
Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Emanuel da Silva Mendes

Evaluating the impact of traffic sampling
in network analysis

February 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Emanuel da Silva Mendes

Evaluating the impact of traffic sampling
in network analysis

Integrated Master’s dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Solange Rito Lima
João Marco Cardoso da Silva

February 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Insert name

A B S T R A C T

The sampling of network traffic is a very effective method in order to comprehend the
behaviour and flow of a network, essential to build network management tools to control
Service Level Agreements (SLAs), Quality of Service (QoS), traffic engineering, and the
planning of both the capacity and the safety of the network.

With the exponential rise of the amount traffic caused by the number of devices connected
to the Internet growing, it gets increasingly harder and more expensive to understand the
behaviour of a network through the analysis of the total volume of traffic. The use of
sampling techniques, or selective analysis, which consists in the election of small number of
packets in order to estimate the expected behaviour of a network, then becomes essential.
Even though these techniques drastically reduce the amount of data to be analyzed, the fact
that the sampling analysis tasks have to be performed in the network equipment can cause a
significant impact in the performance of these equipment devices, and a reduction in the
accuracy of the estimation of network state.

In this dissertation project, an evaluation of the impact of selective analysis of network
traffic will be explored, at a level of performance in estimating network state, and statistical
properties such as self-similarity and Long-Range Dependence (LRD) that exist in original
network traffic, allowing a better understanding of the behaviour of sampled network traffic.

Keywords: Sampling, Quality of Service, Long-Range Dependence

iii

R E S U M O

A análise seletiva do tráfego de rede é um método muito eficaz para a compreensão do
comportamento e fluxo de uma rede, sendo essencial para apoiar ferramentas de gestão de
tarefas tais como o cumprimento de contratos de serviço (Service Level Agreements - SLAs),
o controlo da Qualidade de Serviço (QoS), a engenharia de tráfego, o planeamento de
capacidade e a segurança das redes.

Neste sentido, e face ao exponencial aumento da quantidade de tráfego presente causado
pelo número de dispositivos com ligação à rede ser cada vez maior, torna-se cada vez
mais complicado e dispendioso o entendimento do comportamento de uma rede através
da análise do volume total de tráfego. A utilização de técnicas de amostragem, ou análise
seletiva, que consiste na eleição de um pequeno conjunto de pacotes de forma a tentar
estimar, ou calcular, o comportamento expectável de uma rede, torna-se assim essencial.
Apesar de estas técnicas reduzirem bastante o volume de dados a ser analisado, o facto de as
tarefas de análise seletiva terem de ser efetuadas nos equipamentos de rede pode criar um
impacto significativo no desempenho dos mesmos e uma redução de acurácia na estimação
do estado da rede.

Nesta dissertação de mestrado será então feita uma avaliação do impacto da análise
seletiva do tráfego de rede, a nível do desempenho na estimativa do estado da rede e a nível
das propriedades estatísticas tais como a Long-Range Dependence (LRD) existente no tráfego
original, permitindo assim entender melhor o comportamento do tráfego de rede seletivo.

Keywords: Análise seletiva, Qualidade de Serviço, Long-Range Dependence

iv

C O N T E N T S

1 introduction 1

1.1 Motivation and Objectives 1

1.2 Research Methodology 2

1.3 Dissertation Layout 2

2 state of art 4

2.1 Sampling 4

2.1.1 Sampling Techniques 4

2.1.2 Traffic Flow Analysis through Sampling 6

2.1.3 Comparison of Sampling Techniques 7

2.2 Properties of Internet Traffic 11

2.2.1 Self-Similarity and Long Range Dependence 12

2.2.2 Methods for estimating LRD parameters H and γ 13

2.2.3 Estimation Accuracy Evaluation 15

2.2.4 Autocorrelation function 19

3 development 21

3.1 Sampling Framework 21

3.2 Sampling Commands 23

3.3 Data Sets Used 23

3.3.1 OC48 23

3.3.2 OC192 24

3.4 Data Set Filtering 25

3.4.1 Mergecap 25

3.4.2 Wireshark 25

3.4.3 Editcap 27

3.4.4 TShark 29

3.5 Normalizing Data Sets 31

3.6 Algorithms Used 32

3.6.1 Aggregate variance 32

3.6.2 R/S 33

3.6.3 Periodogram 34

3.7 Selfis 35

4 test and result analysis 37

4.1 OC-48 37

4.1.1 Basic Statistics 37

v

contents vi

4.1.2 Aggregate Variance 42

4.1.3 R/S 43

4.1.4 Periodogram 44

4.2 OC-192 46

4.2.1 Basic Statistics 46

4.2.2 Aggregate Variance 49

4.2.3 R/S 50

4.2.4 Periodogram 51

4.2.5 Autocorrelation Function 52

4.3 Summary 55

4.3.1 Data Volume 56

4.3.2 Throughput and Hurst Estimations 56

5 conclusion 58

5.1 Future Work 58

L I S T O F F I G U R E S

Figure 1 Example of sampling techniques [1] 5

Figure 2 Framework design [1] 7

Figure 3 Volume of data [1] 9

Figure 4 Dispersion of estimated throughput - moderate workload [1] 11

Figure 5 Absolute estimation error of H attained by six methods (N=131072,
mean, standard deviation and min-max excursion out of 100 samples)
[2] 17

Figure 6 Absolute estimation error of H attained by six methods (N=1024,
mean, standard deviation and min-max excursion out of 100 samples)
[2] 18

Figure 7 Average mean E[m△i] and standard deviation E[σ△i] (i=0,. . . ,10) of
the H estimation errors attained by five methods (R(1) out of scale,
average results on 100 pseudo-random sequences for each of 11 values
Hi) [2] 19

Figure 8 Sampler4 Framework 22

Figure 9 Download command using the aria2c tool 22

Figure 10 Merging multiple pcap files to output oc192fulldata set.pcap 25

Figure 11 Wireshark OC192 5s time series I/O packets graph - 0.1s time frame 26

Figure 12 Wireshark OC192 5s time series I/O packets graph - 0.01s time
frame 26

Figure 13 Wireshark OC192 5s time series I/O packets graph - 0.001s time
frame 27

Figure 14 Formatting OC192 pcap with editcap -F 29

Figure 15 Formatting full OC192 data set pcap using -F flag to pcapng format 29

Figure 16 Tshark command 0.1s interval 30

Figure 17 Resulting IO statistics 31

Figure 18 OC192 SELFIS Hurst estimation - Aggregate variance 33

Figure 19 OC192 Matlab Hurst estimation - R/S 34

Figure 20 OC192 SELFIS Hurst estimation - Periodogram 35

Figure 21 Example of SELFIS software tool GUI 35

Figure 22 OC48 Original and sampled data sets Boxplot - 0.1s time frame 39

Figure 23 OC48 Original and sampled data sets Boxplot - 0.01s time frame 40

Figure 24 OC48 Original and sampled data sets Boxplot - 0.001s time frame 41

vii

list of figures viii

Figure 25 Bar chart of OC48 Aggregate Variance Hurst estimation per time
frames 43

Figure 26 Bar chart of OC48 Rescaled Range Hurst estimation per time frames 44

Figure 27 Bar chart of OC48 Periodogram Hurst estimation per time frames 45

Figure 28 OC192 Original and sampled data sets Boxplot - 0.1s time frame 47

Figure 29 OC192 Original and sampled data sets Boxplot - 0.01s time frame 48

Figure 30 OC192 Original and sampled data sets Boxplot - 0.001s time frame 49

Figure 31 Bar chart of OC192 Aggregate Variance Hurst estimation per time
frames 50

Figure 32 Bar chart of OC192 Rescaled Range Hurst estimation per time frames 51

Figure 33 Bar chart of OC192 Periodogram Hurst estimation per time frames 52

Figure 34 ACF graph of OC192 Original data set - 0.1s time frame 53

Figure 35 ACF graph of OC192 RandC data set - 0.1s time frame 53

Figure 36 ACF graph of OC192 SystC data set - 0.1s time frame 54

Figure 37 ACF graph of OC192 LP data set - 0.1s time frame 54

Figure 38 ACF graph of OC192 MuST data set - 0.1s time frame 55

Figure 39 ACF graph of OC192 SystT data set - 0.1s time frame 55

Figure 40 Original and sampled OC data sets volume 56

L I S T O F TA B L E S

Table 1 Traffic scenarios [1] 8

Table 2 Average use of computational resources [1] 10

Table 3 OC48 Basic statistics - 0.1s interval per sample 38

Table 4 OC48 Basic statistics - 0.01s interval per sample 40

Table 5 OC48 Basic statistics - 0.001s interval per sample 41

Table 6 OC48 Aggregate Variance - Hurst parameter estimation and Correla-
tion Coefficient 42

Table 7 OC48 R/S - Hurst parameter estimation 44

Table 8 OC48 Periodogram - Hurst parameter estimation 45

Table 9 OC192 Basic statistics - 0.1s interval per sample 46

Table 10 OC192 Basic statistics - 0.01s interval per sample 47

Table 11 OC192 Basic statistics - 0.001s interval per sample 49

Table 12 OC192 Aggregate Variance - Hurst parameter estimation and Corre-
lation Coefficient 50

Table 13 OC192 R/S - Hurst parameter estimation 51

Table 14 OC192 Periodogram - Hurst parameter estimation 52

ix

A C R O N Y M S

A

ACF Autocorrelation function.

ARIMA Autoregressive Integrated Moving Average.

G

GUI Graphical User Interface.

I

IETF Internet Engineering Task Force.

ISP Internet Service Provider.

L

LAN-PHY Local Area Network Physical Layer.

LD Logscale Diagram.

LP Linear Prediction.

LRD Long-Range Dependence.

M

MAVAR Modified Allan Variance.

MHVAR Modified Hadamard Variance.

MRE Mean Relative Error.

MSE Mean Square Error.

MUST Multiadaptive Sampling Technique.

O

OC Optical carrier.

x

Acronyms xi

P

PSD Power Spectrum Density.

Q

QOS Quality of Service.

S

SS Self-Similar.

SSSI Self-Similar with Stationary Increments.

SYSTC Systematic Count-based.

SYSTT Systematic Time-based.

V

VT Variance Time.

W

WAN-PHY Wide Area Network Physical Layer.

1

I N T R O D U C T I O N

The importance of traffic characterization and analysis as a way of planning and managing
a network is fundamental for its good performance. The association of network traffic with
its corresponding applications allows the collection of very valuable information about the
network, which helps the development of solutions to meet the Quality of Service (QoS)
requirements of those applications. However, with the rise in the amount of data needed to
be processed, the application of efficient traffic characterization and classification algorithms
becomes increasingly cumbersome.

Furthermore, traffic modeling and representation is not simple, mainly with the intro-
duction of the notion of Long-Range Dependence (LRD) in the 1990s, which means that
the behavior of a time-dependent process shows statistically significant correlations across
large time scales [3], unlike Poisson type processes which consider packet arrivals without a
temporal notion, following an exponential distribution. The identification of these properties
and the study of their impacts has become a relevant aspect in the analysis of network
communications.

With the objective of simplifying network measurements, sampling techniques are imple-
mented in strategic nodes of the network called measurement points.

Long-range dependence has been found to be present by many authors in hydrology
[4, 5, 6, 7, 8, 9], economics [10, 11, 12], and in high speed networks [13, 14] [15]. The accuracy
measured of the sampled data is then going to be evaluated versus the original traffic.

1.1 motivation and objectives

Over the last couple of years since the notion of LRD as a property of Internet traffic, there
has been extensive amounts of study and research in order to prove that concept. However,
very little focus has gone onto verifying if that property is still present when traffic sampling
is applied, and how it affects the subsequent LRD estimation algorithms.

The main objective of this dissertation is focused on evaluating the impact of sampling
network traffic on two levels: on the realistic estimation of the network state; on the statistical
properties that network traffic presents. For such, it is necessary to identify partial objectives:

1

kalil
Realce
E a velocidade?

1.2. Research Methodology 2

• study the different sampling techniques and the properties of network traffic;

• obtaining traffic and executing the different sampling techniques by the use of a specific
sampling framework;

• comparing the different traffic sampling techniques in terms of performance and
properties of sampled traffic;

• analysis and discussion of the obtained results.

1.2 research methodology

The dissertation will be divided in two phases. The first one is focused on studying the state
of the art of sampling techniques and statistical analysis of network traffic.

After the knowledge acquired in the first phase, the second phase of testing will commence.
The second phase is focused on the use of a framework to obtain sampled traffic and the
following analysis of it, through comparisons between the different sampling techniques.

After using these techniques on network traffic, tests to measure the computational and
statistical weight of each of these sampling techniques will be executed, such as statistical
accuracy of the sampled traffic in terms of presence of LRD through the estimation of the
Hurst parameter and network state estimation from basic statistics such as average data rate,
variance and standard deviation.

That analysis will help understand which technique is better in different situations and the
benefits or disadvantages in terms of network state, resources used, and also about which
maintains the properties of the original traffic of a network.

1.3 dissertation layout

This dissertation is divided into 5 chapters, covering the sampling processes, the properties
of Internet traffic, the framework and the data sets used for sampling, tests and results, and
finally, conclusions and future work.

• Chapter 1 - Introduction : This chapter sets the context of this dissertation, as well
as the motivation and objectives to be accomplished. It also contains the dissertation
layout explanation.

• Chapter 2 - State of the art: In this chapter, the foundations of sampling and its purpose
are described. Furthermore, it also contains studies about Internet traffic properties
mainly focused on LRD, and finally some estimators to measure such properties.

1.3. Dissertation Layout 3

• Chapter 3 - Development : This chapter presents an explanation of the sampling
framework used as well as the decisions that took place, the data sets used, their
preparation and the tools used to achieve this, This chapter also contains a description
of the algorithms later used for testing and results.

• Chapter 4 - Tests and results : This chapter contains all the results obtained and the
corresponding discussion.

• Chapter 5 - Conclusion : This chapter contains the conclusion of the overall work
as well as the potential future work as a way to further explore the theme of this
dissertation.

2

S TAT E O F A RT

This chapter considers the main concepts of sampling, some of the most known sampling
techniques and in which way the process differs between each of them, as well as how
the sampling techniques can be divided into different components and their comparison
in terms of computational weight. Other investigation points are properties of Internet
traffic, mainly focused on how traffic can be viewed as a self-similar process and long range
dependant, and finally some algorithms and processes to estimate the validity and existence
of these properties with real time series.

2.1 sampling

The analysis of the total volume of data of Internet traffic in order to model a network
and perform accurate traffic classification becomes increasingly taxing on the performance
of the network, reducing the overall throughput of such network and making it more
likely to bottleneck the network equipment. A way to lighten that burden is by applying
sampling techniques on the traffic and subsequent traffic analysis, classification and modeling
algorithms, in a substantially smaller volume of data. However, there are different sampling
techniques and algorithms, with varying rates of the amount of data collected, computational
cost and the ability of accurately representing the network behaviour.

2.1.1 Sampling Techniques

• Systematic count-based (SystC): Drives the packet selection through a deterministic
and invariable function based on the packet position, using counters [1, 16]. As
exemplified in Fig. 1 (a), every 5th packet is selected and captured by the sampling
process.

• Systematic time-based (SystT): the process of the packet selection follows a deter-
ministic function based on the arrival time at the measurement point [1, 16]. In this
technique the sample size and the time between samples are set at the beginning and
remain unchanged along the sampling process, as presented in Fig. 1 (b). As shown,

4

2.1. Sampling 5

all packets arriving at the measurement point along a period of 100ms are selected for
a sample, whereas all incoming packets along 200ms are ignored for measurement
purposes.

• Random count-based (RandC): selects the starting points of the sampling intervals
in accordance with a random process. As presented in Fig. 1 (c), in the n-out-of-N
random approach, n elements are randomly selected out of the parent population that
consists of N elements [1, 16].

Figure 1: Example of sampling techniques [1]

• Adaptive linear prediction: this time-based technique uses linear prediction to identify
the network activity, adjusting the sampling frequency accordingly while the sample
size remains the same. This technique reduces the interval between samples when the
network activity is higher than predicted. Otherwise, when less network activity than
predicted is observed, the interval between samples is increased, reducing the sample
frequency and, consequently, the amount of data involved in the sample process.

• Multiadaptive sampling (MuST): Although this technique is very similar to the
adaptive linear prediction technique, the multiadaptive technique considers both the
interval between samples and the sample size as adjustable parameters. Apart from
increasing the sampling frequency in periods of more activity than predicted, the
multiadaptive technique also reduces the sample size, avoiding the overload of the
measurement point in a critical scenario of its operation. Conversely, in periods of less
activity than predicted, in addition to sampling frequency reduction, the multiadaptive
sampling also increases the sample size in order to acquire more information about the

kalil
Realce
Sem referência

kalil
Realce
Sem referência

2.1. Sampling 6

network without the risk of overloading the measurement point. This technique, along
with SysT achieves a better ratio of volume of data collected by computational cost.

2.1.2 Traffic Flow Analysis through Sampling

With the increasing importance of accurate traffic classification and characterization based
on traffic sampling, the reduction of the burden of traffic analysis is no less important.

Current research on this topic is typically focused on identifying the complexity and
limitations introduced by the missing data during the analysis of incomplete data traffic or
traffic with gaps between data created by the sampling process.[17]

However, much of the research on this topic only consider the classic sampling techniques
such as systematic count-based or random count-based approaches, which resort to a
deterministic or probabilistic function, while more recent techniques such as adaptive
sampling or time-based sampling are not covered.

Considering IETF PSAMP work [16, 17] and recent sampling proposals, a sampling
taxonomy is used to identify the inner characteristics distinguishing sampling techniques
and help defining new ones which can be adjusted to each traffic/service measurement
scenario. The taxonomy defines that sampling techniques can be classified into three well-
defined components according to the granularity, selection scheme and selection trigger in
use. Then each component is further divided into a set of approaches commonly followed in
existing sampling techniques.

1. Granularity - identifies the atomicity of the element under analysis in the sampling
process: in flow-level approach, the sampling process is only applied to packets
belonging to a specific set of flows of interest; in packet-level approach, packets are
eligible as independent entities.

2. Selection scheme - identifies the function defining which traffic packets will be selected
and collected; this scheme may follow a systematic approach, in which the process
of packet selection is ruled by a deterministic function that imposes a fixed sampling
frequency, independently of the packet contents or treatment; a random approach,
that rules the sampling frequency through a random process, usually resorting to a
pseudo-random generator or to a probabilistic function; or an adaptive approach, in
which the sampling technique is endowed with the ability to change the selection of
packets during the course of measurements aiming to identify the most important parts
of a traffic stream according to the measurement needs or to save network resources
during critical periods.

3. Selection trigger - determines the spatial and temporal sample boundaries; it may use
a time-based approach, in which the sampling beginning and end are driven based on

kalil
Realce
Referência

kalil
Realce
Seria interessante adicionar uma imagem dessa taxonomia

2.1. Sampling 7

the packets arrival time at the measurement point; a count-based approach, in which
the sampling boundaries are defined based on the packet position in the incoming
stream; or an event-based approach, in which the decision on when a sample starts and
ends takes into account some particular event observed in the traffic being monitored.
This event may be some value in the packet contents, the treatment of the packet at the
measurement point or a more complex observation.

A framework implemented in Java using Jpcap, connects the sampling components in
order to enable a versatile deployment of sampling techniques. This framework is designed
in two planes comprising the relationship among the sampling components, as illustrated in
Fig. 8, and may be applied to both online and offline measurement scenarios [1].

The sampling plane has a modular design, allowing a flexible sampling technique selection
and configuration. This plane is also responsible for identifying and selecting the network
interface in which the sampling will be applied.

In the network plane, traffic is collected from network interfaces by applying the sample
rules defined in the sampling plane. Then the collected packets are reported to be analyzed
according to network task measurement needs.

Figure 2: Framework design [1]

2.1.3 Comparison of Sampling Techniques

The traffic scenarios used for this analysis comparison correspond to three workload periods
(low, moderate and high) in the network backbone of the University of Minho campus along

kalil
Realce
Referência

kalil
Realce
Por que não colocou um exemplo mais próximo do texto?

kalil
Realce
A figura não foi referenciada no texto

2.1. Sampling 8

a typical workday which is then submitted to each sampling technique. The measured
values are presented in the following 1.

Table 1: Traffic scenarios [1]
Workload scenario / Feature Low Moderate High

Number of packets 311159 1273068 1718804

Volume of data (MBytes) 112.04 712.99 1063.16

Mean throughput (Mbps) 3.90 26.65 68.79

Mean packet size (Bytes) 377.58 587.26 648.59

Computational Weight

The computational weight of each sampling technique is analyzed in terms of hardware
resource usage (CPU Load and Memory) and volume of sampling data stored. While
resource usage may impact the performance of the measurement point, data volume affects
the bandwidth required by measurement data as well as the storage and processing overhead
[1, 18].

Regarding the volume of data collected and stored along the sampling process, the count-
based techniques (SystC and RandC) demonstrate less use of resources, as illustrated in Fig.
3. It also shows that MuST achieves the best results among the time-based techniques.

kalil
Lápis

kalil
Realce
Onde isso é apresentado?

2.1. Sampling 9

Figure 3: Volume of data [1]

Although with higher consumption of storage resources, SysT and MuST achieve a better
relationship between the volume of data collected and the computational cost involved.

Accuracy

Despite the importance of reducing the usage of computational resources associated with
traffic sampling, in order to be a useful tool the sampling techniques must still be able
to represent the network behavior accurately [1], A common way to achieve this goal is

kalil
Realce
Não consigo ver isso nas figuras apresentadas

2.1. Sampling 10

Table 2: Average use of computational resources [1]
Parameter SystC SystT RandC LP MuST

Low workload
CPU load (%) 5.03 14.55 5.50 27.35 8.82

Memory (kBytes) 76566 95900 81222 82440 85295

Moderate workload
CPU load (%) 10.80 17.95 16.86 96.68 10.72

Memory (kBytes) 80773 96410 84042 87698 84371

High workload
CPU load (%) 14.92 20.12 18.26 97.27 10.76

Memory (kBytes) 81801 90754 86163 85551 80765

through estimating throughput, which consists in measuring the amount of sampled data
in a time interval. Thereby, the accuracy in estimating traffic behavior is analyzed through
instantaneous throughput, which is the throughput estimated in each sample along the
measurement process, as well as mean throughput, i.e., the total estimated load, and its
mean relative error (MRE). In addition, the accuracy in instantaneous throughput estimation
is measured using the variance, where a smaller variance means a more accurate estimation.
This comparison is performed calculating the mean square error (MSE), a common metric to
compare estimators [1, 18].

Fig. 4 details where each point corresponds to one sample and the values closer to the
reference line indicate a lower estimation error and an overall stability of its algorithms.

kalil
Lápis

kalil
Realce
Não foi referenciado no texto

2.2. Properties of Internet Traffic 11

Figure 4: Dispersion of estimated throughput - moderate workload [1]

2.2 properties of internet traffic

Self-similarity and scaling phenomena have dominated backbone Internet traffic analysis for
the past decade. With the identification of long-range dependence (LRD) in network traffic,
the research community has undergone a paradigm shift from Poisson and memory-less
processes to identification of LRD and bursty processes. Despite its widespread use, though,
LRD analysis is hindered by the difficulty of actually identifying dependence and estimating
its parameters unambiguously [3].

2.2. Properties of Internet Traffic 12

2.2.1 Self-Similarity and Long Range Dependence

Packet traffic exhibits intriguing temporal correlation properties, such as self-similarity and
long memory (long-range dependence) [2].

Interestingly, if we plot packet or byte traffic arrivals at coarser scales, say every 0.1 second,
every second, or every 10 seconds, we obtain a rather unexpected result. Instead of smoother
and smoother arrival counts as we would expect, we always observe a process that is almost
as variable as the one observed at the finer 2 scales [19].

This property of the variance in packet or byte arrivals in Internet traffic, which is known
as self-similarity or scale-invariance holds true for different time granularities or scales, from
a few hundred milliseconds up to hundreds of seconds.

In a self-similar random process, a dilated portion of a realization has the same statistical
characterization than the whole. “Dilating” is applied on both amplitude and time axes of
the sample path, according to a scaling parameter H called Hurst parameter. On the other
hand, long-range dependence (LRD) is a long-memory property observed on large time
scales.

Under some hypotheses, the integral of a LRD process is self-similar with H related to γ

(e.g., fractional Brownian motion, integral of fractional Gaussian noise).
Over the years a substantial amount of attention has been devoted to designing and

perfecting algorithms for estimating parameters H and γ of data sequences supposed LRD.
A random process X(t) (say, cumulative packet arrivals in time interval [0, t]) is said to be

self-similar, with scaling parameter of self-similarity or Hurst parameter H > 0, H ∈ R if

X(t) =d a−HX(at) (1)

for all a > 0, where =d denotes equality of all finite-order distributions [2].
The class of self-similar (SS) processes is usually restricted to that of self-similar processes

with stationary increments (SSSI), which are “integral” of a stationary process [2].
H characterizes SS (Self-Similar) processes, but it is often used to label also the LRD

increments of SSSI (Self-Similar with stationary increments) processes. For this dissertation
it will follow this common custom: the expression “Hurst parameter of a LRD process”
(characterized by γ) denotes actually the parameter H = (γ + 1)/2 of its integral SSSI parent
process.

The predominant way to quantify LRD is through the Hurst exponent, which is a scalar
[3], and can not be calculated definitively, only estimated.

There are two categories of Hurst exponent estimators: those operating in the time domain,
and those operating in frequency or wavelet domain.

Despite the Poisson characteristics of packet arrivals, traces and analyses agreed with
previous findings, showing that LRD characterizes backbone traffic [2].

2.2. Properties of Internet Traffic 13

2.2.2 Methods for estimating LRD parameters H and γ

Variance-Time Plot

The basic Variance-Time (VT) plot method [2, 20, 21, 22] studies the variance of aggregated
time series, calculated with samples computed by averaging non-overlapping data windows.
By observing the decay of the variance plot, as a function of the window width, γ and H
can be estimated [2].

The VT plot method [2, 20, 22] studies the variance σ2(m) of the aggregated sequence
obtained by dividing the LRD series {xj} into non-overlapping blocks of length m and
averaging them, i.e.

X(m)
k =

1
m

km

∑
i=(k−1)m+1

xi (2)

for k=1,2,. . . ,N/m [2]. The variance of the aggregated sequence can be estimated as the
sample variance

σ2(m) =
1

N/m

N/m

∑
k=1

[
x(m)

k

]2
−
[

1
N/m

N/m

∑
k=1

X(m)
k

]2

(3)

For large N/m and m, this variance obeys the power law

σ2(m) ∼ mγ−1σ2
x (4)

Thus, by linear regression on a log-log plot of σ2(m) versus m,γ and H can be estimated.

Rescaled Adjusted Range Statistic (R/S)

The R/S statistic is one of the main time-domain methods for LRD estimation [4, 21, 23].
Defined as

R(n)
S(n)

=
1

S(n)

{
max
0≤l≤n

[
Y(l)− l

n
Y(n)

]
− min

0≤l≤n

[
Y(l)− l

n
Y(n)

]}
(5)

Assuming LRD {xj} such as

SY(f) ∼ c2| f |−r for f → 0, 0 < r < 1. (6)

, for n → ∞ its expected value follows

E
[

R(n)
S(n)

]
∼ CHnH (7)

where CR is a positive constant.

2.2. Properties of Internet Traffic 14

To estimate the Hurst parameter using R/S,the input sequence {xj} is divided in K blocks.
Then, for each lag-n, R/S is computed at up to k starting points, taken evenly in different
blocks. By linear regression on a log-log plot of R(n)/S(n) versus n,H and γ can be estimated.

Lag-1 Autocorrelation

This time-domain method was proposed for quick identification of power-law noise [24]
with integer exponent: lag-l autocorrelation, consisting of evaluating data autocorrelation
R(k) at lag k=1.

The autocorrelation of sequence {xj} at lag k is estimated as

R(k) =
1
N ∑N−k

i=1 (xi − x̄)(xi+k − x̄)
1
N ∑N

i=1(xi − x̄)2
(8)

where x̄ = (1/N)∑N
1 xj is the mean value. The lag-1 autocorrelation is simply the value

R(1) as given above. Based on this value, parameters γ and H can be estimated according to

RY(δ) ∼ c1|δ|γ−1 for δ → +∞, 0 < γ < 1 (9)

Daubechies Wavelet Logscale Diagram

Beyond the time and frequency domains dichotomy of the last two techniques, a break-
through occurred when techniques based on wavelet analysis were introduced for fractional
noise estimation [25, 26, 27, 28] . Due to their sensitivity to scaling phenomena over a range
of scales, wavelets are well suited to detect self-similarity or other more complex scaling
behaviours [2].

Assuming LRD data {xj} such as 6, this method is based on observing the asymptotical
power-law behaviour of the wavelet detail variances across scales

E[dx(j, k)2] ∼ C2jγ (10)

where dx(i, k) are the coefficients of Daubechies wavelets ψjk(t) in the decomposition of
signal x(t). These variances can be efficiently estimated as

µj =
1
nj

nj

∑
k=1

dx(j, k)2 (11)

where nj = 2−jN is the number of coefficients available at octave j. The log-log plot of µj

versus j is referred to as second-order LD. By linear regression, γ and H can be estimated
(11).

Due to their sensitivity to scaling phenomena over a range of scales, wavelets are well
suited to detect self-similarity or other more complex scaling behaviours [2].

2.2. Properties of Internet Traffic 15

Modified Allan and Hadamard Variances

The Modified Allan Variance (MAVAR) is a well known time-domain quantity, purposely
designed to discriminate noise types with power-law spectrum. Telecommunications stan-
dards (ANSI, ETSI, ITU-T) specify some network synchronization requirements in terms
of Time Variance (TVAR), closely related to MAVAR. It was also proposed as LRD traffic
analysis tool, because of its superior accuracy in estimating H and γ] [2].

With a finite set of N samples {xk} spaced by τ0 over a measurement interval T =

(N − 1)τ0, MAVAR can be estimated as

Modσ2
y (nτ0) =

∑N−3n+1
j=1

[
∑i=j(xi+2n − 2xi+n + xi)

]2

2n4τ2
0 (N − 3n + 1)

(12)

with n=1,2,. . . ,[N/3]. A recursive algorithm for fast computation exists [2, 29], which cuts
down the complexity of evaluating MAVAR for all [N/3] values of n to O(N2) instead of
O(N3).

On the other hand, MHVAR of order M can be estimated as

Modσ2
H,M(τ) =

∑N−(M+1)n+1
i=1 [∑i+n−1

j=i ∑M
k=0

(
M
k

)
(−1)kxj+kn]

2

M!n4τ2
0 [N − (M + 1)n + 1]

(13)

with n=1,2,. . . ,[N/(M+1)].
Assuming LRD data {xj} as 6, both MAVAR and MHVAR-νI are found to obey the simple

power law (ideally asymptotically for n → ∞,nτ0 = τ but in practice for n>4)

Modσ2
H,M(τ) ∼ Aµτµ, µ = −3 + γ (14)

By linear regression on log-log plot, H and γ can be estimated.

2.2.3 Estimation Accuracy Evaluation

The accuracy of the VT plot, R/S statistic, R(1), LD-3, MAVAR and MHVAR-3 methods was
evaluated and compared by extensive simulations [2].

Estimation methods were applied to LRD pseudo-random data series {xk} of length N
generated with one-sided PSD Sx(f) = h f γ(0 ≤ γ ≤ 1) for assigned values of H = (1+γ)/2.
The generation algorithm is by Pason [2].

Fig. 5 compares the estimation errors {△ij} attained by the six methods on sequences of
N=131072 samples. For each value Hl , the mean m△l (dot) standard deviation ±σ△i (thick
bar) and maximum-minimum excursion (thin bar), out of 100 estimation errors, are plotted.
[2].

2.2. Properties of Internet Traffic 16

Fig. 6 compares the estimation errors {△ij} obtained on short sequences of N=1024

samples. In examining these compared plots, it should be considered that some have
different scales on Y axes, due to the large difference of accuracy attained by the methods
[2].

By inspection of Figs. 5, 6 and 7 MAVAR and MHVAR-3 (plotted with same scale as LD-3)
provide by far the most accurate estimates [2].

• Long sequences (N=131072). The mean of σ△l of MHVAR-3 estimates is -22% than that
of MAVAR, which in turn is -14% than that of LD-3. This confidence gain is significant,
as it is computed over 1100 independent estimates. The mean of σ△i of VT plot and
R/S statistic estimates is four times wider than that of LD-3, MAVAR and MHVAR-3.

• Short sequences (N=1024). The mean of σ△i of MHVAR-3 estimates is -3% than that of
MAVAR, which is -54% than that of LD-3. This last method, on short sequences, gives
the estimates affected by highest uncertainty.

kalil
Lápis

2.2. Properties of Internet Traffic 17

Figure 5: Absolute estimation error of H attained by six methods (N=131072, mean, standard devia-
tion and min-max excursion out of 100 samples) [2]

2.2. Properties of Internet Traffic 18

Figure 6: Absolute estimation error of H attained by six methods (N=1024, mean, standard deviation
and min-max excursion out of 100 samples) [2]

MAVAR and MHVAR-3 achieve the best confidence and are not biased in H estimation.
On long sequences (N=131072), the mean standard deviation of 1100 MHVAR-3 estimates

2.2. Properties of Internet Traffic 19

resulted 22% smaller than that of MAVAR, which in turn was 14% smaller than that of LD-3.
On short sequences (N=1024), MHVAR-3 and MAVAR attained similar confidence, far better
than LD-3 (mean deviation 54% smaller). This superior performance is even more significant,
if we also consider the LD-3 estimation bias [17].

MAVAR and MHVAR-3 are the most accurate estimators of LRD parameters H and γ

in terms of both confidence and bias, among all methods considered in this study. Their
computational complexity is comparable to that of other methods, in particular LD, since
they can be computed recursively [17, 24].

Figure 7: Average mean E[m△i] and standard deviation E[σ△i] (i=0,. . . ,10) of the H estimation errors
attained by five methods (R(1) out of scale, average results on 100 pseudo-random sequences
for each of 11 values Hi) [2]

2.2.4 Autocorrelation function

Autocorrelation or ACF is a statistical measure of the relationship between a random
variable and itself, depending on the lags used. As it has been previously referred, Long-
range dependence measures the memory of a process. Intuitively, distant events in time
are correlated. This correlation is captured by the autocorrelation function (ACF). That
correlation is calculated as follows:

ρ(k) = E[(Xt − µ)(Xt+k − µ)]

σ2 (15)

2.2. Properties of Internet Traffic 20

The autocorrelation coefficient can range between +1 (very high positive correlation) and
-1 (very high negative correlation).

Persistent autocorrelation implies a long memory of the data-generating process or, in
other words, statistical dependence between observations separated by a large number
of time units [30, 31]. In contrast, if a time series has a short memory and is predictable
from only its immediate past, autocorrelations decay quickly as the number of intervening
observations increases [31].

If a time series shows LRD the ACF slowly decays to zero, while for short range de-
pendence that decay occurs quickly. As explained previously, the strength of the LRD is
quantified by the Hurst exponent (H). If the number of H is between 0.5 and 1 then the series
exhibits LRD and the closer the H is to 1, the stronger the dependence of the process is.

3

D E V E L O P M E N T

This chapter approaches the details of the sampling framework used in order to obtain
sampled data sets, the location from where the original data sets were downloaded with a
brief explanation of the network setup.

It also contains a description of all the tools used to manipulate those data sets so they
can be worked with, in order to transform the packet capture files into something usable by
the sampling framework and the estimation algorithms.

Furthermore, there is a description and explanation of the methods used to obtain proper
inputs for the throughput and LRD estimation algorithms, referred in this chapter and later
used for testing.

3.1 sampling framework

This framework consists in a Virtual Machine called Sampler4, imported into Oracle VM
VirtualBox. As it was originally developed for a 32 bit environment, the graphical display
and some commands are not present and the virtual machine would just freeze and crash.
In order to work around this issue you either have to work with a 32 bit machine, or turn the
VM on pressing right-ctrl + F2 so the graphical display is turned off and the system turns
on with the unix bash as follows in Fig. 8.

• login : sampling

• password : sampler2015

21

kalil
Realce
Qual, se nenhum ainda foi apresentado?

kalil
Realce
Referência ou nota de rodapé

3.1. Sampling Framework 22

Figure 8: Sampler4 Framework

The tool aria2 was utilized to download files from CAIDA repository instead of more typ-
ical methods like wget as it is more advanced as it supports protocols such as HTTP(S), FTP,
SFTP, BitTorrent, and Metalink. aria2 can download a file from multiple sources/protocols
and tries to utilize your maximum download bandwidth. It also supports downloading a file
from HTTP(S)/FTP /SFTP and BitTorrent at the same time, while the data downloaded from
HTTP(S)/FTP/SFTP is uploaded to the BitTorrent swarm. Using Metalink chunk checksums,
aria2 automatically validates chunks of data while downloading a file.

Figure 9: Download command using the aria2c tool

kalil
Realce
Referência ou nota de rodapé

kalil
Realce
Referência ou nota de rodapé

3.2. Sampling Commands 23

3.2 sampling commands

For the sampling process itself, a Python script was used that automatically applies the
different sampling techniques detailed in 2.1.1. The framework can apply these techniques
to both online traffic sampling, or offline traffic in the form of pcap files which was the type
of traffic used in this dissertation.

The following command applies one offline sampling technique using the SamplingFrame-
work4_0 taking as input a source pcap, the destination file, the sampling technique which is
defined as a number (for example "SystC" corresponds to number 13), the sample size and
finally the interval between samples.

For OFFLINE Sampling

sudo java -jar SamplingFramework4_0.jar source.pcap Destination_file_without_

extension technique sample_size interval_between_samples

Another easier way of sampling, and the one used for obtaining sampled data sets was
using the Python script file called OfflineSampligAutomationPython2.py which applies all of
the different sampling techniques previously referred with reasonable parameters such as
the intervals or time periods between samples to each technique.

3.3 data sets used

The following data sets of OC48 and OC192 were downloaded from CAIDA, following
their user agreement. In the next subsections an explanation of how these network lines
are capable of in terms of speeds, and how they are implemented for backbone traffic
connections.

3.3.1 OC48

OC-48 is a network line with transmission speeds of up to 2488.32 Mbit/s (payload: 2405.376

Mbit/s (2.405376 Gbit/s); overhead: 82.944 Mbit/s).
With relatively low interface prices, with being faster than OC-3 and OC-12 connections,

and even surpassing gigabit Ethernet, OC-48 connections are used as the backbones of many
regional ISPs. Interconnections between large ISPs for purposes of peering or transit are
quite common. As of 2005, the only connections in widespread use that surpass OC-48

speeds are OC-192 and 10 Gigabit Ethernet.
OC-48 is also used as transmission speed for tributaries from OC-192 nodes in order to

optimize card slot utilization where lower speed deployments are used. Dropping at OC-12,

kalil
Realce
Não era para ser Python?

kalil
Realce
Seria interessante adicionar uma parte do código com explicações ou um anexo com o código completo

kalil
Realce
Por que a escolha desses 2 datasets e não outros?

3.3. Data Sets Used 24

OC-3 or STS-1 speeds are more commonly found on OC-48 terminals, where use of these
cards on an OC-192 would not allow for full use of the available bandwidth.

The following url contains the OC48 data set used for testing.
The CAIDA UCSD Anonymized OC48 Internet Traces 2002-2003 - [2002-08-14], https:

//publicdata.caida.org/datasets/passive/passive-oc48/20020814-160000.UTC/pcap/

3.3.2 OC192

OC-192 is a network line with transmission speeds of up to 9953.28 Mbit/s (payload: 9510.912

Mbit/s (9.510912 Gbit/s); overhead: 442.368 Mbit/s).
A standardized variant of 10 Gigabit Ethernet (10GbE), called WAN-PHY, is designed

to inter-operate with OC-192 transport equipment while the common version of 10GbE is
called LAN-PHY (which is not compatible with OC-192 transport equipment in its native
form). The naming is somewhat misleading, because both variants can be used on a wide
area network.

In order to obtain access to the OC192 CAIDA data sets, proper authorization must be first
granted, as the dataset is not public unlike the OC48 data sets. To achieve the authorization,
an inquiry must first be completed with the proper reasoning for the use of the data sets
wanted. After sending it, you should receive an email with the proper authentication
parameters usually within a week.

The following link contains the OC192 data set used for testing. It contains anonymized
passive traffic traces from CAIDA’s passive monitors in 2019. It contains traffic traces from
’equinix-nyc’ high-speed monitor. The CAIDA UCSD Anonymized Internet Traces - [2019-
01-17], https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/

Dataset Contents

- trace files (*.pcap.gz): compressed pcap (tcpdump) format traces

- time files (*.times.gz): contains original nanosecond-precision

timestamps

The nanosecond timestamps in each *.times.gz line up exactly with the

packets in the corresponding pcap file (containing timestamps

truncated

to microsecond precision).

- stats files (*.pcap.stats): statistics on the trace, produced by

crl_stats

(part of the CoralReef suite of tools).

- file md5.md5: contains md5 checksums for all files

https://publicdata.caida.org/datasets/passive/passive-oc48/20020814-160000.UTC/pcap/
https://publicdata.caida.org/datasets/passive/passive-oc48/20020814-160000.UTC/pcap/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-nyc/
kalil
Realce
Seria mais interessante uma nota de rodapé do que incluso no texto essa parte

3.4. Data Set Filtering 25

Traces are named using the following format:

{monitor}.{direction}.{start-time}.anon.pcap.gz

* monitor: equinix-nyc

* direction: dirA / dirB

* start-time: time trace began, format: yyyymmdd-hhmmss.UTC

3.4 data set filtering

In order to obtain usable data sets as input for the both the sampling framework and
the algorithms to calculate basic statistics as well as the Hurst parameter, these following
programs were used.

3.4.1 Mergecap

Mergecap is a program that combines multiple saved capture files into a single output file
specified by the -w argument. Mergecap knows how to read pcap and pcapng capture files,
including those of tcpdump, Wireshark and other tools that write captures in those formats.

By default, Mergecap writes the capture file in pcapng format, and writes all of the packets
from the input capture files to the output file.

Mergecap is able to detect, read and write the same capture files that are supported by
Wireshark. The input files don’t need a specific filename extension; the file format and an
optional gzip compression will be automatically detected.

Figure 10: Merging multiple pcap files to output oc192fulldata set.pcap

This program was used to facilitate the sampling process, as the full data set from CAIDA
was split into multiple files, with the use of Mergecap, the files were combined into a single
one, ordered by timestamp.

3.4.2 Wireshark

Wireshark[32] is a GUI network protocol analyzer. It lets you interactively browse packet
data from a live network or from a previously saved capture file. Wireshark’s native capture
file formats are pcapng format and pcap format; it can read and write both formats.. pcap
format is also the format used by tcpdump and various other tools; tcpdump, when using

kalil
Realce
Referência ou nota de rodapé

3.4. Data Set Filtering 26

newer versions of the libpcap library, can also read some pcapng files, and, on newer versions
of macOS, can read all pcapng files and can write them as well.

Figure 11: Wireshark OC192 5s time series I/O packets graph - 0.1s time frame

Figure 12: Wireshark OC192 5s time series I/O packets graph - 0.01s time frame

kalil
Lápis

3.4. Data Set Filtering 27

Figure 13: Wireshark OC192 5s time series I/O packets graph - 0.001s time frame

Even though Wireshark has the possibility to turn a pcap file into a CSV with all the
information needed as input for the estimation algorithms which is the number of bytes for
each equally spaced time interval (minimum in milliseconds), it does have its limitations
considering the available number of lines in a CSV file so an alternative was instead used.

3.4.3 Editcap

Editcap is a program that reads some or all of the captured packets from the infile, optionally
converts them in various ways and writes the resulting packets to the capture outfile (or
outfiles).

By default, it reads all packets from the infile and writes them to the outfile in pcapng file
format.

An optional list of packet numbers can be specified on the command tail; individual
packet numbers separated by whitespace and/or ranges of packet numbers can be specified
as start-end, referring to all packets from start to end. By default the selected packets with
those numbers will not be written to the capture file. If the -r flag is specified, the whole
packet selection is reversed; in that case only the selected packets will be written to the
capture file.

Here are some of Editcap’s functionalities:

• It can be used to remove duplicate packets. Several different options (-d, -D and -w)
are used to control the packet window or relative time window to be used for duplicate
comparison.

• Assigning comment strings to frame numbers.

3.4. Data Set Filtering 28

• Able to detect, read and write the same capture files that are supported by Wireshark.
The input file doesn’t need a specific filename extension; the file format and an optional
gzip compression will be automatically detected.

• Can write the file in several output formats. The -F flag can be used to specify the
format in which to write the capture file; editcap -F provides a list of the available
output formats.

Analysing a large pcap file cannot be done through Wireshark as the program crashes
before loading the file completely. Because of this it is required to split the files that form
the data set into smaller ones using Editcap. This was done through the flag -i.

-i <seconds per file> Splits the packet output to different files based on uniform time
intervals using a maximum interval of <seconds per file> each. Floating point values (e.g.
0.5) are allowed.

This following Python code snippet demonstrates how Editcap was also used to split a
pcap file into multiple files, as the tool Tshark (3.4.4) has a file size limit in order to work
properly.

def edit():

startdir=’.’

for root, dirs, files in os.walk(startdir):

for file in files:

if file.endswith(’.pcap’):

filename=os.path.join(root,file)

cmd = ’editcap -i 30 "{}" "{}"’.format(filename,filename)

os.system(cmd)

cmd2 = ’mv {} ..’.format(filename)

os.system(cmd2)

return filename

Each output file will be created with an infix _nnnnn[_YYYYmmddHHMMSS] inserted
before the file extension (which may be null) of outfile. The infix consists of the ordinal
number of the output file, starting with 00000, followed by the timestamp of its first packet.
The timestamp is omitted if the input file does not contain timestamp information.

After packets for the specified time interval are written to the output file, the next output
file is opened. The default is to use a single output file. This option conflicts with -c.

The following commands correspond to the necessary formatting of the pcap files so they
can be processed by the sampling framework previously described. The first one was used
for the full data set of OC48 and OC192. For the OC48 data set and as the files being older,
the formatting used by looking at the -F flag was through libpcap.

3.4. Data Set Filtering 29

Figure 14: Formatting OC192 pcap with editcap -F

The formatting used for OC192 was pcapng as it was one that supports granularity up to
nanoseconds.

Figure 15: Formatting full OC192 data set pcap using -F flag to pcapng format

3.4.4 TShark

TShark is a network protocol analyzer. It lets you capture packet data from a live network,
or read packets from a previously saved capture file, either printing a decoded form of those
packets to the standard output or writing the packets to a file. TShark’s native capture file
format is pcapng format, which is also the format used by wireshark and various other tools.

Without any options set, TShark will work much like tcpdump. It will use the pcap library
to capture traffic from the first available network interface and displays a summary line on
the standard output for each received packet.

When run with the -r option, specifying a capture file from which to read, TShark will
again work much like tcpdump, reading packets from the file and displaying a summary
line on the standard output for each packet read. TShark is able to detect, read and write the
same capture files that are supported by Wireshark. The input file doesn’t need a specific
filename extension; the file format and an optional gzip compression will be automatically
detected.

Tshark command used

The following command was used in order to generate statistics such as packets or number
of bytes from the input file.

-z io,stat,interval[,filter][,filter][,filter]...

Collect packet/bytes statistics for the capture in intervals of interval seconds. Interval can
be specified either as a whole or fractional second and can be specified with microsecond
(us) resolution. If interval is 0, the statistics will be calculated over all packets.

If no filter is specified the statistics will be calculated for all packets. If one or more filters
are specified statistics will be calculated for all filters and presented with one column of
statistics for each filter.

3.4. Data Set Filtering 30

This option can be used multiple times on the command line.

Example: -z io,stat,1,ip.addr==1.2.3.4 will generate 1 second statistics

for all traffic to/from host 1.2.3.4.

Example: -z "io,stat,0.001,smb\&\&ip.addr==1.2.3.4" will generate 1ms

statistics for all SMB packets to/from host 1.2.3.4.

io,stat can also return many more statistics and calculate COUNT(), SUM(), MIN(), MAX(),
AVG() and LOAD() using a slightly different filter syntax:

Fig. 16 shows the command used to obtain the bytes per time interval.

Figure 16: Tshark command 0.1s interval

The following code snippet shows how the previous command was used in order to obtain
the bytes per 0.1s interval, from all the pcap files in the current folder.

def tshark100ms():

startdir=’.’

for root, dirs, files in os.walk(startdir):

for file in files:

if file.endswith(’.pcap’):

filename=os.path.join(root,file)

packet = subprocess.run([’tshark -r "{}" -qz io,stat,0.1 >

{}0,1.txt’.format(filename,filename)]

,capture_output=True, text=True, shell=True).stdout

cmd = "sed -i ’/=======================================/,

$!d’ {}0,1.txt".format(filename)

The following Fig. 17 is the text file output of one of the many text files obtained from
running the previous code snippet, containing both the number of packets or frames, and
bytes per each 0.1s time interval.

3.5. Normalizing Data Sets 31

Figure 17: Resulting IO statistics

3.5 normalizing data sets

After using all the previous tools, it is possible to extract the number of bytes per interval
spread in numerous text files with extra information so the next step was sorting them to
maintain the chronological order and creating a text file where each line is the number of
bytes per time interval chosen previously. This file will be the input for the statistics and
estimation algorithms.

The following code was used for that.

def iostatsSort100ms():

for infile in sorted(glob.glob("*0,1.txt")):

with open(’{}’.format(infile)) as f:

for line in itertools.islice(f,12,None):

line = line[18:]

if (line.split()[0]).isdigit():

ioStats01["Filename"].append(infile);

ioStats01["bytes"].append(int(line.split()[2]));

To obtain proper results the time series of Optical Carrier (OC) 48 and 192 the number
of bytes were obtained for each of the following time granularities of 0.1s, 0.01s and 0.001s,
therefore creating three different data sets from the original one.

Instead of using the raw number of bytes, the data was normalized, using the natural
logarithmic function (ln), as well as the removal of all the time intervals with zero bytes from

3.6. Algorithms Used 32

the sampled data sets to obtain a time series more similar to the original one and without
gaps of information. This is necessary as many of the previous algorithms described will
give unpredictable and varying results if the removal is not done. By removing the zeros,
it eliminates all the timed intervals in which the sampling techniques were not actively
collecting data. The downside to this practice is the fact that a time series of network
inactivity caused by failure might be inaccurately removed, which is undesirable for the
network state estimations. Even so, and with the data sets used, the results should not be
affected by this possibility, as moments of network outage are not present or are very brief.

The following code snippet illustrates how the final text file was obtained, containing the
number of bytes per time interval after applying the math.log function from Python’s math
library. This file will later be used as input for the 3.7 software tool.

def pksTxt100ms():

logfileBytes = open("OC192_0.1LOGBytesTXT.txt","w")

logZerofileBytes = open("OC192_0.1LOGZEROSBytesTXT.txt","w")

for infile in sorted(glob.glob("*0,1.txt")):

with open(’{}’.format(infile)) as f:

for line in itertools.islice(f,12,None):

line = line[18:]

if (line.split()[0]).isdigit():

if int(line.split()[2]) != 0 :

logfileBytes.write(str(math.log(

int(line.split()[2])))+"\n")

logZerofileBytes.write(str(math.log(

int(line.split()[2])))+"\n")

else :

logZerofileBytes.write(line.split()[0]+"\n")

3.6 algorithms used

The following algorithms and the explanation of how they are processed is inspired in the
following article [21]. The description of those algorithms is detailed in the next subsections.

3.6.1 Aggregate variance

Divide the input time series X = {Xi, i ≥ 1} into m blocks of size m and average within
each block, that is considered the aggregated series for successive values of m . The index
k , labels the block. Then take the sample variance of X(m)(k), k = 1, 2, ... of each block.

kalil
Realce
Seria interessante também dar o nome do software aqui, além da referência no texto

kalil
Realce
A quantidade de algoritmos usados não fazem os datasets se distanciarem mais dos dados reais?

3.6. Algorithms Used 33

This sample variance is an estimator of VarX(m). Since, for fractional Gaussian noise and
fractional ARIMA, VarX(m) ∼ σ2

0 mβ as m → ∞ where β = 2H − 2 < 0, it is possible to
obtain an estimate for β , or H, by proceeding as follows.

For a given m , divide the data, X1, ..., XN , into N/m blocks of size m , calculate
X(m)(k), for k = 1, 2, ..., N/m, and its sample variance

V̂arX(m) =
1

N/m

N/m

∑
k=1

(X(m)(k))2 −
(

1
N/m

N/m

∑
k=1

X(m)(k)

)2

(16)

Apply this process for different values of m and plot the logarithm of the sample variance
versus log m. Choose values of m , {mi, i ≥ 1}, that are the same distance on a log scale, so
that mi+1/mi = C, where C is a constant which depends on the length of the series and the
desired number of points. Since V̂arX(m) is an estimate of VarX(m) , the resulting points
should form a straight line with slope β = 2H − 2,−1 ≤ β < 0. In practice, the slope is
estimated by fitting a line to the points obtained from the plot. It is assumed here that both
m and N are large, and that m ≪ N , so that both the length of each block, and the number
of blocks is large. If X has (short-range or) no dependence, the slope obtained should equal
−1.

Figure 18: OC192 SELFIS Hurst estimation - Aggregate variance

3.6.2 R/S

This is one of the better known methods as previously referred in 2.2.2. For a time se-
ries X = {Xi, i ≥ 1} , with partial sum Y(n) = ∑n

i=1 Xi , and sample variance S2(n) :=
(1/n)∑n

i=1 XiX2
i − (1/n)2Y(n)2 the R/S statistic, or the rescaled adjusted range is given by :

R
S
(n) :=

1
S(n)

[
max0≤t≤n

(
Y(t)− t

n
Y(n)

)
− min0≤t≤n

(
Y(t)− t

n
Y(n)

)]
(17)

For fractional Gaussian noise or fractional ARIMA,

E[R/S(n)] ∼ CHnH (18)

3.6. Algorithms Used 34

as n → ∞ , where CH is another positive, finite constant not dependent on n. To determine
H using the R/S statistic, proceed as follows. For a time series of length N , subdivide the
series into K blocks, each of size N/K . Then, for each lag n , compute R(ki, n)/S(ki, n),
starting at points ki = iN/K + 1, i = 1, 2, ..., such that ki + n ≤ N . For values of n smaller
than N/K , one gets K different estimates of R(n)/S(n). For values of n approaching N ,
one gets fewer values, as few as 1 when n ≥ N − N/K . Choosing logarithmically spaced
values of n , plot log[R(ki, n) = S(ki, n)] versus log n and get, for each n , several points on
the plot. This plot is sometimes called the pox plot for the R/S statistic. The parameter
H can be estimated by fitting a line to the points in the pox plot. Since any short-range
dependence in the series typically results in a transient zone at the low end of the plot do
not use the low end of the plot for the purposes of estimating H. Usually, the very high end
of the plot is not used as well, because there are too few points on the plot at the high end to
make reliable estimates. The values of n that lie between the lower and higher cut-o points
are used to estimate H .

Figure 19: OC192 Matlab Hurst estimation - R/S

3.6.3 Periodogram

One first calculates

I(λ) =
1

2πN
|

N

∑
j=1

Xjeijλ|2 (19)

kalil
Realce
log?

kalil
Realce
box?

3.7. Selfis 35

where λ is a frequency, N is the number of terms in the series, and Xj is the data. Because
I(λ) is an estimator of the spectral density, a series with long-range dependence should have
a periodogram which is proportional to |λ|1−2H close to the origin. Therefore, a regression
of the logarithm of the periodogram on the logarithm of the frequency λ should give a
coefficient of 1 − 2H. The slope provides an estimate of H.

Figure 20: OC192 SELFIS Hurst estimation - Periodogram

3.7 selfis

The testing and results were obtained using the self-similarity analysis software tool
SELFIS[33], capable of applying all of the Hurst estimation algorithms referred in 3.6
to an input file which contains values of a time series, It can also obtain basic statistics, the
graphical display of the power spectrum function and the autocorrelation function (ACF).

Figure 21: Example of SELFIS software tool GUI

3.7. Selfis 36

Due to limitations in the amount of data the SELFIS software tool could import, the
comparisons between the different time granularities might not be completely accurate but a
close approximation, as each data set could only be partially loaded. Note that comparisons
between original and sampled data sets should be accurate as they contain the same amount
of values, with the exception of some sampling techniques which shortened the sampled
time series data set.

The SELFIS software tool also returns the correlation coefficient in a percentage value
for the Aggregate Variance. Some other estimators are also available such as the Absolute
Moment, Whittle estimator, Variance of Residuals and Abry-Veitch estimator, which were
not used for testing.

4

T E S T A N D R E S U LT A N A LY S I S

The following sections are the results obtained using the SELFIS software tool for the Hurst
parameter estimations with the Aggregate Variance, R/S and Periodogram algorithms as
well as the basic statistics for containing the mean throughput in the natural logarithm of
the number of bytes and the conversion to Mbps. For the R/S algorithm, Matlab was used
as SELFIS presented unexpected and inconsistent results.

The time frames chosen to represent the OC48 and OC192 and the respective sampled
data sets were the 0.1s, 0.01s and 0.001s.

4.1 oc-48

With a 0.1s time frame only N = 65536 samples could be imported to the SELFIS tool (out
of 108000), for 0.01s N = 1048576 (out of 1080000) and finally for the 0,001s time frame
N = 8388608 (out of 10800000) for the original data sets. Note that the OC48 data set should
be 10800s long which corresponds to three hours of network traffic data. Each of the sampled
data sets have a different number of samples depending on the sampling technique used.

4.1.1 Basic Statistics

As it has been previously referred in 2.1.3, the accuracy in estimating traffic behavior is
analyzed through instantaneous throughput, which is the throughput estimated in each
sample along the measurement process, as well as mean throughput which is the total
estimated load. The accuracy in instantaneous throughput estimation is measured using the
variance, where a smaller variance means a more accurate estimation.

The boxplots were obtained with Matlab[34] using the following code as example.

Input = {OC48_0_1LOGBytes, OC48_0_1LOGBytesLP, OC48_0_1LOGBytesMuST,

OC48_0_1LOGBytesRANDC, OC48_0_1LOGBytesSYSTC1_8,

OC48_0_1LOGBytesSYSTC1_100, OC48_0_1LOGBytesSYSTC1_256,

OC48_0_1LOGBytesSYSTT100_500, OC48_0_1LOGBytesSYSTT200_500,

37

kalil
Realce
Por que esses valores e não outros?

kalil
Realce
A quantidade e o tipo de tráfego nessas 3h não podem afetar a medição?

4.1. OC-48 38

OC48_0_1LOGBytesSYSTT500_1500, OC48_0_1LOGBytesSYSTT500_3500};

% Pad each vector with NaN values to equate lengths

maxNumEl = max(cellfun(@numel,Input));

Cpad = cellfun(@(x){padarray(x(:),[maxNumEl-numel(x),0],NaN,’post’)}, Input);

% Convert cell array to matrix and run boxplot

Cmat = cell2mat(Cpad);

boxplot(Cmat,Dataset);

title(’OC48 Boxplot - 0.1s time frame’)

xlabel(’Data set’)

ylabel(’Number of bytes per sample(in ln)’)

0.1s time frame data set

On Table 3 are presented statistics such as mean (natural logarithm of the number of bytes
at the 0.1s time frame interval and corresponding throughput in Megabits per second
(e15.30) ∗ 8 = 353Mbps), variance, standard deviation and skewness.

The sampling techniques data set that more closely resembles the original data set in
terms of resulting statistics are MuST and the count-based techniques. The SystT sampling
technique presented poor results with relatively close mean average to the original but with
high variance and deviation as shown in the boxplot represented in Fig. 22.

Also as expected in the case of the count-based techniques, if you multiply the interval of
the sampling frequency the with the estimated throughput, that number comes close to the
original data set calculated throughput, so for example SystC(1/8) : 39 ∗ 8 = 312Mbps, for
SystC(1/100) : 3.5 ∗ 100 = 350, and so forth.

Table 3: OC48 Basic statistics - 0.1s interval per sample
Mean Throughput Variance Std.Deviation Skewness

Original 15.30 353Mbps 0.006 0.079 -4.554

LP(100/200) 14.15 112Mbps 1.747 1.321 -1.649

MuST(200/500) 15.15 304Mbps 0.620 0.787 -4.699

RandC(1/100) 10.69 3.5(350)Mbps 0.021 0.145 -1.059

SystC(1/8) 13.10 39(312)Mbps 0.007 0.086 -3.569

SystC(1/100) 10.68 3.5(350)Mbps 0.021 0.146 -1.046

SystC(1/256) 9.737 1.4(358)Mbps 0.048 0.219 -0.840

SystT(100/500) 10.62 3.3Mbps 23.46 4.844 -0.158

SystT(200/500) 12.17 15.4Mbps 20.72 4.551 -0.832

SystT(500/1500) 13.78 77.2Mbps 12.44 3.527 -1.967

SystT(500/3500) 13.81 79.6Mbps 12.05 3.471 -1.985

4.1. OC-48 39

Looking at Fig. 22, it is easy to come to the conclusion that the time-based techniques
show very high variances except for MuST. The variance of the count-based techniques is
very close to that of the original data set, but with a lower amount of bytes per sample,
because of the packet selection through the sampling process (for the SystC(1/8) only 1

packet will be selected out of 8 making the throughput estimations lower).

Figure 22: OC48 Original and sampled data sets Boxplot - 0.1s time frame

0.01s time frame data set

Looking at the following Table 4 of the OC48 data sets obtained basic statistics for the 0.01s
time frame. At finer granularities the time-based techniques start performing better in terms
of estimating the mean throughput when compared to 3. Still, SystC(1/8) and MuST are the
best two sampling techniques if you want to accurately estimate throughput, as the variance
observed in these data sets is very comparable to the original data set.

Looking at Fig. 23, the time-based techniques start performing better, contrary to the
count-based techniques. However the SystT sampling technique still presents very high
variance.

kalil
Realce
3 o que?

4.1. OC-48 40

Table 4: OC48 Basic statistics - 0.01s interval per sample
Mean Throughput Variance Std.Deviation Skewness

Original 13.02 361Mbps 0.014 0.119 -0.968

LP(100/200) 12.83 299Mbps 0.356 0.597 -6.237

MuST(200/500) 12.99 350Mbps 0.030 0.175 -6.359

RandC(1/100) 8.327 3.3(330)Mbps 0.236 0.486 -1.327

SystC(1/8) 10.82 40(320)Mbps 0.026 0.162 -0.639

SystC(1/100) 8.319 3.3(330)Mbps 0.233 0.483 -1.317

SystC(1/256) 7.164 1.0(256)Mbps 0.909 0.953 -1.152

SystT(100/500) 12.36 187Mbps 4.384 2.094 -3.107

SystT(200/500) 12.68 257Mbps 2.452 1.566 -4.538

SystT(500/1500) 12.89 317Mbps 1.005 1.002 -7.394

SystT(500/3500) 12.89 317Mbps 0.959 0.979 -7.438

Figure 23: OC48 Original and sampled data sets Boxplot - 0.01s time frame

0.001s time frame data set

Once again, looking at Table 5 presenting the resulting OC48 basic statistics for the 0.001s
time frame, and comparing the original data set to the sampled ones, the time-based
sampling techniques (LP, MuST and SystT) even though showing a more skewed data series,
start performing better than the count-based ones for calculating throughput.

Count-based techniques show increasingly worse results with the finer the time granularity
data sets, but SystC(1/8) still presented good results.

4.1. OC-48 41

The statistics obtained from the SystT technique data set are also a lot closer relative to
the original data set in terms of mean when compared to the 0.1s and 0.01s time frames,
however still presenting strong skewness.

Table 5: OC48 Basic statistics - 0.001s interval per sample
Mean Throughput Variance Std.Deviation Skewness

Original 10.69 351Mbps 0.066 0.258 -0.510

LP(100/200) 10.65 338Mbps 0.149 0.386 -7.572

MuST(200/500) 10.67 344Mbps 0.066 0.257 -1.267

RandC(1/100) 5.592 2.1(210)Mbps 2.274 1.508 -0.011

SystC(1/8) 8.420 36(288)Mbps 0.261 0.511 -1.282

SystC(1/100) 5.464 1.9(190)Mbps 2.245 1.498 0.093

SystC(1/256) 5.448 1,9(486)Mbps 2.234 1.494 -0.118

SystT(100/500) 10.63 331Mbps 0.307 0.554 -8.122

SystT(200/500) 10.65 338Mbps 0.193 0.440 -8.539

SystT(500/1500) 10.68 348Mbps 0.116 0.340 -7.355

SystT(500/3500) 10.68 348Mbps 0.113 0.337 -7.122

Looking at Fig. 24, the results are further amplified from the previous time frame plotted
by Fig. 5. At this time frame, the time-based techniques are the best performers, with the
count-based sampling techniques becoming less accurate than in the previous time frames.

Figure 24: OC48 Original and sampled data sets Boxplot - 0.001s time frame

kalil
Realce
Table

4.1. OC-48 42

4.1.2 Aggregate Variance

Looking at Table 6 containing the Aggregate Variance algorithm Hurst parameter estimations,
the results show a very strong long range dependence on both the original and the sampled
data sets except for the Systematic Time-based technique (SystT) at coarser granularity time
frames (0.1s) in which the resulting parameter implies the sampled data series is closer to a
random walk. The count-based sampling techniques are the best performers at the 0.1s and
0.01s time frames. At THE finer time frame of 0.001s all the data sets of different sampling
techniques show estimations close to the original data set, with some of the best performing
techniques being MuST, SystC(1/8) and the SystT techniques. Note that the correlation
coefficient is very high, on all time frames and data sets.

Table 6: OC48 Aggregate Variance - Hurst parameter estimation and Correlation Coefficient
0.1s 0.01s 0.001s

Original 0.857(86.88%) 0.923(96.38%) 0.908(93.15%)
LP(100/200) 0.649(99.01%) 0.671(94.96%) 0.771(94.23%)

MuST(200/500) 0.635(96.38%) 0.833(95.55%) 0.836(92.73%)
RandC(1/100) 0.814(94.38%) 0.837(94.50%) 0.740(93.92%)

SystC(1/8) 0.851(88.41%) 0.907(96.01%) 0.876(91.89%)
SystC(1/100) 0.815(94.50%) 0.835(94.58%) 0.727(94.96%)
SystC(1/256) 0.769(95.60%) 0.798(94.89%) 0.741(94.78%)

SystT(100/500) 0.429(96.86%) 0.611(97.51%) 0.776(91.35%)
SystT(200/500) 0.431(96.29%) 0.691(94.70%) 0.830(96.10%)
SystT(500/1500) 0.499(98.81%) 0.721(95.00%) 0.874(93.90&)
SystT(500/3500) 0.512(98.41%) 0.701(95.69%) 0.865(94.66%)

kalil
Lápis

kalil
Realce
%

kalil
Realce
the

4.1. OC-48 43

Figure 25: Bar chart of OC48 Aggregate Variance Hurst estimation per time frames

4.1.3 R/S

Looking at the results presented in Table 7 the R/S algorithm indicates LRD on all of the
original data sets, showing stronger long range dependence at the coarser granularity of
the 0.1s time frame. The sampling techniques show varying results with for example LP
performing well at the 0.1s time frame and 0.001s. The SystC(1/8) data set shows very
close results to the original one at all time frames and therefore being the best performing
technique and interval, The time-based techniques start performing better at the 0.001s time
frame.

4.1. OC-48 44

Table 7: OC48 R/S - Hurst parameter estimation
0.1s 0.01s 0.001s

Original 0.793 0.658 0.621

LP(100/200) 0.747 0.409 0.585

MuST(200/500) 0.281 0.614 0.626

RandC(1/100) 0.613 0.564 0.542

SystC(1/8) 0.741 0.614 0.575

SystC(1/100) 0.617 0.565 0.542

SystC(1/256) 0.590 0.555 0.550

SystT(100/500) 0.473 0.412 0.514

SystT(200/500) 0.456 0.368 0.558

SystT(500/1500) 0.426 0.426 0.598

SystT(500/3500) 0.440 0.460 0.608

Figure 26: Bar chart of OC48 Rescaled Range Hurst estimation per time frames

4.1.4 Periodogram

According to the author of [19] the Periodogram algorithms can present some values over 1

because in some cases non-stationarities are so complex, that conventional models fail to
accommodate them, which can result in estimates of the Hurst parameter greater than or
equal to 1, as shown in the following Table 8 with the original data set at the 0.1s time frame.

kalil
Realce
Não foi citada no texto

4.1. OC-48 45

Once again as the R/S algorithm previously described, the Periodogram algorithm shows
stronger LRD at the 0.1s time frame for all the data sets tested, except for the SystT technique.
At the finer granularities the series starts to follow a random-walk as the Hurst parameter
estimation is closer to 0.5, no longer presenting strong LRD. Still, the sampling techniques
that show the closest results relative to the original are of the MuST and SystC(1/8) data
sets.

Table 8: OC48 Periodogram - Hurst parameter estimation
0.1s 0.01s 0.001s

Original 1.053 0.663 0.589

LP(100/200) 0.775 0.485 0.565

MuST(200/500) 0.728 0.669 0.582

RandC(1/100) 0.822 0.539 0.507

SystC(1/8) 0.950 0.618 0.542

SystC(1/100) 0.731 0.543 0.505

SystC(1/256) 0.666 0.524 0.517

SystT(100/500) 0.540 0.371 0.514

SystT(200/500) 0.518 0.440 0.543

SystT(500/1500) 0.462 0.495 0.570

SystT(500/3500) 0.444 0.500 0.577

Figure 27: Bar chart of OC48 Periodogram Hurst estimation per time frames

kalil
Realce
Não foi citada no texto

4.2. OC-192 46

4.2 oc-192

For the OC192 and with 0.1s time frame data set only N = 32768 samples could be
imported to the SELFIS tool, for the 0.01s N = 262144 and finally for the 0,001s time frame
N = 2097152. Note that the OC192 data set should be 3721s long which is roughly one hour
of network traffic data.

4.2.1 Basic Statistics

The following results are very similar to the ones previously obtained in 4.1.1 when compar-
ing the different time frames, only differing on the higher throughput obtained due to the
OC192 network carrier setup, which makes use of more recent technologies than OC48, and
therefore capable of higher data transfer rate.

0.1s time frame data set

The following Table 9 show the basic statistics for the OC192 data set for the 0.1s time
frame. Best performing sampling techniques are the count-based ones and MuST in terms
of measuring throughput relative to the original data set.

Table 9: OC192 Basic statistics - 0.1s interval per sample
Mean Throughput Variance Std.Deviation Skewness

Original 17.85 4524Mbps 0.015 0.126 -17.75

LP(100/200) 16.77 1535Mbps 1.391 1.179 -2.131

MuST(200/500) 17.70 3891Mbps 0.408 0.639 -5.319

RandC(1/100) 13.24 45(4500)Mbps 0.014 0.119 -8.316

SystC(1/8) 15.65 501(4008)Mbps 0.015 0.125 -16.17

SystC(1/100) 13.23 45(4500)Mbps 0.014 0.120 -8.692

SystC(1/256) 12.30 18(4608)Mbps 0.015 0.125 -7.187

SystT(100/500) 13.67 69Mbps 27.94 5.286 -0.713

SystT(200/500) 15.14 301Mbps 21.80 4.669 -1.398

SystT(500/1500) 16.17 842Mbps 16.21 4.027 -2.106

SystT(500/3500) 16.12 801Mbps 17.09 4.134 -2.028

Looking at Fig. 28, the massive variance of the SystT sampling techniques is noticeable
mainly with the SystT(100/500) and SystT(200/500). Count-based techniques on the other
hand present very low variance, comparable to the original data set, however they present
much lower throughput results, as only a small percentage of the packets (depending on the
interval set) is actually captured.

4.2. OC-192 47

Figure 28: OC192 Original and sampled data sets Boxplot - 0.1s time frame

0.01s time frame data set

The following Table 10 show the basic statistics for the OC192 data set for the 0.01s time
frame. Best performing sampling techniques are again all of the count-based techniques and
MuST for measuring throughput, be it instantaneous or mean throughput. The time-based
techniques including SystT start performing better relative to the 0.1s time frame, with MuST
presenting 0.048 variance to the original data set with 0.024 of variance.

Table 10: OC192 Basic statistics - 0.01s interval per sample
Mean Throughput Variance Std.Deviation Skewness

Original 15.53 4446Mbps 0.024 0.155 -0.240

LP(100/200) 15.36 3748Mbps 0.380 0.616 -6.204

MuST(200/500) 15.53 4446Mbps 0.048 0.220 -9.547

RandC(1/100) 10.93 45(4500)Mbps 0.032 0.181 0.153

SystC(1/8) 13.34 497(3976)Mbps 0.024 0.157 -0.068

SystC(1/100) 10.92 44(4400)Mbps 0.033 0.182 -0.022

SystC(1/256) 9.979 17(4352)Mbps 0.048 0.221 -0.238

SystT(100/500) 14.86 2272Mbps 5.576 2.361 -3.437

SystT(200/500) 15.21 3226Mbps 1.652 1.652 -5.311

SystT(500/1500) 15.37 3786Mbps 1.503 1.226 -7.417

SystT(500/3500) 15.37 3786Mbps 1.505 1.227 -7.427

4.2. OC-192 48

Looking at Fig. 29, it is noticeable how much closer in performance all types of sampling
techniques are of each other. SystT still presents relatively high variance, mainly with the
SystT(100/500) sampling interval.

Figure 29: OC192 Original and sampled data sets Boxplot - 0.01s time frame

0.001s time frame data set

The following Table 11 show the basic statistics for the 0.001s time frame OC192 data set
which follow the same trends as the OC48 statistics at the same time frame. The time-based
techniques perform the best with LP and MuST estimating throughput very closely to the
number obtained with the original data set, with very low variance as well. Interestingly the
count-based techniques performed worse relatively to the other two time frames tested, but
still maintaining good estimations.

Looking at the boxplot of Fig. 30, and as it happens with the OC48 data set on the time
frame of 0.001s, the time-based techniques perform better when compared to the 0.1s and
0.01s time frames. MuST presents a good throughput estimation and 0.059 variance to
the original of 0.054. Main difference to the OC48 is the fact that count-based techniques
(SystC(1/8)) still show results close to the original data set at this time frame for the OC192

data set.

4.2. OC-192 49

Table 11: OC192 Basic statistics - 0.001s interval per sample
Mean Throughput Variance Std.Deviation Skewness

Original 13.21 4366Mbps 0.054 0.232 0.553

LP(100/200) 13.19 4280Mbps 0.175 0.419 -9.907

MuST(200/500) 13.22 4410Mbps 0.059 0.244 -1.503

RandC(1/100) 8.549 41(4100)Mbps 0.212 0.460 -1.324

SystC(1/8) 11.01 484(3872)Mbps 0.062 0.249 0.330

SystC(1/100) 8.541 41(4100)Mbps 0.206 0.454 -1.313

SystC(1/256) 7.426 13(3328)Mbps 0.829 0.910 -1.636

SystT(100/500) 13.16 4153Mbps 0.500 0.707 -9.061

SystT(200/500) 13.19 4279Mbps 0.271 0.520 -11.02

SystT(500/1500) 13.20 4322Mbps 0.144 0.379 -11.95

SystT(500/3500) 13.20 4322Mbps 0.141 0.376 -11.99

Figure 30: OC192 Original and sampled data sets Boxplot - 0.001s time frame

4.2.2 Aggregate Variance

As seen before with the OC48 data sets and with the Aggregate Variance algorithm, the
series presents LRD, at all three different time frames. Best performing sampling techniques
that come closest to the original data set are MuST, and the count-based ones.

4.2. OC-192 50

Table 12: OC192 Aggregate Variance - Hurst parameter estimation and Correlation Coefficient
0.1s 0.01s 0.001s

Original 0.784(99.17%) 0.828(98.40%) 0.835(98.93%)
LP(100/200) 0.560(98.89%) 0.584(99.55%) 0.660(96.60%)

MuST(200/500) 0.729(90.33%) 0.770(99.58%) 0.801(99.24%)
RandC(1/100) 0.793(99.12%) 0.819(98.71%) 0.804(98.69%)

SystC(1/8) 0.785(99.15%) 0.827(98.42%) 0.832(98.97%)
SystC(1/100) 0.832(98.97%) 0.818(98.75%) 0.804(98.75%)
SystC(1/256) 0.770(98.27%) 0.794(98.16%) 0.787(99.23%)

SystT(100/500) 0.822(90.38%) 0.720(95.32%) 0.714(98.58%)
SystT(200/500) 0.664(96.34%) 0.523(88.33%) 0.752(98.89%)
SystT(500/1500) 0.671(96.08%) 0.626(98.01%) 0.775(99.46%)
SystT(500/3500) 0.382(99.56%) 0.558(98.80%) 0.755(99.64%)

Figure 31: Bar chart of OC192 Aggregate Variance Hurst estimation per time frames

4.2.3 R/S

Hurst estimations using the R/S algorithm show LRD looking at the original data set results
from Table 13, however the sampling technique data sets that still maintain that dependence
are the count-based ones (RandC and SystC), mainly at coarser granularities.

4.2. OC-192 51

Table 13: OC192 R/S - Hurst parameter estimation
0.1s 0.01s 0.001s

Original 0.800 0.740 0.732

LP(100/200) 0.598 0.474 0.658

MuST(200/500) 0.445 0.650 0.774

RandC(1/100) 0.793 0.703 0.650

SystC(1/8) 0.798 0.734 0.724

SystC(1/100) 0.790 0.703 0.650

SystC(1/256) 0.763 0.670 0.602

SystT(100/500) 0.586 0.297 0.458

SystT(200/500) 0.432 0.315 0.545

SystT(500/1500) 0.340 0.452 0.689

SystT(500/3500) 0.366 0.492 0.718

Figure 32: Bar chart of OC192 Rescaled Range Hurst estimation per time frames

4.2.4 Periodogram

Using the Periodogram algorithm on OC192 data set with different time frames, show
stronger LRD at 0.1s as it did with the OC48 data set. Best performing sampling techniques
are the count-based ones, mainly RandC and SystC(1/8). Time-based techniques start
performing closer to the Original data set at the 0.001s time frame.

4.2. OC-192 52

Table 14: OC192 Periodogram - Hurst parameter estimation
0.1s 0.01s 0.001s

Original 0.857 0.676 0.755

LP(100/200) 0.650 0.553 0.716

MuST(200/500) 0.575 0.662 0.762

RandC(1/100) 0.867 0.661 0.649

SystC(1/8) 0.859 0.676 0.742

SystC(1/100) 0.742 0.658 0.648

SystC(1/256) 0.951 0.778 0.838

SystT(100/500) 1.035 0.435 0.652

SystT(200/500) 0.974 0.497 0.687

SystT(500/1500) 0.618 0.516 0.713

SystT(500/3500) 0.536 0.508 0.726

Figure 33: Bar chart of OC192 Periodogram Hurst estimation per time frames

4.2.5 Autocorrelation Function

The Autocorrelation function (ACF) previously described in 2.2.4. According to the developer
of the SELFIS software analysis tool [33], shows the value of the autocorrelation coefficient
for different time lags k as previously described in 15.

kalil
Realce
Por que não existe essa seção em 4.1?

Correlação de quem com quem?

Faltou uma explicação dos gráficos para essas correlações

kalil
Realce
15 o que?

4.2. OC-192 53

The following Figures 34, 35 and 36 show the graphical representation of the ACF of
typical long-range dependent processes as the they slowly decay to zero for the Original,
Random count-based and Systematic count-based techniques. The ACF for the 0.01s and
0.001s time frames present the same behaviour even though they are not visually represented
here.

Original data set - 0.1s time frame

Figure 34: ACF graph of OC192 Original data set - 0.1s time frame

Random count-based data set - 0.1s time frame

Figure 35: ACF graph of OC192 RandC data set - 0.1s time frame

4.2. OC-192 54

Systematic count-based data set - 0.1s time frame

Figure 36: ACF graph of OC192 SystC data set - 0.1s time frame

However for the time-based techniques represented by 37, 38 and 39, the behaviour is a
lot different to both the count-based techniques and each other, possibly because of the
periodicity introduced by the time-based techniques.

LP data set - 0.1s time frame

Figure 37: ACF graph of OC192 LP data set - 0.1s time frame

4.3. Summary 55

MuST data set - 0.1s time frame

Figure 38: ACF graph of OC192 MuST data set - 0.1s time frame

Systematic time based data set - 0.1s time frame

Figure 39: ACF graph of OC192 SystT data set - 0.1s time frame

4.3 summary

According to the author of [15] the presence of periodicity in a time series may have an
influence on the estimation of the long memory (long-range dependence) parameter H, as
some estimators falsely detect the presence of long-range dependence when periodicity is
present.

Both the OC48 and OC192 present similar results with all the different sampling techniques
tested, both in regards of basic statistics and Hurst estimation parameter.

4.3. Summary 56

4.3.1 Data Volume

Note that even though the OC192 capture was one hour long, it still used a lot more disk
space volume in comparison to the OC48 capture which was three hours long, as the data
transfer rates and bandwidth of OC192 are a lot higher.

The next Fig. 40 demonstrates how much space each data set occupies, including the
sampled ones.

Figure 40: Original and sampled OC data sets volume

4.3.2 Throughput and Hurst Estimations

In terms of estimating throughput and the Hurst parameter, with all three algorithms
and three different time frames tested from both OC48 and OC192, the best performing
techniques are very dependent on the time frame of the data set. As expected for the Hurst
estimations, the original series showed LRD or strong memory. however only some sampled
data sets still maintained that property of Internet traffic.

For the 0.1s time frame, the best performing techniques were the count-based ones (RandC
and SystC), which like the original data set, present very low variance and deviation,
necessary for instantaneous throughput estimations to be accurate.

4.3. Summary 57

However, as the time granularity becomes smaller (0.01s and 0.001s time frames), the
count-based techniques start performing worse, inversely to what happens with the time-
based techniques. These start to shine in particular with the MuST which was the most
consistent technique, presenting good results, even at the 0.1s time frame. The sampling
technique of SystC with the sampling interval of (1/8) was also a very consistent data set in
both throughput and Hurst estimations, even at the finer granularity time frames, which
is impressive considering it is one of the sampling techniques that use the least amount of
data volume, compared to the time-based techniques.

5

C O N C L U S I O N

The work developed in this dissertation was mainly focused on the statistical properties
of sampled Internet traffic when compared to to the original data and in which way those
properties are affected due to the loss of data after applying the sampling process with the
advantage of lower computational resources being needed.

Depending on which type of sampling processes used and whether they are count-based
or time-based as well as the time frame of the data set is used, the results obtained with
the estimation algorithms are different. The resulting sampled data sets also use a different
amount of disk space, with time-based techniques generally using more when compared to
the count-based techniques.

Analysing the tests and results obtained described in Chapter 4, it is still possible to gather
accurate information for network traffic analysis after applying the sampling process to the
original traffic data, both in terms of estimating throughput, as well as in determining if the
sampled series still maintain the property of long range dependence (LRD).

SystC(1/8) and MuST had some of the consistent results both in throughput and Hurst
parameter estimations, presenting very low variance in the number of bytes per sample of
the time frame selected. Therefore these data sets provide good estimations on instantaneous
and mean throughput and on the Hurst parameter. Time-based techniques (LP, MuST
and SystT) also start performing better at the finer granularity time frames, inversely to
what happens to count-based techniques, mainly at less frequent sampling intervals as, for
example, SystC(1/100) or SystC(1/256).

5.1 future work

Additional work associated can still be developed to better understand how the sampling
process affects the results of the Hurst parameter and other statistics. For example, it is
possible to apply a smoothing function on the original and sampled data sets or a low-pass
filter which is a filter that passes signals with a frequency lower than a selected cutoff
frequency and attenuates signals with frequencies higher than the cutoff frequency to

58

kalil
Realce
Tem realmente como garantir isso?

kalil
Realce
Essa análise foi feita na dissertação?

5.1. Future Work 59

eliminate certain periodicities of the original and sampled signals, as well as using different
data sets and algorithm combinations.

It is also possible to obtain some other statistics and the usage of different intervals for
each of the sampling techniques than the ones tested in this dissertation to evaluate how
much that parameter affects the results.

B I B L I O G R A P H Y

[1] João Marco C. Silva, Paulo Carvalho, and Solange Rito Lima. Computational weight
of network traffic sampling techniques. In 2014 IEEE Symposium on Computers and
Communications (ISCC), pages 1–6, 2014. doi: 10.1109/ISCC.2014.6912467.

[2] S. Bregni. Compared accuracy evaluation of estimators of traffic long-range dependence. In
2014 IEEE Latin-America Conference on Communications (LATINCOM), pages 1–5, 2014.
doi: 10.1109/LATINCOM.2014.7041868.

[3] T. Karagiannis, M. Molle, and M. Faloutsos. Long-range dependence ten years of internet
traffic modeling. IEEE Internet Computing, 8(5):57–64, 2004. doi: 10.1109/MIC.2004.46.

[4] H. E. HURST. Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng., 116:
770–799, 1951. URL https://ci.nii.ac.jp/naid/10024052023/en/.

[5] AJ Lawrance and NT Kottegoda. Stochastic modelling of riverflow time series. Journal of the
Royal Statistical Society: Series A (General), 140(1):1–31, 1977.

[6] John Haslett and Adrian E. Raftery. Space-time modelling with long-memory dependence:
Assessing ireland’s wind power resource. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 38(1):1–50, 1989. ISSN 00359254, 14679876. URL http://www.jstor.

org/stable/2347679.

[7] A Montanari, R Rosso, and MS Taqqu. A seasonal fractional differenced arima model: An
application to the river nile monthly flows at aswan. preprint, 1995.

[8] Alberto Montanari, Renzo Rosso, and Murad S Taqqu. Some long-run properties of rainfall
records in italy. Journal of Geophysical Research: Atmospheres, 101(D23):29431–29438, 1996.

[9] Alberto Montanari, Renzo Rosso, and Murad S Taqqu. Fractionally differenced arima models
applied to hydrologic time series: Identification, estimation, and simulation. Water
resources research, 33(5):1035–1044, 1997.

[10] Clive William John Granger and Paul Newbold. Forecasting economic time series. Academic
Press, 2014.

[11] Richard T Baillie. Long memory processes and fractional integration in econometrics. Journal
of econometrics, 73(1):5–59, 1996.

60

https://ci.nii.ac.jp/naid/10024052023/en/
http://www.jstor.org/stable/2347679
http://www.jstor.org/stable/2347679

BIBLIOGRAPHY 61

[12] Zhuanxin Ding and Clive WJ Granger. Modeling volatility persistence of speculative returns:
a new approach. Journal of econometrics, 73(1):185–215, 1996.

[13] Jan Beran, Robert Sherman, Murad S Taqqu, and Walter Willinger. Long-range dependence in
variable-bit-rate video traffic. IEEE Transactions on communications, 43(2/3/4):1566–1579,
1995.

[14] Walter Willinger, Murad S Taqqu, Will E Leland, and Daniel V Wilson. Self-similarity
in high-speed packet traffic: analysis and modeling of ethernet traffic measurements.
Statistical science, pages 67–85, 1995.

[15] A. Montanari, M.S. Taqqu, and V. Teverovsky. Estimating long-range dependence in the
presence of periodicity: An empirical study. Mathematical and Computer Modelling, 29(10):
217–228, 1999. ISSN 0895-7177. doi: https://doi.org/10.1016/S0895-7177(99)00104-1.
URL https://www.sciencedirect.com/science/article/pii/S0895717799001041.

[16] T. Zseby, Mayra Molina, Nick Duffield, Saverio Niccolini, and Frederic Raspall. Sampling
and filtering techniques for ip packet selection. 01 2008.

[17] J. M. C. Silva, P. Carvalho, and S. R. Lima. Analysing traffic flows through sampling: A
comparative study. In 2015 IEEE Symposium on Computers and Communication (ISCC),
pages 341–346, 2015. doi: 10.1109/ISCC.2015.7405538.

[18] Baek-Young Choi and Supratik Bhattacharyya. Observations on cisco sampled netflow.
SIGMETRICS Performance Evaluation Review, 33:18–23, 12 2005. doi: 10.1145/1111572.
1111579.

[19] Cheolwoo Park, Felix Hernández-Campos, J.S. Marron, and F. Smith. Long-range dependence
in a changing internet traffic mix. Computer Networks, 48:401–422, 06 2005. doi: 10.1016/
j.comnet.2004.11.018.

[20] V. Paxson and S. Floyd. Wide area traffic: the failure of poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226–244, 1995. doi: 10.1109/90.392383.

[21] MURAD S. TAQQU, VADIM TEVEROVSKY, and WALTER WILLINGER. Estimators for
long-range dependence: An empirical study. Fractals, 03(04):785–798, 1995. doi: 10.1142/
S0218348X95000692. URL https://doi.org/10.1142/S0218348X95000692.

[22] M. Krunz. On the limitations of the variance-time test for inference of long-range
dependence. In Proceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE Computer and Communi-
cations Society (Cat. No.01CH37213), volume 3, pages 1254–1260 vol.3, 2001. doi:
10.1109/INFCOM.2001.916620.

https://www.sciencedirect.com/science/article/pii/S0895717799001041
https://doi.org/10.1142/S0218348X95000692

BIBLIOGRAPHY 62

[23] H. E. Hurst, R. P. Black, and Y. M. Simaika. Long-term storage : an experimental study / by H.E.
Hurst, R.P. Black, Y.M. Simaika. Constable London, 1965.

[24] W. J. Riley and C. A. Greenhall. Power law noise identification using the lag 1 autocorrelation.
In 2004 18th European Frequency and Time Forum (EFTF 2004), pages 576–580, 2004. doi:
10.1049/cp:20040932.

[25] Kihong Park and Walter Willinger. Self-Similar Network Traffic: An Overview, pages 1–38. 01

2002. ISBN 0471319740. doi: 10.1002/047120644X.ch1.

[26] G. W. Wornell and A. V. Oppenheim. Estimation of fractal signals from noisy measurements
using wavelets. IEEE Transactions on Signal Processing, 40(3):611–623, 1992. doi: 10.1109/
78.120804.

[27] P. Abry and D. Veitch. Wavelet analysis of long-range-dependent traffic. IEEE Transactions
on Information Theory, 44(1):2–15, 1998. doi: 10.1109/18.650984.

[28] D. Veitch and P. Abry. A wavelet-based joint estimator of the parameters of long-range
dependence. IEEE Transactions on Information Theory, 45(3):878–897, 1999. doi: 10.1109/
18.761330.

[29] Stefano Bregni. Characterization and Modelling of Clocks, pages 203 – 281. 04 2002. ISBN
9780470845882. doi: 10.1002/0470845880.ch5.

[30] Jan Beran. Statistics for Long-Memory Processes. Routledge, 1994.

[31] Esther Stroe-Kunold, Tatjana Stadnitski, Joachim Werner, and Simone Braun. Estimating
long-range dependence in time series: An evaluation of estimators implemented in r.
Behavior research methods, 41:909–23, 09 2009. doi: 10.3758/BRM.41.3.909.

[32] Gerald Combs. Wireshark https://www.wireshark.org/,.

[33] Thomas Karagiannis. Selfis: A short tutorial. 12 2002.

[34] MATLAB. The MathWorks Inc. https://www.mathworks.com/products/matlab.html, Nat-
ick, Massachusetts, 2021.

https://www.wireshark.org/
https://www.mathworks.com/products/matlab.html

	1 Introduction
	1.1 Motivation and Objectives
	1.2 Research Methodology
	1.3 Dissertation Layout

	2 State of Art
	2.1 Sampling
	2.1.1 Sampling Techniques
	2.1.2 Traffic Flow Analysis through Sampling
	2.1.3 Comparison of Sampling Techniques

	2.2 Properties of Internet Traffic
	2.2.1 Self-Similarity and Long Range Dependence
	2.2.2 Methods for estimating LRD parameters H and
	2.2.3 Estimation Accuracy Evaluation
	2.2.4 Autocorrelation function

	3 Development
	3.1 Sampling Framework
	3.2 Sampling Commands
	3.3 Data Sets Used
	3.3.1 OC48
	3.3.2 OC192

	3.4 Data Set Filtering
	3.4.1 Mergecap
	3.4.2 Wireshark
	3.4.3 Editcap
	3.4.4 TShark

	3.5 Normalizing Data Sets
	3.6 Algorithms Used
	3.6.1 Aggregate variance
	3.6.2 R/S
	3.6.3 Periodogram

	3.7 Selfis

	4 Test and Result Analysis
	4.1 OC-48
	4.1.1 Basic Statistics
	4.1.2 Aggregate Variance
	4.1.3 R/S
	4.1.4 Periodogram

	4.2 OC-192
	4.2.1 Basic Statistics
	4.2.2 Aggregate Variance
	4.2.3 R/S
	4.2.4 Periodogram
	4.2.5 Autocorrelation Function

	4.3 Summary
	4.3.1 Data Volume
	4.3.2 Throughput and Hurst Estimations

	5 Conclusion
	5.1 Future Work

