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Resumo

Interpretabilidade em Aprendizagem Máquina num Contexto de Modelos de Regressão

Caixa Negra

As máquinas têm demonstrado várias vantagens em comparação com os humanos, nomeadamente a

reproduzir e escalar tarefas, apresentando velocidade e precisão elevadas. Todavia, nem sempre é possível

compreender o funcionamento dos seus algoritmos. Assim, a necessidade de explicar os resultados destes

tem vindo a crescer, levando ao aumento da relevância de ferramentas de explicabilidade, já que estas

possibilitam a redução das divergências entre a interpretação do modelo e o nível de raciocínio humano.

O principal objetivo desta dissertação passou pelo desenvolvimento de uma técnica drill-down para

avaliar modelos de regressão caixa negra, considerando interações multivariável no âmbito dos preditores.

Assim, propomos EDRs, uma combinação entre DRs e EDPs. De modo a facilitar a sua análise, foram

implementadas múltiplas formas de visualização: boxplots, histogramas e gráficos de densidade, exibindo

distribuições completas, uma visualização em grafo para explorar interações entre preditores e tabelas

de desempenho, comparando os quartis de cada distribuição com uma referência. Com base em pontos

de corte e uma distribuição de referência, foi ainda efetuada uma extrapolação de contra-factos para

regressão.

Aplicaram-se quatro algoritmos distintos a uma gama heterogénia de conjuntos de dados com o intuito

de eliminar qualquer potencial enviesamento de modelo. Estas experiências mostraram que as EDRs

apresentam vantagens em comparação com os EDPs. O número de gráficos a analisar foi reduzido, já

que apenas os subgrupos interessantes são apresentados. Além disso, podem ser detetadas interações

compostas por mais de três condições. Foi, também, considerado um caso de estudo, retratando um

problema de seleção de modelo. As EDRs mostraram-se cruciais para compreender como os modelos

se comportam em relação a combinações específicas de dados e provar que o melhor modelo geral nem

sempre é o melhor para certos subgrupos. Deste modo, as EDRs podem ser usadas para escolher um

modelo ou para gerar ensembles, usando os modelos com melhor desempenho para cada subgrupo.

Apesar das vantagens comparativamente às ferramentas existentes, o uso das regras não esgota o

domínio das variáveis, pois não se exibem todas as combinações possíveis, com até três condições. No

futuro, pode ser proveitoso estudar uma discretização dos preditores numéricos guiada pelas regras, já

que esta etapa depende de técnicas externas. Meta-modelos também devem ser definidos para produzir

ensembles baseados no desempenho de cada subgrupo.

Palavras-Chave: Aprendizagem Máquina, Desempenho, Interpretabilidade, Regressão
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Abstract

Machine Learning Interpretability in a Context of Black Box Regression Models

Machines have shown several advantages compared to humans, namely to reproduce and scale tasks,

presenting high speed and precision. However, it is not always possible to understand how the algorithms

used work. Consequently, the need to explain the results of these models has been increasing, leading to

a boost in the relevance of explainability tools, as these enable the reduction of divergences between the

interpretation of the model and the human level of reasoning.

The main goal of this dissertation consisted of developing a drill-down technique to evaluate black box

regression models, that considered multivariate interactions within the scope of the predictors. Thus, we

propose EDRs, a combination between DRs and EDPs. In order to ease the examination of these, multiple

visualization forms were implemented. Namely, boxplots, histograms and density plots to display complete

distributions of values, a network visualization to rapidly check interactions of every feature condition and

performance tables, comparing the quartiles of every distribution with a reference. Based on the cutting

point values and a reference distribution, an extrapolation of counter-factual examples to regression was

also implemented.

Four distinct algorithms were applied to a heterogeneous range of datasets in order to eliminate any

potential model bias. These experiments showed that EDRs present some advantages in comparison to

EDPs. First, the number of plots to analyze is reduced, as only subgroups that differ significantly from the

reference and similar subgroups are presented. Also, interactions composed by more than three conditions

of feature values can be detected. A case study was considered, applying the developed tools to a model

selection problem. EDRs showed to be crucial in helping users to understand how the models behave

regarding specific combinations of data. Moreover, it was shown that the best model overall is not always

the best for every subgroup. Hence, EDRs can be used to select a model or to generate ensembles, using

the best performing models for each subgroup.

Despite the advantages compared to the existing tools, the usage of rules does not exhaust the domain

of variables, as not every possible combination of values, with up to three conditions, is displayed. In the

future, a rule based discretization of numerical features might be proven fruitful, as this step relies on

external techniques. Meta-models are also to be defined to produce ensembles based on performance for

each subgroup.

Keywords: Interpretability, Machine Learning, Performance, Regression
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Chapter 1
Introduction

In this chapter, the motivation and the main goal behind the development of this dissertation are

presented. In addition, the structure of the following chapters is also described.

1.1 Motivation

Compared to humans, machines show many advantages that can be key to solve specific problems.

These advantages can be seen in terms of reproducibility, scaling, speed and, in recent times, accuracy

[1]. However, recent automatic processes are, in most cases, extremely complex, making it difficult to

understand their behavior. These models are denominated black boxes or opaque models, since one can

neither understand their internals, nor the reasons behind certain results. Consequently, end users have

been pressuring for explainability and transparency, as these models are used to make important and

costly decisions, such as in the areas of health and finances [2]. In fact, decision makers will always feel

necessity for an explanation in order to fully trust the model, regardless of the accuracy of the model.

This need for explainability results from the fact that advanced Machine Learning (ML) algorithms tend

to be non-interpretable, resulting in divergences between the interpretation of the model and the human

level of reasoning. This leads to a need of choosing between a more complex model with better results or

a simpler model that is not capable of generating results as good as the first. Therefore, the interest in

Explainable Artificial Intelligence (XAI) was renewed. Specifically, according to the Defense Advanced Re-

search Projects Agency (DARPA), XAI aims to ”produce more explainable models, while maintaining a high

level of learning performance (prediction accuracy); and enable human users to understand, appropriately,

trust, and effectively manage the emerging generation of artificially intelligent partners” [3].

It is also important to notice that, due to the European Union (EU) General Data Protection Regulation

(GDPR), an individual has the right to explanation when decisions are made in an automated way [4]. As a

consequence, the need for transparent and fair algorithms is urgent, being one of the greatest challenges

in Machine Learning and Data Science.
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1.2 Goal

The main goal of this dissertation consists of studying state of the art methods that help in explain-

ing black box regression models, specifically in numeric prediction. In addition, a drill-down method to

study this type of models is to be developed, describing multivariate interactions within the scope of the

predictors.

By approaching the problem using a drill downmethod to analyze areas of the error, anomalous regions

can be discovered, i.e., areas where the performance of the model differs from the global performance.

Therefore, the algorithms in study can be evaluated in the context of explainability, namely to analyze the

fairness of the model in terms of critical subgroups of data.

1.3 Structure of the Dissertation

This dissertation is divided in sex main chapters. The present one introduces the motivation, context,

the main goal and contributions of this work. On Chapter 2, the core concepts necessary to understand

the subject are presented and explained in detail. Chapter 3 consists on presenting and discussing the

state of the art, namely various methods to evaluate models in terms of explainability and its paradigms.

Afterwards, in Chapter 4, the details of the implementation and results are characterized and discussed.

Extending the latter, Chapter 5 characterizes the process of application of the developed tools to a case

study problem. Lastly, Chapter 6 describes the main conclusions and the proposed future work.
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Chapter 2
Theoretical Foundations

In this chapter, relevant theoretical topics are presented and explained in order to aid understanding

the subject in study. The first subject to be explained is Machine Learning, including a brief introduction

to the topic, followed by some concepts relevant to the problem, such as different types of learning,

regression and capability to generalize. Then, the importance of Explainable Artificial Intelligence in order

to guarantee secure and trustworthy algorithms is addressed. Lastly, the concept of Data Mining in the

process of Knowledge Discovery in Databases is described.

2.1 Machine Learning

Machine Learning (ML) is an area of computer science with the purpose of automating tasks. To that

end, the algorithms learn from data, based on a mapping function. Therefore, the datasets used in this

process are composed by examples, which are sets of values commonly referred as features. These can

be defined as quantitative measures with respect to the data and expressed as a vector x ∈ Rn, with xi

being a feature and n the total number of features [5, 6].

ML algorithms are divided in two main phases: learning and evaluation. The first stage is designated

as training, being either supervised or unsupervised, exposing the algorithm to data and originating the

model. The second step is known as test and represents the moment when the model is exposed to new

data [6].

Moreover, depending on what task the automatic process is designed to perform, the ML task may be

labeled as classification, regression, clustering, among other categories [6]. In addition, in order to evaluate

the model, i.e., to discern if the model is learning the information correctly, a performance measure, such

as accuracy or error rate, is often used. This measure allows to assess the generalization capacity of the

model [6].
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2.1.1 Types of Learning

Depending on how ML algorithms learn the task at state, they can be broadly classified as supervised

or unsupervised learning algorithms. The first utilizes data that contain targets, also knows as labels,

decision variables or ground truth, alongside its features. These targets define the real category or value

of the input data. Hence, based on the value of the label y and its respective vector x, the algorithm

estimates p(y|x), learning to predict the value from the input vector. Examples of supervised algorithms

are Support Vector Machines, Decision Trees, Linear Regression, among others [6]. The second kind

of algorithms are able to learn relevant information with respect to the structure of the dataset, i.e., by

learning useful properties through the features present in the data, not taking into account targets. For

this reason, the models learn implicitly (e.g., synthesis or denoising), or explicitly (e.g., density estimation)

the probability distribution that characterizes the dataset based on a random vector x [6]. Examples of

this type of algorithms are clustering (dividing the data into clusters of similar examples) and dimensional

reduction algorithms, such as Principal Component Analysis and Autoencoders [6].

2.1.2 Regression

In machine learning, regression is a type of task where the machine has to predict a numeric value.

To do so, the model generates an approximation of an unknown function f , denoted by f̂ : Rn −→ R,
to map the observed data. This task is similar to classification, differing in the format of the output, since

in classification the output is a categorical value. To that end, an input, characterized by the vector x is

assigned a certain estimated value, denoted by ŷ, given ŷ = f̂(x) [5, 6].

An example of a regression task can be found in the prediction of the exempted claim amount that an

insured person will make, or to predict future prices of securities, houses, among others [6].

2.1.3 Generalization Capacity

The central challenge in ML is to make sure that the models perform well when facing new inputs and,

not only, when facing the examples they were trained on. For this reason, in order to learn a task correctly,

a model should be able to generalize. Consequently, during the training phase, an error measure, known

as training error, is calculated. This measure is useful to understand how the training is performing and

it should be reduced to its minimum value. However, this is not a simple optimization problem, since the

generalization error or test error, i.e., the expected error when facing unseen inputs, is desired to be as

low as possible as well. In addition, it is important to make sure that the difference between these two

measures is small [6].

When the learning process presents low performance, the model might be suffering from overfitting or

underfitting. While overfitting happens when the gap between the errors is large, underfitting occurs when

the model is not able to obtain a sufficiently low error value on the training set [6]. Moreover, overfitting is

usually due to the attempt to memorize every variation of the training set, striping the model of its capability

to generalize [5]. That said, the generalization capacity of a model, i.e., the capability of the model to fit a
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large variety of functions, is extremely important to determine if a model is capable of predicting correctly

or not. Although a high capacity allows the model to solve complex tasks, if the capacity is higher than

needed, the model may overfit. Contrarily, if the capacity is low, the model will struggle to solve complex

tasks [6]. Figure 1 shows the boundary between overfitting and underfitting zones and how training and

test errors evolve with increasing capacity, illustrating the explained behavior.

Figure 1: Relation between capacity and error. Adapted from Goodfellow et al. [6].

2.2 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a research field that aims to make Artificial Intelligence (AI)

systems more understandable to humans. The term was introduced in 2004 by Van Lent et al. [7], in

order to describe the ability of their system to explain the behavior of AI controlled entities in applications

of simulation games. Despite the term being relatively recent, the problem of explainability has existed

since the mid 1970s, with studies to explain expert systems [8]. However, with the enormous advances in

ML, the pace of progress towards explainability has slowed down. This was due to the fact that the focus

shifted from explaining the models to implement models and algorithms with greater predictive power [9].

Nevertheless, in recent years, this topic has grown in interest, being a direct result of the incorporation

of AI and ML across industries and in critical decision making processes. Consequently, there were social,

ethical and legal pressure calls for these new AI techniques to be explainable and understandable. This

was a result of the lack of detailed information about the chain of reasoning that leads to certain decisions

[1, 9, 10].

Because of this, XAI is essential for users to understand, trust and manage AI results. According

to Adadi and Berrada [9], the need for explainable AI systems may branch from four reasons, each one

capturing different motivations for explainability. The first reason is explain to justify. This is a direct

consequence of AI enabled systems yielding biased or discriminatory results [11, 12]. As a result, in order
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to explain a particular outcome, there is a need for reasons or justifications, rather than a description

of the logic of reasoning behind the process in general. The use of XAI systems grants the necessary

information to justify results, in particular when unexpected decisions are made. As a consequence, there

is a provable form to guarantee that algorithmic decisions are fair and ethical, resulting in the increase of

trust in the respective system [9]. This becomes extremely important now that people have the right to

explanation in automated decisions [4]. The second reason is explain to control, helping to prevent things

from going wrong. By understanding more about the system, there is an increase of visibility over unknown

vulnerabilities and flaws, helping to identify and correct errors in non critical situations [9]. Thirdly, explain

to improve. Although similar to the latter reason, a model that can be explained and understood is easily

improved. As a result, by knowing the reasons behind the system producing certain results, the users

will know how to improve it [9]. Lastly, XAI allows for discovery, as asking for explanations is helpful to

learn new information and knowledge. For instance, ML algorithms may uncover hidden patterns, allowing

people to learn from them [9].

Another important topic is security. As stated by Hall [1], if a ML learning system has been compro-

mised, either by its training data, its outputs altered, or inputs altered to created unpredictable decisions,

debugging, explanation and fairness techniques are needed. This is a direct result of the difficulty in de-

termining if a system was compromised, since proving that a model is accurate and fair has very little

importance if the data or model can be altered without the knowledge of the user.

Regardless of the fact that explainability is a powerful tool to justify AI based decisions, verify pre-

dictions, improve models and gain new insights into the problem in question, not every AI system has

a pressing need for it. In reality, if AI systems had to explain every decision they make, it could result

in less efficient systems, forced design choices and a bias towards less capable and versatile outcomes.

Furthermore, the process to make a system explainable is expensive, requiring considerable resources in

every stage of the process [9].

In short, the need for explainable systems depends on the degree of functional opacity caused by the

complexity of the AI algorithms and the degree of resistance of the application domain to errors. In regard

to the first, if the degree is low, a high level of interpretability is not required. Concerning the second, if

the application domain has high resistance to errors, a low level of interpretability is acceptable [9]. For

instance, an algorithm used for a promotional campaign has lesser need for explainability than one used to

diagnose patients. Thus, domains where the cost of making a wrong prediction is high present a potential

need for XAI approaches.

2.2.1 Explainability

According to Gilpin et al. [13], good explanations are the ones that ”you can no longer keep asking

why”. When it comes to explainability tools, these can be divided into two bins: model agnostic and model

specific. The first consists of tools that can be used regardless of the algorithm in question. Usually, these

tools analyze relations between the input and the output, without being necessary to observe the logic of

the model. The latter refers to methods that are specific to certain algorithms, only being applicable to a
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single type or class of algorithm [1]. It is important to highlight that, as model specific techniques tend to

use the model to be interpreted directly, they lead to potential more accurate measurements [1].

2.2.2 Interpretability

As reported by Doshi-Velez and Kim [14], interpretability can be defined as ”the ability to explain or to

present in understandable terms to a human”. Interpretability can be achieved through intrinsic or post-

hoc methods. Intrinsic methods, also known as transparent boxes or ante-hoc methods, refer to models

that were created to be interpretable on their own [2]. Oppositely, post-hoc methods refer to the application

of tools to analyze pre-trained models, independently of the complexity of the model [15].

Furthermore, among interpretability techniques, two paradigms stand out, distinguishing the methods

between local and global explanations. On the one hand, local methods focus on explaining the prediction

of a specific instance or group of similar instances. On the other hand, global methods intend to describe

the behavior of the model in broad terms [1]. Recently, Britton [16] introduced the concept of regional

explanations, defining methods that are intended to interpret a set of instances, with special focus on

instances whose behavior differs from the global.

2.2.3 Fairness

Broadly, the study of fairness can be described as disparate impact analysis, i.e., when the predic-

tions of the model are different across demographic groups, beyond some reasonable threshold [1]. With

the increase in usage of automated systems in day to day actions, it is important to guarantee that the

algorithms produce non discriminatory results, regardless of ethnicity, gender, and other sensitive demo-

graphic segments [1].

2.2.4 Accountability

Considering the potential impact on society as a consequence of automated decision making algo-

rithms, it is crucial that these are designed and implemented with some level of accountability. In this

context, accountability refers to an obligation to report, explain and justify the algorithm, reducing negative

social impact or potential harm [17]. Moreover, as both models and the data used to train the first are

created by people, the decisions made by an algorithm, including mistakes with undesired consequences,

are, ultimately, a responsibility of a person [17]. Therefore, producing accountable models is to produce

models that are prepared for the risks, taking into account multiple principles of XAI, such as explanability,

accuracy, fairness, among others [17].

2.3 Data Mining

Data Mining (DM) can be defined as the core of the process of Knowledge Discovery in Databases

(KDD). While the latter consists of an automatic process of exploratory analysis and modeling large data
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repositories, the first utilizes algorithms that explore the data in order to uncover unknown patterns [18].

Thanks to the enormous amount of data produced everyday and its accessibility, DM is a topic of great

importance and necessity [18].

Broadly, as characterized by Maimon and Rokach [18], the process of KDD can be described as in

Figure 2. Additionally to a previous understanding of the domain of application, steps such as data selec-

tion, cleaning and transformation are necessary to increase the reliability of the data and achieve desirable

results. These may include handling missing values, noise removal, or handling outliers, i.e., observations

that deviate from other observations [19], among other procedures [18]. After these data processing steps,

ML techniques can be applied, with the purpose of uncovering hidden patterns or relations. Lastly, as a

consequence of the unavoidable alterations that data suffers regularly, either in structure, mining goals,

or other causes, this process is dynamic, as it can be repeated as many times as necessary [18].

Figure 2: General view of the process of KDD. Adapted from Maimon and Rokach [18].

2.4 Summary

Machine Learning is an area of computer science, with the purpose of automating tasks, based on

previous data regarding a certain task. It can be divided into two phases: learning and evaluation. The

first refers to generating an appropriate function to approximate the data and the second is, generally,

used to determine how well the algorithm is capable of fulfilling its purpose. Regarding the tasks, the most

common are classification, regression, clustering assignments. Nevertheless, there are others. Moreover,

an algorithm can be supervised, i.e., the model learns by observing the desired results, or unsupervised,

where the model tries to uncover hidden patterns in the features of the data. It is important to notice that

every model needs a good generalization capacity, preventing underfiting and overfiting problems.

Explainable Artificial Intelligence is a research field that has been growing in interest, due to the de-

mand to understand, manage and trust Artificial Intelligence systems. Additionally, to help end users
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understand some decisions made by the algorithms, this field helps to improve and to make sure the

models are safe to use, uncovering possible flaws and alterations made without knowledge. Some of the

main concepts associated with this field are explainability, interpretability and fairness. Together, these

concepts help to uncover possible flaws and patterns, impossible to discover by looking at the models

themselves. Nonetheless, not every system has a pressing need for the inclusion of explainable tech-

niques, as it might be expensive and some areas are not heavily affected by errors, when in comparison

to others.

Lastly, similarly to Machine Learning, Data Mining uses available data in order to perform certain

tasks. However, in this case, the objective here is to discover knowledge, i.e., uncover hidden relations or

patterns that might be helpful to a certain business, for instance. It is crucial that a previous understanding

of the domain exists, allowing the user to specify the main goals of the mining process. Then, data has

to be gathered and transformed, in order to be processed in the way that suits the goals best, after the

mining process. As a consequence of the inevitable amount of alterations that data suffers on daily basis,

this process can be repeated as many times, due to alterations in structure, goals, among other causes.
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Chapter 3
State of the Art

The present section provides insight on the developed work and achieved progress throughout the

years in the interpretability field of ML, as well as important tools to study subgroups of data such as

distribution rules. For each method, their advantages and shortcomings are addressed and discussed.

3.1 Performance Analysis

Estimating the performance of a regression model can be summarized as calculating the differences

between the true and predicted values, as presented in Equation 1. Here, yi represents the real value for

a certain example i and ŷi the predicted value regarding the same example, by the algorithm [20].

ei = yi − ŷi (1)

In terms of representation, this can be achieved using scalar or graphical metrics. On the one hand,

scalar methods quantify an estimate of the expected error, usually for the complete model. On the other

hand, graphical metrics allow the study of changes in the performance for different conditions. A common

example of a scalar metric is the Mean Absolute Error (MAE), presented in Equation 2, where n is the

number of samples. Similarly, the Mean Square Error (MSE) differs from the first by utilizing square values

of the error, instead of their absolute, as seen in Equation 3. One variation of the MSE is the Root Mean

Square Error (RMSE), where the square root operation is applied to the value obtained by the MSE, as in

Equation 4 [20].

MAE =
1

n

n∑
i=1

|ei| = meani=1,n(|ei|) (2)
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MSE =
1

n

n∑
i=1

e2i = meani=1,n(e
2
i ) (3)

RMSE =

√√√√ 1

n

n∑
i=1

e2i =
√

meani=1,n(e2i ) (4)

Although easy to calculate, thesemetrics have some problems. For instance, they are scale dependent,

i.e., if the task concerns distinct scales or magnitudes, these should not be applied [20, 21]. In order to

solve this issue, one can use measures based on percentage errors. Therefore, a division of the difference

between the real and predicted values by the real value has to be calculated, as seen in Equation 5 [20].

pi =
|ei|
yi

(5)

One example of these metrics can be seen in Equation 6, the Mean Absolute Percentage Error (MAPE).

Multiple variations of these error metrics are available to use, relying on different functions, such as the

median [20]. Nonetheless, these methods provide a single metric for the entire model, ignoring the possi-

bility of some interactions between predictors being more prone to errors than others and, consequently,

not explaining important aspects about the model.

MAPE =
1

n

n∑
i=1

100× |pi| = meani=1,n(100× |pi|) (6)

There are multiple methods to compare the quality of multiple models, by estimating the relative loss of

information in order to balance overfitting and underfitting. Examples of these are the Akaike Information

Criterion, using the number of parameters as a measure of complexity [22], and Bayesian Information

Criterion, utilizing the number of parameters and the number of observations as measures of complexity

[23]. However, these methods only evaluate the overall model, similarly to the previous ones.

Regarding graphical methods to evaluate regression models, by providing information that concerns

the changes in the performance for different conditions, we can look at examples such as lift charts [24],

Regression Error Characteristic (REC) curves [25], REC surfaces [26], Regression Receiver Operating

Characteristic (RROC) space [27], among others. For example, REC curves plot the error tolerance in

comparison to the percentage of instances predicted under the same tolerance, describing an estimation

function of the error cumulative distribution [25]. Following the same idea, REC surfaces add the target

value to the graphic, as seen in Figure 3, allowing us to study which types of target values are more prone

to certain errors (e.g., small errors) and what errors the model produce for a particular range of target

values that are crucial in a specific application [26].
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Figure 3: REC surface from dataset Boston (cf. Table 1), trained with a Random Forest model (cf. Table
2).

Even though these approaches produce important information to understand the problem, these only

consider the target values to calculate the error and error tolerance. Additionally, these examine the model

as a whole, ignoring possible interactions of predictors that may lead to better or worse performance, when

in comparison to the overall model. Consequently, Areosa and Torgo [28] proposed Error Dependence Plots

(EDPs), establishing a relation between the expected error and the values of a certain predictor variable.

These consist of a graphical representation of the expected error and the domain of a predefined feature,

using box plots. The error is calculated using cross validation, i.e., randomly permute the data, create k

equal sized partitions and, for each one, train the model using all instances but the ones in the partition,

calculate the error of the model for the prediction of these instances and add the values to the error estimate

[28]. Consequently, EDPs tend to have higher reliability on larger datasets and, generally, on data bins

containing more instances [28]. Since presenting the distribution of the error for every possible value of

a numeric variable is complex, due to possible lack of repetitions in the data, the values are discretized

into meaningful bins. By doing so, it is possible to collect several error values per bin and approximate the

distribution of the error. Moreover, the ideal scenario would be to select the bins based on some precious

knowledge of the domain. However, as this is not always possible, these can be selected using quartiles

of the distribution of the variables. For example, [0% − 10%] for extremely low values, [10% − 35%]

representing low values, [35%− 65%] concerning central values, [65%− 90%] regarding high values and

[90%− 100%] in respect to extremely high values [28]. Moreover, for categorical predictors, this process

is not needed, as the variables are already discrete. Nevertheless, if too many categories are present,

prioritizing some and merging the remaining may be helpful, allowing better visualization [28]. Figure 4

depicts an example of an EDP, for dataset Boston (cf. Table 1), regarding the values of the feature crim.

For instance, the model tends to produce better results for very low and low values and slightly worse for

middle and very high values of crim, when compared to the general model.

Considering that EDPs ignore interactions among predictors and, consequently, possible situations

that may have an impact on the performance of the model, Areosa and Torgo [28] developed a variant of

EDPs to evaluate up to 3 predictors at the time. Conceptually, these are similar to regular EDPs, differing
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Figure 4: EDP from dataset Boston (cf. Table 1) to analyze the feature crim, trained with a Random Forest
model (cf. Table 2).

in the fact that these present the error distribution across all possible combinations of bins between the

predictors, instead of a single variable [28]. Moreover, assuming that a combination of values between

the features is not present in the data, the respective box plot is not displayed [28].

Although important tools, the limitation when plotting multiple variables simultaneously removes some

usage from EDPs, since most real world problems tens to have more than 3 predictors. Thus, the method

ignores potential interactions between these when analyzing the errors and, possibly, causing misleading

conclusions [29]. Because of this, Areosa and Torgo [29] also proposed Parallel Error Plots (PEPs), using

a method similar to Parallel Coordinate Plots [30], in which each variable is shown on the X-axis and is

represented by a vertical bar. This results from a process of uniformization of the scale of the values of

every variable, i.e., mapping the original range of values for each variable to [0− 1], with 0 corresponding

to the minimum and 1 to the maximum values among the instances. Doing this, allows the representation

of all values in the same Y-axis, as depicted in Figure 5. This process allows the representation of each

instance as a line that crosses each bar according to the respective transformed value of the variables

[29]. This novel approach informs the user about the dependency between the expected error and the

various predictor variables, by trying to show the error profile across the latter, simultaneously. In order

to do so, PEPs divide the errors into very high errors, e.g., the top 10% largest errors, and the remaining

ones, coloring each line according to the respective error. This approach allows the study of the main

objective of PEPs, explaining the conditions that lead to worse performance [29]. However, PEPs have

some limitations, namely in the presence of outliers, leading to a suppression of the remaining values.

Although, the use of methods that are robust against outliers to scale the values may solve this issue.

Moreover, in large datasets or datasets containing an extensive amount of predictors, the visualization

might be complex. Therefore, using a smaller subset of the data or the predictors, based on feature
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relevance, may produce more pleasant results [29].

Figure 5: PEP from dataset Abalone (cf. Table 1) to analyze the feature rings, trained with a Gradient Boost
Machine model (cf. Table 2). The top 10% estimated logarithmic errors are colored in shades of red, with
higher errors represented by a greater degree of saturation. Moreover, high errors are prevalent for center
to high values of length and diameter, and close to 0.25 for uniformed values of height. Furthermore,
the feature sex does not appear to have a strong impact on the performance of the model. Lastly, the
remaining features do not display high errors for extremely low values within their range.

Lastly, Areosa and Torgo [29] extended EDPs in order to allow the comparison of multiple models,

with Multiple model Error Dependence Plots (MEDPs). Additionally, these are particularly useful to identify

whether the best performing model is outperformed in a certain range or category of values and, conse-

quently, to compare models presenting similar overall performance [29]. Similarly to EDPs, MEDPs allow

the visualization of interactions between features, specifically between 2 variables with the use of Bivariate

MEDPs. This method sets the bins of one of the variables on the X-axis and plots the MEDPs across the

values of the second feature, representing the conditioned estimated error distribution [29]. By doing so,

these present the user with the ability of selecting which model to trust based on desired characteristics

of the expected risk [29].

3.2 Interpreting Black Box Models

The following section focuses on existing methods that try to explain the predicted value of a black

box model, instead of its prediction error. Respectively, well established post-hoc methods, as defined

in section 2.2.2, that are used to interpret black box regression models, prioritizing model agnostic tech-

niques. Hence, the tools described evaluate any type of regression algorithm after its training phase. As a

consequence, the methods presented receive the trained model as an input alongside other information, if

necessary, like training data, containing or not the real target values. Moreover, models that are inherently

interpretable, i.e., white-box models, are not approached, as these are not post-hoc methods. Although,
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this type of models can be used as an example of global explanations, being interpreted by analyzing the

model itself. Examples of these can be found in decision trees, traditional linear models, business rule

systems, among others [1].

It is important to state that, generally, the choice of an adequate explanation method is dependent

of the context of the problem, time limitations, personal preferences and the users view in regards to the

results obtained using the model.

3.2.1 Global Methods

Global methods are used to describe how the model behaves from an overall perspective [1]. Some

evaluate the importance of each feature with regard to the predicted values [31–35]. Other methods try to

calculate the effect one or more features have on the predicted value [36–38], while identifying possible

interactions between these predictors [36–42]. Moreover, some methods involve emulating the original

model, generating a relation between the values of the features and its outputs [1, 43–46]. Hence, the

following sections contain several techniques regarding global methods, from feature feature importance,

to surrogate models.

3.2.1.1 Feature Importance

Global feature importance quantifies the global contribution of each predictor to the outputs of a model,

based on the entire dataset [1]. Typically, these methods are model specific to tree based algorithms. For

instance, a simple heuristic rule for these can be calculated from the depth and frequency at which a

variable is split in a tree, where higher and more frequent predictors in the tree are more important [1].

Regarding artificial neural networks, usually, variable importance is associated with the aggregated abso-

lute magnitude of the parameters of the model for a specific property of interest [1]. Moreover, for some

models, global feature importance can only be obtained by analyzing the relation between the input vari-

ables and the target variable. Therefore, these methods represent the magnitude of the relation between

the response and a specific input feature of the model, compared to other input variables. However, this

may lead to some bias, as some less robust measures can be biased towards large-scale variables [1].

Regarding concrete cases, multiple methods have been proposed for regression models, such as Per-

mutation Feature Importance (PFI) [31], Gini Importance [32], Regressional ReliefF [33], Model Class

Reliance (MCR) [34], among others. Gini Importance is a model specific technique, applied to tree based

models, measuring the number of nodes split by the predictor, averaged by all trees in the model. By

doing so, Gini Importance measures the homogeneity of the feature in question [32]. PFI is also a model

specific method, used in tree based models and ensembles, that estimates the importance of a feature

based on the prediction error when the values of the feature are permuted, i.e., the order of the values is

altered. Thus, in the case of a feature not being important for the prediction, permuting its values does not

affect the performance and accuracy of the model drastically [31, 47, 48]. This method does not require

the retraining of the model, as the metric is calculated using a perturbed test set or out-of-bag samples

as input of the original model [31, 47, 48]. Additionally, the existence of correlated features may lead to
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over estimation in the importance of those predictors, calculating the metric with possible unrealistic data

combinations [49]. Recently, Fisher et al. [34] proposed MCR, a model agnostic version of PFI, based

on two possible methods of permutation to calculate model reliance, the importance metric. The first

consists of splitting the data in half and exchanging the predictor values between the two groups. The

second permutes over all n! possible combinations in the data, where n represents the number of rows in

the dataset. Moreover, MCR indicates the upper and lower limits to which a class of models depends on

the predictors to predict accurately, using importance estimates based on permutation, providing a robust

measure of importance [34]. Proposed by Casalicchio et al. [35], Individual Conditional Importance (ICI)

and Partial Importance (PI) are visual tools to help in the visualization of how alterations in the values of

a feature affect the performance of the model. These can be used to evaluate the model globally or for

individual observations, being variants of PDPs and ICE plots, differing in the fact that these display the

feature importance instead of the expected prediction. As a consequence, ICI and PI curves can be used

to analyze and compare the feature importance across different subgroups of instances present in the data

[35]. For instance, by generating sets of data according to other predictors and calculating a conditional

feature importance on this set, may reveal interactions [35, 49]. Lastly, a possibly more accurate alter-

native would be the use of drop-column importance, calculating the decrease in the performance when a

feature is removed from the model. However, this technique is more demanding in terms of computational

cost and time, as it requires the model to be trained on the whole, excluding the predictor [48].

3.2.1.2 Feature Effect Plots

Originally proposed by Friedman [36], Partial Dependence Plots (PDPs) are a model agnostic tool that

present a visualization tool to study how the response function changes, based on the range of values of

a predictor of interest, while averaging out the effects of the remaining features [1, 36, 50]. The core idea

behind PDP lies in how these calculate the average predicted value f̂ . For each value of a specific feature

of interest, xs, the estimation of the prediction is calculated by averaging the predicted value when xs is

fixed and the complementary features, xc, change over their marginal distribution [36]. Hence, Equation

7 is calculated using the training data of dimension N rows. For each grid value of xs = v, N instances

are forged as < v, xc >, where xc = {x1c, ..., xNc} is a vector containing the values of the predictors

that are not the feature of interest, i.e., each instance in the dataset is merged with the feature of interest

with value v. Additionally, P (xc) represents the probability of occurrence of xc in the training data. Then,

the model is queried with the forged instances, generating n instances that are averaged, representing

f̂(v) [36].

f̄s(xs) = Exc [f̂(xs, xc)] =

∫
f̂(xs, xc)P (xc)dxc (7)

In order to obtain the full plot, this process is repeated across the desired feature values, as in Equation

8 [36].
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f̄s(xs) =
1

N

N∑
i=1

f̂(xs, xci) (8)

Moreover, PDPs can be used as a base for other feature importance methods, as proposed by Green-

well et al. [39], using the flatness of the curve as a metric to evaluate the importance of the feature.

Besides this, PDPs are a global method in terms of instances, but local regarding input features [1].

The partial functional relationship often varies depending on the values of the remaining features,

leading to some loss of information. Because of this, Individual Conditional Expectation (ICE) plots extend

PDPs, unveiling individual conditional relationships, previously masked by the averaging factor of PDPs.

Additionally, these allow the visualization of individual conditional relationships, plotting an entire distribu-

tion of individual conditional expectation functions for a feature xs, i.e., displaying N estimated curves,

one for each set of values in xc present in the training data, instead of the average partial effect [37].

Hence, each curve defines the conditional relation between xs and f̂ for the values of xci [37]. For in-

stance, when the predictors in xc have no influence in the association between xs and f̂ , all ICE curves

lie on top of each other. If f̂ is additive in function of xc and xs, the curves are parallel, and when the

partial effect of xs on f̂ is influenced by the remaining features, the curves differ from each other in terms

of shape [37]. Moreover, plotting an ICE curve for each predictor of a single test observation may allow

the study of the sensitivity of the fitted value to alterations in each predictor for the example being studied,

similarly to Contribution Plots proposed by Štrumbelj and Kononenko [51].

Sometimes, ICE curves generate over-plotting situations, due to a wide range of interceptions, making

it difficult to discern the heterogeneity in the model. In these scenarios, the use of Centered ICE (c-ICE)

plots is useful, as these remove level effects and, consequently, unclutter the data displayed [37]. The

process to produce these starts by choosing a location x∗ in the range of xs to join every prediction line

at that point. For instance, choosing x∗ as the minimum or maximum values of the predictor generates

the most interpretable plots. As seen in Equation 9, for each curve f̂ i in ICE curves, the corresponding

c-ICE curve is given by a subtraction between the original and the fitted model for the selected x∗, where

1 represents a vector of ones of the appropriate dimension. By doing so, the point (x∗, f̂(x∗, xci)) acts

as a base case for each curve, e.g., if x∗ corresponds to the minimum value of xs, all curves originate at

0, removing the differences in level, generated from different values in xci. In the case of x∗ being the

maximum value, the result is a plot that isolates the combined effect of xs on f̂ , maintaining xc fixed, i.e.,

the level of each centered curve reflects the cumulative effect of xs on f̂ in relation to the base case [37].

f̂ i
centered = f̂ i − 1f̂(x∗, xci) (9)

In order to better understand, Figure 6 contains an ICE plot on the left and a c-ICE on the right,

similarly to the example provided by Goldstein et al. [37]. These plots examine the relation between the

age of houses in a census tract, i.e., s = age, and the corresponding median value of the house. On the
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one hand, the PDP curve (thick curve with yellow outline), in the ICE plot, is mostly flat, displaying a slight

decrease in the median prices as age increases. However, the ICE curves contain some observations that

present an increase in age and in the median values, describing individual behavior that departs from

the average one. On the other hand, the c-ICE plot shows the cumulative effect of age on the output,

increasing for some instances and decreasing for others. These differences suggest the existence of

interactions between xs and xc in the model [37].

Figure 6: ICE and c-ICE plots from dataset Boston (cf. Table 1) to analyze feature age, trained with a
Random Forest model (cf. Table 2). Adapted from Goldstein et al. [37]. The left part of the image contains
the ICE plot, where the thick highlighted line represents the PDP. Additionally, for some ICE curves, higher
age indicates higher median value. The right part presents a c-ICE with x∗ equal to the minimum value
of feature age. For some instances, an increase of age leads to increase in the target and decrease to
others, suggesting the existence of interactions between age and the remaining features.

Derivative ICE (d-ICE) plots analyze and explore interactions in the partial derivative of f̂ with respect

to the feature of interest, xs [37]. Considering that xs does not interact with the remaining predictors in

the model, f̂ can be calculated as in Equation 10, meaning that the relation between xs and f̂ does not

depend on xc. Therefore, the N curves in the ICE plot would share a common shape, differing in level

shifts depending on the values of xc [37].

f̂(x) = f̂(xs, xc) = g(xs) + h(xc), so that
∂f̂(x)

∂xs

= g′(xs) (10)

Hence, there are two possible scenarios. Either the model presents interactions, or these do not exist.

The first scenario leads to the derivative curves being heterogeneous, while in the second the curves are

equivalent, i.e., the plot displays a single line [37].

Additionally, ICE, c-ICE and d-ICE plots allow for the visualization of interactions between two variables,

taking advantage of the use of colors regarding a second feature of interest. Thus, it is possible to analyze
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the influence of this new predictor in the relationship between xs and f̂ . For instance, assuming the

second variable being studied is categorical, one can assign one color per class, plotting each prediction

line f̂ i using the color of the categorical predictor. If the variable is continuous, the curves may be plotted

taking advantage of color shades from light (low value) to dark (high value) [37].

However, PDPs and ICE plots can produce erroneous results when the predictors are strongly corre-

lated, as these require extrapolation of responses across the values of the predictors, producing unrealistic

combinations [38]. To solve this problem, Apley and Zhu [38] proposed Accumulated Local Effects (ALE).

These compute the alterations in the output for data instances inside small windows of values of the pre-

dictor of interest, not requiring the generation of new data and being less computationally expensive [38].

ALE plots are similar to Marginal plots, both avoiding extrapolation by using the conditional density instead

of the marginal density. Hence, to better understand ALE plots, it is necessary to understand Marginal

plots. As seen in Equation 11, a Marginal plot of the effect of Xs can be defined by a function fs,M(xs)

versus xs [38].

fs,M(xs) = E[f̂(Xs, Xc)|Xs = xs] =

∫
f̂(xs, xc)Pc|s(xc|xs)dxc (11)

A simple estimate of fs,M(xs) can be given by Equation 12, where N(xs) ⊂ {1, ..., n} is the

subset of instances for which xsi is part of some small and appropriately selected neighborhood of xs.

Additionally, n(xs) is the number of items in the neighborhood. Although there are more sophisticated

kernel smoothing methods to estimate fs,M(xs), the main problem associated with using fs,M(xs) to

visualize the main effect ofXs occurs when the predictors are correlated. Ergo, using fs,M(xs) is similar

to regressing the target variable ontoXs, while marginalizing over, i.e., ignoring, the second variable [38].

f̂s,M(xs) =
1

n(xs)

∑
i∈N(xs)

f̂(xs, xci) (12)

As a consequence, in the case of the target variable being dependent of xs and xc, the function

reflects both of their effects, due to the omitted variable bias phenomenon in regression. Contrarily, ALE

plots present a method of assessing the main and interaction effects of predictors, avoiding the foregoing

problems [38].

Equation 13 represents the local effect of xs on f̂ at (xs, xc) [38].

f̂s(xs, xc) =
∂f̂(xs, xc)

∂xs

(13)

The ALE main effect of xs is given by Equations 14 and 15, where zs0 represents a value near the

lower bound of the effective support of Ps, for instance, below the smallest observation of xs. The choice

of this value is not important, as it only affects the vertical translation of the plot of f̂ versus xs, and the
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constant is calculated in order to center the plot vertically [38].

f̂(xs) =

∫ xs

zs0

E[f̂s(Xs, Xc)]|Xs = zs)dzs − constant (14)

f̂(xs) =

∫ xs

zs0

∫
xc

f̂s(zs, xc)P (xc|zs)dxcdzs − constant (15)

Therefore, f̂(xs) can be interpreted as the accumulated local effects of xs. Firstly, these calculate the

local effect for f̂(xs, xc) of xs at (zs, xc). Then, this effect is averaged across all values of xc with weight

Pc|s(xc|zs), avoiding the use of marginal density (P (xc)), similar to Marginal plots that use Pc|s(xc|xs),

and, consequently, extrapolation. Note that, opposed to directly averaging f̂ as Marginal plots, by averaging

across xc and accumulating up to xs the local effects, ALE avoid the omitted nuisance variable bias, the

main problem of Marginal plots to assess the main effects of predictors. Lastly, the averaged local effect

is accumulated/integrated over all values of zs up to xs [38].

Other examples of techniques used to analyze the effects a feature has on the target variable can

be found in Residual plots [52–55], Trellis plots [56], Conditioning plots [38, 57, 58] and Conditional

Response plots [38, 59]. The first are scatter plots of residuals, i.e., the difference between the observed

value and the regression line, in comparison to the fitted value or the values of a predictor. By doing so, it

is possible to analyze the relation between both, given that the plot does not take in consideration feature

interactions, even though these may occur due to the existence of more variables in the model [52–55].

Trellis plots are useful to analyze specific scenarios, as these produce a sequence of plots, each showing

the dependence of f̂ on two variables. The values of f̂ are plotted based on the values of the second

variable, while conditioned by the first variable, i.e., using a subset of instances that are eligible based

on the condition applied to this feature [56]. Conditioning plots are a variant of Trellis plots, plotting the

relation between xs and f̂(xs, xc) using dots, for a collection of discrete values of xc [38, 57, 58]. Lastly,

Conditional Response plots display the relation between xs and E[f̂(xs, Xc)|Xc ∈ Sk], for each set

Sk, with k = {1, ..., N} and N being the number of instances, in some partition of the space of Xc

[38, 59].

3.2.1.3 Feature Interaction

Additionally to exploring the effects that each predictor has on target variable, uncovering prominent

interactions between features is a very important aspect of interpreting a model. Both PDPs and ALE plots

present variants that allow the visualization of the relation between 2 predictors and the prediction, namely

Second Order ALE plots (2D ALE) and Two Dimensional PDPs (2D PDPs) [36–40]. The latter account for

the total effect of the two variables, as in Equation 16. Additionally, the interactions can be calculated by

replacing xs with a vector of two features, in Equations 7 and 8 [40].
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PDP (xi, xj) = f̂(xi) + f̂(xj) + f̂(xi, xj) (16)

Contrarily, 2D ALE plots exclusively provide the visualization of the additional interaction between the

features of interest, i.e., the second order effect, as seen in Equation 17. Moreover, this variant uses similar

calculation method to evaluating only one predictor, differing by using k2 rectangular cells, contrarily to k

intervals in a grid. By doing so, the local effects are accumulated in two dimensions [38].

ALE(xi, xj) = f̂(xi, xj) (17)

Furthermore, both PDPs and ALE plots allow the visualization of higher order interactions. Neverthe-

less, the visualization of these may become confusing for more than 3 variables [38, 40].

Moreover, some methods based on some principles of 2D PDP were developed by Greenwell et al.

[39] and Friedman et al. [41], in order to measure the feature interactions and obtain a score. The latter is

denominated H-Statistic and is quite computationally expensive. However, it is capable to detect all types

of interactions, generating a value between 0 and 1 for each pair of features, in which 0 indicates absence

of any interactions and 1 informs that the effect on the output is entirely produced from the interaction

[41]. Moreover, this metric is based on the assumption that, in the absence of interactions between the

variables, the partial dependence can be decomposed as the sum of each partial dependence function

of the variables, as in Equation 10 [41]. Then, H-Statistic measures the fraction of the variance of the

two dimensional partial dependence function, not captured by the previous sum, as seen in Equation

18. Although efficient in identifying the interaction between variables, H-Statistic does not distinguish the

regions in the domains that contain the strongest interactions [41].

Hij =

∑n
k=1[f̂(xik, xjk)− f̂(xik)− f̂(xjk)]

2∑n
k=1 f̂2D(xik, xjk)

(18)

Another method used to graphically identify interactions between all features, including interactions of

3 or more predictors is Variable Interaction Network (VIN), proposed by Hooker [42]. Nonetheless, this tool

does not point out the specific scenarios or values for which the interactions occur, neither the magnitude

of the interaction [42].

3.2.1.4 Global Surrogate

Surrogate models are important tools to explain and debug models. These are interpretable models

and can give global or local information about predictions and errors. In order to do so, these emulate the

original model, by constructing a relation between its inputs and predicted values. However, there are few

guarantees the surrogate model accurately represents the more complex original model from which it was
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generated. As a consequence, it is necessary to evaluate the accuracy of the models, taking into consid-

eration error metrics between the predictions and the response function being studied. Guaranteeing low

and stable errors for the data to be explained may allow for better results. Additionally, these models can

be combined with direct explanations, fairness and debugging techniques to increase the interpretability of

the models [1]. For instance, some global surrogate models utilize decision trees to emulate the original

models [43–45], others general additive models or decision rules [46], among others.

3.2.2 Local Methods

In order to study and evaluate a specific instance or a group of similar instances, the use of local

methods is crucial [1]. Some of these are based on conditional situations, explaining how changes in the

predictors alter the predicted value [60, 61]. Others study the importance of feature values in relation

to the output, possibly decomposing the prediction [1, 46, 62–67]. Moreover, the study of interactions

among features is an important technique, explaining hidden patterns and confirming or disproving known

ones [67, 68]. Thus, in the following sections, multiple techniques among various types of local methods

are addressed, from conditional situations, to counter factual explanations and local feature importance.

3.2.2.1 Ceteris Paribus Plots

Ceteris Paribus plots, or ”what if” plots, are a useful model agnostic tool to evaluate the responses

produced by a model around distinct values of a single feature. To do so, none of the remaining values of

the feature is altered. Therefore, Ceteris Paribus plots present the response of a model as a function of a

single variable [60, 61]. For instance, this tool can be used to explain possible ways to increase the credit

score of a specific client, boosting the explainability of the model by generating multiple scenarios using

the available features [60]. Moreover, this tool can be used to compare multiple models and to understand

if a model is locally stable for a certain prediction [60].

3.2.2.2 Local Surrogate

Introduced by Ribeiro et al. [62], Local Interpretable Model-Agnostic Explanations (LIME) use surrogate

models to explain regions around an observation of interest. Firstly, the original observation of interest is

transformed into a simplified input space of binary vectors. Then, a new dataset of similar observations

is created by sampling features that are present in the transformed instance and, for each observation, a

measure of similarity is applied in order to associate weights to each example based on the proximity to

the instance in study. Consequently, this dataset is used to train an interpretable model, locally accurate to

the values predicted by the model [62]. The parameters of this model can be used to describe the average

behavior of the response function around the observation of interest and to generate reason codes, i.e.,

plain text explanations of a prediction based on the values of the features [1]. Additionally, LIME has the

advantage of generating simplified explanations using the most important local variables [62]. However,

this method is unstable and sometimes inconsistent, as altering the size of the neighborhood or the
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sample can alter the explanations [69]. In order to solve the latter problem, Ribeiro et al. [63] proposed

Anchors. These are a model agnostic tool that generate high precision sets of plain text rules, describing

the prediction of a model based on the input values. Moreover, Anchors highlight the part of the input that is

sufficient for the model to generate a prediction. Consequently, these are intuitive and easy to understand

by users [63], enhancing trust in the model when the importance of the variables are in conformity with

the domain knowledge of the users [1]. Additionally, Anchors are predominantly applied to classification

problems and can produce results more precise than LIME [63].

Other important local tools based on surrogate models are Local Interpretable Visual Explanations

(LIVE) and Local Rule-Based Explanations (LORE). LIVE consists of a modified implementation of LIME

focused on regression tasks. Differing from the latter, the dataset for local exploration is generated by

perturbing the explained instance, one feature at the time. Additionally, all generated observations are

treated as similar to the observation of interest, i.e., all the neighbor points have the same weight and

the original variables are used as interpretable inputs [64]. LORE starts by learning a local interpretable

predictor, a decision tree, on a synthetic neighborhood, generated by a genetic algorithm, to produce a

local explanation. Then, a meaningful explanation is derived from the predictor, consisting of a decision

rule and a set of counterfactual rules. The first allows the explanation of the reasons that produced the

decision and the latter suggests changes in the values of the features of the instance that may lead to

different outcomes [46].

3.2.2.3 Local Feature Importance

Local feature importance refers to values that explain how much a certain feature contributed to the

prediction [1]. Methods like LIME, Anchors and variants produce interesting results to analyze the fea-

ture importance of examples. Although these can be used on nearly every model, these are approximate

methods [1, 62, 63]. Thus, the need for Shapley local variable importance, an exact method with the-

oretical guarantees from economics and game theory [70]. Nonetheless, this is a very time consuming

technique [65]. As a consequence, this method is not always used, being replaced by techniques as LIME,

Anchors, Leave-One-Covariate-Out (LOCO), among others [1]. Regarding LIME, this tool produces sparse,

i.e., simplified, explanations, using only the most important features of the data [62]. Similarly, Anchors

produce sparse explanations, but can be more specific. Moreover, these generate rules about the most

important features, instead of numeric values [63]. That said, although LIME variants and LOCO generate

explanations in real time, these will not be as accurate as Shapley explanations [1].

In regard to concrete methods, LOCO variable importance is a model agnostic technique that allows

for local interpretations. It is based on leaving one feature out of the prediction, i.e., by setting the value

of the feature in question to missing, zero, its average or other similar measure [66]. Hence, for each

row of the dataset, the model predicts the output using the full row and then again for each predictor

left out. Thus, the feature that produces the largest absolute impact on the prediction is labeled as the

most important feature for that specific example. However, this method may produce worse results when

complex nonlinear dependencies exist in the model. Additionally, LOCO can rank the features by their
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impact on the output as a per-row basis, creating global explanations [66].

When it comes to Shapley explanations, these have credible theoretical support and derive consistent

local variable contributions to predictions of the model. In terms of the process, firstly, observations are

transformed into a simplified form of binary values. It is important to know that the explanation models

are restricted to additive feature attributions methods, i.e., the predicted values are linear combinations

of binary input vectors. As seen in Equation 19, g represents the explanation model, x a binary vector

of dimension N and ϕi consists of the weight of the ith feature, where i = {1, ..., N}, measuring how
that feature contributes to the prediction. Therefore, by finding the optimal weights, it is assured that the

model has desirable properties of local accuracy and consistency and can be rank ordered to generate

reason codes [65].

g(x) = ϕ0 +
N∑
i=1

ϕixi (19)

Moreover, Shapley explanations can be model agnostic or model specific, as these use a variant

of LIME for model agnostic explanations and take advantage of tree structures for tree-based models

[65]. Besides this, although a local method, Shapley explanations can be aggregated to create global

explanations, enhancing understanding by explaining each observation of the dataset [1, 65].

3.2.2.4 Prediction Decomposition

Additionally to giving information about feature importance, Shapley explanations can be used to de-

compose the prediction, i.e., to separate the explanation of the prediction into smaller explanations based

on the most important features. For each prediction, Shapley Additive Explanation (SHAP) values explain

the difference between the average output of the model and the obtained value, assigning each feature

a certain weight based on this difference [51, 65, 67]. This prediction is calculated for all possible com-

binations of features, considering and excluding the feature of interest, in order to determine its weight

[65]. However, unrealistic combinations of features might appear, due to some level of correlation [67].

Moreover, as stated before, the calculation of SHAP values is time demanding. Nonetheless, there are

some approximations. One example of this is BreakDown, presenting a fast approximation of SHAP values,

based on model relaxations [64]. Additionally, proposed by Lundberg et al. [67], an optimized version for

tree ensembles is available.

3.2.2.5 Feature Interaction

In order to take into consideration the possibility of correlated features in the data, Lundberg et al. [67]

proposed SHAP interaction values, an extension of SHAP values based on Shapley interaction index from

game theory [71]. These capture pairwise interaction effects, differing from previous methods that could

not directly represent these, but divided the impact of an interaction among each feature. Therefore, SHAP
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interaction values guarantee consistency while explaining interaction effects for individual predictions and

present a way to measure potentially hidden pairwise combinations in tree based models [67].

Concretely, the interaction values represent pairwise combinations, forming a matrix of values that

represent the impact of all pairs of features on the prediction of the model. Each element of this matrix

is calculated following Equations 20 and 21, where S represents the subset of input features, M is the

number of input features and N is the set of all input features. It is important to notice that this equation

is only applied when i ̸= j [67]. Moreover, the interaction value between features i and j is split equally,

i.e., Φi,j = Φj,i and the total interaction effect is given by Φi,j + Φj,i [67].

Φi,j =
∑

S⊆N\{i,j}

|S|!(M − |S| − 2)!

2(M − 1)!
∇i,j(S) (20)

∇i,j(S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S) (21)

The main effects for a prediction can be defined as the difference between the SHAP value (weight)

and the SHAP interaction values for that feature, as in Equations 22 and 23. Therefore, SHAP interaction

values allow the consideration of main and interaction effects for individual predictions, following similar

axioms as SHAP values [67].

Φi,i = ϕi −
∑
j ̸=i

Φi,j (22)

ϕi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!

M !
(fx(S ∪ {i})− fx(S)) (23)

Typically, the impact of predictors in tree based models is accomplished by using a bar chart, rep-

resenting the global feature importance, or using a PDP, describing the effect of altering a single feature

[50]. However, as SHAP values produce results unique to every prediction, more informative visualiza-

tion techniques can be used. Proposed by Lundberg et al. [67], SHAP summary plots replace standard

feature importance bar charts, as these do not represent the range and distribution of impacts that the

feature has on the prediction and how its values relate to its impact. Therefore, summary plots sort the

feature by their global impact and display dots representing SHAP values in a violin-like plot for each fea-

ture [67]. Additionally, Lundberg et al. [67] introduced SHAP dependence plots, based on the ability of

PDPs to represent the expected output of a model when the value of one or more predictors are fixed,

as plotting how the output reacts to alterations in a feature helps in explaining how the model depends

on that feature. While PDPs only produce lines, SHAP dependece plots display vertical dispersion due to

interaction effects in the model, usually visible by each dot being colored with the value of the interacting
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predictor. Moreover, combining dependence plots with interaction values may reveal global interaction

patterns [67]. Furthermore, Datta et al. [68] presented Quantitative Input Influence, a tool that measures

the degree of influence of the predictors for solo or multiple predictions. However, this tool can only be

used for classification tasks [68].

3.2.2.6 Counter Factual Explanations

There is a slight difference between counter factual explanations and adversarial examples. The latter

can be defined as a sample of input data that was previously modified in order to alter the predicted result

[72]. The first exemplifies small alterations of feature values in order to alter the output, while explaining it

[73]. For instance, one counter factual explanation should indicate, alongside the predicted value, a subset

of different feature values that would lead to a different prediction and its value [74]. Consequently, counter

factual explanations can be useful to explain the reasons behind a certain outcome [75]. Moreover, one

can use these to analyze the fairness of a system [76] and to identify bugs and errors in the models, since

these are concise and easy to understand by humans [77]. However, as a consequence of their nature,

by generating explanations, security and privacy leaks can occur, exposing instances of the training data

to the users [74]. In terms of concrete tools, Krause et al. [78] proposed a visual tool that utilizes PDPs in

order to produce data with different outputs, by altering the values of the predictors.

3.2.3 Regional Explanations

Proposed by Britton [16], regional explanations describe behaviors that affect significant regions of the

data. By doing so, these are neither global, nor local methods, since they produce results more general

than local methods and more specific than global techniques. Regional explanations can be obtained in

one of two ways. Either an algorithm identifies a region of the data where many instances share a common

behavior, being provided a succinct description of the data cluster, or the behavior itself is described [16].

Alongside the paradigm, Britton [16] also proposed a model agnostic tool to evaluate algorithms,

designated Visual Interaction Effects (VINE). This tool utilizes modified ICE curves to produce detailed

information about how feature interactions affect the predictions of the model. Additionally, in order to

identify the interactions, one must read the produced chart, not being required any detailed statistical

analysis. It is important to mention that the prediction function of the model has to be passed as an input

of VINE [16].

In order to address the issue of overplotting associated with ICE curves, VINE clusters similar curves

utilizing a measure of slope similarity and represents a centroid curve for each cluster instead of multiple

ICE curves. Moreover, to explain what clustered curves have in common, i.e., what differentiates them

from the remaining curves, a decision tree with depth of 1 is used to predict membership in the cluster

against all other points is used [16]. This method allows the identification of the feature and the split

value that reduces the entropy between the curves inside and outside the cluster the most. Hence, the

split can be used as an explanation on what characteristics make the clusters unique [16]. Also, to avoid

duplication or very similar cluster explanations, an algorithm to merge clusters is used, given that there
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is not an a priori indicator of the ideal number of clusters. Furthermore, in VINE charts, the horizontal

represents the strength of feature interactions, calculated as the sum of Dynamic Time Warp distances

between each VINE curve and the PDP curve, normalized by the maximum value of the latter curve, and

the vertical axis indicates the overall feature importance [16].

VINE explanations detect real subsets of data, based on shape similarity and not simple fitting noise,

and successfully measure feature interactions. Additionally, VINE curves present higher fidelity than PDPs

and allow users to generate human readable characteristics for subsets. However, being based on ICE

curves, these have fundamental limitations, consequence of extrapolation issues. Moreover, the tool pro-

duces better results when most features in the dataset are numerical. Nonetheless, it is not suitable to

process large datasets, as these may use a large amount of memory and time to be processed[16].

3.3 Association Rule Learning

Association Rule (AR) Learning, introduced in 1993 by Agrawal et al. [79], represents a classical

method to detect data patterns in the form of rules. In broad terms, given a set of transactions, where

each transaction is a set of items, i.e., atomic elements of data, an AR is an expressionX ⇒ Y , in which

X and Y are sets of items. The idea is that transactions in the database that contain the items inX , also

contain the items in Y [80]. For instance, a rule can be defined stating that 95% of customers that buy

cookies and butter also buy milk at a store, where 95% is the confidence of the rule and the support would

be the percentage of transactions in the database that contain both X and Y . Moreover, the confidence

metric can be seen as the conditional probability, i.e., its predictive capability, and a measure of the

strength of the rule. It is also important to distinguish the concepts of antecedent and consequent. In the

example above, the antecedent consists of cookies and butter and the consequent of milk alone. Thus,

the problem associated with AR is to find all rules that satisfy user-specified minimum values of support

and confidence. Some examples of common applications of AR can be found in customer segmentation

based on buying patterns, store layout, among others [80].

3.3.1 Classical Association Rules

Although AR can be divided into multiple variants, it is important to understand the basics. That said,

as stated before, Classical Association Rules (CAR) were introduced by Agrawal et al. [79].

Assuming the example of a database related to a shop, let Z = {I1, I2, ..., IN} be a set of binary

attributes. In this case, these sets are called items. Moreover, assume that T represents a database of

transactions. Each transaction t can be represented as a binary vector, where t[i] = 1 means that the

item was bought, and t[i] = 0 otherwise. It is important to note that, for each transaction, there is a tuple

in the database. Let X be a set of items in Z . If, for all items Ii, t[i] = 1, the transaction t satisfies X

[79].

In the original work, Agrawal et al. [79] define an AR as an implication of the form X ⇒ Ij , where

X is a set of items and Ij is a single item of Z that is not present in X . The rule X ⇒ Ij is satisfied in
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the set of transactions T if a factor C is a value between 0 and 1, included. This factor C can be defined

as the percentage of transactions in T that satisfy X and Ij simultaneously.

Depending on the subject and purpose of application of CAR, some constraints can be utilized. These

constraints can be divided into two categories: Syntactic and Support Constraints. Regarding the first,

they are related to restrictions on items that can appear in a rule. For instance, only rules that have a

specific item appearing in the consequent or antecedent may be considered important. It is also possible

to use combinations of the above scenarios, where all rules must have items of a predefined itemset A in

the consequent and items from another set B in the antecedent. When it comes to the latter, these are

related to the number of transactions that support a specific rule, i.e., the fraction of transactions in T that

satisfy the union of items in the consequent and antecedent of the rule. Contrarily to confidence, support

corresponds to statistical confidence of the rule. Additionally, Support Constraints can also be important

in situations where only rules above a specific threshold are to be accounted for (value usually known as

minsupport ), e.g., due to business reasons [79].

3.3.2 Quantitative Association Rules

Due to the fact that CAR are not sensitive to data types and, as a consequence, do not consider

numerical attributes, the need for mining information in databases with quantitative attributes appeared.

Initially proposed by Srikant and Agrawal [81], Quantitative Association Rules (QAR) can be generated

by creating categorical events from quantitative data, i.e., each event can either be a categorical item

or a numeric interval. Hence, one example of a possible rule is {sex = male, age ∈ [5, 10]} ⇒
{height ∈ [100cm, 150cm] (confidence 80%)}. In order to produce these, an algorithm is used to

approximately find all rules, based on a discretization technique of numeric attributes, alongside an interest

filter to reduce redundant and similar rules [81]. This has proven to be a strong tool for mining quantitative

data. However, the use of intervals generated from numeric values is limited, can be misleading and lead

to loss of information [82]. Therefore, Aumann and Lindell [82] proposed a new approach to mine QAR,

with the purpose of revealing interesting behavior of subsets of the general population, while not relying on

discretization of numeric values. Consequently, comprehensive measures, such as mean and variance,

are used to understand the distributions of the various numerical attributes. Even though mean and

variance are the most common, different measures, like median, are allowed [82]. That said, for example,

by observing the rule {sex = female} ⇒ {wage : mean 8$ per hour (overall mean wage =

9$)}, one can immediately notice that a group of people earns less than the average wage in the database
[82].

In terms of discovery of interesting rules, the scenarios to look for are the ones where the distribution

of a specific subset differs from the population. In order to identify these situations, standard statistical

methods to measure the significance of disparity between distributions are used [82]. According to Au-

mann and Lindell [82], one rule is defined as subset ⇒ mean or variance for subset, i.e., the Left

Hand Side (LHS) of the rule describes the characteristics of the subset of the population and the Right

Hand Side (RHS) the deviated behavior. It is also important to notice that, differing from the implemen-
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tation suggested by Srikant and Agrawal [81], there is no exponential blowup in the number of rules and

items [82]. Lastly, in formal terms, let E = {e1, ..., en} be a set of attributes of the database D. The

expressions Eq ⊆ E and Ec ⊆ E represent the quantitative and categorical attributes, respectively.

Moreover, C is the set of all possible categorical values. Each transaction in D can be defined as a tuple

t = (< e1, v1 >, ..., < en, vn >) of attributes and values, where ei ∈ C if categorical and ei ∈ R if

numeric [82].

Furthermore, Webb [83] proposed an extension of QAR, Impact Rules, where the RHS of each rule

contains statistics about the target for a specific subgroup, defined by the antecedent, similarly to Aumann

and Lindell [82]. Contrarily to the latter, Impact Rules are based on the Optimized Pruning for Unordered

Search (OPUS) [84] algorithm, which is not an itemset-based algorithm, and do not rely only on distribution

based measures of interest, such as variance [83]. These have less computational costs, avoiding, in

many cases, the requirement for constraints imposed on rules to be discovered, such as minimum cover.

Moreover, the measures of interest used in this context have a wide range of practical applications, allowing

the identification of subsets that contribute the most/least to the output, in opposition to determining

groups that are different [83]. For instance, the sum metric can be useful in scenarios where the target

measures the end objective, e.g., the total profit generated. In addition, the impact measure is useful

when the target is an intermediate variable, e.g., income from a transaction. The latter reveals the total

contribution of a group and, consequently, its influence on the general distribution, favoring large groups

with individuals that contribute more than the average to the result. Therefore, a subgroup that has higher

mean in comparison to the overall average might not be the subgroup that has the most impact, as it can

be small [83]. Moreover, some alterations and variants have been proposed regarding these. Namely to

discard insignificant rules [85], prune derivative rules considering ancestors and children rules [86] and

to efficiently dispose of uninteresting rules in large and dense datasets, since applying statistical tests to

identify significant rules requires considerable computation costs and access to data in order produce the

necessary statistics [87].

3.3.3 Distribution Rules

Introduced in 2006 by Jorge et al. [88], Distribution Rules (DR) are a generalization of AR and are

particularly appealing when the property of interest is numerical. Contrarily to CAR, DR do not need to

pre-discretize the numerical attribute of interest. Additionally, when in comparison with QAR, these do

not require a reduction of the set of values in the RHS to a summary given by mean, variance or other

measure, keeping the whole set of values of the attribute. Consequently, there is no loss of information

[88].

Formally, a DR follows the form A ⇒ y = Dy|A, where A is a set of items, y represents the

target attribute, originally quantitative, but easily extended to categorical data, and Dy|A is an empirical

distribution of the values of y for the examples where A is observed, i.e.,Dy|A consists of a set of tuples,

each composed by a particular value of y and the frequency of that value for the sample whereA is present

[88]. Nevertheless, it is important to notice that the attributes on the antecedent are either categorical or
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discretized into numerical intervals [88].

One simple example of a DR is as follows: let the target attribute be the salary of each individual in

dollars, {man, young} ⇒ {500/2, 504/4, 670/3, 811/1} states that, among young men, 2 receive

a value of 500, 4 of 504, 3 of 670 and 1 of 811. That said, the process of discovery of distribution rules

consists of finding all rules where the LHS has a support above the minimum defined and the RHS is

statistically different from the default distribution Dy|∅, based on a pre-defined threshold. This default

distribution is obtained using the complete dataset, i.e., it is an empirical distribution of the attribute in

study, using every record in the dataset, or a predefined reference distribution [88]. In order to measure

the interest of the discovered rules, DR calculate the difference between the distribution in the RHS of

the rule and a reference distribution, generally, Dy|∅. This difference is calculated through a statistical

goodness of fit test, such as the Kolmogorov-Smirnov (KS) test, even though other statistical tests can be

used, like Cramér-von Mises tests. In regard to the KS test, the interest of a specific rule is calculated

by 1 − p, where p is the p-value obtained with the test [88]. In addition, a threshold is used in order to

determine which rules are to be accounted for, based on the results of their goodness-of-fit tests [88].

In order to better understand the concept, Figure 7 contains a visual representation of one DR for

dataset Auto (cf. Table 1). Here, one can see that many cars with 6 cylinders and originated from the

United States present lower mileage per gallon when in comparison to the general population, specifically

cars around 20 miles per gallon. Moreover, the remaining instances present lower millage per gallon than

the general population, as seen in the right tail of the distribution.

Figure 7: Graphical representation of one DR from dataset Auto (cf. Table 1), where the gray line represents
the distribution of millage per gallon of the whole population of the dataset and the black line concerns
the cars with 6 cylinders and originated from the United States.

Similarly to CAR and QAR, DR can be easily used in the context of subgroup discovery, regardless of

the type of the property of interest, prediction, classification, clustering, among other scenarios [88].
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3.4 Summary

The evaluation of black box regression models can be achieved through multiple approaches, each

producing specific information. On the one hand, an algorithm can be analyzed regarding its performance.

To that end, it is necessary to analyze the errors of the model, i.e., the differences between the real target

values and the predicted ones. In order to do so, one can rely on scalar measures, such as the MSE

or the MAE, or graphical metrics, e.g., EDPs, REC curves and surfaces, among others. Moreover, this

approach is widely used to compare models based on certain requirements and useful to assess possible

risks associated with the use of some models. On the other hand, interpreting a model, namely, studying

the relation between the predictors and the ground truth, can unveil important scenarios, while explaining

the predicted value. This can be divided into two major groups, global methods, evaluating the model as a

whole, and local methods, that study one instance or a small group of similar instances. Moreover, a new

approach has been proposed to define the study of similar instances as regional explanations with VINE.

Some approaches generally used among global methods weigh the importance of the features regarding

the output, like PFI and MCR, others analyze the effects the values of the predictors have on the target,

such as PDPs, ICE plots and ALE plots. These effects may include possible interactions of values, studied

with multivariate variants of PDPs and ALE plots, H-Statistic, among other tools. Moreover, some tools

emulate the original model using an explainable one, based on its inputs and outputs. Regarding local

methods, similarly to global methods, the analysis of feature importance can be approached, using, for

instance, LIME, LOCO or Shapley explanations. Other possible technique is Ceteris Paribus plots, i.e., the

alteration of the value of one feature, allowing the study of alterations on the predicted value. Additionally,

the use of surrogate models to explain regions around an instance of interest and highlight the values that

are sufficient to make a prediction using tools like LIME, Anchors, LORE or LIVE. Lastly, decomposing the

prediction, specifically separating the explanation of the prediction into smaller explanations, based on the

most important features, e.g., SHAP or BreakDown. Moreover, one can assess the interactions of features

for a certain instance, using SHAP interaction values and SHAP dependence plots, or produce counter

factual explanations, by studying the consequences of making modifications in the feature values in order

to generate different outputs.

Furthermore, the use of AR can be an important tool to uncover subgroups of data that share some

similarities, combined with some other methods to interpret the models. Hence, knowing that the classic

definition of AR can only be used for categorical data, an alternative to study datasets with a numerical

property of interest was developed, QAR. The first approach regarding the latter created categorical in-

stances from quantitative records, possibly losing some information. Consequently, a new approach was

defined, not needing discretization of the feature of interest and using interest measures such as mean

and variance. However, sometimes the impact a certain subgroup has on the result is more important

than uncovering all groups that are different, leading to another variant of QAR, Impact Rules. These rely

on extra measures of importance, quantifying the weight each group has on the outcome. Lastly, as a

reduction of the set of values on the RHS to a summary of measures might lead to some loss of infor-

mation, DRs extend QAR by containing on the consequent an empirical distribution based on the discrete
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characteristics of the subset that is statistical different from a reference distribution, generally the whole

population.
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Chapter 4
Implementation Details and Results

In the current chapter, the datasets used for benchmarking are presented and described, as well as

the different machine learning models applied to the data. Also, the discretization process and the manner

to calculate error values are characterized. Afterwards, the developed tools are described in detail, namely

boxplots, histograms and density plots of uncovered subgroups. Moreover, a network visualization is

also presented, as well as performance tables and an extrapolation of counter factual explanations to

regression. The difference between certain error types is described, as well. Finally, some interesting

examples of certain subgroups are displayed and analyzed for multiple datasets.

4.1 Datasets

In order to enable the test of the developed tools, a significant number of datasets was used. These are

described in Table 1. Some datasets are only composed by a relatively small number of instances, e.g., A1

or A7, while others are significantly larger, as CpuSm. Moreover, one can see that the number of predictors

varies from 4 to 37, allowing the study of a multitude of possibilities, simulating realistic problems. Repre-

senting multiple combinations between the number of numerical and categorical features is also important,

as a dataset can be composed solely by one type of attributes, or by a combination of both. To allow full

reproducibility of the results, the original and transformed datasets are publicly available at https://
github.com/citoplasme/MScDissertation/tree/1.1/code/validation/data. The link
contains three versions of each dataset. In the first one, the datasets are as is, with no major alterations.

The second version is composed by the original datasets and four new columns per dataset, representing

the predicted values of every model seen in Table 2. Lastly, the third version is fully prepared for subgroup

discovery, with discretization of numerical attributes, as described in detail in Section 4.3.

4.2 Models

Each dataset mentioned in Table 1 was used as part of a regression task using the predictive learning

algorithms in Table 2. Four different algorithms were used, including an Artificial Neural Network (ANN), a
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Table 1: Datasets used for benchmarking.

Dataset Number of instances Number of predictors Numerical predictors Categorical predictors

A1 198 11 8 3

A2 198 11 8 3

A3 198 11 8 3

A4 198 11 8 3

A6 198 11 8 3

A7 198 11 8 3

Abalone 4177 9 7 2

Acceleration 1732 14 11 3

Airfoild 1503 5 5 0

Auto 392 8 7 1

AvailPwr 1802 15 8 7

Bank8FM 4499 8 8 0

Boston 506 13 13 0

ConcreteStrength 1030 8 8 0

CpuSm 8192 12 12 0

FuelCons 1764 37 25 12

MachineCpu 209 6 6 0

MaxTorque 1802 32 19 13

Servo 167 4 2 2

Gradient Boosting Machine (GBM), a Random Forest (RF) and a Support Vector Machine (SVM), in order to

avoid any model dependency bias within the experiments. Moreover, similarly to the datasets, in order to

allow full reproducibility of the experiments, we used the R programming language [89] and open source

implementations of the black-box models.

Table 2: Regression algorithms and respective parameters used for benchmarking.

Model Parameters Package

Artificial Neural Network size = 10, maxit = 1000, decay = 0.1, na.action = na.omit, linout = TRUE nnet [90]

Gradient Boosting Machine
distribution = ”gaussian”, n.trees = 10000, interaction.depth = 1,

shrinkage = 0.001, cv.folds = 5, n.cores = NULL, verbose = FALSE
gbm [91]

Random Forest ntree = 500 randomForest [92]

Support Vector Machine kernel = ”radial”, cost = 1, epsilon = 0.1, gamma = 1/(data dimension) e1071 [93]

In addition, no hyper-parameter tuning was performed, as the goal is solely to avoid any model bias

in the experiments.

4.3 Data Discretization

In order to find interesting subgroups using DRs, the numerical features have to be discretized previous

to the discovery process. Ideally, this action should be performed with user or domain specific require-

ments, i.e., some level of knowledge on the ideal division of the values. However, as a large number of

different datasets is being studied, we opted for the use of quartiles of the data, similar to the default

approach proposed by Areosa and Torgo [28] regarding EDPs and explained in Section 3.1. Additionally,
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by utilizing the same approach, we are able to directly compare the results produced by our proposed tools

and EDPs.

Furthermore, as our approach uses CAREN [88, 94–96] to generate DRs, one may consider using

the different methods provided by this tool to deal with numeric attribute, such as Fayyad-Irani algorithm

[97], or Srikant discretization [81]. Nevertheless, CAREN does not output the transformed dataset, only

the rules and their measures. Consequently, it would not be possible to directly compare the results with

other tools that need the discretization of numeric attributes, such as EDPs.

4.4 Error Calculation

Another crucial step during performance analysis is to guarantee that the expected prediction error

values provide an estimate of the risk associated with using a certain model. Therefore, based on these

values, and their correspondent feature values, the end user can assess the risk of usage. That is, whether

the error values are within some tolerance limits and, consequently, the suitability of the model for the task.

As the estimation of the error directly affects the quality of the results, the usage of a trustworthy method

is imperative. Similarly to Areosa and Torgo [28], we followed the same Cross Validation (CV) mechanism

to obtain error estimates for every available instance. Specifically, a 10 fold CV was used to calculate

the prediction of the model for each example, i.e., the full dataset is divided into 10 different groups that

serve as test sets one at a time. For each hold out set, the model is trained using the remaining data and

evaluated using the first as a test set. Ergo, every data instance is part of only one test set. Finally, by

comparing these predictions with the real values, reliable error estimates are attained.

4.5 Error Distribution Rules

In order to address some problems associated with EDPs, as the production of uninteresting plots for

the end user to analyze, we propose Error Distribution Rules (EDR). These can be defined as an extension

of EDPs, that use DRs to select interesting subgroups. This combination allows the production of lesser

plots, as only those containing the distributions of combinations of characteristics that differ significantly

from a reference distribution are generated. In fact, if we wanted to analyze every interaction that contains

up to three variables, we would have to produce N + N !
2!×(N−2)!

+ N !
3!×(N−3)!

EDPs, where N represents

the number of features in the dataset. Moreover, as DRs do not have any limitation regarding the number

of features in a certain combination, this approach can unveil interactions previously unattainable by EDPs,

since these are limited to a maximum of three variables. Lastly, in terms of software used to produce the

plots, EDRs rely on the R package ggplot2 [98].

Sections 4.5.1, 4.5.2 and 4.5.3 are composed of examples of the developed graphical methods. Thus,

in order to allow some level of comparison between the techniques, the examples used are shared among

them. The rules used in these examples were obtained from dataset A6 (cf. Table 1), trained with a GBM

model (cf. Table 2) and using logarithmic errors for better visualization. The discovery process had a
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minimum support of 5%. Regarding the single rule examples, these portray the comparison between DR

NO3 = [0.7− 1.59],mxPH = [7.75− 8.22], oPO4 = [7.4− 31.33] with the global distribution,

as this is our reference distribution. Similarly, the multi-rule examples compare subgroups partially or fully

characterized by NH4 = [82.1− 176.67] between themselves and the reference distribution.

4.5.1 Boxplot

The first visualization method implemented uses the exact same graphical tool as EDPs to represent

distributions, boxplots. These compactly depict the data by displaying summary statistics as the median,

the first (Q1) and third (Q3) quartiles, located at 25% and 75%, respectively, the whiskers and some

outliers. Concerning the whiskers, the lower one is calculated as Q1 − 1.5 × (Q3−Q1) and the upper

asQ3+1.5× (Q3−Q1) [99]. For convenience, minimum will be representative of the first whisker and

maximum of the second throughout the remaining of the document.

To produce them from an EDR, it is only necessary to convert its distribution to a vector, as the RHS of

each DR contains an empirical distribution. To do so, every value is replicated by the frequency it occurs

in the distribution. Moreover, the X axis is composed by the description of the subgroups and the Y axis

by the error values. A simple example can be seen in Figure 8, where, by analyzing the plot, one can

perceive that the subgroup presents smaller error values in comparison to the global values, i.e, presents

a better performance.

Figure 8: Example of a boxplot visualization of a EDR from dataset A6 (cf. Table 1), trained with a GBM
model (cf. Table 2).

Another possibility is to compare multiple subgroups simultaneously, as depicted in Figure 9. Here, it

is clear that every subgroup that is in part characterized by NH4 = [82.1− 176.67] has a tendency to

produce smaller errors than globally expected.
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Figure 9: Example of a boxplot visualization of multiple EDRs from dataset A6 (cf. Table 1), trained with a
GBM model (cf. Table 2).

4.5.2 Histogram

Even though boxplots produce extremely pleasant results, sometimes an extra level of detail about the

distributions is necessary. That said, the second graphical option is to plot histograms of the DRs. In order

to do so, the error values are divided into bins and the number of data instances in each bin is counted,

allowing for the calculation of a relative frequency, displayed in the Y axis. This frequency is helpful for

the visualization, as the use of an absolute count would lead to the subgroups being covered by the global

distribution. Similarly to boxplots, histograms are generated using the RHS values contained in each rule.

However, the error values are displayed on the X axis, instead of the Y axis.

The same example as in Figure 8 is now presented using an histogram in Figure 10. It is clear that

the subgroup contains a higher density of smaller values of error, namely between 0 and 0.5, differing

from the whole data, which covers a larger amount of possible values. By comparing the histogram

with the corresponding boxplot, one can not only confirm the better performance, but also have a better

understanding on how these values are spread.

Once more, it is possible to produce a histogram containing multiple distributions at once, as seen

in Figure 11. Nonetheless, with the increase in the number of factors to plot, the visualization becomes

more difficult, as we can see for error values between 0 and 1.

4.5.3 Density Plot

In order to improve over the histogram visualization of the rules, we decided to use density plots, a

smoothed and continuous version of the first. For instance, by looking at Figure 12 we can see the two

major error values where the instances of the subgroup are condensed.
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Figure 10: Example of an histogram visualization of a EDR from dataset A6 (cf. Table 1), trained with a
GBM model (cf. Table 2).

Figure 11: Example of an histogram visualization of multiple EDRs from dataset A6 (cf. Table 1), trained
with a GBM model (cf. Table 2).

Regarding Figure 13 and comparing the plot with Figure 11, it is clear that this approach produces

simpler plots to analyze. Although the error values are still grouped between 0 and 1, each distribution

is now visible and easily compared. For example, in the histogram, the subgroup defined by NH4 =

[82.1−176.67], Cl = [17.38−47.23] is not very visible, except for outlier around 2.7. However, in the

density plot it is easily perceived, being relatively similar to subgroup NH4 = [82.1 − 176.67], Cl =

[17.38− 47.23],mxPH = [8.24− 8.8].
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Figure 12: Example of a density plot visualization of a EDR from dataset A6 (cf. Table 1), trained with a
GBM model (cf. Table 2).

Figure 13: Example of a density plot visualization of multiple EDRs from dataset A6 (cf. Table 1), trained
with a GBM model (cf. Table 2).

4.5.4 Network Visualization

As the number of subgroups discovered in a dataset can be extremely high, a simple and fast method

to analyze the derived results is convenient. Consequently, we developed a method that produces an

interactive network, using the R package visNetwork [100]. The network produced contains elliptic nodes,

corresponding to bins of features, and diamond shaped nodes, that represent the DRs. Note that these

can either be colored blue, if the median of the subgroup distribution is equal or smaller than the global,
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or red if higher, providing a simplistic, yet rapid way to assess the performance of a subgroup. A simple

example of this can be seen in Figure 14, produced from dataset A7, using a SVM model. Moreover,

the discovery parameters used were 5% for minimal support and 1 × 10−14 for minimal improvement

filter. Another noteworthy aspect of this visualization method is the possibility to highlight a certain node

and its direct connections. By doing so, or by hovering a node, its characteristics are displayed, i.e., its

designation and, in the case of diamond nodes, values such as mean, model, or standard deviation.

Figure 14: Network visualization of DRs from dataset A7 (cf. Table 1), trained with a SVM model (cf. Table
2).

4.5.5 Performance Tables

As seen before, the visualization methods have some limitations in terms of the number of distributions

to compare at a given time. Consequently, another method was implemented, allowing the comparison

of some key points of multiple subgroups, in the form of performance tables. These compare multiple

subgroups with a reference distribution, selected as an input parameter by the end user.

Concerning the algorithm to create the tables, the first step is to generate the key points, i.e., mini-

mum, Q1, median, Q3 and maximum, for the reference distribution and for each subgroup. Note that,

contrarily to the boxplots, minimum and maximum values represent the actual lowest and highest values

of the distribution, and not the lower and upper whiskers. Then, the resulting dataset of subgroups is

melted, originating a dataset with three columns: subgroup, variable and value. The variable column is

composed by the key point indication, which allows the correct comparisons. After this step, we loop over

every row and generate categorical values for them, indicating how it behaves regarding the reference
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distribution. The possible values are Higher, Equal or Lower, considering the difference between the value

of the subgroup and the reference. Lastly, using the transformed dataset, a plot is produced, being similar

in some ways to a heatmap, as seen in Figure 15. This example compares every EDR discovered with the

complete error distribution, allowing the analysis of how each subgroups behaves in comparison to the

whole data. For instance, one can see that season = spring contains both the minimum and maximum

error values of the whole data. Moreover, PO4 = [292.62 − 771.6] and oPO4 = [205.64 − 564.6]

are also defined by the same maximum value as the whole data.

Figure 15: Performance table of DRs from dataset A4 (cf. Table 1), trained with a GBM model (cf. Table
2).

However, sometimes it might be helpful to compare only a certain parcel of subgroups with a very

specific distribution. That said, Figure 16 depicts the comparison of every subgroup that extends PO4 =

[1− 13.2] with PO4 = [1− 13.2] itself, for dataset A4 (cf. Table 1). This visualization allows users to

see how the interaction of PO4 = [1 − 13.2] with other feature values affects the performance of the

model. For instance, by grouping PO4 = [1 − 13.2] with size = small or oPO4 = [1 − 7.3], the

overall performance decreases, as seen by the Q1, median and Q3 values. Mind that, in the worst case

scenario, the minimum and maximum values of a variations of PO4 = [1 − 13.2] are the ones of the

subgroup by itself. Moreover, it is also interesting to see that PO4 = [1−13.2],mnO2 = [10.3−11.7]

results in higher values for minimum, Q1 and Q3, but lower for both maximum and median, indicating an

intriguing performance.
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Figure 16: Performance table of a filtered group of DRs based on feature PO4 from dataset A4 (cf. Table
1), trained with a GBM model (cf. Table 2).

4.5.6 Counter-Factual Analysis

Another approach that extends the idea behind performance tables and helps users, by focusing on

subgroups with the most interesting performance values, is the study of counter-factual situations. These

reduce the number of cases for the users to analyze, focusing only on the ones that differ in some key

aspect of the distribution. The process starts by generating a dataset for each subgroup discovered,

composed by other subgroups that share at least one data bin, i.e., a condition, with the first subgroup.

In a way, the data structure can be seen as a hash table, i.e., a list of pairs, each composed by a key

and a value. Each key represents a subgroup and each value a dataset of subgroups. These datasets are

composed by the various values of the quartiles (minimum, Q1, median, Q3, maximum) and are ordered

by the number of conditions shared with the subgroup (key) associated to them, in descending order. By

doing so, the subgroups that have the most similarities are closer to the top of the dataset. Then, every

instance is compared to a reference distribution, passed as input. Usually, this reference is represented

by the whole data. Moreover, not only the values of each dataset are compared, but the subgroups that

can be seen as their keys as well. Similarly to performance tables, three possible values are calculated:

Higher, Equal or Lower. The major difference to the foretold occurs here, as the values are filtered if the

quartile values associated with these are equal to the quartiles of their key. For example, in Listing 1, we

see that rules 2 and 3 are associated with rule 1. Due to the fact that the performance of rule 2 is exactly

the same as its key (rule 1), it is dropped, as it is only interesting to analyze subgroup 3 in the context

of possible counter-factual scenarios. Moreover, as the analysis depends on the interests of the users,

by providing these with the various cutting points, these are able to analyze the scenarios that are more

interesting based on their preferences, without losing the notion of how the distribution behaves.

Listing 1: Example of a subgroup and its dataset of similar subgroups, before filtering.

( 1 ) A = [ 1 , 2 ] , B = [ 3 , 4 ] : H i g h e r H i g h e r H i g h e r H i g h e r E q u a l

( 2 ) A = [ 1 , 2 ] , B = [ 3 , 4 ] , C = c l a s s 1

H i g h e r H i g h e r H i g h e r H i g h e r E q u a l

( 3 ) A = [ 1 , 2 ] , D = [ 5 , 7 ]
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L owe r H i g h e r L owe r L owe r E q u a l

Listing 2 depicts an example of a final counter-factual for dataset A4 (cf. Table 1), concerning the

subgroup size = large, Cl = [5 − 16] in relation to the whole data. As seen, this combination is

characterized for having higher error values for the minimum point and lower for the remaining points.

Moreover, after filtering non-interesting subgroups that share one or more feature conditions with the first,

only oPO4 = [1 − 7.3], Cl = [5 − 16], size = small and oPO4 = [1 − 7.3], Cl = [5 − 16]

are selected. Both groups are defined by the same behavior in comparison to the whole data, i.e., lower

values for the maximum errors and higher for every other point. Consequently, their behavior differs from

size = large, Cl = [5−16], making them counter-factual scenarios that lead to a differing performance

regarding the expected error magnitudes.

Listing 2: Example of a subgroup and its dataset of similar subgroups, after filtering, from dataset A4 (cf.

Table 1), trained with a GBM model (cf. Table 2)

>> s i z e = l a r g e , C l = [5−16]

>> H i g h e r L owe r L ow e r L owe r L owe r

> oPO4 = [ 1 −7 . 3 ] , C l = [5 −16 ] , s i z e = s m a l l

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

> oPO4 = [ 1 −7 . 3 ] , C l = [5−16]

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

Obviously, the discovery of counter-factual examples can be achieved by analyzing the performance

tables. Nonetheless, presenting the examples in a textual format yields an easier and faster way to highlight

the relevant characteristics of the predictive model.

4.5.7 Effect of Error Measure

Another important aspect to mention is the impact of the measures of error in the results. Based on

the performed experiments, absolute and logarithmic errors always produce the same DRs, differing only

in metrics such as mean, median, mode, among others, as expected. Despite this, the behaviors of the

subgroups compared to the overall data remain unchanged. Contrarily, the use of residual errors leads to

the discovery of different DRs, as the distributions follow different forms, due to the existence of negative

and positive values. This leads to situations where a subgroup that presents better performance than

global, using absolute or logarithmic errors, is identified as having a distinct behavior or is not identified

at all, due to not differing significantly from the whole data.

In order to exemplify the results described above, Figure 17 presents the same subgroup, NO3 =

[0.7 − 1.59],mxPH = [8.24 − 8.8], from dataset A7 (cf. Table 1), trained with a GBM model (cf.

Table 2), using absolute (Figure 17a), logarithmic (Figure 17b) and residual (Figure 17c) errors. Additionally,

these rules were uncovered using a minimum support of 5% and 1×10−14 for minimal improvement filter.
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By analyzing both the absolute and logarithmic version of the subgroup, it is clear that for both cases, Q3

is smaller than the global median and that the their median is close to Q1. In short, these plots show a

subgroup with better performance than expected, based on the complete data. However, by observing the

residual version, even though the median of the subgroup is still close to its Q1, these are slightly higher

than the global median. Hence, by using the same comparison method as before, the subgroup would

show worse performance than expected. Nonetheless, residual errors cannot be compared in the same

way, due to existence of negative values. Thus, these can be used to study the tendency of a model to

over or under predict.

(a) Absolute errors. (b) Logarithmic errors. (c) Residual errors.

Figure 17: Multiple versions of a subgroup from dataset A7 (cf. Table 1) to analyze the impact of the type
of error, trained with a GBM model (cf. Table 2).

Another important aspect from the comparison between these three variants is the higher visibility

granted from the logarithmic errors. Ergo, we opted to use these to present some examples.

4.5.8 Illustrative Examples

Often, when analyzing large datasets, uncovering interactions or frequent combinations of feature

values is important to understand and predict the behavior of the models. Consequently, the usage of

rules allows users to uncover these interactions easily, specifically the ones that act differently from the

whole data. Therefore, in order to prove that EDRs produce interesting results and extend the analysis

provided by EDPs, a few examples are considered in the following sections.

4.5.8.1 A1

The following example was obtained by training dataset A1 with a GBM model and 5% as the minimum

value of support. By analyzing the EDPs present in Figure 18, one can infer some behavioral aspects

about the performance of the model. For instance, in Figure 18a, the data bin characterized bymnO2 =

[7.6−10.29] appears to have a distribution similar to the whole data. Moreover, in Figure 18b it is notorious

that oPO4 = [71− 197.83] presents a better performance than global and oPO4 = [7.4− 31.33] is

identical to general. It is also important to notice that, in Figure 18c, the bin NH4 = [22.5 − 81] also

presents a similar error distribution when in comparison to global.
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(a) Feature mnO2. (b) Feature oPO4. (c) Feature NH4.

Figure 18: EDPs from dataset A1 (cf. Table 1) to analyze features mnO2, oPO4 and NH4, trained with a
GBM model (cf. Table 2).

However, with the help of the EDR presented on Figure 19, we can see that, for example, the subgroup

NH4 = [22.5−81],mnO2 = [7.6−10.29], oPO4 = [7.4−31.33] is characterized for having higher

errors than the complete dataset. By analyzing the boxplot in Figure 19a, it is clear that the error distribution

of the subgroup has a higher value for Q1, median and Q3 when comparing with the whole dataset.

Besides this, the Q1 value is even higher than the median for the whole data, displaying a significantly

worse performance. Moreover, by viewing the density plot in Figure 19b, it is clear that, contrarily to the

whole population of data, where the majority of error values are between 0 and 1, these are widely spread

for the subgroup, culminating in worse performance.

(a) Boxplot. (b) Density plot.

Figure 19: EDR from dataset A1 (cf. Table 1) to analyze subgroup NH4 = [22.5−81],mnO2 =
[7.6−10.29], oPO4 = [7.4−31.33], trained with a GBM model (cf. Table 2).

Oppositely, as seen in Figure 20, the subgroup oPO4 = [71−197.83],mnO2 = [7.6−10.29]

presents smaller errors than expected. For instance, by looking at Figure 20a, we can see that the subgroup
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values are centered around a lower value and are more contained, since the interquartile range (IQR) is

smaller. In fact, the global median is slightly shorter than the upper whisker of the distribution of the

subgroup. Additionally, by inspecting Figure 20b, we can confirm that the distribution of values of the

subgroup is centered around smaller values and rapidly decreases after reaching the maximum density.

(a) Boxplot. (b) Density plot.

Figure 20: EDR from dataset A1 (cf. Table 1) to analyze subgroup oPO4 = [71−197.83],mnO2 =
[7.6−10.29], trained with a GBM model (cf. Table 2).

Thus, unless the multivariate variants of EDPs were used, it would be difficult to predict the described

behaviors for these subgroups, as the univariate EDPs do not present enough information.

4.5.8.2 A2

In this example, we utilize dataset A2 trained using an ANN model and set the minimum value of

support as 5% per rule. By observing Figure 21, we can clearly see that the binsmxPH = [8.24− 8.8]

(Figure 21a) and size = small (Figure 21b) do not present a significant difference in comparison to the

global performance. However, both are characterized for having slightly higher Q3 values. In addition,

size = small also presents lower values for the median and Q1 of the distribution.

Nonetheless, with the aid of DRs, we can identify that a combination of these characteristics corre-

sponds to a subgroup with an error distribution tending to higher values. Although the dimensions of the

dataset are small, the subgroup has considerable representation, illustrating 6% of the total data, 20% of

mxPH = [8.24− 8.8] and 17% of size = small.

4.5.8.3 A3

In addition to using the same discovery parameters as before, a RF model was used for this example

of dataset A3. Observing its EDPs in Figure 23, one can notice that medium and high values of variable
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(a) Feature mxPH. (b) Feature size.

Figure 21: EDPs from dataset A2 (cf. Table 1) to analyze features mxPH and size, trained with an ANN
model (cf. Table 2).

(a) Boxplot. (b) Density plot.

Figure 22: EDR from dataset A2 (cf. Table 1) to analyze subgroup mxPH = [8.24 − 8.8], size =
small, trained with an ANN model (cf. Table 2).

speed (Figure 23a) do not present representative differences in relation to the average behavior. Moreover,

feature Chla (Figure 23d) presents considerable higher error values for Chla = [0.2− 1.3] and feature

NO3 (Figure 23c), specifically NO3 = [0.7 − 1.59], slightly higher than the whole data. Furthermore,

Figure 23b depicts the EDP of feature Cl, where it is clear that Cl = [17.38 − 47.23] is characterized

for having lower error values than average. In fact, the Q3 of this distribution is marginally smaller than

the global median.
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(a) Feature speed. (b) Feature Cl.

(c) Feature NO3. (d) Feature Chla.

Figure 23: EDPs from dataset A3 (cf. Table 1) to analyze features speed, Cl, NO3 and Chla, trained with
a RF model (cf. Table 2).

By utilizing EDRs, in Figure 24 we can see that by combining the characteristics speed = high,

Chla = [0.2− 1.3] and NO3 = [0.7− 1.59], the model produces higher errors than expected. As a

matter of fact, the difference between the medians is relevant, as the median of the subgroup is around

0.8, while the global is close to 0.55. The latter being somewhat equal in value to the Q1 of the subgroup.

A second example can be seen in Figure 25, depicting subgroup Cl = [17.38 − 47.23], speed =

medium. Here, a better performance than expected is seen. Besides that, we can see that this group

has a considerable dimension, representing 14.6% of all data, 36% of speed = medium and 50% of

Cl = [17.38 − 47.23]. This high representation has probably an impact on the EDPs, especially on

the latter example, as the subgroup presents even smaller errors on average than the ones expected by
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(a) Boxplot. (b) Density plot.

Figure 24: EDR from dataset A3 (cf. Table 1) to analyze subgroup speed = high, Chla = [0.2− 1.3]
and NO3 = [0.7− 1.59], trained with a RF model (cf. Table 2).

analyzing Figure 23b.

(a) Boxplot. (b) Density plot.

Figure 25: EDR from dataset A3 (cf. Table 1) to analyze subgroup Cl = [17.38 − 47.23], speed =
medium, trained with a RF model (cf. Table 2).

4.5.8.4 Abalone

Similarly to EDPs, the usage of DRs allows us to find distinct regions with only one variable. For

example, take dataset Abalone, trained with a SVM and a minimum value of support of 5%. Figure 26
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depicts the EDP to analyze feature sex and clearly demonstrates that sex = I (Infant) has slightly better

performance than anticipated by analyzing the model as a whole.

Figure 26: EDP from dataset Abalone (cf. Table 1) to analyze feature sex, trained with a SVM model (cf.
Table 2).

With the aid of EDRs, this situation is also uncovered, as witnessed in Figure 27. It is important to note

that, as every other rule, the minimum value of support is extremely important, as this acts as a filtering

method. However, in this case, the subgroup has a representation of 1342 instances, i.e., 32.13% of the

whole dataset, easily surpassing the 5% minimum support.

(a) Boxplot. (b) Density plot.

Figure 27: EDR from dataset Abalone (cf. Table 1) to analyze subgroup sex = I , trained with a SVM
model (cf. Table 2).
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4.5.8.5 Acceleration

The great advantage of using EDRs lies in the fact that these do not have dimensionality restric-

tions like EDPs, allowing the analysis of interactions between more than just three variables. Due the

a high number of instances and features in this dataset, the minimum filtering value of support was in-

creased to 10%. Moreover, regardless of training the four models, the one that allowed us to present the

most interesting details was the SVM. Observing some EDPs in Figure 28, one can recognize that, for

instance, attribute6 = [12.3 − 18.7] (Figure 28b), attribute13 = [30.5 − 37.2] (Figure 28c) and

attribute14 = [3.26− 3.68] (Figure 28d) have a slightly better performance than global, both in terms

of median and Q3 values. In addition, attribute1 = nominal1 (Figure 28a) is similar to the supra

mentioned, despite having a considerable number of outliers.

By connecting the four bins mentioned, EDRs detect a subgroup with a better performance than

globally expected, both in terms of median, as in Q1 and Q3 values, as depicted in Figure 29. Additionally,

in Figure 29a, it is visible that the global median is greater than the Q3 value of this group. Moreover, it

is important to emphasize that this is a set with a considerable representation, corresponding to 10.6%

of the total data, 15.6% of attribute1 = nominal1, 19.5% of attribute6 = [12.3− 18.7], 28.3% of

attribute13 = [30.5− 37.2] and a hefty 41.2% of attribute14 = [3.26− 3.68].

It is important to highlight that, even by using the multivariate versions of EDPs, this interaction would

not be discovered, as it is composed by a combination of four features.

4.5.8.6 Airfoild

Using the same discovery parameters as in Section 4.5.8.5 applied to a RF model trained with

this dataset, an interesting example can be found in the subgroup Suction = [0.001 − 0.003],

AngleOfAttack = [0 − 2]. This represents 16.1% of all data, 58% of AngleOfAttack = [0 − 2]

and 68% of Suction = [0.001−0.003]. By observing the EDPs for features AngleOfAttack and Suction,

in Figures 30a and 30b, respectively, it is noticeable that the bins depicted in the subgroup suggest a

better performance than overall.

Moreover, as these bins were select by EDRs as having interesting behaviors, we can analyze their

density plots in Figure 31. This type of visualization might help users in understanding some small differ-

ences between the groups. For instance, the error values of Suction = [0.001− 0.003] have a higher

density around smaller values than the values of AngleOfAttack = [0 − 2], possibly explaining the

lower median value of the first.

It is also important to analyze the subgroup that is characterized by both bins, as this can be seen

as a derivation of the original bins. Focusing on Figure 32, specifically in Figure 32b, it is noticeable that

the higher value of density is superior to 3.5, around the same error values as the ones in Figure 31. In

addition, the individual higher values of density were both smaller than the peak of this combination, as

well as having more instances with higher error values as seen on the right tail of their distributions. Thus,

the conjunction of these two feature values yields more accurate results.
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(a) Feature Attribute1. (b) Feature Attribute6.

(c) Feature Attribute13. (d) Feature Attribute14.

Figure 28: EDPs from dataset Acceleration (cf. Table 1) to analyze features Attribute1, Attribute6, At-
tribute13 and Attribute14, trained with a SVM model (cf. Table 2).

4.5.8.7 Availpwr

Figure 33 depicts an interesting example, as it is visible that the subgroup and general error distribu-

tions are similar to some extent, i.e., the main peaks have a similar density values (Figure 33b). However,

the second peak of density of the subgroup occurs for much lower errors (close to 2.0) than for the general

population (close to 4.0). This difference leads the subgroup to have a better performance than the gen-

eral one, since it has a higher instance density for lower errors. Moreover, we can confirm this behavior

tending for smaller errors by analyzing the boxplot representation of this EDR in Figure 33a. The latter

shows not only a smaller median value, but also Q1 and Q3 values for the subgroup, corroborating the
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(a) Boxplot. (b) Density plot.

Figure 29: EDR from dataset Acceleration (cf. Table 1) to analyze subgroup attribute14 = [3.26 −
3.68], attribute6 = [12.3−18.7], attribute1 = nominal1, attribute13 = [30.5−37.2], trained
with a SVM model (cf. Table 2).

(a) Feature AngleOfAttack. (b) Feature Suction.

Figure 30: EDPs from dataset Airfoild (cf. Table 1) to analyze features AngleOfAttack and Suction, trained
with a RF model (cf. Table 2).

above analysis.

4.5.8.8 Boston

This example utilizes a SVM model trained with dataset Boston and setting a minimum support of

5%. By observing some of its EDPs in Figure 34, one can spot some interesting scenarios. For instance,

53



CHAPTER 4. IMPLEMENTATION DETAILS AND RESULTS

(a) Feature AngleOfAttack. (b) Feature Suction.

Figure 31: EDRs from dataset Airfoild (cf. Table 1) to analyze subgroups Suction = [0.001 − 0.003],
and AngleOfAttack = [0− 2], trained with a RF model (cf. Table 2).

(a) Boxplot. (b) Density plot.

Figure 32: EDR from dataset Airfoild (cf. Table 1) to analyze subgroup Suction = [0.001 −
0.003], AngleOfAttack = [0− 2], trained with a RF model (cf. Table 2).

in Figure 34a it is clear that age = [80.8 − 94.9] is similar to the global distribution, despite having

a slight tendency for larger errors (Q3 of the distribution is higher than the global one). Conversely,

dis = [2.21 − 3.65], in Figure 34b, tends to smaller errors, as the Q3 and Q1 of the distribution are

smaller than the global ones. Additionally, its median is also slightly lower. Lastly, in Figure 34c, we see

that tax = [422− 711] has a slight tendency for higher errors, due to having a higher value for its Q3.

Once again, by using EDRs, we detect a subgroup characterized by age = [80.8 − 94.9], dis =
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(a) Boxplot. (b) Density plot.

Figure 33: EDR from dataset AvailPwr (cf. Table 1) to analyze subgroup attribute5 = [0.95 −
1.16], attribute2 = [1898−2771], attribute4 = nominal3, attribute14 = nominal33, trained
with an ANN model (cf. Table 2).

(a) Feature age. (b) Feature dis. (c) Feature tax.

Figure 34: EDPs from dataset Boston (cf. Table 1) to analyze features age, dis and tax, trained with a SVM
model (cf. Table 2).

[2.21−3.65], tax = [422−711], as seen in Figure 35. This subgroup represents 5.3% of the complete

dataset, 21.4% of age = [80.8−94.9], 19.4% of dis = [2.21−3.65] and 16.3% of tax = [422−711].

Additionally, it presents a better performance in comparison with the complete dataset in general, even

having a Q3 value below the general median. Thus, a combination that, at first did not seem to deviate

much from the overall performance and had two of its individual conditions defined by lower accuracy than

expected, ends up showing very low error values.
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(a) Boxplot. (b) Density plot.

Figure 35: EDR from dataset Boston (cf. Table 1) to analyze subgroup age = [80.8 − 94.9], dis =
[2.21− 3.65], tax = [422− 711], trained with a SVM model (cf. Table 2).

4.5.8.9 ConcreteStrength

Another interesting example can be seen using dataset ConcreteStrength, as it consists of a dataset

with considerable dimensions. By analyzing some EDPs produced using a GBM model in Figure 36, we

can see that, for instance, Age = [56 − 100] (Figure 36a) and FlyAsh = [0 − 86] (Figure 36b)

contain higher values for the median and Q3, leading to a tendency to worse performance than expected.

Moreover, their Q1 values are similar to expected and these are characterized by a considerable number

of outliers.

Additionally, instances that contain these two attribute values are expected to have worse performance

than predicted by the analysis of the EDPs, as seen in Figure 37. This can be seen by the fact that not only

the median and Q3 values of the distribution are higher than the global ones, but Q1 as well. Furthermore,

it is interesting to notice that every outlier with error values superior to 1.0 present in Age = [56− 100]

(Figure 36a) are also present in the subgroup. Likewise, by viewing the density plot version, it is noticeable

that even though the error value where the peaks occur are similar, the peak of the subgroup is smaller

and is followed by a less steep descent, explaining, once again, the worse performance.

4.5.8.10 CpuSm

By observing the subgroup defined by swrite = [71 − 230], exec = [0 − 3] in Figure 38, it

is visible that the overall performance to be expected is an improvement regarding the global one. In

addition, this combination of values represents 40.9% of all data, 52% of exec = [0 − 3] and 74% of

swrite = [71− 230].

Moreover, its respective EDPs, show that exec = [0−3], represented in Figure 39a, has similar error
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(a) Feature Age. (b) Feature FlyAsh.

Figure 36: EDPs from dataset ConcreteStrength (cf. Table 1) to analyze features Age and FlyAsh, trained
with a GBM model (cf. Table 2).

(a) Boxplot. (b) Density plot.

Figure 37: EDR from dataset ConcreteStrength (cf. Table 1) to analyze subgroup Age = [56 −
100], F lyAsh = [0− 86], trained with a GBM model (cf. Table 2).

values to the complete dataset. However, Figure 39b, namely swrite = [71 − 230] produces a more

interesting result, as the boxplot is quite similar to the subgroup, possibly due to the latter representing

almost three quarters of the first.
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(a) Boxplot. (b) Density plot.

Figure 38: EDR from dataset CpuSm (cf. Table 1) to analyze subgroup swrite = [71 − 230], exec =
[0− 3], trained with an ANN model (cf. Table 2).

(a) Feature exec. (b) Feature swrite.

Figure 39: EDPs from dataset CpuSm (cf. Table 1) to analyze features exec and swrite, trained with an
ANN model (cf. Table 2).

4.5.8.11 FuelCons

In order to identify subgroups with higher density, i.e., with a larger representation, the minimum values

of support and pruning filter used were higher. Consequently reducing the number of EDRs discovered.

Even so, close to 580 distinct subgroups were generated using a minimum support of 35%, showing

the agility and power of the use of rules. An example of these is the subgroup attribute22 = [2 −
2], attribute3 = nominal9, attribute24 = nominal33, in Figure 40, identified by smaller errors
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than expected and a representation of 36.9% of the total data. Note that for this specific case, to find an

interaction with three variables using EDPs and generating every plot of all interactions with 3 variables, it

would be necessary to generate and analyze 37!
3!×(37−3)!

= 7770 distinct plots.

(a) Boxplot. (b) Density plot.

Figure 40: EDR from dataset FuelCons (cf. Table 1) to analyze subgroup attribute22 = [2 −
2], attribute3 = nominal9, attribute24 = nominal33, trained with an ANN model (cf. Table
2).

4.5.8.12 MachineCpu

Lastly, this example consists of a dataset with a relatively small number of instances and features.

This hinders the discovery of interesting subgroups of data, as the bins do not have enough support,

despite being different in terms of shape. Examples of this are visible in Figure 41, more concretely in the

EDP of feature chmin in Figure 41a, as chmin = [16 − 26] or chmin = [32 − 52] are considerably

different, but not populated enough. Moreover, the bin chmin = [0− 1] displays a better performance

than overall, having smaller values for the quartiles and median than the ones of the global distribution.

Similarly, in Figure 41b, myct = [90 − 175] is also characterized by better performance, having minor

values for the percentiles in comparison to the first.

Nevertheless, the combination of both consists of a subgroup with considerably better performance

than the general, with the global median being higher than the Q3 of the error distribution of this group, as

seen in Figure 42a. In addition, this is visible in the density plot depicted Figure 42b. Here, for error values

close to 3.5 the subgroup no longer shows instances, but the global distribution is still in a decreasing

phase of density.
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(a) Feature chmin. (b) Feature myct.

Figure 41: EDPs from dataset MachineCpu (cf. Table 1) to analyze features chmin and myct, trained with
a SVM model (cf. Table 2).

(a) Boxplot. (b) Density plot.

Figure 42: EDR from dataset MachineCpu (cf. Table 1) to analyze subgroup myct = [90 −
175], chmin = [0− 1], trained with a SVM model (cf. Table 2).

4.5.9 Comparison of Equal Subgroups on Different Models

One aspect that may be important is the comparison of the behavior of the same subgroups in different

models. However, the same subgroups do not always behave differently enough to generate a rule on them,

so it is not always possible to perform this comparison. Nevertheless, we can observe an example from

dataset A1, comparing a GBM model with a RF. Moreover, the discovery process was conducted using
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a minimum support of 5%. By analyzing Figure 43, we can easily notice that the GBM model has an

overall better performance than the RF, due to having lower values of Q1, median and Q3. In addition, the

IQR is also smaller, centering the majority of errors in a smaller and lower interval. However, for subgroup

mxPH = [7.75−8.22], speed = medium we can see some interesting situations. For the RF model,

seen in Figure 43b, similarly to the global error values, the distribution is more spread. Nonetheless, its

median is much lower than the median generated by the GBM model, which is close to its Q3, as seen in

Figure 43a.

(a) GBM. (b) RF.

Figure 43: Boxplot EDRs from dataset A1 (cf. Table 1) to analyze subgroup mxPH = [7.75 −
8.22], speed = medium, trained with a GBM and a RF models (cf. Table 2).

Moreover, by observing the density plot representation of the subgroup for both models in Figure

44, we can confirm and understand more of the behaviors of these distributions. For instance, for the

GBM model, the density of the distributions drops rapidly after reaching its maximum peak. Inversely,

for the RF model, the descent is more gradual, leading to the possibility of the existence of higher errors.

Global distributions can also be compared, with the GBM model being similar to the subgroup, with a less

pronounced drop as seen in Figure 44a. Differently, the distribution from the RF model is much more flat

(Figure 44b), explaining the greater IQR.

Another curious example can be seen in dataset Servo, using the same discovery parameters and

trained with an ANN and a SVM models. First, let us analyze the global expected performances in Figure

45. Even though these are relatively similar in shape, the ANN, depicted in Figure 45a, is composed by

much lower values of error than the SVM (Figure 45b). Second, we must compare the subgroup defined

by pgain = [6−6] in both models. For the first model, it is clear that the subgroup presents a better

performance than previously expected by the model itself. However, for the SVM model, the subgroup is

now characterized by superior error values than expected, leading to a worse performance than the overall

model.
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(a) GBM. (b) RF.

Figure 44: Density plot EDRs from dataset A1 (cf. Table 1) to analyze subgroup mxPH = [7.75 −
8.22], speed = medium, trained with a GBM and a RF models (cf. Table 2).

(a) ANN. (b) SVM.

Figure 45: Boxplot EDRs from dataset Servo (cf. Table 1) to analyze subgroup pgain = [6−6], trained
with an ANN and a SVM models (cf. Table 2).

As depicted by these examples, EDRs, like EDPs, are extremely useful to compare the performance of

certain subgroups in various models. Although it is not always possible to compare certain subgroups of

data between multiple models, as these are not always selected for having a different enough behavior, it

may still be useful to compare some combinations of features in order to select a model to use.
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4.6 Summary

Various datasets, with variable size and number of instances, both numerical and categorical, were

used during the implementation and validation processes. In order to erase any model bias, every dataset

was trained with four models, anANN, a GBM, a RF and a SVM.

Further, as numerical features have to be discretized in order to initiate the process of rule discovery,

this consisted of a crucial step. Ideally, this procedure is achieved with some level of user or domain specific

requirements to divide the values. Due to the number of sets of data being studied, every numerical feature

was categorized using quartiles, similar to the default behavior of EDPs, allowing an easy comparison of

the results with the latter tool. CAREN, the rule discovery engine used, contains automatic approaches to

perform this action. However, the results would not be directly comparable with EDPs, as CAREN does not

output the transformed data, only the discovered rules. Additionally, error values were calculated using a

CV method, with 10 folds of data, to produce reliable estimates of error.

Thus, we proposed EDRs, a novel tool that utilizes the core ideas of EDPs and DRs to focus on sub-

groups of data that are interesting to end users. These are composed by three main visualization methods,

namely boxplots, histograms and density plots. Another visual approach consists of a network visualiza-

tion, allowing easy access to the metrics of each rule and to highlight similar rules, i.e., subgroups that

share some feature conditions with the selected one. Two other techniques were implemented, perfor-

mance tables and an extension of counter-factual examples to regression. The first evaluate the values of

error on the various cutting points of the distributions, based on reference values, producing one of three

possible scenarios: Higher, Equal or Lower. The second practice follows a similar logic, but only focuses

on rules that are characterized by a differing behavior in regard to the reference distribution and a EDR

that has at least one similarity.

As the proposed tools are based on graphical analysis, producing pleasant results is an important

requirement. Consequently, the scale of error values has a wide impact on the results. Three distinct

measures were calculated, namely absolute, logarithmic and residual errors. Although the first two always

produce the same EDRs, logarithmic errors are easier to analyze. Contrarily, residual error values not

only lead to the discovery of a different set of rules, but may produce rules with a contrasting behavior

from the ones detected with absolute or logarithmic values. For instance, a rule that is characterized

by a better performance than overall for the latter measures, can display higher errors than expected

with residual errors. Some illustrative examples comparing EDRs with EDPs for multiple datasets were

presented, utilizing logarithmic error values. These examples comprise cases that would not be easily

detected using EDPs, situations that reduce drastically the number of plots to evaluate, subgroups with

more than three conditions and, consequently, would not be detected with EDPs, among others.
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Chapter 5
Case Study

In this chapter, a comprehensive study simulating a real problem of model selection is performed,

taking advantage of the proposed tools to weight the advantages and disadvantages of each model. First,

the motivation behind the problem is presented, followed by the characterization of the dataset. Then, the

methodology applied is also outlined, namely the data discretization process, error calculation and utilized

models. Next, a comparison between the results of all models is performed. Initially, this comparison

is executed using scalar metrics. Then, with the use of graphical methods. Both procedures evaluate

the results globally. After that, the graphical approach is extended, with the usage of EDRs, leading

to a regional analysis. This encompasses a general overview of the rules, the analysis of performance

tables, counter factual examples and individual graphical examination of subgroups shared by one or

more predictive models. Finally, an overall examination of the results is accomplished, culminating in

advocating or rejecting factors about the models.

5.1 Motivation

The main motivation behind this case study consisted of applying the develop tools to a relatively

common ML problem, i.e., a problem that could be tackled without much domain knowledge. Thus, by

selecting a dataset with a clear and understandable context, this was assured.

A frequent problem is the process of application to graduate programs. This process requires metic-

ulous preparation, both in terms of the profiles of the students themselves and in the choice of relevant

institutions. Consequently, it is common for students to have difficulties in selecting only a group of institu-

tions, often without being aware of how the minimum requirements of the latter compare to their profiles.

Therefore, many students fail admissions, wasting time and resources.

That said, the goal of this study was not to produce the most accurate model, but to analyze how

different models compare in terms of error values for certain characteristics. For instance, by selecting a

model that is globally better, some data combinations may be penalized with a higher range of error values,

leading to less robust predictions. Scenarios like these are important for problems as this one, allowing

users to have more information and knowledge about the decisions generated by the predictive models.
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Additionally, due to the increase in understanding, end users might select models that were previously

dismissed for certain data combinations, in order to compute sturdy results.

5.2 Dataset

The dataset used was originally introduced by Acharya et al. [101] and consists of an Indian perspec-

tive of application to Masters programs. Moreover, the set is composed by 500 instances and 7 features,

consisting of important parameters of candidate selection. These include scores of exams such as Grad-

uate Record Examination (GRE) or the Test of English as a Foreign Language (TOEFL), if the student has

research experience, its undergraduate Grade Point Average (GPA), specifically in the form of Cumulative

GPA (CGPA), among others. Table 3 depicts the statistical summary of the numerical features and target

variable (Chance.of.Admit ) of the dataset. Here, one can see that, for instance, the university ratings, the

statement of purpose (SOP) and the letter of recommendation (LOR) have values between 1 and 5, in the

form of a strength scale. Moreover, due to its categorical nature, feature Research is not depicted on the

table. However, it is composed by 220 instances with no experience and 280 with, i.e., with values 0 and

1, respectively.

Table 3: Statistical summary of numerical variables of the case study dataset.

GRE.Score TOEFL.Score University.Rating SOP LOR CGPA Chance.of.Admit

Minimum 290.0 92.0 1.000 1.000 1.000 6.800 0.3400

Q1 308.0 103.0 2.000 2.500 3.000 8.127 0.6300

Median 317.0 107.0 3.000 3.500 3.500 8.560 0.7200

Mean 316.5 107.2 3.114 3.374 3.484 8.576 0.7217

Q3 325.0 112.0 4.000 4.000 4.000 9.040 0.8200

Maximum 340.0 120.0 5.000 5.000 5.000 9.920 0.9700

Additionally, correlation plots between predictors and graphical representations of the distributions of

each variable are presented in Appendix A, specifically in Figures 64 and 65.

5.3 Methodology

The process applied to the case study data was similar to the procedure described in Sections 4.3

and 4.4, in order to discretize numeric features and calculate the error values. In other words, numeric

features were discretized using quartiles and the error values were calculated using a 10 fold CV method

and a logarithmic measure to produce more pleasant graphical representations. Moreover, the parameters

of the models used can be, once again, seen in Table 2. Furthermore, the process of rule discovery used

CAREN, with minimum support of 5%. Lastly, the pruning filter value used was 1 × 10−14. This is an

improvement filter, meaning that the p-value of a more specific rule has to be at least 1× 10−14 smaller

than the p-value of its parent rule to be considered.
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5.4 Model Comparison

The following section consists of a comprehensive analysis of the performance of models applied to the

case study dataset. First, the models are compared using scalar metrics, as the RMSE and MAE. Second,

in order to extract more information about the performance of each model, graphical visualizations of

predicted values and errors, namely logarithmic and residual, are produced. Then, a comparison using

EDRs is performed. This comparison encompasses an overview of all the different rules detected, globally

and by each model, the study of performance tables for every predictor, some counter-factual examples

and graphical visualizations. The latter comprise EDRs detected on all and only a few models. Lastly, in

order to explain how the use of rules can be beneficial in performance analysis, an overview of some pros

and cons of the models is executed.

5.4.1 Comparison using Scalar Metrics

The first step, and the most common, is to compare the various models based on a global scalar

metric. In this case, two metrics were used, RMSE and MAE, to allow a more comprehensive comparison.

As seen in Table 4, the models are defined by very similar values. Nonetheless, some interesting situations

can be identified. For instance, the SVM model has slightly smaller values than the remaining models

concerning both metrics. Consequently, and only regarding the available metrics, can be seen as the best

model of the four. Contrarily, the ANN is defined by the highest metric values and should have the worse

performance. Moreover, the GBM and the RF models have relatively similar values. However, the metrics

for the RF model are slightly higher, being more notorious by comparing the MAE values for both models.

Table 4: RMSE and MAE values for the different models applied to the case study dataset.

Model RMSE MAE

Artificial Neural Network 0.06323443 0.04614278

Gradient Boosting Machine 0.06264165 0.04349683

Random Forest 0.06267704 0.04432247

Support Vector Machine 0.06199665 0.04273785

Thus, by only looking at these scalar metrics, the SVM appears to be the model that performs better

for this dataset, followed by the GBM and RF models. Differently, the ANN should be the worst model

overall. Nevertheless, the metrics are considerably similar, making this analysis not enough to confidently

select a model over another.

5.4.2 Comparison using Global Graphical Metrics

In terms of a global graphical analysis, there are two important comparisons one can study: how the

distribution of predicted values directly compares to the real values, and the errors of each model, i.e, by

comparing their performances.
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Regarding the first, Figure 46 depicts this study. It is clear that all the models fail in identifying smaller

target values, as seen through their minimum values compared to the real distribution. Moreover, the

ANN has the lowest minimum and the highest maximum of all models, making it the closest to the real

distribution concerning these metrics. Additionally, the SVM is the second closest model to the real data in

regard to the same points. Furthermore, by analyzing one model at the time, it is possible to see that the

ANN also has the closest median to the real values and the IQR is slightly smaller than reality. In regard to

the GBM, the IQR appears to be closest to the real values. However, its whiskers are considerably distant

from reality. The RF model has the closest Q1 value to the real values and the SVM the nearest Q3, but

also the farthest Q1 in comparison to the original data. Therefore, the ANN appears to have produced the

closest results to the real data distribution. The GBM and RF models also produced similar distributions,

but show a tendency to have higher errors regarding extremes, i.e., have greater differences concerning the

minimum and maximum distribution values. Lastly, although the SVM is characterized by very accurate

cutting points of the predicted distribution, its difference regarding the Q1 is considerable. Moreover, allied

to its marginally high median, it is possible that the model has a tendency to predict higher values than

reality.

Figure 46: Graphical representation of the predicted values of the models (cf. Table 2) applied to the case
study dataset and the real values.

After comparing the predicted values with real ones, it is also important to analyze how the models

compare among themselves in terms of actual errors. As mentioned before, for visualization reasons,

we opted for the use of logarithmic errors. Figure 47 consists of a comparison of the distributions of

logarithmic errors for all models in study. Some interesting aspects can be seen in the fact that the GBM

is defined by the lowest Q1, followed by the SVM, RF and, lastly, the ANN. The GBM also has the lowest

median of the models. The RF and SVM succeed to it with very close values among them and, once again,
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the ANN has the highest value for this cutting point. Moreover, the SVM is defined by the lowest Q3 and

maximum values. It is important to notice that the GBM has the second lowest Q3 and the second highest

maximum value. Additionally, the RF model has the highest values for Q3 and maximum cutting points.

Furthermore, all models are characterized by having some outliers, most of which are below 0.2. To

summarize, the GBM and the SVM appear to be the better models. Nonetheless, the latter has a smaller

IQR, with similar lower bounds, meaning that it has a tendency for lower error values. Moreover, these

models have the most distant outliers of the four models, i.e., higher errors, and the outliers of the GBM

are less dispersed in comparison to the SVM.

Figure 47: Graphical representation of the overall performance of the models (cf. Table 2) applied to the
case study dataset.

As sometimes models may tend to over or under predict, the analysis of residual errors is also an

important step of the process, as these depict the actual difference, positive or negative, between predic-

tions and real values. By observing Figure 48, it is apparent that the SVM errors are centered around 0,

as its median is approximately 0. Additionally, the remaining models are centered around positive values,

meaning that the real values are higher than the predicted ones. There are also many negative outliers,

probably due to the models predicting some considerably higher values than supposed to. Moreover,

the ANN has the largest IQR of the four models, i.e., a larger variety of errors with considerable density.

Similarly, the SVM also has a large IQR and difference between maximum and minimum, possibly leading

to higher errors, as seen before, despite seeming to be the better option due being centered around 0.

Regarding the remaining models these are more concise in terms of error values, even though they tend

to under predict the results.
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Figure 48: Graphical representation of the overall performance of the models (cf. Table 2) applied to the
case study dataset, using residual errors.

5.4.3 Comparison using Rules

After the global scalar and graphical analysis, it is now possible to perform a rule based study of the

models. This allows for the identification of specific situations where a model behaves differently from

its global performance. Table 5 depicts the number of rules detected for each model and for number

of features. It is clear that the ANN is the model with least amount of uncovered rules, followed by the

GBM with one more rule detected. Moreover, the rules of these models are characterized for being simpler,

containing only one or two variables. Inversely, the RF and SVMmodels have 49 and 48 EDRs, respectively,

including some with three and four predictors. Moreover, the SVM is the model with the most amount of

EDRs with more than two variables. It is also important to notice that most of the detected rules have two

variables, followed by single-feature rules, meaning that there are few cases with two or four predictors.

Table 5: Number of EDRs discovered per model and number of interactions for the case study dataset.

Model One Feature Two Features Three Features Four Features Total

Artificial Neural Network 15 17 0 0 32

Gradient Boosting Machine 16 17 0 0 33

Random Forest 18 27 3 1 49

Support Vector Machine 16 26 5 1 48

Total 65 87 8 2

Continuing the primary stages of the study, Table 6 consists of a detailed analysis of all the 67 different

subgroups detected. Of these, 19 were discovered on all models, 10 on three, 18 on two and 20 on only

one model. Some examples of rules discovered on all models are:
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• CGPA = [8.96− 9.53];

• GRE.Score = [297− 308], LOR = [2.5− 3.5];

• LOR = [4− 4.5], Research = 1;

• TOEFL.Score = [111− 117];

• University.Rating = [2− 2], GRE.Score = [309− 323].

This means that these subgroups have a different enough behavior on all models to be classified

as interesting cases to analyze. Moreover, it is also important to see what rules are detected on only

a subset of models. For example, the subgroup CGPA = [7.64 − 8.27], SOP = [2.5 − 3.5]

is only detected on the GBM, while the CGPA condition alone is consistent on all models. Contrarily,

SOP = [2.5 − 3.5] is only highlighted on the GBM and RF models. Another example is the subgroup

CGPA = [8.96 − 9.53], GRE.Score = [324 − 335], only uncovered for the RF and SVM models.

However, the individual conditions, separately, are associated with the four regression models, meaning

that for these two, the behavior differs enough from their individual counterparts to be pointed out. Further,

the ANN is the only model with the subgroup Research = 0, LOR = [2.5 − 3.5], despite its base

variant for Research only being highlighted on the RF and SVM models, and the base condition for LOR on

all models but the SVM. Another interesting example can be seen in SOP = [2.5− 3.5], Research =

1, LOR = [2.5 − 3.5], TOEFL.Score = [102 − 110], a subgroup that is only associated with the

RF model. While SOP = [2.5 − 3.5] appears on the GBM and the RF itself, Research = 1 is not

individually detected on any model, but has some variants, similarly to TOEFL.Score = [102− 110].

Additionally, LOR = [2.5− 3.5] appears on all models, except the SVM.

After knowing which subgroups have an interesting behavior for each model, it is crucial to understand

how these actually behave in comparison to the global distributions of their models. The use of perfor-

mance tables allows this understanding, as they produce a general overview of the performance of each

subgroup. Moreover, these comprise a powerful tool to quickly understand how many subgroups have

better or worse error values than expected.

Starting with the ANN model, in Figure 49, some aspects can be easily seen. For instance, this

model has 18 subgroups with a better performance than expected, in terms of Q1, median and Q3 values,

depicted in green. Contrarily, it has 13 subgroups with higher errors than anticipated. Furthermore, there

is a group that is characterized for having a higher Q1 value, but lower median, Q3 and maximum values.

It is also interesting to notice that there are 5 subsets with minimum errors as low as the whole data

and 10 with maximums as high. Thus, of the 32 subgroups detected, the majority, 19
32

= 59.4%, have

better performance than expected and 13
32

= 40.6% worse. Moreover, as these tables allow the analysis

of specific behavior, one can also see that, e.g., University.Rating with value of 5 always produces better

results, while the value of 2 for the same attribute is characterized for having worse performance for its

detected groups. Other examples can be seen in TOEFL = [95− 101], characterized by higher errors

than overall, or instances with research experience, defined by higher accuracy in the prediction.
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Table 6: EDRs discovered per model for the case study dataset. X indicates that the subgroup was present
for the model.

Subgroup Artificial Neural Network Gradient Boosting Machine Random Forest Support Vector Machine

CGPA=[6.8-7.6] X

CGPA=[7.64-8.27] X X X X

CGPA=[7.64-8.27], LOR=[2.5-3.5] X X X

CGPA=[7.64-8.27], SOP=[2.5-3.5] X

CGPA=[8.28-8.95], Research=0, TOEFL.Score=[102-110] X

CGPA=[8.96-9.53] X X X X

CGPA=[8.96-9.53], GRE.Score=[324-335] X X

CGPA=[8.96-9.53], Research=1 X X

CGPA=[8.96-9.53], SOP=[4-4.5] X X

CGPA=[8.96-9.53], SOP=[4-4.5], Research=1 X

CGPA=[9.54-9.92] X X X X

CGPA=[9.54-9.92], Research=1 X

GRE.Score=[297-308] X X X X

GRE.Score=[297-308], LOR=[2.5-3.5] X X X X

GRE.Score=[324-335] X X X X

GRE.Score=[324-335], Research=1 X X X X

GRE.Score=[324-335], SOP=[4-4.5] X X X

LOR=[1.5-2], SOP=[2.5-3.5] X

LOR=[2.5-3.5] X X X

LOR=[2.5-3.5], Research=1, TOEFL.Score=[102-110] X

LOR=[2.5-3.5], TOEFL.Score=[102-110] X X

LOR=[4-4.5] X X

LOR=[4-4.5], Research=1 X X X X

LOR=[5-5] X X X X

LOR=[5-5], Research=1 X X X

LOR=[5-5], University.Rating=[5-5] X

Research=0 X X

Research=0, LOR=[2.5-3.5] X

SOP=[1.5-2] X X X

SOP=[1.5-2], LOR=[2.5-3.5] X X X X

SOP=[1.5-2], TOEFL.Score=[95-101] X X

SOP=[2.5-3.5] X X

SOP=[2.5-3.5], LOR=[2.5-3.5] X

SOP=[2.5-3.5], Research=1, LOR=[2.5-3.5] X

SOP=[2.5-3.5], Research=1, LOR=[2.5-3.5], TOEFL.Score=[102-110] X

SOP=[4-4.5] X X X

SOP=[4-4.5], LOR=[4-4.5] X X

SOP=[4-4.5], Research=1 X X X

SOP=[5-5] X X X X

SOP=[5-5], Research=1 X X X X

TOEFL.Score=[111-117] X X X X

TOEFL.Score=[111-117], CGPA=[8.96-9.53] X X

TOEFL.Score=[111-117], Research=1 X X X

TOEFL.Score=[111-117], SOP=[4-4.5] X X X

TOEFL.Score=[118-120] X X X X

TOEFL.Score=[118-120], Research=1 X X

TOEFL.Score=[95-101] X X X X

TOEFL.Score=[95-101], CGPA=[7.64-8.27] X X

TOEFL.Score=[95-101], GRE.Score=[297-308] X

TOEFL.Score=[95-101], LOR=[2.5-3.5] X

TOEFL.Score=[95-101], Research=0 X X

University.Rating=[2-2] X X X X

University.Rating=[2-2], GRE.Score=[309-323] X X X X

University.Rating=[2-2], GRE.Score=[309-323], SOP=[2.5-3.5], TOEFL.Score=[102-110] X

University.Rating=[2-2], GRE.Score=[309-323], TOEFL.Score=[102-110] X X

University.Rating=[2-2], LOR=[2.5-3.5] X

University.Rating=[2-2], Research=1 X

University.Rating=[2-2], Research=1, LOR=[2.5-3.5] X

University.Rating=[2-2], SOP=[2.5-3.5] X X

University.Rating=[3-3], LOR=[2.5-3.5] X X

University.Rating=[3-3], Research=0, LOR=[2.5-3.5] X

University.Rating=[4-4] X

University.Rating=[4-4], GRE.Score=[324-335] X X

University.Rating=[4-4], Research=1 X X X

University.Rating=[5-5] X X X X

University.Rating=[5-5], Research=1 X X X X

University.Rating=[5-5], TOEFL.Score=[111-117] X X

Figure 50 contains the information about the GBM model. Here, it is clear that of the 33 rules, 16

are defined with smaller errors and 15 with higher, concerning the middle quartiles, i.e., Q1, median and

Q3. Additionally, and similarly to the previous model, there are two subgroups with a higher lower bound
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Figure 49: Global performance table from the case study dataset, trained with an ANN model (cf. Table
2).

error value, but smaller median and upper bound. Assuming these as better performance overall, the

GBM is defined by 18
33

= 54.5% of better performance subgroups and 15
33

= 45.5% worse. Furthermore,

it is intriguing to see that, while the ANN CGPA with values [8.96 − 9.53] was defined by a higher Q1,

despite the remaining cutting points being better than he overall model, for this model, it is CGPA with

values [9.54− 9.92] that follows this behavior.

The performance table for the RF model is presented in Figure 51, containing 27 subgroups with lower

errors overall and 22 with higher, i.e., 27
49

= 51.1% and 22
49

= 44.9%, respectively. Moreover, there are 13

sets of data with minimum errors as low as the whole distribution and 6 with maximum values as high as

the global data. It is also interesting to notice that this model does not have scenarios where a subgroup

is simultaneously better and worse than the overall performance for some cutting points, as seen in the

foretold examples. Furthermore, and contrarily to the examples before, this model has some interesting

scenarios regarding the combination of conditions leading to opposing performances, e.g, variations of

Research = 1.

Lastly, there is the SVM model, portrayed in Figure 52. By globally analyzing the EDRs, one may see

that the model is characterized by 27
48

= 56.25% of better performing subgroups and 21
48

= 43.75% of

worse. Additionally, the number of subgroups with equal minimum and maximum values to the global

distribution are 10 and 5, respectively. Similarly to the previous model, this also contains some counter-

factual examples for Research = 1.

Then, as there are some subgroups with contradictory performance, the discovery of some counter-

factual examples is an important complement to the analysis of the tables. However, many examples only
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Figure 50: Global performance table from the case study dataset, trained with a GBM model (cf. Table 2).

Figure 51: Global performance table from the case study dataset, trained with a RF model (cf. Table 2).

differ on the minimum or maximum values, as in Listing 1. Here, LOR = [5−5] has the minimum error

value equal to the global distribution. Nevertheless, by merging the condition withUniversity.Rating =

[5− 5], the minimum error is higher, being expected to obtain slightly higher error values.
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Figure 52: Global performance table from the case study dataset, trained with a SVM model (cf. Table 2).

Listing 1: Counter-factual examples for subgroup LOR = 5, University.Rating = 5 of the case study dataset,

trained with an ANN model (cf. Table 2)

>> LOR = [5 −5 ] , U n i v e r s i t y . R a t i n g =[5−5]

>> H i g h e r L owe r L ow e r L owe r L owe r

> LOR =[5−5]

E q u a l L ow e r L owe r L owe r L ow e r

A more compelling example is available in Listing 2, from the SVM model. For instance, University.

Rating = [2 − 2], Research = 1, or University.Rating = [2 − 2], Research = 1, LOR =

[2.5 − 3.5] have a worse performance overall regarding the whole data, in contrast to University.

Rating = [5 − 5], Research = 1, that displays lower errors than expected. Furthermore, some less

extreme examples can be seen in TOEFL.Score = [111−117], Research = 1 orGRE.Score =

[324 − 335], Research = 1, where the minimum error values are lower, i.e., equal to the whole data.

In contrast to University.Rating = [5− 5], Research = 1 that is characterized for having a higher

minimum error value than the global data.

Listing 2: Counter-factual examples for subgroup University.Rating = 5, Research = 1 of the case study

dataset, trained with a SVM model (cf. Table 2)

>> U n i v e r s i t y . R a t i n g = [5 −5 ] , R e s e a r c h =1

>> H i g h e r L owe r L ow e r L owe r L owe r
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> TOEFL . S c o r e = [111−117 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> GRE . S c o r e = [324−335 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> SOP = [ 4 −4 . 5 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> U n i v e r s i t y . R a t i n g = [2 −2 ] , R e s e a r c h =1 , LOR = [ 2 . 5 −3 . 5 ]

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

> U n i v e r s i t y . R a t i n g = [2 −2 ] , R e s e a r c h =1

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

> U n i v e r s i t y . R a t i n g = [4 −4 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

Another interesting case is depicted in Listing 3, from the RFmodel. Similarly to the previous examples,

we can examine some less impactful patterns, such asUniversity.Rating = [5−5], Research = 1,

orCGPA = [9.54−9.92], Research = 1, that display lower minimum error values than the compared

subgroup. Additionally, it is visible that, for instance, SOP = [2.5 − 3.5], Research = 1, LOR =

[2.5 − 3.5], TOEFL.Score = [102 − 110], or SOP = [2.5 − 3.5], Research = 1, LOR =

[2.5 − 3.5] are characterized for having a worse performance in terms of Q1, median and Q3 in regard

to SOP = [5− 5], Research = 1 and the global distribution of errors.

Listing 3: Counter-factual examples for subgroup SOP = 5, Research = 1 of the case study dataset, trained

with a RF model (cf. Table 2)

>> SOP = [5 −5 ] , R e s e a r c h =1

>> H i g h e r L owe r L ow e r L owe r L owe r

> U n i v e r s i t y . R a t i n g = [5 −5 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> GRE . S c o r e = [324−335 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> CGPA = [ 9 . 5 4 −9 . 9 2 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> TOEFL . S c o r e = [118−120 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> SOP = [ 4 −4 . 5 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

75



CHAPTER 5. CASE STUDY

> LOR = [5 −5 ] , R e s e a r c h =1

E q u a l L ow e r L owe r L owe r L ow e r

> SOP = [ 2 . 5 − 3 . 5 ] , R e s e a r c h =1 , LOR = [ 2 . 5 − 3 . 5 ] , TOEFL . S c o r e =[102−110]

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

> LOR = [ 2 . 5 − 3 . 5 ] , R e s e a r c h =1 , TOEFL . S c o r e =[102−110]

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

> SOP = [ 2 . 5 − 3 . 5 ] , R e s e a r c h =1 , LOR = [ 2 . 5 −3 . 5 ]

H i g h e r H i g h e r H i g h e r H i g h e r L owe r

Until this point, only pointwise comparisons were performed. Nonetheless, it is also relevant to fully

compare distributions of error values. We start by considering some subgroups that are present on all

models. Figure 53 depicts the subgroup defined by CGPA = [7.64 − 8.27], composed by 145 in-

stances, exactly 29% of all examples. Moreover, the subgroup has higher error values than expected for

the four models. By actually comparing the models themselves, it is visible that the ANN and SVM have

the errors centered around a smaller range of values. Nonetheless, the second has a considerable amount

of outliers in comparison to the remaining models. Moreover, its Q1 value is relatively high compared to

the GBM. Contrarily to the latter, the distributions of the subgroups for the remaining models show resem-

blances in terms of shape, e.g., the median of the first is closer to the center on the subgroup and close

to Q1 on the whole data. Furthermore, the SVM also has the closest median to the global distributions,

being slightly higher than the global ANN model.

Figure 53: Boxplot EDRs from the case study dataset to analyze subgroup CGPA = [7.64 − 8.27],
trained with all models (cf. Table 2).
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Another example can be seen in Figure 54, illustrating GRE.Score = [297 − 308], LOR =

[2.5 − 3.5]. Once again, this subgroup performs worse than expected for all models. Concretely, some

important aspects can be seen in the GBM, as this has the lowest Q1 value, or the RF, having the highest

Q1, median and Q3 values of all models. Furthermore, the GBM has the most variety of values, i.e.,

highest IQR, leading to a wider scope of possible errors, from low to high values. The ANN is defined by

the highest maximum and outlier of the models. Moreover, the latter and the SVM have, more or less,

the same median value, being the smallest of the four. However, the SVM has a much lower Q1 and Q3,

focusing the errors around the smallest values, compared to the rest of the models.

Figure 54: Boxplot EDRs from the case study dataset to analyze subgroup GRE.Score = [297 −
308], LOR = [2.5− 3.5], trained with all models (cf. Table 2).

Figure 55 contains a graphical representation of the performance of all models for subgroup LOR =

[4 − 4.5], Research = 1. Oppositely to the former examples, this group is characterized for having

smaller errors than the overall behavior of the models. For instance, the ANN is the worst model for this

subgroup of the four, as it has the highest errors on all cutting points and the highest IQR. Moreover, the

RF has the smallest Q3 and maximum values, followed by the GBM and SVM, respectively. Besides that,

the medians of the subgroup for the RF and SVM are extremely close and the lowest of the four models.

In short, the best models for this subgroup are the GBM and the SVM, as these have low values for Q1,

and their median and Q3 values are similar to the RF model. However, even though the IQR of the SVM

is higher than the one of the GBM, the first has a considerable smaller Q1 value, with relatively similar

values of median and Q3, being the best choice of the two.

The performance of the subgroup defined by the restrictions SOP = [1.5−2], LOR = [2.5−3.5]

can be seen in Figure 56. Similarly to the example in Figure 54, that is also defined by the same condition

for attribute LOR, this subgroup is characterized with worse performance than expected for all models.

Nevertheless, this group of conditions has smaller errors than the previous one, indicating more accurate

77



CHAPTER 5. CASE STUDY

Figure 55: Boxplot EDRs from the case study dataset to analyze subgroup LOR = [4 −
4.5], Research = 1, trained with all models (cf. Table 2).

predictions when SOP = [1.5 − 2] coexists with LOR = [2.5 − 3.5], contrarily to GRE.Score =

[297−308]. Additionally, a greater difference between the values of the Q1 is also seen, as the GBM widely

outperforms the other models for this cutting point. However, the SVM model has the lowest median,

Q3 and maximum values. Nonetheless, this model contains some outliers, contrarily to the remaining

models. It is also interesting to notice that the Q1 of this model is higher than its global median, while,

for the remaining models, this does not occur. Overall, the GBM seems capable to predict more accurate

results, but the SVM has its errors more centered and concise, possibly being more reliable. Nevertheless,

both models largely outperform the ANN and the RF for this subgroup.

Onemore illustrative case can be observed in Figure 57, concerning the subgroupTOEFL.Score =

[111− 117]. Once again, this is a subgroup with overall smaller errors than expected for all models, as

in Figure 55. Coincidentally, the ANN model is not as good as the remaining models for this subgroup, as

well. Nevertheless, its performance for the group still outperforms its global efficiency. The GBM and the

RF exhibit, in some extent, similar values. However, the RF has lower values for its Q1 and Q3 and also

the lowest observed maximum value. On the other hand, the GBM has the second lowest median for this

subgroup, but has the highest outliers. Overall, the SVM may be seen as the better option in this case,

as it has the lowest Q1, median and Q3 values, followed by the RF model. Nonetheless, the GBM also

produces interesting results, yet, it tends for higher error values than the two foretold models.

It is also important to evaluate the behavior of subgroups that only appear in certain models, as

these are characterized for differing performances, regarding both the global efficiency and that of the

remaining subgroups. Figure 58 contains the error values of the subgroup University.Rating =

[2 − 2], Research = 1, detected on the SVM. This group of instances is associated with higher errors

than the overall model. In fact, the Q1 of the subgroup neighbors the global median and its median is
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Figure 56: Boxplot EDRs from the case study dataset to analyze subgroup SOP = [1.5− 2], LOR =
[2.5− 3.5], trained with all models (cf. Table 2).

Figure 57: Boxplot EDRs from the case study dataset to analyze subgroup TOEFL.Score = [111 −
117], trained with all models (cf. Table 2).

almost as high as the global Q3 value, as seen in Figure 58a. Moreover, the density plot, in Figure 58b,

shows that the density of the subgroup not only has a much smaller peak than the global one, but is also

more spread withing the same range, with more uniform density values. Contrarily, the global distribution

drops rapidly after reaching its peak.

Another example can seen in the GBM model, specifically in the subgroup TOEFL.Score = [95−

79



CHAPTER 5. CASE STUDY

(a) Boxplot. (b) Density plot.

Figure 58: EDR from the case study dataset to analyze subgroup University.Rating = [2 −
2], Research = 1, trained with a SVM model (cf. Table 2).

101], LOR = [2.5 − 3.5], depicted in Figure 59. Similarly to the former example, this subgroup is

characterized for having higher errors than expected. In fact, both have an identical behavior, as the Q1

of this subgroup is also similar to the global median and its median is almost as high as the global Q3.

However, this subgroup has smaller values for the Q3 and maximum cutting points, than the former one.

Regarding the density analysis, two peaks are clearly visible for the subgroup. A larger one around 0.05

and another at approximately 0.13. Differently, the global error values gradually descend after hitting the

peak. Nonetheless, there seems to be a slight variation on the decline of the descent around the same

error value as the second peak of the subgroup appears.

Figure 60 contains graphical representations for the EDR defined by CGPA = [9.54 − 9.92],

Research = 1. This was only detected on the RF model and is characterized by a range of smaller

error values than expected. Furthermore, the subgroup is relatively small, being composed by only 29

instances, i.e., 5.8% of all items. Even though this is a subgroup with a low support, the combination of

features was detected as having a better performance than expected. Another interesting aspect is the

fact that CGPA = [9.54 − 9.92] was detected on all models, being composed by 30 instances, but

only the RF model detected its combination with Research = 1. This is possible due to a higher level of

difference between the the distribution containing both restrictions and its singular counter-part, namely

in terms of its p-value used in the pruning stage. Concerning the actual performance of the instances,

the boxplot representation shows that the median of the subgroup is approximately equal to the global

Q1 and its Q3 is considerably smaller than the global median. Furthermore, the density plot shows two

major peaks below 0.05 and a very swift descent for the group, corroborating that this combination of

restrictions is defined by extremely small error values.

An additional interesting group only detected on a single model is the one defined by CGPA =
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(a) Boxplot. (b) Density plot.

Figure 59: EDR from the case study dataset to analyze subgroup TOEFL.Score = [95 −
101], LOR = [2.5− 3.5], trained with a GBM model (cf. Table 2).

(a) Boxplot. (b) Density plot.

Figure 60: EDR from the case study dataset to analyze subgroupCGPA = [9.54−9.92], Research =
1, trained with a RF model (cf. Table 2).

[8.28−8.95], Research = 0, TOEFL.Score = [102−110], visible in Figure 61. This is associated

with the SVM model and has an overall worse performance than previously expected by the general error

values, having higher values for all the cutting points of the distribution. Additionally, the distribution of

the subgroup is similar to the global one, but it is centered around a higher value, as seen in both the

boxplot and density plot representations. Furthermore, this subgroup has a considerable representation,

being composed by 74 instances, corresponding to 14.8% of the data.
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(a) Boxplot. (b) Density plot.

Figure 61: EDR from the case study dataset to analyze subgroupCGPA = [8.28−8.95], Research =
0, TOEFL.Score = [102− 110], trained with a SVM model (cf. Table 2).

Another crucial aspect of the analysis is to compare EDRs that are detected on more than one model,

but not all. One example of such analysis is presented in Figure 62, illustrating the conditions CGPA =

[8.96−9.53], SOP = [4−4.5]. This subgroup was detected on both the RF model and the SVM, being

defined by smaller error values than predicted. The error values for both are extremely similar. However,

the ones of the RF are slightly smaller, as seen by all the cutting points, except the median. The latter

is marginally higher for the RF model than for the SVM. Nonetheless, overall, the RF is the model that

predicts more accurate values for this combination of feature values, even though its global performance

is worse than the one of the SVM.

The last example is similar to the one before, portraying a subgroup detected on only two models,

namely the ANN and the SVM. Figure 63 depicts the subgroup in question, characterized by University.

Rating = [4− 4], GRE.Score = [324− 335] and by smaller error values than globally expected for

both models. In both cases, not only every cutting point has a lower value than its global counterpart, but

also their Q3 is relatively similar to their global median values. Nonetheless, the SVM largely outperforms

the ANN, as it is composed by a range of smaller error values than the latter model.

5.4.4 Overall Analysis of the Experimental Results

After completing the various stages of the analysis process, some conclusions can be drawn about

the evaluated models. For instance, the ANN is probably the model with the highest errors both globally

and for the majority of detected subgroups. Moreover, the best overall models are the GBM and the SVM,

due to having low error values globally and, again, for the great part of the groups. The remaining model,

the RF, is the model in between, as it has usually presents slightly higher errors than the latter two and

smaller than the ANN. Nevertheless, the two best models have some key aspects that may be crucial in
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Figure 62: EDR from the case study dataset to analyze subgroup CGPA = [8.96 − 9.53], SOP =
[4− 4.5], trained with a RF and a SVM models (cf. Table 2).

Figure 63: EDR from the case study dataset to analyze subgroup University.Rating = [4 −
4], GRE.Score = [324− 335], trained with an ANN and a SVM models (cf. Table 2).

the decision. For example, while the GBM has only 33 EDRs, all with one or two conditions of features,

the SVM has 48 rules, ranging from one feature, to four. Of these, 54.5% have better performance than

expected for the first and 56.25% for the second model.
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Furthermore, depending on the needs of the end users, EDRs detected on a model over another

may be taken in consideration, as these can be evaluated has having a more distinct behavior than the

remaining subgroups. Comparing the two models, some rules that were detected only on the GBM are

CGPA = [7.64− 8.27], SOP = [2.5− 3.5]; SOP = [2.5− 3.5]; or TOEFL.Score = [95 −
101], LOR = [2.5−3.5]. Contrarily, CGPA = [6.8−7.6]; CGPA = [8.28−8.95], Research =

0, TOEFL.Score = [102 − 110]; or LOR = [2.5 − 3.5], TOEFL.Score = [102 − 110] were

only identified on the SVM. Curiously, these six subgroups have higher errors than expected by their global

models. Another important aspect concerns the shape of the distributions of error values. On the one

hand, the SVM tends to have more centered and concise error values. On the other hand, the GBM usually

has a wider range of possible errors, from very low, to considerably mid-high values, around or above the

ones of the former model.

However, there are some combinations of characteristics where the two models are not the best per-

forming ones. An example of this situation was previously depicted in Figure 62, portraying a subgroup

with higher predictive accuracy on the RF model. Moreover, it is also notorious that, even though the four

models have similar performance metrics, globally, some are considerably better than others, especially

for specific combinations of feature values. Therefore, as some models produce more accurate results for

some combinations of features, it is easier for users to select the model that is more adequate to their

needs. Another possible outcome of this analytic process is the generation of ensembles, i.e., combina-

tions of models to predict results more accurately, based on the performance of specific subgroups and,

consequently, taking advantage of the best aspects of each predictive model.

Lastly, an important note goes to the selection of rule discovery values. As stated before, the support

and the pruning filters are extremely important and vary from problem to problem, dictating which rules

are to be discovered and emphasized. A problem with a larger scale might rely on higher filtering values,

focusing on interactions with a high impact on the overall results. While another one, more concerned

about small scale interactions that differ from the expected behavior, may be dependent on smaller filtering

values. Therefore, not only the EDRs themselves have to be taken in consideration, but their scale and

behavior as well, leading to more pleasant results based on the requirements of the end users.

5.5 Summary

A case study was also considered, allowing the test of the developed tools using a realistic problem.

An important condition of this test was the selection of a problem that could be tackled without much

knowledge of the domain, leading to the selection of a dataset easily comprehended. This focused on the

study of applications to graduate studies from an Indian perspective, based on the profiles of both student

and institutions. The dataset is comprised of many factors, such as GRE and TOEFL scores, LOR, CGPA,

among others. The methodology used was similar as before for the discretization of numerical features,

used models and error calculation.

The models applied to the data were first compared based on scalar metrics, as the MAE and RMSE.

Then, using global scalar metrics, examining the difference between the real distribution of values and
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the predicted ones, and overall errors, both logarithmic and residuals. The last step was to compare the

four models with the aid of rules, utilizing the various tools proposed. The multiple comparisons led to

some conclusions. For instance, the ANN appears to be the model with higher errors overall, globally and

for the majority of the subgroups. The RF can be seen as the model in between, not being characterized

by the smaller errors values globally, but being the best model for some specific cases. The remaining

models, the GBM and the SVM, can be seen as two best choices for the problem, as is. Nonetheless, there

are some important aspects that have to be taken in consideration to make a final decision. The GBM

has its errors more spread and usually reaches higher values. Differently, the SVM has a more concise

distribution, hitting lower top values than the GBM, but tends to start at greater values than the latter.

Moreover, there are some subgroups that are only detected on a model, leading to the need for higher

attention based on user requirements. Similarly, not all subgroups perform best on these two models,

as stated before. This may be helpful to generate ensembles of models, taking advantage of the best

performing models for the various conditions.

Lastly, the filtering values have a high impact on the discovered EDRs and should be taking in con-

sideration early, as these guide the discovery process. On the one hand, higher filtering values lead to

the discovery of groups with high impact on the overall. On the other hand, lower values also detect sub-

groups with small scale, that differ from the overall behavior and can be important to study very specific

scenarios.
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The main goal of this dissertation comprised the development of a novel approach to study the error

values produced by black box regression models. Furthermore, this approach was supposed to follow a

drill-down methodology, i.e., to successively analyze levels of data with more detail. Hence, DRs were

used in the analytic process, as these use a drill-down approach to identify data groups. The other tool

used to guide the process were EDPs, as these provide users with a fast and simple method to study the

performance of combinations of data. Nevertheless, EDPs have a few considerable problems. Namely,

not allowing the study of feature interactions composed by more than three variables and producing a

substantial number of plots to analyze, when considering feature interactions. Note that the authors of

this tool addressed the problems by proposing PEPs. Despite the resolution of the foretold problems,

PEPs are visually less informative, as these do not show the distribution of values, and are more complex

to study due the enormous amount of lines plotted.

In this work, we introduced EDRs, a combination of DRs and EDPs, taking advantage of the best

aspects of each. By relying on the discovery process of DRs, EDRs are capable to detect combinations

of feature values with more than three variables, eradicating any dimensionality restrictions. Additionally,

these can be seen as an extension of EDPs, not being model dependent and producing fewer plots to

analyze, due to filtering subgroups that are not interesting to point out, based on user preferences. In

order to extend the analytic process, some visualization methods were developed, in addition to boxplots.

Each rule can be plotted as a histogram or a density plot, allowing a deeper understanding of the behavior of

the distributions. A network visualization of a group of rules was also implemented, allowing users to easily

highlight interactions and see overall metrics of a certain combination of feature values. Furthermore, an

overall graphical comparison of cutting point values of the distribution values of EDRs was developed, in

the form of performance tables. These colorize each cutting point with a performance color based on

how it compares to a reference distribution. Lastly, using the results of latter process, an extrapolation

of counter-factual analysis to be applied in regression was realized. These provide users with meaningful

scenarios where the performance of a subgroup alters considerably based on reference values.

Nevertheless, the usage of EDRs does not exhaust the domain of variable values, due to the filtering

nature of their discovery process. Not only groups of data with low representation are filtered, but also
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subgroups that do not differ significantly enough from their parent subgroups, i.e., subgroups that have less

conditions but share them. Consequently, support and the pruning filter values are extremely important,

controlling which rules are to be discovered, and vary from problem to problem. Thus, EDRs and EDPs

complement each other. On the one hand, the first highlight distributions of data that differ significantly

from the reference and from subgroups that share similar conditions. On the other hand, the second show

every possible combination of values on interactions up to three variables.

In order to validate the proposed approach, multiple datasets were used to train a diverse group of

regression algorithms. By doing so, any model bias was eliminated from the experiments. Moreover, the

used datasets have various dimensions, both in terms of number of instances, and number of features,

with the latter being comprised of multiple combinations between numerical and categorical values. The

experiments performed on these allowed us to detected combinations of feature values that would not be

easily detected using EDPs, requiring the usage of the multivariate variants of the latter and producing a

considerable number of plots. Moreover, some identified subgroups would never be found with EDPs, due

to being composed by more than three variables.

The last study performed simulated the selection of a model on a scenario the closest to reality

possible. In this case, the problem selected concerned the prediction of probability of admission on

graduate programs, considering aspects of the student applying and the institution itself. By using the

proposed tools, it was possible to confirm that the best models overall are not always the best for all

combinations of feature values, being easily outperformed, depending on user preferences. Hence, EDRs

give users an extra layer of understanding on how each model behaves regarding error values and helps

in the selection process, allowing users to compare performance in very specific situations.

As stated throughout this project, EDRs greatly facilitate the performance analysis of black box regres-

sion models. However, these are far from perfect, with results highly dependent on the discretization of

numerical features. Thus, it would be interesting to study the impact of developing a method to discretize

such feature values guided by the discovered rules, instead of using an external algorithm. For instance,

applying multiple discretization approaches and selecting the one that guides the process to a desirable

effect, e.g., the rules that differ most significantly from a reference. Another important step to further the

tool lies on the need to define meta-models to produce ensembles, weighting the models based on the

performance these present for each subgroup.
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Appendix A
Case Study Support Analysis

(a) Pearson coefficient. (b) Spearman coefficient. (c) Kendall coefficient.

Figure 64: Correlation between numerical predictors for the case study dataset, calculated using multiple
coefficients.
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APPENDIX A. CASE STUDY SUPPORT ANALYSIS

(a) Feature GRE.Score. (b) Feature TOEFL.Score.

(c) Feature University.Rating. (d) Feature SOP.

(e) Feature LOR. (f) Feature CGPA.

(g) Feature Research. (h) Target Chance.of.Admit.

Figure 65: Graphical representation of the distributions of each variable of the case study dataset.
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