Regex - Regular expression

UI - User Interface

URL - Uniform Resource Locators

WWW - World Wide Web

Wi-Fi – Wireless Fidelity

XML - Extensible Markup Language

ix

LIST OF FIGURES

Figure 1 - Jupyter Notebook interface. ... 17

Figure 2 - Booking.com general results for Braga city. ... 22

Figure 3 - Page buttons at the first page. .. 28

Figure 4 - Page buttons at the first page. ... 28

Figure 5 - Inspecting the "next page" element to discover its HTML tag and CSS class. 28

Figure 6 - Main function's flowchart (getHotelsBooking). .. 30

Figure 7 - Inspecting each hotel's HTML "block" to discover their CSS class. 31

Figure 8 - Dataset with information from my first Booking.com extraction, on Excel (general

results). .. 34

Figure 9 - Booking.com individual results for Braga city (first result). .. 36

Figure 10 - Dataset with information from my second Booking.com extraction, on Excel

(individual results). .. 38

Figure 11 - Comments section on Melia Braga Hotel & Spa. .. 40

Figure 12 - Dataset with information from my third Booking.com extraction, on Excel (user

comments). ... 41

Figure 13 - Sketch of a potential GUI for my program. ... 42

Figure 14 - Web scraping tool user interface for Booking.com. ... 43

Figure 15 - Pop-up window when extraction begins. ... 44

Figure 16 - Pop-up window when extraction ends. .. 44

Figure 17 - Flowchart for Booking.com's portion of my web scraping tool's GUI. 46

Figure 18 - Web scraping tool user interface for TripAdvisor. ... 47

Figure 19 - Web scraping tool user interface for Airbnb. ... 47

Figure 20 - Web scraping tool user interface for the main window. .. 48

Figure 21 - Web scraping tool user interface flowchart.. 49

Figure 22 - Example of numbers stored as text (left column) and as numbers (right column). . 51

Figure 23 - Data frame with the number of occurences of each zone (dfnorthcounts). 54

Figure 24 - Pie chart with the top 10 zones with the most results in the North of Portugal

(fig1_north). .. 55

Figure 25 - Data frame with the average prices of each zone, in descending order (newdfnorth).

 ... 56

Figure 26 - Bar chart with the average price (€) per zone in the North of Portugal (fig2_north).

 ... 57

Figure 27 - Data frame for the North of Portugal, sorted by price, in descending order

(dfnorth_aux). ... 58

Figure 28 - Table with the top 10 most expensive results in the North of Portugal (fig3_north).

 ... 59

Figure 29 - Data frame for the North of Portugal with only the first 10 rows, sorted by price, in

ascending order (dfnorth_auxx).. 60

Figure 30 - Table with the top 10 cheapest results in the North of Portugal (fig4_north). 60

Figure 31 - Merged data frame that includes the amount of occurrences of each zone and their

respective ratings (newdfnorthavg). ... 61

Figure 32 - Horizontal bar chart with the average scores per zone in the North of Portugal

(fig5_north). .. 62

Figure 33 - Most frequent nationalities in Melia Braga Hotel & Spa comments section. 65

Figure 34 - Word cloud for positive comments in Melia Braga Hotel & Spa comments section.67

x

Figure 35 - Word cloud for negative comments in Melia Braga Hotel & Spa comments section.

 ... 68

Figure 36 - Dash output on Jupyter Notebook after running the code. The URL takes me to the

local server on which the dashboard runs. ... 72

Figure 37 - Dashboard that presents all created graphs. .. 73

Figure 38 - Dropdown menu that allows selection of zone for each graph. 74

Figure 39 - Top 10 zones with the most results in Galicia, selected on the dropdown menu. ... 74

Figure 40 - Top 10 zones with the most results in Galicia, with filtered selections, in Dash. 75

Figure 41 - Average prices per zone in Galicia, with filtered selections, in Dash. 75

Figure 42- Windows Task Scheduler interface .. 76

Figure 43 - Windows Task Scheduler: naming my task. .. 77

Figure 44 - Windows Task Scheduler: selecting the periodicity of my task. 77

Figure 45 - Windows Task Scheduler: choosing the time and date to start the task. 78

Figure 46 - Windows Task Scheduler: instructing my task to run a program. 78

Figure 47 - Windows Task Scheduler: selecting Python.exe installation and my program’s

folders. .. 79

Figure 48 - Windows Task Scheduler: confirming my scheduled task. 79

Figure 49 - Results obtained after 7 days of automated extractions. ... 80

xi

LIST OF LISTINGS

Listing 1 - Importing necessary libraries and creating my list. .. 22

Listing 2 - Headers section of the code, which avoids me being blacklisted by the target

website. ... 23

Listing 3 - Standard Booking.com URL. ... 24

Listing 4 - Portion of the URL that contains the date and zone parameters. 24

Listing 5 - Main function getHotelsBooking, that modifies the parameters on the URL. 25

Listing 6 - Function to obtain current date and hour. ... 25

Listing 7 - datetoday output. ... 26

Listing 8 - Defining variables for today's day, month and year. .. 26

Listing 9 - daytoday, monthtoday and yeartoday's outputs. .. 26

Listing 10 – Advancing 1 day on our previous functions. .. 26

Listing 11 - datetomorrow, daytomorrow, monthtomorrow and yeartomorrow's outputs. 26

Listing 12 - Zone and time parameters defined. ... 27

Listing 13 - Function to find the arrow button. ... 28

Listing 14 - Printing my function that gives me the arrow's element. .. 29

Listing 15 - Example of a "for loop". .. 29

Listing 16 - "For loop" that cycles through every page until it reaches the last one. 30

Listing 17 - BookingHotel function that finds all block elements that contain each

accommodation. ... 31

Listing 18 - "For loop" that extracts selected elements on each iteration. 32

Listing 19 - Creating a data frame and converting it to .xlsx. .. 33

Listing 20 - "For loop" that receives the amount of pages I want to extract. 35

Listing 21 - Defining the number of pages I want to extract. .. 35

Listing 22 - Extracting the names of accommodations without adding exceptions. 37

Listing 23 - Extracting the names of accommodations with exceptions for when a name isn't

found. .. 37

Listing 24 - Converting my dataset into a data frame and transforming the column containing

the links into a list. .. 38

Listing 25 - Defining a main function that will receive URLs. .. 38

Listing 26 - "For loop" that cycles through the list of URLs. .. 38

Listing 27 - Defining a function that modifies the "page" variable on the URL. 40

Listing 28 - "For loop" that will cycle through all pages until it reaches the last one. 41

Listing 29 - Defining the interface for my Booking.com window. ... 43

Listing 30 - Adding pop-ups for the beginning and end of the extraction. 44

Listing 31 - "While" loop that stops when the window is closed. ... 44

Listing 32 - Defining what happens when selecting Galicia, while extracting all pages with "In 1

day" selected. .. 45

Listing 33 - Defining what happens when selecting Galicia, while extracting a specific amount of

pages, with "In 1 day" selected. .. 45

Listing 34 - Defining the interface of my main window, on which I can select the online

platform to extract data from. .. 47

Listing 35 - Defining what happens when each of the buttons is clicked. 48

Listing 36 - Using regular expressions to clean data. .. 50

Listing 37 - Converting my dataset into a data frame. .. 53

Listing 38 - Creating a new data frame that includes "zone". ... 53

Listing 39 - Renaming the columns of my data frame. ... 54

file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494421
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494422
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494422
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494423
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494424
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494425
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494426
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494427
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494428
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494429
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494430
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494431
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494432
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494433
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494434
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494435
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494436
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494437
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494437
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494438
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494439
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494440
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494441
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494442
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494443
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494443
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494444
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494444
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494445
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494446
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494447
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494448
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494449
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494450
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494451
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494452
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494452
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494453
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494453
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494454
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494454
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494455
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494456
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494457
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494458
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494459

xii

Listing 40 - Creating a pie chart (fig1_north). ... 55

Listing 41 - Creating a new data frame that includes a column with the average price of each

zone. .. 56

Listing 42 - Merging two dataframes. ... 56

Listing 43 - Creating a bar chart (fig2_north). ... 57

Listing 44 - Creating a new data frame and sorting it by "price". ... 57

Listing 45 - Creating a table (fig3_north). ... 58

Listing 46 - Creating a copy of my previous data frame, capturing only the last 10 rows. 59

Listing 47 - Creating a table (fig4_north). ... 60

Listing 48 - Obtaining a new data frame with the average score of each zone, and then merging

it into another data frame. .. 61

Listing 49 - Creating a horizontal bar chart (fig5_north). .. 62

Listing 50 - Transforming my comments' dataset into a data frame. ... 63

Listing 51 - Creating a dictionary of countries. ... 63

Listing 52 - Creating two lists and two "for loops" that remove countries with less than 20

occurrences. .. 64

Listing 53 - Creating a pie chart (fig6). .. 64

Listing 54 - Dividing my main data frame into two, one for positive comments and the other for

negative comments. .. 65

Listing 55 - Removing stopwords from my results. ... 66

Listing 56 - Creating a string which will contain all positive comments...................................... 66

Listing 57 - Creating a word cloud with positive comments. .. 66

Listing 58 - Creating a string that will contain negative comments. ... 67

Listing 59 - Creating a word cloud with negative comments. ... 67

Listing 60 - Importing libraries and packages. ... 69

Listing 61 - Creating my app and adding an external CSS file. .. 69

Listing 62 - Creating the main layout of my app. .. 70

Listing 63 - Creating the layout for my first dropdown menu. .. 70

Listing 64 - Creating the layout for my first graph. ... 71

Listing 65 - Creating a callback function. ... 71

Listing 66 - Function that will change the graphs shown based on the input given to the

dropdown menu. ... 72

file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494460
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494461
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494461
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494462
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494463
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494464
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494465
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494466
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494467
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494468
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494468
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494469
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494470
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494471
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494472
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494472
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494473
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494474
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494474
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494475
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494476
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494477
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494478
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494479
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494480
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494481
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494482
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494483
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494484
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494485
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494486
file:///C:/Users/sergi/OneDrive/Ambiente%20de%20Trabalho/Tese%20-%20Sérgio%20Pereira%20(ANTES%20DE%20METER%20CODIGOS).docx%23_Toc107494486

1

1. INTRODUCTION

In this first chapter, my Master’s dissertation is introduced, with a description of the funded

program on which this project was carried out, while also focusing on the objectives that motivate

this project’s development.

1.1. CONTEXT - POCTEP

This report presents a description, analysis and conclusion of the tasks I performed during my

curricular internship, which took place between March 2021 and February 2022, as part of my 2nd

year in the Master’s Degree in Digital Humanities.

This project is part of “Programa INTERREG V A España – Portugal (POCTEP)”, a program

coordinated by AMTEGA (Agencia para la Modernización Tecnológica de Galicia) in collaboration

with “Agencia de Turismo de Galicia”, “Turismo do Porto e Norte de Portugal”, “Centro de

Computação Gráfica da Universidade do Minho”, Instituto Politécnico de Viana do Castelo”, among

others. With the support of the European Union, it promotes cross-border projects between Portugal

and Spain, with a high focus on tourism, sustainability and innovation.

1.2. MOTIVATION

Tourism is one of the biggest financial sectors in Portugal and Spain, and, due to that substantial

economic impact, it is of high importance to monitor the sector and ensure its development. As its

success depends on the tourists, it is necessary to collect data, in order to obtain insights and find

efficient management strategies for the tourism sector.

A huge part of the data related to tourists has an enormous value, as in the tourism sector there

is a lot of competitiveness and it is up to each competitor to analyse that data, as a means to

determine which factors influence the tourists the most, when deciding their travelling destinations.

Economically speaking, acquiring data is expensive. However, the Internet contains, available for

anyone, large sources of data which only need to be extracted and treated to be used.

2

1.3. OBJECTIVES

With a focus on Galicia and the Northern and Center regions of Portugal, this project aims to use

these strategies of free data collection with the main objective of conceiving a system of competitive

vigilance. It should be able to capture disparities between the several touristic destinations, based

on the prices, accommodation scores, user comments, and so on. This gives us the understanding

of which factors make certain areas be more successful than the others.

My personal objective for this project is to conceive a system which can, almost entirely

autonomously, extract data from where I want, export that data into datasets and create visual

representations of that data. For that to be possible, I will create a method with which I need to

achieve the following goals:

1. Extract data from tourism platforms;

2. Export extracted data into datasets;

3. Create an intuitive user interface on which my web scraping code will run;

4. Clean the data from the datasets, making them “readable” for the next step;

5. Create graphs to represent the extracted data visually;

6. Create an interactive dashboard that presents the graphs previously created;

7. Automate the process of extraction in order to obtain data every day.

1.4. RESEARCH APPROACH

To accomplish this project’s goals, I carried out a research methodology based on literature

revision.

Firstly, the target areas were chosen, keeping in mind the cross-borders context of this project’s

program. Based on the accommodation availability on those areas, the tourism platforms to extract

data from were then selected.

Secondly, bibliographic research on tourism was performed, focusing specifically on tourism in

Portugal, while also tackling the role of technology in this sector and briefly correlating it to the

Covid-19 pandemic. Then, the definition and studying of indicators relevant for extraction was

executed, paving the way for the extraction of data.

3

Subsequently, I made bibliographic research of the state of the art in web scraping, covering all

types of scraping, software tools available and problems in the field, ending with an analysis on

web scraping in tourism, based on the methodologies of previous works accomplished by other

researchers.

To finish the state of the art research, I tackled data visualisation, focusing on representation of

tourism data.

Then, the method was executed, beginning with the scraping of web data, followed by the creation

of datasets and the creation of a GUI (Graphical User Interface) to run my program. Afterwards,

the cleaning of data was performed, setting the path for the data visualization portion of this

process, on which I created graphs and an interactive dashboard to display them. This whole

method is finalised with the implementation of automation, allowing me to schedule and perform

extractions without needing user interaction.

After discussing the problems encountered, conclusions are drawn, thus completing this project.

1.5. DOCUMENT STRUCTURE

This report is structured in five chapters. In the first chapter, I introduced the research subject,

giving context on this project’s nature and its main objectives.

The second chapter presents an overview on the state of the art in both tourism and web scraping.

Chapter 3 contains the methodology proposed, while the fourth chapter implements that

methodology, conceiving a system that ranges from data extraction to data visualisation, also

including the automation of the whole process.

This document ends with chapter 5, on which I reveal the conclusions of this project.

4

2. STATE OF THE ART

2.1. TOURISM

Firstly, it is essential to define the concept of “tourism”. Mathieson and Wall (1990) define tourism

as “the temporary movement of people to destinations outside their normal places of work and

residence, the activities undertaken during their stay in those destinations, and the facilities created

to cater to their needs”. It is one of the world’s most important economic activities, impacting every

single place on the globe. Given this impact and popularity, there is a necessity to discover

strategies that ensure this field’s development and sustainability. In this first section, I will tackle

the role of tourism in Portugal, followed by a brief analysis of technology in the field, ending with a

dissection of the global pandemic’s effects on the tourism sector.

 2.1.1. TOURISM IN PORTUGAL

In Portugal, there is no doubt that tourism is a major influencer in economic growth, so there have

been more and more initiatives and funding for the evolution and effective management of the

tourism sector. That said, what makes Portugal such a successful tourism destination? In 2017,

2018 and 2019, Portugal was elected “Best Destination in the World” at the World Travel Awards.

Furthermore, the country is known for its sun, beaches, gastronomy, culture and high territorial

diversity, thus covering all types of tourism, including sun and sea tourism (due to the long

coastline), residential tourism (Portugal is a country with a high social level), religious tourism

(which is quite appealing, as it covers all ages, sex and social classes) and rural tourism (Portugal

has a large number of mountains, villages, natural parks, among others).

With the high demand in the Portuguese tourism sector, there is also a huge amount of tourism

data which must be studied in order to understand in detail the reason for this success, thus being

able to invest in more ways to contribute to the economic growth of this sector. By learning what

influences tourists when it is time to decide their travel destinations and acting accordingly, we can

try to prevent Portugal from losing tourists to other countries. There is no doubt that the countries

that compete with Portugal in the tourism sector also invest in data collection and analysis, in order

to create predictive analytics models. That way, they can find out what makes tourists choose

Portugal instead of any other destination. The tourism sector is a competition and only those who

study their opponents win.

5

 2.1.2. TECHNOLOGY IN TOURISM

According to Buhalis and O’Connor (2005), Information and Communication Technologies (ICTs)

have been transforming tourism globally. The developments made in technology in the last two

decades allowed several fields to exponentially grow, and tourism was no exception.

Xiang (2018) divides the knowledge development on IT and tourism in two different eras: the era

of “digitization” (1997-2006) and the era of “acceleration” (2007-2016). The first era was defined

by the appearance and development of the Internet as a commercial tool, while the second era

highlights the appearance of numerous technologies, such as Wi-Fi, search engines, the

smartphone, machine learning and artificial intelligence, all of which contribute to the increasing

role of Internet on tourism. Defined as “e-tourism”, Buhalis (2003) states that it refers to a

phenomenon and research area in which the adoption of ICTs transforms the processes and the

value chains in the tourism industry.

ICTs have profound implications for tourism and e-tourism reflects the digitization of all

processes and value chains in the tourism, travel, hospitality and catering industries.

Tactically, e-tourism enables organizations to manage their operations and undertake e-

commerce. Strategically, e-tourism revolutionizes business processes, the entire value

chain as well as strategic relationships with stakeholders. E-tourism determines the

competitiveness of organizations by taking advantage of intranets for reorganising internal

processes, extranets for developing transactions with trusted partners and the Internet for

interacting with all stakeholders. (Buhalis 2003)

While the use of ICTs vastly improves the development and management of tourism resources, it

also leads to more data being generated, which, not only in tourism across-the-board, but also in

the context of this project, means more information to be analysed, which subsequently leads to

more valuable insights to be gained.

The wide use of ICT by tourism businesses and tourists generates a large amount of data

from information searches, transactions, and spatial movement. Today’s tourists will likely

carry many technology gadgets and use them to interact with ICT resources. A tourist will

generate and contribute a tremendous amount of data, including data points in a tourism

6

website's analytics data, a hotel mobile app's log data, call center logs, the amount of

traffic at a destination, the sales records of tourism services, search engine query volumes,

social media mentions, location data from cell phones, GPS and photos, etc. All of these

are potential indicators of a tourist's likes and dislikes, motivations, planning behavior, and

actual stay experiences. (Pan, 2015)

Pan (2015) also states that innovative and predictive research is needed to direct the tourism

industry into the right direction, using the insights obtained in order to defined future marketing

and management strategies, which is a notion that is supported by several studies I have

encountered during my bibliographic research. That same notion is also defended by myself, in

concordance with the techniques used and results obtained with this project.

 2.1.3. COVID AND TOURISM

The global pandemic, that started in 2019, revolutionised the world’s economy. With citizens

confined to their respective homes, tourism as a whole took a huge hit, with a large number of

hotels and touristic attractions having to shut down for months/years, due to the governments’

anti-covid regulations. Several businesses went bankrupt, while others saw this global lockdown as

an opportunity to embrace technology and distance-based activities. This led to an increase in the

popularity of technology, especially in those which allow people to connect with each other without

having to leave their houses. While the mandatory lockdown directly opposes the notion of tourism,

which technically implies the movement of people to destinations outside their normal places of

residence, there was still an attempt to counteract the negative effects brought by Covid. For

instance, Airbnb, in response to the global pandemic, introduced “online experiences” on their

website, which consist of an alternative to actual travelling, on which users experience cultural

activities without having to leave their houses. Martina (2021) performed a study on which he

determined whether Airbnb’s new online experiences were a real long-term business opportunity

or just a trend influenced by the pandemic. After using multiple methods of research, it was

determined that these online experiences not only proved to be a valuable alternative to travelling

for people who seek unique and authentic experiences, but will also be a precious complement to

travelling, especially to try the cultural activities of a specific destination before actually travelling

there.

7

2.2. WEB SCRAPING

With data science being, nowadays, one of the most prolific scientific fields in the sector of

technology, all techniques that work with data are bound to be extremely useful, and web

scraping is no exception. In a world where information is everywhere, having a way of collecting

that information in a cheap and efficient way is of incalculable value. With the increasing

accessibility of the Internet, the amount of data created is directly proportional, giving web

scraping a very important role when dealing with collection of data. In this subchapter, I will

demonstrate the importance of data, leading to an explanation of big data and its role in

predictive analytics, including in Portugal. After defining web scraping as a term and tackling

some of the available software tools, I will mention some of the problems that might occur with

web scraping, ending with a brief analysis on other works who also tackled web scraping within

the tourism field.

2.2.1. THE IMPORTANCE OF DATA

We live in a time where personal data is becoming increasingly valuable, so companies use it in

order to gain competitive advantage. According to Steve Todd (2015), by 2024 we will have a fully

established Information Economy where data are critical to businesses. Joel Grus (2019) defends

that over the next 10 years, we’ll need billions and billions more data scientists than we currently

have. Given the growing importance of data in a competitive world where all companies strive for

information based on patterns, it is of the utmost priority to find ways to acquire data cheaply and

efficiently. Thus, as an alternative to the direct purchase of data, web scraping appears, which is a

data mining technique applied on websites.

Data mining refers to extracting knowledge from a large amount of observational data, in

order to discover the unsuspected relations and patterns hidden in the data, presenting

the same in innovative, comprehensive and useful ways for users (Adeniyi, Wei, &

Yongquan, 2016).

The main advantage of web scraping consists in the simple fact of it being a very cheap and

effective process, thus reducing the need to acquire data from external sources. The Internet is full

of unusable information, which just needs to be extracted and processed to be usable. With these

methods, the companies can analyse the information obtained and try to predict what behaviour

8

the tourists will have, thus adapting the tourism sector according to these observed patterns. It is

very important to point out that predictive analytics is not a method of predicting the future, it is

simply the calculation and interpretation of information already obtained, in order to try to

determine which things are most likely to happen again. In the past, companies made their

decisions based on past experiences and on the knowledge they already had, but with technological

advances, they can now shape their sales models based on the information acquired through the

extraction and analysis of data.

2.2.2. BIG DATA AND PREDICTIVE ANALYTICS

According to data from a survey by Domo (2017), 2.5 quintillion data are produced every second.

This phenomenon, called Big Data, is one of the reasons for the growing popularity of these

predictive techniques, together with the constant evolution of computers with increasingly high

processing capacity.

According to Gartner (2012), Big Data is defined as assets of high-volume, high-velocity and/or

high-variety information that demand cost-effective, innovative ways of processing information that

enable enhanced insight, decision making, and process automation.

With the growing popularity of information and communication technologies, companies

increasingly rely on them to develop marketing strategies for financial success. Today, we are

constantly surrounded by sources of information, and companies know how to take advantage of

this. It is no coincidence that Digital Marketing is considered one of the “jobs of the future”. Over

the years, technology will become more and more relevant, and, with that, data will be become

even more valuable for companies.

In the end, it all boils down to the following: the customer decides whether or not to purchase a

service; the supplier’s success depends on the customer’s decision; therefore, to achieve success,

the company has to do everything in their power to positively influence the customer’s decision.

The best way to do this is to study all the customers they have had, and then, define the profiles

of a satisfied buyer and a dissatisfied buyer. Based on these two profiles, the only thing left to do

is to determine which key characteristics are present in easy profile, thus allowing the company to

find ways to decrease the rate of unhappy clients. For instance, let’s say a Portuguese company

sells an app whose services are paid monthly: after studying customers, they discover that 80% of

9

users who have not renewed their monthly subscription are of foreign origins. With this information,

the company can decide to translate its app into several languages, thus leading to a gradual

decrease in the dropout rate. The company needs to know what the customer wants, and from

there it only has to adapt its sales models in accordance with the insights obtained from the

customers studied.

The same notion applies to the program this project is a part of: with the data extraction carried

out, information related to tourists and tourist destinations was acquired, which then can be used

to trace and compare tourist profiles and determine what makes a tourist satisfied or dissatisfied.

The conclusions drawn would be of high informative value and would contribute to shaping tourism

resource management models.

2.2.3. PREDICTIVE ANALYTICS IN PORTUGUESE TOURISM

After researching on academic platforms, such as Google Scholar and ResearchGate, I was able to

conclude that, in Portugal, there is a still a huge shortage of literature regarding web scraping and

predictive analytics aimed at tourism.

There is a need to promote the creation of specific literature on the relation between

predictive analytics, the study of behaviour and its application to the tourism sector in

Portugal as a decisive factor in the creation of innovation and competitiveness, through the

support it provides to decision-making (Galinha, 2017).

Data are essential material for the study of tourist behaviour, and given the impact that tourism

has on the financial sector in Portugal, I believe that companies should invest in these technological

fields, as it is a promising industry with a lot of work to be done, in line with the increasing amount

of information conceived daily.

It is expected that both the tourism sector and the data extraction and analysis sector will evolve a

lot in Portugal, in the coming years, given the current explosion in the volume of data available. In

this country, there are more and more centralised platforms for booking accommodation and

tourism attractions, such as TripAdvisor, Booking.com and Airbnb, whose popularity has increased

circumstantially in the recent years. The access to them has also been increasingly facilitated, with

the evolution and standardisation of ICT. Combining this growth trend, which facilitates access to

more data to be extracted and analysed, with the extreme scarcity of literature on web scraping in

10

this country’s tourism, I am confident that any investment made in this area will have very fruitful

results for Portugal, in the years to come.

2.2.4. WEB SCRAPING DEFINITION

Zhao (2017) defines web scraping as a technique to extract data from the World Wide Web (WWW)

and save it to a file system or database for later retrieval or analysis. Due to the large amount of

data constantly generated on the Internet, web scraping is considered a very efficient technique to

collect big data (Mooney et al., 2015). Zhao also states that scraping data from the Internet is

divided into two main steps: acquiring web resources and then extraction information from the data

we acquired:

Specifically, a web scraping program starts by composing a HTTP request to acquire

resources from a targeted website. This request can be formatted in either a URL

containing a GET query or a piece of HTTP message containing a POST query. Once the

request is successfully received and processed by the targeted website, the requested

resource will be retrieved from the website and then sent back to the given web scraping

program. (Zhao, 2017)

A web scraping program is composed by two essential modules: the first performs the HTTP

request, which, on this project, was Selenium, while the second parses and extracts information

from the HTML code. For this second part, I used Beautiful Soup. In my particular case, Selenium

automatically opened a temporary browser to access the tourism platforms, while Beautiful Soup

scraped the information on those platforms, through their HTML source codes.

Data extracted can then be exported to a file or a database, for further analysis. In this case, the

data obtained were transformed into Excel datasets.

 2.2.5. WEB SCRAPING SOFTWARE TOOLS

While there is a fair amount of web scraping tools available, I only considered two possible options

before beginning my project: using a web scraping software tool or building my own. Initially,

through some research, I tried to come up with an easy way of extracting data from tourism

platforms. After having read some literature regarding web scraping tools, I concluded that

11

Octoparse1 would be a good choice. According to Matta et al. (2020), Octoparse is a tool that lets

people who don’t want to code use web scraping at its best use. Although coding was not a problem

for me, I surely would not oppose to adopting a different methodology, if it saved me time and

proved to be efficient. After experimenting with that program, I concluded Octoparse was a very

good web scraping tool, confirming the statements by Almaqbali et al. (2019), which defend that

Octoparse stands out due to its user-friendly interface, allied to a very powerful performance.

However, there was a big problem with this program: its free version had some limitations which

would not allow me to perform everything I wanted. Therefore, I decided to build my own web

scraper, which had the potential to be better than a general web scraping software tool, as it was

going to be custom made by myself, meaning I could focus only on the functionalities I really need,

directing them specifically to the tasks at hand. Evidently, the programming language of choice

was Python, which is not only one of the most popular programming languages nowadays, but also

the best for data science, which is what this whole project revolves around.

 2.2.6. PROBLEMS IN WEB SCRAPING

Despite the evident advantages associated with web scraping, there are a few drawbacks that might

compromise the integrity of obtained information. One of the main problems consists of the fact

that the quality of results depends on the quality and availability of collected data. Even if the person

extracting the data is extremely skilled and uses professional methods, the results will always

depend on the origin from which that data was extracted. Any inconsistent data must be identified

and corrected before the analysis. According to Galinha (2017), it is estimated that 75% of the

resources used in a project of data extraction are focused on the preparation of said data. Another

problem, which is very relevant given this current project, is that fact that the automated extraction

of data does not guarantee results that are 100% accurate, meaning there is always the possibility

of needing human intervention. It is up to the researcher to evaluate which processes are more or

less automatable and autonomous, in order to create a viable system. Sometimes, some random

fluctuations occur, resulting in non-observable patterns in the extraction of data, making this one

of the possible problems in web scraping. It is also important to know, being this project not only

connected to informatics but also tourism, that having only informatics skills is not enough, as the

intervention of someone qualified in the field of tourism is necessary, to evaluate the importance

1 https://www.octoparse.com/

12

of each extractable element and interpret the results obtained. Thus, the current project counts on

the collaboration with several people working in the tourism field, allowing us to join forces and

obtain results with a high degree of information and reliability.

Another problem associated with web scraping consists in the resulting legal and ethical issues,

such as copyright implications (O’Reilly 2006). Since it is a very powerful technique, controversy

around that topic is inevitable. Technically, there are no legal issues regarding the scraping of web

data, as the data that is collected is free and available for everyone to use. While there may be

certain terms of services in websites that condemn such practices, one can just state that he or

she never officially agreed to those terms of service (Zhao, 2017). Therefore, instead of focusing

on legal punishments, websites try to adopt systems to stop people from abusing these powerful

scraping techniques. For instance, the websites check the HTML headers when they receive a

request from the scraper, in order to determine if that request is coming from a normal user

browsing their website or from an automated tool. To counter that counteract, I used a “decoy”

header that tricks the target website into thinking I am a normal user accessing their website

normally. My code can also include a pause time between each request, avoiding an overload of

requests, which would be considered a denial-of-service attack (DDoS).

 2.2.7. WEB SCRAPING IN TOURISM

Oliveira (2017) defends web scraping as a viable method for defining relevant tourism indicators,

which allow the companies to obtain valuable insights, thus developing the sector and contributing

to better business models. In his study, he extracted data from the TripAdvisor tourism platform

using Import.io2, obtaining user information regarding the Brazilian city of Minas Gerais. His

methodology allowed him to conclude that the extracted data not only portrayed the behaviour of

tourists on that zone, but also confirmed the veracity of that information, by comparison with what

was observed in the tourism market related to that city.

Choong (2019) also performed a study on web scraping, creating an automated web scraping tool

for Malaysia tourism. In his project, he creates his own web scraper tool, which, just like mine,

uses Selenium and Beautiful Soup, while also being supported by PySimpleGUI to build a Graphical

User Interface (GUI). With his work, he concluded that there is too much public tourism data

2 https://www.import.io/

13

available on the Internet, which is essentially being wasted, instead of being used for its potential

value.

With their work regarding “Development of online travel Web scraping for tourism statistics in

Indonesia”, Adhinugroho et al. (2020) conduct a web scraping methodology on Indonesian online

travel agent websites, Agode and Pegipegi. Their method also included Python, using Beautiful

Soup and the Requests modules to extract the chosen data. They displayed a fair amount of graphs

and tables, which led to the conclusion that the results obtained from their extractions coincided

with the official statistics, further emphasizing the idea that web scraping is a very useful and

powerful technique that can lead to valuable results.

2.3. DATA VISUALISATION

Ajibade and Adediran (2016) define data visualisation as the act of data presentation in a graphical

or pictorial layout. According to them, data visualisation allows one to visually observe analytics

and easily understand complex ideas.

As stated by Khedikar (2021), the visual presentation of data is understood easily by the human

brain and it allows us to extract useful insights. Thus, we can easily identify patterns and outliers

in large datasets. Due to the large amount of data obtained from web scraping, it is necessary to

use powerful tools that can receive and represent data in extensive ways. Initially, I experimented

with Tableau, as it is a very good tool for visualising and analysing extensive volumes of data.

Despite its quality, I discovered that Python includes a wide array of libraries that can perform data

visualisation techniques very effectively, thus making it my choice.

One of the biggest challenges on this project was knowing what types of graphs to use and which

tourism indicators I should cross visually. To cite Ajibade and Adediran:

You must, first of all, understand the data want to visualize with its size and cardinality (the

uniqueness of data value contained in a column). You also should determine what you are

trying to visualize and the type of information to be communicated; you are also supposed

to have a good knowledge of your audience and understand how it processes the vital

information, and, lastly, you should make use of a visual that carried the information in

the best and easiest way to your audience or end users. (Ajibade and Adediran, 2016)

14

Thanks to Plotly and Dash libraries, I was able to not only turn my extracted data into graphs, but

also add interactivity to those graphs, which allowed me to take this whole notion of web scraping

and data analysis one step further, obtaining even more information and details from my data

visualisations.

3. METHODOLOGY

In this section, I will list and describe the tourism platforms selected, the tourism indicators that I

considered relevant for collection, and the software tools I used to perform the extractions.

3.1. TOURISM PLATFORMS

Given the available tourism platforms available in Portugal and Galicia, these were the ones chosen,

due to their popularity and amount of data accessible for extraction:

• Booking.com

• Tripadvisor

• Airbnb

3.1.1. BOOKING.COM

Booking.com is an international website which allows the user to book accommodation for vacation

or travelling. It was founded in 1996 by Geert-Jan Bruinsma, in the Netherlands.

3.1.2. TRIPADVISOR

Tripadvisor is a travelling website that includes information and reviews on several fields related to

tourism, such as accommodation, transportation, activities, and restaurants. It was founded in the

United States in 2000, by Langley Steinert, Stephen Kaufer, and others.

15

3.1.3. AIRBNB

Airbnb is an online marketplace for lodging, on which users can either announce or discover and

book accommodations. They do not own any of the listed properties, they simply provide the means

for people to rent those properties, while receiving a commission from each booking.

3.2. TOURISM INDICATORS

Within the context of this project, the following zones were chosen as the most relevant to be

observed:

• Galicia

• North of Portugal

• Center of Portugal

In collaboration with IPDT (Instituto de Planeamento e Desenvolvimento do Turismo), the following

indicators were defined as relevant for extraction:

• Accommodation name

• Zone

• Price

• Rating

• Number of comments

• Spots remaining at the presented price

• URL

The check-in date settings were also defined, allowing for comparison of extracted results:

• In 1 day

• In 30 days

16

• In 60 days

3.3. SOFTWARE TOOLS USED

3.3.1. PYTHON

Python is a high-level object-oriented programming language, created by Guido van Rossum in

1991. It is considered the one of best programming languages to automate tasks and conduct data

analysis. Python is extremely popular nowadays, due to its versatility and user-friendliness. Given

this easiness, Python is used by many non-programmers to perform daily tasks that would

otherwise require manual work. It is a very powerful tool in the fields of data science, web

development and automation. Almost every step of the method described in this document relies

on Python.

3.3.2. JUPYTER NOTEBOOK

While programming, it is essential to have a good IDE (integrated development environment).

Having tried many, I noticed that my code would require a lot of testing of single features within

the program. Therefore, it was essential to use a Notebook type of IDE, which, as the name

indicates, functions as a sort of notebook on which a sequential “story” will be written. As with

every story, it is divided in parts, on which they follow a sequential order. With a notebook, we have

the option of dividing our code in blocks of code and running them separately. If previous blocks

are run before our current code, then the laws applied by those previous blocks will be applied to

our current code. Unlike normal IDEs, we do not need to run the whole code every time we modify

it. For instance, with this program, I started with the first block that included the codes for opening

the website and extracting all the data available. Then, to focus on a specific element that I want

to extract, I could just create another block and write my code for that specific element there. If I

ran that block, I did not need to re-run the whole program, it would just run that specific block and

I would get the desired result. This makes a notebook IDE the perfect tool for this type of project

on which there are a lot of trial and error attempts.

17

After some research, I concluded that Jupyter Notebook3 was the best IDE for my task. After

installing it on my computer, I just needed to run it, and it would automatically open on my browser.

Although it runs on my browser, it works locally, requiring no internet access.

Figure 1 - Jupyter Notebook interface.

4. IMPLEMENTATION

4.1. DATA EXTRACTION

There are several tools available which make web scraping a much easier task. While they are very

user-friendly and intuitive, the user is restricted to the capabilities of each individual program. This

makes dedicated web scraping software very good for casual use. However, it is not the best when

you have very specific goals, which was my case. I wanted very specific extractions from three

different online tourism platforms, and I wanted those extractions to occur automatically, while also

wanting that whole process to be done in an easy and intuitive way, with an also intuitive user

interface that was solely focused on the goals of this project. For me to achieve this, I knew I could

not count on external web scraping tools to perform these tasks. I had to create a web scraper

from scratch, using programming language. That way, everything works the way I want, with every

3 https://jupyter.org/

18

little “cogwheel” rotating in the directions I want. I did not need a web scraper with countless

features that could perform several different tasks. I needed a web scraper that went straight to

the point and extracted everything I instructed it to, converting all the extracted data into datasets.

My web scraper was not written in a way that it could extract anything from any website. My web

scraper was fully and solely dedicated to the subject of this project (tourism in Galicia and

North/Center of Portugal), it was coded in a way that it already knew what it had to extract, as it

was built based on the source codes of Booking, TripAdvisor and Airbnb pages. Regular web

scraping software programs require you to insert the URL from which you want to extract data. My

program does not need that because it already has pre-set functions that extract data from the

platforms previously selected during this project. When performing the extractions, I did not have

to select the URLs and elements I wanted to extract, as all of that had already been specified in

the code I had written. The only interaction between the user and the program is choosing between

the three tourism platforms and choosing whether he wants to extract the hotels’ data to coincide

with check-in dates of “In 1 day”, “In 30 days” or “In 60 days” from today (the day of extraction).

The main goal of this project was to design a system that collects data from the tourism platforms

in Galicia and North/Center of Portugal, which subsequently gets analysed in order to obtain

valuable insights. My program did that almost automatically.

4.1.1. LIBRARIES AND PACKAGES

In order to create a web scraper fully capable of extracting and managing data, I required several

Python libraries and packages, which aided me in different situations.

Beautiful Soup

Beautiful Soup4 is a Python library for extracting data from HTML and XML files. It does not support

JavaScript, which is included in the pages I wanted to extract data from, so I needed another library

to help Beautiful Soup extract data.

4 https://www.crummy.com/software/BeautifulSoup/bs4/doc/

19

Selenium

Selenium WebDriver5 runs a browser natively, just like a normal use would, automatically. In this

context, it automatically opens a temporary browser which opens the tourism platforms, allowing

Beautiful Soup to extract data from the HTML source code obtained by Selenium. While BS4 can’t

interpret JavaScript, Selenium can, which is why this was necessary for the whole process.

csv

A Python module that allowed me to instruct my program to read and write the extracted data into

a dataset in Excel format.

Time

This module can perform several time-related functions. I used it to force my code to wait a few

seconds between opening the webpages and actually extracting the data, in order to avoid losing

data. This concept will be explained in a later section.

Datetime

This module allows me to manipulate dates and times. In this case, I used it to allow the program

to distinguish different dates, in relation to the date on which the extraction is performed. Before

implementing these functions, my program would open the URL with listings from the current day.

If I ran the same program a few days later, it would still open the URL from three days earlier

(which would result in an error). With this module, the program always functions at the date on

which it is being used. It allowed me to define the date for the search results, in relation to the date

on which the extraction was performed. For instance, my program can search results

corresponding to 60 days after the current day. If I run that program five days later, that function

will present results for 60 days after the day on which I am performing the extraction, instead of

55.

5 https://www.selenium.dev/documentation/webdriver/

20

Pandas

Pandas is a powerful Python library used to analyse data. In this case, I only used two specific

functions that allowed me to transform the extracted data into a data frame, which then got

transformed into an Excel file.

re (Regular expression operations)

This module allows me to use regular expressions on my code. For this particular case, regular

expressions helped me obtain cleaner data during the extractions. Sometimes, some of the

elements extracted came with extra text that was not necessary, and with this module I was able

to only receive the information I want.

math (Mathematical functions)

The math module allows access to mathematical functions. I’ve used some of these functions to

assist me with the lines of code related to pagination, on which I tried to discover the number of

the last page of results (explained on a later section).

PySimpleGUI

PySimpleGUI6 is a Python package that allowed me to create a GUI (Graphical User Interface) that

runs my code, making the whole program intuitive and usable by any person. Before adopting this

package, all the actions performed relied on coded lines, which was difficult to follow, from an

outsider’s perspective. With a visual interface, not only is my program more aesthetically pleasing,

but it also facilitates the whole process of debugging my code, as I’m no longer only looking at

endless lines of code.

6 https://www.pysimplegui.org/

21

4.1.2. WEB SCRAPING METHOD

There were two possible ways on which I could have approached this situation. I could have either

extracted data directly from the websites, using Python functions that access the website, read and

extract all the information available, or I could have used an API (application programming

interface), created by the companies to allow external third-party developers to access their data

and functionalities. The API is considered the recommended method, as it is created by the tourism

platforms with a defined set of rules, transmitting only relevant data, whereas extracting data

directly makes it so we receive everything, including useless details that will need to be deleted

later. Unfortunately, it is often difficult to receive access to their API keys, and this was the case,

so I was forced to use the other method of data extraction.

As I had to extract everything directly from the website, I had to come up with a method on which

it was easy to define from which zone and on which date I wanted my results to be from. In this

case, my web scraping method was based on the target URL link. Since the respective URLs of

each of the three tourism platforms contain zone and check-in/check-out parameters, this method

was extremely viable. Besides that, they also contain information regarding the pagination, which

is very important, as while my program needs to extract data from every single page, it also needs

to be able to recognize when it reaches the last page, otherwise it will be stuck in an infinite loop.

So basically, I had to come up with a code that performed the following tasks:

1. Receive and modify the target URL with the search parameters I choose

2. Access the URL that was modified previously and extract the data from that page

3. Jump to the next page, extract the data, and repeat for the subsequent pages

4. Stop the loop once it reaches the final page

5. Compile all the data extracted into a data frame, which is then transformed into a dataset

in Excel format.

4.1.2.1. FIRST EXTRACTION: GENERAL RESULTS

To portray this method, I used the Booking.com part of the program as an example, although the

same method was used for all three tourism platforms. All results obtained, including prices,

correspond to a one-day booking, for a group of two adults.

22

Figure 2 - Booking.com general results for Braga city.

Before beginning, I had to import all the necessary libraries and packages, which would be used

to scrape data, create data frames, read and create Excel files, find and replace text, calculate and

define dates, and create a visual interface. I also added an empty list called hotelslistBooking,

placed in the beginning of the code, as it should be outside our main function. This list will contain

all the data extracted, which will then be converted into a data frame, and, subsequently, into a

dataset.

from bs4 import BeautifulSoup

import requests

from selenium import webdriver

from selenium.webdriver.chrome.service import Service

from selenium.webdriver.common.by import By

from webdriver_manager.chrome import ChromeDriverManager

from csv import writer

import time

import pandas as pd

import PySimpleGUI as sg

import datetime

import re

import math

hotelslistBooking = []

Listing 1 - Importing necessary libraries and creating my list.

23

When scraping data, my program is essentially sending a request to the target website that is not

only saying “I want to extract your data”, but also revealing information about who is trying to

extract that information and what type of information is being extracted. However, websites do not

want people to use those requests to extract data from them automatically. If the target website

knows that my requests are coming from an automated program purely intended to scrape their

data, it will try to blacklist my address. Therefore, it is necessary to use a “header”, which contains

information regarding the browser being used, fooling the target website into thinking these

requests are coming from a normal user accessing their website through a browser.

To begin, I defined a function, which I called getHotelsBooking, that will execute a large amount of

tasks: it will receive the modifiable URL, access it using Beautiful Soup and Selenium, then search

for the elements I want (identified by their CSS classes), extract them, add them to a dictionary

called hotelbooking, which then will be added to a list which I earlier named HotelsListBooking.

Then, with the assistance of a “for loop”, repeat the same process for the following pages,

constantly adding the extracted data into the growing HotelsListBooking list. After reaching the final

page, the concluded HotelsListBooking is then turned into a dataframe, which is converted into an

Excel dataset.

Here is an example of a standard Booking.com URL, which I must modify:

headers = {'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82

Safari/537.36'}

Listing 2 - Headers section of the code, which avoids me being blacklisted by the target website.

24

Although this is a very long URL, amid all these random characters I can find relevant information,

such as the zone, the check-in/check-out dates and the page number, highlighted in red. If I replace

those relevant elements (highlighted in bold red) with variables, my code will essentially open the

URL with the zone and dates I choose, as long as I teach my program to do so beforehand. I will

name my variables page, zone, and year1, month1, day1 for the check-in date, and year2, month2

and day2 for the check-out date. For instance, that portion of the URL will become the following:

Thus, I can start defining my function, which will receive those parameters, turning my URL into

an accessible one.

https://www.booking.com/searchresults.pt-pt.html?label=gen173nr-

1DCAEoggI46AdIM1gEaLsBiAEBmAEfuAEXyAEM2AED6AEBiAIBqAIDuAK05-

GUBsACAdICJDA4ZmNhMjM0LWQyNzctNDYzMC04MGU2LTEyMzJlMTg5Mjc4MdgCBOACAQ

&sid=06ca9cc81011f571efff0bf1217d614b&sb=1&sb_lp=1&src=index&src_ele

m=sb&error_url=https%3A%2F%2Fwww.booking.com%2Findex.pt-

pt.html%3Flabel%3Dgen173nr-

1DCAEoggI46AdIM1gEaLsBiAEBmAEfuAEXyAEM2AED6AEBiAIBqAIDuAK05-

GUBsACAdICJDA4ZmNhMjM0LWQyNzctNDYzMC04MGU2LTEyMzJlMTg5Mjc4MdgCBOACAQ

%26sid%3D06ca9cc81011f571efff0bf1217d614b%26sb_price_type%3Dtotal%26

%26&ss=Braga%2C+Regi%C3%A3o+do+Norte%2C+Portugal&is_ski_area=&checki

n_year=2022&checkin_month=6&checkin_monthday=2&checkout_year=2022&ch

eckout_month=6&checkout_monthday=3&group_adults=2&group_children=0&n

o_rooms=1&b_h4u_keep_filters=&from_sf=1&ss_raw=braga&ac_position=0&a

c_langcode=pt&ac_click_type=b&dest_id=-

2160205&dest_type=city&place_id_lat=41.551094&place_id_lon=-

8.42827&search_pageview_id=958d3b1a46680009&search_selected=true&sea

rch_pageview_id=958d3b1a46680009&ac_suggestion_list_length=5&ac_sugg

estion_theme_list_length=0&offset=0

%26&ss={zone}&is_ski_area=&checkin_year={year1}&checkin_month={month

1}&checkin_monthday={day1}&checkout_year={year2}&checkout_month={mon

th2}&checkout_monthday={day2}&group_adults=2&group_children=0&no_roo

ms=1&b_h4u_keep_filters=&from_sf=1&ss_raw=braga&ac_position=0&ac_lan

gcode=pt&ac_click_type=b&dest_id={zone}&dest_type=city

Listing 3 - Standard Booking.com URL.

Listing 4 - Portion of the URL that contains the date and zone parameters.

25

Now that I have a function that accesses our URL based on the parameters it receives, I need to

write a code that adds those parameters to the URL.

Let’s say I want my program to give me results from Braga city, with a check-in date of today (not

today as in the day I am writing this, but today as in the day the search is performed, which can

be any day), and a check-out on the following day. If today is June 3rd, I could just say that “day1

= 3” and “month1 = 6”, and when I run my function, the URL will give me today’s results. However,

this is a terrible solution, because if I come back tomorrow and run the program again, it will not

give me tomorrow’s results, it will give me June 3rd’s results, as day1 and month1 are defined as

constants. This means I must define a variable for today’s date, and for tomorrow’s date, that is

always updated. I can easily achieve this by using the Datetime module, mentioned previously.

Let’s begin by defining a variable that always gives me the current date and hour:

As I am writing this, it is now 06:12 of June 3rd . Printing datetoday will give me the following output:

def getHotelsBooking(page, zone, day1, month1, year1, day2, month2,

year2):

url = f‘https://www.booking.com/searchresults.pt-

pt.html?label=gen173nr-

1DCAEoggI46AdIM1gEaLsBiAEBmAEfuAEXyAEM2AED6AEBiAIBqAIDuAK05-

GUBsACAdICJDA4ZmNhMjM0LWQyNzctNDYzMC04MGU2LTEyMzJlMTg5Mjc4MdgCBOACAQ

&sid=06ca9cc81011f571efff0bf1217d614b&sb=1&sb_lp=1&src=index&src_ele

m=sb&error_url=https%3A%2F%2Fwww.booking.com%2Findex.pt-

pt.html%3Flabel%3Dgen173nr-

1DCAEoggI46AdIM1gEaLsBiAEBmAEfuAEXyAEM2AED6AEBiAIBqAIDuAK05-

GUBsACAdICJDA4ZmNhMjM0LWQyNzctNDYzMC04MGU2LTEyMzJlMTg5Mjc4MdgCBOACAQ

%26sid%3D06ca9cc81011f571efff0bf1217d614b%26sb_price_type%3Dtotal%26

%26&ss=Braga%2C+Regi%C3%A3o+do+Norte%2C+Portugal&is_ski_area=&checki

n_year={year1}&checkin_month={month1}&checkin_monthday={day1}&checko

ut_year={year2}&checkout_month={month2}&checkout_monthday={day3}&gro

up_adults=2&group_children=0&no_rooms=1&b_h4u_keep_filters=&from_sf=

1&ss_raw=braga&ac_position=0&ac_langcode=pt&ac_click_type=b&dest_id=

{zone}&dest_type=city&place_id_lat=41.551094&place_id_lon=-

8.42827&search_pageview_id=958d3b1a46680009&search_selected=true&sea

rch_pageview_id=958d3b1a46680009&ac_suggestion_list_length=5&ac_sugg

estion_theme_list_length=0&offset={page}’

datetoday = datetime.datetime.now()

Listing 5 - Main function getHotelsBooking, that modifies the parameters on the URL.

Listing 6 - Function to obtain current date and hour.

26

However, by observing the link, I can see that I do not need the entire date and time, as the

parameters seen on the URL are in a number format, so I need to define variables for today’s day,

month and year:

Printing those 3 variables will give me the following output:

I also need to use the same method for tomorrow’s day, which will be my check-out date. I can re-

use datetoday and use “datetime.timedelta”, which will allow me to jump forward 1 day.

Printing them gives me this output:

2022-06-03 06:12:12.236867

daytoday = datetoday.strftime("%d")

monthtoday= datetoday.strftime("%m")

yeartoday = datetoday.strftime("%Y")

03

06

2022

datetomorrow = datetime.date.today() + datetime.timedelta(days=1)

daytomorrow = datetomorrow.strftime("%d")

monthtomorrow = datetomorrow.strftime("%m")

yeartomorrow = datetomorrow.strftime("%Y")

2022-06-04 06:12:12.236867

04

07

2022

Listing 7 - datetoday output.

Listing 8 - Defining variables for today's day, month and year.

Listing 9 - daytoday, monthtoday and yeartoday's outputs.

Listing 10 – Advancing 1 day on our previous functions.

Listing 11 - datetomorrow, daytomorrow, monthtomorrow and yeartomorrow's outputs.

27

Now that my time variables are ready, I just have to define the parameter for the zone I want. In

this case, for demonstration purposes, I will want Braga city. If I go to Booking.com and search for

hotels in Braga, I can see the portion of the link that includes the zone, which is “-2160205”.

As I now know almost every parameter that will be added to the URL, I can begin by defining the

parameters of my “getHotelsBooking(page, zone, day1, month1, year1, day2, month2, year2)”

function.

However, there is still one variable remaining, which is “page”. Without “page”, my program would

open the link, which would be on the first page of results, but then it would not continue its task

on the following pages. Therefore, I need the page variable and I need to instruct my code to start

at the first page, and then jump to the next one, repeat the same process, and then jump to the

next page, and so on. Besides that, it must also know when it has reached the final page, so it

stops the program. I can do that with a “for loop”, but before jumping into that subject, we need

to understand the process of pagination.

Usually, websites include the page number. If I analyse Booking.com’s URL, I can observe that the

link includes information on the page, but instead of containing the page’s exact number, it does

so in leaps of 25. So, the URL on the first page includes a 0, the second page’s includes a 25, the

third page’s includes a 50, and so on. Having this information, I now know that I just have to

instruct my program to start at “page = 0”, extract the data and then jump to the second page,

which would be “page = 25”, and then to the third page, which would be “page = 50”. Essentially,

I need my program to be executed in a loop, in leaps of 25 between each loop, until the last page.

With the first part of the pagination process complete, I now need to make it so my program is able

to tell when it has reached the final page. There are two main methods of doing this:

1. Search the HTML element that includes the total number of listings found, extract that

piece of text, transform it into an “int”, which allows me to divide it by 25, giving me

zone = -2160205

day1 = daytoday

month1 = monthtoday

year1 = yeartoday

day2 = daytomorrow

month2 = monthtomorrow

year2 = yeartomorrow

Listing 12 - Zone and time parameters defined.

28

the approximate number of total pages, which would also have to be rounded up

afterwards.

2. Use BeautifulSoup’s soup.find to look for the HTML element that represents the “Next

page” arrow, which takes me to the following page when clicked. This element is

always present when I am not in the last page, but always missing when I am on the

last page, as it is impossible to jump to the next page when there are no pages

remaining.

Figure 3 - Page buttons at the first page.

Figure 4 - Page buttons at the first page.

Since the latter is a much simpler and faster method, I chose that one. However, later I will also

perform the first method as an alternative, in case the second one stops working due to updates

on the source code.

In order to find that HTML element, I need to open the page on my browser, right-click the next

page arrow button and select “Inspect”.

Figure 5 - Inspecting the "next page" element to discover its HTML tag and CSS class.

This way, I can see that the arrow button’s type is “button”, while its CSS class is “fc63351294

f9c5690c58”. I can use “soup.find” to extract the source code corresponding to that arrow button.

I will name this variable NotLastPage, and since it will be included inside getHotelsBooking, it will

look like the following:

getHotelsBooking.NotLastPage = soup.find(‘button’, {‘class’:

‘fc63351294 f9c5690c58’})

Listing 13 - Function to find the arrow button.

29

If I print getHotelsBooking.NotLastPage, its output will be:

Now that I can extract this element, I will need to instruct my program to check if that element

exists, which will tell me if I am on the last page. Before doing that, I need to setup my “for loop”

statement, which will run my program in a loop, stopping only when it reaches the final page

(otherwise it will run forever).

This “for loop” will essentially run my main function, with the “page” number varying in iteration

of the loop. So, in this case, getHotelsBooking will be run in a way so that day1, month1, year1,

day2, month2 and year2 will always be constant during our loop. The only thing that will change

between loops is the page, which I will call “x”. When creating my “for loop”, I will have 3

parameters:

“a” is the starting number of x on my loop. In this case, on the first page, the “page” number is 0,

so “a” will be 0.

“b” is the ending number of x on my loop. In this case, it is not important because I will force it to

stop when it doesn’t find the arrow element. Nevertheless, I will add 1000, which is the maximum

number of results that Booking.com displays.

“c” defines how big is the “leap” between each loop. Since on the first page, “zone” is 0 and on

the second page, “zone” is 25, I know that between each loop, x will have to increase by 25.

Therefore, my c = 25.

<button aria-label="Página anterior" class="fc63351294 f9c5690c58"

type="button"><span aria-hidden="true" class="b6dc9a9e69

e25355d3ee"><svg data-rtl-flip="true" viewbox="0 0 24 24"

xmlns="http://www.w3.org/2000/svg"><path d="M14.55 18a.74.74 0 0 1-.53-.22l-5-5A1.08 1.08 0

0 1 8.7 12a1.1 1.1 0 0 1 .3-.78l5-5a.75.75 0 0 1 1.06 0 .74.74 0 0 1

0 1.06L10.36 12l4.72 4.72a.74.74 0 0 1 0 1.06.73.73 0 0 1-.53.22zm-

4.47-5.72zm0-.57z"></path></svg></button>

Listing 14 - Printing my function that gives me the arrow's element.

for x in range(a, b, c):

Listing 15 - Example of a "for loop".

30

This gives me:

Here’s what I am telling my program: run getHotelsBooking for every instance of x (which

corresponds to the page), starting with x = 0 and jumping in intervals of 25. In every loop, if the

next page button exists, the loop should continue normally (it checks if it has the attribute

“__len__”, which only does not occur if there is no text). If the button does not exist, it does not

have the “__len__” attribute, because no text was extracted, since there was no element to extract

it from. If that is the case, then the loop should break, because it means it has reached the last

page.

Figure 6 - Main function's flowchart (getHotelsBooking).

for x in range(0, 1000, 25):

 getHotelsBooking(x, zone, day1, month1, year1, day2, month2,

year2)

 if hasattr(getHotelsBooking.NotLastPage, ‘__len__’) == True:

 continue

 else:

 break

Listing 16 - "For loop" that cycles through every page until it reaches the last one.

31

With the loop functioning perfectly, I can now move on to the extraction part. My function can open

the URL and perform its tasks in each page, until it reaches the last page. Now I must define what

those tasks are, inside each page. Therefore, I need to select the elements I want to extract, using

the same method I previously used to locate the “next page” arrow button.

Firstly, I need to examine the first page to understand how the HTML and CSS elements are

structured. By inspecting the elements, I can observe that there are multiple blocks with the same

class, each corresponding to each listing.

Figure 7 - Inspecting each hotel's HTML "block" to discover their CSS class.

Since the information I want to extract is contained inside that block, and since I want to do that

for every block available, I am now faced with another situation where a “for loop” will be very

useful, as after I define the elements I want to extract, that extraction will occur for every block the

program encounters. I can define a variable called BookingHotel, on which I will use Beautiful Soup

to find and extract every block, with “soup.find_all”.

If I print BookingHotel, I will receive the html code for all 25 listings, which itself will contain every

bit of information I wish to extract.

BookingHotel = soup.find_all(‘div’, {‘class’: ‘a826ba81c4 fe821aea6c

fa2f36ad22 afd256fc79 d08f526e0d ed11e24d01 ef9845d4b3 da89aeb942’}

Listing 17 - BookingHotel function that finds all block elements that contain each accommodation.

32

So I want to create a “for loop” that, for each individual listing (which I will name “item”), extracts

the elements we want, and then adds all the extracted information into a dictionary, which I will

call BookingHotelDict.

On each item, the program tries to find and extract all these elements. However, if it searches for

a specific element and does not find it, the program would normally stop and give me an error,

for item in BookingHotel:

 try:

 name = item.find('div', {'class': 'fcab3ed991

a23c043802'}).text

 except:

 name = ‘None’

 try:

zone = item.find('span', attrs={"data-testid":

"address"}).text

 except:

 zone = ‘None’

 try:

price = item.find('span', {'class': 'fcab3ed991

bd73d13072'}).text

 except:

 price = ‘None’

try:

 rating = item.find('div', {'class': 'b5cd09854e

d10a6220b4'}).text

except:

rating = 'None'

try:

commentsaux = item.find('div', {'class': 'd8eab2cf7f

c90c0a70d3 db63693c62'}).text

comments = re.sub("[^0-9]", "", commentsaux)

except:

comments = 'None'

try:

remainingaux = item.find('div', {'class':

'cb1f9edcd4'}).text

remaining = re.sub("[^0-9]", "", remainingaux)

except:

remaining = '10 ou mais'

link = item.find('a', {'class': 'e13098a59f'})['href']

 BookingHotelDict = {

 'Name': name,

 'Zone': zone,

 'Price': price,

 'Rating': rating,

 'Comments': comments,

 'Remaining': remaining,

 'Link': link

 }

 HotelsListBooking.append(BookingHotelDict)

 return Listing 18 - "For loop" that extracts selected elements on each iteration.

33

because I only gave it instructions for a scenario where the element is found. Therefore, it is

mandatory to add a “try” and “except” on each element I search, that way the program knows

what to do in both scenarios. If it finds the element, it extracts it. If the element does not exist, I

receive a “None”.

It is also important to mention that “soup.find” gives me the element it found, including html and

CSS tags. I do not want that, as I am only looking for the text. Therefore, I must add a “.text” at

the end of my variables, which will remove all the HTML/CSS tags and return only the text.

On the comments and remaining spots’ elements, I would receive a line of text that included the

numbers I wanted to extract. Since I am only interested in the numbers, I can use regular

expressions to remove the non-numeric characters. With re.sub, I can replace the whole text

element with only the number characters, leaving me only with the numbers I want.

When creating my BookingHotelDict dictionary, I am getting a glimpse of what my future dataset

will look like. With every item, the info extracted is added to this dictionary, which is then appended

to my main list HotelsListBooking. With each loop, the list grows larger. In the end, that list will be

transformed into a data frame, which will then be converted into an Excel file.

So far, I have defined my main function getHotelsBooking, which grabs and modifies the URL based

on our parameters, accesses it, extracts the useful elements from the first page, adds them into a

dictionary which is then progressively appended into our main list HotelsListBooking. Then, it

verifies if it has reached the last page of results. If that is the case, the program stops. If it is not,

the program jumps to the second page of results and repeats the whole process, until it reaches

the final page and ends the loop.

Once the loop is over, my list is finalized, and I can now convert it into a data frame.

To do so, I will use “pd.DataFrame”, a function from Pandas’ library that transforms a list into a

data frame. In this case, I will name it “df”. Then, I convert that data frame into an Excel file, which

will contain the exact date and time on which the dataset was created, ensuring there never exist

files with the same name, otherwise the older file would be overwritten.

df = pd.DataFrame(HotelsListBooking)

df.to_excel('BOOKING

{}.xlsx'.format(pd.datetime.now().strftime('%m_%d_%Y_%H_%M_%S')))

Listing 19 - Creating a data frame and converting it to .xlsx.

34

I now have an Excel file called “BOOKING 06_04_2022_11_31_46” on my target folder, which

includes all the data I have extracted from Booking.

Figure 8 - Dataset with information from my first Booking.com extraction, on Excel (general results).

However, I had only accomplished this for Braga city. Within the context of this project, I had to do

the same whole process for Galicia, North of Portugal and Central Portugal. I will not demonstrate

such cases, as it consists of simple replacements of search parameters. Besides that, I also had

to perform all those searches on three different date presets: in 1 day, in 30 days and in 60 days.

This led to a very extensive code that will need a visual interface to simplify it, but more on that

later.

For now, I have extracted every page available. However, I needed to find a way to extract only a

specific number of pages, especially for testing purposes. While I was troubleshooting, it was not

very practical to have to wait until all the pages are scraped to see if the extraction was indeed

successful. Therefore, I will now demonstrate how I made my program allow me to choose the

amount of pages I want to extract. Even ignoring the testing purposes that led to this modification

on the code, it could still be useful, as one might want only to see the first pages of results, since

they usually contain the best and most relevant results.

35

Going back to the “for loop”, choosing the amount of pages is actually simpler than having the

loop end when it finds the last page. When I choose the number of pages I want to extract, I am

already telling my program when to stop the loop. Therefore:

My loop starts at page 0, increases in increments of 25 (which equals one page) and ends at

“page”, which will be the final page. Then, I only had to define that “page” will be the number that

I choose. Technically, I could just say “page = 2”, but that would require me to change the code

every time I want a different amount of pages. Therefore, I had to make it so the program receives

user input with the number of pages they want.

Firstly, I had to keep in mind that the pages’ numbers on the URL are multiplied by 25, so the

program has to do the same with the input received from the user.

I defined page as an integer that multiplies the user input by 25. I named the user input “npages”,

which will be explained later, as it is part of the GUI (Graphical User Interface) I added later, to

make the program more intuitive and responsive, and to allow the user to interact with it.

4.1.2.2. SECOND EXTRACTION: INDIVIDUAL RESULTS

After analysing the datasets I have obtained by using my program, I concluded that they did not

contain as much information as I wanted, since the search result pages only include a few details

about each accommodation. Therefore, I decided to also extract information from each individual

result, using the URLs previously extracted to be able to obtain even more data.

for x in range(0, page, 25):

 getHotelsBooking(x, zone, day1, month1, year1, day2, month2,

year2)

break

page = int(values['npages']) * 25

Listing 20 - "For loop" that receives the amount of pages I want to extract.

Listing 21 - Defining the number of pages I want to extract.

36

Figure 9 - Booking.com individual results for Braga city (first result).

When performing our global extractions, each Booking.com extraction from a single zone took

about 10 minutes, as it had to open 40 different URLs (1000 results, 25 results in each page). For

this next process, I had to open 1000 different URLs for each individual zone, which means that

each single extraction took roughly 4 hours and 10 minutes. Following the same method described

earlier, I inspected the page to find the CSS classes for the elements I wanted to extract, which

were: name, zone, score, description and top 10 comments. Theoretically, it is possible to extract

every single comment from every single result, but given the fact that some hotels contain over

1000 comments, simple math tells me that extracting comments from every result, in every zone

and in all 3 time periods would take roughly 250 days of continuous extractions. Therefore, I

extracted only the top 10 comments (which Booking highlights above the others).

37

Since each extraction was going to take approximately 4 hours, I had to make sure my code worked

flawlessly, otherwise I would have to start the extraction from the top if any errors occurred during

the process. In order to avoid one of the most common errors in web scraping, I added a “try” and

“except” in every element I want to extract. For instance:

If I only included the line listed above in my code, in each URL, the program would look for the

hotel name and extract it normally. However, if it comes across a page that does not contain that

hotel name element, the program would not know what to do, as it was only given instructions for

a scenario where said element is found. This leads to an error that forces the code to stop.

Therefore, I needed to do the following:

Now, the program knows that if the name element is found, it must extract the text of that element.

If that element does not exist, then it adds a “None” in its place, thus continuing the program’s

normal course without disruptions.

The method of extraction is almost the same as the one used previously, but it varies in one main

thing: instead of looping through a modifiable URL that constantly changes throughout the loops

based on my input, it loops through a list of URLs I obtained previously, making it a much simpler

process.

In order to obtain that list of URLs, I need to transform the column that contains the URLs in my

extracted dataset into a list. The easiest way to do so is to read that Excel file into a data frame,

and then convert the URL column into a list:

name = soup.find('a', {'id': 'hp_hotel_name_reviews'}).text

 try:

 name = soup.find('a', {'id': 'hp_hotel_name_reviews'}).text

 except:

 name = 'None'

Listing 22 - Extracting the names of accommodations without adding exceptions.

Listing 23 - Extracting the names of accommodations with exceptions for when a name isn't found.

38

Now that I have my list, named links_list, my main function getHotels will use the values of that

list to access the URLs.

With a simple loop, I can make getHotels loop through the entire list, thus extracting the data I

want from every single URL.

Figure 10 - Dataset with information from my second Booking.com extraction, on Excel (individual results).

After this, all that was left to do was repeating the process for every zone and every time period,

which took me a few days. Having finished those extractions, I then had 9 datasets for the global

search results (3 for each zone in each time period) and 9 datasets for the individual URLs (3 for

each zone in each time period).

df = pd.read_excel(Booking North 30 days.xlsx', sheet_name="Sheet1")

links_list = df['link'].tolist()

def getHotels(link):

url = f'{link}'

for x in links_list:

getHotels(x)

Listing 24 - Converting my dataset into a data frame and transforming the column containing the links into a list.

Listing 25 - Defining a main function that will receive URLs.

Listing 26 - "For loop" that cycles through the list of URLs.

39

Theoretically speaking, it would be possible to merge those 2 groups of 9 datasets into a single

group of 9 datasets, as the second group is technically a better version of the first, but since these

extractions occurred during the course of a few days, it led to a situation where the global search

results for a specific zone did not include the exact same 1000 results as the individual URLs, as

those extractions needed to occur at the exact same moment to ensure the page does not get

updated in the meantime.

Thus, the new datasets had the advantage of allowing me to create additional graphs based on the

accommodation descriptions and top 10 comments, while the old datasets had the advantage of

being extremely faster to extract, although restricting me to analysing only general data.

4.1.2.3. THIRD EXTRACTION: USER COMMENTS

While the user comments may contain tons of potentially valuable information, there is one large

con in extracting that type of data: it takes way too much time due to the large volume of comments

on each accommodation. If I were to extract the comments from every result of every zone, it would

take me over a month. Despite that, there is no reason for me not to, at least, construct the code

that extracts and analyses the comments of each specific hotel. In the future, if necessary, one

simple “for in” loop can apply this extraction to every single hotel in a list of URLs, just like it was

described in the previous subchapter of this document.

For demonstration purposes, I extracted 3050 comments from “Melia Braga Hotel & Spa”. I chose

to collect the names, nationalities, comments, scores given and type of room.

40

Figure 11 - Comments section on Melia Braga Hotel & Spa.

I used the same method as the one in the two previous subsections: I defined a function

getComments that modifies the {page} variable of the URL, based on the for loop sequence.

def getComments(page):

url= f'https://www.booking.com/reviewlist.pt-

pt.html?aid=356980&label=gog235jc-

1DCAsouwFCD21lbGlhLWJyYWdhLXNwYUgfWANouwGIAQGYAR-

4ARfIAQzYAQPoAQH4AQKIAgGoAgO4AsqjwZUGwAIB0gIkY2NjMjhiMjUtY2U4NC00ODY

3LTgyZGQtMmJiYTJlODU3NmI32AIE4AIB&sid=10eb916e05932c73e6abd20218be02

22&cc1=pt;dist=1;length_of_stay=1;pagename=melia-braga-

spa;type=total&&offset={page};rows=10'

Listing 27 - Defining a function that modifies the "page" variable on the URL.

41

In this case, I set the “page” value to 3050 so that my loop, which cycles in leaps of 10, does not

stop until it reaches the 306th page, that being the last page.

When the extraction had finished, I obtained the following dataset:

Figure 12 - Dataset with information from my third Booking.com extraction, on Excel (user comments).

With my extractions successfully performed, the web scraping portion of this methodology was then

concluded.

4.2. GRAPHICAL USER INTERFACE

While creating my program, I have noticed that it was getting increasingly harder to test the various

functions I was designing, as every time I wanted to run something, I had to go on Jupyter Notebook

and type the function I wanted to run, which is not very practical. There was a point where I had

multiple functions, all very similar, only differentiating on their search parameters. So I figured:

“why not build a user interface with a simple but intuitive design, that will allow me to run my code

without the hassle of typing the name of the functions?”. That is when I came across PySimpleGUI,

a Python package that allowed me to create a GUI for my program. After testing for a bit, I realised

page = 3050

for x in range(0, page, 10):

 getComments(x)

Listing 28 - "For loop" that will cycle through all pages until it reaches the last one.

42

that it was a very easy-to-use tool that facilitates not only the task of creating a working user

interface, but also the process of troubleshooting during my tests. It comes with many templates

and colour schemes, and it gives me the freedom to place the UI elements wherever I want, given

the right commands.

To begin this process, I had to create a new function, which I named booking_window. I started

with a default layout to see how the package looks, and based on that default window, I drew a

quick sketch of what I wanted my window to look like:

Figure 13 - Sketch of a potential GUI for my program.

Since I had made functions for extracting every page and for extracting only a specified number of

pages, I added radio buttons, which make it so you can only choose one of them at a time,

otherwise my program would crash, as it can’t perform both actions at the same time. “Custom

number” includes an input field, on which I can enter the number of pages, which is the npages

mentioned earlier. I also added buttons for each time-period.

Transforming the sketch above into a real window was easier than I expected: I used sg.Text to

insert a line of text, sg.Radio to add the radio buttons, using “font” and “size” to customise the text

to my liking, and sg.Button to add the time-period buttons. I used the theme “DarkTeal12” as its

colour scheme resembles the Booking.com logo.

43

Figure 14 - Web scraping tool user interface for Booking.com.

For the sake of demonstrating this in a clearer manner, I will keep this current code limited to

results of “in 1 day”, as the rest of the options will be exactly in the same code structure, but with

different parameters.

Now that I have my main UI window, I figured it would be useful to add two pop-up windows: one

that shows up when you start extracting data, and one that shows up when all the data has been

successfully extracted. Firstly, I will create both windows, and then, in the end, I will place them in

the correct position, after merging my main scraping code into the PySimpleGUI code. To create

the pop-up windows, one must only use the sg.popup function, adding the desired message

between parenthesis:

def booking_window():

 sg.theme('DarkTeal12')

 layout = [

 [sg.Text('Choose how many pages you want to extract from

Booking.com:', font='Verdana')],

 [sg.Radio('All pages', "NumberOfPages", key="-Q1-",

default=True, font='Verdana', size=(15,1)), sg.Radio('Custom

number:', "NumberOfPages", key="-Q2-", font='Verdana'),

sg.InputText(key='pagina', size=(8,1))],

[sg.T(""), sg.T(""), sg.Radio('In 1 day', "Data", key="-Q3-",

default=True, font='Verdana', size=(15,1)), sg.Radio('In 30 days',

"Data", key="-Q4-", default=False, font='Verdana', size=(15,1)),

sg.Radio('In 60 days', "Data", key="-Q5-", default=False,

font='Verdana', size=(10,1))],

[sg.Button('Galicia', size=(17,2), font='Verdana'), sg.Button(North

of Portugal', size=(17,2), font='Verdana'), sg.Button('Center of

Portugal', size=(17,2), font='Verdana')],

]

 window = sg.Window('Booking.com Web Scraper | by Sérgio

Pereira', layout)

Listing 29 - Defining the interface for my Booking.com window.

44

Figure 15 - Pop-up window when extraction begins.

Figure 16 - Pop-up window when extraction ends.

With my GUI created, all that is left to do is adding my whole web scraping code into the GUI code.

So going back into booking_window, right after my window code, I need to create a “while” loop

with “if” statements, that will dictate what happens when I click the elements of my interface.

Firstly, I am creating an event loop that processes the events and receives the values of the inputs

I enter. I am also telling my program to stop that loop when the window is closed.

Secondly, I need to create another event, which will be the one where I select the “Galicia” button,

while also choosing to extract all pages and choosing “In 1 day” as the check-in date. Therefore, I

need to use “Galicia” as the event’s name, while also giving the values of “All pages” and “In 1

sg.popup('Extracting data for "In 1 day"!')

sg.popup('Data successfully extracted!')

while True:

event, values = window.read()

if event == sg.WIN_CLOSED:

break

Listing 30 - Adding pop-ups for the beginning and end of the extraction.

Listing 31 - "While" loop that stops when the window is closed.

45

day” keys, which are “-Q1-“ and “-Q3-“. Besides that, I need to add the variables I created earlier

that define my search parameters as “today” and “tomorrow”, while also defining Galicia’s code

that appears on the URL. Afterwards, I need the “for loop” that runs the code until it finds the last

page.

Then, I created another event possibility, on which I extract Galicia’s results from “In 1 day”, while

selecting a specific amount of pages. Following the same procedure, I name it the same as the

“Galicia” button, but this time I give it the value of the “Custom number” radio button, which is “-

Q2-“, while still invoking “In 1 day”’s key, which is “-Q3”. Following that, I add my code that extracts

a specified number of pages, on which I will match “page” with the number received on the input.

if (event == 'Galicia') and (values ["-Q1-"] == True) and (values

["-Q3-"] == True):

 day1 = daytoday

 month1 = monthtoday

 year1 = yeartoday

 day2 = daytomorrow

 month2 = monthtomorrow

 year2 = yeartomorrow

 zone = '735'

 sg.popup('Extracting data for "In 1 day", in Galicia!')

 for x in range(0, 10000, 25):

 getHotelsBooking(x, day1, month1, year1, day2, month2,

year2)

 if hasattr(getHotelsBooking.NotLastPage, '__len__') == True:

 continue

 else:

 break

 break

if (event == 'Galicia') and (values ["-Q2-"] == True) and (values

["-Q3-"] == True):

 page = int(values['npages']) * 25

 day1 = daytoday

 month1 = monthtoday

 year1 = yeartoday

 day2 = daytomorrow

 month2 = monthtomorrow

 year2 = yeartomorrow

 zone = '735'

 sg.popup('Extracting data for "In 1 day", in Galicia!')

 for x in range(0, page, 25):

 getHotelsBooking(x, day1, month1, year1, day2, month2,

year2)

 break

Listing 32 - Defining what happens when selecting Galicia, while extracting all pages with "In 1 day" selected.

Listing 33 - Defining what happens when selecting Galicia, while extracting a specific amount of pages, with "In 1 day" selected.

46

With the same procedure, I had to repeat the same steps for the other 2 zones, while also adding

the events for the other 2 time periods. This resulted in 18 different possible events, which would

have been much harder to comprehend if I had not implemented a GUI to execute them. After

finishing the codes for the remaining zones and time options, this GUI’s flowchart looked like the

following:

Figure 17 - Flowchart for Booking.com's portion of my web scraping tool's GUI.

With my program performing everything I want, it is now time to go back to the beginning and

repeat the whole process with the remaining two websites, Tripadvisor and Airbnb. Since the

methods are the same, I will skip the coding process and jump straight to the GUI part.

Starting with the window itself, I figured it would be better if there was a specific window for each

online platform, otherwise the main platform would include too many elements to choose and

manipulate, which could lead to an overload of information for the user.

When creating the Tripadvisor window, whose function I named tripadvisor_window, I decided that

I should follow my previous choices and go with a color scheme similar to the company’s logo, that

being the “DarkTeal13” theme.

47

Figure 18 - Web scraping tool user interface for TripAdvisor.

With Airbnb, and following the same ideas of my 2 previous cases, the theme used was

“DarkRed1”. Its function was named airbnb_window.

Figure 19 - Web scraping tool user interface for Airbnb.

As I now have three different windows for three different platforms, it is imperative that I create a

new main window, on which I can choose from which of the three platforms I want to extract data.

Following the same procedure:

sg.theme('BrownBlue')

layout = [

 [sg.Text('Choose the online tourism platform to extract data

from:', font='Verdana')],

 [sg.Button('Booking.com', size=(14,2), font='Verdana'),

sg.Button('Tripadvisor', size=(14,2), font='Verdana'),

sg.Button('Airbnb', size=(14,2), font='Verdana')],

]

window = sg.Window('Tourism platform Web Scraper | by Sérgio

Pereira', layout)

Listing 34 - Defining the interface of my main window, on which I can select the online platform to extract data from.

48

Figure 20 - Web scraping tool user interface for the main window.

In order to make it work, I created another set of conditions based on the three possible options to

choose from.

I now have a program that allows me to choose any of the three tourism platforms, and within each

of the three, I can choose the amount of pages to extract, the zone to extract from and the time

period from which the results will be. The following flowchart illustrates every possible event

(excluding the variability of the amount of pages chosen for extraction):

while True:

 event, values = window.read()

 if event == sg.WIN_CLOSED:

 break

 if event == 'Booking.com':

 booking_window()

 if event == 'Tripadvisor':

 tripadvisor_window()

 if event == 'Airbnb':

 airbnb_window()

window.close()

Listing 35 - Defining what happens when each of the buttons is clicked.

49

Figure 21 - Web scraping tool user interface flowchart.

4.3. DATA CLEANING

While my data may have been extracted successfully, it might not have come exactly the way I

wanted. Sometimes, it might have extra words that I do not want, or additional characters that are

not part of the element I wanted to extract. Very frequently, it will also have duplicate results, which

need to be erased. That means I will have to open Excel and clean the dataset in order to make it

“readable”. For this task, regular expressions and/or simple substitutions come in handy.

In computer science, regular expressions are patterns used to select combinations of characters

in a string, used to match, find and manage text. This will allow me to replace the elements that

have extra characters with the correct ones, without having to do it manually.

As I wanted this phase to be short and quick, I tried to clean the extracted data as much as possible

before actually extracting it, with the assistance of Beautiful Soup and regular expressions in the

original extraction code. For instance, if I extract the element that contains the number comments

and the element that contains the number of rooms remaining, at the current price, I will get the

following, without using regular expressions:

“1322 comments” instead of “1322”.

“Only 3 rooms remaining at the current price” instead of “3”.

50

In order to fix this, I had to use regular expressions:

This way, I only receive the number, as with this regular expression I am instructing my program

to replace anything that is not a digit from 0 to 9 with “”(literally nothing, so I am essentially deleting

everything that is not a number).

Fortunately, after extracting my data, there is only one column that does need to be cleaned, which

is the price column, that includes the “€” symbol. Even though it looks better that way, as it is

easier to interpret the information when I can see the currency symbol, I needed to remove it

because the price it is a numeric element. If I decide to make any type of graph based on the price,

I need to be able to use those numbers in calculations, but if it comes with a symbol, it is no longer

considered a number and the programs will not be able to interpret its numeric value.

In order to clean this column, a simple “find and replace” on Excel should do the trick. I just had

to select the column I wanted to clean, press “Ctrl” + “L”, select the “Replace tab” and replace “€

“ by “” (empty field, which means I was replacing the text I did not want with nothing, leaving only

the price).

Another common occurrence with web scraping is the extraction of numbers that do not get stored

as actual numbers. When numbers get stored as text values instead of numeric values, they are

not usable for statistical purposes, as the programs cannot interpret the value of those numbers.

On Excel it is very easy to tell if the numbers on a column are stored as text or numeric values: if

they are being interpreted as text, the numbers are aligned on the left side of the column, just like

other text columns; if they are being interpreted as numbers, they will be aligned on the right side

of the column.

In order to transform numbers stored as text into actual numbers, I selected the column containing

those numbers, then selected “Text to Columns”, on the “Data” tab. After clicking “Next” on the

comments_aux = item.find('div', {'class': 'd8eab2cf7f c90c0a70d3

db63693c62'}).text

comments = re.sub("[^0-9]", "", comments_aux)

remaining_aux = item.find('div', {'class': 'cb1f9edcd4'}).text

remaining = re.sub("[^0-9]", "", remaining_aux)

Listing 36 - Using regular expressions to clean data.

51

three windows that appearing, selecting the default choices, the numbers gained their numeric

values.

Figure 22 - Example of numbers stored as text (left column) and as numbers (right column).

With all data clean and ready to be analysed, there was still one step left: checking for duplicates.

It is very frequent to encounter duplicate data in our extractions: sometimes the same result

appears on subsequent pages, as the last result of the previous page and the first result of the

following page; sometimes, there are hotels that are added to the website during the extraction,

pushing every hotel out of its original position, and sometimes, the same hotel simply appears in

more than one page, always leading to a webpage with the exact same number of comments,

rating and price, even if it is through a different URL.

To remove duplicated results, I used the “Remove Duplicates” option on Excel’s Data tab. I simply

had to select the “title”, “zone” and “price” columns; if there were any results with the same title,

zone and price, Excel would remove the duplicated ones. Doing this removed approximately 200

duplicated results.

With all the datasets clean, they were then ready to be analysed, with the assistance of data

visualisation tools.

4.4. DATA VISUALISATION

Throughout my year in this project, I have experimented with several data visualisation methods. I

started with the R programming language, which proved to be very efficient and useful, although

very hard to get into. As this project was almost entirely based on the Python programming

52

language, for me it did not make sense to use another language for visualising the extracted data,

so I sticked with Python, using several libraries, such as Pandas, Plotly, Dash, NLTK, among others.

Despite also having experimented with Tableau, which gave me excellent results, I wanted to make

the whole process (from extraction to analysis) achievable using only Python, and so I did.

As I had many datasets from three different zones and different time periods, I will use my dataset

with Booking.com results from North of Portugal, 30 days after the extraction, for demonstration

purposes. All the following data visualisation examples will be applied to all datasets of every zone

and check-in date.

4.4.1. LIBRARIES AND PACKAGES

Plotly

Plotly is a Python graphing library that creates a wide range of interactive graphs. It is compatible

with Dash, which was used to display those graphs.

Dash

It is an open source framework used for building data visualisation interfaces. It was used to create

a dashboard that displays all the graphs created with Plotly. It is very useful, as it allowed me to

create a data visualisation platform without requiring extensive web development knowledge.

NLTK

It is one of the most used libraries for natural language processing. It was used to analyse textual

data from the datasets I have obtained, such as the user comments, for instance.

Matplotlib

Matplotlib is another library for Python that can create both static and interactive graphs.

4.4.2. CREATING GRAPHS

Before beginning, I tried to analyse all the elements available in my datasets to figure out which

type of graphs made sense. Having done that, I decided to represent the following data:

53

1. Most frequent zones;

2. Average price per zone, in Euros;

3. Top 10 most expensive results;

4. Top 10 cheapest results;

5. Average score per zone;

6. Most frequent nationalities in user’s comments;

7. Positive comments’ word cloud;

8. Negative comments’ word cloud.

The first 5 graphs were created using the datasets obtained from my first extraction. The last 3

graphs were based on my third extraction, which originated a dataset with comments from “Melia

Braga Hotel & Spa”, for demonstration purposes.

After importing the necessary libraries and packages, this process starts by creating a data frame

of our dataset. Using pd.read_excel, from Pandas, I transformed my “Booking North of Portugal -

30 days” dataset into a data frame named dfnorth, which will be used to create graphs.

1. Most frequent zones

To represent the most frequent zones, I used a pie graph. I started by creating a new dataframe

using the column that includes the zone information.

With “.value_counts()”, I have obtained the amount of times each zone appears in our dataset.

Instead of having multiple lines with the same zone, my data frame now had one line for each

zone, each with the corresponding number of occurrences.

dfnorth = pd.read_excel('NORTE 30 DIASlol.xlsx',

sheet_name="Sheet1")

dfnorthcounts_aux = dfnorth['zone'].value_counts()

dfnorthcounts = pd.DataFrame(dfnorthcounts_aux)

Listing 37 - Converting my dataset into a data frame.

Listing 38 - Creating a new data frame that includes "zone".

54

As the new data frame included a new column that had no header, I renamed it to “amount”, in

order the make this code cleaner and easier to understand.

Initially, I used “.dfnorthcounts_top10.loc[dfnorthcounts_top10.amount < 10, 'amount'] = 'other'”

to make it so every zone on this data frame with less than 10 results was listed as “Other”, instead

of its name. Otherwise, the pie graph would have approximately 180 slices. However, this led to a

final graph that showed “Other” as the most popular result with an overwhelming lead over the top

zones, having hundreds of occurrences. This did not seem like a good way of presenting this data,

so instead I kept it the way it was, and then when it was time to create the graph, I would restrict

its data to the first 10 rows, giving me a pie graph with only 10 slices, instead of 186.

With this, I had a data frame that listed the number of occurrences of each zone, sorted in

descending order. All I had to do was transform it into a pie graph.

Figure 23 - Data frame with the number of occurences of each zone (dfnorthcounts).

With px.pie I created my pie chart, using the “amount” column of my data frame as the values and

“zone” for the name of each element. With “[:10]”, I restricted my data frame to only the first 10

rows. With “.update_traces(textinfo=’value’), I added the amount of occurrences on each slice, and

with “.update_layout” I added a title to my graph.

dfnorthcounts = dfnorthcounts.reset_index()

dfnorthcounts.rename(columns = {'zone':'amount', 'index':'zone'},

inplace = True)

Listing 39 - Renaming the columns of my data frame.

55

Using “fig1_north.show()”, the resulting graph appeared:

Figure 24 - Pie chart with the top 10 zones with the most results in the North of Portugal (fig1_north).

2. Average price per zone, in Euros

To represent the average price per zone, I used a bar graph. Since average values can be

misleading when the sample size is too low, my objective was to present only the average values

for the zones with the highest amount of results, which we observed on the first graph. In order to

obtain the average price, I used the “.mean()” function that calculates the mean value for each

zone, creating then a new data frame dfnorth_avg with contains a column with the average price

in each zone.

fig1_north = px.pie(dfnorthcounts[:10], values='amount',

names='zone')

fig1_north.update_traces(textinfo='value')

fig1_north.update_layout(title_text="Most frequent zones: North of

Portugal")

Listing 40 - Creating a pie chart (fig1_north).

56

However, since this new data frame dfnorth_avg only contained the zone and average price

columns, there was no way of relating that information to the column with the number of

occurrences of each zone, as it was located in a different data frame. Therefore, I had to merge

this new data frame with the other one created earlier (dfnorthcounts).

By using “.sort_values”, I obtained a data frame of average prices in descending order based on

the number of occurrences.

Figure 25 - Data frame with the average prices of each zone, in descending order (newdfnorth).

With px.bar, I created the bar graph, restricting my data frame to zones with 10 or more

occurrences, placing those zones on the x axis and the average price on the y axis:

dfnorth_avgg = dfnorth.groupby('zone')['price'].mean()

dfnorth_avg = pd.DataFrame(dfnorth_avgg)

dfnorth_avg = dfnorth_avg.reset_index()

newdfnorth =

dfnorthcounts.set_index('zone').join(dfnorth_avg.set_index('zone'))

newdfnorth.sort_values(by=['amount'], inplace=True, ascending=False)

Listing 41 - Creating a new data frame that includes a column with the average price of each zone.

Listing 42 - Merging two dataframes.

57

With fig2_north.show(), I obtained the following graph:

Figure 26 - Bar chart with the average price (€) per zone in the North of Portugal (fig2_north).

3. Top 10 most expensive results

To represent the most expensive results, I figured a table would be the most informative way of

presenting it visually, as I could also add more columns with more relevant information, such as

the score and the number of comments. Those elements could be very relevant, as while

sometimes there may be hotels that have ridiculously high prices, one cannot assume it is worth

the price without proper feedback from previous users.

Beforehand, I created a copy of my original data frame, which I named dfnorth_aux.

By sorting the values, based on the “price” column, in descending order, the following data frame

was obtained:

fig2_north = px.bar(newdfnorth.loc[newdfnorth['amount'] > 9], x =

newdfnorth.loc[newdfnorth['amount'] > 9].index, y = 'price')

fig2_north.update_layout(title_text="Average price per zone (€):

North of Portugal")

dfnorth_aux = dfnorth.copy()

dfnorth_aux.sort_values(by=['price'], inplace=True, ascending=False)

Listing 43 - Creating a bar chart (fig2_north).

Listing 44 - Creating a new data frame and sorting it by "price".

58

Figure 27 - Data frame for the North of Portugal, sorted by price, in descending order (dfnorth_aux).

Since the data frame is already in descending order, all I had to do was create the table using only

the first 10 rows, with “[:10]”. Inside my “header”, I can define the title of each column, while

inside “cells” I define the elements that go into each column, in the order I enter them.

With “fig3_north.show()”, I was given the table for the top 10 most expensive results:

fig3_north = go.Figure(data=[go.Table(

 header=dict(values=['Name', 'Price (€)', 'Zone', 'Rating',

'Number of comments'],

 fill_color='indianred',

 align='left'),

 cells=dict(values=[dfnorth_aux[:10].title,

dfnorth_aux[:10].price, dfnorth_aux[:10].local,

dfnorth_aux[:10].rating, dfnorth_aux[:10].comments],

 fill_color='lavender',

 align='left'))

])

fig3_north.update_layout(title_text="Top 10 most expensive results:

North of Portugal")

Listing 45 - Creating a table (fig3_north).

59

Figure 28 - Table with the top 10 most expensive results in the North of Portugal (fig3_north).

4. Top 10 cheapest results

Following the same method as before, I created a table for the cheapest results. Initially, I used

the same data frame created for the most expensive results, and instead of capturing the first 10

rows, I captured the last 10. However, I encountered a problem: since the rows were in descending

order, the first element of my new data frame was, in fact, the 10th cheapest result, instead of the

cheapest. This could have been easily fixed by altering the “ascending” attribute of the dfnorth_aux

data frame from “False” to “True”, but since that data frame was also being used for the previous

table, I did not change it, as it would change the results of my previous table. Instead, the solution

was simple, I only had to create a new copy of the original data frame dfnorth and sort it by price

values again, but this time in ascending order. However, simple is boring, so instead I created a

copy of my previous copy, captured the last 10 results with “[-10:]” and inverted their order, thus

obtaining the correct results in the correct order.

dfnorth_auxx = dfnorth_aux[-10:]

dfnorth_auxx.sort_values(by=['price'], inplace=True, ascending=True)

Listing 46 - Creating a copy of my previous data frame, capturing only the last 10 rows.

60

Figure 29 - Data frame for the North of Portugal with only the first 10 rows, sorted by price, in ascending order (dfnorth_auxx).

Once again, I used “header” to define the title of the columns and “cells” to define their content.

With “fig4_north.show()”, I finally obtained the table for the top 10 cheapest results:

Figure 30 - Table with the top 10 cheapest results in the North of Portugal (fig4_north).

fig4_north = go.Figure(data=[go.Table(

 header=dict(values=['Name', 'Price (€)', 'Zone', 'Rating',

'Number of comments'],

 fill_color='palegreen',

 align='left'),

 cells=dict(values=[dfnorth_auxx.title, dfnorth_auxx.price,

dfnorth_auxx.local, dfnorth_auxx.rating, dfnorth_auxx.comments],

 fill_color='lavender',

 align='left'))

])

fig4_north.update_layout(title_text="Top 10 cheapest results: North

of Portugal")

Listing 47 - Creating a table (fig4_north).

61

5. Average score per zone

To obtain the average score per zone, the method is similar to the one used in graph 2. Instead of

getting the average price, I am getting the average score, using “.mean()” while grouping the results

by zone.

Using “.join” to merge my average score data frame into “dfnorthcounts” (created on graph 2),

which includes the amount of occurrences on each zone, gives me the following data frame:

Figure 31 - Merged data frame that includes the amount of occurrences of each zone and their respective ratings (newdfnorthavg).

Once again, I create our bar chart using “px.bar”, restricting my results to only zones with 10 or

more results. With “text_auto”, the value of each zone’s average score appears over their

respective bars, while “orientation=’h’” changes this bar chart’s orientation from vertical to

horizontal.

dfnorth_scoreavgg = dfnorth.groupby('zone')['rating'].mean()

dfnorth_scoreavg = pd.DataFrame(dfnorth_scoreavgg)

dfnorth_scoreavg = dfnorth_scoreavg.reset_index()

newdfnorthavg =

dfnorthcounts.set_index('zone').join(dfnorth_scoreavg.set_index('zon

e'))

newdfnorthavg.sort_values(by=['amount'], inplace=True,

ascending=False)

Listing 48 - Obtaining a new data frame with the average score of each zone, and then merging it into another data frame.

62

Using “fig5_north.show()” gives me the horizontal bar chart with the average score per zone:

Figure 32 - Horizontal bar chart with the average scores per zone in the North of Portugal (fig5_north).

With all graphs created for this specific dataset, I then proceeded to repeat the same process for

every other dataset of other zones and time periods. There is no need to describe that process, as

it was simply an extensive sequence of copying, pasting and renaming codes.

Afterwards, I switched to the dataset obtained from my third extraction, that collected data from

the users’ comments on Booking’s “Melia Braga Hotel & Spa” page.

fig5_north = px.bar(newdfnorthavg.loc[newdfnorthavg['amount'] > 9],

y = newdfnorthavg.loc[newdfnorthavg['amount'] > 9].index, x =

'rating', text_auto=True, orientation='h')

fig5_north.update_layout(title_text="Average score por zone: North

of Portugal")

Listing 49 - Creating a horizontal bar chart (fig5_north).

63

As before, I started by creating my main data frame with the info from the dataset:

6. Most frequent nationalities in user’s comments;

For this graph, I made a pie graph to present the most frequent nationalities. Just like in the first

graph, I had the problem of having many elements with a low number of occurrences, so I restricted

this graph to countries with 20 or more comments. In order to avoid repetitiveness, I used a

different method than the one used on the first graph: instead of restricting the data frame

appearing on the graph to its first rows, I created a dictionary that includes the number of

comments for each country, and then used a “for loop” to remove the countries that do not have

more than 20 occurrences.

Firstly, I created a dictionary of countries, which I named “countries”.

Here, I was instructing my program to fetch the elements in the “Country” column of my data

frame. For each element, if that country was already in my dictionary, it would add 1 to that

country’s count. If it was not, then it would set that country’s count as 1, as it was the first

occurrence. When the loop ended, the dictionary would have the exact count of occurrences for

each country.

Afterwards, I created three lists, one with countries, another with their count, and the last one for

the countries to remove from my dictionary, starting as an empty list. Firstly, I used a “for loop”

that adds the countries to my third list if their count is lower than 20. Then, with another “for loop”,

I deleted each country with less than 20 occurrences from my initial dictionary.

import pandas as pd

df = pd.read_excel('Melia comments.xlsx')

countries = dict()

for country in df.Country:

 if country in countries:

 countries[country] = countries[country]+1

 else:

 countries[country] = 1

Listing 50 - Transforming my comments' dataset into a data frame.

Listing 51 - Creating a dictionary of countries.

64

Then, using my newly created lists that no longer include the countries with a low number of

occurrences, I created my pie chart, using “update_traces” to include the actual values instead of

percentages, as percentages can be misleading, since I had removed part of my results.

With “fig6.show()”, I obtained graph for the most frequent nationalities:

import plotly.graph_objs as go

countrylist = list(countries.keys())

valuelist = list(countries.values())

countriestoremove = []

for x in countrylist:

 if countries[x] < 20:

 countriestoremove.append(str(x))

for y in countriestoremove:

 del countries[y]

fig6 = go.Figure(data=[go.Pie(labels=countrylist, values=valuelist,

hole=.3)])

fig6.update_traces(textinfo='value')

Listing 52 - Creating two lists and two "for loops" that remove countries with less than 20 occurrences.

Listing 53 - Creating a pie chart (fig6).

65

Figure 33 - Most frequent nationalities in Melia Braga Hotel & Spa comments section.

7. Positive comments’ word cloud

Before delving into the word clouds, I had to divide the comments based on their score. On a scale

from 0 to 10, I considered comments with a 5 or higher as positive, and comments lower than 5

as negative. In order to do so, I created two copies of my original data frame, using “.loc” to divide

them based on the score. “dfpositive” will only have comments with a score of 5 or higher, while

“dfnegative” will only have comments with scores lower than 5.

dfpositive = df.copy()

dfnegative = df.copy()

dfpositive.loc[dfpositive['Score'] > 4.9]

dfnegative.loc[dfnegative['Score'] < 5]

Listing 54 - Dividing my main data frame into two, one for positive comments and the other for negative comments.

66

To create a word cloud, I needed to remove the stop words, which are the most common words

that do not describe the content of the phrase. They are usually determiners, coordinating

conjunctions and prepositions, such as “the”, “a”, “for”, “but”, “in”, among many others. Since

Portugal, Spain, France and the UK were the most frequent countries in the comments, I removed

the Portuguese, Spanish, French and English stop words, with the assistance of the stopwords

package in NLTK.

Then, I created a string called “text1”, to which each positive comment will be added, using “.join”.

To create my wordcloud, I used “WordCloud”, with “.generate” receiving the text1 string created

earlier. With “plt.subplots”, I resized my figure, while “plt.axis(“off”)” removed the x and y axes.

Using “plt.show()” gave me the word cloud for the most frequent words in positive comments:

import nltk

from nltk.corpus import stopwords

from wordcloud import WordCloud

import matplotlib.pyplot as plt

stopwords = set(nltk.corpus.stopwords.words('portuguese')) |

set(nltk.corpus.stopwords.words('spanish')) |

set(nltk.corpus.stopwords.words('french')) |

set(nltk.corpus.stopwords.words('english'))

text1 = " ".join(str(review) for review in dfpositive.Comment)

positivewordcloud = WordCloud(width = 800, height = 600,

background_color = 'white', stopwords=stopwords).generate(text1)

plt.subplots(figsize = (8,8))

plt.imshow(wordcloudpos, interpolation='bilinear')

plt.axis("off")

Listing 55 - Removing stopwords from my results.

Listing 56 - Creating a string which will contain all positive comments.

Listing 57 - Creating a word cloud with positive comments.

67

Figure 34 - Word cloud for positive comments in Melia Braga Hotel & Spa comments section.

8. Negative comments’ word cloud

To create the word cloud for the negative comments, the process was exactly the same as the

previous graph. This time, instead, I used the data frame for the comments classified as negative.

To differentiate this graph from the previous one, I used “colormap” to change the colour scheme,

giving it warmer colours that resemble negativity, as opposed to the green colour scheme.

With “plt.show()”, I obtained the word cloud for the most frequent words in negative comments:

Text2 = " ".join(str(review) for review in dfpositive.Comment)

negativewordcloud = WordCloud(width = 800, height = 600, colormap =

'inferno', background_color = 'white',

stopwords=stopwords).generate(text2)

plt.subplots(figsize = (8,8))

plt.imshow(negativewordcloud, interpolation='bilinear')

plt.axis("off")

Listing 58 - Creating a string that will contain negative comments.

Listing 59 - Creating a word cloud with negative comments.

68

Figure 35 - Word cloud for negative comments in Melia Braga Hotel & Spa comments section.

Having finished that, I was approaching the end of my tasks regarding data visualisation, with only

one last step remaining: creating a platform on which I could present those graphs, without having

to use a Python IDE.

4.4.3. INTERACTIVE DASHBOARD

In order to make my graphs easily accessible, I decided to create a platform on which they could

not only be viewed, but also manipulated, thanks to their dynamic nature (brought by the Plotly

library). After some research, I decided that Dash would be the best option, as it is even developed

and recommended by Plotly itself. With Dash7, I can create an interface that is then accessible

through my browser, within a local offline server.

After familiarising myself with the framework, I realised that with my HTML and CSS skills, I could

create a very decent data interface on Dash. My goal was to be able to present graphs from every

zone, with a dropdown menu that allowed me to choose which zone’s data I wanted to see.

7 https://dash.plotly.com/

69

Firstly, I imported the necessary libraries and packages.

Before continuing, it is worth noting that I created this interface on the same Jupyter Notebook

.ipynb file as the one used previously to create the first 5 graphs, which will be included in this

dashboard. This means that all data frames created are still accessible, and all the libraries

imported are still active. This includes Pandas, which is important for Dash, as Plotly depends on

it to create graphs.

I start creating my dashboard by creating my app, which will also invoke an external CSS file that

I made to improve the interface’s appearance. With “app.title”, I defined the title of the page, which

will appear on the browser tab.

Within “app.layout” I inserted the code that will define the structure of my page. Although the code

is structured in Python, anyone with HTML experience can understand what each line means. I

began by creating a title and a sub-title for this page (bear in mind that from now on, every piece

of coding presented is included inside “app.layout”.

import plotly.graph_objects as go

import dash

from dash import dcc

from dash import html

external_stylesheets = [

 {

 "href": "https://fonts.googleapis.com/css2?"

 "family=Lato:wght@400;700&display=swap",

 "rel": "stylesheet",

 },

]

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

app.title = "Booking.com: data visualisation of extracted data"

Listing 60 - Importing libraries and packages.

Listing 61 - Creating my app and adding an external CSS file.

70

I also added CSS attributes and a class for each element (that would be customised by the CSS

external file). Before adding my graphs, I created a new html.Div for a dropdown menu, on which

I could select between North, Galicia and Center of Portugal. Firstly, I had to add a unique ID

(‘dropdown’) that will be used to invoke this element later, when I create the function that makes

the graphs switch based on the zone selected. Inside “options”, I used “label” to define the text

appearing in each option, while “value” defines its actual value, which will also be invoked later.

After “options”, “value” sets the default position for the dropdown menu. In this case, I want my

North graphs to appear by default, so I chose “north1”.

Afterwards, I proceeded to add my graphs. Normally, one would create the graphs at this moment,

using the same libraries we have used before. However, since my graphs had already been created

before, I could just invoke them using the names I had defined for them (fig1_north, fig2_north,

fig3_north, fig4_north and fig5_north). With “dcc.Graph”, inside another html div, I created the

element on which my first graph will appear. Instead of using the name of the first graph right

away, I instead gave it a specific ID. That ID will be invoked later in a conditional statement, within

app.layout = html.Div(children=[

html.H1(children='BOOKING.COM: NORTH OF PORTUGAL, GALICIA AND CENTER

OF PORTUGAL', style={'text-align': 'center'}, className="header"),

html.Div(children='Data visualisation of extracted data',

style={'text-align': 'center'}, className="header-description"),

html.Label(['Choose your zone:'],style={'font-weight': 'bold',

'text-align': 'center'}, className="choose"),

 dcc.Dropdown(

 id='dropdown1',

 options=[

 {'label': 'North', 'value': 'north1'},

 {'label': 'Galicia', 'value': 'galicia1'},

 {'label': 'Center', 'value': 'center1'},

],

 value='north1',

 style={"width": "60%", 'display': 'block', 'margin-

left': 'auto', 'margin-right': 'auto'}, className="drop"),

Listing 62 - Creating the main layout of my app.

Listing 63 - Creating the layout for my first dropdown menu.

71

a function that will define from which zone the presented graph should be. Once again, I used

“style” to define its appearance.

As I had 5 unique graphs, I repeated the code above 4 more times, giving unique IDs to each graph

(g2, g3, g4 and g5) and to each dropdown menu (dropdown2, dropdown3, dropdown4 and

dropdown5). I repeated the dropdown menus because I wanted to be able to compare graphs of

different zones, instead of using one dropdown to change every graph at the same time. This

concludes the layout portion of this section.

Since I wanted my graphs to change depending on the options I chose, I needed two things:

1. Five callback functions, one for each graph and dropdown menu.

2. A function that will define the value of my graph, with “if” statements that will cover every

possible graph from every zone.

Whenever an input property changes, which is the case when we select a dropdown menu option,

the callback function will provide Dash with the new property value, updating the output element.

For instance, the callback function for the first graph and dropdown menu will be the following:

Its input will be the value of “dropdown1”. “dropdown1” is the ID I set for the first dropdown menu,

while its value will either be “north1”, “galicia1” or “center1”. The output will be “g1”, which is

the unique ID I set for the first graph. This function applies our dropdown selection to the first

html.Div([dcc.Graph(

 id='g1',

 className="card",

 style={"width": "75%", 'display': 'block', 'margin-

left': 'auto', 'margin-right': 'auto'})

])

@app.callback(

 Output('g1', 'figure'),

 Input('dropdown1', 'value'))

Listing 64 - Creating the layout for my first graph.

Listing 65 - Creating a callback function.

72

graph. Following that, I created four more callback functions, each invoking the corresponding

remaining four graphs and dropdown menus.

Afterwards, I finally defined the function that updates the graph shown on each “dcc.Graph”

element. I named it “update_figure”, and its outcome depended on the value it received, which

was the value defined on the dropdown menus (either North, Galicia or Center).

Here, I recalled the graphs I created earlier, using “if” statements that defined which graph will

appear, based on the input entered on the dropdown menu. However, this code altered only the

first graph, and my page structure included five graphs. Therefore, I repeated the “if” statements

above four more times, using the proper IDs and graph names. After finishing my function, the

Dash code was concluded with “app.run_server(debug=True, use_reloader=False)”, which creates

the local server on which my Dash platform will run. I entered “use_reloader=False” because I was

using Jupyter Notebook, and Dash does not work without that option disabled.

Figure 36 - Dash output on Jupyter Notebook after running the code. The URL takes me to the local server on which the dashboard
runs.

Clicking on the URL opened my default browser, taking me to the platform I had created.

def update_figure(value):

 if value == 'north1':

 figure=fig1_north

 return figure

 if value == 'galicia1':

 figure=fig1_galicia

 return figure

 if value == 'center1':

 figure=fig1_center

 return figure

Listing 66 - Function that will change the graphs shown based on the input given to the dropdown menu.

73

Figure 37 - Dashboard that presents all created graphs.

74

By default, the platform shows data for the North datasets. However, by using the dropdown

menus, the graphs change based on my input.

Figure 38 - Dropdown menu that allows selection of zone for each graph.

Figure 39 - Top 10 zones with the most results in Galicia, selected on the dropdown menu.

Besides being able to observe all graphs, I could also interact with them. For instance, on pie

graphs I could present only the elements that I wanted to see, by double clicking on the names on

the right side of the screen to enter “selection mode”, and then choosing the zones that I want to

compare. For instance, I selected Corunha, Vigo, Sanxenxo and Pontevedra and obtained the

following result:

75

Figure 40 - Top 10 zones with the most results in Galicia, with filtered selections, in Dash.

On bar graphs, I could mouseover each bar to see the exact value of that specific bar. Besides

that, I could also click and select a certain area of the graph to zoom. For example, by zooming on

the first three bars, we obtain the following bar chart:

Figure 41 - Average prices per zone in Galicia, with filtered selections, in Dash.

Although not very useful in this case, with tables I could also select and drag each column to move

it to any position I wanted.

Moreover, every graph included a button in the upper right corner that allowed me to instantly save

that graph on my computer, in PNG format.

4.5. AUTOMATION

I had a fully working script that extracted everything I wanted, from every zone and time period. I

also had an interface to select those extractions manually. Besides that, I had a script that received

76

a dataset and created graphs with the received data, and a script for a platform that displayed

those graphs in a dynamic and interactive interface. Then, I just needed to automate this process,

scheduling my code, for instance, to run daily, at 8am. I wanted to be able to, without having to lift

a finger, extract data from the three zones and obtain the corresponding datasets, and then, from

those datasets, create graphs that would be automatically saved on my folder. When I started this

project, I thought that this was going to be the hardest of all the tasks, but, in fact, it was the

easiest. All I had to do was save my programs in .py format, and then use Windows Task Scheduler

to define when to run those .py programs. The hardest part, which was creating the programs, had

already been done.

After opening Windows Task Scheduler, one needs only to click on “Create basic task”.

Figure 42- Windows Task Scheduler interface

After giving it a suitable title and description, I clicked “Next”, allowing me then to select the

periodicity on which my program would run.

77

Figure 43 - Windows Task Scheduler: naming my task.

Figure 44 - Windows Task Scheduler: selecting the periodicity of my task.

I then selected the time of the day for the program to run, setting it to repeat the process every

single day.

78

Figure 45 - Windows Task Scheduler: choosing the time and date to start the task.

Figure 46 - Windows Task Scheduler: instructing my task to run a program.

And lastly, I entered the location of two files: the location on which my Python.exe is installed,

entered on “Program/script:”, and the location of my .py file containing my scraping code on “Start

in (optional)”, while also typing the name of the .py script on “Add arguments (optional)”.

79

Figure 47 - Windows Task Scheduler: selecting Python.exe installation and my program’s folders.

Figure 48 - Windows Task Scheduler: confirming my scheduled task.

My Python script was then scheduled to run every day, at 8 am. I let it run for one week, and every

extraction was successful.

80

Figure 49 - Results obtained after 7 days of automated extractions.

Each extraction ran for approximately 1 hour and 10 minutes, giving me 9 datasets and the

respective graphs, per day.

4.6. PROBLEMS ENCOUNTERED

1. This web scraping method requires regular maintenance

The online tourism platforms update their pages’ source codes very often, which makes it

necessary to review the code and update the HTML/CSS elements’ tags. In the span of 5 months,

I had to update my code 6 times due to sudden alterations on the online platforms. It is a relatively

fast process, but still needed, as it depends on the tourism platforms and is beyond our control.

Most of the times, the websites only alter their CSS tags, without modifying the structure of their

page, which can be fixed rather quickly. However, occasionally, their updates might be more

drastic, requiring a full inspection of my code.

2. The API keys for Booking.com, Tripadvisor and Airbnb were unavailable

Initially, the plan was to request Booking, Airbnb and Tripadvisor’s APIs, in order to collect their

data, as with APIs we receive information in the way they intend us to. Unfortunately, these tourism

platforms have not been accepting requests for new API keys for months, which made it so I had

to collect their data using the method described in this dissertation. This led to the maintenance

81

requirements previously mentioned, among other web scraping difficulties that would otherwise

not occur.

3. The amount of comments to extract was too large

Initially, my plan was to extract every single user comment from every single accommodation result

available. Then, I realised that, taking only Booking.com into consideration, I was going to extract

3000 unique results (adding all zones and ignoring time periods, as the comments will always be

the same). It is fair to assume that each hotel might have at least 1000 comments, as was the

case for many of the single results I have analysed. Each page of comments contains 10

comments, which means that on each hotel, I would have to scrape through 100 different pages.

Multiplying that number by those 3000 unique results gives me 300 000 unique pages to scrape

through. On my computer, scraping one single page takes approximately 10 seconds, which means

that to scrape every single comment, my computer would have to spend 3 million seconds

extracting data. This equals to almost 35 days of continuous scraping, which is impossible for me

to accomplish alone. Although it is doable with large companies capable of dealing with big data, I

settled with extracting only the top 10 comments of each single result, which was enough to obtain

some valuable information.

4. Some platforms do not show every listing available

In this particular case, Booking only presented 1000 results, even if there were 3000 listed as

available. On Airbnb, only the first 300 results were presented, despite the number of listings

available. It would be possible to fix this by filtering the searches even further. However, especially

with Booking, I figured that the first 1000 results were enough to obtain valuable information, taking

into consideration the fact that while approaching the later pages of results, the number of hotels

with very few information and reviews became higher and higher. Therefore, there was no need to

include even more results that would possibly be almost empty.

5. Sometimes there might be loss of data while scraping the web platforms.

82

There are two situations on which there may be loss of data. The first occurs when the code is

being executed too quickly, which makes it so the program tries to extract the data before the page

has had time to fully load, resulting in the extraction of empty data. This was easily fixed by

instructing the code to wait a few seconds before extracting the data.

The second reason is the fact that I was extracting data from my personal computer, using my

personal IP address. Although it was a rare occurrence, after a while the online platforms would

blacklist my IP address, leading to blank data. This is fixable by using online proxies, which rotate

through several IP addresses, tricking the online platforms into thinking all these requests are not

coming from the same person.

6. Tripadvisor does not include information on check-in/check-out dates on their URLs

Since I could not use APIs, my method of extraction depended on modifying the URL to define the

target zone and the check-in and check-out data. It usually works pretty well, but in this case,

Tripadvisor does not include information on the check-in and check-on on their link, which made it

very difficult to automatically extract data from Tripadvisor selecting a date other than the current

day. Although rather unpractical with this method of extraction, there was a solution, which was

the “action” class on Selenium to emulate the process of using a mouse to click on the calendar

and select the desired dates.

7. Excel does not support Regular Expressions

While regular expressions are not always needed to clean, I realised that they were not working in

Excel, requiring instead the usage of Excel’s functions to define the rules for finding and replacing

text. Instead of doing that, I used Google Sheets, which fully supports regular expressions.

 8. Online platforms try to counter web scrapers

Sometimes, while not always on purpose, the tourism platforms implement measures that counter

web scrapers. From my personal experience, besides the regular change of CSS codes, they also

tried to disable the HTML element that includes the “next” button, making it so I can’t invoke it

when using Beautiful Soup, which forced me to find an alternative to find the total number of pages

83

to extract. There was also an instance where if the number of results for a specific zone was too

low, it would show results from a different zone after the last result from the desired zone, forcing

me to teach the code to distinguish the correct and the wrong results.

5. CONCLUSION

This project made use of the Python programming language to develop a system for the extraction

and analysis of tourism data from the main online tourism platforms. Initially, a web scraping tool

was created, accompanied by an intuitive user interface. Then, after cleaning the extracted data,

graphs were created, followed by the creation of an interactive dashboard to assist in the

visualisation of data. Lastly, all previous steps were automated, thus creating an automated web

scraping and data visualisation tool that fulfilled this project’s needs.

The main conclusion drawn from this project is that there is an enormous amount of available web

data that are not being used, despite their potential value. Companies spend thousands of dollars

on the acquisition of user data to improve their systems of predictive analytics, while overlooking

data that are available for free on the Internet. Sometimes, only minimal effort is required to collect

and process data with extremely high value. Therefore, I would classify web scraping as an excellent

data collection technique, whose main goals lie in its low cost and high efficiency.

It is also evident that, based on the results obtained from my extractions, Portugal is a good tourism

destination, with most user reviews being classified as positive. There is a clear preference of bigger

cities, especially Porto, which has over 15 times the number of listings available in the region of

Gerês, despite being 15 times smaller in size. Coastal cities are clearly favoured by the tourists,

which makes sense, considering Portugal has beaches as one of its main touristic strengths. Thus,

we should keep investing on the development and sustainability of this sector (especially in the

non-coastal zones), as it is a major influencer on this country’s economic growth.

Finally, I have concluded that there is a lot of potential in the field of Data Science, as we are

constantly surrounded by information, which will only increase in the future. It is no coincidence

that “data scientist” is considered one of the jobs of the future, given the expected development of

ICTs. Following that scientific field, Python appears as one of the best programming languages, not

only for data analysis and visualisation, but also machine learning and artificial intelligence. Thanks

84

to its high versatility, I was able to create a very effective tool that performed all the tasks necessary.

Thus, it serves as a powerful foundation for the future collection and analysis of tourism data in

Portugal and Galicia, within the context of this project’s associated program.

BIBLIOGRAPHIC REFERENCES

Adeniyi, D.A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and

recommendation system using K-Nearest Neighbor (KNN) classification method. Applied

Computing and Informatics, 12(1), 90-108. https://doi.org/10.1016/j.aci.2014.10.001

Adhinugroho, Y., Putra, A. P., Luqman, M., Ermawan, G. Y., Takdir, Mariyah, Siti, & Pramana,

Setia. (2020). Development of online travel Web scraping for tourism statistics in Indonesia.

Information Research, 25(4), 885. https://doi.org/10.47989/irpaper885

Ajibade, S.S., & Adediran, A. (2016). An overview of big data visualization techniques in data

mining. International Journal of Computer Science and Information Technology Research, 4(3),

105-113.

https://www.researchgate.net/publication/305905594_An_Overview_of_Big_Data_Visualizatio

n_Techniques_in_Data_Mining

Almaqbali, I. S. H., Al Khufairi, F. M. A., Khan, M. S., Bhat, A. Z., & Ahmed, I. (2020). Web Scraping:

Data Extraction from Websites. Journal of Student Research. https://doi.org/10.47611/jsr.vi.942

Buhalis, D. (2003). eTourism: Information Technology for Strategic Tourism Management. Pearson

Education Limited, Harlow. https://doi.org/10.1080/02508281.2005.11081482

Buhalis, D. & O'Connor, P. (2005). Information Communication Technology Revolutionizing

Tourism. Tourism Recreation Research, 30:3, 7-16.

https://www.researchgate.net/publication/30930596_Information_Communication_Technology

_Revolutionizing_Tourism

Choong, W. J. (2019). An automated web scraping tool for Malaysia tourism. Diss, UTAR.

http://eprints.utar.edu.my/3493/

Galinha, P.F.S.L. (2017). DATA MINING NO TURISMO EM PORTUGAL: Análise Preditiva no Suporte

à Tomada de Decisão. https://run.unl.pt/handle/10362/34382

https://doi.org/10.1016/j.aci.2014.10.001
https://doi.org/10.47989/irpaper885
https://www.researchgate.net/publication/305905594_An_Overview_of_Big_Data_Visualization_Techniques_in_Data_Mining
https://www.researchgate.net/publication/305905594_An_Overview_of_Big_Data_Visualization_Techniques_in_Data_Mining
https://doi.org/10.47611/jsr.vi.942
https://doi.org/10.1080/02508281.2005.11081482
https://www.researchgate.net/publication/30930596_Information_Communication_Technology_Revolutionizing_Tourism
https://www.researchgate.net/publication/30930596_Information_Communication_Technology_Revolutionizing_Tourism
http://eprints.utar.edu.my/3493/
https://run.unl.pt/handle/10362/34382

85

Grus, J. (2019). Data science from scratch: first principles with python. O'Reilly Media.

Khedikar, K. A. (2021) Data Analytics for Business Using Tableau. Proceedings of the International

Conference on Innovative Computing & Communication 2021.

http://dx.doi.org/10.2139/ssrn.3835030

Martina, B. (2021). The disruptive reaction of the travel and tourism industry to the Covid-19

pandemic: the case of Airbnb online experiences. http://hdl.handle.net/10362/140262

Mathieson, A & Wall, G. (1990). Tourism: Economic, Physical and Social Impacts. New York: John

Wiley & Sons

Matta, P., Sharma, N., Sharma, D., Pant, B. & Sharma, S. (2020). Web Scraping: Applications and

Scraping Tools. International Journal of Advanced Trends in Computer Science and Engineering,

9(5). https://doi.org/10.30534/ijatcse/2020/185952020

Mooney, S. J., Westreich, D. J., & El-Sayed, A. M. (2015). Epidemiology in the era of big data.

Epidemiology, 26(3), 390. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385465/

Oliveira, R.A. (2016). Extração de dados do site TripAdvisor como suporte na elaboração de

indicadores do turismo de Minas Gerais: uma iniciativa em Big Data.

https://repositorio.ufmg.br/handle/1843/ECIP-AN2PRB

O’Reilly, S. (2006). Nominative fair use and Internet aggregators: Copyright and trademark

challenges posed by bots, web crawlers and screen-scraping technologies. Loyola Consumer Law

Review, 19, 273. https://lawecommons.luc.edu/cgi/viewcontent.cgi?article=1163&context=lclr

Pan, B. (2015). E-Tourism. https://www.researchgate.net/publication/270273782_E-Tourism

Todd, S. (2015). O valor dos dados em um mundo impulsionado por informações. Accessed in

23/02/2021, available at: https://canaltech.com.br/big-data/o-valor-dos-dados-em-um-mundo-

impulsionado-por-informacoes-51425/

Xiang, Z. (2018). From digitization to the age of acceleration: On information technology and

tourism. Tourism Management Perspectives, 25, 147-150.

https://doi.org/10.1016/j.tmp.2017.11.023

Zhao, B. (2017). Web scraping. Encyclopedia of big data, 1-3.

https://doi.org/10.13140/2.1.3121.5681

http://dx.doi.org/10.2139/ssrn.3835030
http://hdl.handle.net/10362/140262
https://doi.org/10.30534/ijatcse/2020/185952020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385465/
https://repositorio.ufmg.br/handle/1843/ECIP-AN2PRB
https://lawecommons.luc.edu/cgi/viewcontent.cgi?article=1163&context=lclr
https://www.researchgate.net/publication/270273782_E-Tourism
https://canaltech.com.br/big-data/o-valor-dos-dados-em-um-mundo-impulsionado-por-informacoes-51425/
https://canaltech.com.br/big-data/o-valor-dos-dados-em-um-mundo-impulsionado-por-informacoes-51425/
https://doi.org/10.1016/j.tmp.2017.11.023
https://doi.org/10.13140/2.1.3121.5681

