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Abstract 

The choroid Plexus (CP) is a brain tissue responsible for the production and secretion of the 

cerebrospinal fluid (CSF). It lays at the interface of the peripheral blood and the brain, forming the blood-

CSF barrier, and displays a connected monolayer of epithelial cells that selects the contents from the 

blood that reach the brain playing a key role in brain homeostasis. In order to have a deeper understanding 

about the role of the CP in brain development, it is necessary to investigate the CP cell type composition 

and cellular states throughout several developmental timepoints, which can be performed by 

transcriptomic analysis. 

Single-cell RNA-sequencing (scRNA-seq) is a revolutionary technology for transcriptome analysis as 

it allows a high throughput single-cell gene expression profiling from a tissue. This technique also provides 

data to infer cellular differentiation and future transcriptomic states.  

In this work, the CP transcriptome was analysed in three different timepoints (two postnatal stages 

and one adult) by two techniques bulk RNA-seq and scRNA-seq.  

While scRNA-seq analysis in the CP allowed the identification of all cell types that compose the CP 

as well as some differences in the expression profile between the different CP stages, bulk RNA-seq data 

allowed an overall analysis of the tissue transcriptomics exhibiting a more pronounced differential gene 

expression analysis between CP stages.  

Bulk RNA-seq data analysis demonstrated that CP cells at earlier stages are enriched in genes 

associated with cell division (Tuba1a, Cul) and cell adhesion (Tubb, Actb, Col4a1) while in adulthood CP 

was enriched in genes associated to lipid and mitochondrial pathways, such as Ascl3 and Cox8b, 

respectively.  

Importantly, scRNA-seq data analysis not only confirmed part of the bulk RNA-seq data but also lead 

to the identification of a subgroup in epithelial cells that expressed ciliogenesis genes in the early stages 

of development. Furthermore, the differentially expressed genes uncovered by bulk RNA-seq were 

assigned to cell types in scRNA-seq. 

This study unravels several pathways enriched in developmental stages that will be investigated in 

the future for their role in brain development modulation.  

 

Keywords 

Bulk RNA-seq; Choroid Plexus; Mus musculus; Rattus norvegicus;; Single-cell RNA-seq;  
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Resumo 

O plexo coróide (PC) é um tecido cerebral responsável pela produção e secreção do líquido 

cefalorraquidiano (LCR). É situado na interface do sangue periférico e do cérebro, formando a barreira 

sangue-LCR, e exibe uma monocamada conectada de células epiteliais que seleciona o conteúdo do 

sangue que chega ao cérebro, desempenhando um papel fundamental na homeostase cerebral. De 

modo a ter um entendimento mais profundo sobre o papel do CP no desenvolvimento do cérebro, é 

necessário investigar a composição dos tipos de células do CP e os seus respetivos estados celulares ao 

longo de vários estágios de desenvolvimento, que podem ser realizados por análise transcriptómica. 

O sequenciamento de RNA de célula única (scRNA-seq) é uma tecnologia revolucionária para análise 

de transcriptoma, pois permite um gerar um perfil da expressão génica de cada célula de um tecido, 

com elevado rendimento. Esta técnica também fornece dados para inferir a diferenciação celular e futuros 

estados transcriptómicos. 

Neste trabalho, o transcriptoma do PC foi analisado em três diferentes momentos (dois estágios 

pós-natais e um adulto) por duas técnicas bulk RNA-seq e scRNA-seq. 

Enquanto a análise de scRNA-seq no PC permitiu a identificação de todos os tipos de células que 

compõem o PC, bem como algumas diferenças no perfil de expressão entre os diferentes estágios do 

PC, os dados em Bulk RNA-seq permitiram uma análise geral da transcriptómica do tecido exibindo uma 

análise diferencial mais acentuada de expressão génica entre os vários estágios do PC. 

A análise de dados Bulk RNA-seq demonstrou que as células PC em estágios iniciais são 

enriquecidas em genes associados à divisão celular (Tuba1a, Cul) e adesão celular (Tubb, Actb, Col4a1) 

enquanto na idade adulta a CP foi enriquecida em genes associado às vias lipídicas e mitocondriais, 

como Ascl3 e Cox8b, respectivamente. 

É importante realçar que a análise de dados de scRNA-seq não só confirmou parte dos dados de 

Bulk RNA-seq, mas também levou à identificação de um subgrupo em células epiteliais que expressaram 

genes de Ciliogénese nos estágios iniciais de desenvolvimento. Além disso, os genes diferencialmente 

expressos descobertos por Bulk RNA-seq foram atribuídos a tipos de células em scRNA-seq. 

Este estudo pretende revelar vários caminhos enriquecidos em estágios de desenvolvimento que 

serão investigados no futuro por seu papel na modulação do desenvolvimento do cérebro. 

 

Palavras-Chave 

Bulk RNA-seq; Mus musculus; Plexo Coróide; Rattus norvegicus; Single-cell RNA-seq;  
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1. Introduction 

 

1.1 Choroid Plexus (CP) 

 

The CP is a highly vascularized brain tissue that is located in the brain ventricles [1]. There are four 

ventricles in the brain in which the CP are founded, two lateral that join on the third ventricle which is 

more central and is connected to the fourth ventricle through the cerebral aqueduct of the brain (Fig. 1A). 

The CPs across ventricles (Fig. 1B-D) have very similar structure, they are constituted by a single layer of 

epithelial cells joined by tight junctions forming the blood-cerebrospinal fluid barrier (BCSFB) [2].  

The brain borders, the blood brain barrier (BBB) and BSCFB, restrict most of the immune cells 

migration from the periphery to the central nervous system (CNS) allowing to preserve CNS homeostasis 

and correct function of brain cells [3]. 

 

 

B 

C

 

D 

A 

Figure 1 | Schematic representation of the CP in the human brain. A – Illustration of the four ventricles location in the brain; B – 
Axial plane of the brain and site of the CP location (green) in the lateral ventricles; C – Sagittal plane of the brain and location of the CP 

(green) in the third ventricle; D – Sagittal plane of the brain and location of the CP in the fourth ventricle [4][5]. 
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The CP epithelium has associated epiplexus cells (macrophage-like cells) that are in direct contact 

with the CSF, whereas the CP basolateral membrane is laid over a stromal core comprised of different 

cell types, including fibroblasts, immune cells and numerous fenestrated capillaries (Fig.1A) [6]. The CP 

epithelial cells hold one of the most important functions to maintain brain homeostasis, they produce 

most of the CSF [6][7][8]. The CSF carries mostly inorganic ions, lipids and glucose, identical to blood 

plasma. Furthermore, it has a minor amount of proteins [9] and immune cells originated in the CP [10]. 

These components have small fluctuations, which suggests several CSF regulation mechanisms [6]. On 

other hand, epithelial cells also mediate the transport of metabolic waste and other molecules out of the 

CNS. 

The CSF production relies on the unique polarity of the choroid plexus epithelial cells (CPEC), this 

process is proved to have an high dependency on HCO3
- [6][11], as well as, several ion transporters in the 

CPEC membranes such as, the Na+-K+-ATPase and NKCC1 since Na+ is quantitatively the most important 

ion transported [11]. CPEC also display an high water permeability due to the aquaporin-1 (AQP1) being 

highly expressed (Fig. 2B) [12].  

Figure 2 | Schematic representation of CP cells. A – Scheme of the CP choroidal epithelium covered by a single layer of cuboidal 

epithelial cells and fenestrated capillaries in the stromal core. ; B – Explanation of the ion trades that occur in the CP epithelium cells 

between Na+, K+, HCO3
- and Cl-; Presence of AQP-1 in the membrane also allows the basolateral membrane to regulate the water flow 

across the choroid epithelia [13]. 

 

B A 
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1.1.1 The development of the CP 

 

After the neural tube formation, the embryonic precursor of the CNS, the CP stroma derives from 

invaginations of mesenchymal stem cells, that help the formation of cerebral ventricles, and the CPEC 

are derived from neuropithelium with roof plate origins [8][14]. Tipically, the first CP appears in the fourth 

ventricle, followed by the lateral and lastly the third ventricle [15]. The time at which it appears varies 

between species, depending on the time of gestation and brain growth rate [15]. Genetic experiments in 

the mouse embryo reveal a central role for the secreted morphogen Sonic Hedgehog (Shh), which belongs 

to a signaling pathway involved in embryonic cells  differentiation, in coordenating the CPEC development 

alongside with vasculature [16]. In fact, the absence of Shh causes an underdeveloped structure deficient 

in CPEC and vasculature evidencing its importance in the co-development of two separate cell lineages 

in CP morphology [8][16].  

Despite the importance of the CSF production by the CP for the brain homeostasis, other functions 

of the CP have been overshadow by this feature. Through the last decades, breakthrough findings are 

significantly changing the perspective on the role of the CP in CNS dynamics both in development and 

disease.  

 

1.1.2 The CP and its role in brain development 

 

 CP is able to modulate the fate of  neural stem cells (NSC) from the subventricular zone (SVZ). 

Through an experiment where stem cells were bathed with embryonic CSF it was possible to conclude 

that the embryonic CSF contributes to the development and growth of neural stem cells [17]. CSF-derived 

protein signals fluctuate with age, for instance, the CSF-insulin-like growth factor 2 (IGF2), a known factor 

that stimulates neural stem cells division, exhibits higher levels during brain development [17]. Several 

similar findings demonstrate that the embryonic CP-CSF system actively distributes not only growth 

factors and morphogens but also cytokines, binding proteins, extracellular matrix proteins and many other 

factors, thus instructing the cerebral cortical development [8]. Lastly, secreted factors from the lateral 

ventricle CP proved to directly regulate the behaviour of stem cells and their respective progeny in the 

adult SVZ. The release of  bone morphogenetic protein 5 (BMP5) and IGF-1 decreases with age in the 

lateral ventricle CP which can be an important factor for the lack recruitment of adult NSC in an aged 

brain [18]. Nevertheless, how the CP secretome can influence NSC or neural progenitor cells (NPC) 

progeny remains largely unknown. 
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1.1.3 The CP and its role in inflammatory diseases  

 

Inflammation is the main cause of neuronal death in the CNS. Its origin can be due to, infections, 

trauma or neurodegenerative diseases, such as multiple sclerosis (MS). At the  BCSFB barrier, T cell can 

cross to CSF and invade the brain [19]. A study in rats with traumatic brain injury observed neutrophils 

(granulocyte) infiltration via CP of lateral ventricles, due to the expression of CXC chemokines, such as, 

CXCL1, CXCL2 and CXCL3 in the tissue [20]. Reports also confirm the accumulation of monocytes and 

neutrophils in the CSF through the paracellular route which sugests the CPEC tight junctions disrupture 

in injuries and infections of the brain (Fig. 3) [21]. Adhesion molecules such as VCAM-1, ICAM-1, P-

selectin and E-cadherin are constitutively expressed by CPEC on their surface preventing the leukocytes 

exit from the CP vasculature/ stroma into the ventricular lumen [22]. Nevertheless, due to increased 

MCP-1 production and secretion to CSF by the CP, leucocyte migration through the barrier is facilitated 

[21]. The presence of immune cells in CP is not necessarily bad, in fact, most of the T-cells were found 

to be in the CP, CSF and meningeal membranes which cover the brain [23]. Furthermore, the presence 

of these cells in the CP proved to regulate immune cell trafficking through the production of interferon-γ 

(IFN-γ) which upregulates the ICAM-1 and VCAM-1 [7]. 

 

Other immune cells harbored in the CP are also associated with the upregulation of factors such as 

brain-derived neurotrophic factor (BDNF) and insuline-like growth factor (IGF-1), that benefit the neural 

Figure 3 | Illustration on the infiltration of stromal macrophages, lymphocytes, and monocytes into the ventricular lumen through the 
CP epithelial cells disrupted tight junctions/ compromised brain-cerebrospinal-fluid-blood barrier [26]. 
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parenchyma in disease conditions [24]. However, these cells appear to remain inactive in the CP 

sugesting a brain inherent ability to control their autoimmune activity [7]. For instance, some studies 

observed that certain cytokines such as CCL11 can impair adult neurogenesis and neurotrophic factors, 

and possibly induce CNS microglia alteration into a proinflamattory state [25], which can indirectly 

increase inflammation in autoimmune diseases. As mentioned earlier, the CPEC have associated 

epiplexus cells (macrophage like cells) that support the microvilli structure (Fig. 4). Epiplexus cells express 

not only complement type 3 receptors (CR3), like the other macrophages, but they also express MHC-I 

and MHC-II molecules and can serve as antigen-presenting cells for lymphocytes [26]. 

 

 

In MS, it is hypothesised that the CP is a gateway for immune cells infiltration onto the CNS through 

the CSF [22]. This is supported by the damaged deep grey matter (DGM) near the ventricles in the early 

stages of the disease since it can be one of the primary spots for the invasion of lymphocyte from the 

CSF [27]. 

In sum, the CP is a key structure for early brain development, maintenance of brain homeostasis, 

and a primary target for disease prevention and treatment. However, little is known regarding the 

molecular mechanisms governing these functions of the CP and its cellular networks. 

 

 

 

Figure 4 | Illustration of the CP in the lateral ventricle showing the CPEC and other associated features/ cells, such as 

the epiplexus cells [26]. 
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1.2 Bulk RNA-seq  

 

For decades, several genes have been studied individually through techniques such as in situ 

hybridization and RT-PCR allowing a spatial-temporal perspective on their expression levels and patterns. 

However, the advents of micro-array technology and RNA sequencing (RNA-seq) allowed the increase of 

studies at a genome-wide scale of a determined tissue or organ [28]. Through techniques like bulk RNA-

seq, it is now possible to collect an unbiased transcriptome, the sum of all RNA transcripts, from a 

determined sample. 

The analysis of gene expression by molecular biologists allows to dictate what cells are doing or can 

react to [29]. The first RNA-seq protocols allowed the sequencing of complementary DNA (cDNA) on a 

large scale from a determined cell population. Nowadays, the system has been optimized, not only 

through better quality materials, but also through different types of materials, and further matured 

protocols. The basic procedures for a standard RNA-seq experiment (Fig. 5) start from the extraction and 

purification of RNA from a sample, followed by its enrichment. RNA enrichment mostly consists in the 

Poly(A) capture, that allows the selection of polyadenilated RNAs, typically messenger RNA (mRNA), as 

well as the depletion of the ribossomal and transfer RNAs (rRNA and tRNA) that constitute the majority of 

the sample (aproximately 95%) [30]. RNAs of interest are then chemically or enzimatically fragmented 

into a smaler size to be sequenced. Since current systems for sequencing only sequence DNA, the 

targeted RNAs are converted into cDNA and ligated with adapter sequences in either the 3’ and 5’ ends 

of the double-stranded cDNA. Before sequencing, these fragments are amplified via polymerase chain 

reaction (PCR) using the parts of the adapter sequence as primers. Improvements in this technique were 

made in the length of reads allowed, due to better sequencing machines, although the number of reads 

still ranges from 10 to 100 million for experiment, but lately, with a trend to deep sequencing, thus 

reducing the amount of errors from the process and fundamently detect rare clonal types, cells, among 

others. 
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The RNA-seq popularity relies on its large number of aplications, such as genome annotation. 

Transcriptomes of model organisms and humans are not yet complete and the continued use of this 

method only increases the quality of these organisms libraries, allowing more cohesive information. 

Another aplication also includes the comparison of genes/ transcripts expression between different 

tissues, cell types, as well as stimulation conditions, disease states and growth conditions, allowing the 

identification of genes that change in expression to understand molecular pathways or, for instance, 

disease stages [29]. Overall, RNA-seq has a simple workflow, clear designed pipelines and projects, 

manageable outputs and several bioinformatics tools that facilitate the analysis and comprehension of its 

data, mainly due to the constant optimization of the method. However, it does produce very big output 

files that require a high volume of storage, and further powerful tools to analyse the data. Repetitive 

sequences, high sequence similarity between alternative spliced isoforms and non availability of genome 

references of certain organisms also cause difficulties in the viability of the results it produces. Lastly, 

other factors such as price and data processing time will tend to decrease over the time, increasing the 

praticability of RNA-seq [31].  

 

1.3 Single cell RNA-seq 

 

Despite the many uses for bulk RNA-seq, certain applications require single cell resolution, especially 

when studying samples provenient from heterogenous tissues or consist of more than one cell type. Even 

Figure 5 | General overview of a RNAseq protocol. After the RNA extraction and amplification, the fragments are sequenced and 
mapped generating data capable of being analysed. Data analysis depends on the experiment goal [29]. 
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though bulk RNA-seq can computationally estimate the cell composition of a determined sample, 

scRNAseq offers a more accurate and reliable information, allowing new cell discovery or even the 

performance of a cell-type transcriptome analysis [32]. 

Cells are the smalest functional units in the body, thus it is imperative to develop techniques that 

allow the study of all of its aspects. Due to the advance in technologies of barcoding and decrease of 

intense labor required by micromanipulation, such as the fluorescent activated cell sorting (FACS) 

technique, it is possible to deposit single cells into micro-wells [33]. This improvement, together with new 

molecular strategies to individually barcode and amplify the transcriptome of each cell and further 

advances in microfluidics, allowed the automation of single cell docking and their respective molecules 

reducing the consumption of reagents and increasing their sensivity [34]. ScRNA-seq arises with an 

increased cellular throughput turning it into a desirable and powerful system to analyse heterogenous 

tissue [33], despite its increased cost. ScRNA-seq methodologies are dependent on the biological question 

and biological material. 

Nevertheless, the most widespread method is the droplet-based scRNA-seq (Fig. 6) which will be 

further discussed below. For all techniques of scRNA-seq, it is imperative to start with a good sample 

preparation. This step can take several months to be optimized according to each cell type. Generally, 

the sample is dissociated into a single cell suspension (using mechanic and/or enzymatic dissociation), 

and then purified to remove dead cells or enrich for the cells of interest, via FACS, for example. After 

purification cells are individually encapsuled into gel beads and emerged in partitioning oil forming gel 

beads in emulsion (GEMs) (Fig. 5.2 – 10x Chromium). As the third step, each cell is barcoded, as well 

as each of its molecules, identified by the unique molecular identifier (UMI), followed by later amplification 

for sequencing. After the amplification, either by PCR or RT-PCR, the molecules are sequenced and, lastly, 

processed by bioinformatics analytical tools that have been developed specifically to manage and interpret 

scRNA-seq data [35]. 



  9  
 

 

The aplications of scRNA-seq can distinctively identify the cell composition of tissues, including small 

and unknown populations [36], as well as to allow the better understanding of cell differentiation, 

activation and polarisation [37][38]. Furthermore, it can also help to understand cell-cell comunication 

through receptor-ligand networks in healthy cells and their response to genetic manipulation or drugs 

[39][40]. Despite the numerous advantages and powerfull information given by the scRNA-seq system, it 

still includes limitations such as, the difficulty to distinguish between technical noise and biological 

variability for low transcripts, and to maintain strand specificity and detect isoforms in parallel, 

furthermore, post-transcriptional RNA modifications and other RNA editing events are also not explored 

in scRNAseq [41]. However, several bioinformatics tools can help and minimize these issues through the 

creation of quality control (QC) points along the data analysis, as well as, the creation of models that can 

simulate these post-transcriptional events [42]. The continuous innovation of scRNA-seq technologies and 

its respective bioinformatics approaches can promote biological and clinical research and provide new 

insights into heterogenous tissue and cell dynamics [43]. 

 

 

 

Figure 6 | General overview of a scRNAseq protocol. After sample preparation the cells are encapsulated in droplets and its 
content barcoded and amplified. Molecules are then sequenced and analysed by bioinformatic tools, ready to be interpreted [33]. 
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1.4 Motivation and Objectives 
 

The CP has a central, yet poorly investigated, role in the modulation of brain cell dynamics such as 

the formation of new cell types from progenitor cells lying at the SVZ. It is known that CP regulates both 

embryonic and adult neural stem and precursor cells through different mechanisms. Determining the CP 

transcriptome profile in different developmental stages will help to infer about CSF composition and its 

impact on the processes that lead to brain cell fate decisions during development. Furthermore, in order 

to successfully predict the behaviour and analyse the CP response in diseases progression it is necessary 

to first describe its development to better understand CP physiological functionality. 

The scRNA-seq technology can greatly improve this understanding, specially when used alongside 

the Bulk RNA-seq, providing not only a general overview of the tissue but also a more detailed analysis 

about the multiple cell types present and their specific development. 

As such, the main objective of this thesis is to characterize the transcriptomic profile of CP cells in 

different developmental time points using two methodologies: single-cell RNA seq and bulk RNA-seq.  
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2. Materials and Methods 

 

2.1 Bulk RNA-seq analysis 

 

Bulk RNA-seq was performed in healthy rats at five postnatal time points: P1 (postnatal day 1), P4, 

P7, P10 and P60, with an n=3 for each time point, with the exception of P60 which has n=2. The chosen 

time points hold important hallmarks for brain development such as, NSC differentiation, oligodendrocyte 

precursor cell (OPC) formation and neurogenesis. Bulk RNA-seq sample information is presented in table 

1, where each sample has a unique code and barcode, as well as the concentration of RNA. 28S:18S is 

the ratio of 28S and 18S rRNA indicating the quality of the RNA where the ratio 2:1 shows non-degraded 

RNA. It also displays the RQI, the RNA quality index (it scales from 1 to 10, being 10 a highly intact RNA 

and 1 highly degraded RNA).  

  

Table 1 | Bulk-RNAseq samples information. 

Age  Code  Sample 

number  

Concentration (ng/µL) 28S18S RQI  Barcode  

P1  DA.15.01.059  1  140.92  1.64  9.9  BC01  

DA.15.01.061  2  156.65  1.71  9.9  BC02  

DA.15.01.062  3  56.3  1.65  9.9  BC03  

P10  DA.15.01.052  10  178.68  1.47  9.8  BC037  

DA.15.01.054  11  381.39  1.45  9.6  BC038  

DA.15.01.056  12  484.11  1.41  9.7  BC039  

P60  DA.15.01.033  14  617.69  1.26  9.6  BC050  

DA.15.01.035  15  457.79  1.23  9.4  BC051  

 

Illumina sequencing was the used, as the technology to obtain the bulk data. 

This unpublished data was generated by Diana Afonso, Ana Veloso, Fernanda Marques, and João 

Carlos Sousa from ICVS, University of Minho. 
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2.1.1 Bulk RNA-seq data pre-processing 

 

Typically, pre-processing bulk RNA-seq data follows a determined protocol. The following section will 

identify a typical protocol for this task (Fig. 7) and describe the used protocol for the pre-processing of 

bulk RNA-seq sample files.  

 

 

Figure 7 | General overview of a common pre-processing for bulk RNAseq data. Several steps can have multiple bioinformatic tools 

associated as well as multiple options for the same effect. 

Quality control 

The sample files were obtained in the BAM format, a non-human readable format, mainly used for 

sequence data storage since its compressed. Therefore, the first step is to convert them into readable 

files. For that purpose, all sample files were converted to the FASTQ (FQ) format through SAMTools 

(https://quay.io/repository/biocontainers/samtools, tag: 1.12--hd5e65b6_0). This output format allows 

the first round of quality control check to be made through FastQC 

(https://quay.io/repository/biocontainers/fastqc, tag: 0.11.9—0). After the first quality control check, 

Trim Galore (wrapper of Cutadapt and FastQC) ensured the adapter and quality trimming of the samples 

(https://quay.io/repository/biocontainers/trim-galore, tag 0.6.6—0).  

Trimming is an essential step in pre-processing data, that allows the removal of the sequencing 

adapters, polyA tails, as well as reads with poor quality that can affect downstream analysis, Trim Galore 

used the Cutadapt version 2.10, in the single-end trimming mode and removes reads with Phread Score 

Raw Data Quality Check Trimming

Alignment Quality Check Read Counts

Normalization and 
Filtering

Batch Estimation 
and Correction

Pre-processed 
Data

https://quay.io/repository/biocontainers/samtools
https://quay.io/repository/biocontainers/fastqc
https://quay.io/repository/biocontainers/trim-galore
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lower than 20 or with less than 20 bases. The Phred quality score indicates a probability of a determined 

base being correctly assigned. The scores range from 2 to 40 and higher scores indicate greater 

confidence in accuracy [44]. Furthermore, it also recognizes the Illumina adapters used for the sample 

sequencing allowing their removal. Once the samples were trimmed, another quality report was 

conducted, through the FastQC tool, to ensure the quality of both the trimming process and samples. 

 

Alignment  

As for the alignment process, it can be separated in two steps, the genome indexing and mapping. 

For this process, there are several bioinformatics tools at our disposal. STAR (Spliced Transcripts 

Alignment to a Reference) is a recent software widely used for this step, and can resolve both the genome 

indexing and mapping, specially for accurate alignment of high-throughput of RNA-seq data [45], thus it 

was the software used for reads alignment (https://quay.io/repository/biocontainers/star, tag 2.7.8a—

0). The genome indexing requires the complete genome of the species to which the samples belong to. 

Therefore, the Rattus norvegicus complete genome (mRatBN7.2.gff) was retrieved from the NCBI 

Assembly database (https://www.ncbi.nlm.nih.gov/assembly/GCF_015227675.2/). Once the 

reference genome is introduced, all the samples can be mapped with the target species genome, 

identifying introns, exons, among other features. The STAR software also allows the output of all the 

alignments for each sample sorted by coordinates of the genome in the BAM format to enable the next 

quality control check for mapping. 

Before the quality check for mapping, the flagstat tool from SAMTools can be used to perform a 

quick analysis to the samples aligned BAM file to confirm the alignment was successfully executed. 

Similarly, the program featureCounts from the subread package 

(https://quay.io/repository/biocontainers/subread, tag 2.0.1--h5bf99c6_1) also offers a more detailed 

report for counting genomic features such as genes, exons, promoters, etc [46].  

Finally, to end the quality control check for the mapping step, a more detailed analysis was conducted 

through the qualimap application (https://quay.io/repository/biocontainers/qualimap, tag 2.2.2d--1). 

Qualimap produces a report for each sample including the alignment rate, genomic origins of reads, 

transcript coverage profile and junction analysis. Alignment reads focus on the number of mapped reads, 

alignments, alignments to genes, to no features, among others; genomic origin gives a percentage of 

reads to its genomic origin, exonic, intronic, intergenic or overlapping; transcript coverage profile refers 

to which end 5’ or 3’ was most covered in the alignment. Ideally, the values in the 5’-3’ bias should be 

1, however it is known that the poly-A selection can lead to high expression in the 3’ area rising the 3’ 

https://quay.io/repository/biocontainers/star
https://www.ncbi.nlm.nih.gov/assembly/GCF_015227675.2/
https://quay.io/repository/biocontainers/subread
https://quay.io/repository/biocontainers/qualimap
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bias of the sample [47]. Finally, the junction analysis is performed, which gives the total number of reads 

with splice junctions and the 10 most frequent junction rates. Splice junctions are reads that contain a 

former intron in a mature mRNA. Lastly, it also contains a section where it displays several graphical 

representations of the previous results [48]. 

After the second quality check, the amount of reports produced can make difficult the overall sample 

visualization, thus the use of the MultiQC tool (https://quay.io/repository/biocontainers/multiqc, tag 

1.10--py_1) can provide a single report visualizing the output of multiple other tools across many samples 

in a quick and easy way, allowing the identification and proper correction of outliers and batch effects 

that can be missed in the early stages of analysis [49]. 

Afterwards, the read counts can be executed, through the python library HTSeq 

(https://quay.io/repository/biocontainers/htseq, tag 0.13.5--py39h70b41aa_1) which facilitates the 

rapid development of scripts for HTS (High Throughput Sequencing) data analysis and processing [50]. 

HTSeq can convert the resulting BAM files from mapping into text files, creating a matrix with two 

columns, the first with the Gene-ID obtained through the GFF file from the target species, in this case, 

Rattus norvegicus, and a second column with the raw counts of that gene in the specific sample, allowing 

a lighter file to contain all the necessary information to continue the pre-processing. 

To finish the pre-processing, a merge of the samples HTSeq output would facilitate the further 

analysis of the samples. Therefore, a simple R script from Ahmed Alhendi 

(https://github.com/AAlhendi1707/htseq-merge/blob/master/htseq-merge_all.R, April 16, 2021) was 

used that allows the merge of each sample matrix into one single text file with the first column 

corresponding to the Gene-ID, and one column for each sample with the raw counts of the corresponding 

gene.  

The remaining pre-processing was accomplished through R Studio an open-source interactive version 

for R (version 4.1.1) through a manufactured script for a complete analysis for all samples [51]. The 

overall matrix was then filtered to remove genes that were not expressed in every sample and reads that 

were not assigned to any gene. Additionally, metadata was added to the matrix, by naming the columns 

after the samples and creating groups of columns (samples) to identify the three different stages that 

were analysed, P1, P10 and P60. Afterwards, to perform normalization, and further pre-processing of the 

samples, the R package DESeq2 was used [52]. This method detects and corrects dispersion estimates 

that are too low through the dependence of dispersion modelling on the average expression strength in 

all samples. In summary, to each gene a GLM (generalized linear model) with a logarithmic link is applied, 

as follows: 

https://quay.io/repository/biocontainers/multiqc
https://quay.io/repository/biocontainers/htseq
https://github.com/AAlhendi1707/htseq-merge/blob/master/htseq-merge_all.R
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𝑙𝑜𝑔2𝑞𝑖𝑗 =  ∑ 𝑥𝑗𝑟
𝑟

𝛽𝑖𝑟 

where q corresponds to the mean quantity for a determined i gene, in j samples, considering its dispersion 

while also using a design matrix elements x and coefficients β. Additionally, it automatically detects 

outliers using Cook’s distance and removes these genes from further analysis, thus completing the pre-

processing for the bulk-RNAseq samples. An important side note is that DESeq2 normalization does not 

account for gene length so that the analysis remains unbiased [52]. 

 

2.1.2 Bulk RNA-seq data visualization and maturation 

 

After normalization and filtering, the package DESeq2 also provides the tools for gene expression 

analysis allowing a comparative analysis between the samples. It uses shrinkage estimators for dispersion 

and fold change. Fold Change (FC) is a comparative measure that describes the quantitative change 

between a given group A compared to B. In this work, it is imperative to use Fold Change to compare 

samples, thus determining the differential expression between them. However, log2 (FC) will be used for 

a better approach to the biological perspective and better data visualization since the value 0 means both 

groups are equally expressing the gene, positive log2 (FC) means the gene is overexpressed in A, and 

consequently, negative log2 (FC) means it is overexpressed in B.  

Before the differential expression analysis, from the normalized matrix counts, it was possible to first 

plot a PCA (Principal Component Analysis) for the samples. PCA is a common technique for increasing 

interpretability through the reduction of datasets dimensionality, which tries to minimize the loss of 

information. This analysis can create uncorrelated variables that successfully maximize variance. These 

new variables, principal components (PCs), are still defined by the data provided hence making PCA an 

adaptive data analysis technique [53]. The PCA plot allows a quick 2-dimension visualization of the data 

and how the samples differ from each other. Furthermore, heatmaps are also a common way to represent 

high throughput data, showing which genes are more common among the samples and how their 

expression varies among them. 

DEA (Differential Expression Analysis) was then performed across the three stages creating three 

separate results, P1 versus P10, P1 versus P60, and P10 versus P60. The p-value measures the 

probability that a difference would occur by a random chance in the obtained results, Typically, results 

that have a p-value below 0.05 are considered to be statistically significant. However, if the data is a result 

of several comparisons, it is advised to use the p-adjusted value, e.g. through the Bonferroni correction, 

in which the p-values are multiplied by the number of comparisons, thus a p-adjusted value under 0.05 
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bring more statistical relevance to the analysed data. For each of the 3 resulted sets, the top 20 genes 

that were over-expressed (log2(FC)>= 2) and under-expressed (log2(FC)<= -2) were pulled for further 

analysis. As for the visualization of such results, three separate violin plots were created, one for each 

comparison, that allow to identify the genes that were more differently expressed between the two stages 

analysed. 

After the DEA, GSEA (Gene Set Enrichment Analysis) (software version 4.1.0) [63,64] was performed 

to identify which pathways would be more expressed for each stage comparison. Through a normalized 

matrix of the dataset and an auxiliary file with the correspondent metadata, GSEA was performed. The 

Reactome pathway database was chosen to identify the pathway sets to which genes were involved in. 

The same three stages were compared as the gene expression comparisons (P1 versus P10, P1 versus 

P60 and P10 versus P60). For each comparison, the GSEA generated enrichment plots for both the 

compared stages, one report for each enrichment set found, a heatmap containing all the involved 

samples and the top 50 genes more enriched in each sample. Finally it also compiled two final reports, 

one for each stage containing their respective gene sets and the following values: 

• Size, which represents the number of genes identified in the particular set; 

• ES (Enrichment Score), which is calculated by first ranking the genes by their normalized 

expression levels and a running sum statistic is calculated from a prior defined gene 

signature present through the database, it is defined as the maximum deviation from zero 

of the running sum (Fig. 8) [54]; 

• NES (Normalized Enrichment Score), which is the ES after it has been normalized across all 

the analysed sets; 

• Nominal p-value, the statistical significance of the ES; 

Figure 8| Enrichment Score calculation through ranking the genes by expression and comparing to a prior defined gene signature 
present in the database (adapted from [54]). 
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• FDR (False Discovery Rate) q-value, which stands for the estimate probability that the NES 

represents a false positive; 

• FWER (Family Wise Error Rate) q-value, a more conservative approach that the NES 

represents a false positive; 

• Rank at Max, the position in the ranked gene list at witch the maximum ES occurred. 

It also contains the leading edge column, which displays three different statistics: 

• Tags – the percentage of gene hits before the ES peak; 

• List – the percentage of gene in the ranked list before the ES peak; 

• Signal – the ES signal strength which combines the previous two statistics. 

The leading-edge analysis was also performed after the GSEA, which allows a visual display of the 

overlap between the genes of the Reactome pathway sets. 

Finally, the enrichment map visualization was performed from the GSEA results for each stage 

comparison, with the following cut-offs: p-value 0.001, FDR 0.05 and similarity with an overlap coefficient 

of 0.75. The enrichment map can be displayed through Cytoscape (version 3.8.2) with the application 

EnrichmentMap (version 3.3.3) concluding the analysis of the Bulk RNA-seq samples. 

 

2.2 ScRNA-seq analysis 

 

ScRNA-seq was performed on mice with similar timestamps as the bulk RNA-seq in rats, P3, P11 

and P60, with n=1 each. The sample processing was performed by Ana Mendanha Falcão at ScilifeLab 

(Sweden). Single cells were further processed using 10x genomics technology. 

The scRNA-seq analysis, followed a similar path to the bulk-RNAseq, however one must consider the 

UMI, which removes the amplification noise from PCR and biases. Afterwards, one can collapse the reads 

with the same UMI allowing the count of transcripts (Fig. 9).  
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2.2.1 ScRNA-seq data processing and analysis 

 

The CellRanger pipeline v3.1.0 (from 10X genomics), with default settings, was used to demultiplex 

the output of Illumina bcl files, align reads to the mm10-3.0.0 reference genome and extract counts 

matrix for each sample. The count matrix of each sample was analysed independently first and then they 

were combined for better comparisons between different postnatal samples. 

The package “Seurat” (Version 4.0.5) from R allows loading 10x data and later to create an object 

which allows the visualization, treatment, and analysis of the obtained sample matrixes [55]. After each 

sample was loaded, the correspondent metadata was added, including age (either P3, P11 or P60), tissue 

(all from lateral ventricle) and sex (all mixed). The first approach to scRNA-seq data is to ensure the quality 

of samples by checking several parameters, such as: 

• Number of counts – number of reads per cell that the sample contains. 

• Number of features – number of genes per cell in the sample. 

• Percentage of mitochondrial RNA – percentage of mitochondrial RNA in each cell. Cells with 

an high percentage of mitochondrial RNA are associated with cell death [56]. 

• Percentage of ribosomal genes – percentage of ribosomal genes in each cell.  

• Percentage of hemoglobin RNA – percentage of hemoglobin RNA in the cells. Red blood 

cells have no nuclei and can be present in the sample. A high percentage of hemoglobin 

Figure 9| Example of a set of reads from scRNA-seq. After the alignment through the cell barcode, it is possible to collapse the reads 

that have the same UMI since it belongs to the same molecule, this allows the removal of amplification noise and further biases [73]. 
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RNA indicates that the cell encapsulated for sequencing is a red blood cell and thus should 

be removed. 

Initially, the quality control removed cells with less than 500 expressed genes, as well as genes 

expressed in less than 5 cells. Furthermore, cells with more than 25% of mitochondrial or hemoglobin 

reads were removed from the data as they are either not viable, or are red blood cells, respectively. Cell 

cycle scores calculation also needs to be considered, since cells can vary their transcriptome depending 

on the cell cycle stage. Typically, a high number of cells in the S or G2/M stage can weaken the sample, 

since their profiling is temporary dedicated to cell division rather than their phenotype, therefore making 

difficult to classify them. Cell cycle scoring calculation was performed through the bioMart package from 

BioConductor (version 2.50.0), which provides the database necessary to identify the genes that are 

associated with the cell cycles [57][58]. Doublets, droplets containing gene expression of two (or more) 

cells, were removed from the data due to the abnormal values for gene expression. Doublets can be 

predicted in each sample, according to the recovered number of cells from Illumina, through the tool 

DoubletFinder (version 2.0.3), which requires normalization and scaling (Fig. 10) [59].  

We normalized the data of each sample separately by using LogNormalize function. In detail, feature 

counts for each cell were divided by the total counts, scaled by 1000 and natural-log transformed. Then, 

we scaled data by centred each feature’s mean to zero and scaled by its standard deviation. DoubletFinder 

performs a pN-pK parameter sweep for all cells and after the visualization of the mean-variance 

normalized bimodality coefficient (BCmvn) score for each pK value, an optimal pK can be achieved by 

picking the highest point in the BCmvn distribution. Once the optimal pK value and doublets rate, which 

10xGenomics provides, are found, DoubletFinder can successfully predict the doublets and further 

removal from the sample. After removing doublets, cells with more than 30,000 UMI counts and/or 6000 

genes were also removed to avoid noise in downstream differential gene expression (DGE) analysis. 
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Dimensional reduction 

After quality control, the expression data was normalized again. Due to the traits of the expression 

matrix, high dimensional and high sparse data, it is necessary to select a representative set of genes to 

estimate low dimension embeddings to reduce the noise in clustering. 2000 genes that exhibit high cell-

to cell variation were selected by the ‘vst’ method in FindVariableFeatures function with default settings, 

followed by data scaling.  

For the dimensionality reduction step, we started by performing PCA and converted data into 50 

dimensional embeddings. The top 20 principal components, which explain most of the cell variation, were 

kept for future dimensionality reduction. However, PCA only interprets the linear regression, since scRNA-

seq produces more complex/ dimensional data, it is advised to perform a second dimensionality 

reduction, often using tSNE or UMAP. T-SNE is an unsupervised, non-linear technique for exploration and 

high-dimensional visualization data. Essentially, t-SNE places the objects in a low dimensional space, 

while preserving neighbourhood identity [60], and then the T-distribution creates the probability 

distribution of points in the lower dimensional space. The deficiency of the t-SNE is that it only explains 

 Figure 10 | General overview of the DoubletFinder tool process of doublets removal. 1- Simulates the number of doublets based 

error rates. 2- Dimensionality reduction will help revealing doublet clusters. 3- Doublets identified based on the prediction (adapted from 

[59]). 
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two-dimension variations. Since global structure is a key feature for the biological interpretation, we chose 

UMAP which interprets both non-linear variations and global relations to visualize the results. 

To identify the clusters of cells, the graph based clustering approach Louvain clustering was used 

for all three samples. For Louvain clustering, the shared nearest neighbour (SNN) graph was built by 

estimating the neighbourhood overlap (Jaccard index) between every cell and grouping cells into 

communities by k-nearest-neighbours (k = 20). To determine the number of clusters, different values for 

Louvain distance were considered, 0.01, 0.05, 0.1, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, independently. Usually, 

the higher resolution, the more clusters or subclusters are formed for the same data. However, these 

clusters might not have biological significance. Therefore, for this work the resolution was picked to 

identify the expected cell types in our samples, not focusing on subcellular types. Afterwards, the clustree 

package (version 0.4.3) can offer an intuitive overview of the clustering resolution increase process. 

The K-means clustering algorithm was also considered as a possible approach, but this method 

focuses on finding groups that are not explicit labelled in the data. Since from our samples, it is deducible 

that several communities will form clusters according to their cell type, the Louvain algorithm was a more 

proper fit for the detection of such communities. 

Finally, to end the individual sample analysis, cell type assignment is necessary. There are several 

predictive ways to assign cells to cell types and they all require a previous study or database to use as 

reference. Since there are too few studies for CP development, we combined canonical markers and top 

markers of clusters to define cell types. Several markers were took into account both from other studies 

such as M. Lehtinen [61], as well as the online database CellMarker, which can provide known cell type 

markers from previous studies [62]. After consulting the gene markers expression distribution, through 

the visual functions DotPlot and FeaturePlot, it is possible to correctly assign a cell type for each cluster 

represented. 

Once cell type assignment was complete, all samples were merged to be compared, and allow more 

types of analysis. Initially, the samples were filtered for ribosomes, since we are now comparing a greater 

number of cells the amount of noise produced can increase and interfere with data analysis. Therefore, 

cells with ribosome gene percentage over 25% and cells expressing hemoglobin RNA were removed from 

the samples. Two types of integration were tested, Canonical Correlation Analysis (CCA) and Harmony 

[63], all after normalization, scaling and dimensionality reduction. Integration is a fundamental process 

for multiple scRNAseq datasets, CCA focuses on determining relationships between groups of variables 

in a dataset, it was used up to 30 dimensions and 2000 anchor features (number of features to start the 

anchor finding). While Harmony is a more complicated algorithm, scRNA-seq specific, that first soft 
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clusters the sample, then finds centroids for each dataset, corrects dataset factors for each cluster and 

moves cells based on the soft cluster membership, it then iterates these four steps until cell cluster 

assignment is complete [63]. Harmony also used 2000 for the top variable features and ran up to 30 

dimensions. 

After integration, clustering was performed with an identical pipeline as for each sample, plots from 

t-SNE and UMAP for PCs 10, 15 and 20 followed by a K-nearest neighbour algorithm. Several resolutions 

were tested for the UMAP (0.05, 0.075, 0.1, 0.15, 0.2, 0.3) and the same cell markers were used for 

the cell type assignment. 

After clustering and cell type assignment, the Differential Expression Analysis (DEA) was performed. 

The Seurat package allows to identify markers after clustering through the non-parametric Wilcoxon test. 

Therefore, several top markers were identified for each cell type, based on the adjusted P-value, and 

demonstrated through dotplots. Afterwards, the DEA was focused on cell types to identify the variance 

between age, similarly, the results can be visualized through barplots, taking into account the log2(FC) 

and adjusted p-value of the DEA results. Similar stage comparisons were performed for further 

comparison with the bulk RNA-seq analysis, P3 versus P11, P3 versus P60 and finally, P11 versus P60. 

Finally, the top 15 overexpressed features for each comparison were plotted. 

 

2.3 Bulk RNA-seq and ScRNA-seq comparison 

 

Due to the extensive output from the DEA analysis in scRNA-seq, the comparison between the two 

techniques was focused on the highest variance stage comparison. Furthermore, a deeper analysis was 

conducted to compare common genes from the most enriched cell type populations across the integrated 

samples in scRNA-seq compared with bulk data. Multiple genes were then analysed according to their 

ontology and both techniques were discussed through the relevance and reliability of their respective 

outputs. 

  



  23  
 

3. Results and Discussion 

 

In this section, the results from both bulk RNA-seq and scRNA-seq analyses will be displayed. Reports 

from bulk pre-processing are of difficult display since they are produced in HTML files and can be very 

extensive, thus most of pre-processing results will be on the supplementary section category. 

However, the DEA and GSEA can easily be displayed through either violin plots, dotplots, barplots, 

or through software such as Cytoscape. 

 

3.1 Bulk RNA-seq analysis 

 

In the next section, a general overview of the bulk RNA-seq dataset analysis results is provided. 

 

3.1.1 Pre-processing 

 

Taking the initial fastqc reports and compiling them through multiqc allows a fast overview of the 

data’s state. A high duplicate rate of reads was found in all samples (approximately 50%), as expected for 

RNA-seq analysis, the number of unique reads go from 7 million to 9 million. 

As for the Phred score, it was already considered in good values ranging from 28 to 32. As expected, 

the per base sequence content shown a 3’ bias, due to the selection of Poli-A in the sequencing process. 

Even though, the per sequence GC content was not shown as ideal, since most reads were in the range 

40%-50% for each sample. Per base N content shown absence of base calls for the N, apart from two 

samples, however, both were lower than 0.2%. Overrepresented sequences also never cross the 1% line 

for each of the samples except for sample P10.2 which reached 1.13%, however it should not influence 

the downstream analysis.  

All samples from P3 stage presented a significant amount of adapter content, however these 

sequences can be removed through trimming. After the trimming process, all adapter sequences were 

removed through Cutadapt. Most samples maintained 50% to 60% of duplicate reads, however Phred 

score improved across all samples, ranging from 32 to 36. Duplicate reads should not be filtered from 

RNA-seq samples without UMIs, since the removal of these sequences will also remove valid biological 

duplicates and most likely harm the analysis than provide benefits, even for paired-end data [64]. The GC 

content per sequence also improved across all samples, as well as the percentage of overrepresented 

sequences. Other parameters were maintained equal for the further analysis. 
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After using STAR to map the reads against the Rattus norvegicus genome from the NCBI database, 

the mapping quality review was performed using FeatureCounts and Qualimap, thus, the quantity of reads 

mapped, the percentage of assigned and aligned reads was obtained (Table 2). 

 

Table 2 | General overview of the mapping quality control obtained through MultiQC. 

Sample 

Name 

M Reads 

Mapped 

% Assigned M Assigned % Aligned M Aligned 

P1.1 21.3 47.8% 10.2 78.2% 13.7 

P1.2 17.7 47.7% 8.4 78.0% 11.3 

P1.3 21.7 42.1% 9.1 79.4% 14.0 

P10.1 20.5 52.4% 10.7 83.7% 14.6 

P10.2 23.1 65.6% 15.2 87.2% 18.3 

P10.3 18.7 61.4% 11.5 85.1% 14.0 

P60.1 20.5 60.3% 12.4 85.2% 15.3 

P60.2 19.6 61.7% 12.1 86.4% 15.0 

 

All the reads from the samples were successfully aligned over 75% to the Rattus norvegicus genome, 

and apart from the P1 samples, surpassed 50% of assigned reads. However, all samples obtained 

approximately 10 million assigned reads, which constitutes a reliable dataset for downstream analysis. 

The full MultiQC reports for the quality control before trimming, after trimming and after mapping 

are included in the supplementary material in the sections A.1, A.2, A.3, respectively. 

 

3.1.2 General Overview 

 

After the quality control being complete, the first overall overview of the data was performed with 

PCA which allows a general overview of the samples and stages in a two-dimensional resolution (Fig.11). 
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As expected, samples with the same age demonstrate closer proximity than with different ages. 

Furthermore, the P10 samples also reveal a more neutral position when compared to P1 and P60 since 

they could be considered has the mid-developmental stage. 

For the same purpose, an heatmap was also generated with the most 30 common genes and their 

variance across all samples after the VST (variance stabilizing transformation) being able to already 

identify possible markers related to the samples age (Fig.12). 

Figure 11 | PCA plot of the rat CP transcriptome at 3 stages of development: P1, P10 and P60. 
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Likewise, to the PCA, the P1 samples display a more distant phenotype to P60, when compared to 

P10, which reveals more intermediate and wider expression of genes at P10 stage. The genes Kl and 

Enpp2, involved in carbohydrate metabolic process and negative regulation of cell-matrix adhesion, 

respectively, were specifically enriched in P10 and P60 while Actb and Tuba1a, related with cell adhesion 

and mitotic cell cycle, respectively, were overexpressed in P1.  The intermediate CP stage P10, displayed 

fewer enriched genes when compared to P1 and P60, for example, Morf4l1 gene involved in DNA repair 

and regulation of cell growth.   

 

3.1.3 Differential Expression Analysis 

 

Regarding the DEA, the following comparisons between stages were performed: P1vsP10, P1vsP60, 

P10vsP60 which originated 3 main volcano plots displaying the genes enriched in each indicated time 

point. 

Volcano plots are a simplistic visual display of DEA, since they can easily exhibit the designed 

thresholds, thus clarifying the biological perspective of its results.  

The P1vsP10 DEA comparison aims to identify different developmental genes related to each stage 

(Fig.13). 

Figure 12 | Heatmap overview with the most 30 top genes enriched in the different samples. A lighter colour reflects a more absent 
gene in the determined sample, whereas a darker/ stronger colour a more prevalent presence. 
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The P1 developmental stage was enriched in genes such as Sox3, which is a key transcription factor 

in developing and mature glia, and Plppr3, a phospholipid with signal transduction function, while at P10 

the CP was enriched in the genes Dpt, Cltrn, which promotes collagen fibril organization and insulin 

secretion, respectively.  

The comparison of CP at P1 versus P60 mice displayed the higher number of differentially expressed 

genes (Fig.14). 

 

  

Figure 13 | Volcano plot for the DEA between the ages P1 and P10. Thresholds for the significant FC are under -2 and over 2, 
while for the p-adjusted value is under 0,05. Genes included in these thresholds are represented in blue, while the others are red. 

More significant genes are also pointed in the map (low p-adjusted values and extremely lower/ higher FC). 
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Over 6500 genes were identified as differentially expressed between the P1 and P60 stages. Almost 1300 

genes were overexpressed on P1, such as, Col4a1, Col4a2 and Col14a1 which are all genes from the 

fibrillar collagen family, known to have a key role in the extracellular matrix organization and structure, 

and, therefore, in cellular adhesion in the early stages of development. In the P60 DEA, the overexpressed 

genes were Prlr, Cox8b, and Acsl3. Prlr is a receptor for the prolactin hormone, while Cox8b is a 

fundamental enzyme in the mitochondrial electron transport chain, involved in the energy metabolism 

and finally Acsl3 is involved in both synthesis and degradation of cellular lipids. Overall, cellular matrix 

associated genes were enriched in P1 stage while metabolism associated genes were overexpressed in 

P60. 

Lastly, comparing CP from P10 with P60 mice, unravelled similarities with the comparison between 

CP from P1 with P60 mice as expected, since both P1 and P10 are postnatal stages (Fig.15). 

 

 

 

 

Figure 14 | Volcano plot for the DEA between the ages P1 and P60. Thresholds for the significant FC are under -2 and over 2, 
while for the p-adjusted value is under 0,05. Genes included in these thresholds are represented in blue, while the others are red. 

More significant genes are also pointed in the map (low p-adjusted values and extremely lower/ higher FC). 
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Likewise P1, the P10 DEA also shown enrichment of collagen family genes such as, Col14a1, Col4a2 

and Col26a1 suggesting a tendency for cell adhesion and cellular matrix priority in early stages. 

As for the DEA of this comparison in P60 also presented identical enriched genes such as Cox8b 

and Acsl3, as in the previous comparison against P1, however, besides immune associated genes like 

Cd74 (supplementary material section B.2) it also presented Plp1 (supplementary material section B.3), 

a major gene for a myelin protein for the CNS, it has a high importance in both formation and maintenance 

of the multilamellar structure of myelin. These results suggest that P10 it is still not in a fully developed 

CP stage, and it mainly focuses on cell adhesion and proliferation, most likely in the epithelial cells. 

DEA volcano plots with higher resolution can be consulted in the supplementary material for 

P1vsP10, P1vsP60 and P10vsP60 in the sections B.1, B.2 and B.3, respectively. 

 

3.1.4 GSEA 

 

P1vsP10 

Following the DEA analysis, the GSEA was performed for the same comparisons as mentioned above 

to give insights about the pathways enriched for each sample, and their biological meaning. For all the 

Figure 15 | Volcano plot for the DEA between the ages P10 and P60. Thresholds for the significant FC are under -2 and over 2, 
while for the p-adjusted value is under 0,05. Genes included in these thresholds are represented in blue, while the others are red. 

More significant genes are also pointed in the map (low p-adjusted values and extremely lower/ higher FC). 
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stages, the complete reports in HTML format can be accessed in the supplementary material in the 

sections C.1, C.2 and C.3 for P1 versus P10, P1 versus P60 and P10 versus P60, respectively. 

Out of 977 total gene sets found in both samples, 24 gene sets were significantly enriched in P1 

(nominal p-value < 1%), while 112 were enriched in P10 (supplementary material section C.1). The main 

enriched gene sets in P1 were striated muscle contraction, DNA strand elongation and mitotic 

prometaphase, with the latest having a size of 193 genes involved. The gene set striated muscle 

contraction also achieved the highest NES with 2.06 with a size of 36 genes. The remaining gene sets 

are also mainly related with cell division and cycle. As for the P10 age, the main enriched gene sets were 

associated with the respiratory electron transport and citric acid TCA cycle, as well as pyruvate 

metabolism. Furthermore, several other gene sets are also related to energy metabolism. The most 

enriched gene set in P10 was the respiratory electron transport with NES correspondent to -2.91 and size 

162. Overall, the NES was superior in P10 gene sets, as well as the number of their statistical significance. 

As for the analysis of overlapped genes in the found gene-sets, on this comparison, it was only 

performed in P10 since P1 did not achieve a high number of significant gene sets needed for the overlap 

analysis. P10 displayed a high overlap of genes in the gene sets, as expected, since most are related to 

the energy metabolism and cell signalling. 

As for the enrichment map visualization, it displays a more interactive version of the previous results 

(Fig. 16). 
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As mentioned above, the enrichment map of the P1 versus P10, displays 2 main clusters (both 

enriched in P10), one referring to energy metabolism, which relates gene sets such as the complex I 

biogenesis, respiratory electron transport and the citric acid TCA cycle sharing a similar number of 

common genes as the leading analysis also proved. The second largest cluster with more connections 

refers to signalling pathways associated to the immune system, such as Interleukin 1 signalling, genes 

involved in cellular response to chemical stress, and others related to cell fate such as the NOTCH4 

pathway. The P1 stage is also displayed with the top 3 gene sets mentioned above, although with no 

overlap genes, indicating a strong evidence of cell division priority at this age. Furthermore, it is also 

notable the existence of small clusters associated with fatty acid metabolism, vitamin metabolism and 

protein localization, enriched in P10, as well as other gene sets which are not directly related to the main 

2 clusters such as, interferon gamma signalling, mitophagy and ion transport through P-type ATPases, 

which are indirectly related to the cell signalling and energy metabolism, respectively. 

 

P1 versus P60 

Similar to the previous GSEA analysis, the comparison between the P1 and P60 stages also displayed 

cell division/ cycle related gene sets enriched in P1. However, 84 gene sets were significantly enriched 

Figure 16 | Enrichment map of P1 versus P10 GSEA. The red nodes represent enriched gene sets in P1, while the blue nodes 
represent enriched P10 gene sets. Edges connecting nodes represent the overlap of genes between those gene sets. 
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in P1 (nominal p-value < 1%) for this comparison, while 71 were enriched in P60 (nominal p-value < 1%) 

(supplementary material section C.2). The most significant enriched gene sets in P1 were the activation 

of the pre replicative complex with 2.36 NES and size 32, the resolution of D-loop structures, involved in 

cell repair mechanisms, and as in the previous GSEA analysis, the mitotic prometaphase. As for the P60 

enrichment analysis when compared to P1, similar to P10, it also expresses gene sets related to the 

energy metabolism like the respiratory electron transport with -2.80 NES and size of 162 genes.  

P1 shown high overlap of genes in cell division gene sets, as well as cell adhesion gene sets, as 

expected from the DEA analysis, while P60 also displayed a high overlap of genes in the energy 

metabolism gene sets mentioned above. 

In the enrichment map analysis, although using the same parameters, it is observable a more 

significant enrichment in P1 gene sets when compared to the previous section, P1 versus P10 (Fig. 17). 

Besides a higher overall correlation between sets, there is also a prevalence of P1’s clusters rather than 

P60’s. 

 

Figure 17 | Enrichment map of P1 versus P60 GSEA. The red nodes represent enriched gene sets in P1, while the blue nodes represent 

enriched P60 gene sets. Edges connecting nodes represent the overlap of genes between those gene sets. 
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As mentioned above, the enrichment map for the P1- P60 GSEA comparison, the stage P60 displays 

a major cluster related to the energy metabolism, as well as immune cell signalling sets such as interferon 

gamma and lipid and vitamin metabolism, similar to P10 in the previous analysis. However, P1 displays 

more prevalence in cell division/ cycle and DNA repair gene sets and a new cell adhesion cluster, involving 

genes sets that include the previous mentioned Collagen family genes in the DEA analysis, essential for 

the extracellular matrix organization. 

 

P10 versus P60 

The enrichment map analysis of CP from P10 versus P60 mice revealed a total of 95 gene sets 

significantly enriched in P10 (nominal p-value < 1%) and 28 significantly enriched in P60 (nominal p-value 

< 1%). Both P1 and P60, when compared to P10, display a low level of enriched gene sets, suggesting a 

higher prevalence of this developmental stage in phenotype variance (supplementary material section 

C.3). 

Similar to the previous comparison, P10 also displays a high content of gene sets related to the 

extracellular matrix organization (like P1, in P1 versus P60), namely the collagen biosynthesis and 

degradation with 2.61 NES and a 66 gene size. Unlike P1, it also focuses on the degradation of collagen 

and extracellular matrix, suggesting a regulation process of this feature. Furthermore, P10 also displays 

enriched gene sets linked to cell division, such as mitotic spindle checkpoint and mitotic prometaphase. 

Interestingly, NCAM 1 interactions genes are also enriched in P10, the protein encoded by this gene is 

involved in cell-cell interaction and cell- matrix interactions [65], essential processes for cell adhesion and 

signalling, further strengthening the hypothesis of epithelial cells maturation at this particular stage. 

As for the P60 enriched gene sets, these are also identical to the P1 versus P60 analysis, mostly 

immune cell signalling and energy metabolism, being the interferon signalling the top enriched gene set 

with a NES of -2.20 and a size of 73 genes. However, there are more uncommon gene sets such as 

transferrin endocytosis and recycling, and particularly, gene sets linked to insulin, reported in the literature 

as the CP releases insulin via serotonin signalling [66]. 
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Regarding the enrichment map analysis, it displays 4 main clusters, three belonging to P10 and one 

to P60 (Fig. 18). 

 

P10 enriched clusters comprise extracellular matrix organization (top right), cell division and cycle 

(top left) and several cell signalling pathways, either through NCAM1, PDGF or ephrin. P60 enriched 

clusters comprises immune cell signalling via interferon and energy metabolism such as the respiratory 

electron transport gene set. 

Overall, the GSEA indicates a strong phenotype variance in P10, when compared to the remaining 

stages. It also reveals a prevalence of cell division and cycle, extracellular matrix organization gene sets 

for the early age stages P1 and P10, and energy metabolism, immune cell signalling gene sets for later 

age stages P10 and P60. 

 

Figure 18 | Enrichment map of P10 versus P60 GSEA. The red nodes represent enriched gene sets in P10, while the blue nodes 
represent enriched P60 gene sets. Edges connecting nodes represent the overlap of genes between those gene sets. 
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3.2 Single-cell RNA-seq analysis 

 

In this section, the scRNA-seq results will be displayed. Initially, the samples were filtered and 

analysed separately until the cell type assignment process, and afterwards were merged, integrated, and 

DEA was performed for further comparison. 

 

3.2.1 Filtering process 

 

The results from the filtering process can be observed for each sample individually. Plots regarding 

the raw data, cell cycle scores and doublet removal process can be found in section E of the 

supplementary material. 

 

CP from P3  

The CP from P3 was obtained from 10x genomics protocols contained a total of 18599 different 

genes and over 8000 cells. After the removal of cells with less than 500 different genes and genes 

expressed in less than 5 cells, despite the few cells presenting more than 25% mitochondrial/ hemoglobin 

genes these were also removed. The cell cycle scores for the phases G2M and S were also close to 0, 

therefore no filtering was necessary for these features. The doublet removal performed through 

DoubletFinder successfully predicted 460 doublets, however, to remove further noise from unpredicted 

doublets, high gene expression cells were also removed, ending with a total of 17450 genes and 6178 

total cells (Fig. 19). 
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Figure 19 | General features of the P3 sample after filtering. Counts represent reads per cell while features represent genes per cell. 

Three percentages are associated to QC, percentage of mitochondrial/ ribosomal/ hemoglobin genes per cell. 

 

Overall, each cell contains on average 15000 reads and 3000 genes, which is enough for cell 

assignment and DEA. Both ribosome genes and mitochondrial genes percentage are low indicating a 

good cell viability in the filtered sample. There are no red blood cells since the percentage of hemoglobin 

genes is practically non-existent. 

 

CP from P11 

The P11 sample contained the most cells from all samples, over 17000 and 31000 different genes. 

However, it also contained cells expressing a high percentage of mitochondrial genes, which suggests a 

higher percentage of cells with low viability, which were removed from the analysis. As for the remaining 

percentage of ribosomes and hemoglobin, it shown relative low values. After the cutdown of cells 

expressing high expression of mitochondrial, ribosomes and hemoglobin genes, the sample remained 

with around 17000 genes and 14000 cells. Due to the higher cell quantity, around 2000 doublets were 

predicted which were later removed remaining 12000 cells. After further removal of cells expressing a 

high quantity of genes similar to the previous sample, the filtered P11 sample contained 10922 cells and 

17660 different genes (Fig. 20). 
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Most of the cells contained around 3000 different genes and low mitochondrial/ ribosomal gene 

expression. Despite the higher number of dead cells, the P11 sample after filtering still have 11000 cells 

for downstream analysis. 

 

CP from P60 

The P60 sample contained the least number of cells and genes across all samples, with only 5678 

and almost 17000, respectively. Furthermore, it also contained a high quantity of cells expressing a high 

percentage of mitochondrial (up to 75%) and ribosomal genes (up to 45%). However, the percentage of 

hemoglobin genes was non-existent. Due to the low number of cells, after the filtering, 147 doublets were 

predicted and further removed, and after the final removal of high gene expression cells, the filtered 

sample remained with 2919 cells and almost 16000 different genes (Fig.21). 

Despite the low number of cells, the quality proved to be good for downstream analysis, since most 

cells express 5000 different genes with more than 10000 reads.  

 

 

 

 

Figure 20 | General features of the P11 sample after filtering. Counts represent reads per cell while features represent genes 
per cell. Three percentages are associated to QC, percentage of mitochondrial/ ribosomal/ hemoglobin genes per cell. 
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3.2.2 Clustering and Cell type assignment 

 

In this section, the results from the clustering and cell type assignment process can be observed for 

each sample individually. Plots regarding the dimensionality reduction through UMAP and T-SNE can be 

found in section F of supplementary material. Additionally, several resolutions for the Louvain and K-

means algorithms in the clustering section can also be found in section G, including the cluster tree 

regarding the Louvain algorithm. 

 

CP from P3 Sample 

Through the analysis of PCs weights, it was revealed that 15 or 20 PCs were sufficient to explain the 

variance in the dataset as such we have used 20PCs to continue the clustering analysis (section F.1 in 

supplementary material). 

The Louvain algorithm also allowed a more consensual overview of clusters rather than the K-means 

algorithm, thus it was the chosen algorithm for downstream analysis. The clustering resolution was set 

at 0.05 as it allowed to identify the main different cell types in the CP. Increasing the clustering resolution 

could identify possible subclusters of cell types in the sample (section G.1 in supplementary material). 

Regarding cell type assignment, canonical markers were used to identify the expected populations: 

epithelial, mesenchymal, immune, and endothelial cells. This initial approach allowed the easy 

identification of the revealed cell types, while further analysis allowed the identification of a subcluster of 

Figure 21 | General features of the P60 sample after filtering. Counts represent reads per cell while features represent genes per 
cell. Three percentages are associated to QC, percentage of mitochondrial/ ribosomal/ hemoglobin genes per cell. 
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epithelial cells, responsible for the formation of cilia, which is to be expected in early stages of 

development such as P3, a process known as ciliogenesis (Fig. 22) [67]. 

 

The usage of canonical markers not only allowed the identification of the expected cell types, but 

also the identification of the ciliogenesis subcluster. The used markers can be consulted in Figure 23 for 

each cell type population. 

 

Despite the identification of these cell types, others, such as neurons, were not identified in this 

sample. Oligodendrocytes were also in low number and thus not defining a cluster. Of note, increasing 

Figure 22 | UMAP of the CP from P3 after cell type assignment. 

Figure 23 | Dotplot of the used canonical markers for cell type assignment in the P3 sample. 
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the number of samples (and thus cells) processed would allow to increase clustering resolution leading 

to the identification of more cell clusters, such as distinct immune cell types, and neuroglia populations. 

 

CP from P11 

The clustering process in the P11 sample displayed a similar curve for standard deviation in the 

number of dimensions. Likewise in the previous sample, clustering was performed using 20PCs in the 

P11 sample. However, both 10 and 15 dimensions (on UMAP) could also be considered due to the visual 

identification of clusters (section F.2 in supplementary material). 

The Louvain algorithm was the most effective clustering option than the K-means since the spatial 

position of clusters assignment were in agreement with the expected cell types from the CP (section G.2 

in supplementary material). The Louvain algorithm with the lowest resolution was used for further 

downstream analysis. An increased resolution could also be a good option for further identification of 

subclusters within cell types, nevertheless, the number of samples would have to be increased. 

Regarding the cell type assignment, canonical markers were used to identify cell types. Of notice, a 

new distinct population arose at the developmental stage P11, neuroglia (Fig. 24). Although the 

ciliogenesis markers seemed to be expressed, it was not possible to assign a cluster due to insufficient 

number of expressing cells. However, it is possible that through an increase in resolution, and mostly, by 

increasing the number of samples analysed, the epithelial subcluster of ciliogenesis would be identified. 

Furthermore, the immune cells also displayed several small clusters due to higher variance of cells, when 

Figure 24 | Overview of the 20PC UMAP of the sample P11 after cell type assignment. 
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compared to the other cell types, increasing resolution and sample size, could potentially reveal the 

different types of immune cells in the sample, such as, macrophages, T-cells, and NK cells. 

The used canonical markers for CP cell types were used to identify of cell types according to the 

clustering process (Fig.25). 

 

CP from P60 

Similarly to the other samples, the standard deviation curve for PCs weights has also shown a rapid 

decrease. In order to maintain an identical approach towards the samples, the clustering was performed 

with 20 dimensions, however, there aren’t significant differences in the visual plots with different 

dimensions in either the UMAP or T-SNE reduction approaches (section F.3 in the supplementary 

material). 

Regarding clustering algorithm, likewise in other samples, the Louvain distance maintained a more 

solid approach towards the biological perspective of the clustering process (section G.3 in the 

supplementary material). Identical to the sample P3 the same resolution was opted which allowed the 

further identification of the expected cell types despite the considerable difference in the number of cells 

(approximately 50%).  

Figure 25 | Dotplot of the used canonical markers for cell type assignment in the P11 sample. 
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The cell type assignment process used the same canonical markers as the previous samples, 

however only the epithelial, endothelial, mesenchymal, and immune cells were found in the sample (Fig. 

26). 

 

 

As expected in the adult stage, the ciliogenesis markers were not expressed in the sample since they 

are related with a transient stage of maturation of epithelial cells occurring at early stages in development. 

Furthermore, neuroglia cells were also in a very small numbers, not enough to define a visible cluster. 

The immune cells cluster also displayed several apparent subclusters as the P11 sample, suggesting a 

wider variety of cell type, although in minor quantity. The cell type assignment also proved to be efficient 

with the usage of the same cell type markers (Fig.27). 

Figure 26 | Overview of the 20PC UMAP of the sample P60 after cell type assignment. 
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Figure 27 | Dotplot of the used canonical markers for cell type assignment in the P60 sample. 

 

3.2.3 Integration 

 

Since the individual samples were analysed previous to integration, the filtered versions were 

merged, scaled and normalized. In order to visualise the batch effects from the samples, a comparison 

between both integration algorithms and a non integrated version was performed (Fig. 28). 

Figure 28 | UMAP comparison between the two methods for integration CCA and harmony, and the merged samples. A – 15PC UMAP of 
the merged samples after integration through the CCA algorithm; B - 15PC UMAP of the merged samples after integration through the 

Harmony algorithm; C - 15PC UMAP of the merged samples. 

C A B 
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Both algorithms seemed to remove the batch effect successfully when compared to the raw merged 

sample UMAP (Fig. 27-C). However, due to a slightly clearer definition of clusters in the CCA integration, 

it was the chosen method for downstream analysis. Similar to the individual analysis of each sample, it 

is visible after integration the discrepancy between the number of cells in each sample where P11 holds 

more than the two other samples combined (P3 – 6152, P11 – 10 836, P60 – 2816). 

The dimensionality reduction performed under 10, 15 and 20 PCs can be consulted in the 

supplementary material section F.1 alongside the tested resolutions for clustering through the Louvain 

distance algorithm (section F.2). The lowest tested resolution was picked since it would allow the 

identification of the expected cell types, parallel to the individual samples analysis. 

The cell type assignment process through the used canonical markers successfully identified the 

same populations as in the individual analysis (section F.3 in supplementary material) allowing a general 

overview of the merged dataset (Fig. 29). 

 

The UMAP plot of the merged samples identified the ciliogenesis subcluster despite the low 

percentage of cells compared to the other cell types clusters, while multiple subclusters could be identified 

through an increased resolution in the mesenchymal and immune populations, that can emerge due an 

increase in the number of cells analysed.  

Figure 29 | General UMAP overview of the merged samples after integration, clustering, and cell type assignment. 
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Before the DEA analysis between the timepoints, the top 5 markers for each cluster were also plotted 

to possibly identify new markers for the correspondent cell types or reinforce the used ones (Fig. 30). 

 

From the analysis of the top 5 gene markers for each cell type, only two genes were canonical used 

for the cell assignment process. The C1qa gene marker for immune cells is involved in the C1 antigen-

antibody complex activation, that initiates the classical complement system, responsible for the ability of 

antibodies and phagocytic cells to clear either microbes or damaged cells, belonging to the innate immune 

system. The Plvap gene encodes an endothelial cell-specific membrane protein responsible for 

microvascular permeability and is also one of the canonical markers displayed in figure 30. 

Despite the remaining canonical markers not being observable in the top 5, does not mean they are 

not enriched in their respective cell type (Section F.3 in supplementary material). Certain demonstrated 

genes could also potential become new biological markers, such as, Egfl7, responsible for promoting 

endothelial cell adhesion, Mgp, which is associated with the organic matrix of bones and cartilages, and 

finally, Fabp7, known to be associated with neurogenesis since it is required for the radial glial fiber 

system in the developing brain, a necessary system for the migration of immature neurons [68]. 

 

3.2.4 Differential Expression Analysis 

 

Figure 30 | Dotplot of the top 5 expressed genes for each cell type across all samples. 
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DEA was then performed on similar stages as the bulk RNA-seq for each major cell type encountered, 

meaning the subcluster ciliogenesis was unavailable for DEA analysis due to insufficient cells in the P60 

stage, which is to be expected since ciliogenesis is a typical process of developmental phases whereas 

P60 represents the adult stage, similarly, the neuroglial cluster was also specifically encountered in P11, 

but not on the other time points, thus the DEA wasn’t performed as well. 

Due to the high throughput of the DEA, this section will only cover the three stage comparisons in 

epithelial cells, since it was the most enriched population type across all samples, however it should be 

considered that we have only a n=1 per stage which means results should be considered preliminary and 

interpretated with caution. Furthermore, the different number of cells in each stage (P3 – 4732, P11 – 

7845, P60 – 2138) can also affect the DEA. The remaining plots associated with the populations of 

mesenchymal, endothelial, and immune cells can be consulted in the supplementary material sections 

H.1, H.2 and H.3, respectively. 

 

P3 versus P11 

The comparison between the stages P3 and P11 is expected to contain less differences in gene 

expression than the other comparisons due to both being postnatal stages (Fig. 31). 

Figure 31 | Barplot of the DEA results between P3 and P11. All the represented genes have P-adjusted value under 0.05. 
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The top 15 overexpressed genes in P3 and P11 do not cross the log2(FC) mark of absolute 2, this 

could be due to the reasons mentioned above regarding the number of cells and samples that can impact 

the power of the analysis. Genes such as Cd9 and Gpc3 enriched in both stages and are associated with 

the regulation of cell proliferation. Furthermore, Klf4, a known TF involved in the embryonic development 

is enriched in P3. Prlr, a prolactin hormone receptor, was enriched in P11, and is associated with 

epithelial cell differentiation [69], which can be associated with later stages of development such as P11. 

 

P3 versus P60 

The comparison between the P3 stage and adult shows the most significant differential expression 

between all, despite the low number of epithelial cells present in P60 (Fig. 32). 

 

From this stage comparison, similar genes have shown to be overexpressed in P3 as in the previous, 

such as Mdk, Gpc3, suggesting a distinct phenotype in P3 against the other stages despite the low average 

gene expression FC. Furthermore, the Prlr gene expression also suggests to increase with age since its 

more overexpressed in P60 than P11 (when both compared against P3). The P60 overexpressed gene 

Figure 32 | Barplot of the DEA results between P3 and P60. All the represented genes have P-adjusted value under 0.05. 
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Cox8b, has also been shown to be related to energy metabolism, which is to be expected in the adult 

stage when compared to P3. 

 

P11 versus P60 

As for the last comparison, it should be identical to the previous (P3 versus P60) due to the 

similarities shown between the P3 and P11 comparison since they are both developmental stages 

(Fig.33). 

 

Likewise, the current comparison shown similar overexpressed genes in P60, while genes such as 

Mia, Aebp1, Rbm3 are also overexpressed in P3 against P60 which suggests that can be potential age 

markers, specifically associated with developmental stage of the CP. 

 

 

 

Figure 33 | Barplot of the DEA results between P11 and P60. All the represented genes have P-adjusted value under 0.05. 
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3.3 Comparative analysis between bulk and Single-cell RNA-seq 

 

As two techniques for transcriptomic analysis were performed, a comparison between the two 

outputs and their similarities should be made. Due to the extensive output from single-cell technique, this 

comparison was focused on the DEA between the stages P3 (P1 in bulk) and P60 to identify common 

genes that were found enriched in each cell stage. Despite the range difference in the number of genes, 

which is significantly higher in bulk, and the different organisms used in both techniques (Mus musculus 

in scRNA-seq and Rattus norvegicus in bulk RNA-seq), it is expected that at least some ortholog genes 

should similarly enriched in the different CP stages. Since the GSEA analysis wasn’t performed in scRNA-

seq this section will exclusively be focused on the DEA between the stages P3 and P60. 

Between both techniques, a total of 114 genes were encountered in both samples DEA output, 

however not all had significant expression on the scRNA-seq dataset (log2(FC)<1 or log2(FC)>-1). Overall, 

one particular gene was found to be overexpressed in P3 across all cell types and in bulk, Marcksl1, 

which is a gene involved in actin filament binding, associated with the development of the CNS and 

positive regulation of cell proliferation [70]. In the next sections, the cell type populations will be 

individually compared to the bulk RNA-seq output. 

 

3.3.1 Epithelial Cells 

 

From the DEA analysis in epithelial cells, a total of 11 genes (absolute log2(FC)>1) were found in 

common with the bulk analysis, and only 2 of them were found overexpressed in P3, the remaining 9 

were overexpressed in P60 (Table 3). 

 

Table 3 | Comparison between the common genes found in the analysis of Bulk RNA-seq and epithelial cells in single-cell RNA-seq. All 

the genes represented have P-adjusted value under 0.05. 

Genes scRNA-seq (Log2(FC)) Bulk RNA-seq (Log2(FC)) 

Col9a2 1.382 3.918 

Igfbpl1 1.524 2.173 

Prcd -1.029 -2.873 

Acsl6 -1.038 -3.054 

Abat -1.121 -2.248 

Ltc4s -1.239 -4.928 
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Slco1c1 -1.818 -2.443 

Itgb8 -2.014 -4.066 

F5 -2.418 -4.967 

Cox8b -2.940 -7.191 

Prlr -4.363 -4.802 

 

The 2 genes overexpressed in P3 are Igfbpl1, associated with cell growth, and Marcksl. As for the 

overexpressed in P60 genes, are associated with several roles, such as lipid metabolism (Ltc4s, Acsl6), 

insulin production (Igfbpl1, Abat), as well as the previously mentioned Prlr and Cox8b. 

The epithelial cells displayed the highest number of genes in common with bulk, possibly due to 

higher number of cells when compared to the other cell types. 

 

3.3.2 Mesenchymal Cells 

 

As for the mesenchymal cells a total of 10 genes were equally found in both techniques output, 

however, unlike the epithelial cells which had more overexpressed genes in P60, the mesenchymal cells 

have 7 genes overexpressed in P3 and 3 for P60 (Table 4). 

 

Table 4 | Comparison between the common genes found in the analysis of Bulk RNA-seq and mesenchymal cells in single-cell RNA-seq. 

All the genes represented have P-adjusted value under 0.05. 

Genes scRNA-seq (Log2(FC)) Bulk RNA-seq (Log2(FC)) 

Col26a1 2.082 4.973 

Mfap2 2.071 3.367 

Col9a2 1.728 3.918 

Marcksl1 1.572 4.290 

Basp1 1.378 2.357 

Col4a1 1.149 3.830 

Ppic 1.118 2.025 

Prelp -1.058 -2.052 

Inmt -1.727 -4.966 

Coch -3.717 -6.675 

 



  51  
 

The gene Inmt is associated with amine compounds metabolism, while Coch and Prelp are 

associated with cell shape and extracellular matrix constitution, respectively, are overexpressed in P60. 

As for the genes overexpressed in P3, the gene Mfap2 is component of microfibrils, which are involved in 

the regulation of growth factors, and several collagen family genes known for their importance in 

strengthening and supporting tissue structures. 

 

3.3.3 Endothelial Cells 

 

As for the endothelial cells a total of 10 genes were found in both techniques analysis, and all of 

these are overexpressed in P3 (Table 5) suggesting an higher activity of this particular cell type in the 

developmental stage rather than in adult. 

 

Table 5 | Comparison between the common genes found in the analysis of Bulk RNA-seq and endothelial cells in single-cell RNA-seq. All 

the genes represented have P-adjusted value under 0.05. 

 

Most of the genes represented have a role in the extracellular matrix and cell adhesion such as, 

Cldn5, Stmn1 and Fbln2, however, Gpihbp1 is a specific endothelial gene associated with the mediation 

of lipoproteins transport. Furthermore, the gene Sox11 despite being the lowest differential overexpressed 

in P3 is a very known TF that alongside Sox4 and Sox12 are responsible for cell survival in developmental 

tissues, contributing to organogenesis. 

 

Genes scRNA-seq (Log2(FC)) Bulk RNA-seq (Log2(FC)) 

Hmgb2 2.181 3.493 

Marcksl1 1.763 4.290 

Stmn1 1.664 2.105 

Gpihbp1 1.646 2.648 

H19 1.493 7.584 

Fbln2 1.254 2.991 

Ppic 1.246 2.025 

Cldn5 1.198 2.503 

Apold1 1.102 2.872 

Sox11 1.081 4.103 
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3.3.4 Immune Cells 

 

As for the immune cells only contained two relevant genes, one overexpressed in P3 (Marcksl1) and 

the other overexpressed in P60, Cd74, which is involved in the stimulation of T-cells. 

 

3.3.5 Ciliogenesis 

 

Despite the DEA not being conducted in the ciliogenesis subcellular type, the canonical markers 

used for its identification were also searched in the P1vsP60 comparison in the bulk RNA-seq, since they 

are expected to be overexpressed in P1. And, successfully, the four genes used for the identification of 

ciliogenesis (Deup1, Shisa8, Ccno, Mcidas) in scRNA-seq were overexpressed in the P1 sample with 

extremely high log2(FC) (4.5, 4.3, 4.5, 6.9, respectively). 

 

3.4 Comparison with other studies 
 

A recent study identified a similar cell type composition in embryonic, adult and aged CP [61], 

recognizing the epithelial, mesenchymal, endothelial, immune, neuronal and glial cell clusters, although 

in this particular work the last two were merged. In this same study, the ciliogenesis marker Shisa8 was 

also being expressed in multi-ciliated epithelial cells in the embryonic stage decreased in the adult stage, 

corroborating the results of this work. Furthermore, the epithelial cell type was also the largest cell class 

in embryo, even though in this project, it was the largest across all stages. At last, several different 

populations of immune cells were also found, suggesting the diversity of this cell group in the CP, including 

the subsets B cells, lymphocytes, macrophages, dendritic cells, among others. Although the immune cell 

cluster was not deeply investigated in this project, several samples demonstrated several clusters 

associated with this cell type, indicating that the same or other subsets can also be found. 

Other studies have also shown that the transition in epithelial cells towards the mature state is 

associated with an increase in mitochondria’s which can also explain the GSEA results from the bulk 

analysis, since both P10 and P60 displayed enriched energy metabolism gene sets when compared to 

P1 [71]. 

The overexpression of the Prlr gene in mature epithelial cells has also been investigated, since the 

CP holds one the main entry point for the hormone prolactin (PRL) through its specific receptors [72]. In 
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this study, the prolactin receptor was overexpressed in the later stages both in the Bulk and single-cell 

RNA-seq analysis being one of the key genes to differ the developmental from adult stages. 
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4. Conclusion 
 

From this work, we can conclude that bulk RNA-seq is a viable technique for an initial approach to 

multicellular tissues, such as the CP, allowing a general identification of its transcriptome across multiple 

timepoints. The DEA performed allowed the identification of several crucial genes for early development 

in the brain, as well as in an adult CP. As for the GSEA analysis, it allowed the identification of regular 

processes and main metabolic pathways associated with each developmental stage. In the early stages, 

there is a tendency for cell division, adhesion and extracellular matrix organization, while on later stages 

there is propensity for energy and lipid metabolism. The developmental stage P10 also demonstrated to 

be a transitional state between adult and embryo since it displayed a wider range of expressed genes. 

One other hand scRNA-seq also confirmed the results from the previous technique, providing insights 

about the cell populations that are responsible for the displayed phenotypes. Furthermore, scRNA-seq 

also displays a more visual approach to the data which allows a more easing biological perspective to the 

collected datasets. The possibility of identifying each main cell type in the CP (epithelial, mesenchymal, 

endothelial, immune and neurons) can provide important information for further studies of the tissue. 

Ciliogenesis is also an important event that can define observations of early stages of development in 

epithelial cells. Overall, scRNA-seq provides a more accurate and visual display of results. The conjugation 

of both techniques offers a more strong and solid perspective about the tissue analysis and should almost 

always if possible be performed in parallel. 

Further studies still need to be performed in order to analyse subpopulations of cell types and 

potentially unveil more markers and events associated with the development of the CP.  

 

Supplementary Material 
 

All the supplementary material related to this work can be found in the following link: 

https://github.com/MiguelMPacheco/Bioinformatics-Thesis-Anexos-2021 

Additionally, in this link can also be found the scripts associated with the Bulk RNA-seq analysis, the 

scRNA-seq analysis of one sample (identical to the others) and their merge/ integration and DEA, and 

finally, an excel containing information for the comparison of the two techniques (section I). 

In order to gain access to the Supplementar Material an email should be sent to: 

Miguelpacheco.rt@gmail.com 
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